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Land ecosystems absorb on average 30% of the anthropogenic CO2 emissions, thereby 

tempering the growth of the CO2 concentration in the atmosphere1. Year-to-year 

variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon 

uptake by land ecosystems1. While the sensitivity of these fluctuations to changes in 

tropical temperature has been well documented2-6, identifying the role of global water 

availability has proven more elusive. To date, only time-lagged precipitation anomalies 

and drought indices have served as proxies for water availability3-5 due to a lack of direct 

observations. Here, we use recent observations of terrestrial water storage changes 

derived from satellite gravimetry7 to investigate land water effects on carbon cycle 

variability at global to regional scales. We show that the CO2 growth rate is strongly 

sensitive to observed changes in terrestrial water storage, drier years being associated 

with faster atmospheric CO2 growth. We demonstrate that this global relationship is 

independent from known temperature effects and is underestimated in current carbon 

cycle models. Our results indicate that inter-annual fluctuations in terrestrial water 

storage strongly impact the land carbon sink and highlight the important role of 

interactions between the water and carbon cycles. 

Acquiring accurate estimates of the land carbon sink is a key requirement for monitoring global 

CO2 emissions on a year-to-year basis8 and for reducing significant uncertainties in projections 

of future carbon cycle-climate feedbacks9,10. One critical aspect is to understand the sensitivity 

of the CO2 growth rate (CGR) to natural climate variability. At the global scale, it was found 

that the inter-annual variability (IAV) of the CGR is coupled with the El Niño Southern 
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Oscillation (ENSO) and more specifically with variations in mean tropical temperature3,4,6,11. 

In addition, the role of water availability has been widely documented at the regional scale. 

Major droughts have been shown to cause drastic regional reductions in the land carbon sink12,13 

and photosynthesis is limited by water scarcity over most of the globe14. Previous attempts to 

quantify the response of CGR IAV to water scarcity have used proxies to represent the amount 

of water available to ecosystems, such as yearly means of precipitation anomalies6, time-lagged 

and low-pass filtered monthly precipitation3,5 or standardized drought indices4. Although 

convenient, these proxies are limited since they only consider water inputs and either omit or 

model water losses due to evapotranspiration and runoff. From a process perspective, plants 

and micro-organisms respond however to the amount of water stored on land rather than to 

precipitation fluxes (Extended Data Fig. 1). Here, we overcome these limitations by using direct 

satellite observations of terrestrial water storage (TWS) anomalies to investigate links between 

the carbon and water cycles. 

From 2002 to 2017, the twin satellites of the Gravity Recovery and Climate Experiment 

(GRACE) have measured monthly anomalies of the Earth’s gravity field7 that can be used to 

retrieve net changes in TWS including groundwater, soil moisture, surface waters, snow and 

water stored in the biosphere (also see Methods). We isolate the monthly TWS IAV from 

GRACE by subtracting the mean seasonal cycle, and remove the long-term trend using linear 

regression. Measurements of atmospheric CGR IAV from the National Oceanic and 

Atmospheric Administration (NOAA) are compared with the satellite-based TWS IAV over the 

overlapping period, revealing a significant negative correlation at both monthly (r = -0.65, 

n=158) and yearly (r = -0.85, n=15) scales (Fig. 1a,b). The sign of this relationship indicates 

that drier years, characterized by a negative anomaly in TWS, are associated with higher rates 

of atmospheric CO2 growth and therefore a weakening of the land carbon sink (Fig. 1b). 

Composite TWS maps associated with high (Fig. 1c) and low (Fig. 1d) monthly CGR primarily 

reflect winter-spring water storage anomalies in South America and tropical regions in general. 

Given the relatively short observational record provided by the GRACE satellites, we 

investigate the robustness of this coupling and the associated spatial patterns using alternative 

estimates of TWS, which offer longer temporal coverage (Methods, Supplementary 

Information Tables 1 & 3). Although comparable, these estimates are based on model 

simulations that are considered less reliable than the actual GRACE observations. First, we use 

a statistical model of climate-driven water storage variability that is trained with GRACE 

observations (GRACE-REC)15 (Fig. 1a). We exclude the years following the eruption of Mt. 

