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ON THE ARITHMETIC OF ABELIAN VARIETIES

MOHAMED SAÏDI and AKIO TAMAGAWA

Abstract. We prove some new results on the arithmetic of abelian varieties over

function fields of one variable over finitely generated (infinite) fields. Among other
things, we introduce certain new natural objects ‘discrete Selmer groups’ and ‘dis-

crete Shafarevich-Tate groups’, and prove that they are finitely generated Z-modules.

Further, we prove that in the isotrivial case, the discrete Shafarevich-Tate group van-
ishes and the discrete Selmer group coincides with the Mordell-Weil group. One of

the key ingredients to prove these results is a new specialisation theorem for first Ga-
lois cohomology groups, which generalises Néron’s specialisation theorem for rational

points of abelian varieties.
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§0. Introduction. Let k be a field of characteristic 0, and C → Spec k a smooth,
separated and geometrically connected (not necessarily proper) algebraic curve over
k. Write K = k(C) for the function field of C, Ccl for the set of closed points of C,
and k(c) for the residue field of C at c ∈ Ccl. Let A → C be an abelian scheme over

C. Write A
def
= AK

def
= A ×C SpecK for the generic fibre of A. For each c ∈ Ccl,

write Ac
def
= A×C Spec k(c) for the fibre of A at c, Kc for the completion of K at

c, and Ac
def
= A ×K Kc. Thus, A (resp. Ac, resp. Ac) is an abelian variety over K

(resp. k(c), resp. Kc). Consider the Kummer exact sequence

0→ A(K)∧ → H1(GK , TA)→ TH1(GK , A)→ 0,

where TA is the (full) Tate module of A, A(K)∧ is the completion lim←−N>0 A(K)/NA(K)
of the group A(K) of K-rational points of A (which coincides with the profinite
completion of A(K), if A(K) is finitely generated), and TH1(GK , A) is the (full)
Tate module of the Galois cohomology group H1(GK , A) classifying K-principal
homogeneous spaces under A. Similarly, for each closed point c ∈ Ccl, we have the
Kummer exact sequences

0→ Ac(Kc)
∧ → H1(GKc

, TAc)→ TH1(GKc
, Ac)→ 0

Typeset by AMS-TEX

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/161940092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1512.00773v2


and

0→ Ac(k(c))
∧ → H1(Gk(c), TAc)→ TH1(Gk(c),Ac)→ 0.

We have a natural commutative diagram

(0.1)
0 −−−−→ A(K)∧ −−−−→ H1(GK , TA) −−−−→ TH1(GK , A) −−−−→ 0

y
y

y

0 −−−−→
∏

c Ac(Kc)
∧ −−−−→

∏
c H

1(GKc
, TAc) −−−−→

∏
c TH

1(GKc
, Ac) −−−−→ 0

where the horizontal sequences are the above Kummer exact sequences, the vertical
maps are natural restriction maps, and the product is taken over all closed points
c ∈ Ccl. In fact, when k is finitely generated over Q, diagram (0.1) can be identified
with the following natural commutative diagram (cf. Proposition 2.1 (ii)):

(0.2)
0 −−−−→ A(C)∧ −−−−→ H1(π1(C), TA) −−−−→ TH1

ét(C,A) −−−−→ 0
y

y
y

0 −−−−→
∏

cAc(k(c))
∧ −−−−→

∏
c H

1(Gk(c), TAc) −−−−→
∏

c TH
1(Gk(c),Ac) −−−−→ 0

where the upper horizontal sequence is a Kummer exact sequence for the étale
site of C, the lower horizontal sequence is as above, the vertical maps are natural
restriction maps, and the product is taken over all closed points c ∈ Ccl.

Just as in the case where K is a number field, define the profinite Selmer group

Sel(A)
def
= Sel(A,C)

def
= Ker(H1(GK , TA)→

∏

c

TH1(GKc
, Ac)),

and the Shafarevich-Tate group

X(A)
def
= X(A,C)

def
= Ker(H1(GK , A)→

∏

c

H1(GKc
, Ac)).

Thus, we have a natural exact sequence

0→ A(K)∧ → Sel(A)→ TX(A)→ 0,

where TX(A) is the Tate module of X(A). For an integer N > 0, define the
N -Selmer group by

SelN (A)
def
= Sel(A,C)N

def
= Ker(H1(GK , A[N ])→

∏

c

H1(GKc
, Ac)),

so that Sel(A) = lim←−N>0 SelN (A).

One of our main results is the following, which improves a result of [Lang-Tate]
(cf. Proposition 2.10, Proposition 3.9 (i) and Remark 3.13).
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Proposition A. Assume that k is finitely generated over Q. Then for each
integer N > 0, the N -Selmer group SelN (A), as well as the subgroup X(A)[N ] of
N -torsion points of X(A), is finite.

The proof of Proposition A follows from the following specialisation result (cf.
Proposition 1.8).

Proposition B. Assume that k is Hilbertian (cf [Serre2], 9.5). Then for each
integer N > 0, there exists a finite subset S ⊂ Ccl (of cardinality ≤ 2), depending
on N , such that the natural restriction map

H1(π1(C), A[N ]) −→
∏

c∈S

H1(Gk(c),Ac[N ]),

is injective.

We also prove the following analogous specialisation result for the Galois coho-
mology of the l-adic Tate module of A. (cf. Proposition 1.4).

Proposition C. Assume that k is Hilbertian. Let l be a prime number. Then
there exists a finite subset S ⊂ Ccl of cardinality ≤ 2, depending on l, such that
the natural restriction map

H1(π1(C), TlA)→
∏

c∈S

H1(Gk(c), TlAc)

is injective.

In the case where either k is finitely generated over Q or the k-trace of AKk

def
=

A ×K Kk is trivial, one can prove that there exists a finite subset S ⊂ Ccl as in
Proposition C of cardinality 1 (cf. Proposition 1.2 and Proposition 1.4). We do
not know (even in the finitely generated case) if an analogue of Proposition C holds
for the Galois cohomology of the full Tate module TA.

As a consequence of Proposition C, one deduces the following (cf. Proposition
2.2).

Proposition D. Assume that k is Hilbertian. Then the middle and left vertical
maps in diagrams (0.1) and (0.2) are injective.

For the rest of this introduction we will assume that k is finitely generated
over Q. We will identify A(K)∧, H1(GK , TA), and

∏
cAc(k(c))

∧ with their im-
ages in

∏
c H

1(Gk(c), TAc). For each closed point c ∈ Ccl the group Ac(k(c)) of
k(c)-rational points of Ac is finitely generated as k(c) is finitely generated over Q

(Mordell-Weil Theorem, cf. [Lang-Néron]), hence injects into its profinite comple-
tion Ac(k(c))

∧. We identify Ac(k(c)) with its image in Ac(k(c))
∧. We define the

discrete Selmer group by

Sel(A)
def
= Sel(A,C)

def
= Sel(A)

⋂∏

c

Ac(k(c)) ⊂
∏

c

H1(Gk(c), TAc).

Note that A(K) ⊂ Sel(A). We define the discrete Shafarevich-Tate group by

Sha(A)
def
= Sha(A,C)

def
= Sel(A)/A(K).

We conjecture the following (cf. Conjecture 3.8).
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Conjecture E. The equalitySel(A) = A(K) (or, equivalently,Sha(A) = 0) holds.

Concerning Conjecture E, we prove the following (cf. Proposition 2.5, Proposi-
tion 3.3 and Proposition 3.7).

Proposition F. The discrete Selmer group Sel(A) is a finitely generated Z-
module. The discrete Shafarevich-Tate group Sha(A) is a finitely generated
free Z-module.

Proposition G. Assume that there exists a prime number l such that the l-primary
part X(A)[l∞] of the torsion group X(A) is finite. Then the assertion of Conjec-
ture E holds.

Our results are most complete in the case where the abelian variety A is isotrivial.
In this case we prove the following (cf. Theorem 4.1).

Theorem H. Assume that the abelian variety A is isotrivial, i.e., AK descends

to an abelian variety over k. Then the Shafarevich-Tate group X(A) is finite. In
particular, the assertion of Conjecture E holds in this case.

Although we assumed above that char(k) = 0, we prove similar results in arbi-
trary characteristics.

Some of the results in this paper have applications in anabelian geometry. More
precisely, Conjecture E and Theorem H have applications to Grothendieck’s an-
abelian section conjecture (cf. [Säıdi1], §0, for a precise statement of this conjec-
ture). One can prove that the validity of Conjecture E above implies that the section
conjecture (for π1 of proper hyperbolic curves) over finitely generated fields reduces
to the case of number fields. Using among others Theorem H, one can also prove
that if the section conjecture holds for all proper hyperbolic curves over all number
fields then it holds for all proper hyperbolic curves over all finitely generated fields
which are defined over a number field (cf. [Säıdi2], §5).

Finally, we explain the content of each section briefly. In §1, we prove Proposi-
tions B and C. In §2 and §3, we prove Propositions A, D, F and G. In §4, we prove
Theorem H.

Notations. Next, we fix notations that will be used throughout this paper.

Given a (profinite) group G and a (continuous) G-module C, we write CG def
=

H0(G,C).

Let H be an abelian group. For an integer N > 0, we write H/N
def
= H/NH

and H[N ]
def
= {h ∈ H | Nh = 0}. We write H∧ def

= lim←−N>0 H/N , and Hprof def
=

lim←−H′⊂H, (H:H′)<∞ H/H ′ for the profinite completion of H. Thus, we have natural

homomorphismsH⊗ZẐ→ H∧ → Hprof , which are isomorphisms whenH is finitely

generated. We write Htor def
=
⋃

N>0 H[N ] for the torsion subgroup of H, and set

H/{tor}
def
= H/Htor.

For a prime number l, we write H∧,l def
= lim←−n≥0 H/ln for the l-adic completion of

H, and Hpro-l def
= lim←−H′⊂H, (H:H′):l-powerH/H ′ for the pro-l completion of H. Thus,

we have natural homomorphisms H ⊗Z Zl → H∧ ⊗
Ẑ
Zl = H∧,l → Hpro-l, which

are isomorphisms when H is finitely generated. We write Htor,l and Htor,l′ for the
l-primary part and the prime-to-l part, respectively, of the torsion abelian group

Htor, and set H/{l-tor}
def
= H/Htor,l and H/{l′-tor}

def
= H/Htor,l′ .
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Let Primes be the set of all prime numbers. For a nonempty subset Σ ⊂ Primes,
we say that N is a Σ-integer if N is divisible only by primes in Σ. We set

ẐΣ def
= lim←−N :Σ-integer>0 Z/N =

∏
l∈Σ Zl, write H∧,Σ def

= lim←−N :Σ-integer>0 H/N =
∏

l∈Σ H∧,l (thus, H∧,{l} = H∧,l) for the Σ-adic completion ofH, and write TΣH
def
=

lim←−N :Σ-integer>0 H[N ] =
∏

l∈Σ TlH (where TlH
def
= T {l}H) for the Σ-adic Tate

module of H. (Note that TΣH is always torsion-free.) We write Htor,Σ def
=⋃

N :Σ-integer>0 H[N ] = ⊕l∈ΣH
tor,l for the Σ-primary torsion subgroup of H, and

set H/{Σ-tor}
def
= H/Htor,Σ. Set Σ′ def

= Primes \ Σ.
Let B be an abelian variety over a field κ of characteristic p ≥ 0 with algebraic

closure κ and separable closure κsep ⊂ κ. We write B[N ], Btor, TΣB, TlB instead

of B(κsep)[N ], B(κsep)tor, TΣB(κsep), TlB(κsep), respectively. Write Primes†
def
=

Primes \ {p}. For a nonempty subset Σ ⊂ Primes†, recall the Kummer exact
sequence

(0.3) 0→ B(κ)∧,Σ → H1(Gκ, T
ΣB)→ TΣH1(Gκ, B)→ 0,

where Gκ
def
= Gal(κsep/κ) is the absolute Galois group of κ and H1(Gκ, B)

def
=

H1(Gκ, B(κsep)) is the first Galois cohomology group, which arises from the Kum-
mer exact sequence of Gκ-modules

0→ B[N ]→ B(κsep)
N
−→ B(κsep)→ 0,

where N denotes the map of multiplication by a Σ-integer N > 0. Note that the
above sequence (0.3) induces a natural isomorphism (B(κ)∧,Σ)tor

∼
→ H1(Gκ, T

ΣB)tor,
as TΣH1(Gκ, B) is torsion-free.

