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Abstract 23 

 24 

Humans naturally select a cadence that minimises metabolic cost at a constant 25 

walking velocity. The aim of this study was to examine the effects of cadence on the 26 

medial gastrocnemius (MG) muscle and tendon interaction, and examine how this 27 

might influence lower limb energetics. We hypothesised that cadences higher than 28 

preferred would increase MG fascicle shortening velocity because of the reduced 29 

stride time. Furthermore, we hypothesised that cadences lower than preferred would 30 

require greater MG fascicle shortening to achieve increased muscle work 31 

requirements. We measured lower limb kinematics and kinetics, surface 32 

electromyography (EMG) of the triceps surae and MG fascicle length, via 33 

ultrasonography, during walking at a constant velocity at the participants’ preferred 34 
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cadence and offsets of ±10%, ±20% and ±30%. There was a significant increase in 35 

MG fascicle shortening with decreased cadence. However, there was no increase in 36 

the MG fascicle shortening velocity at cadences higher than preferred. Cumulative 37 

MG muscle activation per minute was significantly increased at higher cadences. We 38 

conclude that low cadence walking requires more MG shortening work, while MG 39 

muscle and tendon function changes little for each stride at higher cadences, driving 40 

up cumulative activation costs due to the increase in steps per minute.  41 

 42 

Keywords: Human, locomotion, power, work 43 

  44 



Introduction 45 

 46 

Humans will automatically select a combination stride length and stride duration that 47 

minimises the rate of energy expenditure for a constant walking velocity. The 48 

preferred stride rate or cadence for a given walking velocity results in the least energy 49 

expenditure (Zarrugh & Radcliffe 1978; Holt et al. 1991; Minetti et al. 1995). Humans 50 

may have to use small variations in cadence to adapt to specific conditions, such as 51 

walking in a crowded space. However the more pertinent issue is why humans 52 

gravitate to a narrow range of preferred cadences. While it is clear in the literature that 53 

non-preferred walking patterns result in increased rates of energy expenditure, the link 54 

to neuromuscular mechanisms is less clear.  55 

 56 

The amount of energy consumed during gait is related to the amount of force and 57 

work muscles must generate and the contractile conditions under which force and 58 

work are generated. The inverted pendulum model of walking suggests that muscle 59 

forces are predominantly generated to support body weight and propel the body 60 

forward between steps (Cavagna et al. 1977). This can be achieved with seemingly 61 

low metabolic cost because of the out of phase exchange of gravitational potential and 62 

kinetic energies. More recent models adapted the basic inverted pendulum with that of 63 

a spring-mass model that would normally be associated with running or hopping 64 

(Geyer et al. 2006). In this way the model better represents the centre of mass (COM) 65 

trajectory (which is not perfectly circular) and reflects the compliant nature of the leg, 66 

which is able to compress and recoil during the gait cycle. This is particularly 67 

important during the transition period from late stance until opposite limb heel strike. 68 

The coordination of collision and push off work is necessary for reducing metabolic 69 

cost of walking, where the COM trajectory must be redirected from downward in late 70 

stance to upward for the consecutive step (Donelan et al. 2002). These step-to-step 71 

transition models suggest that walking with longer stride lengths increases the 72 

negative collision work and corresponding positive push-off work that must be done 73 

to transition between consecutive steps and that this makes walking at slow cadences 74 

energetically costly. Such analyses provide evidence for why mechanical work 75 

requirements vary with spatiotemporal gait parameters, but they do not provide much 76 

information about how lower limb muscle function is modulated to meet these 77 

changing mechanical demands.  78 



 79 

An inverse dynamics approach allows for calculation of joint level mechanical work, 80 

which may provide insight into what muscle groups are contributing to mechanical 81 

work. Umberger & Martin (2007) measured the effect of cadence on joint level 82 

mechanical powers for a constant walking velocity. They found minimal mechanical 83 

power at cadences 12% below preferred and maximal efficiency at cadences 8% 84 

above preferred. Total limb positive mechanical power increased at cadences above 85 

preferred, largely due to an increased hip positive power. At cadences slower than 86 

preferred, the ankle contributed a greater proportion of the total positive power 87 

requirements. The authors attributed the selection of preferred cadence to be a 88 

compromise between work and efficiency. However, one of the limitations of 89 

analysing work at the joint level is that one cannot account for transfer of power via 90 

