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Abstract 24 

Short periods of muscle disuse, due to illness or injury, result in substantial skeletal muscle 25 

atrophy. Recently we have shown that a single session of neuromuscular electrical stimulation 26 

(NMES) increases muscle protein synthesis rates. Aim: To investigate the capacity for daily 27 

NMES to attenuate muscle atrophy during short-term muscle disuse. Methods: Twenty-four 28 

healthy, young (23±1 y) males participated in the present study. Volunteers were subjected to 5 29 

days of one-legged knee immobilisation with (NMES; n=12) or without (CON; n=12) supervised 30 

NMES sessions (40 min sessions, twice daily). Two days prior to and immediately after the 31 

immobilisation period, CT-scans and single leg one-Repetition Maximum (1RM) strength tests 32 

were performed to assess quadriceps muscle cross-sectional area (CSA) and leg muscle strength, 33 

respectively. Furthermore, muscle biopsies were taken to assess muscle fibre CSA, satellite cell 34 

content and mRNA and protein expression of selected genes. Results: In CON, immobilisation 35 

reduced quadriceps CSA by 3.5±0.5% (P<0.0001) and muscle strength by 9±2% (P<0.05). In 36 

contrast, no significant muscle loss was detected following immobilisation in NMES although 37 

strength declined by 7±3% (P<0.05). Muscle MAFbx and MuRF1 mRNA expression increased 38 

following immobilisation in CON (P<0.001 and P=0.07, respectively) whereas levels either 39 

declined (P<0.01) or did not change in NMES, respectively. Immobilisation led to an increase in 40 

muscle myostatin mRNA expression in CON (P<0.05) but remained unchanged in NMES. 41 

Conclusion: During short-term disuse, NMES represents an effective interventional strategy to 42 

prevent the loss of muscle mass, but it does not allow preservation of muscle strength. NMES 43 

during disuse may be of important clinical relevance in both health and disease. 44 

45 
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Abbreviations 46 

CT, Computed Tomography; CSA, Cross Sectional Area; DEXA, Dual Energy X-Ray 47 

Absorptiometry; FAK, Focal Adhesion Kinase; FOXO1, Forkhead box protein O1; FT, fibre 48 

typing; LAT1, Large Neutral Amino Acid Transporter 1; MAFBx, Muscle Atrophy F-49 

box/Atrogen-1; mTOR, mammalian target of rapamycin; MuRF1, Muscle RING-finger protein-1; 50 

NMES, Neuromuscular Electrical Stimulation; PAT1, Proton-coupled amino acid transporter 1; 51 

PBS, phosphate-buffered saline; P70S6K, P70S6 kinase; RT, room temperature; SC, satellite cell; 52 

1RM, 1-Repetition Maximum.  53 
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Introduction 54 

Situations such as the recovery from illness or injury require otherwise healthy individuals to 55 

undergo short periods of bed-rest or limb immobilisation. Under these circumstances there is a 56 

rapid loss of skeletal muscle mass [1-3] that leads to reduced functional capacity [1-4], loss of 57 

muscle strength [5], impaired insulin sensitivity [6], a decline in basal metabolic rate [7, 8], and a 58 

concomitant increase in body fat mass [9-11]. As a consequence, the extent of disuse atrophy that 59 

occurs due to illness or injury has previously been identified as an important predictor of the 60 

duration of hospitalization and subsequent rehabilitation [12]. 61 

During periods of disuse, muscle atrophy occurs as a consequence of an imbalance between muscle 62 

protein synthesis and breakdown rates. Previous studies, employing either 10-14 days of bed rest 63 

[10, 13] or 2-6 weeks of limb immobilisation [2, 14-16] as models of disuse, have demonstrated 64 

impairments in both fasting and post-prandial muscle protein synthesis rates without any 65 

discernible changes in muscle protein breakdown [13, 17]. Maintaining a certain minimal level of 66 

physical activity during periods of muscle disuse can offset such impairments in post-absorptive 67 

or post-prandial muscle protein synthesis rates [11, 18] and, as such, attenuate muscle tissue loss 68 

[19, 20]. Unfortunately, in many clinical situations physical activity is temporarily not feasible or 69 

simply impossible and, thus, surrogates should be sought to alleviate muscle disuse atrophy. 70 

Neuromuscular electrical stimulation (NMES) offers an attractive alternative way to allow muscle 71 

contraction, thereby acting as a surrogate for habitual physical activity during periods of muscle 72 

disuse due to illness or injury. Recently, we applied contemporary stable isotope methodology 73 

with repeated muscle biopsy sampling to demonstrate that a single session of NMES increases 74 

muscle protein synthesis rates for several hours in vivo in men [21]. Moreover, self-administered 75 

