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Tropical protected areas reduced 
deforestation carbon emissions by 
one third from 2000–2012
Daniel P. Bebber  1 & Nathalie Butt2

Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, 
and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in 
mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness 
of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains 
unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 
4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation 
controlling for spatial variation in deforestation pressure. The largest contribution was from the 
tropical Americas (368.8 TgC y−1), followed by Asia (25.0 TgC y−1) and Africa (12.7 TgC y−1). Variation 
in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations 
assigned by governments.

Tropical forests account for around 68% of global forest carbon stocks, in terms of live biomass, above and below 
ground1,2. Carbon sequestration and storage in terrestrial systems is an important mechanism for climate change 
mitigation3, and deforestation and land clearing are significant drivers of carbon emissions in tropical systems, 
as deforestation is the most important contributor to emissions from land use change4. Between 2000 and 2010, 
tropical deforestation and land use change emitted 1.0 PgC y−1 net to the atmosphere5,6. When forest degradation 
is also included7, tropical emissions between 1990 and 2010 were around 1.4 PgC y−1.

Protected areas (PAs) comprise up to 15% of the land surface globally across all ecosystems8–10, and are 
intended to protect habitats11 as well as benefit local communities through ecosystem service provision and the 
support of sustainable livelihoods12. Although PAs can achieve conservation goals13,14, deforestation does occur 
within PAs9; in some cases increasing human pressure (hunting and timber extraction nearby) is driving bio-
diversity loss and decline11. While it may be difficult to achieve both biodiversity and socio-economic benefits, 
there is evidence that where people are included as stakeholders, mutually beneficial scenarios are achievable14,15. 
PAs vary widely in extent and type, from local ecological or indigenous reserves through to national parks and 
World Heritage Sites. The International Union for Conservation of Nature (IUCN) categorization system com-
prises six broad classes, relating to their management objectives16,17: Category Ia denotes strict nature reserves, Ib 
wilderness areas without significant human habitation, II national parks set aside to control large-scale ecological 
processes, III natural monuments or feature likely to have high visitor value, IV habitats or species management 
areas often requiring management intervention, V protected landscapes or seascapes featuring significant human 
influence, and VI areas with sustainable use of natural resources. The ability of category V and VI to both con-
serve biodiversity and promote economic welfare remains contested17.

Previous tropical or global analyses of the effectiveness of PAs have focused on biodiversity conservation, for-
est loss or social outcomes8,9,18,19, but there has been little analysis of the impacts on carbon stocks and losses20,21, 
which influence climate change-related biophysical feedbacks22. While total soil carbon content in forests is 2-3 
times greater than that stored in above ground biomass (AGB)5, it is not always readily released to the atmos-
phere after deforestation; whether it is or not depends on the post-deforestation land use5. Root, or belowground, 
biomass (BGB) is generally equivalent to one-fifth of the AGB in tropical forests23: here we focus on AGB, in 
line with other recent studies3. Recent high-resolution forest cover24 and above ground biomass (AGB)5 esti-
mates allow large-scale analysis of PAs in terms of reduction of forest canopy loss and carbon emissions. We ana-
lysed the effectiveness of PAs in reducing deforestation and forest carbon loss, investigating variation among PA 
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designations and controlling for spatial variation in deforestation pressure. Using empirical relationships between 
canopy cover and AGB, we estimated the influence of PAs on tropical forest carbon emissions resulting from 
reductions in deforestation rates.

Deforestation rates within PA borders are significantly lower than outside25,26, and they are especially impor-
tant for forest conservation in developing countries27. However, the siting of PAs is not random, and they are 
often located in areas that are inaccessible or unsuitable for agriculture, far from cities or transport links, and in 
topographically challenging areas (i.e., on steep slopes), such that they are unlikely to be under pressure from the 
developmental drivers of land use change8. Because of non-random PA locations, and because deforestation rate 
varies among countries due to political and socioeconomic factors9, PA effectiveness may be overestimated28, and 
so statistical models of forest loss in unprotected (non-PA) areas are commonly used to control for this bias18,20,29. 
We analysed the difference (rd) between observed and expected remaining forest cover in PAs to control for any 
biases in PA location. The expected remaining cover was determined from Generalized Additive Models (GAMs) 
of forest loss in non-PA regions. Positive rd therefore indicates that remaining forest cover in PAs is greater than 
expected for a particular location, and negative rd indicates that remaining forest cover is less than expected.