biarticular muscles or torque due to co-contraction of antagonist muscles. It also fails 91 

to distinguish between work provided actively by contractile elements within the 92 

muscle and energy that has been elastically cycled in aponeuroses and tendons. For 93 

example, approximately forty percent of positive leg joint work during walking occurs 94 

about the ankle joint (Farris & Sawicki 2011) but over half of this is estimated to be 95 

elastic energy returned by the Achilles tendon that was stored earlier in stance (Sasaki 96 

et al. 2009; Farris & Sawicki 2012).   97 

 98 

In walking, the compliant nature of the Achilles tendon and aponeuroses allows the 99 

active contractile tissues of the triceps surae muscles to shorten at relatively slow 100 

velocities while rapid shortening of the muscle-tendon unit is achieved through high 101 

velocity recoil of the series elastic tissues (Lichtwark et al. 2007). This is beneficial 102 

for force production and energetic cost because the muscles may act at more 103 

favourable lengths and shortening velocities while performing little mechanical work 104 

(Lichtwark & Wilson 2007). However, it has been shown that when walking at speeds 105 

above preferred, the velocity of MG fascicle shortening increases (Farris & Sawicki 106 

2012), presumably requiring increased activation of MG to meet the required levels of 107 

MG force. Fascicle velocity may be a factor in the selection of preferred gait 108 

parameters because of its influence on force production and might change with varied 109 

cadence. 110 

 111 



The aim of the present study was to investigate the effect of manipulating cadence on 112 

MG muscle mechanics while walking at a constant velocity. We hypothesised that 113 

MG fascicle shortening velocity would be greater at cadences faster than preferred 114 

due to the increased stride rate and consequently, decreased stride time to produce the 115 

required work. We also predicted that activation of the plantar flexors would increase 116 

because of an impaired force producing capacity at faster shortening rates in 117 

accordance with the force-velocity relationship. We also hypothesised that stride rates 118 

lower than preferred would result in greater MG fascicle shortening and peak 119 

activation because of increased positive power requirements at the ankle (Umberger 120 

& Martin 2007).  121 

 122 

Material & Methods 123 

 124 

Participants 125 

Fifteen healthy participants (9 male, 6 female), age 24 ± 3.5 (mean ± S.D.) years, 126 

height 175 ± 8.5 cm and mass 72 ± 9.3 kg gave written consent to participate in this 127 

study. The study was approved by the University of Queensland Human Movement & 128 

Nutrition Studies ethics committee. Kinematic data was collected from 7 participants 129 

walking on a motorized treadmill (Austredex AC190, Doncaster, VIC, Australia) 130 

while kinematic and kinetic data were collected from 8 participants walking on an 131 

instrumented treadmill (AMTI DBCEEWI, Watertown, MA, USA). Participants were 132 

recruited from the staff and students of the University of Queensland. 133 

 134 

Protocol 135 

Height, body mass and right leg length (taken from the most prominent points of the 136 

greater trochanter and lateral malleolus) were recorded for each participant.  137 

Participants were asked to walk at the same normalised speed for all movement trials 138 

while cadence was randomised across conditions.  A standardised walking speed 139 

adjusted for leg length was used for each participant. The walking speed was based on 140 

a Froude number of 0.25 [Fr = v2/gL, where v is the speed of locomotion, g is 141 

gravitational acceleration and L is limb length], which is close to the preferred 142 

walking speed that minimises cost of transport (Minetti 2001). Participants were 143 

asked to walk for one minute while the preferred cadence was calculated as the total 144 

number of steps taken divided by time. All of the participants had prior experience 145 



with walking on motorized treadmills at the moderate walking velocities prescribed in 146 

this protocol.  Participants completed the protocol barefoot, to reduce any footwear 147 

effects. For the other experimental conditions, the preferred cadence was offset by 148 