Pinatubo (1991-1993)16-18 (Methods), and find a significant negative coupling between 
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GRACE-REC TWS and CGR at both monthly (r = -0.59, n=408) and yearly (r = -0.61, n=34) 

scales over the period 1980-2016 (Fig. 2a-b). Using TWS simulated by process-based land 

surface models, we tend to find lower correlations as we move from global hydrological 

models, which usually have the most complete or well calibrated representation of water 

reservoirs (WaterGAP19), to land surface models (GLDAS2-Noah20) or Dynamic Global 

Vegetation Models (DGVMs), which often only consider root-zone soil moisture (TRENDY 

ensemble, version 39). Nevertheless, these model estimates confirm the existence of a coupling 

between water storage and observed CGR. Unlike precipitation anomalies, water storage 

changes integrate the history of variations in both water supply and water demand over time. 

Therefore, looking at precipitation alone (with an optimal 4 months lag5) underestimates the 

strength of the coupling between water storage and carbon fluxes, in particular at the monthly 

scale (Fig. 2a,c). The strength of the link between CGR and water storage is comparable to that 

of the link between ENSO and CGR with a lag of about 4 months (ENSO leading CGR5). ENSO 

is a key mode of variability in global atmospheric circulation and is associated with large-scale 

fluctuations in precipitation patterns, which ultimately translate into water storage anomalies6,21 

(Extended Data Fig. 3). 

As documented in previous studies3,5, the correlation between CGR and temperature is more 

pronounced in the tropical domain and at yearly time scale (Fig. 2c-d). Individual effects of 

temperature and water storage on CGR may be difficult to disentangle because these two drivers 

co-vary. Warmer years generally coincide with drier years (Fig. 3a), raising the question of 

whether the TWS signal might implicitly contain some response to temperature. However, our 

results show that GRACE TWS can be almost entirely reconstructed from precipitation 

anomalies alone (Extended Data Fig. 4) with only little impact from temperature variability. 

Partial correlations indicate that the global CGR-TWS relationship remains significant after 

controlling for the effect of either global or tropical temperature (partial correlations of -0.72) 

(Fig. 3b, blue bars). This means that most of the information on CGR variations that is contained 

in TWS cannot be found in temperature. On the opposite, controlling for the effect of TWS 

strongly decreases partial correlations between CGR and temperature (Fig. 3b, orange bars). 

Using univariate linear regression (Methods), we find a global yearly sensitivity of -1.33 (95% 

confidence interval spanning from -1.85 to -1.07) Gt of carbon per year for each additional Tt 

of water stored on land (Fig. 3c). This corresponds to a ratio of roughly 1.3 g C yr-1 kg-1 H2O. 

When including both TWS and temperature in a bivariate regression, the sensitivity to TWS is 

reduced to -0.93 (-1.50 to -0.48) Gt C yr-1 Tt-1 H2O (28% decrease). For temperature, the 

univariate sensitivity is 3.89 (2.44 to 5.16) Gt C yr-1 °C-1 and is largely reduced in the bivariate 
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case to 1.99 (0.66 to 3.59) Gt C yr-1 °C-1 (49% decrease), which is much lower than previous 

estimates2,4 (Fig. 3d). 

Our findings provide strong observational evidence that the CGR is coupled to changes in both 

temperature and water storage at the global scale. The role of water storage is also stronger than 

what can be diagnosed from precipitation5 (Extended Data Fig. 5) or precipitation conditional 

on ENSO phase6. However, these findings differ from recent results of Jung and colleagues22, 

who suggested that the global mean net ecosystem exchange (NEE) simulated by statistical 

models (FluxCom23) and physical carbon cycle models (DGVMs9) responds to temperature 

rather than to water storage. In order to investigate this discrepancy, we reproduce the approach 

of Jung and colleagues (Methods) and find that, while our observations indicate that CGR is 

highly correlated to global water storage changes (Fig. 4a, circle), modelled NEE fails to 

reproduce this pattern and is instead mostly correlated to temperature (Fig. 4a, squares). Here, 

we suggest that this occurs because models underestimate the magnitude of water-driven NEE 

variations at the global scale (Fig. 4b,c). We find that the water-driven NEE of a given model 

is (except for one model) directly correlated to its simulated global mean water storage (Fig. 