NMES has previously been shown to maintain muscle protein synthesis rates during long term 76 
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recovery from tibia fracture [14], and clinically applied NMES has shown beneficial effects on 77 

skeletal muscle function in patients recovering from surgery [22, 23] or suffering from severe 78 

cardiac complications [24, 25]. However, to date, the capacity of supervised NMES as an 79 

interventional strategy to counteract the loss of muscle mass and strength during a short period of 80 

disuse remains to be established. This may be of important clinical relevance as the loss of muscle 81 

mass and strength during short periods of bed rest or immobilisation following illness or injury are 82 

believed to delay subsequent recovery and likely contribute substantially to the loss of muscle 83 

mass with aging [26, 27]. 84 

In the present study we investigate the efficacy of NMES as a means to attenuate skeletal muscle 85 

disuse atrophy. We hypothesized that a twice daily supervised NMES program could preserve 86 

skeletal muscle mass and attenuate the loss of muscle strength during a 5 day period of leg 87 

immobilisation. We assessed changes in muscle mass following 5 days of one-legged knee 88 

immobilisation using a full leg cast in 24 healthy young men with or without twice daily supervised 89 

NMES sessions. Muscle mass was assessed at a limb level using CT and DEXA scans, whereas 90 

muscle biopsies were obtained prior to and immediately after immobilisation to assess changes in 91 

muscle fibre type characteristics and relevant myocellular signalling.  92 
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Materials and Methods 93 

 94 

Subjects 95 

A total of 24 healthy young males (age: 23±1 y; body mass: 76±2 kg; body mass index [BMI] 96 

22±1 kg/m2) were included in the present study which was approved by the Medical Ethical 97 

Committee of the Maastricht University Medical Centre+ in accordance with the Declaration of 98 

Helsinki. Prior to the study, subjects completed a routine medical screening and general health 99 

questionnaire to ensure their suitability to take part. Exclusion criteria were: BMI below 18.5 or 100 

above 30 kg/m2; any back, knee or shoulder complaints which may interfere with the use of 101 

crutches; type 2 diabetes mellitus (determined by HbA1c-values >7.0%); any family history of 102 

thrombosis; and/or severe cardiac problems. Furthermore, subjects who had performed structured 103 

and prolonged resistance type exercise training during the 6 months prior to the study were also 104 

excluded. All subjects were informed of the nature and possible risks of the experimental 105 

procedures, before their written informed consent was obtained. During screening, an estimation 106 

of one-repetition maximum (1RM) single leg knee extension strength (Technogym, Rotterdam, 107 

the Netherlands) was made using the multiple repetitions testing procedure [28].  108 

 109 

Study design 110 

After inclusion, subjects were randomly allocated into either the control (CON; n=12) or the 111 

neuromuscular electrical stimulation (NMES; n=12) group. The experimental protocol is depicted 112 

in Figure 1. Both groups underwent a 5 day period of muscle disuse induced via one-legged knee 113 

immobilisation by way of a full leg cast, either with (NMES group) or without (CON group) 114 

NMES performed twice daily under supervision at home. The leg to be immobilized was 115 

randomized and counter-balanced between left and right. On two separate test days, 48 h before 116 
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and immediately after the immobilisation period, single slice computed tomography (CT) scans 117 

were performed at the mid-thigh of both legs, whole body dual energy x-ray absorptiometry 118 

(DEXA) scans were taken, leg volume was measured by anthropometry [29], a single muscle 119 

biopsy and venous blood sample were collected, and one-legged knee extension strength (1RM) 120 

was assessed. 121 

 122 

Muscle mass and function 123 

Forty eight h prior to, and immediately after the immobilisation period, subjects visited the 124 

laboratory in the fasted state for 2 identical test days (i.e. test days 1 and 2). During the test days, 125 

several measurements of muscle mass and function were performed. First, anatomical cross-126 

sectional area (CSA) of the quadriceps muscle and whole thigh were assessed via a single slice CT 127 

scan (Philips Brilliance 64, Philips Medical Systems, Best, the Netherlands). The scanning 128 

characteristics were as follows: 120 kV, 300 mA, rotation time of 0.75 s, and a field of view of 129 

500 mm. While the subjects were lying supine, legs extended and their feet secured, a 3 mm thick 130 

axial image was taken 15 cm proximal to the top of the patella. On test day 1, the precise scanning 131 

position was marked with semi-permanent ink for replication on test day 2. CT-scans were 132 

analysed for the CSA of the whole thigh muscle as well as the quadriceps by manual tracing using 133 

ImageJ software (version 1.46d, National Institute of Health, Maryland, USA)[30]. Thereafter, 134 

body composition and bone mineral content were measured via DEXA-scan (Hologic, Discovery 135 

A, QDR Series, Bradford, MA, USA). Whole-body and regional lean mass were determined using 136 

the system’s software package Apex version 2.3. Leg volume of both legs was also assessed by 137 

anthropometry as described previously [29]. Maximal calf circumference of both legs was 138 

measured as part of the measurements to determine leg volume. Maximum strength was evaluated 139 
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for each leg separately by one-repetition maximum (1RM) strength tests on a leg extension 140 

machine (Technogym, Rotterdam, the Netherlands). The estimations obtained during the screening 141 

visit were used to determine 1RM as described previously [31]. 142 

 143 

Blood and muscle sampling 144 

During test day 1, fasting venous blood samples were collected to determine basal plasma glucose 145 

and insulin concentrations. Blood (10 mL) was collected into EDTA-containing tubes and directly 146 

centrifuged at 1,000g for 10 min at 4°C. Aliquots of plasma were immediately frozen in liquid 147 

nitrogen and stored at -80°C until further analysis. Plasma glucose concentrations (Glucose HK 148 