±10%, ±20% and ±30% to manipulate the normal velocity-cadence relationship.  149 

Participants were required to match the target cadence for a minimum of one minute 150 

before data collection.  Representative fascicle length data requires approximately 6 151 

strides of data (Aggeloussis et al. 2010), therefore the data collection period allowed 152 

for a minimum of 6 strides. The absolute time of data collection varies for each 153 

participant due to the different speed and cadence in each trial.  During trials that 154 

required a non-preferred cadence, participants received step frequency feedback via 155 

visual (LED’s and pendulum) and auditory (beats for left and right heel strike) cues 156 

from a metronome (Boss TU-80, Roland Corp., Los Angeles, CA, USA) positioned 157 

on the treadmill control panel. Data collection was synchronised using a TTL pulse 158 

from the ultrasound unit to signal the motion capture and electromyography systems 159 

to start/stop capture. 160 

 161 

Kinetics and kinematics 162 

An 8 camera motion analysis system (Qualysis, Gothenburg, Sweden) was used to 163 

capture the position of 19 passive, reflective markers (200 Hz).  A static capture of the 164 

markers was used to define the thigh, shank and foot in a standing position with hands 165 

crossed to opposite shoulder.  Individual markers were placed on the greater 166 

trochanter, medial and lateral condyles of the knee, medial and lateral malleoli at the 167 

ankle, calcaneus and 1st and 5th metatarsal heads. During dynamic trials, marker 168 

clusters were positioned laterally on the mid thigh and mid shank as well as superiorly 169 

on the foot. Raw marker positions were filtered using a 15 Hz, low-pass, 2nd order 170 

Butterworth filter, performing one bidirectional pass to remove high frequency 171 

movement artefact. All data were exported for analysis in Visual 3D software (C-172 

motion Inc., Germantown, MD, USA).  An inverse kinematic model of the right lower 173 

limb was developed and applied to the data. Force signals were filtered using the 174 

same frequency as marker position data (15 Hz)(Kristianslund et al. 2012).  An 175 

inverse dynamics analysis was then used to compute the ankle joint moments and 176 

mechanical powers.  Mechanical work and joint moment calculations were 177 

normalized to the participants body mass. Metrics of ankle mechanics were calculated 178 

during the phase of positive ankle power production associated with push-off.  179 



 180 

Muscle-tendon measures 181 

Musculotendinous unit (MTU) length for the MG was estimated using Grieve’s 182 

regression equation (Grieve et al. 1978). Muscle fascicle length of the medial 183 

gastrocnemius was measured using B-mode ultrasound imaging. A flat ultrasound 184 

transducer (LV7.5/60/96Z, TELEMED, Vilnius, Lithuania) was positioned over the 185 

mid-belly of the medial gastrocnemius to show the muscle fascicles as well as deep 186 

and superficial aponeuroses, using a similar technique to previous research 187 

(Lichtwark et al. 2007). The ultrasound transducer was secured to the skin using an 188 

adhesive bandage to reduce rotation or translation of the transducer during movement 189 

trials.  Ultrasound images were recorded at 6 MHz frequency, image depth of 50 mm 190 

and a frame rate of 80 Hz (Logicscan 128, TELEMED, Vilnius, Lithuania).  191 

Measurements of fascicle length and pennation angle were made offline using a 192 

custom Matlab script (MathWorks Inc., Natick, USA).  The custom Matlab script uses 193 

a semi-automatic tracking algorithm, which has been shown to provide valid and 194 

reliable measurements during gait studies (Cronin et al. 2011). Fascicle and MTU 195 

lengths were normalised to the respective mean length during the preferred walking 196 

condition. It is assumed that the difference in length changes between the MTU and 197 

fascicles is reflective of the contributions of the tendon and associated connective 198 

tissue. MG fascicle length change and velocity measurements were made during the 199 

period of positive ankle power production for the participants that completed the 200 

protocol on the instrumented treadmill. For those participants without force data, the 201 

onset of positive ankle joint velocity was used as a marker for the onset of positive 202 

ankle power and toe-off used as the marker for cessation of positive power. To 203 

correctly scale the fascicle and MTU lengths for the fascicle shortening:MTU 204 

shortening ratio, the MTU lengths were normalised to the mean fascicle length of the 205 

preferred condition.  Fascicle velocity was calculated as the derivative of the 206 

normalised length signal.  Fascicle length change was calculated as the amount of 207 

shortening during the period of right ankle positive power. 208 

 209 

Muscle activation 210 

Electromyography was used to measure the electrical activity of the MG, LG, SOL 211 

and TA muscles (MA-300, Motion Lab Systems inc. Baton Rouge, LA, USA).  The 212 

recording sites were prepared by shaving, cleaning the skin using an abrasive gel and 213 



sterilized with alcohol.  The fibular head was used to position the ground electrode.  214 

Surface EMG electrodes were placed on the belly of the muscle following SENIAM 215 

guidelines (Hermens et al. 2000), with an inter-electrode distance of 2 cm. EMG 216 

signals were collected at 2 kHz and processed using a moving root mean square 217 