Results and Discussion
We analysed the three major tropical regions, the Americas, Africa, and Asia, separately (Supplementary 
Table S1). Remaining canopy cover in 2012 in non-PA areas increased with the fraction of steep slopes in all three 
regions, but the relationships with other predictors were complex (Supplementary Fig. S1). For example, while 
remaining cover tended to decline with increasing road density, it increased with very high road density in Asia, 
perhaps because of canopy maintenance in urban areas. Remaining canopy cover tended to increase with the 
fraction of steep slopes, but followed non-linear relationships with population density, road density, altitude, and 
agricultural suitability (Supplementary Fig. S1). Controlling for non-random PA location was most important 
for areas with high forest cover (Supplementary Fig. S2). The fraction of variance in remaining canopy cover in 
non-PA areas explained by the GAM for the Americas was 95.2%, for Africa 99.0%, and for Asia 92.5%.

Forest within PAs retained more canopy cover between 2000 and 2012 than would be expected for 
non-protected forest with similar levels of proxy variables for deforestation pressure (Fig. 1; Supplementary 
Table S2). Mean rd per PA, weighted by PA area and controlling for spatial autocorrelation, was 2.65 ± 0.24% 
for the Americas (test vs. zero, t = 11.2, p < 0.001), 0.39 ± 0.10% for Africa (test vs. zero, t = 6.9, p < 0.001), 
and 1.92 ± 0.17% for Asia (test vs. zero, t = 11.3, p < 0.001) (Fig. 2). Mean rd for all forested non-PA pixels 
was 0.057 ± 0.058% (spatial block bootstrap test vs. zero, Z = 0.99, p = 0.32) for the Americas, 0.004 ± 0.026% 
(Z = 0.16, p = 0.88) for Africa, and 0.027 ± 0.061% (Z = 0.45, p = 0.66) for Asia, confirming unbiased estimation 
of deforestation by the GAMs. PAs in the Americas have positive rd across the range of predicted remaining can-
opy cover, while the African and Asian PAs are most effective at 60–80% of predicted remaining cover (Fig. 2).

Mean rd for PAs varied significantly among countries within all three tropical regions, confirming that 
reserve effectiveness is partly determined by governance, but the influence of other predictors was variable 
(Supplementary Table S2; Supplementary Fig. S3). There was a strong influence of spatial location, in addition 
to significant variation among countries. rd varied significantly with PA original canopy cover in all regions, 
increasing overall, while rd decreased at high PA area in Africa and Asia. For status year, rd decreased slightly for 
recently-gazetted PAs in the Americas, with no significant effect in Africa and Asia (Supplementary Table S2; 
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Figure 1. The difference between observed and expected remaining forest canopy cover, rd, in non-PA and PA 
forests. Violin-plot width is proportional to 1 arc minute pixel frequency. Horizontal lines show interquartile 
ranges and medians. Values for pixels with original (year 2000) canopy cover >20% are shown. Values above the 
zero line indicate that more canopy remained than expected by a model of remaining canopy cover in non-PA 
areas.
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Supplementary Fig. S3). We predicted the difference among designations and IUCN categories for an example 
set of PAs from one country in each region (Supplementary Fig. S4). In Brazil, Ecological Station and Biological 
Reserve were associated with greatest protection, while Environmental Protection Area had the least protec-
tion. In Ghana, there was little variation among designations. In Indonesia, RAMSAR Site is associated with the 
greatest protection. In Brazil, IUCN Class IV had the most positive influence on rd, but there was little signifi-
cant variation among the other categories, nor among categories in the other tropical regions (Supplementary 
Figs S5 and S6). This contrasts with an earlier finding that strict protection (i.e. IUCN Category 1a) provides the 
greatest protection18. While statistically significant, the influence of designations and IUCN Categories was not 
easily interpretable, and varied among the tropical regions, while a large fraction of the variance in rd among PAs 
remained unexplained by our large-scale models, particularly in Africa (Supplementary Table S2). The particular 
socioeconomic conditions within and around individuals PAs would need to be evaluated to fully understand 
why protection is achieved in some cases, while in other cases it fails13,30.