§1. A Specialisation Theorem for H1. Let S be a locally noetherian, regular,
integral scheme. Write K for the function field of S, k(t) for the residue field of

S at t ∈ S, and pt(≥ 0) for the characteristic of k(t). Write char(S)
def
= {pt |

t ∈ S} ⊂ Primes ∪ {0}. Let A → S be an abelian scheme over S. We write

A
def
= AK

def
= A×S SpecK for the generic fibre of A, and, for each t ∈ S, we write

At
def
= A ×S Spec k(t) for the fibre of A at t. Thus, A (resp. At) is an abelian

variety over K (resp. over k(t)).
Let η be a geometric point of S with values in the generic point of S. Then

η determines an algebraic closure K and a separable closure Ksep of K, Write
GK = Gal(Ksep/K) for the absolute Galois group of K, and π1(S) = π1(S, η)
for the étale fundamental group of S. Thus, we have a natural exact sequence of
profinite groups

1→ IS → GK → π1(S)→ 1

where IS is defined so that the sequence is exact.
Write S1 for the set of points of codimension 1 of S. For each t ∈ S1, the local

ring OS,t is a discrete valuation ring, and let (GK ⊃)Dt ⊃ It be a decomposition
group and an inertia group associated to t. Thus, Dt and It are only defined up to
conjugation in GK . We have a natural exact sequence

1→ It → Dt → Gk(t) → 1
5



where Gk(t)
def
= Gal(k(t)sep/k(t)). Then, by purity, the group IS is (topologically)

normally generated by the subgroups It, where t runs over all points in S1. We
have a natural exact sequence

1→ Iwt → It → Itt → 1,

where the wild inertia group Iwt is defined to be the unique Sylow-pt subgroup of
It (resp. the trivial subgroup {1} ⊂ It) for pt > 0 (resp. pt = 0), and the tame

inertia group Itt is defined by Itt
def
= It/I

w
t . Note that Itt is naturally isomorphic to

Ẑp′
t(1), where Ẑp′

t
def
= ẐPrimes\{pt}, and the “(1)” denotes a Tate twist.

Lemma 1.1. Let Σ ⊂ Primes \ char(S) be a nonempty subset. Then:
(i) The GK-module TΣA (hence, in particular,

∏
l∈Σ A[l]) has a natural structure

of π1(S)-module.
(ii) For each l ∈ Σ, write π1(S)[A, l] for the kernel of the natural map π1(S) →
Aut(A[l]) (cf. (i)), π1(S)[A, l]l for the maximal pro-l quotient of π1(S)[A, l], and
π1(S)(A, l) for the kernel of the natural surjection π1(S)[A, l] ։ π1(S)[A, l]l. Define

π1(S)[A,Σ]
def
=
⋂

l∈Σ π1(S)[A, l], and π1(S)(A,Σ)
def
=
⋂

l∈Σ π1(S)(A, l), where the in-

tersection is over all prime integers l ∈ Σ. Further, let ΠA,Σ
S

def
= π1(S)/π1(S)(A,Σ).

(Note that π1(S)(A,Σ) is a normal subgroup of π1(S) since π1(S)(A, l) is a char-
acteristic subgroup of π1(S)[A, l].) Thus, we have a natural exact sequence

1→ π1(S)[A,Σ]/π1(S)(A,Σ)→ ΠA,Σ
S → π1(S)/π1(S)[A,Σ]→ 1,

where
π1(S)/π1(S)[A,Σ] →֒

∏

l∈Σ

(π1(S)/π1(S)[A, l]) →֒
∏

l∈Σ

Aut(A[l])

and
π1(S)[A,Σ]/π1(S)(A,Σ) =

∏

l∈Σ

Im(π1(S)[A,Σ]→ π1(S)[A, l]l).

Then the π1(S)-module TΣA has a natural structure of ΠA,Σ
S -module.

(iii) The natural inflation map H1(ΠA,Σ
S , TΣA) → H1(π1(S), T

ΣA) is an isomor-
phism. The natural inflation map H1(π1(S), T

ΣA)→ H1(GK , TΣA) is an injection
in general, and an isomorphism if k(t) is finitely generated over the prime field for
each t ∈ S1.
(iv) Let N be a Σ-integer > 0. Then the natural inflation map H1(ΠA,Σ

S , A[N ])→
H1(π1(S), A[N ]) is an isomorphism and the natural inflation map H1(π1(S), A[N ])→
H1(GK , A[N ]) is an injection.

Proof. (i) For each t ∈ S1, any inertia group It associated to t acts trivially on TΣA,
as follows from the well-known criterion of good reduction for abelian varieties (cf.
[Serre-Tate], Theorem 1). Thus, IS acts trivially on TΣA, and TΣA has a natural
structure of π1(S)-module.
(ii) This follows from (i) and the fact that, for each l ∈ Σ, Ker(Aut(TlA) →

Aut(A[l])) (≃ Ker(GL2d(Zl)→ GL2d(Fl)), where d
def
= dimA) is pro-l.

(iii) First, note that the inflation maps for various H1 are always injective, and
that various H1 with coefficients in TΣA decompose into the direct product of H1

with coefficients in TlA for l ∈ Σ. Thus, it suffices to prove, for each l ∈ Σ, that
6



the inflation map H1(ΠA,l
S , TlA) → H1(π1(S), TlA) is an isomorphism in general

(where ΠA,l
S

def
= Π

A,{l}
S ), and that the inflation map H1(π1(S), TlA)→ H1(GK , TlA)

is an isomorphism if k(t) is finitely generated over the prime field for each t ∈ S1.
For the first assertion, consider the inflation-restriction exact sequence

0→ H1(ΠA,l
S , TlA)

inf
−→ H1(π1(S), TlA)

res
−−→ H1(π1(S)(A, l), TlA)Π

A,l

S .

We claim that H1(π1(S)(A, l), TlA) = 0. Indeed, this follows from the fact that
H1(π1(S)(A, l), TlA) = Hom(π1(S)(A, l), TlA), and π1(S)(A, l) = Ker(π1(S)[A, l] ։
π1(S)[A, l]l).

For the second assertion, consider the inflation-restriction exact sequence

0→ H1(π1(S), TlA)
inf
−→ H1(GK , TlA)

res
−−→ H1(IS, TlA)π1(S).

We claim that H1(IS, TlA)π1(S) = 0. Indeed, this follows from the fact that
H1(IS, TlA) = Hom(IS, TlA) and that, for each t ∈ S1, one has Hom(It, TlA)Gk(t) =

Hom(It,lt , TlA)Gk(t) = 0, where It,lt is the maximal pro-l quotient of Itt . This last

statement follows from the fact that the action of Gk(t) on It,lt
∼
→ Zl(1) and TlA

has different weights. More precisely, TlAt ≃ TlA as Gk(t)-modules, and the Gk(t)-

representation It,lt ⊗Ql (resp. TlAt⊗Ql) is pure of weight −2 (resp. pure of weight

−1) since k(t) is finitey generated (cf. [Jannsen], 2). Thus, Hom(It,lt , TlAt)
Gk(t) = 0

follows (cf. loc. cit., Fact 2).
(iv) As the inflation maps for various H1 are always injective and various H1 with
coefficients in A[N ] decompose into the direct product of H1 with coefficients in
A[lr] for l ∈ Σ and some r ≥ 0, it suffices to prove, for each l ∈ Σ, that the inflation

map H1(ΠA,l
S , A[lr]) → H1(π1(S), A[lr]) is an isomorphism. For this, consider the

inflation-restriction exact sequence

0→ H1(ΠA,l
S , A[lr])

inf
−→ H1(π1(S), A[lr])

res
−−→ H1(π1(S)(A, l), A[lr])Π

A,l

S .

We claim that H1(π1(S)(A, l), A[lr]) = 0. Indeed, this follows from the fact that
H1(π1(S)(A, l), A[lr]) = Hom(π1(S)(A, l), A[lr]), and π1(S)(A, l) = Ker(π1(S)[A, l] ։
π1(S)[A, l]l). �

Next, let k be a field of characteristic p ≥ 0, and C → Spec k a smooth, separated
and geometrically connected (not necessarily proper) algebraic curve over k. Write
K = k(C) for the function field of C, Ccl for the set of closed points of C (which
coincides with the set C1 of codimension 1 of C), and k(c) for the residue field

of C at c ∈ Ccl. Let A → C be an abelian scheme over C. We write A
def
=

AK
def
= A ×C SpecK for the generic fibre of A, and, for each c ∈ Ccl, we write

Ac
def
= A ×C Spec k(c) for the fibre of A at c. Thus, A (resp. Ac) is an abelian

variety over K (resp. over k(c)).
Let η be a geometric point of C with values in the generic point of C. Then η de-

termines algebraic closures K and k and separable closures Ksep and ksep of K and

k, respectively, and a geometric point η of Ck

def
= C ×k k. Write Gk = Gal(ksep/k),

GK = Gal(Ksep/K) and GKksep = Gal(Ksep/Kksep) for the absolute Galois groups
of k, K and Kksep, respectively. Write π1(C) = π1(C, η) and π1(Ck) = π1(Ck, η)

7



for the étale fundamental groups of C and Ck, respectively. Thus, we have natural
exact sequences of profinite groups

(1.1) 1→ π1(Ck)→ π1(C)→ Gk → 1,

(1.2) 1→ GKksep → GK → Gk → 1,

and

(1.3) 1→ IC → GK → π1(C)→ 1,

where IC is defined so that sequence (1.3) is exact. We have a commutative diagram
of exact sequences

1 1
y

y

IC ICy
y

1 −−−−→ GKksep −−−−→ GK −−−−→ Gk −−−−→ 1
y

y ‖

1 −−−−→ π1(Ck) −−−−→ π1(C) −−−−→ Gk −−−−→ 1
y

y

1 1

For each c ∈ Ccl, write Kc (resp. ÔC,c) for the completion of K (resp. OC,c)

at c, and Ac
def
= A ×K Kc. Thus, Kc (resp. ÔC,c) is a complete discrete valuation

field (resp. ring) of equal characteristic p ≥ 0 with residue field k(c), and Ac is an
abelian variety over Kc. Let (GK ⊃) Dc ⊃ Ic be a decomposition group and an
inertia group associated to c. Thus, Dc and Ic are only defined up to conjugation
in GK . We have a natural exact sequence