4d, Supplementary Information Fig. 1). This internal model relationship indicates that a link 

exists between global mean water storage and its resulting global effect on NEE, which directly 

supports our observation-based results. We note that this global relationship also holds for the 

temperature-driven response (Fig. 4d). Therefore, the correlations reported in Fig. 4a for total 

model NEE are directly controlled by the relative importance of the temperature-driven and 

water-driven NEE components (Fig. 4b,c). Our observations (Fig. 4a, circle) thus suggest that 

simulated global NEE may appear dominated by temperature effects because the amplitude of 

water-driven NEE is underestimated. This might indicate that the modelled NEE response is 

not sensitive enough to soil moisture or point towards the role of non-modelled processes that 

are strongly regulated by other types of water storage changes (e.g. the access of deep roots to 

groundwater24 or the response of inland waters and wetland ecosystems25). In addition, 

inaccuracies in the precipitation forcing as well as missing water reservoirs in model hydrology 

might also affect water-driven NEE signals. Compared to GRACE observations, models 

display a widespread tendency towards underestimating the importance of low-frequency 

(inter-annual) water storage anomalies and are dominated by short-term fluctuations (Methods, 

Extended Data Fig. 6-8). This is likely explained by the limited (or absent) representation of 

deep soil layers, groundwater, wetlands and surface waters which respond more slowly to 

climate forcing and have a much longer residence time than root-zone soil moisture. 

Interestingly, we find that the fraction of IAV (Methods) in modelled water storage imposes a 
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strong upper limit on how much IAV can ultimately be found in modelled water-driven NEE 

(Extended Data Fig. 9). As a result, the amplitude of water-driven NEE at the inter-annual time 

scale (Fig. 4b) is limited by a lack of long-term memory in the underlying water storage signal. 

By partitioning the water storage signal among six land cover classes (Supplementary 

Information Fig. 2), we find that GRACE observations and models agree that semi-arid regions 

dominate the global mean water storage signal (Extended Data Fig. 10), even though models 

do not correlate very well with the actual signal observed by GRACE (Supplementary 

Information Fig. 3). These findings support recent results suggesting that semi-arid (and thus 

water-limited) ecosystems are responsible for most of the CGR IAV26,27. However, while we 

find that GRACE water storage in semi-arid regions is well correlated with CGR, our analysis 

also suggests a possible role of tropical forests (Fig.1c-d, Supplementary Information Fig. 4). 

In summary, we have provided for the first time observational evidence that the inter-annual 

variability of the CO2 growth rate is tightly coupled to terrestrial water storage changes. The 

sensitivities derived here represent the aggregated response of processes that operate at smaller 

spatial scales22. For this reason, they are not directly transferable to the ecosystem scale but 

may still provide a valuable metric for evaluating and constraining Earth system models2,6,10. 

Our results suggest that current models might underestimate the response of ecosystems to 

global changes in water availability. Models typically only respond to shallow soil moisture 

and are therefore less sensitive to inter-annual variability in water storage. They might also miss 

the response to changes in non-modelled water reservoirs such as wetlands or surface waters. 

The presented findings offer new perspectives on the use of satellite observations of water 

storage for global carbon cycle research. Projections of inter-annual as well as long-term water 

storage changes from hydrological models still display large uncertainties28,29, and will need to 

be better assessed in order to reduce uncertainties in projections of future land carbon uptake. 

As an additional complexity, estimates of future terrestrial water storage are themselves very 

dependent on how transpiration will be regulated by vegetation in a world of rising CO2 

concentrations30. Such evidence of the interplay between the water and carbon cycles also 

highlights the need for stronger interactions between the hydrological and biogeochemical 

research communities. 
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Figure 1. Inter-annual variability in CGR and TWS. (a) Monthly de-seasonalised and de-

trended CGR, TWS from satellite observations (GRACE) and TWS from a statistical model 

(GRACE-REC15). The vertical axis is inverted for CGR so that positive (downwards) CGR 

anomalies indicate a weaker land carbon sink. A 6-month moving average was applied to 

GRACE data for readability. (b) Yearly CGR versus GRACE TWS anomalies. (c-d) Composite 

TWS anomalies associated with the 5% highest (c) and 5% lowest (d) monthly CGR (n=8, see 

Source Data). Inset bar-plots indicate the season of the corresponding months. Composites 

based on GRACE-REC show similar patterns (Extended Data Fig. 2). 

 

Figure 2. Correlations between CGR and meteorological drivers over different spatial 

domains at monthly and yearly scale. The years 1991-1993 affected by the eruption of Mt 

Pinatubo are excluded (see Methods). Observations (circles) are distinguished from model-

http://www.nature.com/reprints
mailto:vincent.humphrey@env.ethz.ch
mailto:sonia.seneviratne@ethz.ch)
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based estimates (squares). A black cross indicates a non-significant correlation (alpha = 5%). 

