
Narrowing the Range of Future Climate Projections Using Historical
Observations of Atmospheric CO2

BEN B. B. BOOTH, GLEN R. HARRIS, AND JAMES M. MURPHY

Met Office Hadley Centre, Exeter, United Kingdom

JO I. HOUSE

Cabot Institute, Department of Geography, University of Bristol, Bristol, and College of Life and Environmental Sciences,

University of Exeter, Exeter, United Kingdom

CHRIS D. JONES AND DAVID SEXTON

Met Office Hadley Centre, Exeter, United Kingdom

STEPHEN SITCH

College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom

(Manuscript received 29 February 2016, in final form 8 November 2016)

ABSTRACT

Uncertainty in the behavior of the carbon cycle is important in driving the range in future projected climate

change. Previous comparisons of model responses with historical CO2 observations have suggested a strong

constraint on simulated projections that could narrow the range considered plausible. This study uses a new

57-member perturbed parameter ensemble of variants of an Earth system model for three future scenarios,

which 1) explores a wider range of potential climate responses than before and 2) includes the impact of past

uncertainty in carbon emissions on simulated trends. These two factors represent a more complete explo-

ration of uncertainty, although they lead to a weaker constraint on the range of future CO2 concentrations as

compared to earlier studies. Nevertheless, CO2 observations are shown to be effective at narrowing the

distribution, excluding 30 of 57 simulations as inconsistent with historical CO2 changes. The perturbed model

variants excluded aremainly at the high end of the future projectedCO2 changes, with only 8 of the 26 variants

projecting RCP8.5 2100 concentrations in excess of 1100 ppm retained. Interestingly, a minority of the high-

end variants were able to capture historical CO2 trends, with the large-magnitude response emerging later in

the century (owing to high climate sensitivities, strong carbon feedbacks, or both). Comparison with observed

CO2 is effective at narrowing both the range and distribution of projections out to themid-twenty-first century

for all scenarios and to 2100 for a scenario with low emissions.

1. Introduction

Most current socioeconomic storylines project future

increases in emissions of radiatively active greenhouse

gases over the next century (Van Vuuren et al. 2011).

Considerable advances have beenmade in understanding

both the processes that determine the fraction of these

emissions that remain in the atmosphere and the physical

feedbacks that determine the climate response to these

changes. However, current uncertainties in the role of

many of these processes lead to a broad spread of pro-

jected climate changes for a set of future emissions

under a given socioeconomic storyline. At the same time,

decision-makers are looking for greater certainty in the

magnitude of projected changes. A key factor contribut-

ing to future projection spread concerns processes that

control the uptake of atmospheric carbon into the land

and ocean. This is evident from the projected spread of

future global CO2 changes in multimodel carbon cycle
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ensembles from the Coupled Climate Carbon Cycle

Model Intercomparison Project (C4MIP; Friedlingstein

et al. 2006) and phase 5 of the Coupled Model In-

tercomparison Project (CMIP5; Arora et al. 2013) as well

as in general circulation model (GCM) experiments de-

signed to explore carbon cycle parametric uncertainty in a

single model (Booth et al. 2012). Uncertainty in carbon

cycle processes is one of the dominant sources of spread

in current global climate projections (e.g., Bodman et al.

2013; Harris et al. 2013; Tachiiri et al. 2013). This spread

carries through directly into regional climate projections.

For example, in the most recent climate projections that

underpin U.K. adaptation planning (UKCP09; Murphy

et al. 2009), we found that the carbon cycle contributed a

substantial amount to the total spread for many climate

variables and locations. Because of this there is a con-

siderable interest in identifying criteria by which these

ranges may be narrowed, by using observations to rule

out less plausible simulations.

There are three current approaches to making bet-

ter use of observations that are being pursued by the

Earth system modeling community: benchmarking,

process evaluation, and identification of emergent

constraints. The first aims to build a set of observed

metrics against which Earth system models are routinely

evaluated. Currently such evaluation lags behind analo-

gous benchmarking in physical climate model develop-

ments, but progress is being made (e.g., Blyth et al. 2011;

Luo et al. 2012). The second approach focuses on im-

provements in model processes (and hence in increased

confidence in the model response). For example, Cadule

et al. (2010) focus on the ability of simulations to capture

observed seasonal and interannual variations in atmo-

spheric CO2, variations that are driven by changes in

temperature and moisture that would also be expected to

act under a changing climate. By developing models that

are better able to capture the exchange of carbon be-

tween the land/oceans and the atmosphere to large vari-

ations in short-term drivers of change (from diurnal up to

decadal), greater confidence can be placed on their ability

to capture responses to future long-term changes. Indeed,

insights such as these can also feed into emergent con-

straints. The interannual CO2 responses to temperature

have been recently linked to the magnitude of the

tropical carbon cycle response to climate-driven

changes (Cox et al. 2013). How tight this relationship

is has been questioned (Wang et al. 2014), but the

constraint would still appear to indicate that larger future

tropical carbon–climate feedbacks are less realistic.

Emergent constraints represent a way forward by

linking key observable properties of the real system to

future response, allowing us to reduce the range of

projected future climate changes. Cox et al. (2013)

represent a bottom-up approach that narrows the range

of model processes that can be considered plausible.

Other approaches take a top-down or integrated view to

look at how observables can constrain emergent prop-

erties of the climate system. One such observable, his-

torical CO2 concentration could be considered a top-down

constraint since it depends on the emergent response

to a large number of processes and interactions in the

climate system. Comparisons with observed changes in

atmospheric CO2 have been explored in both simple

climatemodels (SCMs) [energy balancemodels (EBMs)

combined with a simple global carbon cycle represen-

tation] and full GCMs or Earth system models. Ricciuto

et al. (2008), Tachiiri et al. (2013), and Bodman et al.

(2013) have shown the utility of atmospheric CO2

measurements in narrowing the projected range of fu-

ture climate changes from SCMs. The strength of simple

model frameworks is that, computationally, they can

explore a wide range of potential feedbacks. Their use-

fulness comes from their ability to reproduce the gross

behavior of more complex models using simple, often

linear, relationships. There is an interest, therefore, in

whether CO2 measurements are also effective in nar-

rowing GCM responses. A number of recent papers using

full-complexity general circulation models (Friedlingstein

et al. 2014; Hoffman et al. 2014; Murphy et al. 2014)

identified relationships between simulated present-day

CO2 biases and projected CO2 changes at the end of the

century. The first of these (Friedlingstein et al. 2014)

showed that 7 out of 11 emission-driven CMIP5 GCM

simulations tended to project larger future concentrations

of CO2 than the standard reference RCP CO2 concen-

tration. Friedlingstein et al. (2014) cautioned, however,

that this should not be interpreted as the RCP reference

concentration being biased low, because these models

projecting larger future concentrations tended to be bi-

ased high in the present day. Friedlingstein et al. (2014) do

not go quite as far as interpreting the historical compari-

son as a constraint on future CO2 change, pointing to a

potential for compensating ocean and land carbon errors

to lead to apparently good agreement in atmospheric CO2.

In contrast, Hoffman et al. (2014) argue that just such a

comparison with historical CO2 measurements can be

interpreted as a constraint on future changes. This is be-

cause long time scales inherent in the carbon cycle system

mean that present-day biases can be expected to remain

persistent throughout the twenty-first century, irre-

spective of how the simulations balance atmospheric CO2

with the ocean and land carbon stores. By using the

CMIP5 relationship between historical and future CO2

Hoffman et al. (2014) obtain a narrow observationally

constrained estimate of RCP8.5 CO2 of 947 6 35ppm

(1.96s) in 2100.
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In this paper we return to the question of how much

information the observed CO2 changes have in poten-

tially narrowing the range of future GCM CO2 pro-

jections. We extend the earlier analysis (Friedlingstein

et al. 2014; Hoffman et al. 2014) by 1) using trends in-

stead of absolute concentrations, 2) using a GCM en-

semble that is designed to sample a wider range of

physical and carbon cycle feedbacks (Lambert et al.