(1.4) 1→ Ic → Dc → Gk(c) → 1,

where Gk(c)
def
= Gal(k(c)sep/k(c)) is identified with the image of Dc in Gk (cf.

sequence (1.2)). Then the group IC (cf. sequence (1.3)) is (topologically) normally
generated by the subgroups Ic, where c runs over all points in Ccl. We have a
natural exact sequence

1→ Iwc → Ic → Itc → 1,

where the wild inertia group Iwc is defined to be the unique Sylow-p subgroup of Ic
(resp. the trivial subgroup {1} ⊂ Ic) for p > 0 (resp. p = 0), and the tame inertia

group Itc is defined by Itc
def
= Ic/I

w
c . Note that Itc is naturally isomorphic to Ẑ†(1),

where Primes†
def
= Primes\{p}, Ẑ† def

= ẐPrimes† , and the “(1)” denotes a Tate twist.
8



For each c ∈ Ccl, we have a natural commutative diagram (up to conjugation):

GKc

∼
→ Dc ⊂ GK

↓ ↓

Gk(c)
sc
→֒ π1(C)

where the vertical arrows are natural surjections and the horizontal arrows are
natural injections. (The map sc : Gk(c) = π1(Spec k(c)) → π1(C) is associated to
the natural morphism Spec k(c)→ C with image c by functoriality of π1.) Further,
this diagram induces natural commutative diagrams

H1(π1(C), A[N ]) →֒ H1(GK , A[N ])

↓ ↓

H1(Gk(c),Ac[N ]) →֒ H1(GKc
, Ac[N ])

for each Primes†-integer N > 0, and

H1(π1(C), TΣA) →֒ H1(GK , TΣA)

↓ ↓

H1(Gk(c), T
ΣAc) →֒ H1(GKc

, TΣAc)

for each nonempty subset Σ ⊂ Primes†, where the horizontal arrows are inflation
maps and the vertical arrows are natural restriction maps.

One of our main results in this section is the following.

Proposition 1.2. Let Σ ⊂ Primes† be a finite subset. Assume that k is finitely
generated over the prime field and infinite. Then there exists a closed point

c
def
= c(Σ) ∈ Ccl, depending on (A and) Σ, such that the natural restriction map

H1(π1(C), TΣA)→ H1(Gk(c), T
ΣAc) is injective.

Proof. For simplicity, write Q for the prime field of k and Z for the image of
Z[ 1

l
; l ∈ Σ] in Q. Thus, we have Q = Q (resp. Q = Fp) and Z = Z[ 1

l
; l ∈ Σ]

(resp. Z = Fp) when p = 0 (resp. p > 0). Then, as k is finitely generated over
the perfect field Q, the system A → C → Spec k → SpecQ admits a smooth model

Ã → C → V → U . More precisely, U = SpecZ; V is an integral scheme which is
smooth over U and whose function field is isomorphic to (and is identified with)
k; C is a smooth scheme over V whose generic fibre C ×V k is k-isomorphic to

(and is identified with) C; and Ã → C is an abelian scheme such that Ã ×C C is
isomorphic to (and is identified with) A → C. Let π1(C) be the fundamental group
of C, with respect to the base point which is induced by the base point η in the
beginning of §1. Thus, there exists a natural continuous surjective homomorphism

π1(C) ։ π1(C) ։ ΠA,Σ
C . By Lemma 1.1 (ii), TΣA has a natural structure of

ΠA,Σ
C -module, and, by Lemma 1.1 (iii), the inflation maps

H1(ΠA,Σ
C , TΣA)→ H1(π1(C), T

ΣA)→ H1(π1(C), TΣA)→ H1(GK , TΣA)
9



are all isomorphisms. Recall that we have a natural exact sequence

1→ π1(C)[A,Σ]/π1(C)(A,Σ)→ ΠA,Σ
C → π1(C)/π1(C)[A,Σ]→ 1,

where

π1(C)/π1(C)[A,Σ] →֒
∏

l∈Σ

(π1(C)/π1(C)[A, l]) →֒
∏

l∈Σ

Aut(A[l])

and

π1(C)[A,Σ]/π1(C)(A,Σ) =
∏

l∈Σ

Im(π1(C)[A,Σ]→ π1(C)[A, l]l).

In particular, as Σ is finite, π1(C)/π1(C)[A,Σ] is finite.

Claim: The Frattini subgroup of ΠA,Σ
C is open.

Indeed, as π1(C)/π1(C)[A,Σ] is finite and π1(C)[A,Σ]/π1(C)(A,Σ) is a direct
product of pro-l groups for l ∈ Σ, it suffices to prove that π1(C)[A,Σ]l is a finitely
generated pro-l group for each l ∈ Σ (cf. [Serre2], 10.6, Proposition), or, equiva-
lently, that π1(C)[A,Σ]ab/l is finite. Let C′ → C be the finite étale cover correspond-
ing to the open subgroup π1(C)[A,Σ] ⊂ π1(C), so that π1(C)[A,Σ] is identified with
π1(C

′). Now, the desired finiteness follows from [Katz-Lang]. More precisely, let Q′

be the algebraic closure of Q in k, which is finite over Q, and Z ′ the integral closure
of Z in Q′. Then the morphism C′ → SpecZ factors as C′ → SpecZ ′ → SpecZ,
and the morphism C′×Z Q→ SpecQ factors as C′×Z Q→ SpecQ′ → SpecQ. The
morphism C′ ×Z Q→ SpecQ′ is smooth and geometrically connected, hence there
exist an open subscheme C′1 ⊂ C

′ (containing C′ ×Q Q′) and an open subscheme
W ⊂ SpecZ ′, such that C′ → SpecZ ′ induces a smooth, surjective morphism
C′1 → W of finite type with geometrically connected generic fibre. Now, by [Katz-
Lang], Lemma 2 (2), we have an exact sequence

0→ Ker(C′1/W )→ π1(C
′
1)

ab → π1(W )ab → 0,

where Ker(C′1/W )
def
= Ker(π1(C

′
1)

ab → π1(W )ab), hence an exact sequence

Ker(C′1/W )/l→ π1(C
′
1)

ab/l → π1(W )ab/l→ 0.

By [Katz-Lang], Theorem 1 (together with the fact that l ∈ Primes†), Ker(C′1/W )/l
is finite, and π1(W )ab/l is finite by global class field theory (cf. [Katz-Lang], Proof

of Theorem 4) (resp. as π1(W ) ≃ Ẑ) when p = 0 (resp. p > 0). Thus, π1(C
′
1)

ab/l is
finite, hence so is π1(C

′)ab/l (և π1(C
′
1)

ab/l). This finishes the proof of the claim.

By this claim and Hilbert’s irreducibility theorem (cf. [Serre2], 10.6), there ex-

ists c ∈ Ccl, such that the composite map Dc →֒ π1(C) ։ ΠA,Σ
C , where Dc ⊂

π1(C) is a decomposition group at c (thus, Dc is only defined up to conjuga-

tion and Dc
∼
→ Gk(c)), is surjective. Hence, the natural map H1(ΠA,S

C , TΣA)
∼
→

H1(π1(C), TΣA)→ H1(Dc, T
ΣA) (= H1(Gk(c), T

ΣAc)) is injective, as desired. �
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Remark 1.3. A similar statement as in Proposition 1.2 holds when TΣA is re-

placed by any finitely generated torsion-free ẐΣ-module M on which π1(C) acts
such that the action of π1(C) factors through π1(C) ։ π1(C) for some model C of
C and that the weights of the Galois representation associated to M are distinct
from the weight of the cyclotomic character.

More generally, we have the following result which generalises Proposition 1.2 to
a wider class of base fields.

Proposition 1.4. Let Σ ⊂ Primes† be a finite subset. Assume that k is Hilber-

tian (cf [Serre2], 9.5). Then there exists a finite subset S
def
= S(Σ) ⊂ Ccl of

cardinality ≤ 2, depending on (A and) Σ, such that the natural restriction map

H1(π1(C), TΣA)→
∏

c∈S

H1(Gk(c), T
ΣAc)

is injective. Moreover, in the case where the k-trace TrKk/k(AKk) of AKk
def
=

A×K Kk is trivial, there exists such a set S with ♯(S) = 1.

First, we prove the following.

Proposition 1.5. Let Σ ⊂ Primes† be a finite subset. Assume that k is Hilber-

tian. Let M ⊂ H1(π1(C), TΣA) be a finitely generated ẐΣ-submodule. Then
there exists a closed point c ∈ Ccl, depending on Σ and M , such that the natural
restriction map M → H1(Gk(c), T

ΣAc) is injective.

Proof. Let L be the kernel of the natural map π1(C)→ Aut(TΣA) =
∏

l∈Σ Aut(TlA).

By definition, the action of π1(C) on TΣA factors through π1(C) ։ π1(C)/L, hence
we have the following exact sequence:

0→ H1(π1(C)/L, TΣA)→ H1(π1(C), TΣA)→ H0(π1(C)/L,H1(L, TΣA))
‖

Homπ1(C)(L, T
ΣA)

∩
Hom(L, TΣA).

Restricting to M , we get a homomorphism M → Hom(L, TΣA) or, equivalently, a
homomorphism L→ Hom(M,TΣA). Let LM be the kernel of L→ Hom(M,TΣA).

Claim: (i) LM ⊂ π1(C) is a closed normal subgroup.
(ii) The Frattini subgroup of π1(C)/LM is open.
(iii) M ⊂ H1(π1(C), TΣA) is contained in the image of the inflation map

H1(π1(C)/LM , TΣA) →֒ H1(π1(C), TΣA).

Indeed, as Hom(L, TΣA) is the set of continuous homomorphisms from L to
TΣA, the subgroup LM is closed. As the image of M → Hom(L, TΣA) is contained
in Homπ1(C)(L, T

ΣA), the subgroup LM is normal (not only in L but also) in π1(C).
Thus, (i) follows. Next, we have the following exact sequence of profinite groups:

1→ L/LM → π1(C)/LM → π1(C)/L→ 1.
11



As
π1(C)/L →֒ Aut(TΣA) =

∏

l∈Σ

Aut(TlA) ≃
∏

l∈Σ

GL2d(Zl)

(where d
def
= dim(A)) and

L/LM →֒ Hom(M,TΣA) =
∏

l∈Σ

Hom(M l, TlA) ≃
∏

l∈Σ

Z
2drl
l

(where M l def
= M ⊗

ẐΣ Zl and rl
def
= dimQl

(M l ⊗Zl
Ql)), (ii) follows from [Serre2],

10.6, Proposition. Finally, we have the inflation-restriction exact sequence

0→ H1(π1(C)/LM , TΣA)→ H1(π1(C), TΣA)→ H1(LM , TΣA)

arising from the exact sequence 1→ LM → π1(C)→ π1(C)/LM → 1. By the very
definition of LM , the image of M ⊂ H1(π1(C), TΣA) in H1(LM , TΣA) is trivial.
Thus, the assertion of (iii) follows. This finishes the proof of the claim.