(RMS) with a time window of 0.05 seconds to create an EMG envelope. The EMG 218 

envelope for each participant was normalized across conditions to the mean of the 219 

maximal activation per stride during preferred walking. Therefore the EMG values 220 

presented are shown as arbitrary units (au) relative to the activation during preferred 221 

walking. The time integral of the EMG envelope was used to calculate the area under 222 

the EMG curve, quantifying the amount of muscle activation, referred to as the 223 

integrated EMG.  In addition to analysing the data per stride, the integrated EMG was 224 

also adjusted to account for the different cadences used in each condition. To do this 225 

we calculated cumulative muscle activation per minute (au/min) by multiplying the 226 

mean integrated EMG per step (au/step) by the mean cadence (steps/min) for each 227 

condition (Carrier et al. 2011).  228 

 229 

Data for each condition was averaged across every full stride cycle from right heel 230 

strike.  Since kinetic data was not available for all of the participants, the sagittal 231 

plane kinematics of the right calcaneus marker was used to determine the time of heel 232 

strike. All data was exported for statistical analysis using Graphpad Prism.  A one-233 

way repeated measures ANOVA was performed. A Holm-Sidak multiple comparisons 234 

test was also performed, comparing the preferred condition versus percentage cadence 235 

offsets. Two participants had lower than preferred image quality during the -30% 236 

condition and hence could not be tracked. To accommodate this, multiple imputations 237 

were performed for the missing fascicle data points, re-digitising the missing data. 238 

The pooled multiple imputations data was then used to run the repeated measures 239 

ANOVA. Alpha was set to 0.05 for all statistical tests. 240 

 241 

Results 242 

 243 

The mean limb length for the 15 participants was 82.8 ± 4.2 cm (mean ± S.D.) and 244 

mean walking velocity was 1.43 ± 0.04 m/s.   The preferred cadence used by the 245 

participants was 124 ± 3.6 steps/min. The actual cadence was calculated offline from 246 

the kinematic data, to determine how successful the participants were at matching the 247 



cadence set by the metronome.  The mean differences between target and actual 248 

cadence (strides/min) were -0.44 ± 1.6, -0.60 ± 1.3, -0.07 ± 0.36, 1.5 ± 2.2, -0.1 ± 249 

0.49, 0.42 ± 1.1 and 0.47 ± 1.7 respectively, from slowest to fastest cadence. 250 

 251 

Kinetics and kinematics 252 

Average right ankle moment, normalised to body mass, was significantly different 253 

across cadences (Fig. 1B). While there was no significant post hoc differences versus 254 

preferred, there was a trend for greater average ankle moments at slower cadence. A 255 

significant main effect of cadence was found on average positive ankle velocity, with 256 

greater average velocities found at slower cadences (Fig. 1C). Post hoc comparisons 257 

found significant differences between preferred cadence and all other conditions 258 

except the +30% cadence. Ankle average positive power was significantly different 259 

across conditions, with greater positive power at slower stride rates compared to the 260 

preferred condition and similar work rates between the preferred condition and 261 

increased stride rates (Fig. 1D). Post hoc tests found significant differences between 262 

the -20% cadence offset and the preferred cadence. There was a systematic decrease 263 

in ankle joint range of motion as cadence increased, showing a significant main effect 264 

of cadence as well as significant differences between all conditions versus preferred 265 

walking. Peak vertical ground reaction force per stride was not significantly different 266 

across conditions or compared to preferred walking. The group mean force 267 

(normalised to body mass) was 10.94 ± 1.10, 11.79 ± 0.49, 11.97 ± 0.45, 11.89 ± 268 

0.38, 12.03 ± 0.24, 11.63 ± 0.79 and 11.27 ± 0.95 N/kg respectively, from slowest to 269 

fastest cadence. 270 

 271 

Fascicle mechanics 272 

Group mean MTU length, MG muscle fascicle length and fascicle shortening velocity 273 

are shown in Fig. 2. Throughout early stance, the MTU lengthens while the fascicles 274 

remain relatively isometric (Fig. 2A). Between mid stance and push off the fascicles 275 

then shorten rapidly, during the period of positive power production at the ankle (Fig. 276 

