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Grothendieck–Messing deformation theory
for varieties of K3 type

Andreas Langer and Thomas Zink

Let R be an artinian local ring with perfect residue class field k. We associate to
certain 2-displays over the small ring of Witt vectors Ŵ (R) a crystal on SpecR.

Let X be a scheme of K3 type over SpecR. We define a perfect bilinear
form on the second crystalline cohomology group X which generalizes the
Beauville–Bogomolov form for hyper-Kähler varieties over C. We use this form
to prove a lifting criterion of Grothendieck–Messing type for schemes of K3
type. The crystalline cohomology H 2

crys(X/Ŵ (R)) is endowed with the structure
of a 2-display such that the Beauville–Bogomolov form becomes a bilinear form
in the sense of displays. If X is ordinary, the infinitesimal deformations of X
correspond bijectively to infinitesimal deformations of the 2-display of X with
its Beauville–Bogomolov form. For ordinary K3 surfaces X/R we prove that
the slope spectral sequence of the de Rham–Witt complex degenerates and that
H 2

crys(X/W (R)) has a canonical Hodge–Witt decomposition.
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Introduction

Displays were introduced in [Zink 2002] to classify formal p-divisible groups over
a ring R where p is nilpotent. They form a subcategory of the exact tensor cate-
gory of higher displays constructed in [Langer and Zink 2007]. Such displays
arise naturally for a certain class of projective smooth schemes over R (abelian

MSC2010: 14F30, 14F40.
Keywords: crystalline cohomology, displays, Dieudonné 2-displays, F-ordinary schemes.

455

http://msp.org
http://msp.org/tunis
http://dx.doi.org/10.2140/tunis.2019.1-4
http://dx.doi.org/10.2140/tunis.2019.1.455


456 ANDREAS LANGER AND THOMAS ZINK

schemes, K3 surfaces, complete intersections) and equip the crystalline cohomol-
ogy with an additional structure, in particular the existence of divided Frobenius
homomorphisms which satisfy a relative version of Fontaine’s strong divisibility
condition.

Let p be a prime number such that p ≥ 3. Let R be an artinian local ring
with perfect residue field k of characteristic p. We denote by Ŵ (R) the small
Witt ring [Zink 2001a]. Displays over the small Witt ring are called Dieudonné
displays. They classify all p-divisible groups over R [Zink 2001a; Lau 2014]. In
particular a Dieudonné display defines a crystal of locally free modules on the
site (Spec R/W (k))crys. This crystal has an elementary description in terms of
linear algebra. Moreover, there is a Grothendieck–Messing criterion for lifting
Dieudonné displays.

In [Langer and Zink 2007] we associated to a projective variety X/R whose
cohomology has good base change properties a display of higher degree over
W (R). We define in this paper under more restrictive conditions on X listed at
the beginning of Section 2 a Dieudonné 2-display associated to X . This can be
regarded as an additional structure on the crystalline cohomology H 2

crys(X/Ŵ (R))
(Proposition 19). Let R′→ R be a pd-thickening in the category of local artinian
rings with residue field k. This means that R′→ R is a surjective ring homomor-
phism and that its kernel is endowed with divided powers which are compatible
with the canonical divided powers on the ideal pR′. We define the notion of a
relative Dieudonné 2-display with respect to such a pd-thickening. We obtain a
crystal of relative Dieudonné 2-displays which may be regarded as an additional
structure on the crystal

R′ 7→ H 2
crys(X/Ŵ (R′)). (1)

In Section 3 we define schemes of K3 type. The main examples are the Hilbert
schemes of zero-dimensional subschemes of K3 surfaces denoted by K3n in the
literature. We introduce for a scheme of K3 type X→ T a Beauville–Bogomolov
form (Definition 23) on the de Rham cohomology H 2

DR(X/T ). It coincides with the
usual Beauville–Bogomolov form if T = Spec C. We prove under mild conditions
that this form is horizontal for the Gauss–Manin connection (Proposition 26). In
the notation above we obtain for a scheme X of K3 type over the artinian ring R a
perfect pairing on the crystalline cohomology

H 2
crys(X/Ŵ (R′)).

In analogy to the Grothendieck–Messing lifting theory we have Theorem 31:

Theorem. The liftings of X to R′ correspond to selfdual liftings of the Hodge
filtration.
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This is proved in the case R = k and R′ = Wn(k) for K3 surfaces in [Deligne
1981b]. In this case the Beauville–Bogomolov form coincides with the cup product.
The Beauville–Bogomolov form makes the crystal of Dieudonné 2-displays (1)
selfdual.

Let X0/k be a scheme of K3 type such that the Frobenius induces a Frobe-
nius linear bijection on the k-vector space H 2(X0,OX0). We say that X0 is F-
ordinary. Let f : X → Spec R be a deformation of X0. We prove that there
is a unique functorial extension of the Dieudonné 2-display H 2

crys(X/Ŵ (R)) to a
crystal of relative Dieudonné 2-displays (1). In particular the crystal R2 fcrys,∗O

crys
X

in (X/W (k))crys [Berthelot 1974, Chapitre 5, Proposition 3.6.4] can be constructed
from this Dieudonné 2-display. Then we obtain from the Grothendieck–Messing
criterion Theorem 36:

Theorem. Assume that X0 is F-ordinary and lifts to a smooth projective scheme
over W (k). The functor which associates to a deformation X/R of X0 the Dieudonné
2-display H 2

crys(X/Ŵ (R)) with its Beauville–Bogomolov form is an equivalence to
the category of selfdual deformations of the Dieudonné 2-display H 2

crys(X0/W (k))
endowed with the Beauville–Bogomolov form.

In Section 5 we exhibit the second crystalline cohomology of an ordinary K3
surface X over the usual Witt ring W (R) and its associated display and prove
(Theorem 40) a Hodge–Witt decomposition which induces a decomposition of the
display into a direct sum of displays attached to the formal Brauer group B̂rX , the
étale part of the extended Brauer group and the Cartier dual of B̂rX , shifted by −1.
The proof uses the relative de Rham–Witt complex of [Langer and Zink 2007]. We
show that the hypercohomology spectral sequence of the relative de Rham–Witt
complex degenerates.

1. Displays

We fix a prime number p.

Definition 1. A frame F consists of the following data F = (W, J, R, σ, σ̇ ). Here
W is a commutative ring, J ⊂W is an ideal, and R =W/J is the factor ring. The
map σ :W →W is a ring homomorphism and σ̇ : J →W is a σ -linear homomor-
phism of W -modules. We assume that the following conditions are satisfied:

(i) The ideal J and the prime number p are contained in the Jacobson radical
of W.

(ii) For each s ∈W we have

σ(s)≡ s p mod pW.

(iii) The set σ̇ (J ) generates W as an W -module.
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There is a unique element θ ∈W such that σ(η)= θσ̇ (η) for all η ∈ J. We will
assume that θ = p. In the following the ring W is local.

Suppose f : M→ N is a σ -linear map of W -modules. Then we define a new
σ -linear map

f̃ : J ⊗S M→ N , f̃ (η⊗m)= σ̇ (η) f (m) for η ∈ J.

Definition 2. An F-predisplay P = (Pi , ιi , αi , Fi ) consists of the following data:

(1) A sequence of W -modules Pi for i ≥ 0.

(2) Two sequences of W -module homomorphisms

ιi : Pi+1→ Pi , αi : J ⊗S Pi → Pi+1, for i ≥ 0.