As in the proof of Proposition 1.2, (ii) of the above claim and the Hilbertian prop-
erty of k imply (cf. [Serre2], 10.6) that there exists c ∈ Ccl, such that the composite

map Dc (
∼
→ Gk(c)) →֒ π1(C) ։ π1(C)/LM is surjective. Hence, the composite map

H1(π1(C)/LM , TΣA) →֒ H1(π1(C), TΣA) → H1(Dc, T
ΣA) (= H1(Gk(c), T

ΣAc))
is injective. This, together with (iii) of the above claim, finishes the proof of Propo-
sition 1.5. �

Proof of Proposition 1.4. We have the inflation-restriction exact sequence

0→ H1(Gk, T )→ H1(π1(C), TΣA)→ H1(π1(Ck), T
ΣA)

arising from the exact sequence 1 → π1(Ck) → π1(C) → Gk → 1, where T
def
=

(TΣA)π1(Ck
).

First, in the special case that TrKk/k(AKk) = 0, A(Kk) is finitely generated

by [Lang-Néron], hence, in particular, A(Kk)tor is finite and T = (TΣA)π1(Ck
) =

TΣ(A(Kk)) = 0. Thus, the restriction map H1(π1(C), TΣA) → H1(π1(Ck), T
ΣA)

is injective. The ẐΣ-module H1(π1(Ck), T
ΣA) ≃ H1(ΠA,Σ

C
k
, TΣA) (cf. Lemma 1.1

(iii)) is finitely generated by Lemma 1.6 (ii) below, since ΠA,Σ
C

k

is finitely generated

as a profinite group (cf. [Grothendieck], Exposé XIII, Corollaire 2.12. Note that

Σ ⊂ Primes†). As ẐΣ is noetherian, H1(π1(C), TΣA) →֒ H1(π1(Ck), T
ΣA) is also

finitely generated. Thus, the assertion follows from Proposition 1.5 in this case.

Lemma 1.6. (i) Let ∆ be a finitely generated group. Let M be a finitely generated
Z-module on which ∆ acts. Then H1(∆,M) is a finitely generated Z-module.

If, moreover, either ∆ or M is finite, then H1(∆,M) is finite.
(ii) Let Σ ⊂ Primes be any subset. Let ∆ be a finitely generated profinite group.

Let M be a finitely generated ẐΣ-module on which ∆ acts continuously. Then

H1(∆,M)
def
= lim←−

N :Σ-integer>0

H1(∆,M/N)

is a finitely generated ẐΣ-module.
12



If, moreover, either ∆ or M is finite, then H1(∆,M) is finite.

Proof. (i) Take a surjection (Z)⊕s
։ M of Z-modules and a surjection Fr ։ ∆

of groups, where Fr = 〈x1, . . . , xr〉 is a free group of finite rank r. Then we claim
that H1(∆,M) is generated by (at most) rs elements as a Z-module. Indeed, the
inflation map H1(∆,M) → H1(Fr,M) is injective. By considering the standard
resolution of the trivial Fr-module, we obtain H1(Fr,M) = M⊕r/(x1− 1, . . . , xr−
1)M , which is generated by (at most) rs elements as a Z-module. As Z is a PID,
H1(∆,M) →֒ H1(Fr,M) is also generated by (at most) rs elements as a Z-module,
as desired.

The second assertion follows from the first, together with the standard fact that
H1(∆,M) is killed by ♯(∆) (resp. ♯(M)) when ♯(∆) <∞ (resp. ♯(M) <∞).

(ii) Take a surjection (ẐΣ)⊕s
։ M of ẐΣ-modules and a surjection F̂r ։ ∆ of profi-

nite groups, where F̂r = 〈x1, . . . , xr〉 is a free profinite group of finite rank r. Then

we claim that H1(∆,M) is generated by (at most) rs elements as a ẐΣ-module.
Indeed, write M =

∏
l∈Σ Ml for the canonical decomposition corresponding to the

decomposition ẐΣ =
∏

l∈Σ Zl. Then we have H1(∆,M) =
∏

l∈Σ H1(∆,Ml), hence

it suffices to prove that H1(∆,Ml) is generated by (at most) rs elements as a

Zl-module. Now, the inflation map H1(∆,Ml)→ H1(F̂r,Ml) is injective. By con-

sidering the standard resolution of the trivial F̂r-module, we obtain H1(F̂r,Ml) =
M⊕r

l /(x1 − 1, . . . , xr − 1)Ml, which is generated by (at most) rs elements as a Zl-

module. As Zl is a PID, H1(∆,Ml) →֒ H1(F̂r,Ml) is also generated by (at most)
rs elements as a Zl-module, as desired.

The second assertion follows from the first, together with the standard fact that
H1(∆,M) is killed by ♯(∆) (resp. ♯(M)) when ♯(∆) <∞ (resp. ♯(M) <∞). �

We shall return to the proof of Proposition 1.4. In general, fix any c0 ∈ Ccl.
By Proposition 1.5, it suffices to prove that the kernel N of H1(π1(C), TΣA) →

H1(Gk(c0), T
ΣAc0) is finitely generated as a ẐΣ-module. As we have already seen,

the ẐΣ-module H1(π1(Ck), T
ΣA) is finitely generated, hence, as ẐΣ is noetherian,

the image of N in H1(π1(Ck), T
ΣA) is also finitely generated. Thus, it suffices to

prove that the intersection of N and (the image of) H1(Gk, T ) in H1(π1(C), TΣA)
is finitely generated. Here, we have

N ∩H1(Gk, T ) = Ker(H1(Gk, T )→ H1(Gk(c0), T
ΣAc0)).

Since the map H1(Gk, T )→ H1(Gk(c0), T
ΣAc0) factors as

H1(Gk, T )→ H1(Gk(c0), T )→ H1(Gk(c0), T
ΣAc0),

it suffices to prove that both N1
def
= Ker(H1(Gk, T ) → H1(Gk(c0), T )) and N2

def
=

Ker(H1(Gk(c0), T )→ H1(Gk(c0), T
ΣAc0)) are finitely generated (as ẐΣ is noether-

ian).
To prove that N1 is finitely generated, let k1/k be the normal closure of the finite

extension k(c0)/k. Then

N1 ⊂ Ker(H1(Gk, T )→ H1(Gk1
, T )) ≃ H1(Aut(k1/k), T

Gk1 ).

Thus, N1 is finitely generated (in fact, finite) by Lemma 1.6 (ii).
13



To prove that N2 is finitely generated, consider the long exact sequence associ-
ated to the exact sequence 0 → T → TΣAc0 → (TΣAc0)/T → 0 of (continuous)
Gk(c0)-modules. Then we see that there exists a natural surjection

((TΣAc0)/T )
Gk(c0) ։ N2,

from which N2 is finitely generated. This finishes the proof of Proposition 1.4. �

Question 1.7. Do the assertions of Proposition 1.2 and Proposition 1.4 also hold
when ♯(Σ) =∞ (especially, when Σ = Primes†)?

For the cohomology with torsion coefficients, one has the following.

Proposition 1.8. Assume that k is Hilbertian. Then, for each Primes†-integer

N > 0, there exists S
def
= S(N) ⊂ Ccl of cardinality ≤ 2, depending on (A and) N ,

such that the natural restriction map

H1(π1(C), A[N ])→
∏

c∈S

H1(Gk(c),Ac[N ])

is injective.

First, we prove the following.

Proposition 1.9. Assume that k is Hilbertian and let N be a Primes†-integer
> 0. Let M ⊂ H1(π1(C), A[N ]) be a finite Z/N -submodule. Then there exists
a closed point c ∈ Ccl, depending on N and M , such that the natural restriction
map M → H1(Gk(c),Ac[N ]) is injective and that the natural restriction map

H0(π1(C), A[N ])→ H0(Gk(c),Ac[N ]) is an isomorphism.

Proof. The proof is similar to (and even simpler than) that of Proposition 1.5.
As A[N ] is a finite discrete π1(C)-module and M ⊂ H1(π1(C), A[N ]) is finite, it
follows from the definition of the profinite group cohomology that there exists an
open normal subgroup L0,M ⊂ π1(C) such that L0,M acts trivially on A[N ] and
that M ⊂ H1(π1(C), A[N ]) is contained in the image of the inflation map

H1(π1(C)/L0,M , A[N ]) →֒ H1(π1(C), A[N ]).

Now, the Hilbertian property of k implies that there exists c ∈ Ccl, such that the
composite map Dc(

∼
→ Gk(c)) →֒ π1(C) ։ π1(C)/L0,M is surjective. Hence, the

composite map H1(π1(C)/L0,M , A[N ]) →֒ H1(π1(C), A[N ]) → H1(Dc, A[N ]) (=

H1(Gk(c),Ac[N ])) (resp. H0(π1(C)/L0,M , A[N ])
∼
→ H0(π1(C), A[N ])→ H0(Dc, A[N ])

(= H0(Gk(c),Ac[N ]))) is injective (resp. an isomorphism). This finishes the proof
of Proposition 1.9. �

Proof of Proposition 1.8. The proof is similar to (and even simpler than) that of
Proposition 1.4. We have the inflation-restriction exact sequence

0→ H1(Gk, T0)→ H1(π1(C), A[N ])→ H1(π1(Ck), A[N ])

arising from the exact sequence 1 → π1(Ck) → π1(C) → Gk → 1, where T0
def
=

(A[N ])π1(Ck
). Fix any c0 ∈ Ccl. By Proposition 1.9, it suffices to prove that the

14



kernel N0 of H1(π1(C), A[N ]) → H1(Gk(c0),Ac0[N ]) is finite. By Lemma 1.6 (ii),

together with Lemma 1.1 (iv), H1(π1(Ck), A[N ]) is finite, hence the image of N0

in H1(π1(Ck), A[N ]) is also finite. Thus, it suffices to prove that the intersection
of N0 and (the image of) H1(Gk, T0) in H1(π1(C), A[N ]) is finite. Here, we have

N0 ∩H1(Gk, T0) = Ker(H1(Gk, T0)→ H1(Gk(c0),Ac0[N ])).

Since the map H1(Gk, T0)→ H1(Gk(c0),Ac0[N ]) factors as

H1(Gk, T0)→ H1(Gk(c0), T0)→ H1(Gk(c0),Ac0 [N ]),

it suffices to prove that both N0,1
def
= Ker(H1(Gk, T0) → H1(Gk(c0), T0)) and

N0,2
def
= Ker(H1(Gk(c0), T0)→ H1(Gk(c0),Ac0[N ])) are finite.

To prove that N0,1 is finite, let k1/k be the normal closure of the finite extension
k(c0)/k. Then

N0,1 ⊂ Ker(H1(Gk, T0)→ H1(Gk1
, T0)) ≃ H1(Aut(k1/k), T

Gk1
0 ).

Thus, N0,1 is finite by Lemma 1.6 (ii).
To prove that N0,2 is finite, consider the long exact sequence associated to the

exact sequence 0 → T0 → Ac0 [N ] → Ac0 [N ]/T0 → 0 of (discrete) Gk(c0)-modules.
Then we see that there exists a natural surjection

(Ac0 [N ]/T0)
Gk(c0) ։ N0,2,

from which N0,2 is finite. �

The following form of Néron’s specialisation theorem can be obtained as an
application of the above injectivity results.

Proposition 1.10. Let N be a Primes†-integer > 0.

(i) Assume that k is Hilbertian. Then there exists S
def
= S(N) ⊂ Ccl of cardinality

≤ 2, depending on (A and) N , such that the natural specialisation map A(K)/N →∏
c∈S Ac(k(c))/N is injective.