2013) while still producing credible simulations of

present-day climate (Murphy et al. 2014), and 3) in-

cluding an estimate of the impact of uncertainty in past

carbon emissions (from land use and fossil fuels) on

historical simulated CO2 trends. This latter factor either

has not been accounted for in previous models (e.g.,

Lambert et al. 2013) or has been only partially sampled

(CMIP5). One motivation for this work is to explore

how observed CO2 records could be used in the future to

constrain GCM climate projections, or national climate

scenarios derived from them, such as future updates to

UKCP09 (Murphy et al. 2009). In addition, insights from

this work have wider implications for how we consider

the role of carbon cycle processes in future changes. In

this paper we show how including a wider range of po-

tential model feedbacks and including estimates of past

carbon emission uncertainty can both broaden the dis-

tribution of projected future CO2 that can be considered

plausible, compared to previous studies.

2. Model simulations and relationships between
past and future CO2

A perturbed parameter ensemble (PPE) of the gen-

eral circulation model based on the carbon cycle con-

figuration of HadCM3 (HadCM3C) was used in this

study. HadCM3C (Booth et al. 2012) consists of 57 in-

dividual model variants that sample uncertainties in the

atmospheric physics, ocean physics, aerosol formation

and removal pathways, and land carbon cycle (Lambert

et al. 2013). Thesemodel variants were picked following a

process designed to avoid the risk of using implausible

areas of parameter space (Collins et al. 2011; Lambert

et al. 2013) and are able to simulate historical climate to a

level comparable with CMIP3 and CMIP5 models

(Murphy et al. 2014). Each of the 57 model variants was

driven by the historical and RCP8.5 emission-driven

scenarios. These are referred to as the E-driven histori-

cal and RCP8.5 in Taylor et al. (2012) and esmHistorical

and esmrcp85 in the CMIP5 data archive description. In

addition, these 57 model variants have also been used to

simulate a midrange emission scenario (SRES A1B) and

an aggressive mitigation scenario (RCP2.6). The im-

plementation of boundary conditions for these is de-

scribed in more detail in Booth et al. (2013).

The parametric uncertainties explored in each of the

PPE components (atmospheric and ocean physics, land

carbon and aerosol sulfur cycle) were elicited to explore

uncertainties in different processes. Individual parame-

ters were identified that were both uncertain and im-

portant for a process response. The two components

most relevant to global CO2 projections are uncer-

tainties in the atmospheric and land carbon components

(Lambert et al. 2013). The atmospheric component ex-

plored the most parameters (29 parameters, selected

from seven physics schemes: boundary layer, convec-

tion, land surface, dynamics, large-scale cloud, radia-

tion, and sea ice; Collins et al. 2011; Lambert et al. 2013).

The most important ones in terms of influence on pro-

jected CO2 changes are parameters that influence the

magnitude of temperature response (mainly in convec-

tion and cloud schemes), but there may be other influ-

ences via parameters that impact rainfall distributions,

land surface, and land–sea contrasts. Six land surface

parameters were explored in the land carbon cycle

(Booth et al. 2012). These explored uncertainties in leaf

nitrogen (and its associated impact on photosynthesis),

sensitivity of stomatal opening to CO2 changes, tem-

perature dependence of photosynthesis (via the car-

boxylation pathway) and temperature dependence of

soil respiration (Q10), soil moisture controls on evapo-

ration, and a competition parameter that influenced the

simulated vegetation distributions. These parameters

affect different processes in the land surface and lead

to a broad range of land carbon responses to climate

change. These are discussed in detail in Booth et al.

(2012), who show that the temperature dependence of

photosynthesis represents the most important un-

certainty for global CO2 with secondary influences from

the other parameters.

Previous assessment of carbon cycle models included

analysis of Earth system model simulations in the

E-driven historical and RCP8.5 scenarios (Taylor et al.

2012) of the current CMIP5. For comparison with these

studies, data from the emission-driven historical (esm-

Historical) and RCP8.5 (esmrcp85) scenarios were

downloaded from the Earth System Grid Federation

(Taylor et al. 2012). Where two models shared very

similar formulation (GFDL-ESM2GandGFDL-ESM2M

shared common carbon cycle and atmospheric represen-

tation, differing in their ocean coordinate system) then

only one model is shown (GFDL-ESM2G in this case).

The CMIP5models used in this analysis were BNU-ESM,

CanESM2, CESM1(BGC), GFDL-ESM2G, HadGEM2-

ES, INM-CM4, ISPL-CM5A-LR, MIROC-ESM, MPI-

ESM-LR, and MRI-ESM1.

These GCM ensembles do show a positive correlation

between historical trends in CO2 and the magnitude of
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projected CO2 in 2100 under RCP8.5. Figure 1a shows

this relationship for the CMIP5 simulations. There are

some differences compared to Hoffman et al. (2014),

who used the modeled–observed CO2 mole fraction

for a single year (2010), whereas we compare to the

contemporary CO2 trends (1959–2005). Using the trends

as a comparison, the simulation with the highest future

CMIP5 projection lies closer to the observed estimate

than the Hoffman et al. (2014) analysis using 2010 CO2

concentrations. Qualitatively, however, this comparison

of CO2 trends shows a similar relationship to that in

Hoffman et al. (2014), with larger future changes asso-

ciated with larger historical trends. Also shown (Fig. 1b)

is the same comparison for the 57-member PPE of GCM

simulations, designed to sample a range of physical and

carbon cycle feedbacks (Lambert et al. 2013; Murphy

et al. 2014). In this larger ensemble, there is also a pos-

itive correlation between models with larger historical

trends and 2100 CO2 concentrations, with a 0.53 Pearson

correlation coefficient compared to 0.54 for CMIP5

models. The larger ensemble size of the PPE enables an

estimate of the relationship between past and future

trends that is statistically significant (p value 5 2.2 3
1025 vs 0.11 for CMIP5).

The emission-driven PPE ensemble does have a

number of evident differences compared to its CMIP5

counterpart. The most obvious is that a number of the

PPE model variants project significantly larger future

CO2 concentrations than found for the CMIP5 models.

This wider range is a result of the experimental design of

the PPE (Lambert et al. 2013), where the GCM config-

urations were selected to sample a wide range of phys-

ical and carbon cycle feedbacks. The CMIP5 ensemble,

in contrast, represents a collection of GCMs developed

by individual modeling centers to produce ‘‘best esti-

mates’’ of the potential physical and carbon cycle pro-

cesses. At the same time, the CMIP5 ensemble

explores a broader range of model structures (process

uncertainty), which might be expected to contribute to

broader spread. It is interesting, therefore, that the PPE

FIG. 1. The relationship between simulated end-of-century CO2 concentration under RCP8.5 and the simulated

historical change in CO2 during 1959 and 2005. (a) Future concentrations and historical (1959–2005) trends are

shown for nine CMIP5 models (BNU-ESM, CanESM2, CESM1(BGC), GFDL-ESM2G, HadGEM2-ES, INM-

CM4, ISPL-CM5A-LR,MIROC-ESM,MPI-ESM-LR, andMRI-ESM1) along with a best-fit regression line (black

dashed) and confidence interval (thin blue dashed). (b) As in (a), but for the 57-member PPE in this study. Best-fit

regression lines (black dashed) and confidence limits (thin blue dashed) are shown for both panels. Historical

observations (thick blue dashed) are based on observed concentration data provided as part of the CMIP5 driving

historical dataset (Taylor et al. 2012).
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produces a wider diversity of model responses (sug-

gesting perhaps that efforts to produce best estimates

appear to outweigh any increase in spread due to dif-

ferent model structures). In contrast, models at the

higher end of the PPE range result from exploring wider

ranges for climate sensitivity and carbon cycle feedbacks

and from interactions between them (Lambert et al.

