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Abstract
Climate change is shifting the phenological cycles of plants[1], thereby
altering the functioning of ecosystems, which in turn induces feedbacks to the
climate system[2]. In northern (north of 30° N) ecosystems, warmer springs
lead generally to an earlier onset of the growing season[3, 4] and increased
ecosystem productivity early in the season[5]. In situ[6] and regional[7, 8, 9]
studies also provide evidence for lagged effects of spring warmth on plant
productivity during the subsequent summer and autumn. However, our
current understanding of these lagged effects, including their direction
(beneficial or adverse) and geographic distribution, is still very limited. Here
we analyse satellite, terrestrial and model-derived data for the period 1982–
2011 and show that there are widespread and contrasting lagged productivity
responses to spring warmth across northern ecosystems. On the basis of the
observational data, we find that roughly 15 per cent of the total study area of
about 41 million square kilometres exhibits adverse lagged effects and that
roughly 5 per cent of the total study area exhibits beneficial lagged effects.
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By contrast, current-generation terrestrial carbon-cycle models predict much
lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent)
and much higher areal fractions of beneficial lagged effects (ranging from 9
to 54 per cent). We find that elevation and seasonal precipitation patterns
largely dictate the geographic pattern and direction of the lagged effects.
Inadequate consideration in current models of the effects of the seasonal
build-up of water stress on seasonal vegetation growth may therefore be able
to explain the differences that we found between our observation-constrained
estimates and the model-constrained estimates of lagged effects associated
with spring warming. Overall, our results suggest that for many northern
ecosystems the benefits of warmer springs on growing-season ecosystem
productivity are effectively compensated for by the accumulation of seasonal
water deficits, despite the fact that northern ecosystems are thought to be
largely temperature- and radiation-limited[10].

AQ1

AQ2

Widespread but contrasting delayed responses of ecosystem productivity to
spring warmth across northern ecosystems is inferred from satellite data, with
higher areal fractions of adverse effects than beneficial effects.

Main
Northern land regions have experienced substantial warming since the early
1970s, which has changed how ecosystems function[11]. One prominent
example of emerging ecosystem responses is shifts in plant phenological cycles:
earlier spring onset and delayed autumn senescence are lengthening the
northern growing season[6, 12]. These phenological shifts have altered
ecosystem productivity[5, 6, 8, 13, 14] and the seasonality of important
ecosystem feedbacks to the atmosphere and climate system[6, 15].
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Warmer and earlier springs may also influence ecosystem function later in the
growing season through indirect or lagged effects[16, 17]. For example, in situ
studies provide evidence for substantial positive lagged effects on ecosystem
productivity, whereby the influence of warmer springs may be conveyed to
subsequent seasons through the development of larger leaves or increased foliar
nitrogen[6]. By contrast, warmer or earlier springs may cause earlier autumn
senescence because of the fixed life spans of leaves[18] or adversely affect
plant productivity later in the season through the build-up of water deficits[7, 8,
9, 19, 20]. However, a more comprehensive understanding of lagged
productivity responses is still lacking.

Here, we use long-term (spanning the period 1982–2011) satellite data of
vegetation greenness (as a proxy for potential photosynthesis)[21], flux-tower
and model estimates of CO  uptake through photosynthesis (gross primary
productivity, GPP)[22, 23] and high-resolution climate data[24] to estimate the
strength and geographic distribution of lagged effects that capture the influence
of spring phenological transitions on plant productivity during the subsequent
summer and autumn. Our analysis relies on identifying correlations between
spring temperature (which serves as an independent phenological indicator) and
satellite greenness or simulated GPP during spring and subsequent seasons to
estimate concurrent phenological responsiveness and linked lagged effects
(see Methods).