(ii) Assume that k is finitely generated over the prime field and infinite. Then
there exists a closed point c = c(N) ∈ Ccl, depending on (A and) N , such that the
natural specialisation map A(K)/N → Ac(k(c))/N is injective, that the natural
specialisation map A(K)[N ]→ Ac(k(c))[N ] is an isomorphism, and that the nat-
ural specialisation map A(K) → Ac(k(c)) is injective and its cokernel admits no
nontrivial N -torsion.

Proof. For each c ∈ Ccl, we have a natural commutative diagram

0 −−−−→ A(C)/N −−−−→ H1(π1(C), A[N ])
y

y

0 −−−−→ Ac(k(c))/N −−−−→ H1(Gk(c),Ac[N ])

where the horizontal sequences arise from Kummer exact sequences over (the étale
site of) C and over k(c), and the vertical maps are natural specialisation/restriction

maps. Note that A(C)
∼
→ A(K). Thus, (i) follows directly from Proposition 1.8.
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Next, if the characteristic p of k is> 0 (resp. 0), we may replace C by a nonempty
open subset on which the p-rank of fibres of A → C is constant (resp. by C itself).
Then, for any c ∈ Ccl, the specialisation map A(K)tor → Ac(k(c))

tor is injective.
Now, assume that k is finitely generated over the prime field, then K is also

finitely generated over the prime field, hence A(K) is a finitely generated abelian
group (cf. [Lang-Néron]). Applying Proposition 1.9 to the finite Z/N -submodule

M = A(K)/N
∼
← A(C)/N →֒ H1(GK , A[N ]), we see that there exists c ∈ Ccl

such that A(K)/N → Ac(k(c))/N is injective and that A(K)[N ] → Ac(k(c))[N ]
is an isomorphism. It follows from these facts, together with [Serre2], 11.1, Cri-
terion, that A(K) → Ac(k(c)) is injective. (Strictly speaking, this argument is
applicable only when N ≥ 2. However, the assertion of (ii) for N = 1 is included
in that for (any) N > 1.) Further, as A(K)/N → Ac(k(c))/N is injective and
A(K)[N ] → Ac(k(c))[N ] is an isomorphism, the cokernel of A(K) →֒ A(k(c)) ad-
mits no nontrivial N -torsion. (Use the Snake Lemma.) This finishes the proof of
Proposition 1.10. �

§2. Selmer Groups. We follow the notations in §1. Moreover, let Σ ⊂ Primes†

be any nonempty subset.
We have a natural commutative diagram

(2.1)
0 −−−−→ A(K)∧,Σ −−−−→ H1(GK , TΣA) −−−−→ TΣH1(GK , A) −−−−→ 0

y
y

y

0 −−−−→
∏

c Ac(Kc)
∧,Σ −−−−→

∏
c H

1(GKc
, TΣAc) −−−−→

∏
c T

ΣH1(GKc
, Ac) −−−−→ 0

where the horizontal sequences are Kummer exact sequences over K and Kc, the
vertical maps are natural restriction maps, and the product is taken over all closed
points c ∈ Ccl. We have another natural commutative diagram

(2.2)
0 −−−−→ A(C)∧,Σ −−−−→ H1(π1(C), TΣA) −−−−→ TΣH1

ét(C,A) −−−−→ 0
y

y
y

0 −−−−→
∏

cAc(k(c))
∧,Σ −−−−→

∏
c H

1(Gk(c), T
ΣAc) −−−−→

∏
c T

ΣH1(Gk(c),Ac) −−−−→ 0.

where the horizontal sequences are Kummer exact sequences over (the étale site of)
C and over k(c), the vertical maps are natural restriction maps, and the product is
taken over all closed points c ∈ Ccl.

Proposition 2.1. (i) There exists a natural injective map from diagram (2.2)
to diagram (2.1). Further, the maps on the upper left and lower left terms are
isomorphisms.
(ii) Assume that k is finitely generated over the prime field. Then the map from
diagram (2.2) to diagram (2.1) in (i) is an isomorphism.

Proof. (i) For the upper rows of diagrams (2.1) and (2.2), we have a natural com-
mutative diagram

0 → A(C)∧,Σ → H1(π1(C), TΣA) → TΣH1
ét(C,A) → 0

↓ ↓ ↓
0 → A(K)∧,Σ → H1(GK , TΣA) → TΣH1(GK , A) → 0
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obtained by taking the pullback of étale cohomology groups via the natural mor-
phism Spec(K) → C. Here the left vertical map coincides with the map induced
by the natural map A(C)→ A(K), which is an isomorphism by (a variant of) the
valuative criterion for properness. The middle vertical map is injective by Lemma
1.1 (iii). Thus, the right vertical map is also injective.

For the lower rows of diagrams (2.1) and (2.2), we have a natural commutative
diagram for each c ∈ Ccl

(2.3)
0 → Ac(k(c))

∧,Σ → H1(Gk(c), T
ΣAc) → TΣH1(Gk(c),Ac) → 0

↑ ↑ ↑
0 → ARc

(Rc)
∧,Σ → H1(π1(Rc), T

ΣAc) → TΣH1
ét(Rc,ARc

) → 0
↓ ↓ ↓

0 → Ac(Kc)
∧,Σ → H1(GKc

, TΣAc) → TΣH1(GKc
, Ac) → 0

where Rc
def
= ÔC,c (thus, Kc is the field of fractions of Rc) and ARc

def
= A ×C

Rc. Here, the upper vertical maps are obtained by taking the pullback of étale
cohomology groups via the natural morphisms Spec(k(c)) → Spec(Rc) and the
modulo c reduction on ARc

, and the lower vertical maps are obtained by taking
the pullback of étale cohomology groups via the natural morphism Spec(Kc) →
Spec(Rc). The upper left vertical map is an isomorphism, since the reduction
map ARc

(Rc) → Ac(k(c)) is surjective with kernel being N -divisible for every

Primes†-integer N > 0. The upper middle vertical map is an isomorphism, as
Gk(c)

∼
→ π1(Rc) and TΣAc

∼
→ TΣAc. Thus, the upper right vertical map is also

an isomorphism. The lower left vertical map coincides with the map induced by
the natural map ARc

(Rc) → Ac(Kc), which is an isomorphism by the valuative
criterion for properness. The middle vertical map is injective by Lemma 1.1 (iii).
Thus, the lower right vertical map is also injective.

Finally, it follows from various functoriality properties that the above maps form
a map from diagram (2.2) to diagram (2.1) with the desired properties.
(ii) By Lemma 1.1 (iii), the maps H1(π1(C), TΣA)→ H1(GK , TΣA) and

H1(π1(Rc), T
ΣAc)(

∼
→ H1(Gk(c), T

ΣAc))→ H1(GKc
, TΣAc)

for c ∈ Ccl are isomorphisms. The assertion follows from this, together with (i). �

Proposition 2.2. Assume that k is Hilbertian. Then the middle and left vertical
maps in diagrams (2.1) and (2.2) are injective. (For the kernels of the right
vertical maps, see §3.)

Proof. The middle vertical map in diagram (2.2), say rΣ, is identified with the
product of r{l} (l ∈ Σ). Thus, the injectivity of rΣ follows immediately from
Proposition 1.4.

Next, as in the proof of Lemma 1.1, we have a natural commutative diagram

0 → H1(π1(C), TΣA) → H1(GK , TΣA) → H1(IC , T
ΣA)

↓ ↓ ↓
0 →

∏
c H

1(Gk(c), T
ΣAc) →

∏
c H

1(GKc
, TΣAc) →

∏
c H

1(Ic, T
ΣAc)

where the horizontal sequences are inflation-restriction exact sequences, the left
and the middle vertical maps are the middle vertical maps in diagrams (2.2) and

17



(2.1), respectively, and the right vertical map is a natural restriction map. As shown
above, the left vertical map is injective. The right vertical map is also injective, since
H1(IC , T

ΣA) = Hom(IC , T
ΣA), H1(Ic, T

ΣAc) = Hom(Ic, T
ΣAc), T

ΣA
∼
→ TΣAc,

and IC is (topologically) normally generated by Ic (c ∈ Ccl). Thus, the middle
vertical map (that is, the middle vertical map in diagram (2.1)) is injective.

Finally, the left vertical maps in diagrams (2.1) and (2.2) are injective, as the
middle vertical maps therein are injective. �

For the rest of this paper, we will assume that k is finitely generated over
the prime field and infinite. (Thus, in particular, k is Hilbertian.) We will identify
A(K)∧,Σ,H1(π1(C), TΣA), and

∏
cAc(k(c))

∧,Σ with their images in
∏

c H
1(Gk(c), T

ΣAc).

Definition 2.3. (i) For each Primes†-integer N > 0, we define the N-Selmer
group

SelN (A)
def
= SelN (A,C)

def
= Ker(H1(GK , A[N ])→

∏

c

H1(GKc
, Ac)).

(ii) We define the Σ-adic Selmer group

SelΣ(A)
def
= SelΣ(A,C)

def
= Ker(H1(GK , TΣA)→

∏

c

TΣH1(GKc
, Ac))

= Ker(H1(π1(C), TΣA)→
∏

c

TΣH1(Gk(c),Ac)),

so that SelΣ(A) = lim←−N :Σ-integer>0 SelN (A).

We have natural injective maps A(K)/{Σ′-tor} →֒ A(K)∧,Σ andAc(k(c))/{Σ
′-tor} →֒

Ac(k(c))
∧,Σ (c ∈ Ccl), as A(K) and Ac(k(c)) are finitely generated Z-modules

(cf. [Lang-Néron]). We will identify
∏

c(Ac(k(c))/{Σ
′-tor}) with its image in∏

cAc(k(c))
∧,Σ.

Definition 2.4. We define the Σ-discrete Selmer group

SelΣ(A)
def
= SelΣ(A,C)

def
= H1(π1(C), TΣA)

⋂∏

c

(Ac(k(c))/{Σ
′-tor}) ⊂

∏

c

H1(Gk(c), T
ΣA).

Note that SelΣ(A) ⊂ SelΣ(A) by definition. One of our main results in this
section is the following.

Proposition 2.5. The Σ-discrete Selmer group SelΣ(A) is a finitely generated
Z-module.

First, we prove the following.

Lemma 2.6. The following holds

H1(π1(C), TΣA)
⋂∏

c

(H1(Gk(c), T
ΣA)tor)

= SelΣ(A)
⋂∏

c

(Ac(k(c))
tor/{Σ′-tor})

= SelΣ(A)tor = A(K)tor/{Σ′-tor}.
18



Proof. For each of the three desired equalities, the containment relation ⊃ clearly
holds. Thus, it suffices to prove that

H1(π1(C), TΣA)
⋂∏

c

(H1(Gk(c), T
ΣA)tor) ⊂ A(K)tor/{Σ′-tor}.

So, take any element α = (αl)l∈Σ of H1(π1(C), TΣA)
⋂∏

c(H
1(Gk(c), T

ΣA)tor),

where we write αl ∈ H1(π1(C), TlA) for the l-component of the cohomology class
α. For each prime l ∈ Σ, there exists, by Proposition 1.2, a point c ∈ Ccl (depending
on l) such that the natural restriction map H1(π1(C), TlA) → H1(Gk(c), TlAc) is

injective. As the injective image of αl ∈ H1(π1(C), TlA) in H1(Gk(c), TlAc) lies in

H1(Gk(c), TlAc)
tor, we have

αl ∈ H1(π1(C), TlA)tor = (A(K)∧,l)tor = A(K)tor/{l′-tor} = A(K)tor,l.