CP, ABX Diagnostics, ref. A11A01667, Montpellier, France) were analysed with a COBAS 149 

FARA semi-automatic analyser (Roche, Basel, Switzerland). Plasma insulin concentrations were 150 

determined by radioimmunoassay (Millipore, ref. HI-14K , Billerica, MA, USA). Additionally, 151 

during test day 1 and 2, a single muscle biopsy sample was collected from the leg previously 152 

selected for immobilisation. After local anaesthesia was induced, percutaneous needle biopsy 153 

samples were collected from the vastus lateralis muscle, approximately 15 cm above the patella 154 

[32]. Any visible non-muscle tissue was removed immediately, and part of the biopsy sample was 155 

embedded in Tissue-Tec (Sakura Finetek, Zoeterwoude, the Netherlands) before being frozen in 156 

liquid nitrogen-cooled isopentane, while another part was immediately frozen in liquid nitrogen. 157 

Muscle samples were subsequently stored at -80°C until further analyses. 158 

 159 

Leg immobilisation 160 

Forty eight h following test day 1, a full leg cast (randomized and counterbalanced for left and 161 

right legs) was applied in the plaster room of the Academic Hospital in Maastricht at 8:00 on the 162 

first day of the immobilisation period. The leg cast extended from ~5 cm above the ankle until ~25 163 
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cm above the patella (i.e. approximately halfway up the upper leg). The cast was set so the knee 164 

joint was placed at a ~30 degree angle of flexion to prevent subjects from performing weight-165 

bearing activities with the casted leg. The immobilisation period always comprised 3 week days 166 

and 2 weekend days. Additionally, for subjects assigned to the NMES group, placement of the 167 

electrodes for NMES was determined prior to fitting the cast (described below) and a small 168 

‘window’ (a rectangle of approximately 12 × 6 cm) was cut in the cast ~5 cm above the knee. 169 

Following the removal of this window, the section of cast was placed back from where it was 170 

removed and bandaged firmly in place. Subjects were given crutches and instructed on their correct 171 

usage before being provided with transportation home. Application of the cast signified the 172 

beginning of the immobilisation period which continued for 5 d, after which the cast was removed 173 

at 8.00 at the plaster room immediately prior to performing test day 2. 174 

 175 

Neuromuscular electrical stimulation 176 

For subjects allocated to the NMES group, two NMES sessions were performed each day at the 177 

subjects’ home for the duration of the 5 day immobilisation period (i.e. 10 sessions in total). 178 

Neuromuscular electrical stimulation sessions were performed in the morning (7.00-12.00) and 179 

afternoon (13.00-18.00), with a minimum of 4 h between sessions. During each session, with the 180 

subject lying supine with a pillow placed under the knee to obviate the flexion angle, the window 181 

was removed from the cast and electrodes were placed on the distal part at the muscle belly of the 182 

m. rectus femoris and the m. vastus lateralis, and at the inguinal area of both muscles. The position 183 

of the electrodes was re-marked each day with semi-permanent ink to ensure that location of the 184 

electrodes was not altered between sessions. 185 
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Stimulation was provided by an Enraf Nonius TensMed S84 stimulation device (Enraf Nonius, 186 

Rotterdam, the Netherlands) and 4, 2 mm-thick, self-adhesive electrodes (50 x 50 mm; Enraf 187 

Nonius), discharging biphasic symmetric rectangular-wave pulses. The NMES protocol consisted 188 

of a warm-up phase (5 min, 5 Hz, 250 µs), a stimulation period (30 min, 100 Hz, 400 µs, 5 s on 189 

(0.75 s rise, 3.5 s contraction, 0.75 s fall) and 10 s off), and a cooling-down phase (5 min, 5 Hz, 190 

250 µs). Subjects set the intensity of the stimulation to a level at which full contractions of m. 191 

quadriceps femoris were visible and palpable, and the heel began to slightly lift. This protocol was 192 

based on our previous work [21] demonstrating an acute increase in muscle protein synthesis 193 

following a single bout of NMES and selected due to previous work using high-frequency (>60 194 

Hz), high pulse duration (>250 µs) NMES [33, 34]. Researchers encouraged subjects to increase 195 

the intensity of the stimulation during each subsequent session to provide a ‘progressive’ stimulus. 196 

 197 

Dietary intake 198 

On the evening prior to both test days subjects received a standardized meal containing 2900 kJ 199 

providing 51 Energy% (En%) as carbohydrate, 32 En% as fat, and 17 En% as protein. Subjects 200 

completed weighted dietary intake records for the 5 day duration of the immobilisation period as 201 

well as on a separate consecutive 5 day occasion before the immobilisation period. The same 5 202 

days of the week were selected for both recording periods. Dietary intake records were analysed 203 

with DieetInzicht software, based on NEVO table 2011. 204 

 205 

Muscle analyses 206 

The portion of the muscle biopsies frozen and mounted in Tissue-Tek was cut into 5µm thick 207 

cryosections using a cryostat at -20°C. Pre and post samples from one control and one NMES 208 

subject were mounted together on uncoated, pre-cleaned glass slides. Care was taken to correctly 209 
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align the samples for cross-sectional fibre analyses. Muscle biopsies were stained for muscle fibre 210 

typing (FT) and satellite cell (SC) content as described in detail previously [35]. In short, slides 211 

were incubated with primary antibodies directed against myosin heavy chain (MHC)-I (A4.840, 212 

dilution 1:25; Developmental Studies Hybridoma Bank, Iowa City, IA), laminin (polyclonal rabbit 213 

anti-laminin, dilution 1:50; Sigma, Zwijndrecht, the Netherlands) and CD56 (dilution 1:40; BD 214 