2013). The PPE, for example, samples a number of cli-

mate sensitivities that lie above the largest of the CMIP5

models considered here but still in the tails of what is

considered plausible in the IPCC distributions (Booth

et al. 2013). It should be noted that the IPCC ‘‘likely’’

estimates include climate sensitivity values as low as

1.5K; however, neither CMIP5 nor the PPE explore

climate sensitivities below 2K. This is a factor that may

potentially lead to an undersampling of past and future

CO2 changes in the low end of the model distributions

(Fig. 1). The other difference evident in the comparison

is that the PPE gives a wider range of possible future

CO2 concentrations that are still relatively consistent

with the observed historical trend, based on the subset of

ensemble members that are closest to the observed

change (e.g., within 10ppm). For example, PPE simu-

lations can be found that match the observed historical

trend yet simulate 2100 concentrations larger than all

members of the emission-driven CMIP5 ensemble. The

experimental design (Lambert et al. 2013) and limited

number of experiments mean that it is not possible to

link this wider behavior to individual parameters.

However, our results suggest (see supplementary Fig. S1

and accompanying discussion) that it is the land carbon

cycle formulation (rather than other uncertainties such

as in climate sensitivity) that is themost important factor

in exploring higher future climate changes that are not

evidently inconsistent with past changes. While these

historically plausible but high future global CO2 simu-

lations are noteworthy, the more general finding is that

the majority of PPE high-end 2100 concentrations arise

inmodel variants that tend to overestimate the historical

trend, in common with CMIP5.

3. Methodologies for analysis of constraints

a. Past anthropogenic emission uncertainties

Past anthropogenic CO2 emissions have arisen from

two major sources, burning of fossil fuels (FF) and car-

bon released to the atmosphere due to past land-use

changes (LUC). Estimates of FF are more closely con-

strained than estimates of LU change contributions.

This is because inventory estimates of past FF usage are

available, on a sector-by-sector and country-by-country

basis. Le Quéré et al. (2015) estimate the uncertainty in

recent FF emissions at 5% of the total emissions. In

absolute magnitude, this represents a small uncertainty

for most of the historical period but becomes more sig-

nificant as FF emissions have ramped up in recent de-

cades and with coal representing a larger fraction of the

energy mix (roughly 0.5 GtC yr21 in 2010; see Fig. 2a).

LUC emissions are based on changes in land cover

and, to a variable extent, land management practices

(Houghton 2003). Uncertainties in calculated LUC

change arise from difficulties in estimating historical

land-use and land-cover change, the carbon density of

vegetation and soils, different definitions and method-

ological approaches, and representation of processes

such as fire and nitrogen cycling, among other things

(Houghton et al. 2012; Pongratz et al. 2014). During the

last decade the uncertainty from historical land-cover

and land management change amounted to around

0.5 GtC yr21, comparable to the uncertainty associated

with FF (Ciais et al. 2013; Le Quéré et al. 2015). How-

ever, during the earlier decades, LUC emissions were a

relatively larger fraction of the total emissions, and it is

this LUC uncertainty that dominates the total anthro-

pogenic CO2 emission uncertainty for most of the his-

torical period (Brovkin et al. 2004).

Figure 2b shows estimates of historical LUC emis-

sions, published in Houghton et al. (2012), based on

estimates from dynamic global vegetation models

(DGVMs)—spatially resolved land surface models (of

a complexity akin to that found in the state-of-the-art

GCMs) coupled to simplified energy balance and ocean

carbon cycle components. These explore two kinds

of LUC uncertainty. The first arises from differences

in estimates of past land-cover change, sampled by

driving a single DGVM, the integrated science assess-

ment model (ISAM; Jain et al. 2013) using three dif-

ferent estimates of land-cover change, based on HYDE

(Goldewijk et al. 2011), SAGE (Ramankutty and Foley

1999), and Houghton (Houghton et al. 2012). The sec-

ond is due to differences in the representation of land

carbon cycle processes between different DGVMs. This

is sampled by differences in four DGVMs [LPJ-wsl

(Poulter et al. 2010); BernCC (Stocker et al. 2011);

VISIT (Kato et al. 2013); ISAM (Jain et al. 2013)] driven

by a common land-cover dataset, HYDE (Goldewijk

et al. 2011). We assume that the land cover and DGVM

process uncertainties are independent. We combine

these two uncertainties into 12 LUC emission time se-

ries assuming that fractional differences between the

three different land-cover datasets can be added to

fractional differences between the four DGVM emis-

sions (Fig. 2b). The 12 time series explore a range of

mean 2001–06 LUC emissions between 0.37 and

1.64Gt yr21.
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Uncertainties in the components of past emissions

represent different things. The FF emission uncer-

tainties can be expressed as a standard deviation, and

hence a Gaussian error model could be fitted if desired.

On the other hand, current LUC cover estimates arise

from a number of factors—some data driven (such as

land-cover dataset differences explored here), some

dependent on representation of land surface processes

in models, some methodological (how these changes are

implemented in the models), and others more funda-

mental, relating to the way we define land-use emissions

(Pongratz et al. 2014). Given the very limited sample, it

would be hard to justify translating this into a Gaussian

uncertainty estimate in a comparable sense. Here we

simply combined each LUC emissions estimate with a

high, standard, and low FF emissions estimate (m 1 2s,

m, and m 2 2s respectively; Fig. 2a), and explored

whether the observed CO2 trend lies within the simu-

lated spread for each PPE member. In total 36 emission

time series are used in this paper, which we obtained by

combining the 12 LUC emission time series with these 3

FF emissions time series (Fig. 2c).

b. Simple climate model

Ideally each of the individual PPE variants would

have been rerun 36 times, sampling each of the emission

time series described above. The computational costs of

doing so with the ful-complexity Earth system model is

prohibitive, so instead the historical response to each of

these emission time series is approximated using an

SCM tuned to replicate each of the HadCM3C PPE

variants. The SCM used here is described in detail in the

supplementary material to Harris et al. (2013). Here we

summarize its main features, describe the calibration of

FIG. 2. Sampling uncertainty in CO2 emissions. (a) The historical CO2 emissions arising from FF with the central

estimate (solid) and the estimated two-standard-deviation uncertainty (dashed). (b) The estimates of LU contri-

butions estimated from DGVMs. The time series represent two types of uncertainty, arising from uncertainty in

reconstructions of past land-cover change (colors) and differences in land surface models (line style). The three

land-cover datasets are based on HYDE (Goldewijk et al. 2011), SAGE (Ramankutty and Foley 1999), and

Houghton (Houghton et al. 2012) and used as input for ISAMDGVM. The four DGVMs are LPJwsl, VISIT, Bern-

CC, and ISAM. These two types of uncertainty are combined to produce 12 time series (using the approach de-

scribed in section 2). Standard RCP LU emissions, based on Houghton et al. (2012)’s bookkeeping estimate, are

shown for comparison (red). (c) How the three FF time series [from (a)] are combined with the 12 LUC time series

[from (B)] to make 36 total anthropogenic CO2 emission time series that were subsequently used in the rerun

simulations of historical CO2 trends. Also shown, for comparison, are the estimates historical emissions used within

CMIP5 (red) and the FF component (central estimate) of the emissions (yellow).
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its input parameters, and specify how radiative forcing is

applied.

A two-box EBM is used to predict changes in the

globally averaged land and ocean surface air tempera-

tures in response to global average radiative forcing of

the climate. Ocean heat uptake is represented by a

vertical diffusion–advection equation in which the

thermal diffusivity is determined separately for each of

the perturbed ocean parameter configurations (Collins

et al. 2011) that contribute to the PPE design. The land

and ocean climate feedback parameters lL and lO used

to configure the EBM are assumed to depend only on

the atmospheric configuration and not vary when the

carbon cycle, sulfur cycle (aerosols), and ocean param-

eters are perturbed. They are diagnosed, therefore, from

the different atmospheric GCM configurations, using

simulations forced by a 1% yr21 increase in CO2 con-

centration. This is achieved by estimating lO,L as the

regression coefficient between the radiative forcing and

top-of-atmosphere radiative responseDQ2NO,L and the

change in surface temperature DTO,L over both ocean

and land (Murphy 1995; Forster and Taylor 2006), where

DQCO2 5 5.4 ln{[CO2(t)][CO2(0)]
21} Wm22 (Myhre

et al. 1998) andNO,L refers to the average ocean and land

net downward top-of-the-atmosphere radiative fluxes.