Here, the first equality follows from the fact that TlH
1
ét(C,A) is torsion-free, the

second equality follows from the fact that A(K) is a finitely generated Z-module,
and the third equality follows as A(K)tor is a torsion abelian group. In particu-
lar, αl = 0 for all but finitely many l ∈ Σ, as A(K)tor is a finite abelian group.
Now, we conclude that α = (αl)l∈Σ ∈ (A(K)/{Σ′-tor})tor = A(K)tor/{Σ′-tor}, as
desired. �

Proposition 2.7. Let Σ1 ⊂ Σ2 ⊂ Primes† be nonempty subsets. Then there exists
a natural exact sequence

0→ A(K)tor,Σ
′
1/A(K)tor,Σ

′
2 → SelΣ2(A)→ SelΣ1(A),

where the map SelΣ2(A)→ SelΣ1(A) is induced by the projectionH1(π1(C), TΣ2A)→
H1(π1(C), TΣ1A).

Proof. We have

Ker(SelΣ2(A)→ SelΣ1(A))

= SelΣ2(A) ∩Ker

(
∏

c

(Ac(k(c))/{Σ
′
2-tor})→

∏

c

(Ac(k(c))/{Σ
′
1-tor})

)

= SelΣ2(A) ∩
∏

c

(Ac(k(c))
tor,Σ′

1/Ac(k(c))
tor,Σ′

2)

= (A(K)tor/A(K)tor,Σ
′
2) ∩

∏

c

(Ac(k(c))
tor,Σ′

1/Ac(k(c))
tor,Σ′

2)

= (A(K)tor,Σ
′
1/A(K)tor,Σ

′
2),

where the third equality follows from Lemma 2.6. �

The proof of Proposition 2.5 will follow immediately from the following, since
Ac(k(c)) is a finitely generated Z-module for every c ∈ Ccl (cf. [Lang-Néron]).

Proposition 2.8. There exists a closed point c ∈ Ccl such that the natural restric-
tion map

SelΣ(A)→ Ac(k(c))/{Σ
′-tor}
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is injective.

Proof. First, let Σ1 ⊂ Σ2 ⊂ Primes† be nonempty subsets, and c ∈ Ccl. Then the
natural commutative diagram

H1(π1(C), TΣ2A) → H1(Gk(c), T
Σ2Ac)

↓ ↓

H1(π1(C), TΣ1A) → H1(Gk(c), T
Σ1Ac),

where the horizontal maps are natural restriction maps and the vertical maps are
natural projections, restricts to a natural commutative diagram

SelΣ2(A) → Ac(k(c))/{Σ
′
2-tor}

↓ ↓

SelΣ1(A) → Ac(k(c))/{Σ
′
1-tor}.

Now, suppose that the assertion holds for Σ1. Then there exists a closed point
c ∈ Ccl such that the lower horizontal map of the latter commutative diagram is
injective. Thus,

Ker(SelΣ2(A)→ Ac(k(c))/{Σ
′
2-tor})

= Ker(SelΣ2(A)→ Ac(k(c))/{Σ
′
2-tor}) ∩Ker(SelΣ2(A)→ SelΣ1(A))

= Ker(SelΣ2(A)→ Ac(k(c))/{Σ
′
2-tor}) ∩ A(K)tor,Σ

′
1/A(K)tor,Σ

′
2 = 0,

where the second equality follows from Proposition 2.7 and the third equality fol-

lows from the fact that the reduction map A(K)tor,Primes† → Ac(k(c))
tor,Primes† is

injective, as A[N ] is finite étale over C for any Primes†-integer N > 0. Thus, the
assertion also holds for Σ2.

Now, to prove the assertion, we may assume that Σ is finite, by replacing Σ with
any nonempty finite subset. (We may even assume ♯(Σ) = 1.) Then, by Proposition
1.2, there exists a closed point c ∈ Ccl, such that the natural restriction map

H1(π1(C), TΣA)→ H1(Gk(c), T
ΣAc)

is injective. In particular, the natural restriction map

SelΣ(A)→ Ac(k(c))/{Σ
′-tor}

is also injective, as desired. �

Proposition 2.9. (i) For each Σ-integer N > 0, the natural map SelΣ(A) →
H1(π1(C), A[N ]) induces a natural injective map

SelΣ(A)/N →֒ SelN (A) ⊂ H1(π1(C), A[N ]).

(ii) The natural map SelΣ(A)→ H1(π1(C), TΣA) induces a natural injective map

SelΣ(A)∧,Σ →֒ SelΣ(A) ⊂ H1(π1(C), TΣA).
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Proof. (i) AsH1(π1(C), A[N ]) is killed byN , the natural mapSelΣ(A)→ H1(π1(C), A[N ])

induces a natural map ιN : SelΣ(A)/N → H1(π1(C), A[N ]). As SelΣ(A) ⊂
SelΣ(A), the image of ιN is contained in SelN (A). Thus, it suffices to prove that
ιN is injective. Consider the natural exact sequence

0→ SelΣ(A)
ι
−→ H1(π1(C), TΣA)→ Coker(ι)→ 0,

where ι is the natural injection. We claim that Coker(ι)tor,Σ = 0 holds. Indeed, first

we have the equality Coker(ι)tor,Σ = (SelΣ(A)/SelΣ(A))tor,Σ, which follows from

the fact that H1(π1(C), TΣA)/ SelΣ(A) injects into
∏

c T
ΣH1(Gk(c),Ac), which

is torsion-free. Moreover, we have a natural injective map SelΣ(A)/SelΣ(A) →∏
cAc(k(c))

∧,Σ/(Ac(k(c))/{Σ
′-tor}) and the Σ-torsion of the latter group is triv-

ial, as follows easily from the fact that the Σ-torsion of ẐΣ/Z is trivial, and the
groups Ac(k(c)) are finitely generated.

Now, for each Σ-integer N > 0, we have a commutative diagram of exact se-
quences

0 −−−−→ Sel(A) −−−−→ H1(π1(C), TΣA) −−−−→ Coker(ι) −−−−→ 0

N

y N

y N

y

0 −−−−→ Sel(A) −−−−→ H1(π1(C), TΣA) −−−−→ Coker(ι) −−−−→ 0

where the vertical maps are the maps of multiplication by N . Thus, by the Snake
Lemma, we have a natural exact sequence

0 = Coker(ι)[N ]→ SelΣ(A)/N → H1(π1(C), TΣA)/N.

Now the assertion follows, as H1(π1(C), TΣA)/N →֒ H1(π1(C), A[N ]).

(ii) By (i), the natural map

SelΣ(A)∧,Σ SelΣ(A) H1(π1(C), TΣA)
‖ ‖ ‖

lim←−N SelΣ(A)/N → lim←−N SelN (A) ⊂ lim←−N H1(π1(C), A[N ]),

where N runs over all Σ-integers > 0, is injective, as desired. �

Proposition 2.10. For each Primes†-integer N > 0, the N -Selmer group SelN (A)
is finite.

Let N be a Primes†-integer > 0. As A[N ] is finite étale over C, the GK -
module A[N ] is unramified, i.e., the group IC = Ker(GK ։ π1(C)) acts trivially
on A[N ]. Thus, A[N ] has a natural structure of π1(C)-module, and we have a
natural inflation-restriction exact sequence

0→ H1(π1(C), A[N ])
inf
−→ H1(GK , A[N ])

res
−−→ Hom(IC , A[N ])π1(C).
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Lemma 2.11. The following holds: SelN (A) ⊂ H1(π1(C), A[N ]).

Proof. As in diagram (2.3), we have a natural commutative diagram for each c ∈ Ccl

0 → ARc
(Rc)/N → H1(π1(Rc),ARc

[N ]) → H1
ét(Rc,ARc

)[N ] → 0
↓ ↓ ↓

0 → Ac(Kc)/N → H1(GKc
, Ac[N ]) → H1(GKc

, Ac)[N ] → 0,

where the vertical maps are obtained by taking the pullback of étale cohomol-
ogy groups via the natural morphism Spec(Kc) → Spec(Rc). The left vertical
map coincides with the map induced by the natural map ARc

(Rc) → Ac(Kc),
which is an isomorphism by the valuative criterion for properness. The mid-
dle vertical map is injective by Lemma 1.1 (iv). Thus, the right vertical map
is also injective. By definition, the image of SelN (A) in H1(GKc

, A[N ]) is con-

tained in (the image of) Ac(Kc)/N
∼
← ARc

(Rc)/N , hence, in particular, in (the
image of) H1(π1(Rc),ARc

[N ]). It follows from this that the image of SelN (A) in
H1(Ic, A[N ]) = Hom(Ic, A[N ]) is trivial for all c ∈ Ccl. Thus, the image of SelN (A)
in Hom(IC , A[N ]) is trivial, as desired, since IC is (topologically) normally gener-
ated by the various Ic for c ∈ Ccl. �

Proof of Proposition 2.10. By Proposition 1.8, there exists S ⊂ Ccl of cardinality
≤ 2, depending on (A and) N , such that the natural restriction map

H1(π1(C), A[N ])→
∏

c∈S

H1(Gk(c),Ac[N ])

is injective. In particular, SelN (A) injects into
∏

c∈S Ac(k(c))/N , which is finite as
S is finite and Ac(k(c)) is finitely generated for each c. This finishes the proof of
Proposition 2.10. �

§3. The Shafarevich-Tate Group. We use the same notations as in §1 and §2.
In particular, k is a field which is finitely generated over the prime field of char-
acteristic p ≥ 0 and infinite; C → Spec k is a smooth, separated and geometrically
connected algebraic curve over k with function field K = k(C); and A → C is an
abelian scheme over C with generic fibre A = AK = A×C SpecK.

Definition 3.1. We define the Shafarevich-Tate group

X(A)
def
= X(A,C)

def
= Ker(H1(GK , A)→

∏

c

H1(GKc
, Ac)),

where the product is taken over all closed points c ∈ Ccl. We set X(A)(†)
def
= X(A)

(resp. X(A)(†)
def
= X(A)/{p-tor}), when the characteristic p of k is 0 (resp. > 0).

Note that the abelian groupX(A) is a torsion group since the Galois cohomology
group H1(GK , A) is torsion. (In particular, X(A)(†) is naturally identified with

X(A)tor,p
′

(⊂ X(A)) when p > 0.) For each Primes†-integer N > 0, we have a
natural exact sequence

0→ A(K)/N → SelN (A)→X(A)[N ]→ 0,

and
0→ A(K)∧,Σ → SelΣ(A)→ TΣ

X(A)→ 0.
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Definition 3.2. We define the Σ-discrete Shafarevich-Tate group

ShaΣ(A)
def
= ShaΣ(A,C)

def
= SelΣ(A)/(A(K)/{Σ′-tor}).

We set ShaΣ(A)(†)
def
= ShaΣ(A) (resp. ShaΣ(A)(†)

def
= ShaΣ(A)/{p-tor}), when

the characteristic p of k is 0 (resp. > 0).

By definition, we have a natural exact sequence

0→ A(K)/{Σ′-tor} → SelΣ(A)→ ShaΣ(A)→ 0.

Proposition 3.3. The Σ-discrete Shafarevich-Tate group ShaΣ(A) is a finitely

generated Z-module. Further, ShaΣ(A)(†) is a finitely generated free Z-
module.