2B, C). Although the absolute time of a single stride is different, when normalised to 277 

the same time scale (% stride) the pattern of length changes in the MTU and muscle 278 

fascicles remained relatively consistent across cadence conditions (Fig. 2A, B). A 279 

significant effect of cadence was found on the amount of MG fascicle shortening 280 

during positive ankle power production. The amount of MG fascicle shortening 281 



increased as cadence decreased (Fig. 3A). Post hoc tests showed significant 282 

differences for the -30% cadence, but no other conditions. There was also a 283 

significant main effect of cadence on MTU shortening during ankle positive power, 284 

with greater amounts of MTU shortening occurring as cadence decreased (Fig. 3A). 285 

Significant differences in MTU shortening were found between all conditions and the 286 

preferred stride rate. As an indication of fascicle work relative to MTU work, we also 287 

calculated the fascicle shortening:MTU shortening ratio (Fig. 3B). There was a 288 

significant main effect of cadence where the ratio generally increased as cadence 289 

decreased. The average fascicle shortening velocity during positive power production 290 

was not significantly different across conditions (Fig. 3C). 291 

 292 

Muscle activation 293 

The maximal muscle activation per stride was significantly different to the preferred 294 

cadence across conditions for all muscles except MG (Fig. 4). Peak activation was 295 

significantly higher at the slowest cadences in SOL, LG and TA. In these muscles, 296 

there was no significant change in the peak EMG between preferred cadence and 297 

faster cadences. However, cadence did have a significant main effect on cumulative 298 

integrated EMG of the MG and LG with significant increases at higher cadences 299 

compared to the preferred cadence for MG. 300 

 301 

Discussion 302 

 303 

In this study we examined the effect of stride rate on MG fascicle mechanics, ankle 304 

mechanics and the activation of triceps surae and TA muscles during walking. Our 305 

data provides novel insight into how ankle muscle and tendon function varies with 306 

walking cadence and therefore can help us understand why humans prefer to walk at a 307 

particular cadence. As hypothesised, walking at slower cadences increased average 308 

ankle positive power and MG fascicle shortening during positive power production. 309 

An increased amount of fascicle shortening, with apparent increases in the load 310 

supported by the muscle (as indicated by an increase in the average ankle moment 311 

during power production) at slower cadences suggested that there were greater 312 

muscular work requirements for MG at slow cadences. There were also increases in 313 

peak EMG of LG and SOL muscles at slow cadences, suggesting greater activation 314 

costs associated with producing the additional force and work requirements. Contrary 315 



to our other hypothesis, cadences faster than preferred did not produce increases in 316 

MG fascicle shortening velocity or peak MG EMG. While there was increased 317 

cumulative activation of the MG at faster cadences (therefore requiring more total 318 

activation), it appears that MG fascicle mechanics were not modulated to meet the 319 

increasing limb power requirements at cadences above preferred. 320 

 321 

Slower than preferred cadence 322 

Humans may prefer not to utilise slow stride rates because of the greater ankle 323 

positive mechanical power and plantar flexor moment requirement compared to 324 

preferred (Fig 1B, D). Umberger & Martin (2007) showed that the ankle provides a 325 

significant proportion of the summed limb positive power at slow cadences 326 

(approximately 55% of summed power at -20% cadence). Similarly, our results 327 

demonstrate that walking with slower cadences resulted in increased ankle moment, 328 

increased ankle joint velocity and increased ankle joint power (Fig. 1). An increased 329 

average ankle moment would suggest greater force requirements of the plantar flexor 330 

muscles, which likely comes at a greater energetic cost. The energetic cost of 331 

increased ankle power is, however, dependent on the fascicle length and velocity 332 

conditions under which the muscles produce force and these may be influenced by the 333 

role of elastic tissues.  334 

 335 

Our results demonstrated that walking at a slower cadence resulted in increased 336 

fascicle shortening (and presumably work) as well as MTU shortening. These changes 337 

were not proportional and resulted in a significant increase in the fascicle shortening 338 

to MTU shortening ratio at slower than preferred cadences, showing that fascicle 339 

shortening comprised a greater proportion of total MTU shortening with decreasing 340 

cadence (Fig. 3B). The requirement for increased fascicle shortening, relative to MTU 341 

shortening, at slower cadences is evidence that the increased ankle joint power 342 

production is not fully accounted for by increased energy cycled in the tendon. The 343 

muscle contractile tissue must have produced the extra positive work (rather than the 344 