A carbon cycle component is implemented in the

SCM, which allows the atmospheric concentrations to

be calculated for prescribed scenarios of CO2 emissions.

Uptake and release of CO2 from the vegetation and soil

land reservoirs is estimated in a similar manner to that

described in Jones et al. (2006), while uptake of CO2 by

the oceans is represented using the impulse-response

method of Joos et al. (1996). The SCM contains pa-

rameters that control net primary production (NPP),

litter production, soil respiration, and ocean CO2 up-

take. Optimal values required for the SCM to reproduce

each of the 57 GCM PPE variants are determined by

varying these SCM parameters and identifying SCM

parameter sets that minimize the error in reproducing

each of these four CO2 fluxes (NPP, litter, soil respira-

tion, and ocean CO2 uptake) in the corresponding GCM

(Harris et al. 2013). One difference from Harris et al.

(2013) is that this study calibrates the carbon cycle pa-

rameters of the SCM using CO2 fluxes diagnosed di-

rectly from the 57 PPE simulations themselves [Harris

et al. (2013) fitted instead to a separate but related ex-

periment described in Booth et al. (2012)]. Another

calibration difference is that mean square errors for four

scenarios (RCP2.6, RCP8.5, A1B, and historical) are

jointly used to determine the carbon parameters for

each SCM configuration. The non-CO2 forcing (which

includes other greenhouse gases, aerosol, and solar and

volcanic forcing) is diagnosed directly from the global

surface temperature response DT and net TOA radia-

tive imbalanceN in the PPE simulations, subtracting off

forcing implied by the diagnosed CO2 concentrations;

that is,DQnonCO25N1 lDT2DQCO2 (whereDQCO2 is

calculated as described above). The evolution of the

coupled CO2 and temperature responses for each

member of the PPE to each of the new 36 historical CO2

emission time series is predicted by the SCM using these

estimates for the non-CO2 forcing, with climate feed-

backs, ocean thermal diffusivity, and carbon cycle con-

figuration obtained for the corresponding members in

the component ensembles (Lambert et al. 2013).

The simple model is used to explore what historical

CO2 changes each of the 57 PPE variants would have

simulated if they had instead been driven by the 36

historical emission time series (they are not used to ex-

plore future emission uncertainty in this analysis). The

SCM provides a close but not perfect reproduction of

the GCM carbon cycle response. For each SCM–GCM/

PPE pair there is a small bias in the SCM’s reproduction

of the GCM’s CO2 using the standard CMIP5 historical

emission time series. We assume that this is systematic

for each pairing and add/subtract this bias from each of

the 36 historical CO2 simulated by the SCM for this

study (i.e., the adjustment is time dependent and is as-

sumed independent of historical emission uncertainty).

The simple model is therefore able to explore what CO2

changes each model variant (from the PPE) would have

produced had it been instead driven by each of the al-

ternative historical emission time series presented here.

c. Choice of historical time period

In this study we choose to compare the simulated and

observed trends for the period 1959 to 2004. The fol-

lowing criteria were used to select this period.

d The comparison would be based on trends, not

absolute CO2 in a specified year (or years), since

predicted GCM CO2 values for a given year can vary

owing to differences in their initial preindustrial state,

as well as their response to carbon and climate change.

Here, we want to focus on metrics that highlight the

latter and not the former.
d The length of the trend period should be maximized,

while still falling within the Keeling record (1959–

present). The CO2 reference concentration compared

to both the PPE and emission-driven CMIP5 GCMs

was based on CMIP5 historical datasets (Taylor et al.

2012), representing a merged record based on both

Mauna Loa direct measurements and ice-core records

to obtain a globally representative time series.
d The selected period should maximize the information

available from datasets on past emissions (currently
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all emission datasets, described in section 2a, cover the

period 1920–2005).

In this work, the last two criteria (on availability of past

LUC uncertainty information and length of the Mauna

Loa record) had the largest impact on our choice of

period; 1959 to 2005 represents the period where all the

LUC datasets provide data while also satisfying the

other criteria. The effects of this choice on our results

are discussed below in section 5.

4. Influence of land-use uncertainty on CO2

constraints

The SCM provides useful insight into the range of

historical atmospheric CO2 trends that we would have

expected if the GCMs had been rerun with these

different historical land-use emission time series.

Figure 3a updates the constraint evidence shown in

Fig. 1b with this additional information. For each of the

57 GCM variants, the 36 historical simulated concen-

tration trends are shown (red dots) relative to the orig-

inal GCM (black cross). Uncertainty in the past carbon

emissions leads to a spread in the historical CO2 con-

centration trends (red dots in Fig. 3a). As a consequence

including emission uncertainty enables the question of

consistency between CO2 observations and simulations

to be evaluated based on whether the range of historical

trends overlap with the observations.

Similarly to the previous papers on CO2 constraints

(Friedlingstein et al. 2014; Hoffman et al. 2014), we find

that ruling out models that can be considered inconsis-

tent with historical data leads to a shift to a distribution

FIG. 3. The relationship between simulated historical CO2 trends and the magnitude of projected CO2 con-

centration in 2100 for the RCP8.5 scenario. (a) Black crosses show the GCM CO2 concentration in 2100 plotted

against the projected historical CO2 trend over the period 1959–2005 for each of the 57 PPE configurations, while

red dots indicate the historical trends that would have been simulated if it had been driven by each of the 36

historical emission time series. The spread of historical simulations (red dots) provides information on whether or

not the observed trend (blue horizontal line) would have fallen within the distribution of historical trends for

a particular model configuration had these simulations sampled anthropogenic CO2 emission uncertainty. CMIP5

models (blue dots) are included for comparison. (b) The histogram of RCP8.5 CO2 concentration by the end of the

century for the PPE (hatched), alongside the histogram of projected changes for only those model variants that

envelop the observed historical CO2 trend (green). The resulting histogram ismore tightly constrained, thinning out

many, but not all, of the higher-end projected changes. For comparison, the redGaussian distribution illustrates the

constrained CO2 distribution developed by Hoffman et al. (2014) from a slightly larger set of CMIP5 models.
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of lower projected change in 2100 (Fig. 3b). Although

the impact of applying our constraint is less evident on

the total range of CO2, especially for RCP8.5 at the end

of the century, this is mainly due to just a few model

variants with large future increases in CO2 but histori-

cally consistent responses. There is, however, a notice-

able and robust impact on the distribution of responses

since many of the 30 simulations inconsistent with his-

torical trends are from the top end of the distribution,

while models in the lower and central parts of the dis-

tribution remain included. So, for RCP8.5, 18 of the

26 models projecting changes above 1100ppm (in 2100)

are excluded. This leads to a reduction of the interquartile

range of RCP8.5 from 1012–1223ppm down to 951–

1137ppm in 2100, for A1B from 716–865ppm down to

692–792ppm, and for RCP2.6 from 423–472ppmdown to

417–445ppm.

We can extend this analysis to look at other future

periods and other emission scenarios (Fig. 4). The full

range of CO2 projections, as well as the factors that lead

to future spread, has previously been documented in

Booth et al. (2013) for three scenarios: RCP8.5, SRES

A1B, and RCP2.6. Figure 4 illustrates the impact on the

CO2 projections when the 30 GCMs inconsistent with

the historical trends are removed. This demonstrates

that the historical CO2 trend is much more effective at

narrowing the range of projected CO2 changes earlier in

the century, and for lower emission scenarios through-

out, than it is for RCP8.5 in 2100. High-end projected

changes can be ruled out for all scenarios during the first

half of this century. The 90% confidence ranges for 2050

CO2 concentration are reduced from 475–750, 475–700,

and 375–525ppm down to 500–675, 475–625, and 375–

500ppm for RCP8.5, A1B, and RCP2.6, respectively.