Tropical forest AGB estimates5 were strongly related to canopy cover, and based upon empirical relation-
ships (Supplementary Fig. S6) we found that PAs lying within tropics in the Americas retained 4.42 Pg C more 
than expected for non-PA areas between 2000 and 2012, equivalent to 368.8 Tg C y−1. Brazilian PAs contributed 
82% of this total (Supplementary Table S4). African PAs retained 0.15 Pg, the equivalent of 12.7 Tg C y−1 more 
than expected, and Asian PAs, 0.3 Pg total, or 25.0 Tg C y−1 (Fig. 3). Tropical American PAs covered nearly five 
times more forest area (>20% canopy cover) than tropical Africa PAs, and nearly seven times more than the 
area of tropical Asian PAs, contributing to the much larger carbon saving in the Americas. Though analyses of 
deforestation rates in PAs are common, estimates of carbon emissions reductions are rare21. We estimated total 
annualized AGB carbon losses of 0.79 Pg C y−1 for unprotected areas and 0.096 Pg C y−1 for PAs across the trop-
ics (Supplementary Table S1), compared with 0.62 Pg C y−1 and 0.054 Pg C y−1 estimated in a previous study 
using different source data for deforestation and carbon density21. The relative contributions of PAs to emissions 
reductions differs substantially between countries. In our analysis, Brazilian PAs contributed 25 times the benefit 
of Indonesian PAs, compared with five times the benefit in a previous study based on older data20. One reason 
for this difference could be the decline in deforestation rates in Brazil, which have almost halved since 2008, and 
increased in Indonesia since 2008 ref.24.

Our estimate of the effectiveness of PAs in retaining forest cover and carbon, quantified as rd, represents 
an upper limit because of the potential for leakage, or displacement, of deforestation outside PA boundaries31. 
We tested for an effect of local leakage within a few kilometres of PA boundaries on our estimates of deforesta-
tion pressure, and found none. However, this does not preclude the possibility that larger-scale displacement of 
deforestation occurs. The problem of leakage, either locally or internationally, has been the subject of intense 
debate in the development of REDD + processes during international climate change mitigation negotiations32. In 
the worst case, all deforestation that would have occurred inside the PAs we analysed could have been displaced to 
outside the PA boundaries, and the benefit of the PAs would be zero. The implications for conservation could be 
even more negative if the displaced deforestation occurs in more vulnerable habitats and ecosystems than those 
inside the PAs. While local leakage is variable33, and appears to be unimportant20, large scale leakage remains 
entirely unquantified in recently published studies of multi-national REDD+ projects34. Until more is known of 
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Figure 2. The difference between observed and expected remaining canopy cover, rd, against predicted 
remaining canopy cover in PAs for the three tropical forest regions. Shaded circles represent individual PAs with 
size proportional to geographic area. The magenta lines are smooths, showing the average for different predicted 
remaining values. PAs in the Americas have positive rd across the range of predicted remaining canopy cover, 
while the African and Asian PAs are most effective at 60–80% of predicted remaining cover. PAs with areas 
<1000 ha are not plotted, because of their extremely small size at this scale.
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the importance of leakage under different geographical and social situations, we are limited to reporting the upper 
range of PA carbon benefits.