(3) A sequence of σ -linear maps for i ≥ 0

Fi : Pi → P0.

These data satisfy the following properties:

(i) Consider the following morphisms:

J ⊗ Pi Pi+1

J ⊗ Pi−1 Pi

αi

idJ ⊗ιi−1 ιi

αi−1

The composites ιi ◦αi and αi−1◦(idJ ⊗ιi−1) are the multiplication J⊗Pi→ Pi

for each i where the composites make sense.

(ii) Fi+1 ◦αi = F̃i .

If we have only the data P = (Pi , ιi , αi ) such that property (i) holds we say that
P is an F-module.

We will denote the morphisms in the category of F-predisplays and in the cate-
gory of F-modules by

HomF (P,P ′) and HomF-mod(P,P ′)
respectively.

This is a generalization of Definition 2.1 of [Langer and Zink 2007]. The argu-
ments there imply

Fi (ιi (x))= pFi+1(x) for x ∈ Pi+1.

If i, k ≥ 0 we will denote the map

ιi+k−1 ◦ · · · ◦ ιi : Pi+k→ Pi

simply by ιiter.
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We are going to associate a frame to the following situation. Let R and S be
p-adic rings. Let

S→ R (2)

be a surjective ring homomorphism such that the kernel a is endowed with divided
powers. We will assume that a becomes nilpotent in the ring S/pS.

Let W (S) w0−→ S→ R be the composite with the Witt polynomial w0. Let J be
the kernel of this composite. We set IS = V W (S) and we denote by ã⊂W (S) the
logarithmic Teichmüller representatives of elements of a. These are the elements
ã := log−1

[a, 0, 0, . . .] in the notation of [Zink 2002, (48)]. Then we have a direct
decomposition of J as a sum of two ideals of W (S):

J = ã⊕ IS.

We will denote the Frobenius endomorphism F of the ring of Witt vectors W (S)
also by σ . We have

σ(ã)= 0, IS · ã= 0.

We define a map

σ̇ : J →W (S), σ̇ (a+ Vξ)= ξ, a ∈ ã, ξ ∈W (S).

This map is σ -linear. We note that the ideal J inherits from a divided powers
which extend the natural divided powers on IS ⊂W (S) [Zink 2002, (89)].

Let us assume that the divided powers on a are compatible with the canonical
divided powers on pS. This implies the canonical divided powers on pW (S)+
V W (S) are compatible with the divided powers on ã given by the isomorphism
with a. In this sense W (S)→W (R/pR) is then a pd-thickening.

We call WS/R = (W (S),J , R, σ, σ̇ ) the relative Witt frame. If S = R we call it
the Witt frame and write WR . If S→ R is fixed as above we call a WR-predisplay
simply a predisplay and a WS/R-predisplay a relative predisplay.

Suppose S and R are artinian local rings with perfect residue field of characteris-
tic p≥ 3. Let S→ R be a surjective homomorphism with kernel a. We assume that
a is endowed with nilpotent divided powers. We call this a nilpotent pd-thickening.
In this situation we can also use the small rings of Witt vectors Ŵ (R) and Ŵ (S)
defined in [Zink 2001a] to define a version of the relative Witt frame. For this we
use that the divided Witt polynomial defines an isomorphism

Ŵ (a)→
⊕
i≥0

a

by [Zink 2002, Remark after Corollary 82]. By this isomorphism the logarithmic
Teichmüller elements are defined. Then we obtain the small relative Witt frame
Ŵ S/R = (Ŵ (S), Ĵ , R, σ, σ̇ ), where Ĵ = ã⊕ V Ŵ (S) is the kernel of the homo-
morphism Ŵ (S)→ R.
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These frames are endowed with a Verjüngung: Let F = (W, J, R, σ, σ̇ ) be a
frame. The structure of a Verjüngung on F consists of two W -module homomor-
phisms

ν : J ⊗W J → J, π : J → J

such that ν is associative. We will also write

ν(y1⊗ y2)= y1 ∗ y2, y1, y2 ∈ J.

The iteration of ν is well-defined:

ν(k) : J ⊗W · · · ⊗W J → J,

where the tensor product on the left-hand side has k factors. We have ν(2) = ν and
ν(1) = idJ . The image of ν(k) is an ideal Jk ⊂ W. By associativity, ν(k+1) factors
through a map

J ⊗W Jk→ Jk+1. (3)

We also require, that the following properties hold:

π(y1 ∗ y2)= y1 y2, where y1, y2 ∈ J,

σ̇ (y1 ∗ y2)= σ̇ (y1)σ̇ (y2),

σ̇ (π(y1))= σ(y1),

(Ker σ̇ )∩ (Kerπ)= 0.

(4)

These properties imply

y1 ∗ y2 = y2 ∗ y1, π(y1) ∗ y2 = y1 y2.

Indeed, for each of these equations the difference between the two sides lies in
(Ker σ̇ )∩ (Kerπ).

In the case of the frame WS/R we define the Verjüngung as

(a1+
Vξ1) ∗ (a2+

Vξ2)= a1a2+
V(ξ1ξ2), π(a+ Vξ)= a+ pVξ. (5)

Then we have
Ji = ãi

+ V W (S).

The map (3) is given by the first formula of (5).
In the same way we obtain a Verjüngung for the frames Ŵ S/R . These are the

only examples we are interested in.
We define the notion of a standard display over a frame F with Verjüngung ν, π .

In the case of WR it coincides with the notion given in [Langer and Zink 2007].
A standard datum consists of a sequence of finitely generated projective W -

modules L0, . . . , Ld and σ -linear homomorphisms

8i : L i → L0⊕ · · ·⊕ Ld .
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We assume that

80⊕ · · ·⊕8d : L0⊕ · · ·⊕ Ld → L0⊕ · · ·⊕ Ld

is a σ -linear isomorphism.
We set

Pi = Ji L0⊕ Ji−1 · · · ⊕ J L i−1⊕ L i ⊕ · · ·⊕ Ld .

The map ι is defined by the following diagram:

Ji+1L0 ⊕ Ji L1 ⊕ · · ·⊕ J L i ⊕ L i+1 ⊕ · · ·⊕ Ld

π

−
−
→ π

−
−
→ · · · id

−
−
→ id

−
−
→ · · · id

−
−
→

Ji L0 ⊕ Ji−1L1 ⊕ · · ·⊕ L i ⊕ L i+1 ⊕ · · ·⊕ Ld

We remark that π(Ji+1)⊂ Ji because of the formula

π(y1 ∗ y2 ∗ · · · ∗ yi+1)= y1(y2 ∗ · · · ∗ yi+1).

The homomorphism αi : J ⊗ Pi → Pi+1 is defined as follows:

J⊗ Ji L0 ⊕ J⊗ Ji−1L1 ⊕ · · ·⊕ J⊗L i ⊕ J⊗L i+1 ⊕ · · ·⊕ J⊗Ld

ν

−
−
→ ν

−
−
→ · · · mult

−
−
→ mult

−
−
→ · · · mult

−
−
→

Ji+1L0 ⊕ Ji L1 ⊕ · · ·⊕ J L i ⊕ L i+1 ⊕ · · ·⊕ Ld .

Here the arrows denoted by ν are induced by the maps (3), and mult denotes the
multiplication.