The reasons why the historical record is more effective

at narrowing the absolute range of future changes in this

earlier part of the century is related to time scales. The

processes that lead to changes in the effectiveness of

either the land or ocean carbon cycles have not had a

chance to evolve much over the 45 years following the

historical constraint period, in contrast to RCP8.5 pro-

jections in the latter part of the coming century. It is less

obvious why the high-end 2100 CO2 projected changes

are more effectively ruled out in low emission scenarios,

compared to RCP8.5. None of the simulations in the

upper third of the RCP2.6 range for our ensemble for

the full twenty-first-century period can be considered

consistent with historical trends. For A1B, a central

business-as-usual scenario, only a single simulation

projects changes in the upper third of the distribution

that is consistent with the historical trend. We discuss

the factors that lead to different levels of constraint

across scenarios in section 6.

5. Robustness of historical comparison

The analysis in this paper used a 1959-to-2005 time

period (see section 3c for discussion). Repeating this

analysis using alternative time periods does lead to

changes in the details of which specific models can be

excluded, which is discussed in this section. However,

the wider qualitative conclusions of this paper do appear

to be robust to the choice of time period. Figure 5a

shows the historical CO2 changes (with respect to 2005)

for both observations and three model variants chosen

to illustrate the time dependence. Because of the un-

certainty in past carbon emissions explored here, each of

the variants produces a range of historical trends (col-

ored plumes in Fig. 5a). For many of the PPE members,

the range of simulated trends remains inconsistent with

the observed trend (such as model 3 in Fig. 5a) regard-

less of the time period chosen. At the same time, very

few model variants (anywhere in the distribution of fu-

ture responses) remain consistent with the observations

for the whole time series. Observed and model CO2

show different evolution through the historical time

period and the observations can often fall within the

distribution of potential simulated trends for one period

and lie just outside for another (models 1 and 2 in Fig. 5a

are two examples of this behavior). While longer-term

CO2 responses remain broadly similar, many simula-

tions produce decadal time-scale variability, such as

responses to large volcanic eruptions (Agung and to a

lesser extent El Chichón and Pinatubo), not found in the

observed record. The consequence of this is that the

details of which models can be excluded or not change

depending on the time period used (Fig. 5b). Visually

the impact of the choice of period is most evident in the

tails of the distribution but occurs for model variants

projecting changes across the full range. For PPE

members close to the observed trends, the choice of time

period will influence whether it is excluded or not.

However, the impact of the time period on the wider

distribution appears to be considerably less sensitive.

For example, when excluding simulations with RCP8.5

2100 CO2 concentrations in excess of 1100ppm, chang-

ing the period to either 1920–2005 or 1980–2005 leads to

18 or 20 of the 26 models being excluded, respectively

(compared to 18 models for the 1959–2005 period).

In this paper we used trends over a particular period to

exclude or retain model variants to illustrate the po-

tential information in the comparison with observed

CO2. Also, we simply included or excluded model var-

iants, rather than attempting to assign a weight based on

the relative probability that each model variant is con-

sistent with observations. In principle, these limitations

could be addressed by using a multivariate Bayesian
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FIG. 4. Projected future changes in CO2 concentration with and without the constraint from historical trends. (top) The

plume of simulated CO2 changes from three scenarios: RCP8.5 (red), SRES A1B (green), and RCP2.6 (blue). The full ranges

(open plumes, bounded by thick color lines) and constrained ranges (colored plumes) are shown. Vertical bars show the range

of CO2 in 2100 for the unconstrained (strong colors) and constrained (light colored) ranges, with different thickness corre-

sponding to the full range (thin line) or 25%–75% interquartile range (thick). The six histograms beneath show the relative

frequency of the constrained (colored) and unconstrained (hatched) distributions for (middle) 2050 or (bottom) 2100 for the

three scenarios (columns). The RCP reference concentrations are also indicated (red crosses), with the constrained estimate

from Hoffman et al. (2014) also shown for 2100 RCP8.5 for comparison (bell curve).
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approach to provide probabilistic projections account-

ing for multiple constraints (e.g., by considering trends

over several historical periods or including additional

variables such as mean observed climate and observed

changes in ocean heat content and surface temperature).

Sexton et al. (2012) and Harris et al. (2013) describe a

suitable statistical framework for application to PPE

experiments, in which probabilistic projections are ob-

tained by integrating over the climate model parameter

space and weighting projections associated with specific

model variants according to relative likelihood, ob-

tained by calculating the multivariate distance of each

variant from a set of historical observables. In such a

framework, those model variants where the observa-

tions lie close to but sometimes outside the model range

(such as models 1 and 2 in Fig. 5a) could still be expected

to receive some weight, whereas variants that show

changes far from the observed (such as model 3 in

Fig. 5a) would be substantially down weighted. This

approach was not adopted here, since a formal Bayesian

calculation requires estimation of additional sources of

uncertainty affecting relative likelihood, including

observational uncertainty (likely small in this case),

uncertainty in emulated estimates of results for param-

eter combinations for which no climate model simula-

tion exists (e.g., Sexton et al. 2012), and uncertainty in

the structural component of model error, representing

systematic differences between the modeled and real-

world climate that cannot be resolved by varying un-

certain model parameters (Sexton et al. 2012). Without

such a wider assessment there is a risk that use of a single

constraining variable, such as the CO2 trend examined

here, and a simplified representation of model–

observation misfit, could lead to overly constrained

predictions due to compensating errors. The sensitivity

of model exclusion to choice of trend period highlights

the potential value of a more likelihood-based approach

in the future. However, the simple approach here of

excluding models based on CO2 trends is useful in il-

lustrating the value of this particular observable quan-

tity and motivates future consideration of a more

comprehensive approach, such as that outlined above.

As just discussed, when using a single simulated–

observed comparison metric it neglects the potential

FIG. 5. The relationship between the time period of emission trends (anomalized with respect

to 2005) and inclusion or exclusion of particular model variants from the PPE. (top) The range

of historic CO2 changes consistent with past emission uncertainty for three selected model

variants (colored plumes) compared with historical observations (black line). The simulated

and observed time series are all anomalized with respect to 2005 to keep consistency with the

common end point used in the lower panel. (bottom) The relationship between simulated 2100

CO2 concentrations and whether this simulation is excluded (red) or retained (blue) is based on

the choice of the start date of the model-observed historical trend comparison. All trends

extend to 2005, and the start dates in (bottom) correspond to the nongray time period in (top).

So colored crosses in 1920 indicate whether the 1920–2005 comparison with observed trends

excluded or retained this particular future change, and so on for the range of start dates.
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for compensating errors that may lead to plausible

simulated historical CO2 trends for the wrong reasons

and hence may give a misleading picture of the more

plausible future changes. This issue has been highlighted

previously by Friedlingstein et al. (2014) where they

showed that a number of the CMIP5 models matched

the atmospheric CO2 but did so owing to larger-than-

observed uptake in the ocean coupled with very little

uptake on the land. Figure S2 (supplementary infor-

mation) illustrates the fraction of emitted carbon parti-

tioned in the atmosphere, ocean, and land fractions by

the 57 model variants during 1980–99. Encouragingly,

the spread of simulated fractions encompasses the ob-

served estimates, suggesting there is no systematic error

in the ensemble reproducing the observed carbon par-

titioning during this period. Of the 57 PPE members, 17

simulate atmospheric fractions within observational

uncertainties (Fig. S2). Among these, 6 members, a

minority of the 17, capture the observed atmospheric

fraction at the expense of compensating error, owing to

either a larger-than-observed ocean uptake balanced

by smaller-than-observed land uptake, or vice versa.

Except for one model variant, however, these differ-

ences are small compared to the observational errors

and may fall within internal variability, an additional

source of model–observation misfit that is not accounted

for in Fig. S2. Nevertheless, these results suggest that

applying a constraint based solely on reproducing at-

mospheric CO2 trends may be a necessary, but perhaps

not sufficient, criterion for reducing uncertainty in

future CO2 changes. It is an aspect of future work to

refine the constraint by incorporating additional ob-

servational metrics such as ocean carbon uptake and

global/regional temperature changes. Doing so would

tackle potential compensation of errors in the relative

carbon uptake in the land and ocean and the magni-

tude of global climate change and climate–carbon cycle

feedbacks, respectively.