Horizontal lines correspond to the 95% confidence interval of the correlation coefficient (see 

Methods). The different products and their temporal coverage as well as the number of data 

points used to generate these results are listed in Supplementary Information Tables 1 & 3. 

 

Figure 3. Confounding effects of water storage and temperature on correlations with 

CGR. (a) Yearly co-variation between global mean GRACE TWS and global mean 

temperature over the period 2002-2016. (b) Partial correlations between GRACE TWS and 

CGR (in blue) remain high and significant after controlling for the effect of global or tropical 

temperature. Significance indicated with asterisks (alpha = 5%). (c, d) Probability distributions 

of the yearly sensitivities of CGR to TWS and to temperature estimated with a Monte Carlo 

approach (Methods). 

 

Figure 4. Observed and modelled relations between global water storage, temperature 

and carbon fluxes. (a) Correlations of the land carbon sink with observed global mean 

temperature and global mean water storage (based on simulated soil moisture when correlating 

with model NEE and based on GRACE when correlating with observed CGR). Gray shading 

indicates the 95% confidence intervals (from Fig. 2b) for the observed relationships (circle). 

Solid and hollow squares indicate the relationships obtained with DGVMs and FluxCom 

models respectively. (b) Global mean water-driven (NEEWater) and (c) temperature-driven 

(NEETemp) NEE signals in Gt C yr-1 (Methods). (d) The global mean NEEWater of a given model 

is correlated to its simulated soil moisture signal (blue bars), while NEETemp is correlated to 

global mean temperature (orange bars), indicating an internal consistency between the global 

means of these two climatic drivers and their associated NEE response. 

 

Methods: 
GRACE water mass changes 

From 2002 to 2017, the twin satellites of the Gravity Recovery and Climate Experiment 
(GRACE) have measured monthly anomalies of the Earth’s gravity field7,31 that can be used 
to retrieve relative changes in water storage, both on land and in the ocean, at a spatial 
resolution of about 300 km32,33. Over land, these observations reflect net changes in terrestrial 
water storage (TWS), including groundwater, soil moisture, surface waters, snow, land ice, 
and water stored in the biosphere. These observations of water mass redistribution are 
consistent with other observed geophysical constraints such as changes in sea level34 and 
polar motion35 and correlate with satellite observations of surface soil moisture36 as well as 
with changes in precipitation and temperature37. Here, we use the Jet Propulsion Laboratory 
GRACE mascon solution38,39 and exclude the contribution of Greenland and Antarctica in 
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order to obtain a global mean TWS signal for all available months between April 2002 and 
December 2016. We isolate the inter-annual variability (IAV) by subtracting the mean 
seasonal cycle and remove the linear trend using simple linear regression. Because we focus 
on global and regional averages over very large spatial domains, using different GRACE 
solutions (Supplementary Information Table 2) has very little impact (Supplementary 
Information Fig. 5. A comprehensive comparison can be found for example in Scanlon et 
al.40. We would recommend checking different solutions in the case of local case-studies. The 
GRACE Follow-On satellites, which were launched in May 2018, will replace the GRACE 
satellites and are expected to extend the gravity record by another 5-10 years. 
 
Derivation of the CO2 growth rate (CGR) 

We use monthly time series of atmospheric CO2 concentration from the Greenhouse Gas 
Marine Boundary Layer Reference (MBL) of the National Oceanic and Atmospheric 
Administration (NOAA/ESRL)41,42. This dataset compiles measurements of weekly air 
samples from the Cooperative Global Air Sampling Network since 1980. Similarly to Wang, 
et al. 3, we derive monthly CGR as the first-order difference of CO2 concentrations between 
two successive months. We then remove the mean seasonal cycle and apply a 12-month 
moving sum to convert monthly values into annual CGR. For completeness, we also repeat 
the analysis at yearly scale using estimates of the Residual Land Sink (RLS) from the Global 
Carbon Project1, and show that this does not affect the conclusions of the paper 
(Supplementary Information Fig. 6 & 7). 
 