The Paris Agreement resulting from the United Nations Framework Convention on Climate Change 
Conference of Parties (UNFCCC COP) 21 included reduction of deforestation as a key activity in mitigating 
climate change to 2020, and our analysis suggests that tropical PAs have played a significant role in conserving 
forest carbon in recent years, equivalent to a reduction of around 29% of tropical deforestation emissions. Global 
carbon sinks will be critical for meeting the Paris Agreement, and tropical deforestation risks rainforest carbon 
sinks switching to carbon sources35. The potential additionality32 of PAs is greatest in countries with the highest 

Figure 3. Annual estimated carbon saving in tropical PAs (Mg C ha−1 y−1) from 2000–2012, aggregated to 
1 degree pixels, in (a) Americas, (b) Africa, (c) Asia. Red hues indicate carbon loss greater than expected for 
non-PA areas, blue hues indicate carbon retention greater than expected. This does not include changes in 
forest carbon in unprotected areas. Images were created using R v. 3.4.038. Specifically, rasters were created with 
package raster v.2.5.8, and country boundaries drawn using package maps v.3.2.0.
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background deforestation rates and forests with the highest carbon densities, and support of these should be 
prioritized. In many of these countries, intact forest landscapes, important for carbon storage across large areas 
have been reduced and should be prioritised for inclusion in PAs. Carbon storage, along with socioeconomic and 
biodiversity benefits, provides further support for the need to maintain the world’s protected area network.

Methods
In summary, our analysis proceeded in five stages: first, we estimated observed remaining canopy cover in 2012 
(robs) in all forest areas, using data on forest cover in 2000 and loss by 2012. Second, we constructed statistical 
models of robs in unprotected areas using a number of land-use and environmental predictors. Third, we predicted 
the expected remaining canopy cover (rexp) in PAs, from predictor variables within PAs using the models. Fourth, 
we calculated the difference between observed and expected canopy cover as rd = robs−rexp, to give a measure of PA 
effectiveness relative to background deforestation pressure. Fifth, we estimated empirical relationships between 
above-ground forest carbon density and canopy cover, and used these relationships to estimate the difference 
between observed and expected remaining carbon within PAs.

Full descriptions of all datasets are given in the Supplementary Information. We estimated the mean remain-
ing canopy cover from original canopy cover in 2000 and loss by 2012, by setting those pixels reported as having 
lost forest to zero canopy, under the assumption that forest loss was complete for those pixels, and that forest 
would not have grown back by 2012. The original data were at 1 arc second (~30 m) resolution, and we aggregated 
these to 1 arc minute (~1.8 km) resolution by taking means. We used Generalized Additive Models (GAMs)36 
parameterized using observed remaining canopy cover in 2012 in non-PA areas, to predict expected remaining 
canopy cover in PAs, and compared these predictions with the observed remaining canopy cover in PAs. The 
difference between observed and expected remaining canopy cover (rd) was used to analyse the effectiveness of 
PAs in reducing deforestation. Positive rd values indicated that remaining cover was greater than expected for a 
non-PA area with the same values of predictor variables, and negative rd indicated that remaining cover was lower 
than expected. GAMs have been previously used in analyses of PA effectiveness29, and are useful when the under-
lying relationship between predictor and response is non-linear, and is not readily defined by a particular math-
ematical function. We checked for bias in GAM estimates of remaining forest cover for non-PA areas by testing 
rd vs. zero, using spatial block bootstrap resampling37 with data aggregated to 1° blocks, weighted by the fraction 
of non-PA forest pixels per block, and 1000 bootstrap samples. All analyses were conducted in R v.3.4.0.ref.38.