Biosciences, San Jose, CA). The following appropriate secondary antibodies were applied: goat 215 

anti-mouse IgM AlexaFluor555, goat anti-rabbit IgG AlexaFluor647, and Streptavidin Alexa 488 216 

(dilution 1:500, 1:400, and 1:200, respectively; Molecular Probes, Invitrogen, Breda, the 217 

Netherlands). Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI, 0.238 µM; 218 

Molecular Probes). Images were captured at 10x magnification with a fluorescent microscope 219 

equipped with an automatic stage, and analysed using ImageJ software (version 1.46r, National 220 

Institute of Health [30]). Mean numbers of 184±17 and 220±22 muscle fibres were analysed in the 221 

biopsy samples collected pre and post immobilisation, respectively. 222 

The portion of the muscle biopsy sample immediately frozen in liquid nitrogen was used to 223 

determine mRNA and protein expression of several target genes as described previously [36]. In 224 

short, total RNA was isolated from 10-20 mg of frozen muscle tissue, which was then quantified 225 

spectrophotometrically. Thereafter, RNA purity was determined and cDNA synthesis was 226 

performed, and Taqman PCR was carried out as reported previously using 18S as a housekeeping 227 

gene [37]. Taqman primer/probe sets were obtained from Applied Biosystems (Foster City, USA) 228 

for the following genes of interest: mammalian target of rapamycin (mTOR), P70S6 kinase 229 

(P70S6K), myogenic factor 4 (myogenin), MyoD, myostatin, Atrogen-1/Muscle Atrophy F-box 230 

(MAFbx), Muscle RING-finger protein-1 (MuRF1), Forkhead box protein O1 (FOXO1), Focal 231 

Adhesion Kinase (FAK), large neutral amino acid transporter 1 (LAT1) and Proton-coupled amino 232 
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acid transporter 1 (PAT1). Ct values of the target genes were normalized to Ct values of the internal 233 

control 18S, and final results were calculated as relative expression against the standard curve. 234 

Muscle samples (∼40 mg) for Western blotting analyses were analysed as described previously 235 

[37]. The antibodies used in this study were anti Myostatin (52 kD; dilution 1:500; rabbit 236 

polyclonal IgG; Santa Cruz sc-6885-R), anti MyoD (37 kD; dilution 1:1000; rabbit polyclonal IgG; 237 

Santa Cruz sc-760), anti Myogenin (34 kD; dilution 1:500; rabbit polyclonal IgG; Santa Cruz sc-238 

576) and anti α-actin (42 kD; dilution 1:160.000, mouse monoclonal IgM; Sigma A2172). 239 

 240 

Statistics 241 

All data are expressed as mean±standard error of the mean (SEM). Baseline characteristics 242 

between groups were compared by means of an independent samples t-test. Pre- versus post-243 

intervention data were analysed using repeated-measures ANOVA with time (pre vs. post) as 244 

within-subjects factor and treatment (CON vs. NMES) as between-subjects factor. Pearson’s 245 

Correlation Coefficient was used to test for significant correlations. For the muscle fibre analysis, 246 

fibre type (type I vs. type II) was added to the repeated-measures ANOVA as a within-subjects 247 

factor. In case of a significant interaction, paired t tests were performed to determine time effects 248 

within groups or within type I or II fibres and independent t tests for group differences in the pre- 249 

and post-intervention values. Statistical significance was set at P<0.05. All calculations were 250 

performed using SPSS version 20.0 (Chicago, IL, USA).  251 
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Results 252 

 253 

Subjects 254 

Subjects’ characteristics are provided in Table 1. No differences between the control (CON) and 255 

neuromuscular electrical stimulation (NMES) group were observed for any of the parameters. 256 

 257 

Dietary intake 258 

During the 5 days of immobilisation the daily energy intake averaged 8.5±0.7 and 8.7±0.6 MJ per 259 

day in the CON and NMES group, respectively, with average daily protein intakes of 1.01±0.04 260 

and 1.00±0.08 g/kg body weight/day. For both energy intake and protein intake, no significant 261 

interaction effects were found. 262 

 263 

Neuromuscular electrical stimulation 264 

The intensity of the NMES intervention for subjects in the NMES group averaged 20.8±1.6 mA 265 

during the first session and was progressively increased to 42.2±3.7 mA in the final session. The 266 

average NMES intensity across all sessions and all subjects was 30.6±2.2 mA. 267 

 268 

Muscle mass  269 

For quadriceps muscle CSA, a significant time*treatment interaction was observed in the 270 

immobilized leg (Figure 2; P<0.001). Quadriceps CSA in the CON group had decreased by 271 