6. Discussion and conclusions

In this study we have found that requiring simulated

trends in atmospheric CO2 concentration to be consis-

tent with historical CO2 trends can be effective in con-

straining the distribution of projected carbon cycle

changes, ruling out 30 of the 57 simulations in a per-

turbed parameter ensemble (PPE) constructed from

HadCM3C, many of which lie on the high end of pos-

sible future responses. The impact of this constraint is

also apparent in the time scales that potential mitigation

can be expected to become evident. With the raw en-

sembles we need to wait until 2068 before we reach a

point where a high-end RCP2.6 run no longer overlaps

with the low-end business-as-usual RCP8.5 simulation

[or 2037 if the interquartile range (IQR) from both en-

sembles is used]. By excluding implausible historical

simulations, the date that the RCP2.6 concentrations no

longer overlap with theRCP8.5 scenario reduces to 2053

(or down to 2029 if the IQR is used).

Our results can be compared with previous studies

that have attempted to constrain future simulated

CO2 concentration based on historical CO2 simulation–

observation comparisons (Friedlingstein et al. 2014;

Hoffman et al. 2014). The smaller number of simulations

available in the emission-driven CMIP5 experiment led

these previous studies to focus on the range of CO2 re-

sponses rather than the distribution. It is in the range

that the apparent differences are most evident, partic-

ularly for end-of-century CO2 responses to high future

emission scenarios (RCP8.5). Previous work by Hoffman

et al. (2014) suggested that historical CO2 observations

could represent an exceptionally tight constraint on RCP

future concentration (947 6 35ppm in 2100). Here, in-

dividual PPE simulations consistent with historical trends

can be found that lie at either end of the simulated PPE

range (from 854 to 1455ppm), despite the general ten-

dency to rule out many of the models with high-end

changes. Two main factors contribute to the weaker

constraint on the absolute range (than on the distribution

generally). First, we account for uncertainty in historical

fossil fuel and land-use carbon emissions. Second, the

PPE allows consideration of a much larger sample of

physical and carbon feedbacks. Here we discuss both of

these factors in further detail.

Historical uncertainty in anthropogenic carbon emis-

sions has not been considered in previous studies look-

ing at the potential information in the observed CO2

changes (Friedlingstein et al. 2014; Hoffman et al. 2014;

Murphy et al. 2014). Including an estimate of emission

uncertainty broadens the range of models that could be

consistent with observed changes. We find that although

the risk of both low- and high-end CO2 response is re-

duced by our constraint, we are unable to exclude all

models that predict extreme responses. Sensitivity tests,

where the LUC emission uncertainty was reduced by

two-thirds (not shown), do find a greater number of

potential projected future changes excluded (41 out of

57), emphasizing the value in reducing historical LUC

emission uncertainty for future climate projections.

Doing so, however, will be a significant challenge in cli-

mate research. While there is increasing empirical data

available to distinguish and characterize the current

sources of uncertainty (Goldewijk and Verburg 2013)

from, for example, satellite inventories of land cover and

biomass, issues of definitional differences and model

differenceswill still need to be overcome (Houghton et al.
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2012; Pongratz et al. 2014). Regarding the high or low

tails of the distribution, it is still possible to identify

models with plausible historical trends that span the

range of 2100 RCP8.5 CO2 concentrations, even when

emission uncertainty is reduced, but the impact on the

distribution will be stronger than the impact on the range.

The other factor that leads to some of the high-end

2100 CO2 projections being retained for RCP8.5,

albeit a minority, is the use of model variants from a

perturbed parameter ensemble. These simulations were

explicitly designed to explore a wide range of potential

physical and carbon feedbacks (Lambert et al. 2013).

The multimodel ensemble (CMIP5), in contrast, is a

collection of models designed to produce plausible es-

timates of these feedbacks, albeit with a structural

diversity of modeling assumptions. There are two po-

tential aspects that may point to why the PPE produces a

wider range of future behavior. The finding that the

scenario with the weakest constraint on high-end 2100

CO2 changes is the one with the strongest warming

(RCP8.5) does point to climate–carbon cycle feedbacks

as one of the primary processes capable of driving large

future CO2 responses in models with only modest trends

historically. Some of the key processes explored in the

PPE (Booth et al. 2012) do have important temperature

controls on land carbon cycle processes. We lack the

availability of idealized experiments for the PPE, re-

quired to explicitly diagnose the strength of these

feedbacks; however, it is quite possible that the PPE

includes model variants with stronger climate–carbon

cycle feedbacks than models included in CMIP5. The

other aspect that may contribute is the range of tem-

perature responses in the PPE. The PPE includes a

number of ensemble members with larger climate sen-

sitivities than found in CMIP5 emission-driven runs

(Booth et al. 2013). This, in itself, would lead to stronger

warming and hence drive larger fluxes of carbon from

the land to the atmosphere via climate–carbon cycle

feedbacks, irrespective of whether the PPE explores

larger climate–carbon cycle feedbacks than CMIP5.

Both these factors highlight that any potential constraint

on future CO2 change, particularly for high-end sce-

narios, needs to account for the potential for both these

factors playing a role in the real world. This suggests that

until we are able to reject the range of these underlying

feedbacks on other grounds, caution will need to be

taken in putting too much weight on observationally

constrained future CO2 ranges based on simulations

sampling smaller ranges to these feedbacks (such as

CMIP5; Hoffman et al. 2014).

Hoffman et al. (2014) argued that the strong con-

straint on the future CO2 range from historical obser-

vations implied that models could achieve more

confident projections by tuning models to reproduce

past observed CO2 values. These new results suggest

caution in such an interpretation on a number of

grounds. First, overly tight constraints on future CO2

can be obtained when uncertainty in historical emissions

is neglected. Future simulated–observed comparisons

(e.g., with the CMIP6 generation of models) may benefit

from explicitly sampling anthropogenic emission un-

certainty. It is hoped that this study would raise

-awareness of the dependence on past carbon emission

estimates, especially the LU component. Second, until

the simulations used in these studies sample the full

range of climate sensitivities and carbon feedbacks,

doing so with a more limited sample is always likely to

lead to an overly constrained estimate that does not

reflect the wider uncertainties. Third and in a similar

vein, any inference of such a constraint depends on the

underlying models representing the full range of rele-

vant processes. Currently important processes such as

the nitrogen cycle (neglected by most CMIP5 and the

PPE simulations) and dynamic vegetation (neglected in

many CMIP5 simulations) are not represented in all

underlying simulations. This is a caveat that needs to be

borne in mind. Last, as highlighted by Friedlingstein

et al. (2014) and discussed in the previous section, the

potential for compensation of errors (e.g., land vs ocean

carbon uptake; magnitude of climate change vs climate–

carbon cycle feedbacks) means that any comparison

against CO2 trends alone represents a necessary but not

sufficient constraint on the range of model responses.

This paper also has a few implications for CO2 esti-

mates that will be prescribed for concentration-driven

experiments in the forthcoming model intercomparison

project, CMIP6. For CMIP5 the reference concentration

(prescribed to the standard, non-emission-driven ex-

periments) was homogenized to be consistent with the

BernCC carbon cycle and climate sensitivity used in the

earlier SRES scenarios (Meinshausen et al. 2011). These

results suggest that the standard reference concentration

profiles, prescribed for concentration-driven CMIP5 ex-

periments (both RCP8.5 and others), may be biased low.

Although the standard RCP8.5 reference concentration

falls within the range of emission-driven simulations with

consistent historical trends, 21 of these 27 PPE simula-

tions produce larger CO2 concentrations in 2100. Indeed

when using the IQR of emission-driven simulations

consistent with the historical trends (951–1137ppm) the

reference concentration (936ppm) does not even fall

within this range. This is not new. Friedlingstein et al.