Finally we define σ -linear maps Fi : Pi → P0:

Ji L0 ⊕ · · ·⊕ J L i−1 ⊕ L i ⊕ L i+1 ⊕ L i+2 · · ·

8̃0

−
−
→ · · · 8̃i−1

−
−
→ 8i

−
−
→ p8i+1

−
−
→ p28

−
−
→ · · ·

L0 ⊕ · · ·⊕ L i−1 ⊕ L i ⊕ L i+1 ⊕ L i+2 · · ·

The maps 8̃j are by definition

8̃j (η`j )= σ̇ (η)8j (`j ) for η ∈ J j , `j ∈ L j , j < i.

The data (Pi , ιi , αi , Fi ) meet the requirements for a predisplay. This predisplay
is called the F-display of a standard datum.

Definition 3. Let F = (W, J, R, σ, σ̇ , ν, π) be a frame with Verjüngung. An F-
display P is an F-predisplay which is isomorphic to the display of a standard
datum. The choice of such an isomorphism is called a normal decomposition of P .
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We call an F-predisplay P separated if the commutative diagram

Pi P0

Pi+1 P0

Fi

Fi+1

ιi p

induces an injective map from Pi+1 to the fibre product Pi ×Fi ,P0,p P0.
One checks easily that an F-display is separated and one proves immediately:

Proposition 4. Let F be a frame with Verjüngung. Let P be a separated F-pre-
display. Let P ′ be an F-predisplay. Then the natural map

HomF-dsp(P ′,P)→ HomW -mod(P ′0, P0)

from the Hom-group of homomorphisms of predisplays to the Hom-group of homo-
morphisms of W -modules is injective.

An F-display P is a separated F-predisplay.

Let P be an F-predisplay. Iterating the homomorphisms αi in Definition 2 we
obtain W -module homomorphisms for i, k ≥ 0:

α
(k)
i : J ⊗W J · · · ⊗W J ⊗W Pi → Pi+k . (6)

By definition we have α(0)i = idPi and α(1)i =αi . We say that P satisfies the condition
alpha if the map (6) factors through a homomorphism ᾱ

(k)
i :

alpha : J ⊗W · · · ⊗W J ⊗W Pi
ν(k)⊗id
−−−→ Jk ⊗W Pi

ᾱ
(k)
i
−→ Pi+k . (7)

Obviously ᾱ(k)i is uniquely determined. A display satisfies the condition alpha.

Proposition 5. Let Q be the display associated to a standard datum (L i ,8i ), i =
0, . . . , d. Let P be a predisplay which satisfies the condition alpha.

Let ρ :Q→ P be a morphism of F-modules. We denote for i ≤ d the restriction
of ρi : Qi → Pi to L i ⊂ Qi by ρ|i : L i → Pi .

With this notation let ρ|i : L i → Pi for i = 0, . . . , d be arbitrary W -module
homomorphisms ρ|i : L i → Pi for i = 0, . . . , d. Then there exists a unique F-
module homomorphism ρ :Q→ P which induces the given ρ|i .

Moreover the morphism of F-modules ρ defined by a sequence of homomor-
phisms ρ|i : L i → Pi is a morphism of predisplays if and only if the following
diagrams are commutative:

L i Q0

Pi P0

8i

ρ|i ρ0

Fi

(8)
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We remark that the morphism ρ0 : Q0=
⊕d

i=1L i→ P0 is given on the summand
L i as the composite L i ⊂ Qi → Pi

ιiter
−→ P0, where the composition of the first two

arrows is ρ|i and the last arrow is the composition ιiter
= ι0 ◦ · · · ◦ ιi−1.

Proof. We have

Qi = Ji L0⊕ · · ·⊕ Ji−k Lk ⊕ · · ·⊕ J L i−1⊕ L i ⊕ · · · .

We will define ρi : Qi→ Pi . We do this for each of the summands above separately.
For k < i we obtain by tensoring ρ|k with Ji−k a homomorphism

Ji−k Lk→ Ji−k ⊗W Pk .

Composing the last arrow with ᾱi−k
k from the condition alpha we obtain ρi on the

summand Ji−k Lk .
For j ≥ i the map ιiter

: Q j → Qi induces the identity on L j . Therefore we
define the restriction of ρi to the summand L j as the composite

L j
ρ| j
−→ Pj

ιiter
−→ Pi .

One checks that the ρi define a morphism of F-modules and, if the diagrams (8)
commute, a morphism of F-predisplays. �

We will now define the base change of displays. We consider a morphism of
frames with Verjüngung u : F → F ′. Let P ′ be an F ′-predisplay. This may be
regarded as an F-predisplay with the same P ′i but regarded as W -modules. Only
the maps αi need a definition:

αi : J ⊗W P ′i → J ′⊗W ′ P ′i
α′i
−→ P ′i+1.

We denote the F-predisplay obtained in this way by u•P ′. Let P be an F-display.
We say that an F ′-display u•P is a base change of P if there exists for each F ′-
display P ′ a bijection

HomF ′(u•P,P ′)∼= HomF (P, u•P ′)

which is functorial in P ′.

Proposition 6 (base change). Let u :F→F ′ be a morphism of frames with Verjün-
gung. Then the base change of an F-display P exists. Moreover for F ′-predisplays
P ′ which satisfy the condition alpha we have a functorial bijection

HomF ′(u•P,P ′)∼= HomF (P, u•P ′).

Proof. We choose a normal decomposition (L i ,8i ) of P . Then a morphism ρ :

P→ u•P ′ is given by a set of W -module homomorphisms

ρ|i : L i → P ′i
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such that the analogues of (8) are commutative. From the standard datum (L i ,8i )

we obtain a standard datum (L ′i =W ′⊗W L i ,8
′

i = σ
′
⊗8i ) for the frame F ′ which

defines an F ′-display Q. From ρ|i we obtain W ′-module homomorphisms

ρ ′
|i :W

′
⊗W L i → P ′i .

By Proposition 5, these homomorphisms define a morphism of F ′-predisplays
Q→P ′. This shows that u•P :=Q is a base change and has the claimed property. �

We apply the base change to the following obvious morphisms of frames with
Verjüngung:

WS→WS/R→WR.

More generally let

S S′

R R′

be a morphism of pd-extension of the type (2). We obtain a morphism of frames
with Verjüngung WS/R→WS′/R′ . We have this for small Witt frames too.

We will give now an intrinsic characterization of a display which doesn’t use
a normal decomposition. Let F be a frame with Verjüngung. Let P be an F-
predisplay. Then we denote the image of the homomorphism

Pi
ιiter
−→ P0→ P0/J P0 (9)

by E i or more precisely by FiliP . This is called the Hodge filtration on the R-
module P0/J P0:

· · · E i+1
→ E i

→ · · · → E0
= P0/J P0. (10)

If P is a display, this is a filtration by direct summands.

Proposition 7. Let F be a frame with Verjüngung. We assume that each finitely
generated projective R-module may be lifted to a finitely generated projective W -
module. Let P be an F-predisplay with Hodge filtration E i such that the following
properties hold:

(1) P is separated and satisfies the condition alpha.

(2) P0 is a finitely generated projective W -module.

(3) The Hodge filtration consists of direct summands E i
⊂ P0/J P0.

(4) There is an exact sequence

J ⊗ Pi
αi
−→ Pi+1→ E i+1

→ 0.

(5) The subgroups Fi Pi for i ≥ 0 generate the W -module P0.
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Then P is an F-display.