GRACE-REC (statistical reconstruction of GRACE) 

The statistical approach used to generate the reconstruction of past TWS anomalies is 
explained in detail in Humphrey and colleagues15. In summary, a statistical model forced with 
daily precipitation and temperature anomalies is trained with GRACE observations and used 
to reconstruct past changes in water storage. In Humphrey and colleagues15, the precipitation 
forcing is based on the ERA-Interim reanalysis, which has some limitations in representing 
tropical precipitation compared to other datasets. In this study, we reconstruct past TWS 
anomalies with the same approach but using a recently published merged daily precipitation 
product43. Using this new precipitation dataset leads to a small improvement in model 
performance, but there may still be limitations in the accuracy of the precipitation data, in 
particular over tropical regions. This updated TWS reconstruction is publicly accessible as 
part of this publication (Supplementary Information Table 1). 
 
Global and regional land averages 

The contribution of Greenland and Antarctica is removed for all analyses. Global and 
regional averages are weighted according to the land area of grid cells. The tropical domain 
definition used in this paper ranges from 24°S to 24°N, as in Wang and colleagues3. 
Information on the datasets44-49 used to generate land averages can be obtained from Table 1 
of the Supplementary Information. Land cover classes are based on MODIS MCD12C1 
(Supplementary Information Fig. 2). 

 
Monte Carlo estimate of correlation significance and uncertainty intervals 

We estimate the 95% confidence interval of correlation coefficients (such as confidence 
intervals reported in Fig. 2), null hypothesis distributions for two-tailed significance testing, 
as well as distributions for univariate and bivariate linear sensitivities in Fig. 3c-d using 
moving-block bootstrapping50. The selection of the block length is a compromise between 
accounting for the effect of autocorrelation in the time series and keeping a sufficiently large 
block sample size so that random resamples stay independent. Based on different block length 
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selectors50, we defined a block length of 12 months for monthly analyses (block length = 12). 
For yearly analyses, the block length was defined as 1 year (block length = 1, which is 
equivalent to a simple bootstrap approach), because the autocorrelation of time series was not 
significant at the yearly scale. The same procedure was applied to all considered datasets with 
10’000 random samples. 
 
Time intervals considered for various datasets and exclusion of years 1991-1993 

The correlations reported in Figure 2 and Figure 4 are computed over heterogeneous 
time intervals in order to make use of as much data as is currently available (Supplementary 
Information Table 3). Pairs of time series are de-trended over their common time interval. In 
order to assess these correlations over a time period as homogeneous as possible, we repeat 
the analysis for these figures over the period 2002-2013 only and find that our conclusions 
remain unchanged (Supplementary Information Figure 8 & 9). The eruption of Mt. Pinatubo 
strongly affected radiation budgets, which perturbed both CGR16,18 and the water cycle17, 
explaining the de-coupling between CGR and water storage changes. We also reproduce 
Figure 2 without discarding the years following the eruption of Mt. Pinatubo (1991-1993) and 
find that our main conclusions remain unchanged (Supplementary Information Figure 10), 
although the correlation between CGR and water-related variables decreases (as can be 
expected from Figure 1).  
 
Approach of Jung et al to separate temperature-driven and water-driven NEE signals 

In a recent paper, Jung and colleagues22 performed a global analysis of the drivers of 
NEE IAV using DGVMs and statistical models trained on flux tower measurements. They 
estimated the sensitivity of NEE IAV to climate drivers by fitting local multivariate 
regressions to the model outputs. With this approach, the simulated soil moisture and the 
observed temperature forcings are used to fit a linear statistical model of the monthly carbon 
flux response calculated by the more complex DGVMs and upscaling models. We replicated 
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Fraction of inter-annual variability (IAV) 

The fraction of IAV quantifies the importance of low frequency variability in the overall 
variance of a given signal. It is computed as: 
 

𝐹𝐼𝐴𝑉 =
𝑉𝑎𝑟(𝑋𝑦𝑒𝑎𝑟𝑙𝑦)
𝑉𝑎𝑟(𝑋𝑚𝑜𝑛𝑡ℎ𝑙𝑦)

 

 
where, Var() denotes the variance estimator, Xmonthly is the de-seasonalised and de-trended 
monthly time series and Xyearly is the yearly time series (computed from Xmonthly). This indicator 
is also illustrated in Extended Data Fig. 6. While being much simpler in practice, this approach 
shares the same idea as analyzing the relative importance of low frequencies in a signal’s power 
spectrum. When adding GRACE measurement errors to the GRACE-REC estimates of IAV 
fraction in Extended Data Fig. 8, we use the measurement errors provided with the original JPL 
Mascons, but without applying a conservative scale factor of 2 to the diagonal elements of the 
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Data availability statement 
All datasets generated or analysed during this study are available from the links listed in Table 
1 of the Supplementary Information. The source data for Fig. 1a–b, Fig. 2, Fig. 3 and Fig. 4 are 
additionally provided as spreadsheets with the online version of the paper. 
 