Proof. The first assertion follows immediately from Proposition 2.5. To prove the
second assertion, it suffices to show that for each prime number l ∈ Primes†,
ShaΣ(A) admits no nontrivial l-torsion. It follows from Lemma 2.6, together
with the Snake Lemma, that this last condition is equivalent to the injectivity
of the natural map (A(K)/{Σ′-tor})/l → SelΣ(A)/l. By definition, we have a

natural map SelΣ(A) → Ac(k(c))/{Σ
′-tor} for each c ∈ Ccl whose composite

with the natural map A(K)/{Σ′-tor} → SelΣ(A) coincides with the specialisa-
tion map A(K)/{Σ′-tor} = A(C)/{Σ′-tor} → Ac(k(c))/{Σ

′-tor}. Thus, to prove

the desired injectivity, it suffices to show that for each prime number l ∈ Primes†,
there exists c ∈ Ccl (which may depend on l), such that the specialisation map
(A(K)/{Σ′-tor})/l→ (Ac(k(c))/(Σ

′-tor))/l is injective. This last assertion follows
from Proposition 1.10 (ii). Indeed, by Proposition 1.10 (ii), there exists a closed
point c ∈ Ccl, such that the natural specialisation map A(K)/l → Ac(k(c))/l
is injective, and that the natural specialisation map A(K) → Ac(k(c)) is injec-
tive and the cokernel Ac(k(c))/A(K) admits no nontrivial l-torsion. Further, as

Ac(k(c))
tor,Σ′

/A(K)tor,Σ
′

→֒ Ac(k(c))/A(K), the cokernelAc(k(c))
tor,Σ′

/A(K)tor,Σ
′

also admits no nontrivial l-torsion, or, equivalently, we have A(K)tor,Σ
′

[l∞]
∼
→

Ac(k(c))
tor,Σ′

[l∞]. Consider the following commutative diagram of exact sequences:

0 −−−−→ A(K)tor,Σ
′

/l −−−−→ A(K)/l −−−−→ (A(K)/{Σ′-tor})/l −−−−→ 0
y

y
y

0 −−−−→ Ac(k(c))
tor,Σ′

/l −−−−→ Ac(k(c))/l −−−−→ (Ac(k(c))/{Σ
′-tor})/l −−−−→ 0

where the vertical maps are natural specialisation maps and the injectivity of the
horizontal map A(K)tor,Σ

′

/l → A(K)/l (resp. Ac(k(c))
tor,Σ′

/l → Ac(k(c))/l) fol-

lows from the fact that A(K)tor,Σ
′

/l = 0 (resp. Ac(k(c))
tor,Σ′

/l = 0) if l ∈ Σ
and (A(K)/{Σ′-tor})[l] = 0 (resp. (Ac(k(c))/{Σ

′-tor})[l] = 0) if l ∈ Σ′. Thus,
by the Snake Lemma, to prove the injectivity of the map (A(K)/{Σ′-tor})/l →

(Ac(k(c))/{Σ
′-tor})/l, it suffices to prove that the map A(K)tor,Σ

′

/l→ Ac(k(c))
tor,Σ′

/l

is an isomorphism, which follows from the above-mentioned isomorphism A(K)tor,Σ
′

[l∞]
∼
→

Ac(k(c))
tor,Σ′

[l∞]. This finishes the proof of Proposition 3.3. �
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Proposition 3.4. Let Σ1 ⊂ Σ2 ⊂ Primes† be nonempty subsets. Then the nat-
ural projection TΣ2X(A) ։ TΣ1X(A) induces an injective map ShaΣ2(A) →֒
ShaΣ1(A).

Proof. Consider the following commutative diagram of exact sequences:

0 −−−−→ A(K)/{Σ′
2-tor} −−−−→ SelΣ2(A) −−−−→ ShaΣ2(A) −−−−→ 0

y
y

y

0 −−−−→ A(K)/{Σ′
1-tor} −−−−→ SelΣ1(A) −−−−→ ShaΣ1(A) −−−−→ 0

where the left vertical map is (resp. the middle and right vertical maps are) induced
by the identity mapA(K)→ A(K) (resp. the natural projectionH1(π1(C), TΣ2A)→
H1(π1(C), TΣ1A)). By the Snake Lemma, the desired injectivity follows from
Proposition 2.7, together with the surjectivity of the left vertical mapA(K)/{Σ′

2-tor} →
A(K)/{Σ′

1-tor}. �

Proposition 3.5. (i) For each Σ-integer N > 0, the natural map ShaΣ(A) →
X(A)[N ] induces a natural injective map

ShaΣ(A)/N →֒X(A)[N ] ⊂ H1
ét(C,A)[N ].

(ii) The natural map ShaΣ(A)→ TΣ
X(A) induces a natural injective map

ShaΣ(A)∧,Σ →֒ TΣ
X(A) ⊂ TΣH1

ét(C,A).

Proof. (i) Consider the following commutative diagram of exact sequences:

A(K)/N −−−−→ SelΣ(A)/N −−−−→ ShaΣ(A)/N −−−−→ 0
y

y
y

0 −−−−→ A(K)/N −−−−→ SelN (A) −−−−→ X(A)[N ] −−−−→ 0

where the left (resp. middle, resp. right) vertical map is the identity map (resp.

induced by the natural map SelΣ(A)→ H1(π1(C), A[N ]) as in Proposition 2.9 (i),

resp. induced by the natural map ShaΣ(A) → X(A)[N ]). It follows from this

first that the left upper horizontal map A(K)/N → SelΣ(A)/N is injective. Now,
applying the Snake Lemma to the above diagram, we see that the desired injectivity
follows from Proposition 2.9 (i).

(ii) By (i), the natural map

ShaΣ(A)∧,Σ TΣ
X(A) TΣH1(C,A)

‖ ‖ ‖
lim←−N ShaΣ(A)/N → lim←−N X(A)[N ] ⊂ lim←−N H1(C,A)[N ],

where N runs over all Σ-integers > 0, is injective, as desired. �
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Proposition 3.6. The natural map ShaΣ(A) → TΣ
X(A) induces a natural in-

jective map

ShaΣ(A)(†) →֒ TΣ
X(A) ⊂ TΣH1

ét(C,A).

Proof. Consider the following commutative diagram of exact sequences:

0 −−−−→ ShaΣ(A)tor,†
′

−−−−→ ShaΣ(A) −−−−→ ShaΣ(A)(†) −−−−→ 0
y

y
y

(ShaΣ(A)tor,†)∧,Σ −−−−→ ShaΣ(A)∧,Σ −−−−→ (ShaΣ(A)(†))∧,Σ −−−−→ 0

whereShaΣ(A)tor,†
′

stands forShaΣ(A)tor,(Primes†)′ (i.e.,ShaΣ(A)tor,†
′

= ShaΣ(A)tor,p

for p > 0 and ShaΣ(A)tor,†
′

= 0 for p = 0) and the lower horizontal sequence is

the Σ-adic completion of the upper horizontal sequence. As Σ ⊂ Primes†, we
have (ShaΣ(A)tor,†

′

)∧,Σ = 0, hence ShaΣ(A)∧,Σ ∼
→ (ShaΣ(A)(†))∧,Σ. Thus, the

desired injectivity is equivalent (cf. Proposition 3.5 (ii)) to the injectivity of the

right vertical map ShaΣ(A)(†) → (ShaΣ(A)(†))∧,Σ, which follows from the fact

(cf. Proposition 3.3) that ShaΣ(A)(†) is a finitely generated free Z-module, as
Σ 6= ∅. �

Proposition 3.7. Assume that there exists l ∈ Σ such that TlX(A) = 0. Then

ShaΣ(A)(†) = 0.

Proof. We have

ShaΣ(A)(†) →֒ Sha{l}(A)(†) →֒ TlX(A) = 0,

by Proposition 3.4 and Proposition 3.6. Thus, the assertion follows. �

We conjecture the following.

Conjecture 3.8. We haveShaΣ(A) = 0 or, equivalently,SelΣ(A) = A(K)/{Σ′-tor}
unconditionally.

Proposition 3.9. Let N be a Primes†-integer > 0. Then:
(i) X(A)[N ] is finite.
(ii) X(A)/N is finite.

Proof. (i) This follows from Proposition 2.10, as we have an exact sequence

0→ A(K)/N → SelN (A)→X(A)[N ]→ 0.

(ii) This follows from (i), together with Lemma 3.10 below. �

Lemma 3.10. Let M be a torsion abelian group and N > 0 an integer. Assume
that M [N ] is finite. Then M/N is finite.

Proof. There are several ways of proving this elementary fact. For example, con-
sider the following decreasing sequence:

M [N ] ⊃ NM [N2] ⊃ · · · ⊃ Nn−1M [Nn] ⊃ NnM [Nn+1] ⊃ · · · ,
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which stabilises as M [N ] is finite. Thus, there exists an integer n0 > 0, such that

C
def
= Nn0−1M [Nn0 ] = Nn−1M [Nn] (⊂ M [N ]) for all n > n0. Now, for each

n > n0, consider the following commutative diagram of exact sequences:

0 −−−−→ M [Nn−1] −−−−→ M [Nn]
Nn−1

−−−−→ C −−−−→ 0

N

y N

y N=0

y

0 −−−−→ M [Nn−1] −−−−→ M [Nn]
Nn−1

−−−−→ C −−−−→ 0.

By the Snake Lemma, we have an exact sequence:

0→ C →M [Nn−1]/N →M [Nn]/N → C → 0.

Thus, in particular, ♯(M [Nn]/N) stabilises and is bounded, hence

M/N = M [N∞]/N = (lim−→
n≥0

M [Nn])/N = lim−→
n≥0

(M [Nn]/N)

is finite, as desired. �

Proposition 3.11. Let A → A′ be an isogeny of abelian varieties over K. Then
it induces a natural homomorphism X(A) = X(A,C) → X(A′, C) = X(A′),
hence a natural homomorphism X(A)(†) →X(A′)(†). Further, the kernel and the
cokernel of the latter homomorphism are both finite.

Proof. By definition, any homomorphism A→ A′ over K induces X(A)→X(A′),
hence X(A)(†) → X(A′)(†), functorially. Now, if f : A → A′ is an isogeny, then
there exist an isogeny g : A′ → A and an integer N > 0, such that g ◦ f = N · idA
and f ◦ g = N · idA′ . We define N † to be the maximal Primes†-integer dividing
N . (Thus, N/N † is 1 (resp. the maximal p-power dividing N) if p = 0 (resp.
p > 0).) By functoriality, these equalities imply Ker(X(A)→X(A′)) ⊂X(A)[N ],
hence Ker(X(A)(†) →X(A′)(†)) →֒X(A)[N †], and X(A′)/N ։ Coker(X(A)→
X(A′)), hence X(A′)/N †

։ Coker(X(A)(†) → X(A′)(†)). Now, the desired
finiteness follows from Proposition 3.9. �

Proposition 3.12. Let k′/k be a finite extension of fields (finitely generated over
the prime field), C′ → Spec k′ a smooth, separated and geometrically connected
algebraic curve over k′, and C′ → C a dominant k-morphism. Write K ′ = k′(C′)
for the function field of C′, and let K ′/K be the (finite) extension of function fields
induced by C′ → C. Then it induces a natural homomorphism X(A) = X(A,C)→
X(AK′ , C′) = X(AK′), hence a natural homomorphism X(A)(†) → X(AK′)(†).
Further, the kernel of the former (resp. latter) homomorphism is finite, if K ′/K is
separable (resp. in general).