AQ7

Across northern land, correlations between annual spring temperature and
spring greenness show a significantly positive and spatially extensive pattern
consistent with the notion of a tight control of spring temperature on concurrent
plant productivity: 80% of northern (north of 30° N) vegetated non-agricultural
land (total study area of roughly 41!×!10  km ) exhibits statistically significant
(P!<!0.05 at the grid-cell level) positive correlations (Fig. 1a). To assess lagged
effects on plant productivity associated with anomalous spring temperatures, we
computed partial correlations between spring temperature and subsequent
summer and autumn greenness, whereby covarying effects of concurrent
climate on these correlations are controlled for (see Supplementary Information,
section 1). Partial correlations between annual spring temperature and
subsequent summer greenness show a widespread positive (6%, P!<!0.05) and
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negative (6%, P!<!0.05) pattern (Fig. 1b). Areas of positive partial correlations
are predominantly situated in Eurasia, covering vast regions north of 50° N,
whereas areas with negative correlations are more localized in western North
America, Siberia and temperate eastern Asia. The partial correlation pattern
between spring temperature and autumn greenness indicates an extension of the
summer pattern of negative correlation (11%, P!<!0.05; positive correlations
cover only 2%, P!<!0.05), with additional coverage seen mainly in northeastern
Eurasia and temperate central Asia (Fig. 1b, c). Although long-term trends in
temperature and greenness could potentially influence these correlations, a
corresponding analysis on detrended data shows that the patterns are similar
(Supplementary Information, section 1). This similarity suggests a dominant
influence of interannual to quasi-decadal variability on the correlation pattern
between spring temperature and satellite greenness during subsequent seasons.
A comparison of the strength of these lagged relationships with concurrent
climatic influences on greenness pattern shows that at regional scales the
influence of spring temperature on summer and autumn greenness can be
equally important or even dominant (Supplementary Information, section 1).

Fig. 1

Spatial pattern of concurrent and lagged productivity responses to spring
warming based on satellite greenness observations.
a, Grid-cell correlations between yearly spring temperatures and spring satellite
vegetation greenness (expressed through the normalized difference vegetation
index, NDVI) for our study period, 1982–2011. b, c, Partial correlations between
annual spring temperature and subsequent summer (b) and autumn (c) NDVI over
this period. In these partial correlations, the covarying influences of summer
temperature and precipitation (b) and autumn temperature and precipitation (c) on
the correlations between spring temperature and summer or autumn NDVI have
been removed. Seasons are defined using a local adaptive procedure
(see Methods). Absolute values of the correlation coefficient (r) correspond to
significance levels of P!=!0.3 (r!=!0.20), P!=!0.2 (r!=!0.24), P!=!0.05 (r!=!0.36) or
P!=!0.01 (r!=!0.46). For each map, frequency histograms showing the areal
coverage corresponding to positive and negative correlations, estimated as a
fraction of total study area, are also provided (see insets). Areas that are cultivated
or managed[30] (light grey) are not included in the analysis.
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To further assess the robustness of the lagged productivity responses that we
identified from satellite data, we compared these responses to those inferred
from flux-tower measurements of land–atmosphere CO  flux (FLUXNET). The
results show that, across n!=!16 tower sites, the strength and direction of
relationships between spring temperature and spring and summer greenness
derived from satellite data correspond well to those based on spring temperature
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and spring and summer GPP derived from tower data (Extended Data Fig. 1).
However, the agreement between the relationships between spring temperature
and autumn satellite greenness and between spring temperature and autumn
tower-derived GPP is not as strong (Extended Data Fig. 1). This validation has
several caveats, including the small number of available tower sites and the
differences in spatial scales for satellite (coarse) and tower (fine-scale) data;
however, the overall consistency in the estimated lagged productivity responses
suggests that the estimates based on satellite data are plausible.

The geographic distribution of the relationship between changes in spring
temperature and subsequent summer greenness (see Fig. 1b) suggests that some
combination of climate, elevation and land cover may explain these patterns. To
investigate this, we conducted a random-forest analysis using a set of predictors
that encapsulate such factors (see Supplementary Information, section 2). The
results show that the partial correlation pattern between spring temperature and
summer greenness can be explained with elevation and selected climate
variables (such as summer precipitation and precipitation seasonality) acting as
the most important variables (Extended Data Fig. 2, Supplementary
Information, section 2). Across northern ecosystems, we find that these partial
correlations tend to become more negative with higher elevation, but such well-
defined directional relationships are not as apparent for important precipitation
metrics (Extended Data Fig. 2).

Grouping the lagged productivity responses on the basis of the direction of
robust correlations between spring temperature and spring, summer and autumn
greenness reveals large clusters of regions with negative lagged effects and
more scattered areas with positive lagged effects (Fig. 2a). As a result, negative
lagged productivity responses associated with spring warming and greening,
coupled with declines in summer or autumn greenness, stretch over vast areas in
western North America, Siberia and to some extent eastern temperate Asia,
whereas positive lagged effects are more common in eastern Eurasia north of
50° N (except Siberia).