We omit the proof. We note that the assumption that liftings of finitely generated
projective modules exist is trivial if R is a local ring.

Let F =WS/R or F = Ŵ S/R . Let P be an F-display. A lifting of the Hodge
filtration of P is a sequence of split injections of projective finitely generated S-
modules

· · · Ẽ i+1
→ Ẽ i

→ · · · → Ẽ0
= P0/IS P0, (11)

which coincides with (10) when tensored with R.
We will now discuss the notion of an extended display. Let F be a frame with

Verjüngung. Let (L i ,8i ) be a standard datum. If we replace in the definition of the
display associated to this datum all Ji simply by J we obtain an F-predisplay P̃ .
We consider this notion only for the frames WS/R and Ŵ S/R . Let P̃ be an ex-
tended display and let E i be its Hodge filtration. Then P̃ satisfies all conditions of
Proposition 7 except for the condition (4).

We note that there is no difference between displays and extended displays in
the case S = R because then J = Ji .

Let Q be a WS/R-predisplay or a Ŵ S/R-predisplay. For this discussion we denote
by Qi ⊂ Qi the intersection of all images of maps

Qi+k
ιiter
−→ Qi .

If Q is a display then Qi = 0 for all i because W (S) is a p-adic ring. If Q is an
extended display we have that the map ιiter

: Qi → Q0 induces an isomorphism

ιiter
: Qi → ãQ0. (12)

Note that for k > i we have that ãLk ⊂ (ã⊕ IS)Lk ⊂ Qi is a direct summand of
Qi which is mapped isomorphically to a direct summand of Qi and further by (12)
isomorphically to ãLk ⊂ ãQ0.

We note that an extended display satisfies the condition alpha. We have the
following version of Proposition 5 which is proved by the same argument.

Proposition 8. We consider a predisplay for the frame F =WS/R or F = Ŵ S/R .
Let Q̃ be the extended display associated to a standard datum (L i ,8i ), i =0, . . . , d.
Let P be a predisplay which satisfies the condition alpha and (12).

Let ρ : Q̃→ P be a morphism of F-modules. We denote for i ≤ d the restriction
of ρi : Qi → Pi to L i ⊂ Qi by ρ|i : L i → Pi .

Conversely arbitrary W (S)-module homomorphisms ρ|i : L i → Pi for i =
0, . . . , d define uniquely a morphism of F-modules ρ : Q̃→ P .

Moreover the morphism of F-modules ρ defined by a sequence of homomor-
phisms ρ|i : L i → Pi is a morphism of predisplays if and only if the following
diagrams are commutative:
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L i Q̃0

Pi P0

8i

ρ|i ρ0

Fi

(13)

Corollary 9. Let Q be the display associated to the standard datum (L i ,8i ). Then
we have a canonical bijection

HomF (Q̃,P)−→∼ HomF (Q,P).

We conclude that we have a functor Q 7→ Q̃ from the category of displays to
the category of extended displays, because the construction of Q̃ does not depend
on the normal decomposition.

Let (L i ,8i ) be a standard datum for the frame WS/R; let Q be the associated
display and Q̃ the extended display.

Let Q̂ be the WR-display associated to (W (R)⊗W (S) L i , σ ⊗8i ). Then Q̂ is
the base change of Q via WS/R → WR . Since a WR-display P regarded as a
WS/R-predisplay satisfies the condition alpha and (12) we obtain

HomWR (Q̂,P)−→∼ HomWS/R (Q̃,P).

This shows that we have also a functor Q̃ 7→ Q̂. Therefore we have functors

(WS/R-displays)→ (WS/R-extended displays)→ (WR-displays)

such that the composition of these functors is base change. The same functors exist
if the small Witt frame Ŵ S/R is defined.

We have defined what is a lifting of the Hodge filtration for a WS/R-display P .
We will now construct the functor(

extended WS/R-displays
and a lift of the Hodge filtration

)
→ (WS-displays). (14)

Again the construction will be the same for small Witt frames.
Let P̃ be an extended WS/R-display. Let

· · · Ẽ i+1
→ Ẽ i

→ · · · → Ẽ0
= P̃0/IS P̃0

be a lift of the Hodge filtration. We construct in a functorial way a WS-display P .
We denote by Ê i

⊂ P̃0/IS P̃0 the preimage of the Hodge filtration E i
⊂ P̃0/J P̃0.

By choosing an arbitrary normal decomposition of P̃ we find that the map

P̃i → P̃0/IS P̃0

has image Ê i.



GROTHENDIECK–MESSING DEFORMATION THEORY FOR VARIETIES OF K3 TYPE 467

We choose a splitting of the lifted Hodge filtration and obtain a decomposition
into S-submodules of P̃0/IS P̃0:

Ẽ i
= L i ⊕ L i+1⊕ · · ·⊕ Ld .

We choose a finitely generated projective W (S)-module L i which lifts the S-
module L i and we choose a commutative diagram:

L i

P̃i Êi

A composite of the ι maps yields L i→ P̃i→ P̃0= P0. We obtain a homomorphism

L0⊕ L1⊕ · · ·⊕ Lm→ P0.

We see that this map is an isomorphism by taking it modulo J.
The maps Fi : P̃i → P̃0 give by restriction maps 8i : L i → Pi . We will show

that the map
L0⊕ L1⊕ · · ·⊕ Lm→ P0 (15)

is a Frobenius linear isomorphism. Then we obtain standard data (L i ,8i ) for P .
To show that (15) is an isomorphism we consider the WR display P obtained

by base change from P . We have natural maps Pi → P̃i → P i . The images of
the L i in P i give a normal decomposition of those displays. Therefore the map
(15) becomes a Frobenius linear isomorphism when tensored with W (R). Then
the map itself is a Frobenius linear isomorphism.

Then we define the desired WS-display P by the standard datum (L i ,8i ). Our
construction gives that Pi ⊂ P̃i is the preimage of Ẽ i under the map

P̃i → P0/IS P0.

This shows that the assignment P̃ 7→ P is functorial and does not depend on the
construction of the normal decomposition chosen above.

Proposition 10. The functor (14) defines an equivalence of the category of ex-
tended WS/R-displays together with a Hodge filtration and the category of WS-
displays. The same holds for the small Witt frames.

Proof. Indeed there is an obvious inverse functor. We denote by

u• : (WS-displays)→ (extended WS/R-displays)

the functor induced by base change. An extended WS/R-display P may be regarded
as a WS-predisplay. Then we denote it by u•P . By Propositions 5 and 8 we have
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for a WS-display Q a functorial bijection,

HomWS/R (u•Q,P)∼= HomWS (Q, u•P).
We set

Q̂= u•Q.

The canonical map Q→ u•Q̂ induces natural injections Qi → Q̂i . This provides
a lifting of the Hodge filtration of the extended display Q̂. Clearly this functor is
inverse to the functor (14). �

Let P be a WS/R-display. We say that a lifting of the Hodge filtration Ẽ i
⊂

P0/IS P0 for i ≥0 is admissible if Ẽ i is in the image of Pi
ιiter
−→P0/IS P0. If Q is a WS-

display and Q̃ is the WS/R-display by base change then we have a natural inclusion
Qi → Q̃i . This shows that the induced Hodge filtration on Q̃ is admissible. From
the proof of the last proposition we obtain:

Corollary 11. The functor

(WS-displays)→
(
WS/R-displays with an admissible

lift of the Hodge filtration

)
is an equivalence of categories.