 
Extended Data Figure 1. Ecosystems respond to water storage. Water storage is more 
relevant than precipitation when investigating the impacts of changes in water availability on 
ecosystems. 
 
Extended Data Figure 2. Reproduction of main Figure 1c-d with GRACE-REC. 
Composite TWS anomalies associated with the 5% highest (c) and 5% lowest (d) monthly 
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CGR (n=20 months in each case) based on GRACE-REC (i.e. covering the 1980-2016 time 
period). Inset bar-plots indicate the season of the selected months. 
 
Extended Data Figure 3. ENSO, precipitation and terrestrial water storage. Because it 
integrates precipitation anomalies, water storage is slightly phase shifted with respect to 
ENSO and precipitation time series. Here, El Niño (La Niña) conditions correspond to the 
periods where the Multivariate ENSO Index (MEI) exceeds 0.5 (-0.5). Strongest ENSO 
events (MEI >1 or <-1) are shown in darker color. 
 
Extended Data Figure 4. Dominant contribution of precipitation to terrestrial water 
storage anomalies. (a) Global means of GRACE-REC and GRACE-REC driven only with 
precipitation anomalies. The statistical reconstruction of GRACE (GRACE-REC) is 
calibrated with both precipitation and temperature information15. We use this model to predict 
the precipitation-driven component of the TWS signal (by setting temperature variability to 
zero). Most of the global TWS signal can be reconstructed based on precipitation anomalies 
only. (b) Performance of the GRACE-REC model at the grid scale. (c) Contribution of 
precipitation to the locally reconstructed TWS. A comparison between GRACE-REC, global 
hydrological models and GRACE can also be found in Humphrey and colleagues15. 
 
Extended Data Figure 5. Reproduction of main Figure 3 with mean precipitation. Same 
as Figure 3, but using yearly precipitation from GPCP (with a 4-month lag) instead of water 
storage from GRACE. 
 
Extended Data Figure 6. Illustration of soil moisture signals with different fractions of 
inter-annual variability (IAV). The fraction of IAV quantifies the importance of low 
frequency variability in the overall variance of a given signal. Here, it is defined as the ratio 
between the variance of the yearly (de-trended) time series (b) and the variance of the 
monthly anomalies (a) (see Methods). The fraction of IAV tends to increase when deeper soil 
layers are included. This is because deeper layers have a longer residence time (or memory) 
and thus respond more slowly to changes in the meteorological forcing. Illustrative data based 
on GLDAS2-Noah, extracted for Spain (4.25°W, 40.25°N). 
 
Extended Data Figure 7. Fraction of IAV in water storage changes. (a) Average fraction 
of IAV in water storage changes simulated by DGVMs and FluxCom (which typically only 
include root-zone soil moisture). (b) Fraction of IAV in water storage changes observed by 
GRACE (which include all water reservoirs). In order to ensure comparability between 
models and GRACE, model outputs were first averaged to the spatial resolution of GRACE. 
Note that unlike modelled soil moisture, GRACE observations suffer from measurement 
errors that tend to increase the high-frequency (month-to-month) variability. Therefore, the 
fraction of IAV retrieved from GRACE would be even higher if there was no measurement 
error in GRACE. 
 
Extended Data Figure 8. Distribution of the fraction of IAV by land cover classes. This 
compares the values shown in the maps of Extended Data Figure 7 for different land cover 
classes. The fraction of IAV found in GRACE TWS (dark blue) is higher compared to models 
(green). Because GRACE observations are contaminated by high-frequency measurement 
errors, the fraction of IAV found in GRACE is shifted towards lower values. Here, the 
fraction of IAV derived from GRACE-REC (light blue) may provide a more robust estimate 
of the actual fraction of IAV in TWS. Adding GRACE measurement errors (as provided with 
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GRACE NASA-JPL data) to the GRACE-REC data reproduces very well the overall shift 
(dashed light blue) towards lower values that occurs with original GRACE data. 
 