Fig. 2

Spatial pattern of lagged productivity responses based on satellite
greenness observations and models.
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a, b, The maps summarize the direction of robust (P!<!0.05) grid-cell correlations
between annual spring temperature and spring, summer and autumn NDVI
determined from satellite data (a) or spring, summer and autumn GPP determined
from the TRENDYv6 multi-model mean (b). For example, the lagged productivity
response denoted as ‘+−0’ represents positive correlations between spring
temperature and spring NDVI or GPP, negative correlations between spring
temperature and summer NDVI or GPP, and no correlations between spring
temperature and autumn NDVI or GPP. The relationships between spring
temperature and summer and autumn NDVI or GPP are estimated using partial
correlations, whereby effects of covarying concurrent climate influences have
been controlled for (see Fig. 1, Methods). The corresponding patterns for
individual models are shown in Extended Data Fig. 3. Areas with no robust link
between spring temperature and spring NDVI or GPP (dark grey) and areas that
are cultivated or managed (light grey) are also shown. The two focal regions in
this study (western USA and Siberia) are indicated by black-dashed rectangles. c,
Extent of areas with no, positive or negative lagged effects (see definition in a)
within the study region for satellite NDVI data (brown) and GPP based on
TRENDYv6 models (dark blue, multi-model mean; light blue, individual models).
Corresponding results from a similar analysis for two satellite-data-constrained
GPP datasets, based on upscaled FLUXNET data (FluxNetG; green) and a light-
use-efficiency model (LUE-FPAR3g; magenta; see Methods), are also shown (see
also Extended Data Fig. 4). The horizontal dashed lines are to aid comparison to
the TRENDYv6 model results and the shaded regions encapsulate the spread
among the three estimates derived from satellite data. d, Results from a
complementary analysis for satellite-data-constrained and modelled LAI
(see Methods). Results from the same analysis for detrended data show that the
differences between observation- and model-based estimates of the areal fractions
of positive and negative lagged effects are similar (Supplementary Information,
section 1).
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Carbon-cycle models must be able to simulate the responses of vegetation
phenology and the corresponding effects on ecosystem productivity and net
carbon uptake realistically to estimate climate–carbon feedbacks credibly[25].
We therefore assessed the ability of ten current-generation models that
contribute to TRENDYv6[22, 23] to replicate the observed lagged productivity
responses to spring warming. The results reveal a substantially higher multi-
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model mean areal coverage of positive lagged effects on plant productivity (and
much lower coverage of negative lagged effects) than for the satellite estimates
(Fig. 2a, b). Although there are marked differences among the individual
models (Extended Data Fig. 3), a notable pattern in the ensemble is the near
absence of any negative lagged effects across Siberia and the overall abundance
of positive lagged effects that extend over summer and autumn (Fig. 2a, b).
Satellite greenness has been used extensively as a proxy for vegetation
productivity[3, 26], but direct comparisons between greenness and GPP patterns
are limited (see Methods). However, a similar analysis using two satellite-data-
constrained GPP datasets (based on upscaled FLUXNET data and a light-use-
efficiency model; see Methods) reveals nearly identical lagged productivity
patterns to those based on satellite greenness (Extended Data Fig. 4).

Grouping the lagged productivity responses more broadly, into positive and
negative lagged effects, yields an areal extent of regions with positive lags of
36% for the TRENDYv6 ensemble (9%–54% for the ten individual TRENDYv6
models) and 4%–6% for the estimates derived from satellite data (Fig. 2c). The
areal coverage of negative lagged effects predicted by the TRENDYv6
ensemble is only 2% (1%–14% for the ten models), whereas that estimated from
the satellite data is 13%–16%. (The ranges for the observation-based estimates
encapsulate the spread among the three different estimates; see shading in
Fig. 2c.)