3.5±0.5% (from 7504±342 to 7238±324 mm2; P<0.001), whereas in the NMES group no 272 

significant decrease in quadriceps CSA was detected (from 7740±259 to 7675±254 mm2: P=0.07). 273 

In agreement, a significant time*treatment interaction (P<0.001) was also observed for changes in 274 
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CSA of the whole-thigh muscle, which showed a 3.7±0.6% decrease in the CON group (P<0.001), 275 

with no changes in the NMES group (-0.5±0.4%: P=0.192). In the non-immobilized leg, 276 

quadriceps and thigh muscle CSA did not show any changes following 5 days of immobilisation 277 

in both the CON and NMES group. 278 

In line with the data on muscle CSA, a significant time*treatment interaction was observed for leg 279 

lean mass (P<0.05). Subjects in the CON group lost on average 147±72 g of muscle tissue in the 280 

immobilized leg, representing 1.4±0.7% loss of leg muscle tissue (P=0.066). In contrast, the 281 

NMES group showed an increase of 209±82 g (1.9±0.7%) in the immobilized leg after 5 days of 282 

immobilisation (P<0.05). No changes over time in leg lean mass were detected in the non-283 

immobilized leg of subjects in the CON and NMES group (P>0.05). 284 

For leg volume and calf circumference, no changes over time (time effect, P>0.05) or between 285 

groups (interaction effect, P>0.05) were observed. 286 

Scatter plots for correlations between NMES intensity and key outcome measures are presented as 287 

supplemental information in Figure 5. No significant correlations were found between the NMES 288 

intensity and delta quadriceps CSA (Figure 5A), delta muscle strength (Figure 5B), and delta leg 289 

lean mass (Figure 5C), respectively. 290 

 291 

Muscle strength 292 

For muscle strength, a significant main effect of time (P=0.001) was detected in the immobilized 293 

leg such that one-legged 1RM declined by 9.0±2.2% (from 77.9±3.9 to 71.1±4.1 kg) and 6.5±3.2% 294 

(from 78.3±4.5 to 72.9±4.4 kg) in the CON and NMES groups, respectively, with no differences 295 

between groups. Muscle strength in the non-immobilized leg increased in both groups (time effect, 296 
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P<0.05); from 78.8±4.4 to 81.5±4.9 kg in the CON group and from 76.9±3.1 to 81.9±3.4 kg in the 297 

NMES group. 298 

 299 

Muscle fibre characteristics 300 

Muscle fibre characteristics are displayed in Table 2. Before the intervention, no significant 301 

difference was observed in type I and type II muscle fibre CSA between groups. A significant 302 

time*treatment*fibre type interaction was observed for muscle fibre CSA (P<0.001). Separate 303 

analyses showed no significant change in both type I and type II muscle fibre CSA in the CON 304 

group after immobilisation. In contrast, we observed a significant increase in type II muscle fibre 305 

CSA in the NMES group over time (from 5885 ± 426 to 6412 ± 586 µm2; P<0.05), whereas in 306 

type I fibres no time effect was observed (P>0.05). Fibre distribution showed no differences at 307 

baseline between groups, and did not change over time in both groups (P>0.05). 308 

For myonuclear domain size, a significant time*treatment*fibre type interaction was observed 309 

(P<0.05) and an overall effect of fibre type (P<0.001), with larger myonuclear domain sizes in 310 

type II vs. type I fibres in both the CON and NMES group. No changes in type I myonuclear 311 

domain size were found (P>0.05), while a significant time*treatment interaction was observed in 312 

type II fibres (P<0.05) caused by a greater myonuclear domain in the NMES vs. CON group after 313 

immobilisation. 314 

At baseline, no differences in SC content were observed between groups (P>0.05). In addition, no 315 

changes over time were found for type I and type II SC content expressed per muscle fibre, per 316 

millimetre squared, or as a percentage of the total number of myonuclei (P>0.05 for all three 317 

parameters). 318 

 319 
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mRNA and protein expression 320 

Figure 3 and 4 display the relative expression in skeletal muscle mRNA of selected genes of 321 

interest in the CON and NMES group, two days prior to and immediately following 5 days of one-322 

legged knee-immobilisation. No differences in mRNA expression of selected genes were observed 323 

between CON and NMES at baseline. For muscle myostatin mRNA expression, a significant 324 

time*treatment interaction was observed (Figure 3A; P<0.05). Separate analysis showed a 68% 325 

increase following immobilisation in the CON group (P<0.05), whereas a trend for a decline was 326 

observed in the NMES group (P=0.075). For muscle mRNA expression of MyoD (Figure 3C) and 327 

myogenin (Figure 3E) a significant increase was observed over time (P<0.05 and P<0.01, 328 

respectively), with no differences between groups.  329 

A significant time*treatment interaction was observed for the mRNA expression of muscle 330 

MAFbx (Figure 4A; P<0.001) and MuRF1 (Figure 4B; P<0.05). MAFBx mRNA expression was 331 

upregulated in the CON group (48%; P<0.001), whereas in the NMES group a decline was 332 

observed (35%, P<0.05). MuRF1 mRNA expression tended to increase in the CON group (56%, 333 