Proof. By definition, C′ → C inducesX(A) = X(A,C)→X(AK′ , C′) = X(AK′),
hence X(A)(†) →X(AK′)(†), functorially. First, assume that K ′/K is separable.
Then, replacing K ′/K by its Galois closure K ′′/K, k′ by the algebraic closure k′′

of k in K ′′ and C′ by the smooth locus over k′′ of the integral closure of C′ in K ′′,
if necessary, we may reduce the finiteness of Ker(X(A) → X(AK′)) to the case
where K ′/K is Galois. In this case, we have

Ker(X(A)→X(AK′)) ⊂ Ker(H1(GK , A)→ H1(GK′ , AK′)) = H1(Gal(K ′/K), A(K ′)),
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which is finite by Lemma 1.6 (i) (together with [Lang-Néron]), as desired.
Thus, to prove the finiteness of Ker(X(A)(†) →X(AK′)(†)) in general, we may

assume p > 0. Then, for any finite extension K ′/K, there exist n ≥ 0 and a finite

separable extension K ′′/K
1

pn such that K ′′ ⊃ K ′. The algebraic closures of k in

K ′ and K
1

pn are k′ and k
1

pn , respectively, and let k′′ be the algebraic closure of k

in K ′′, which is separable over k
1

pn . Let C̃′, C
1

pn and C̃′′ be the integral closure of

C in K ′, K
1

pn and K ′′, respectively. Then C̃′, C
1

pn and C̃′′ are regular, separated,

geometrically connected curves over k′, k
1

pn and k′′, respectively. Further, C̃′ ⊃ C′

is generically smooth over k′, (C
1

pn → Spec k
1

pn ) ≃ (C → Spec k) is smooth, and

C̃′′ is generically étale over C
1

pn , hence generically smooth over k
1

pn , and over k′′.
Let C′′ ⊂ C̃′′ be the intersection of the smooth locus of C̃′′ → Spec k′′ and the
inverse image of C′ under the (finite) morphism C̃′′ → C̃′. Then C′′ is smooth,
separated, geometrically connected curve over k′′.

Now, the natural homomorphism X(A,C)→X(AK′′ , C′′) factors in two ways,

as X(A,C)→X(AK′ , C′)→X(AK′′ , C′′) and as X(A,C) = X(A
K

1
p0
, C

1
p0 )→

X(A
K

1
p
, C

1
p ) → X(A

K
1
p2
, C

1
p2 ) → · · · → X(A

K
1

pn
, C

1
pn ) → X(AK′′ , C′′). It

follows from this that the finiteness of Ker(X(A)(†) → X(AK′)(†)) is reduced to

that of Ker(X(A
K

1
pi
, C

1
pi )(†) → X(A

K
1

pi+1
, C

1
pi+1 )(†)) (i = 0, 1, . . . , n − 1) and

that of Ker(X(A
K

1
pn

, C
1

pn )(†) → X(AK′′ , C′′)(†)). The latter finiteness follows

from the above argument, as K ′′/K
1

pn is separable. For the former finiteness,

it suffices to prove it for i = 1. In this case, the inclusion K ⊂ K
1
p can be

identified with the inclusion σ : K →֒ K, x 7→ xp. Under this identification,

we have A
K

1
p
= A ×K,σ K and the homomorphism X(A,C) → X(A

K
1
p
, C

1
p ) is

identified with the homomorphism X(A,C) → X(A ×K,σ K,C) induced by the
relative Frobenius K-morphism A → A ×K,σ K. Thus, the desired finiteness of

Ker(X(A)(†) →X(A
K

1
p
)(†)) follows from Proposition 3.11. �

Remark 3.13. For simplicity, write Q for the prime field of k and Z for the image
of Z in Q. Thus, we have Q = Q (resp. Q = Fp) and Z = Z (resp. Z = Fp)
when p = 0 (resp. p > 0). Then, as k is finitely generated over the perfect field
Q, the system C → Spec k → SpecQ admits a smooth model C → V → U . More
precisely, U = SpecZ; V is an integral scheme which is smooth over U and whose
function field is isomorphic to (and is identified with) k; C is a smooth scheme over
V whose generic fibre C ×V k is k-isomorphic to (and is identified with) C. Let C1

denote the set of points of codimension 1 of C, hence we have Ccl ⊂ C1. For each

c ∈ C1, let Kc be the completion of K at c, and Ac
def
= A×K Kc, just as in the case

of c ∈ Ccl. We define

SelN (A, C)
def
= Ker(H1(GK , A[N ])→

∏

c∈C1

H1(GKc
, Ac))

for each Primes†-integer N > 0, and

X(A, C)
def
= Ker(H1(GK , A)→

∏

c∈C1

H1(GKc
, Ac)).
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Thus, we have
SelN (A, C) ⊂ SelN (A) = SelN (A,C)

and
X(A, C) ⊂X(A) = X(A,C).

In [Lang-Tate], Theorem 3 and Theorem 5, it is shown that SelN (A, C) andX(A, C)[N ]
are finite. Thus, Proposition 2.10 and Proposition 3.9 (i) can be regarded as an
improvement of these results, respectively.

§4. The isotrivial case. We use the same notations as in §1, §2 and §3. In partic-
ular, k is a field which is finitely generated over the prime field of characteristic
p ≥ 0 and infinite; C → Spec k is a smooth, separated and geometrically connected
algebraic curve over k with function field K = k(C); and A → C is an abelian
scheme over C with generic fibre A = AK = A×C SpecK.

Theorem 4.1. Assume that A is essentially isotrivial, i.e., AK is isogenous to

an abelian variety over K that descends to an abelian variety over k. Then X(A)(†)

is finite.

Proof. By Proposition 3.12 and Proposition 3.11, we may assume that C(k) 6= ∅,
that C admits a (unique) smooth compactification Ccpt, and that A is constant,

i.e., A descends to an abelian variety Ã over k (Ã ×k K = A). In order to prove

that X(A)(†) is finite, it suffices to show that X(A)[l∞] is finite for all l ∈ Primes†

and that X(A)[l∞] = 0 for all but finitely many l ∈ Primes†. Further, as X(A)[ln]
is finite for all n ≥ 0 by Proposition 3.9, the condition that X(A)[l∞] is finite is
equivalent to: TlX(A) = 0.

Let l ∈ Primes†. We view (TlÃ
∼
→)TlA, which is fixed by π1(Ck), as aGk-module,

and we identify H1(Gk, TlA) with H1(Gk, TlÃ). We have a natural inflation-
restriction exact sequence

0→ H1(Gk, TlÃ)
inf
−→ H1(π1(C), TlA)

res
−−→ Hom(π1(Ck), TlA)Gk .

First, observe that (cf. Definition 2.3 (ii) for the definition of Sel{l}(A))

Sel{l}(A) ∩H1(Gk, TlÃ) = A(K)∧,l ∩H1(Gk, TlÃ) = Ã(k)∧,l

holds in H1(π1(C), TlA). Indeed, the inclusions

Sel{l}(A) ∩H1(Gk, TlÃ) ⊃ A(K)∧,l ∩H1(Gk, TlÃ) ⊃ Ã(k)∧,l

are clear. To prove Sel{l}(A) ∩H1(Gk, TlÃ) ⊂ Ã(k)∧,l, fix c ∈ C(k) 6= ∅. Then the

composite of the inflation map H1(Gk, TlÃ)→ H1(π1(C), TlA) and the restriction

map H1(π1(C), TlA)→ H1(Gk(c), TlAc) = H1(Gk, TlÃ) at c is the identity. As the

image of Sel{l}(A) under the restriction map H1(π1(C), TlA)→ H1(Gk(c), TlAc) =

H1(Gk, TlÃ) at c is included in Ã(k)∧,l by definition, we obtain the desired inclu-
sion.

Now, let ϕ : A(K)∧,l → Hom(π1(Ck), TlA)GK be the composite of the natu-

ral maps A(K)∧,l →֒ H1(π1(C), TlA) → Hom(π1(Ck), TlA)GK . Thus, we have a
natural map

TlX(A) = Sel{l}(A)/A(K)∧,l → Hom(π1(Ck), TlA)Gk/ϕ(A(K)∧,l),
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which is injective as

Sel{l}(A) ∩H1(Gk, TlÃ) = Ã(k)∧,l ⊂ A(K)∧,l.

To prove that TlX(A) = 0, it suffices to show that Hom(π1(Ck), TlA)Gk/ϕ(A(K)∧,l) =
0. The Tate conjecture for abelian varieties holds over finitely generated fields by
Tate, Zarhin, Mori in positive characteristic and by Faltings in characteristic 0
(cf. [Tate], [Zarhin1], [Moret-Bailly] and [Faltings1]). As a consequence, we have a
natural isomorphism

Homk(J, Ã)⊗Z Zl
∼
→ Hom(TlJ, TlÃ)Gk = Hom(π1(C

cpt

k
)ab,l, TlÃ)Gk ,

where J denotes the jacobian variety of Ccpt. We also have natural isomorphisms

Hom(π1(C
cpt

k
)ab,l, TlÃ)Gk

∼
→ Hom(π1(Ck)

ab,l, TlÃ)Gk
∼
→ Hom(π1(Ck), TlÃ)Gk ,

where the first isomorphism follows from a standard weight argument. More pre-
cisely, we can assume without loss of generality (after possibly replacing k by a

finite extension) that Ccpt \ C = {c0, c1, . . . , cn} ⊂ Ccpt(k). Thus, IC
def
= I

(ab,l)
C

def
=

Ker
(
π1(Ck)

ab,l
։ π1(C

cpt

k
)ab,l

)
∼
→ Coker

(
Zl(1)

diag
−−→ ⊕n

i=0Zl(1)
)

∼
→ ⊕n

i=1Zl(1) as

Gk-module. Now the Gk-representation IC ⊗Ql (resp. TlÃ⊗Ql) is pure of weight

−2 (resp. pure of weight −1) (cf. [Jannsen], 2), and Hom(IC , TlÃ)
Gk = 0 follows

(cf. loc. cit. Fact 2). Hence Hom(π1(C
cpt

k
)ab,l, TlÃ)Gk

∼
→ Hom(π1(Ck)

ab,l, TlÃ)Gk .

Further, as Ccpt(k) 6= ∅, the natural map

A(K) = Mork(C
cpt, Ã)→ Homk(J, Ã)

induced by the Albanese property of J is surjective. Thus, the above map ϕ :

A(K)∧,l → Hom(π1(Ck), TlÃ)Gk is surjective and Hom(π1(Ck), TlÃ)Gk/ϕ(A(K)∧,l)
is trivial, as desired.

Next, we prove that X(A)[l∞] = 0, or, equivalently, X(A)[l] = 0, for all but

finitely many l ∈ Primes†. Indeed, this follows from a similar argument as above
using the following truncated version of the Tate conjecture

Homk(J, Ã)⊗Z Z/lZ
∼
→ Hom(J [l], Ã[l])Gk ,

which holds for all but finitely many l ∈ Primes† (cf. [Zarhin2], [Zarhin3] in positive
characteristic and [Faltings2], VI, §3 in characteristic 0). �

Theorem 4.2. Assume that A is essentially isotrivial. Then the assertion of
Conjecture 3.8 holds (resp. holds up to p-torsion) if p = 0 (resp. p > 0). More

precisely, we have ShaΣ(A)(†) = 0.

Proof. This follows immediately from Theorem 4.1 and Proposition 3.7. �
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