Extended Data Figure 9. Relationship between the fraction of IAV in water storage and 
the fraction of IAV in NEEWater. Left panels (a,c) show the mean fraction of IAV obtained 
at all grid cells (for TRENDY and FluxCom), with point cloud density indicated by the color 
shading. The fraction of IAV in NEEWater is directly limited by the fraction of IAV present in 
the underlying water storage signal. (b,d) Same as (a,c) stratified by land cover class. In land 
cover classes that are typically moisture-limited (e.g. semi-arid), the fraction of IAV in 
NEEWater is potentially strongly limited by the fraction of IAV in water storage. (e) This 
relationship is also found for the global mean signals of the individual models. 
 
Extended Data Figure 10. Contribution of six different land cover types to the global 
water storage signal. (a) GRACE TWS anomalies by land cover type, smoothed with a 6-
month moving average and offset for readability. (b) Regional contributions to the global 
water storage signal. High values indicate that a region bears a high contribution to the overall 
global mean water storage signal. This metric is based on the definition proposed in Ahlström 
and colleagues27 for analyzing regional contributions to global net biome production (NBP). 
The value reported for the models is the mean across all models. 
 
  
 



 
 
Figure 1. Inter-annual variability in CGR and TWS. (a) Monthly de-seasonalised and de-

trended CGR, TWS from satellite observations (GRACE) and TWS from a statistical model 

(GRACE-REC15). The vertical axis is inverted for CGR so that positive (downwards) CGR 

anomalies indicate a weaker land carbon sink. A 6-month moving average was applied to 

GRACE data for readability. (b) Yearly CGR versus GRACE TWS anomalies. (c-d) Composite 

TWS anomalies associated with the 5% highest (c) and 5% lowest (d) monthly CGR (n=8, see 

Source Data). Inset bar-plots indicate the season of the corresponding months. Composites 

based on GRACE-REC show similar patterns (Extended Data Fig. 2). 

 
  



 
 
Figure 2. Correlations between CGR and meteorological drivers over different spatial 

domains at monthly and yearly scale. The years 1991-1993 affected by the eruption of Mt 

Pinatubo are excluded (Methods). Observations (circles) are distinguished from model-based 

estimates (squares). A black cross indicates a non-significant correlation (alpha = 5%). 

Horizontal lines correspond to the 95% confidence interval of the correlation coefficient 

(Methods). The different products as well as the number of data points used to generate these 

results are listed in Supplementary Information Tables 1 & 3. 
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Figure 3. Confounding effects of water storage and temperature on correlations with 

CGR. (a) Yearly co-variation between global mean GRACE TWS and global mean 

temperature over the period 2002-2016. (b) Partial correlations between GRACE TWS and 

CGR (in blue) remain high and significant after controlling for the effect of global or tropical 

temperature. Significance indicated with asterisks (alpha = 5%). (c, d) Probability distributions 

of the yearly sensitivities of CGR to TWS and to temperature (Methods). 
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Figure 4. Observed and modelled relations between global water storage, temperature 

and carbon fluxes. (a) Correlations of the land carbon sink with global mean temperature and 

global mean water storage (based on simulated soil moisture when correlating with model NEE 

and based on GRACE when correlating with observed CGR). Gray shading indicates the 95% 

confidence intervals (from Fig. 2b) for the observed relationships (circle). Solid and hollow 

squares indicate the relationships obtained with DGVMs and FluxCom models respectively. 

(b) Global mean water-driven (NEEWater) and (c) temperature-driven (NEETemp) NEE signals in 

Gt C yr-1 (Methods). (d) The global mean NEEWater of a given model is correlated to its 

simulated soil moisture signal (blue bars), while NEETemp is correlated to global mean 

temperature (orange bars), indicating an internal consistency between the global means of these 

two climatic drivers and their associated NEE response. 
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Extended Data Figure 1. Ecosystems respond to water storage. Water storage is more 
relevant than precipitation when investigating the impacts of changes in water availability on 
ecosystems. 
  



 
 
Extended Data Figure 2. Reproduction of main Figure 1c-d with GRACE-REC. 
Composite TWS anomalies associated with the 5% highest (c) and 5% lowest (d) monthly 
CGR (n=20 months in each case) based on GRACE-REC (i.e. covering the 1980-2016 time 
period). Inset bar-plots indicate the season of the selected months. 
  