In addition to original canopy cover in 2000, we used the following predictors of remaining forest cover in 
2012 in our GAMs, which have all been implicated in previous studies of tropical deforestation8,15,29: Country 
(as a fixed factor), human population density39, road density40, agricultural suitability41, altitude42 and fraction 
of steep slopes42 as the area per pixel with a slope >15°. All continuous variables were fitted as cubic regression 
splines (population density, road density, and steep slope fraction were log-transformed), and we included spa-
tial location as a two-dimensional tensor product smoothed across latitude and longitude to control for other, 
unidentified sources of spatial variation in deforestation pressure. No other interaction terms were included, and 
separate models were fitted for each tropical region (Latin America, Africa and Asia). All datasets were trans-
formed to 1 arc minute, either by aggregation to the mean value or bilinear interpolation, if the original dataset 
was at higher or lower resolution, respectively. The responses of remaining cover to predictors are shown in 
Supplementary Fig. S1. We found the largest differences at high predicted values, demonstrating the importance 
of controlling for non-random PA locations (Supplementary Fig. S2).

The difference between predictions from GAMs including all our deforestation pressure proxies (country, 
population density, road density, slope steepness, altitude, and agricultural suitability) and null model using only 
original canopy cover was small indicating a relatively small influence of these predictors on deforestation pres-
sure (Fig. S3). A fraction of predictions were slightly negative (to around −5%) and were set to zero, and those 
exceeding 100% (to around 110%) were set to 100%. For the Americas, 8.6% of pixels were predicted to have 
negative remaining cover, and 4.4% to have above 100%. For Africa, 0.9% were negative and 0.4% above 100%. 
For Asia, 1.3% were negative, and 4.8% above 100%.

The mean difference between observed and predicted remaining canopy cover (rd) was calculated for each PA, 
omitting PAs with total areas below the minimum pixel size of 1 arc minute (approximately 300 ha). PAs above 
this threshold represented 97%, 94% and 90% of the total PA area in the Americas, Africa and Asia, respectively. 
We then fitted GAMs to PA mean rd weighted by PA area, such that larger PAs were more influential on the fit 
(Supplementary Table S2). Categorical predictors were country, PA designation, and IUCN category, while cubic 
splines were fitted for PA area, status year (year that the PA was gazetted), original canopy cover, and the fraction 
of the PA area covered by other PAs (the area of some PAs were partially covered by other PAs). Mean rd per PA 
for each region was estimated using generalized least squares models, weighted by PA area and controlling for 
spatial autocorrelation using a spherical autocorrelation model43.

We estimated carbon loss from deforestation using 15 arc second resolution aboveground live woody biomass 
(AGB) data5. Biomass data were estimated from 2007-8 imagery and hence were not contemporaneous with our 
estimates of canopy cover (2000 and 2012). To estimate biomass in 2000 and 2012 we derived models of biomass 
from canopy cover and ecosystem type, for only those pixels that did not change canopy cover by more than 1% 
between 2000 and 2012. We aggregated biomass to 1 arc minute resolution, and fitted a smoothing spline using 
canopy cover as the predictor for each tropical region (Supplementary Fig. S6). We were unable to use canopy 
height as a predictor of AGB in 2000 because global canopy height databases44 are only available post-2000. We 
compared these univariate fits with splines that varied by ecosystem (see Supplementary Material for description 
of ecosystem data), using GAMs. Inclusion of ecosystem type improved the model R2 from 92.7 to 93.4% for the 
Americas, from 90.0 to 90.5% for Africa, and from 90.8 to 91.8% for Asia. These improvements in model fit were 
trivial and so we estimated original and remaining biomass from original and remaining canopy cover using the 
simple models, omitting the minor variations due to ecosystem class. We then estimated AGB from the predicted 
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remaining canopy cover for PAs, using the remaining canopy cover model parameterized using non-PA areas. 
AGB per unit area was converted to above-ground carbon by multiplying the AGB by pixel area in hectares, and 
using a factor of 0.5 to convert from biomass to carbon45. The difference between the remaining AGB estimates 
and the predicted remaining AGB estimates for pixels within PAs was summed to give the overall carbon saving 
per region. Only pixels with original canopy cover greater than 20%, and within the tropics (between 23°N and 
23°S) were included in the carbon saving calculation.