It is not clear why these terrestrial carbon-cycle models cannot adequately
replicate the observed spatial pattern of lagged productivity responses to
warmer springs. One key factor could be how seasonal vegetation growth is
represented in the models. To assess this, we performed a similar seasonal
correlation analysis with satellite and modelled leaf area index (LAI) data
(see Methods). The results reveal an even larger discrepancy between the areal
proportions of positive and negative lagged responses of LAI to spring warming
determined using observation-based and modelling approaches compared to
those determined using productivity metrics (Fig. 2c, d, Extended Data Fig. 4).
The substantial overestimation of growing-season LAI in the models in
response to spring warmth could cause too much new carbon to be allocated in
plant tissue, which then enhances GPP.

Limited water availability may cause adverse lagged effects in response to
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spring warmth and could help to reconcile the differences between observations
and models. To further investigate this we performed a regional analysis for
western USA and Siberia, for which observation-based and simulated lagged
productivity responses have a more converging and diverging pattern,
respectively (see Fig. 2). For western USA, we find that seasonal trajectories in
aggregated satellite-data-constrained and modelled LAI and evapotranspiration
display positive anomalies during spring in years with warmer springs and
corresponding negative anomalies later in the growing season (suggestive of
negative lagged effects associated with a build-up of water stress) (Fig. 3a, b).
However, for Siberia, the seasonal trajectories in observation-constrained and
modelled LAI for warm-spring years start to diverge substantially during
summer and autumn, with the observations displaying more negative anomalies
during summer and autumn (again suggestive of water stress) and the opposite
pattern predicted by the models (Fig. 3c). Seasonal trajectories of observation-
based and modelled evapotranspiration for years with anomalous spring
temperatures are more in agreement, although there is some indication that the
models underestimate water stress in summer in warm-spring years (Fig. 3d).
The consistency between the observed and modelled responses of LAI and
evapotranspiration to spring warmth over western USA, a region that is known
for its vulnerability to drought in response to spring warmth[27, 28, 29],
suggests that the hydrology and phenology schemes included in the models are
generally fit for purpose. The strong divergence between observation-based and
modelled responses of seasonal vegetation growth to spring warmth over
Siberia (which is dominated by needleleaf deciduous forests) may be due to
underestimation of the effects of water stress on seasonal canopy development
and omission of fixed leaf life spans in the models (Extended Data Table 1,
Supplementary Information, section 3). We estimate that, owing to the
difference between observation-based and modelled productivity responses to
anomalous spring temperatures across Siberia, annual GPP for a warm-spring
year may be up to four times higher in the TRENDYv6 ensemble (1.7 Pg C yr

) than an observation-constrained estimate based on upscaled FLUXNET data
(0.4 Pg C yr ) (Extended Data Fig. 5).

Fig. 3

Seasonal trajectories of regionally averaged LAI and evapotranspiration
anomalies based on observation-constrained and modelling approaches

−1

−1
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for warm- and cold-spring years.
a–d, Anomalies in spatially averaged and composited LAI (a, c) and
evapotranspiration (b, d) based on satellite-data-constrained estimates (LAI3g,
ET-GLEAM) and model simulations (TRENDYv6 multi-model mean) for western
USA (a, b) and Siberia (c, d). Western USA encompasses the non-agricultural
regions from 120° W to 105° W and 40° N to 50° N, whereas Siberia is defined to
be from 80° E to 125° E and 60° N to 70° N (see also Fig. 2). Anomalies are
relative to the mean over the study period, 1982–2011. The monthly maximum
composites shown are based on the mean LAI or evapotranspiration of the seven
warmest- and coldest-spring years within the study period. The climatological
seasons are indicated by the vertical grey dashed lines. Uncertainty bounds
(shaded areas) reflect the spread in the monthly LAI or evapotranspiration
anomalies within the compositing period (±1 s.d., n!=!7).

AQ8
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Our analysis based on satellite vegetation records over multiple decades
provides evidence for widespread positive and negative lagged plant-
productivity responses across northern ecosystems associated with warmer
springs. The spatially extensive pattern of negative lagged effects that we
identified implies substantially reduced benefits for ecosystem productivity and
carbon sequestration from longer northern growing seasons under climate
change. We have also shown that current terrestrial carbon-cycle models
substantially underestimate (overestimate) negative (positive) lagged effects
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associated with spring warming. This is possibly because these models
inadequately capture the effects of the seasonal build-up of water stress on
seasonal vegetation growth. Continued monitoring of emerging ecosystem
responses and improved modelling capabilities will therefore be crucial to
improve our understanding of the complex interactions between a changing
climate, shifts in phenological cycles and effects on energy, water and carbon
cycles.