 
 
Extended Data Figure 3. ENSO, precipitation and terrestrial water storage. Because it 
integrates precipitation anomalies, water storage is slightly phase shifted with respect to 
ENSO and precipitation time series. Here, El Niño (La Niña) conditions correspond to the 
periods where the Multivariate ENSO Index (MEI) exceeds 0.5 (-0.5). Strongest ENSO 
events (MEI >1 or <-1) are shown in darker color. 
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Extended Data Figure 4. Dominant contribution of precipitation to terrestrial water 
storage anomalies. (a) Global means of GRACE-REC and GRACE-REC driven only with 
precipitation anomalies. The statistical reconstruction of GRACE (GRACE-REC) is 
calibrated with both precipitation and temperature information15. We use this model to predict 
the precipitation-driven component of the TWS signal (by setting temperature variability to 
zero). Most of the global TWS signal can be reconstructed based on precipitation anomalies 
only. (b) Performance of the GRACE-REC model at the grid scale. (c) Contribution of 
precipitation to the locally reconstructed TWS. A comparison between GRACE-REC, global 
hydrological models and GRACE can also be found in Humphrey and colleagues15. 
  



 
 
Extended Data Figure 5. Reproduction of main Figure 3 with mean precipitation. Same 
as Figure 3, but using yearly precipitation from GPCP (with a 4-month lag) instead of water 
storage from GRACE. 
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Extended Data Figure 6. Illustration of soil moisture signals with different fractions of 
inter-annual variability (IAV). The fraction of IAV quantifies the importance of low 
frequency variability in the overall variance of a given signal. Here, it is defined as the ratio 
between the variance of the yearly (de-trended) time series (b) and the variance of the 
monthly anomalies (a) (see Methods). The fraction of IAV tends to increase when deeper soil 
layers are included. This is because deeper layers have a longer residence time (or memory) 
and thus respond more slowly to changes in the meteorological forcing. Illustrative data based 
on GLDAS2-Noah, extracted for Spain (4.25°W, 40.25°N). 
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Extended Data Figure 7. Fraction of IAV in water storage changes. (a) Average fraction 
of IAV in water storage changes simulated by DGVMs and FluxCom (which typically only 
include root-zone soil moisture). (b) Fraction of IAV in water storage changes observed by 
GRACE (which include all water reservoirs). In order to ensure comparability between 
models and GRACE, model outputs were first averaged to the spatial resolution of GRACE. 
Note that unlike modelled soil moisture, GRACE observations suffer from measurement 
errors that tend to increase the high-frequency (month-to-month) variability. Therefore, the 
fraction of IAV retrieved from GRACE would be even higher if there was no measurement 
error in GRACE. 
  



 
 
Extended Data Figure 8. Distribution of the fraction of IAV by land cover classes. This 
compares the values shown in the maps of Extended Data Figure 7 for different land cover 
classes. The fraction of IAV found in GRACE TWS (dark blue) is higher compared to models 
(green). Because GRACE observations are contaminated by high-frequency measurement 
errors, the fraction of IAV found in GRACE is shifted towards lower values. Here, the 
fraction of IAV derived from GRACE-REC (light blue) may provide a more robust estimate 
of the actual fraction of IAV in TWS. Adding GRACE measurement errors (as provided with 
GRACE NASA-JPL data) to the GRACE-REC data reproduces very well the overall shift 
(dashed light blue) towards lower values that occurs with original GRACE data. 
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Extended Data Figure 9. Relationship between the fraction of IAV in water storage and 
the fraction of IAV in NEEWater. Left panels (a,c) show the mean fraction of IAV obtained 
at all grid cells (for TRENDY and FluxCom), with point cloud density indicated by the color 
shading. The fraction of IAV in NEEWater is directly limited by the fraction of IAV present in 
the underlying water storage signal. (b,d) Same as (a,c) stratified by land cover class. In land 
cover classes that are typically moisture-limited (e.g. semi-arid), the fraction of IAV in 
NEEWater is potentially strongly limited by the fraction of IAV in water storage. (e) This 
relationship is also found for the global mean signals of the individual models. 
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Extended Data Figure 10. Contribution of six different land cover types to the global 
water storage signal. (a) GRACE TWS anomalies by land cover type, smoothed with a 6-
month moving average and offset for readability. (b) Regional contributions to the global 
water storage signal. High values indicate that a region bears a high contribution to the overall 
global mean water storage signal. This metric is based on the definition proposed in Ahlström 
and colleagues27 for analyzing regional contributions to global net biome production (NBP). 
The value reported for the models is the mean across all models. 
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