P=0.066), while no change over time was observed in the NMES group (P>0.05). No significant 334 

changes occurred over time or between groups in the muscle mRNA expression of FOXO1 335 

(Figure 4C), mTOR (Figure 4E) or FAK (Figure 4D). A significant time*treatment interaction 336 

was observed for the muscle mRNA expression of P70S6K (Figure 4F; P<0.05), with an 18% 337 

upregulation following immobilisation in the CON group (P<0.01), whereas no change was 338 

observed in the NMES group (P>0.05). Muscle mRNA expression of the amino acid transporters 339 

LAT1/SLC (Figure 4G) and PAT1 (Figure 4H) had significantly increased following 340 

immobilisation (both P<0.05), with no differences between groups. 341 
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Protein expression of myostatin, myoD and myogenin are presented in Figure 3. For both 342 

myostatin and MyoD, no changes in protein expression were observed (both P>0.05). Myogenin 343 

protein expression tended to increase following immobilisation (P=0.054) with no differences 344 

between groups (P=0.122 for time*treatment interaction). 345 

346 
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Discussion 347 

In the present study, we demonstrated that neuromuscular electrical stimulation (NMES) prevented 348 

skeletal muscle atrophy to occur during 5 days of one-legged knee immobilisation. However, 349 

NMES could not rescue the loss of muscle strength during this short period of disuse. Moreover, 350 

we report that the molecular changes associated with muscle disuse atrophy can largely be 351 

prevented by the daily application of NMES. 352 

Skeletal muscle disuse leads to a loss of muscle mass and strength and is accompanied by 353 

numerous negative health consequences [1-4, 6-11]. Based on previous studies, the rate of muscle 354 

loss during experimental lower limb immobilisation is approximately 0.5% per day [27, 38]. 355 

However, this loss does not appear to be linear with higher rates of muscle loss occurring during 356 

the first few days of disuse [39]. In the present study we report that merely 5 days of one-legged 357 

knee immobilisation significantly decreased quadriceps muscle cross sectional area by 3.5% in a 358 

group of healthy young males (Figure 2; CON group), representing ~150 g of muscle tissue lost 359 

from the immobilized leg. When translating our observations of muscle loss in  a single limb to a 360 

whole-body level, assuming that 60% of whole-body muscle loss occurs in the lower limbs, 361 

patients could lose as much as 1 kg of muscle tissue during 5 days of bed rest [5, 40]. This is 362 

consistent with previous studies investigating the impact of 10 days of bed-rest [13, 40]. 363 

Furthermore, the 5 days of leg immobilisation also resulted in a substantial 9.0±2.2% decline in 364 

leg strength. Clearly, these data demonstrate the impact of short periods of muscle disuse on 365 

muscle mass and strength and underline the clinical relevance to develop effective interventional 366 

strategies to attenuate muscle disuse atrophy and associated negative health consequences. 367 

The use of NMES has been proposed as an interventional strategy to alleviate muscle loss in a 368 

variety of clinical conditions [14, 22-25]. Recently, we showed that a single NMES session 369 
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stimulates muscle protein synthesis in vivo in men [21]. In the current study, we investigated 370 

whether the application of daily NMES could attenuate the loss of muscle mass during a short 371 

period of muscle disuse. Strikingly, the application of supervised NMES performed twice daily on 372 

the immobilized leg entirely prevented any disuse atrophy (Figure 2), with no measurable loss of 373 

muscle observed in the NMES group (-0.8±0.4%; P>0.05). Given the inherent variability of the 374 

measurement of muscle fibre size [41], we were unable to detect specific muscle fibre atrophy 375 

following only 5 days of disuse in the control group (Table 2). However, we did detect a small but 376 

significant increase in type II muscle fibre size following immobilisation in the group receiving 377 

NMES. These data suggest that high-frequency NMES may exert its protective effect on skeletal 378 

muscle disuse atrophy predominantly through the recruitment of type II muscle fibres. This is of 379 

significant relevance as muscle loss due to more prolonged disuse [42, 43] and/or aging [44, 45] 380 

has been attributed to specific type II muscle fibre atrophy [41]. It is important to view the present 381 

data in the context of the potential clinical benefits of applying NMES to preserve muscle mass 382 

during relatively short periods of muscle disuse. Previously, NMES has generally been applied 383 

during rehabilitation [46, 47], when muscle mass has already been lost and has to be regained. 384 

However, in the present study we clearly demonstrate the relevance of applying NMES during a 385 

period of disuse or bed rest to prevent muscle tissue loss. 386 

Muscle disuse atrophy is generally accompanied by a substantial decline in muscle strength and 387 

impairments in functional capacity [1-3]. Previous studies performing one-legged knee 388 

immobilisation have reported a decline in muscle strength ranging from 0.4 [48] to 4.2% per day 389 

[49] with an average muscle strength loss of ~1.3% per day [27]. In the present study, we report 390 

that 5 days of limb immobilisation resulted in a 9.0% loss of leg muscle strength (representing an 391 

average daily loss of 1.8% per day). Consistent with earlier reports [4, 49, 50], we show a greater 392 
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relative decline in muscle strength when compared to the loss of muscle mass. This is in agreement 393 

with previous suggestions that neuromuscular deconditioning during the early stages of training or 394 

disuse is mainly responsible for the rapid changes in muscle strength [51, 52]. This also explains 395 

why the decline in muscle strength in the control group was only partially rescued with NMES (-396 