Methods
Data sources
For the satellite vegetation data, we used the GIMMS-NDVI version 3g
(NDVI3g)[21] and LAI3g[31] products, which are both available at 8-km
spatial and 15-day temporal resolution for our study period, 1982–2011. The
NDVI3g data stem from optical surface reflectance measurements from a series
of NOAA-AVHRR satellites. Effects of orbital drifts, inter-sensor calibration
and stratospheric aerosols from volcanic eruption have been corrected for,
making this the most consistent long-term satellite vegetation dataset currently
available[21]. The LAI3g fields are derived from the NDVI3g data using an
artificial neural network model[31]. Gridded monthly climate data were
obtained from the Climatic Research Unit (CRU TS3.23) at 0.5° spatial
resolution[24] for our study period (1982–2011). As an estimate for the
observation-constrained evapotranspiration (ET), we included the Global Land
Evaporation Amsterdam Model (GLEAM) dataset, which has a spatial
resolution of 0.25° at daily time steps[32]. While the GLEAM approach is
based on an empirical model, it is heavily constrained by observations through
assimilating satellite microwave vegetation optical depth data as a proxy for
water stress[32]. In addition, land-cover data used in this study are based on the
GLC2000 land-cover classification[30]. For complementary analyses, we also
used site-level GPP data derived from the global FLUXNET tower network
(FLUXNET2015, tier 1) and two observation-constrained, gridded monthly
GPP datasets. The first includes GPP data (0.5° spatial resolution, available for
1982–2008) estimated from upscaled carbon observations based on FLUXNET
(FluxNetG)[33]. FluxNetG is different from the previously published FluxNet-
MTE[33] because it has been produced with inputs from only a single satellite
vegetation dataset (NDVIg; a predecessor of NDVI3g) to reduce artefacts from



12/09/2018 22:31e.Proofing

Page 16 of 27http://eproofing.springer.com/journals_v2/printpage.php?toke…81ng5xEu3Jbi7rNZEAVnJ0sCjuUyQ7fwJDYkt-kBc0157XQ_06x-Ad7yxju

using multiple satellite data (the FluxNetG dataset was also used in ref. [8]).
Second, we used GPP data (0.5° spatial resolution, available for 1982–2011)
derived using the light-use-efficiency (LUE) MODIS GPP algorithm driven by
bi-monthly GIMMS FPAR3g (LUE-FPAR3g)[34]. Additional meteorological
driver data required as input into the MODIS GPP algorithm were derived from
NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov). For more information on
the GIMMS3g GPP dataset, see ref. [34].

TRENDYv6 models
We also analysed monthly GPP, LAI and ET simulation outputs for 1982–2011
from ten terrestrial carbon-cycle models that were part of a recent model
intercomparison project, TRENDYv6[22, 23]. The models included in the
analysis here are LPX-Bern, LPJ-GUESS, ISAM, CABLE, VISIT, CLM4.5,
DLEM, JSBACH, ORCHIDEE-MICT and JULES. In TRENDYv6, the models
were forced with the CRUNCEPv6 climate dataset, which is based on a merged
product of the monthly CRU climate data, and to be consistent with the
TRENDYv6 ensemble we also used this climate dataset here. In addition, a set
of factorial simulations[22] were performed and we analysed outputs from a
simulation in which only atmospheric CO  and climate were varied (land-use
change held fixed; experiment ‘S2’) because our study focus was on non-
agricultural ecosystems. For an overview of the processes included in the
models relevant to this study, see Extended Data Table 1. For a more general
overview of the models see tables 4a and 5 in ref. [23].

Analysis framework
The satellite bi-monthly GIMMS NDVI3g and LAI3g vegetation data were
averaged to a monthly temporal resolution (to be consistent with the
TRENDYv6 model outputs). Then, the fine-scale satellite vegetation and
coarse-scale CRU temperature fields were (dis)aggregated to a common 0.25°
spatial grid on which all correlation analyses were performed. The motivation
for this spatial aggregation step is twofold: (i) it retains a certain level of spatial
information inherent in the satellite products and (ii) it aligns more closely with
the coarser spatial resolutions of the TRENDY carbon-cycle models. Model
outputs from TRENDYv6 were either analysed at their native model resolutions
spanning grid-cell dimensions from 0.5° to 1.9°[22] or resampled to a common

2
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0.5° grid through nearest neighbours (for example, to estimate multi-model
means of GPP, LAI and ET at grid-cell levels).