Leakage, the displacement of deforestation from inside to outside PAs, could bias the results by spuriously ele-
vating the observed deforestation rate in non-PA regions20,32. We tested for an effect of local leakage by re-fitting 
GAMs for remaining forest cover in 2012, but excluding non-PA areas in a buffer around all PAs20. We chose 
buffer widths of similar magnitude to those used in a previous study20, but which increased with PA size such 
that buffer depth in kilometers equalled the natural logarithm of PA area in square kilometres (truncated to zero 
below 1 km2 area), as the potential for displacement of deforestation range of 5 km for the majority of PAs, used 
in the previous study, with a maximum around 10 km for the largest PAs (Supplementary Fig. S7). Predictions 
for remaining forest cover within PAs, estimated from GAMs fitted to non-PA regions excluding buffers, were 
almost identical to those estimated from GAMs fitted to all non-PA forest areas. Spearman correlation coefficients 
were 0.99996 for the Americas, 0.99995 for Africa, and 0.9987 for Asia. Hence, we concur with earlier studies that 
short-range leakage is undetectable and can be ignored in analysis, and that longer-range leakage, where deforest-
ation is displaced widely (perhaps internationally), is intractable20.

References
 1. Pan, Y. et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 333, 988–993 (2011).
 2. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. 108, 

9899–9904 (2011).
 3. Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5, 

1022–1023 (2015).
 4. Le Quéré, C. et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).
 5. Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. 

Change 2, 182–185 (2012).
 6. Harris, N. L. et al. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science 336, 1573–1576 (2012).
 7. Houghton, R. A. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon 

Manag. 4, 539–546 (2013).
 8. Joppa, L. N. & Pfaff, A. High and Far: Biases in the Location of Protected Areas. PLoS ONE 4, e8273 (2009).
 9. Heino, M. et al. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis. PLoS ONE 10, e0138918 (2015).
 10. UNEP-WCMC & IUCN. Protected Planet Report 2016. 73 (UNEP-WCMC & IUCN, 2016).
 11. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).
 12. Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected 

areas. Conserv. Biol. 30, 133–141 (2015).
 13. Coetzee, B. W. T., Gaston, K. J. & Chown, S. L. Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological 

Performance: A Meta-Analysis. PLoS ONE 9, e105824 (2014).
 14. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 

230–238 (2013).
 15. Nelson, A. & Chomitz, K. M. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global 

Analysis Using Matching Methods. PLOS ONE 6, e22722 (2011).
 16. Dudley, N. Guidelines for Applying Protected Area Management Categories. (IUCN, 2008).
 17. Shafer, C. L. Cautionary thoughts on IUCN protected area management categories V–VI. Glob. Ecol. Conserv. 3, 331–348 (2015).
 18. Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success 

of protected areas in the Brazilian Amazon. Proc. Natl. Acad. Sci. 110, 4956–4961 (2013).
 19. Bowker, J. N., De Vos, A., Ament, J. M. & Cumming, G. S. Effectiveness of Africa’s tropical protected areas for maintaining forest 

cover. Conserv. Biol. 31, 559–569 (2017).
 20. Ferraro, P. J. et al. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. 

Proc. Natl. Acad. Sci. 112, 7420–7425 (2015).
 21. Scharlemann, J. P. W. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).
 22. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
 23. Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl. Acad. Sci. 

111, 13721–13726 (2014).
 24. Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853 (2013).
 25. Leverington, F., Costa, K. L., Pavese, H., Lisle, A. & Hockings, M. A Global Analysis of Protected Area Management Effectiveness. 

Environ. Manage. 46, 685–698 (2010).
 26. Nagendra, H. Do Parks Work? Impact of Protected Areas on Land Cover Clearing. AMBIO J. Hum. Environ. 37, 330–337 (2008).
 27. Miranda, J. J., Corral, L., Blackman, A., Asner, G. & Lima, E. Effects of Protected Areas on Forest Cover Change and Local 

Communities: Evidence from the Peruvian Amazon. World Dev. 78, 288–307 (2016).
 28. Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area 

networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094 (2008).
 29. Green, J. M. H. et al. Deforestation in an African biodiversity hotspot: Extent, variation and the effectiveness of protected areas. Biol. 