6.5±3.2%). We speculate that the application of NMES will likely further attenuate muscle 397 

strength loss during more prolonged periods of muscle disuse, when muscle mass loss becomes 398 

the key determinant of the decline in muscle strength. In agreement, previous work assessing the 399 

impact of prolonged NMES training has been shown to effectively increase muscle strength in 400 

healthy young subjects [33, 34], in CHD patients [53] and in patients suffering from septic shock 401 

[54]. 402 

Aside from assessing the impact of NMES on muscle mass and strength during a period of disuse, 403 

we also investigated some of the myocellular mechanisms that may be responsible for the NMES 404 

mediated prevention of muscle mass loss during immobilisation. Skeletal muscle satellite cells 405 

(SCs) are essential for repair, maintenance and growth of myofibres [55-57]. Moreover, we have 406 

previously reported that type II fibre specific atrophy associated with aging [58] and spinal cord 407 

injury [59] is also accompanied by a decline in SC content in these fibres. In the present study, we 408 

hypothesized that a better maintenance of muscle SC content in the NMES group contributes to 409 

the preservation of muscle mass. However, short term immobilisation did not alter SC content in 410 

either type I or II fibres in either the control or NMES group (Table 2). As such, the present data 411 

suggest that changes in SC content are not instrumental in the early development of disuse atrophy, 412 

nor the NMES mediated prevention of muscle loss. However, it cannot be ruled out that the rate 413 

of SC proliferation may be of more relevance during muscle atrophy (or NMES mediated 414 

prevention of muscle loss) observed over a more prolonged period of disuse [60]. Furthermore, we 415 
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determined the mRNA and protein expression of key signalling proteins thought to be important 416 

in the regulation of muscle maintenance. Myostatin is regarded as a negative regulator of muscle 417 

mass in vivo [61, 62], primarily by inhibiting myogenesis [63, 64] via its inhibitory action on the 418 

myogenic regulatory factors [65], notably MyoD and myogenin [66, 67]. Consistent with the 419 

proposed role of myostatin, we report an increased mRNA expression in the CON group that was 420 

prevented in the NMES group (Figure 3). Moreover, the significant increase in the mRNA 421 

expression of MyoD and myogenin seemed to be larger in the NMES group but was observed in 422 

both groups, while this did not result in an increased muscle protein expression (Figure 3). 423 

Collectively these data are consistent with a role for myostatin in the NMES mediated maintenance 424 

of muscle mass during disuse. 425 

Increased rates of muscle protein breakdown have been suggested to play a role in short term (<10 426 

days) muscle disuse atrophy [27, 68]. Muscle protein breakdown in humans is thought to be 427 

regulated primarily by the ubiquitin-proteasome pathway, with key roles for the ubiquitin ligases 428 

MAFbx and MuRF1 [69, 70], and their upstream transcription factor FOXO1 [71]. In accordance, 429 

in the present study we report that both MAFbx and MuRF1 mRNA expression increase with 430 

immobilisation (Figure 4). Strikingly, these effects were prevented in the NMES group, 431 

suggesting that NMES may also help to preserve muscle mass during disuse by preventing an 432 

increase in muscle protein breakdown. 433 

In the present study we applied NMES to the quadriceps only. This muscle group is particularly 434 

susceptible to muscle loss during whole body disuse [5] and is functionally important to allow 435 

proper performance of daily living activities. From a clinical perspective, it could be speculated 436 

that multiple muscle groups should be targeted with NMES to ensure muscle mass maintenance 437 

during whole body disuse. Although extending the use of NMES to multiple muscle groups could 438 
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introduce practical constraints (e.g. skin irritation, antagonistic contractions, time constraints), 439 

optimizing such protocols will allow (more) effective clinical use of NMES. Given the role of 440 

skeletal muscle mass in metabolic homeostasis, muscle preservation during disuse would likely 441 

have a positive impact on preserving both metabolic health [72] and functional capacity. 442 

The present study clearly demonstrates that merely a few days of disuse will lead to substantial 443 

loss of muscle mass and strength. Furthermore, NMES is identified as an effective interventional 444 

strategy to preserve muscle mass during such short periods of disuse. These data are of important 445 

clinical relevance as hospitalization following acute illness or injury is generally accompanied by 446 

a hospital stay of ~6 days [73]. The loss of muscle mass and strength during such short (successive) 447 

periods of muscle disuse impairs functional capacity and hinders the subsequent rehabilitation 448 

upon discharge. In fact, it is now much speculated that the development of sarcopenia in the older 449 

population is, at least partly, attributed to the muscle loss that is experienced during short, 450 

successive periods of muscle disuse due to illness or injury occurring over the latter 2-3 decades 451 

of our lifespan [26, 39]. The use of NMES could also be of particular relevance to other patient 452 

groups and populations suffering from muscle atrophy, such as athletes recovering from injury 453 