elastic tissues) at slow cadences because there was no increase in the negative ankle 345 

joint power available to stretch the tendon in early stance (Figure 1D). The increased 346 

amount of force required by the plantar flexors and the increased shortening required 347 

may contribute to the increase in energetic cost at reduced stride rates that has 348 

previously been reported by Umberger & Martin (2007). 349 



 350 

Faster than preferred cadence 351 

In contrast to slow stride rates, where ankle work requirements increased, faster 352 

cadences did not result in concomitant changes in average ankle moment and positive 353 

power, despite the increased movement rate. We found less MG fascicle shortening 354 

during ankle joint positive power production at cadences higher than preferred and no 355 

net changes in the fascicle shortening velocities (Fig. 3A, C). This is in contrast to our 356 

initial hypothesis that average fascicle shortening velocity would increase at faster 357 

than preferred cadences. It is apparent that the ankle range of motion becomes 358 

progressively smaller at higher cadences in order to reduce contact time. This pattern 359 

of movement may make it difficult to use the plantar flexors for propulsion at high 360 

cadences.  361 

 362 

While elasticity may assist in producing positive power and reducing collision losses 363 

(Zelik et al. 2014), the reduced stance time at faster cadences may limit the capacity 364 

for generating force and storing elastic energy that can be used to power push-off. We 365 

observed similar average ankle joint moments with much shorter stance time at high 366 

cadences compared to the preferred cadence. Therefore, it seems like there is a limit 367 

to the amount energy stored in series elastic structures (which is proportional to the 368 

forces applied) as cadence increased and this may have constrained the capacity for 369 

power production at the ankle. While it is conceivable that the muscle fibres might be 370 

able to contribute more work during elastic recoil of the tendon, increasing muscle 371 

activation during this propulsive period would only serve to reduce the rate at which 372 

energy is released from the tendon and hence it is unlikely that this would enable 373 

greater power production at the ankle. This would be consistent with the findings of 374 

Umberger & Martin (2007) that showed the total limb (hip, knee and ankle) joint 375 

positive power increased at higher than preferred cadences, largely because of an 376 

increase in hip joint positive power. The knee joint primarily absorbs energy, 377 

exhibiting greater negative power at higher than preferred cadence. The ankle joint 378 

does not show a large increase in positive power, despite the increase in overall limb 379 

power. Therefore, because of the force constraints and the reliance on elastic energy 380 

storage and return in the Achilles tendon, it may become increasingly difficult to 381 

generate power at the ankle with cadences higher than preferred.  382 

 383 



The preceding rationale provides a thesis based on mechanical power requirements. 384 

However, one might also consider that ankle and gastrocnemius mechanics are 385 

dictated by work requirements for individual steps. As cadence increases, step length 386 

decreases and this has been shown to reduce external positive work requirements per 387 

stride, owing to smaller collisional energy losses in the step-to-step transition 388 

(Donelan et al. 2002). From this perspective, it could be postulated that ankle work 389 

requirements actually decrease with increased cadence and therefore an alternate 390 

hypothesis could be formed that there should be no need to increase gastrocnemius 391 

fascicle shortening, fascicle velocity or elastic recoil. This might explain the present 392 

results showing that fascicle velocity (Fig 2C) and ankle power (Fig 1D) did not 393 

increase at cadences above preferred. However, the additional external power 394 

requirement of maintaining speed at higher cadences must be met somehow and this 395 

will ultimately be important for the cost of transport for walking. Therefore, our initial 396 

consideration of why the ankle is not used to increase power requirements remains 397 

pertinent. 398 

 399 

There was not a decrease in peak muscle activation of the plantar flexors at high 400 

cadence compared to preferred walking. This may suggest that the cost of generating 401 

force per stride remained similar to preferred walking for the plantar flexor muscles, 402 

since the average ankle moment also remained similar to preferred. However the costs 403 

of plantar flexor activation are summative for a given distance or time, and the higher 404 

cumulative activation that we report may be a source of increased metabolic cost with 405 

increasing cadence. The increased plantar flexion cumulative activation is likely the 406 

result of having similar joint moment and muscle shortening requirements for each 407 

stride, and therefore similar peak muscle activation requirements per stride, whilst the 408 

number of strides taken over a period of time increases. The greater quantity of short 409 

duration contractions may also result in an increased energetic cost for the plantar 410 

flexors. In-situ muscle preparations that varied the contraction duration while 411 