To estimate lagged vegetation growth and productivity responses we first
divided the mean seasonal cycle of NDVI or simulated GPP (based on the 30-
year study period) into spring, summer and autumn periods for each grid cell.
As a result, the start of spring and the end of autumn are defined by the months
in which corresponding temperatures are closest to 0!°C, whereas the start and
end of summer are defined by the months in which the NDVI (GPP) is closest
to 95% (85%) of the annual maximum NDVI (GPP). Alternative approaches for
characterizing phenological cycles involving start and end dates of the growing
season are more ambiguous if based solely on optical vegetation indices[35, 36]
or when the underlying data have relatively low temporal resolution, as in this
study[12].

In a next step, we (building on the conceptual model of ref. [16]) classified
lagged productivity responses for each grid cell as follows. First, as a minimum
requirement for phenological responsiveness to spring warming, we require the
spring temperature and the response variable of interest (NDVI, LAI or GPP) to
be significantly (P!<!0.05) positively correlated. Second, we define a lagged
productivity (NDVI, GPP) or phenology (LAI) response on the basis of the
direction of robust (P!<!0.05) partial correlations between annual spring
temperature (as an independent phenological indicator) and subsequent summer
and autumn seasonal means of the response variable of interest; for example, if
at a given locality the annual spring temperature is positively correlated with
spring NDVI but negatively correlated with subsequent summer NDVI and not
robustly correlated with autumn NDVI, then the response label would be ‘+−0’,
with the type of symbol denoting the direction of correlations and sequence
corresponding to spring–spring, spring–summer and spring–autumn
relationships (see Fig. 2). Partial correlations are used to control for covarying
effects of climate over seasonal timescales, which can confound the correlations
between annual spring temperature and subsequent summer and autumn
response variables (see Supplementary Information, section 1).

As indicated, the satellite vegetation data (NDVI3g, LAI3g) used here stem
from a series of satellites; although this record has been assembled carefully
and validated to some extent[31], remaining non-vegetation artefacts in the data
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cannot be ruled out[37]. Further, satellite greenness (or NDVI) captures the
amount of light absorbed by chlorophyll in green leaves[38] and has been used
extensively as a proxy for spatially resolved vegetation productivity at
continental and multi-decadal scales[3, 26]. However, to overcome the limited
comparability of directly observed NDVI-based and simulated GPP-based
patterns, we also analysed observation-constrained GPP data. The results show
good agreement between the lagged productivity patterns at both the site level
(using GPP flux-tower data) and across northern ecosystems (using gridded
GPP data from up-scaled FLUXNET and a LUE model), providing further
support for the robustness of our results (see Extended Data Fig. 4). Finally, we
also use satellite and modelled LAI data to probe the mismatch between lagged
greenness and modelled (TRENDYv6) GPP responses to spring warmth.
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Extended Data Fig. 1

Comparison of lagged productivity responses based on satellite
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greenness observations and in situ estimates of carbon fluxes across
selected FLUXNET sites.
a–c, Site-specific correlations between spring temperature (T) and spring (a),
summer (b) or autumn (c) satellite NDVI (x axis) plotted over the corresponding
site-specific correlations between spring temperature and spring (a), summer (b)
or autumn (c) flux-tower GPP (y axis). In b and c, the relationships are based on
partial correlations (pr) between spring temperature and subsequent summer (b)
or autumn (c) NDVI or GPP, with covarying effects of summer temperature and
precipitation (b) and autumn temperature and precipitation (c) removed. (Partial)
correlations are shown for two estimates of GPP: GPP-N (based on night-time
partitioning of net ecosystem exchange) and GPP-D (daytime partitioning). d, For
this comparison, satellite NDVI time series at 8-km (native) spatial resolution
have been extracted for the 16 FluxNet tower sites with at least 10-year data
records. Forest types for the tower sites are: ENF, evergeen needleleaf forest;
DBF, deciduous broadleaf forest; MF, mixed forest. e, Maps showing the
approximate locations of the FLUXNET tower sites. FLUXNET data for this
comparative analysis are from the FLUXNET2015 dataset (tier 1).