We consider a frame with Verjüngung F = (W, J, R, σ, σ̇ , ν, π). We consider
2-displays, i.e., displays which are defined by standard data (L i ,8i ) with L i = 0
for i > 2 [Langer and Zink 2007, Definitions 2.4 and 2.5]. Let P and P ′ given
by standard data (L0, L1, L2,80,81,82), (L ′0, L ′1, L ′2,8

′

0,8
′

1,8
′

2). We assume
that the W -modules L i and L ′i are free. We choose a W -basis of each of these
modules. A morphism of displays ρ : P→ P ′ is given by three maps

ρ|i : L i → P ′i = Ji L ′0⊕ · · ·⊕ J L ′i−1⊕ L ′i · · ·

for i = 0, 1, 2. We represent each of these maps by a column vector. These are the
columns of the matrix X00 Y01 Y02

X10 X11 Y12

X20 X21 X22

 . (16)

The X i j are matrices with coefficients in W. They represent in the chosen basis
the homomorphisms L j → L ′i obtained from ρ| j . The matrices Y01 and Y12 have
coefficients in J and Y02 has coefficients in J2. Since a morphism of 2-displays
commutes with ι, one can see that the map P0→ P ′0 is given by the matrixX00 Y01 πY02

X10 X11 Y12

X20 X21 X22

 .
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By Proposition 5 the matrix (16) defines a morphism of displays if and only if the
following diagram is commutative for i = 0, 1, 2:

L i P0

P ′i P ′0

8i

ρ|i ρ0

F ′i

(17)

The σ -linear maps 8i and 8′i are given by the row vectors of matrices with coef-
ficients in W : A0i

A1i

A2i

 and

A′0i
A′1i
A′2i

 .
We write these vectors in a matrix. For example, the standard data (L0, L1, L2,81,

82,83) for P are equivalent to the block matrix:

A=

A00 A01 A02

A10 A11 A12

A20 A21 A22

 . (18)

We will call this a structure matrix for the display P . It is by definition a matrix in
GLh(W ), where h = rankW P0.

From the definition of F ′i in terms of standard data, these σ -linear maps have
the following matrix representations:

F ′0

x0

x1

x2

=
A′00 p A′01 p2 A′02

A′10 p A′11 p2 A′12
A′20 p A′21 p2 A′22

σ(x0)

σ (x1)

σ (x2)

 ,
F ′1

y0

x1

x2

=
A′00 A′01 p A′02

A′10 A′11 p A′12
A′20 A′21 p A′22

σ̇ (y0)

σ (x1)

σ (x2)

 ,
F ′2

y0

y1

x2

=
A′00 A′01 A′02

A′10 A′11 A′12
A′20 A′21 A′22

σ̇ (y0)

σ̇ (y1)

σ (x2)

 .
The vectors xi have coefficients in W, and the yi have coefficients in J , but in the
equation for F ′2 the vector y0 has even coefficients in J2.

Then the commutativity of the diagram (17) for i = 0 amounts toA′00 p A′01 p2 A′02
A′10 p A′11 p2 A′12
A′20 p A′21 p2 A′22

σ(X00)

σ (X10)

σ (X20)

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

A00

A10

A20

 .
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For i = 1 it amounts toA′00 A′01 p A′02
A′10 A′11 p A′12
A′20 A′21 p A′22

 σ̇ (Y01)

σ (X11)

σ (X21)

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

A01

A11

A21

 .
Finally for i = 2 it amounts toA′00 A′01 A′02

A′10 A′11 A′12
A′20 A′21 A′22

 σ̇ (Y02)

σ̇ (Y12)

σ (X22)

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

A02

A12

A22

 .
We may write the last three equations as a single matrix equation,

A′
 σ(X00) σ̇ (Y01) σ̇ (Y02)

pσ(X10) σ (X11) σ̇ (Y12)

p2σ(X20) pσ(X21) σ (X22)

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

 A, (19)

where A and A′ are the structure matrices (18).
Let F be a frame with Verjüngung such that any finitely generated projective

R-module is free. Then the category of F-2-displays is equivalent to the following
category MF : The objects are invertible matrices A with coefficients in W with
a 3× 3-partition into blocks such that the blocks on the diagonal are quadratic
matrices. The morphisms A→ A′ are block matrices (16) such that (19) is satisfied.
Of course we have to say what is the composite of two matrices, but we omit this.
In this direction we make only the following remark: the maps ρi : Pi → P ′i are
explicitly given by the matrix equations

ρ0

x0

x1

x2

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

x0

x1

x2

 ,
ρ1

y0

x1

x2

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

y0

x1

x2

 ,
ρ2

y0

y1

x2

=
 X00 Y̆01 Y02

πX10 X11 Y12

πX20 X21 X22

y0

y1

x2

 .
We need to explain the last equation. Here y0 is a vector with entries in J2 and y1

a vector with entries in J. The entries πX10, πX20 and Y̆01 are only symbols. But
the matrix multiplication becomes meaningful with the definitions

Y̆01 y1 = Y01 ∗ y1, πX10 y0 = X10π(y0), πX20 y0 = X10π(y0). (20)

Note that the vectors of (20) have entries in J2.



GROTHENDIECK–MESSING DEFORMATION THEORY FOR VARIETIES OF K3 TYPE 471

Using these expressions for ρi we see that (19) amounts to the commutativity
of the following diagram:

P2 P ′2

P0 P ′0

ρ2

F2 F ′2

ρ0

Finally we give the description of the dual display in terms of standard data. Let
F be a frame with Verjüngung as before. Assume P is the display associated to
the standard data:

8 : L0⊕ L1⊕ L2→ L0⊕ L1⊕ L2. (21)

We write 8 in matrix form:

8

x
y
z

=
A00 A01 A02

A10 A11 A12

A20 A21 A22

σ(x)σ (y)
σ (z)

 .
Then the dual display P̂ is formed from the following standard data. We take

the dual modules L∗i = HomW (L i ,W ) but in the order L∗2, L∗1, L∗0. Changing the
order in (21) and taking the dual of this σ -linear map we obtain a linear map

8∗ : L∗2⊕ L∗1⊕ L∗0→W ⊗σ,W (L∗2⊕ L∗1⊕ L∗0). (22)

We set 8̂ = (8∗)−1. We regard this as a σ -linear map. We obtain a standard
datum,

(L∗2, L∗1, L∗0, 8̂),

which is by definition the standard datum of P̂ . In particular

P̂0 = L∗2⊕ L∗1⊕ L∗0.

In matrix form 8̂ takes the form

8̂

x ′

y′

z′

=
tA22

tA12
tA02

tA21
tA11

tA01
tA20

tA10
tA00

−1σ(x ′)σ (y′)
σ (z′)

 .
Let us denote by d0, d1, d2 the ranks of the modules L0, L1, L2 respectively.

Consider the block matrix

B :=

 0 0 Ed0

0 Ed1 0
Ed2 0 0

 ,
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where E denotes a unit matrix. This matrix defines a bilinear form:

〈 , 〉 : P0× P̂0→W,

〈x
y
z

 ,
x ′

y′

z′

〉= (x y z)B

x ′

y′

z′

 . (23)

In this notation the definition of 8̂ reads

〈8(u), 8̂(û)〉 = σ 〈u, û〉, u ∈ P0, û ∈ P̂0.

One deduces the formula

〈F0(u), F̂0(û)〉 = p2σ 〈u, û〉.