Conserv. 164, 62–72 (2013).
 30. Pfaff, A., Robalino, J., Sandoval, C. & Herrera, D. Protected area types, strategies and impacts in Brazil’s Amazon: public protected 

area strategies do not yield a consistent ranking of protected area types by impact. Phil Trans R Soc B 370, 20140273 (2015).
 31. Barber, C. P., Cochrane, M. A., Souza, C. M. Jr. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas 

in the Amazon. Biol. Conserv. 177, 203–209 (2014).
 32. Fearnside, P. M. The theoretical battlefield: accounting for the carbon benefits of maintaining Brazil’s Amazon forest. Carbon Manag. 

3, 145–158 (2012).
 33. Robalino, J., Pfaff, A. & Villalobos, L. Heterogeneous Local Spillovers from Protected Areas in Costa Rica. J. Assoc. Environ. Resour. 

Econ. 4, 795–820 (2017).
 34. Fischer, R., Hargita, Y. & Günter, S. Insights from the ground level? A content analysis review of multi-national REDD + studies 

since 2010. For. Policy Econ. 66, 47–58 (2016).
 35. Rockström, J. et al. The world’s biggest gamble. Earths Future 4, 465–470 (2016).
 36. Wood, S. Generalized Additive Models: An Introduction with R. (CRC Press, 2006).



www.nature.com/scientificreports/

7Scientific REPORTs | 7: 14005 | DOI:10.1038/s41598-017-14467-w

 37. Brenning, A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package 
sperrorest. In 2012 IEEE International Geoscience and Remote Sensing Symposium 5372–5375 https://doi.org/10.1109/
IGARSS.2012.6352393 (2012).

 38. R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 
2017).

 39. Center for International Earth Science Information Network (CIESIN) & Centro Internacional de Agricultura Tropical (CIAT). 
Gridded Population of the World Version 3 (GPWv3): Population Density Grids. Available at: http://sedac.ciesin.columbia.edu/
data/collection/gpw-v3 (2005).

 40. PBL. GRIP: Global Roads Inventory Project. Available at: http://geoservice.pbl.nl/geonetwork (2013).
 41. Zabel, F., Putzenlechner, B. & Mauser, W. Global Agricultural Land Resources – A High Resolution Suitability Evaluation and Its 

Perspectives until 2100 under Climate Change Conditions. PLoS ONE 9, e107522 (2014).
 42. Fischer, G. et al. Global Agro-Ecological Zones (GAEZ v3.0). 178 (IIASA and FAO, 2012).
 43. Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS. (Springer Science & Business Media, 2000).
 44. Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 

Biogeosciences 116, G04021 (2011).
 45. Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).

Author Contributions
D.B. analysed the data, both authors wrote the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14467-w.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1109/IGARSS.2012.6352393
http://dx.doi.org/10.1109/IGARSS.2012.6352393
http://sedac.ciesin.columbia.edu/data/collection/gpw-v3
http://sedac.ciesin.columbia.edu/data/collection/gpw-v3
http://geoservice.pbl.nl/geonetwork
http://dx.doi.org/10.1038/s41598-017-14467-w
http://creativecommons.org/licenses/by/4.0/

	Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012
	Results and Discussion
	Methods
	Figure 1 The difference between observed and expected remaining forest canopy cover, rd, in non-PA and PA forests.
	Figure 2 The difference between observed and expected remaining canopy cover, rd, against predicted remaining canopy cover in PAs for the three tropical forest regions.
	Figure 3 Annual estimated carbon saving in tropical PAs (Mg C ha−1 y−1) from 2000–2012, aggregated to 1 degree pixels, in (a) Americas, (b) Africa, (c) Asia.