maintaining a constant total time of contraction have shown that short duration 412 

contractions significantly increase muscle O2 cost of force development, ATP 413 

utilization and muscle lactate concentration (Hogan et al. 1998). This indicates that 414 

contraction duration can significantly affect the metabolic cost of repetitive 415 

contractions such as those found in walking. In addition, the shift in power production 416 

to the hip (Umberger & Martin 2007) and an increased requirement to swing the leg at 417 



higher rates (Doke & Kuo 2007) will also increase the required muscle activation 418 

levels of the hip musculature and is likely to contribute to the increased energetic rate 419 

for the entire body at high cadences. 420 

 421 

Limitations 422 

There are a large number of muscles that actuate individual joints during walking. In 423 

this study we recorded and tracked fascicle length changes in MG across conditions, 424 

and assumed that this was similar to the other muscles of the triceps surae. It is likely 425 

that changes in cadence resulted in changes to SOL fascicle length or shortening 426 

velocity during walking, since SOL is also mechanically decoupled from the MTU via 427 

the series elastic tissues (Rubenson et al. 2012). Fascicle length changes do differ 428 

slightly between MG and SOL during walking at the preferred cadence (Cronin et al. 429 

2013; Cronin et al. 2013), with SOL experiencing slightly slower maximum 430 

shortening speeds. However the pattern and timing of fascicle shortening is very 431 

similar, as this is dictated primarily by the stretch and recoil of the common tendon 432 

that is generating force around the ankle. Therefore, with the changes in force 433 

requirements at different cadences and limited knee flexion during most of the stance 434 

phase, we would expect to see similar trends in the length changes of SOL, MG and 435 

LG. However, further experimental work is required to confirm this hypothesis. 436 

 437 

The focus of this study was the ankle joint and a key muscle that crosses this joint. 438 

However, changes in the contributions of leg joints to overall power production 439 

during walking make it difficult to draw strong conclusions regarding the links 440 

between muscle mechanics of muscles crossing the ankle and energetic cost of the 441 

entire body based on data for ankle muscle only. It is not clear whether unfavourable 442 

energetic costs are due primarily to the shift in power contribution from proximal 443 

muscles that may also affect the economy of movement. The muscle lengths used in 444 

this study were calculated using a kinematics based equation (Grieve et al. 1978). 445 

This allowed for estimation of muscle length based on segment lengths and joint 446 

angles, although it does not account for individual variations in joint geometry that 447 

may influence muscle length changes. However these kinematic models remain our 448 

best descriptive method of determining muscle length changes in vivo. We are also 449 

assuming that the preferred cadence condition is the most economical because of the 450 

abundance of published literature that relates energetics to variations of stride rate 451 



(Zarrugh & Radcliffe 1978; Holt et al. 1991).  452 

 453 

Conclusions 454 

In conclusion, previous research shows the naturally selected cadence is the most cost 455 

effective method of transport for a given walking velocity (Zarrugh & Radcliffe 1978; 456 

Holt et al. 1991). Here we have shown that walking at a slower stride rate than 457 

preferred increased maximal muscle activation of LG and SOL and increased 458 

shortening of MG fascicles during positive ankle power production.  This reflects 459 

energetically less favourable muscle mechanics that may contribute to the commonly 460 

observed increase in energetic costs associated with slower cadence walking. At faster 461 

stride rates than preferred we observed greater cumulative activation of plantar 462 

flexors, in the absence of increased fascicle shortening or shortening velocities. We 463 

suggest that the ankle joint capacity to significantly increase energy storage and return 464 

is constrained at high cadences because of the plateau in joint moment that reflects 465 

force in the tendon. This results in a shift in power production from the ankle to the 466 

more proximal muscles that can produce more power but may be less economical. 467 

Our results provide new evidence of muscular level mechanisms that may help 468 

understand how humans select preferred cadence. 469 

 470 

Perspectives 471 

 472 

This study provides valuable new information about how the gastrocnemius muscle 473 

functions when humans walk with energetically non-optimal cadences. It highlighted 474 

that knowledge of external mechanics is often insufficient for understanding optimal 475 

movement strategies. At all cadences, the same net goal was achieved (walking at a 476 

given velocity) but gastrocnemius muscle mechanics adapted in ways that could not 477 

be easily predicted from joint mechanics because of the influence of tendon elasticity. 478 