If we denote by U(2) the F-2-display associated to the standard datum (0, 0,W ; σ)
we obtain from 〈 , 〉 a bilinear pairing of F-displays,

〈 , 〉 : P × P̂→ U(2).

The complete definition of a bilinear form is given in [Langer and Zink 2007] after
equation (15), pp.160–163. In the case U(2) we have for each i, j ≥ 0 a W -bilinear
pairing

Pi × Pj →W.

The most important formulas of this definition are

〈Fi xi , F̂j x j 〉 = p2−i− jσ 〈xi , x̂ j 〉 if i + j ≤ 2, for xi ∈ Pi ,

〈Fi xi , F̂j x j 〉 = σ̇ 〈xi , x̂ j 〉 if i + j > 2 and x̂ j ∈ P̂j .

One should also keep in mind that the bilinear form of displays is already uniquely
determined by the induced W -bilinear form

P0× P̂0→W.

We note that the Hodge filtrations

{0} ⊂ L2/J L2 ⊂ L1/J L1⊕ L2/J L2 ⊂ P0/J P0,

and
{0} ⊂ L̂2/J L̂2 ⊂ L̂1/J L̂1⊕ L̂2/J L̂2 ⊂ P̂0/J P̂0

are dual with respect to 〈 , 〉.
In particular an isomorphism of 2-displays P → P̂ defines a bilinear form of

displays
P ×P→ U(2)

such that the Hodge filtration of P is selfdual with respect to this pairing.
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Let R, S be an artinian local ring with perfect residue field. Let S → R be
a nilpotent pd-thickening and let a be the kernel. Then have defined the small
relative Witt frame Ŵ S/R with Verjüngung.

For a Ŵ S/R-display P the Frobenius F0 : P0→ P0 induces a map

F0 : P0/(J P0+ pP0+ ι0(P1))→ P0/(J P0+ pP0+ ι0(P1)). (24)

Definition 12. We say that a 2-display P is F0-étale if the map (24) is an isomor-
phism.

If a 2-display P and the dual display P̂ are F0-étale, we call the display P
F-ordinary.

This makes sense for other frames but then we can do nothing with the definition.
Let S′→ R be a second nilpotent pd-thickening of the same type. We denote

the kernel by a′. Let S′→ S a morphism of pd-thickenings of R. Then the kernel b
of this morphism is a sub-pd-ideal of a′. We obtain a morphism of frames

Ŵ S′/R→ Ŵ S/R. (25)

Proposition 13. Let R, S, S′ be artinian local rings with perfect residue field
of characteristic p > 0. Let S′ → S be a surjective morphism of nilpotent pd-
thickenings of R. Let a and a′ be the kernels of the pd-thickenings.

Let P and Q be two Ŵ S/R-2-displays which are F-ordinary. Let P ′ and Q′ be
liftings to Ŵ S′/R-2-displays.

Then each homomorphism ρ : P → Q lifts to a homomorphism of Ŵ S′/R-
displays ρ ′ : P ′→Q′.

If we assume moreover that (a′)2 = 0, the homomorphism ρ ′ is uniquely deter-
mined by ρ.

Proof. By the usual argument, compare [Zink 2002, proof of Theorem 46], we
may assume that P = Q and that ρ is the identity. We choose such a normal
decomposition and a basis in each module of this decomposition. We lift this to a
normal decomposition of P ′ or Q′ respectively and we also lift the given basis.

Then we may represent the 2-display P ′ by the structure matrix

A=

A00 A01 A02

A10 A11 A12

A20 A21 A22

 ∈ GL(Ŵ (S′)),

and similarly Q′ by the structure matrix A′ = (A′i j ). We will write A−1
= ( Ăi j )

and (A′)−1
= ( Ă′i j ). Then our assumption says that the following matrices are

invertible:
A00, A′00, Ă22, Ă′22.
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Let c be the kernel of S′→ S. Decomposing S′→ S in a series of pd-morphisms,
we may assume that c2

= 0 and pc= 0. A morphism ρ ′ : P ′→Q′ which lifts the
identity may be represented by a matrix of the form

E+

X00 Y01 Y02

X10 X11 Y12

X20 X21 X22

 .
The entries of the matrices X i j and Yi j are in Ŵ (c) and the entries of w0(Y02) are
moreover in (a′)2.

We set Ci j=A′i j−Ai j . These are matrices with entries in Ŵ (c). Since σ(X i j )=0,
(19) may be rewritten as

C + A′
0 σ̇ (Y01) σ̇ (Y02)

0 0 σ̇ (Y12)

0 0 0

=
X00 Y01 πY02

X10 X11 Y12

X20 X21 X22

 A. (26)

We used the notation C := (Ci j ). We have to show that there are matrices X i j and
Yi j which satisfy this equation. We write Y02 = y02+

V Z02, where y02 ∈ c̃∩ (ã′)
2.

We note that πY02 = y02. In particular we need πY02 = 0 if we want to prove the
second assertion of the proposition, that the solutions X i j , Yi j are unique.

We set D = C A−1. Then (26) becomes

D+ A′
0 σ̇ (Y01) σ̇ (Y02)

0 0 σ̇ (Y12)

0 0 0

 A−1
=

X00 Y01 y02

X10 X11 Y12

X20 X21 X22

 . (27)

We have

A′
0 σ̇ (Y01) σ̇ (Y02)

0 0 σ̇ (Y12)

0 0 0

 A−1

=

∗ A′00σ̇ (Y01) Ă11+ A′00σ̇ (Y02) Ă21+ A′01σ̇ (Y12) Ă21 ?1

∗ ∗ ?2

∗ ∗ ?3

 ,
where

?1 = A′00σ̇ (Y01) Ă12+ A′00σ̇ (Y02) Ă22+ A′01σ̇ (Y12) Ă22,

?2 = A′10σ̇ (Y01) Ă12+ A′10σ̇ (Y02) Ă22+ A′11σ̇ (Y12) Ă22,

?3 = ∗.

The entries ∗ are irrelevant for the following and therefore not specified. Since the
X i j don’t appear on the left-hand side of (27) we see that it is enough to satisfy the
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following equations if we want to solve (27):

D01+ A′00σ̇ (Y01) Ă11+ A′00σ̇ (Y02) Ă21+ A′01σ̇ (Y12) Ă21 = Y01,

D12+ A′10σ̇ (Y01) Ă12+ A′10σ̇ (Y02) Ă22+ A′11σ̇ (Y12) Ă22 = Y12,

D02− y02+ A′00σ̇ (Y01) Ă12+ A′01σ̇ (Y12) Ă22 =−A′00σ̇ (Y02) Ă22.

(28)

In this equation the Di j are matrices with entries in Ŵ (c). We note that for any
given matrices y02 and σ̇ (Y02) there is a unique Y02.

Therefore the proposition follows if we show that for any given y02 with entries
in c∩ (a′)2 the equation above has a unique solution for the unknowns

Z0 = Y01, Z1 = Y12, Z2 =−A′00σ̇ (Y02) Ă22,

with entries in Ŵ (c). This is because the matrices A′00 and Ă22 are invertible.
We denote by c[n] the Ŵ (S′)-module obtained from the S′-module c via restric-

tion of scalars by the homomorphism wn : Ŵ (S′)→ S′. The divided powers on c

allow us to divide the Witt polynomial wn by pn. The divided Witt polynomials
w′n define an isomorphism

Ŵ (c)→

∞⊕
n=0

c[n] (29)

of Ŵ (S′)-modules.
For a matrix M with entries in Ŵ (c) of suitable size we define the operator

L00(M)= A′00 M Ă11.