(2014) noted a low bias to the reference concentration

compared to CMIP5 emission-driven simulations. How-

ever, the presence of historical CO2 biases in many of the

CMIP5 high-end simulations meant that they did not
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draw any strong conclusions on this. This paper shows

that simulations that would be considered high end in the

CMIP5 context can be consistent with observed trends, a

point that reinforces the idea that the reference CMIP5

scenario concentration profiles are likely to have a low

bias. This has implications for the estimates of allowable

emissions taken from CMIP5 concentration-driven sim-

ulations, which consequentially would be on the lower

end of expectations based on the presented results. De-

cisions for the reference scenario for CMIP6 will need to

balance the advantages for choosing a reference scenario

consistent with previous assessments on one hand, with

the benefits for choosing a more central estimate of the

carbon cycle feedbacks on the other.

The main result from this work is the impact on the

distribution of future CO2 projections consistent with

the historical trends, rather than on the outliers. Using

the IQR as a robust metric of uncertainty, applying our

constraint based on CO2 observations shifts the

RCP8.5 2100 range down by roughly 80ppm (from 1012–

1223ppm down to 951–1137ppm). For lower emission

scenarios, and for earlier times in the century, using CO2

observations also narrows this IQR, as well as shifting it

lower. For example, the IQR forRCP2.6 at 2100 contracts

from 50ppm (423–472ppm) down to 28ppm (417–

445ppm) and midcentury RCP8.5 IQR contracts from

63ppm (551–614ppm) down to 44ppm (535–579ppm). In

summary, we show both that historical CO2 observations

are effective at narrowing uncertainty in future pro-

jections but also that the observationally constrained

ranges (whether based on the full spread of outcomes or

the IQR) remain larger than earlier emission-driven

CMIP5 estimates suggested (Hoffman et al. 2014). We

attribute this to a wider sampling of potential physical and

carbon cycle feedbacks in our simulations and inclusion of

estimates of past carbon emission uncertainty.Accounting

for the broader range of both historical carbon emissions

and future carbon cycle responses will be important if we

are to use historical CO2 observations to inform future

climate projections.

Acknowledgments. This work was supported by the

Joint U.K. DECC/DEFRA Met Office Hadley Centre

Climate Programme (GA01101). Chris Jones’s contri-

bution was supported by the CRESCENDO project

under the European Union’s Horizon 2020 research and

innovation programme, Grant Agreement 641816. Jo

House was supported by a Leverhulme Early Career

Fellowship andEUFP7Project LUC4C (603542). Stephen

Sitch was supported by the EU FP7 through Project

LUC4C (GA603542).We acknowledge the contribution of

the CMIP5 modeling groups through the World Climate

Research Programme’s Working Group on Coupled

Modelling (2011, with subsequent updates): phase 5 of

the Coupled Model Intercomparison Project, Earth Sys-

tem Grid Federation (https://pcmdi9.llnl.gov/projects/

cmip5/; accessed January 2014).

REFERENCES

Arora, V. K., and Coauthors, 2013: Carbon–concentration and

carbon–climate feedbacks in CMIP5 Earth system models.

J. Climate, 26, 5289–5314, doi:10.1175/JCLI-D-12-00494.1.

Blyth, E., D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor,

M. Best, and S. Sitch, 2011: A comprehensive set of bench-

mark tests for a land surface model of simultaneous fluxes of

water and carbon at both the global and seasonal scale.Geosci.

Model Dev., 4, 255–269, doi:10.5194/gmd-4-255-2011.

Bodman, R. W., P. J. Rayner, and D. J. Karoly, 2013: Uncertainty

in temperature projections reduced using carbon cycle and

climate observations.Nat. ClimateChange, 3, 725–729, doi:10.1038/

nclimate1903.

Booth, B. B. B., and Coauthors, 2012: High sensitivity of future

global warming to land carbon cycle processes. Environ. Res.

Lett., 7, 024002, doi:10.1088/1748-9326/7/2/024002.

——, D. Bernie, D. McNeall, E. Hawkins, J. Caesar, C. Boulton,

P. Friedlingstein, and D. M. H. Sexton, 2013: Scenario and

modelling uncertainty in global mean temperature change

derived from emission-driven global climate models. Earth

Syst. Dyn., 4, 95–108, doi:10.5194/esd-4-95-2013.
Brovkin, V., S. Sitch, W. Von Bloh, M. Claussen, E. Bauer, and

W.Cramer, 2004:Role of land cover changes for atmosphericCO2

increase and climate change during the last 150 years. Global

ChangeBiol., 10, 1253–1266, doi:10.1111/j.1365-2486.2004.00812.x.

Cadule, P., P. Friedlingstein, L. Bopp, S. Sitch, C.D. Jones, P. Ciais,

S. L. Piao, and P. Peylin, 2010: Benchmarking coupled climate

carbon models against long term atmospheric CO2 measure-

ments. Global Biogeochem. Cycles, 24, GB2016, doi:10.1029/

2009GB003556.

Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical

cycles. Climate Change 2013: The Physical Science Basis, T. F.

Stocker et al., Eds., Cambridge University Press, 465–570.

Collins,M., B. B. Booth, B. Bhaskaran, G. R.Harris, J. M.Murphy,

D. M. Sexton, and M. J. Webb, 2011: Climate model errors,

feedbacks and forcings: A comparison of perturbed physics

and multi-model ensembles. Climate Dyn., 36, 1737–1766,

doi:10.1007/s00382-010-0808-0.

Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein,

C. Huntingford, C. D. Jones, and C.M. Luke, 2013: Sensitivity of

tropical carbon to climate change constrained by carbon dioxide

variability. Nature, 494, 341–344, doi:10.1038/nature11882.

Forster, P. M. F., and K. E. Taylor, 2006: Climate forcings and cli-

mate sensitivities diagnosed from coupled climate model in-

tegrations. J. Climate, 19, 6181–6194, doi:10.1175/JCLI3974.1.

Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle

feedback analysis: Results from the C4MIP model intercom-

parison. J. Climate, 19, 3337–3353, doi:10.1175/JCLI3800.1.
——, M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K.

Liddicoat, and R. Knutti, 2014: Uncertainties in CMIP5 cli-

mate projections due to carbon cycle feedbacks. J. Climate, 27,

511–526, doi:10.1175/JCLI-D-12-00579.1.

Goldewijk, K. K., and P. H. Verburg, 2013: Uncertainties in global-

scale reconstructions of historical land use: An illustration

using the HYDE data set. Landscape Ecol., 28, 861–877,

doi:10.1007/s10980-013-9877-x.

3052 JOURNAL OF CL IMATE VOLUME 30

https://pcmdi9.llnl.gov/projects/cmip5/
https://pcmdi9.llnl.gov/projects/cmip5/
http://dx.doi.org/10.1175/JCLI-D-12-00494.1
http://dx.doi.org/10.5194/gmd-4-255-2011
http://dx.doi.org/10.1038/nclimate1903
http://dx.doi.org/10.1038/nclimate1903
http://dx.doi.org/10.1088/1748-9326/7/2/024002
http://dx.doi.org/10.5194/esd-4-95-2013
http://dx.doi.org/10.1111/j.1365-2486.2004.00812.x
http://dx.doi.org/10.1029/2009GB003556
http://dx.doi.org/10.1029/2009GB003556
http://dx.doi.org/10.1007/s00382-010-0808-0
http://dx.doi.org/10.1038/nature11882
http://dx.doi.org/10.1175/JCLI3974.1
http://dx.doi.org/10.1175/JCLI3800.1
http://dx.doi.org/10.1175/JCLI-D-12-00579.1
http://dx.doi.org/10.1007/s10980-013-9877-x


——,A. Beusen, G. VanDrecht, andM.DeVos, 2011: TheHYDE

3.1 spatially explicit database of human-induced global

land-use change over the past 12,000 years. Global Ecol. Bi-

ogeogr., 20, 73–86, doi:10.1111/j.1466-8238.2010.00587.x.
Harris, G. R., D. M. Sexton, B. B. Booth, M. Collins, and J. M.

Murphy, 2013: Probabilistic projections of transient climate

change. Climate Dyn., 40, 2937–2972, doi:10.1007/

s00382-012-1647-y.