[74], mechanically ventilated patients [54], spinal cord injured subjects [59], and post-surgery 454 

patients [23]. Preventing or attenuating the loss of muscle mass and strength during limb 455 

immobilisation or bed rest likely minimizes the burden of muscle disuse, shortens hospital stay, 456 

and facilitates subsequent rehabilitation in both health and disease. 457 

In conclusion, NMES represents an effective interventional strategy to prevent the loss of muscle 458 

mass during short periods of muscle disuse. This is likely attributed to a stimulation of muscle 459 

protein synthesis and suppression of muscle protein breakdown. NMES forms a feasible strategy 460 
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to prevent muscle loss and support subsequent rehabilitation during short periods of muscle disuse 461 

due to illness or injury.462 
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Tables 

 

Table 1: Subjects’ characteristics 

 CON (n=12) NMES (n=12) 

Age (y) 22 ± 1 23 ± 1 

Body mass (kg) 74.4 ± 3.5 77.7 ± 2.2 

Height (m) 1.84 ± 0.03 1.84 ± 0.02 

BMI (kg/m2) 21.9 ± 1.0 23.1 ± 0.7 

Leg volume (L) 8.23 ± 0.50 8.15 ± 0.30 

Glucose (mmol/L) 5.01 ± 0.11 5.08 ± 0.07 

Insulin (mU/L) 8.77 ± 0.70 8.93 ± 1.01 

HOMA-index 1.97 ± 0.18 2.03 ± 0.26 

Glycated haemoglobin (%) 5.1 ± 0.1 5.4 ± 0.1 

Values are means±SEM. Abbreviations: BMI, Body Mass Index; HOMA-index, Homeostatic 

Model Assessment Index [75]
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Table 2: Muscle fibre characteristics 

  CON NMES 

 Fibre type Pre Post Pre Post 

Muscle fibre CSA (µm2) I 5259 ± 328 5378 ± 392 5676 ± 424 5493 ± 430 

 II 6680 ± 328 * 6316 ± 441 5885 ± 426   6412 ± 586 † 

% Fibre (number) I 43 ± 3 45 ± 4 52 ± 3 46 ± 3 

 II 57 ± 3 * 55 ± 4 48 ± 3 54 ± 3 

Nuclei per fibre I 2.8 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 2.7 ± 0.2 

 II 3.3 ± 0.1 3.3 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 

Myonuclear domain (µm2) I 1910 ± 57 1848 ± 68 1944 ± 87 1997 ± 63 

 II 2057 ± 103 * 1935 ± 79 2004 ± 89  2233 ± 83 # 

Number of SCs per fibre I 0.090 ± 0.007 0.109 ± 0.009 0.115 ± 0.011 0.106 ± 0.010 

 II 0.072 ± 0.006 0.075 ± 0.007 0.075 ± 0.011 * 0.060 ± 0.007 

Number of SCs per mm2 I 17.3 ± 0.3 20.8 ± 1.7 20.8 ± 2.0 19.2 ± 1.4 

 II 11.5 ± 1.4 * 12.5 ± 1.6 12.5 ± 1.4 * 9.6 ± 1.0 

SCs/myonuclei (%) I 3.3 ± 0.2 3.8 ± 0.3 4.0 ± 0.4 3.8 ± 0.3 

 II 2.2 ± 0.2 * 2.4 ± 0.3 2.5 ± 0.3 * 2.1 ± 0.2 

Data represent means±SEM. Abbreviations: CSA, Cross sectional area; SC, satellite cell; SCs/myonuclei (%), the number of SCs as a 

percentage of the total number of myonuclei (i.e. number of myonuclei + number of SCs). * Significantly different from type I fibre 

value (P<0.05). † Significantly different from pre value in NMES group. # Significantly different from CON post-immobilisation 

value (P<0.05) 



31 
 

Figure legends 

 

Figure 1: Schematic representation of the experimental protocol. NMES = Neuromuscular 

electrical stimulation 

 

Figure 2: Cross-sectional area (CSA) of m. quadriceps femoris in the CON and NMES group, 

before and after 5 days of one-legged knee immobilisation, as measured by single-slice CT scan. 

Data were analysed with a Repeated Measures ANOVA, and demonstrated a significant 

time*treatment interaction (P=0.001). Data are expressed as means±SEM. * P<0.05; significantly 

different when compared with pre-immobilisation values. 

 

Figure 3: Skeletal muscle mRNA expression of myostatin, MyoD and myogenin in the CON and 

NMES group before and after 5 days of one-legged knee immobilisation. Data were analysed with 

a Repeated Measures ANOVA, and expressed as means±SEM. * P<0.05; significantly different 

when compared with pre-immobilisation values. 

 

Figure 4: Skeletal muscle mRNA expression of selected genes of interest in the CON and NMES 

group before and after 5 days of one-legged knee immobilisation. Data were analysed with a 

Repeated Measures ANOVA. * P<0.05; significantly different when compared with pre-

immobilisation values. Data are expressed as means±SEM. Abbreviations: MAFbx, Muscle 

Atrophy F-box; MuRF1, Muscle RING-finger protein-1; FOXO1, Forkhead box protein O1; FAK, 

Focal Adhesion Kinase; LAT1, large neutral amino acid transporter 1; PAT1, Proton-coupled 

amino acid transporter 1. 