If M has entries in the ideal
⊕n

i=0 c[i] in the sense of (29) then L00(M) has entries
in the same ideal. In this case we write length M ≤ n. It follows that length σ̇ (M)≤
n− 1.

With obvious definitions of the operators Li j we may write the system of equa-
tions (28) as

D01+L00(σ̇ (Z0))+L01(σ̇ (Z1))+L02(Z2)= Z0,

D12+L10(σ̇ (Z0))+L11(σ̇ (Z1))+L12(Z2)= Z1,

D′02+L20(σ̇ (Z0))+L21(σ̇ (Z1))= Z2.

Here we write D′02 := D02− y02. We look for solutions in the space of matrices
(Z0, Z1, Z2) with entries in Ŵ (c). On this space we consider the operator U given
by

U

Z0

Z1

Z2

=
L00(σ̇ (Z0))+L01(σ̇ (Z1))+L02(Z2)

L10(σ̇ (Z0))+L11(σ̇ (Z1))+L12(Z2)

L20(σ̇ (Z0))+L21(σ̇ (Z1))

 .
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Clearly it suffices to prove that the operator U is pointwise nilpotent. Assume we
are given Z0, Z1, Z2. We set

U

Z0

Z1

Z2

=
Z ′0

Z ′1
Z ′2

 , U

Z ′0
Z ′1
Z ′2

=
Z ′′0

Z ′′1
Z ′′2

 .
Let m be a natural number such that length Z0≤m, length Z1≤m and length Z2≤

m− 1. Since σ̇ decreases the length by 1, we obtain

length Z ′0 ≤ m− 1, length Z ′1 ≤ m− 1, length Z ′2 ≤ m− 1.

And in the next step we find

length Z ′′0 ≤ m− 1, length Z ′′1 ≤ m− 1, length Z ′′2 ≤ m− 2.

The nilpotence of U is now clear. This proves the uniqueness of the solutions. �

Remark. With the assumptions of the last proposition we assume that the kernel c
of the pd-morphism satisfies c2

= 0 and pc= 0. Then the group of isomorphisms
P ′→ P ′ which lift the identity idP is isomorphic to the additive group of c∩ (a′)2.
(The assumptions ensure that such a lift is the same as a solution for (27).) This
is because y02 determines the lifting uniquely and because one can check that the
composite of two endomorphisms of P ′ which lift zero is zero.

Corollary 14. Let S→ R be a surjective morphism of artinian local rings with
perfect residue class field. Let P and P ′ be two F-ordinary Ŵ S-2-displays. Let
ρ, τ : P→ P ′ be two homomorphisms such that their base changes ρR and τR are
equal.

Then ρ = τ .

Corollary 15. Let R, S′ be an artinian local ring with perfect residue field as
above. Let S′→ R be a nilpotent pd-thickening with kernel a′ such that (a′)2 = 0.
Let Q be an F-ordinary Ŵ R-2-display over R. By Proposition 13 there is up to
canonical isomorphism a unique Ŵ S′/R-2-display Q̂ which lifts Q.

The category of F-ordinary Ŵ S′-2-displays is equivalent to the category of pairs
(Q,Fil) where Q is an F-ordinary Ŵ R-2-displays and where Fil is an admissible
lifting of the Hodge filtration of Q̂.

Let k be a perfect field of characteristic p > 2. Let Artk be the category of
artinian local rings with residue class field k. Let S be an ordinary Wk-2-display.
Let D be the functor that associates to R ∈Artk the isomorphism classes of pairs
(P, ι), where P is a Ŵ R-2-display and ι : S→ Pk is an isomorphism. If we have
a diagram R1→ R← R2 then the canonical map

D(R1×R R2)→ D(R1)×D(R)D(R2) (30)
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is surjective. To see this, one can for example use the interpretation of a display as
a block matrix. It is injective because of Corollary 14.

By Corollary 15 the tangent space of the functor D is finite-dimensional.

Corollary 16. The functor D is prorepresentable by a power series ring over W (k)
in finitely many variables.

Proof. By what we have said the prorepresentability is standard. It remains to
check that the functor is smooth. But this follows again by representing a display
by a matrix. �

We will use the following version of the deformation functor. We take a Wk-2-
display S as above and we assume moreover that S is endowed with an isomor-
phism

λ0 : S→ Ŝ. (31)

We can also regard λ0 as a pairing S×S→ U(2). Then we define the deformation
functor D̂ :Artk→ (sets). For R ∈Artk we define D̂(R) as the set of isomorphism
classes of Ŵ R-2-displays P together with an isomorphism λ : P → P̂ and an
isomorphism ι : S→ Pk such that the following diagram commutes:

S Pk

Ŝ P̂k

ι

λ0 λk

ι̂

We note that by the diagram and Corollary 14 the morphism λ is uniquely deter-
mined if it exists. Therefore we have an inclusion D̂(R) ⊂ D(R). The map (30)
for the functor D̂ is also bijective. We will now find the tangent space of D̂. More
generally we consider a surjective homomorphism S′→ R in Artk with kernel a′

such that (a′)2 = 0. We endow this with the trivial divided powers. Assume we
are given (P, ι, λ) ∈ D̂(R). Then P lifts uniquely to a Ŵ S′/R-display Prel and λ
lifts to an isomorphism λrel : Prel→ P̂ rel. Let Q be a Ŵ S′-2-display which lifts
P . Giving Q is the same as giving an admissible lifting of the Hodge filtration of
Prel. The dual display Q̂ corresponds to the dual filtration of P̂ rel. But then Q and
Q̂ are isomorphic if and only if λrel takes the filtration FilQ given by Q to the dual
filtration, i.e., FilQ is selfdual with respect to the bilinear form

( , ) : Prel,0/IS′Prel,0× Prel,0/IS′Prel,0→ S′ (32)

induced by λrel.

Proposition 17. Let S′→ R be a pd-thickening with kernel a′ such that (a′)2 = 0.
Let (P, λ) be an ordinary Ŵ R-2-display which is endowed with an isomorphism
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λ : P→ P̂ . We assume that λ is symmetric (i.e., λ= λ̂) and such that for the Hodge
filtration rankR Fil2P = 1. We denote by Prel the unique Ŵ S′/R which lifts P .

The liftings of (P, λ) to a Ŵ S′-2-display Q together with a lift of λ to an iso-
morphism µ :Q→ Q̂ are in bijection with the liftings of Fil2P to a isotropic direct
summand of Prel,0/IS′Prel,0.

Proof. We know that λ lifts to an isomorphism λrel : Prel → P̂ rel. It follows
from Corollary 15 that the liftings (Q, µ) of (P, λ) are in bijection with selfdual
admissible liftings of the Hodge filtration of P .

The isomorphism λrel induces a perfect pairing (32) of S′-modules. We claim
that the image of

Prel,2→ Prel,0/IS′Prel,0

is isotropic under this pairing (32).
To verify this we take a normal decomposition of Prel,

Prel,0 = L0⊕ L1⊕ L2.