This had implications for muscle activations and, ultimately, will influence which 479 

strategy is optimal for minimising the energetic cost of locomotion. Such 480 

considerations are important for human movement, sports performance and sports 481 

medicine because each of these fields seeks to understand optimal movement 482 

strategies for purposes such as maximising performance and minimising injury risk. 483 

This research emphasises the need to examine movement at the muscular level when 484 

trying to understand how forces for movement are generated and how we can 485 



optimise muscle function, particularly for muscles with significant tendon elasticity. It 486 

remains to be seen whether tendon compliance can be tuned to minimise energetic 487 

cost or injury risk in trained movements or whether the nervous system can use 488 

feedback from the muscle-tendon system to optimise movement efficiency. 489 
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Figure 1. Stride metrics (A), average ankle joint moment (B), velocity (C) and 582 

mechanical power (D) during positive power production at the ankle. Stride 583 

length and time (left axis) show a systematic decrease as stride rate increases (right 584 

axis). Normalised ankle joint moment (B) and velocity (C) showed an increase for 585 

stride rates slower than the preferred cadence (0% offset), while faster stride rates 586 

remained similar to the preferred. Average ankle positive power (circles) was greater 587 

at slower stride rates whereas negative ankle power (triangles) was not significantly 588 

affected by cadence. Normalisation for joint moment and power is by participant’s 589 

body mass. Error bars show mean ± s.e.m. Annotations (B-D) show significant 590 

differences versus preferred cadence (0) where p = < 0.05. 591 

 592 

Figure 2. Muscle-tendon unit length, muscle fascicle lengths and muscle fascicle 593 

shortening velocities for MG.  MTU length and fascicle length are normalised to 594 

their respective means during the preferred cadence condition. The MTU stretches 595 

during stance phase (20-50%) and recoils rapidly near push off (60-65%). Fascicle 596 

length remains relatively isometric during stance while the MTU stretches, utilising 597 

elastic energy storage in the SEE. Elasticity in the MTU then contributes to push-off 598 

during late stance. The fascicles also shorten during late stance, but account for a 599 

much smaller percentage of overall length change (approximately 20%). Fascicle 600 

velocity is calculated as the first derivative of the normalised fascicle length. The 601 

preferred (solid), +20% (dot) and -20% (dash) cadence conditions are shown for 602 

clarity. Annotations for stance and swing phases, right heel strike (RHS) and toe off 603 

(RTO) are shown at the top of the figure. The shaded region represents the period of 604 

positive ankle mechanical power. 605 

 606 

Figure 3. Group mean MG MTU and fascicle shortening amplitudes and fascicle 607 

shortening velocity. (A) MTU shortening during positive ankle power (grey) with 608 

superimposed fascicle shortening amplitude (black). Percentages within columns 609 

show the contributions of fascicle shortening as a proportion of total MTU shortening. 610 

MTU and Fascicle lengths were normalised to the mean fascicle length of the 611 

preferred walking condition. Both MTU and MG fascicle shortening increased as 612 

cadence decreased. (B) Fascicle shortening to MTU shortening ratio shows slower 613 

cadence resulted in greater fascicle shortening contributions to overall length change. 614 

(C) Average fascicle shortening velocity was taken as the first derivative of the 615 



normalised fascicle length. Fascicle shortening velocity during positive ankle power 616 

was not significantly affected by cadence. Error bars show mean ± s.e.m. Annotations 617 

indicate statistical significance versus the preferred condition where p = < 0.05. 618 

 619 

Figure 4. Group mean normalised maximal muscle activations for the triceps 620 

surae (A-C) and tibialis anterior (D) muscles. Muscle activations per stride were 621 

normalised to the mean maximal activation per stride, of the preferred stride rate. The 622 

LG (B), SOL (C) and TA (D) muscles showed a significant main effect of cadence on 623 

maximal muscle activation (circles), whereas the MG (A) did not reach statistical 624 

significance. Cumulative muscle activation (triangles) represented the amount of 625 

normalised muscle activation per minute of walking, equal to the mean integrated 626 

EMG per stride multiplied by the mean cadence. The MG (A) and LG (B) showed 627 

significant main effects of cadence on cumulative activation. Error bars show mean ± 628 

s.e.m. Significant differences between the relevant cadence offset and the preferred 629 

stride rate for maximal muscle activation (*) and cumulative activation (#) are also 630 

shown where p = < 0.05. 631 
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