Extended Data Fig. 2

Random-forest analysis to explain the partial correlation pattern
between annual spring temperature and summer satellite greenness on
hemispheric and regional scales.
a, Ranked importance of a set of explanatory variables in a random-forest model
for the whole northern ecosystem study region, encompassing all vegetated non-
agricultural land north of 30° N (see Supplementary Information, section 2, for
details on the explanatory variables used). The ranking is based on the highest
increment in mean squared error (IncMSE) between the observed and random-
forest-predicted correlation after permuting the relevant explanatory variable. b–f,
Individual conditional expectation lines of the random-forest-predicted partial
correlation between spring temperature and summer NDVI for the five most
important explanatory variables. Lines and shaded bands reflect the mean
(regional-average response) and the 5%–95% percentile range (grid-cell-level
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responses to environmental predictors) for the northern (north of 30° N, non-
managed) study region (red) and for the focus regions (Siberia, blue; western
USA, green) (see Supplementary Information, section 2).

Extended Data Fig. 3

Spatial pattern of lagged productivity responses based on the individual
carbon-cycle models included in TRENDYv6.
All patterns are based on monthly GPP over the period 1982–2011, using outputs
from the ten TRENDYv6 models included in the analysis (see Methods). The
maps summarize the direction of statistically significant (P!<!0.05) correlation
between annual spring temperature and spring, summer or autumn GPP. For
details on classification scenarios and contour labels, see Fig. 2. Areas with no
robust link between spring temperature and spring GPP (dark grey) and areas that
are cultivated or managed (light grey) are also shown.

Extended Data Fig. 4

Spatial pattern of lagged productivity and vegetation growth responses
based on satellite-data-constrained and modelling approaches.
a–f, Summary of the direction of robust (P!<!0.05) correlations between annual
spring temperature and spring, summer or autumn satellite NDVI (a), satellite
LAI (b), satellite upscaled GPP (FluxNetG; c), satellite-data-driven LUE-
modelled GPP (LUE-FPAR3g; d), and multi-model mean GPP (e) and LAI (f)
based on the ten TRENDYv6 models. For details on scenario classifications and
contour labels see Fig. 2. Arrows (arrows with strikethroughs) between panels
highlight qualitative agreement (disagreement) between the lagged responses of
productivity and vegetation growth for the various methods.
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Extended Data Fig. 5

Changes in regional climate, satellite greenness and plant carbon fluxes
from observation-constrained and modelling approaches for warm- and
cold-spring years.
a–f, Anomalies in regionally averaged composited climate (a, d), NDVI (b, e)
and GPP (c, f) for warm- and cold-spring years, for the focus regions (a–c,
western USA; d–f, Siberia). The anomalies are relative to the mean of the study
period (1982–2011) and are based on maximum composites of monthly means of
the seven warmest- and coldest-spring years within the study period. The
observation-constrained GPP anomalies (c, f) stem from FluxNetG, which
combined GPP estimates from flux towers with climate and satellite greenness in
a machine-learning framework (see Methods). The boundaries between the
climatological seasons are indicated by vertical grey dashed lines. Uncertainty
bounds (shaded areas) reflect the spread in the respective monthly anomalies
within the compositing period (±1 s.d., n!=!7). On the basis of these anomalies, we
estimate, for a warm-spring year (relative to mean conditions) in Siberia (area,
2.5!×!10  km ), annual GPP increases of 0.4 Pg C and 1.7 Pg C for FluxNetG and
the TRENDYv6 ensemble, respectively, which corresponds to higher plant carbon
uptake in the TRENDYv6 ensemble by a factor of roughly four (f). This is, to a
large extent (about 64%), because of the overestimation of positive lagged effects
in the TRENDYv6 models, but another important factor (36%) is the higher
sensitivity of concurrent carbon uptake to spring warming in the TRENDYv6
models (compared to FluxNetG).

Extended Data Table 1

Comparison of how specific processes relevant to this study are represented in the

6 2
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TRENDYv6 carbon-cycle models

Comparison of how specific processes relevant to this study are represented in the
TRENDYv6 carbon-cycle models

PFT, plant functional type; NPP, net primary productivity.

Supplementary information

Supplementary Information

This file contains Supplementary Text Sections 1-3, Supplementary Table S1 and
Supplementary Figures S1-S7.
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