Hoffman, F. M., and Coauthors, 2014: Causes and implications of

persistent atmospheric carbon dioxide biases in Earth system

models. J. Geophys. Res. Biogeosci., 119, 141–162, doi:10.1002/

2013JG002381.

Houghton, R. A., 2003: Revised estimates of the annual net flux of

carbon to the atmosphere from changes in land use and land

management 1850–2000. Tellus, 55B, 378–390, doi:10.1034/
j.1600-0889.2003.01450.x.

——, J. I. House, J. Pongratz, G. R. Van der Werf, R. S. DeFries,

M. C. Hansen, C. L. Quéré, and N. Ramankutty, 2012: Carbon

emissions from land use and land-cover change. Bio-

geosciences, 9, 5125–5142, doi:10.5194/bg-9-5125-2012.

Jain, A. K., P. Meiyappan, Y. Song, and J. I. House, 2013: CO2

emissions from land-use change affected more by nitrogen

cycle, than by the choice of land-cover data. Global Change

Biol., 19, 2893–2906, doi:10.1111/gcb.12207.

Jones, C.D., P.M.Cox, andC.Huntingford, 2006:Climate-carbon cycle

feedbacks under stabilization: Uncertainty and observational con-

straints.Tellus, 58B, 603–613, doi:10.1111/j.1600-0889.2006.00215.x.

Joos, F., M. Bruno, R. Fink, U. Siegenthaler, T. F. Stocker, C. Le

Quéré, and J. L. Sarmiento, 1996: An efficient and accurate

representation of complex oceanic and biospheric models of

anthropogenic carbon uptake. Tellus, 48B, 397–417, doi:10.1034/

j.1600-0889.1996.t01-2-00006.x.

Kato, E., T. Kinoshita, A. Ito, M. Kawamiya, and Y. Yamagata, 2013:

Evaluationof spatially explicit emission scenarioof land-use change

and biomass burning using a process-based biogeochemical model.

J. Land Use Sci., 8, 104–122, doi:10.1080/1747423X.2011.628705.

Lambert, F. H., G. R. Harris, M. Collins, J. M. Murphy, D. M.

Sexton, and B. B. Booth, 2013: Interactions between pertur-

bations to different Earth system components simulated by a

fully-coupled climate model. Climate Dyn., 41, 3055–3072,

doi:10.1007/s00382-012-1618-3.

Le Quéré, C., and Coauthors, 2015: Global carbon budget 2015.

Earth Syst. Sci. Data, 7, 349–396, doi:10.5194/essd-7-349-2015.

Luo, Y. Q., and Coauthors, 2012: A framework for benchmarking land

models.Biogeosciences, 9, 3857–3874, doi:10.5194/bg-9-3857-2012.
Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas

concentrations and their extensions from 1765 to 2300. Cli-

matic Change, 109, 213–241, doi:10.1007/s10584-011-0156-z.

Murphy, J. M., 1995: Transient response of the Hadley Centre

coupled ocean–atmosphere model to increasing carbon

dioxide. Part III: Analysis of global-mean response using

simple models. J. Climate, 8, 496–514, doi:10.1175/

1520-0442(1995)008,0496:TROTHC.2.0.CO;2.

——, and Coauthors, 2009: UK climate projections science report:

Climate change projections. Met Office Hadley Centre Rep.,

192 pp.

——, B. B. Booth, C. A. Boulton, R. T. Clark, G. R. Harris, J. A.

Lowe, and D. M. Sexton, 2014: Transient climate changes in a

perturbedparameter ensemble of emissions-drivenEarth system

model simulations. Climate Dyn., 43, 2855–2885, doi:10.1007/

s00382-014-2097-5.

Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New

estimates of radiative forcing due towellmixed greenhouse gases.

Geophys. Res. Lett., 25, 2715–2718, doi:10.1029/98GL01908.

Pongratz, J., C. H. Reick, R. A. Houghton, and J. I. House, 2014:

Terminology as a key uncertainty in net land use and land

cover change carbon flux estimates. Earth Syst. Dyn., 5, 177–

195, doi:10.5194/esd-5-177-2014.

Poulter, B., and Coauthors, 2010: Net biome production of the

Amazon basin in the 21st century. Global Change Biol., 16,

2062–2075, doi:10.1111/j.1365-2486.2009.02064.x.

Ramankutty, N., and J. A. Foley, 1999: Estimating historical

changes in global land cover: Croplands from 1700 to 1992.

Global Biogeochem. Cycles, 13, 997–1027, doi:10.1029/

1999GB900046.

Ricciuto, D. M., K. J. Davis, and K. Keller, 2008: A Bayesian cal-

ibration of a simple carbon cycle model: The role of obser-

vations in estimating and reducing uncertainty. Global

Biogeochem. Cycles, 22, GB2030, doi:10.1029/2006GB002908.

Sexton, D. M., J. M. Murphy, M. Collins, and M. J. Webb, 2012:

Multivariate probabilistic projections using imperfect climate

models part I: Outline of methodology. Climate Dyn., 38,

2513–2542, doi:10.1007/s00382-011-1208-9.

Stocker, B. D., K. Strassmann, and F. Joos, 2011: Sensitivity of

Holocene atmospheric CO2 and the modern carbon budget to

early human land use: Analyses with a process-based model.

Biogeosciences, 8, 69–88, doi:10.5194/bg-8-69-2011.
Tachiiri, K., J. C. Hargreaves, J. D. Annan, C. Huntingford, and

M. Kawamiya, 2013: Allowable carbon emissions for medium-

to-high mitigation scenarios. Tellus, 65B, 20586, doi:10.3402/

tellusb.v65i0.20586.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012: An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,

93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

Van Vuuren, D. P., and Coauthors, 2011: The representative con-

centration pathways: An overview. Climatic Change, 109,

5–31, doi:10.1007/s10584-011-0148-z.

Wang, X., and Coauthors, 2014: A two-fold increase of carbon

cycle sensitivity to tropical temperature variations. Nature,

506, 212–215, doi:10.1038/nature12915.

15 APRIL 2017 BOOTH ET AL . 3053

http://dx.doi.org/10.1111/j.1466-8238.2010.00587.x
http://dx.doi.org/10.1007/s00382-012-1647-y
http://dx.doi.org/10.1007/s00382-012-1647-y
http://dx.doi.org/10.1002/2013JG002381
http://dx.doi.org/10.1002/2013JG002381
http://dx.doi.org/10.1034/j.1600-0889.2003.01450.x
http://dx.doi.org/10.1034/j.1600-0889.2003.01450.x
http://dx.doi.org/10.5194/bg-9-5125-2012
http://dx.doi.org/10.1111/gcb.12207
http://dx.doi.org/10.1111/j.1600-0889.2006.00215.x
http://dx.doi.org/10.1034/j.1600-0889.1996.t01-2-00006.x
http://dx.doi.org/10.1034/j.1600-0889.1996.t01-2-00006.x
http://dx.doi.org/10.1080/1747423X.2011.628705
http://dx.doi.org/10.1007/s00382-012-1618-3
http://dx.doi.org/10.5194/essd-7-349-2015
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.1007/s10584-011-0156-z
http://dx.doi.org/10.1175/1520-0442(1995)008<0496:TROTHC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008<0496:TROTHC>2.0.CO;2
http://dx.doi.org/10.1007/s00382-014-2097-5
http://dx.doi.org/10.1007/s00382-014-2097-5
http://dx.doi.org/10.1029/98GL01908
http://dx.doi.org/10.5194/esd-5-177-2014
http://dx.doi.org/10.1111/j.1365-2486.2009.02064.x
http://dx.doi.org/10.1029/1999GB900046
http://dx.doi.org/10.1029/1999GB900046
http://dx.doi.org/10.1029/2006GB002908
http://dx.doi.org/10.1007/s00382-011-1208-9
http://dx.doi.org/10.5194/bg-8-69-2011
http://dx.doi.org/10.3402/tellusb.v65i0.20586
http://dx.doi.org/10.3402/tellusb.v65i0.20586
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1038/nature12915