This induces the dual normal decomposition of P̂ rel (compare (22))

P̂rel,0 = L̂0⊕ L̂1⊕ L̂2,

where L̂0 = L∗2, L̂1 = L∗1, L̂2 = L∗0.
We set L ′i = L i/IS′L i ⊂ Prel,0/IS′Prel,0 and L̂ ′i = L̂ i/IS′ L̂ i ⊂ P̂rel,0/IS′ P̂rel,0.

Then the images of the two maps

Prel,2→ Prel,0/IS′Prel,0 and P̂rel,2→ P̂rel,0/IS′ P̂rel,0

are
L ′2⊕ a′L1 and L̂ ′2⊕ a′ L̂1

respectively. Since (a′)2 = 0 the last two modules are orthogonal with respect to
the perfect pairing,

Prel,0/IS′Prel,0× P̂rel,0/IS′ P̂rel,0→ S′

induced by (23). Composing this with the isomorphism λrel we obtain the claim.
Next we show that any lift of Fil2P to an isotropic direct summand U ⊂

Prel,0/IS′Prel,0 is contained in the image of Prel,2. We take a splitting of the selfdual
Hodge filtration of P:

Fil2P = N ′2 ⊂ N ′2⊕ N ′1 ⊂ N ′2⊕ N ′1⊕ N0 = P0/IR P0.

Then the perfect pairing induced by λ induces a perfect pairing N ′2× N ′0→ R and
(N ′2)

⊥
= N ′2⊕ N ′0. It is easy to see that this lifts to a selfdual filtration

L ′2 ⊂ L ′2⊕ L ′1 ⊂ L ′2⊕ L ′1 ⊂ L ′2⊕ L ′1⊕ L ′0 = Prel,0/IS′Prel,0
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with respect to (32). Let l2 be a basis of L ′2. Then U has a basis

u = l2+ l1+ l0, l1 ∈ a
′L ′1, l2 ∈ a

′L ′2.
We find

(u, u)= (l2, l0)+ (l0, l2)= 2(l2, l0).

Because L ′2× L ′0→ S′ is perfect, this implies l0 = 0. Therefore u is in the image
of Prel,2.

From an isotropic lift U ⊂ Prel,0/IS′Prel,0 we obtain a selfdual admissible lift
of the Hodge filtration of P , if we define U = Fil2 and Fil1 to be the orthogonal
complement of U. By Corollary 15 this gives a lifting (Q, µ). �

In particular we see that lifts of P always exist. Therefore we obtain:

Corollary 18. Let S, λ0 be a Wk-2-display with a symmetric isomorphism (31)
and such that for the Hodge filtration dimk Fil2S = 1.

Then the functor D̂ is prorepresentable by a power series ring over W (k) in
finitely many variables.

2. 2-displays of schemes

Let X0 be a projective and smooth scheme over a perfect field k of characteristic
p > 2. We make the following assumptions:

(1) Let TX0/k be the tangent bundle of X0. Then

H 0(X0, TX0/k)= H 2(X0, TX0/k)= 0. (33)

(2) Let R be a local artinian W (k)-algebra with residue class field k and let f :
X→ Spec R be an arbitrary deformation of X0. Then the R-modules

R j f∗�i
X/R (34)

are free for i + j ≤ 2 and commute with base change for morphisms Spec R′→
Spec R, where R′ is a local artinian W (k)-algebra with residue class field k.

(3) The spectral sequence

E i j
1 = R j f∗�i

X/R⇒ R j+i f∗�·X/R (35)

degenerates for i+ j ≤ 2, i.e., all differentials starting or ending at E i j
r for i+ j ≤ 2,

r ≥ 1 are zero.

We remark that the last two requirements are fulfilled if

H j (X0, �
i
X0/k)= 0 for i + j = 1 or 3.

Assume that X0 satisfies the three conditions above. Let R be a local W (k)-
algebra whose maximal ideal m is nilpotent and such that R/m= k. Let g : Y → R
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be a deformation of X0. Then the last two conditions are also satisfied for g. Indeed
R is the filtered union of local W (k)-algebras of finite type and X is automatically
defined over a W (k)-algebra of finite type.

Assume again that the three conditions are fulfilled for X0. Then there is a
universal deformation, i.e., a morphism of formal schemes,

X→ Spf A. (36)

The adic ring A is the ring W (k)[[T1, . . . , Tr ]] with (p, T1, . . . , Tr ) as the ideal of
definition. We have r = dim H 1(X0, TX0/k). We denote by σ the endomorphism
of A such that σ(Ti )= T p

i and such that σ is the Frobenius on W (k).
We are going to define a display structure on the de Rham–Witt cohomology

of (36). For this we use the frames introduced in [Zink 2001b]. We call them
w-frames in order to distinguish them from the frames introduced above. With
respect to a w-frame we have the category of windows [Langer and Zink 2007,
§5]. We use here the base change which associates to a window a display in our
sense [loc. cit., Remark after Definition 5.1, pp. 181–182].

Let n≥ 1 be an integer. We set Cn =W (k)[[T1, . . . , Tr ]]/(T n
1 , . . . , T n

r ) and Rn =

Cn/pnCn . Then σ induces an endomorphism on Cn denoted by the same letter.
We obtain that Cn = (Cn, pnCn, Rn, σ ) is a w-frame. An obvious modification of
[loc. cit., Corollary 5.6] shows that we have the structure of a Ŵ Rn -display on

H 2
crys(XRn/Ŵ (Rn)).

This is obtained from the Lazard morphism Cn→W (Rn), which factors through

Cn→ Ŵ (Rn)→W (Rn).

By Theorem 5.5 of [loc. cit.] we have a Cn-window structure on H 2
crys(XRn/Cn).

We can apply the base change of [loc. cit., Remark, p. 181] to obtain from a Cn-
window a Ŵ Rn -display.

This is functorial in Rn . If f : X → R is a deformation as in (34) we obtain
for n big enough a unique W (k)-algebra homomorphism Rn→ R. Therefore we
obtain by base change:

Proposition 19. Let f : X → R be as above. Then the crystalline cohomology
H 2

crys(X/Ŵ (R)) has the structure of a Ŵ R-display which is functorial in R.

The uniqueness follows from the functoriality and the fact that Ŵ (A) has no
p-torsion.

We now show that X/R defines a crystal of displays in the following sense:

Corollary 20. With the assumptions of the proposition let S→ R be a pd-thickening
where S is an artinian W (k)-algebra. Then we have the natural structure of a
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Ŵ S/R-display on H 2
crys(X/S). More precisely this structure is functorial with re-

spect to morphisms of pd-thickenings and uniquely determined by this property.

Proof. We obtain a Ŵ S/R-2-display structure by lifting X to a smooth scheme X ′

over S and then making the base change with respect to Ŵ S→ Ŵ S/R . We show
that the result is independent of the chosen lifting X ′. Assume we have two liftings
X ′ and X ′′ which are induced from the universal family (36) by two morphisms
A→ S. We consider the following commutative diagram:

A ⊗̂W (k) A S

A R

(37)

The left vertical arrow is the multiplication. Let J be the kernel. We de-
note the divided power hull of (B := A ⊗̂W (k) A, J ) by P. It is obtained as
follows: Let A0 = W (k)[T1, . . . , Tr ] and J0 be the kernel of the multiplication
B0 := A0 ⊗W (k) A0→ A0. We denote by P0 the divided power hull of (B0, J0).
Then P0 is isomorphic to the divided power algebra of the free A0-module with
r generators. In particular P0 is a free A0-module for the two natural A0-module
structures. We have P = P0⊗B0 B. Then P is flat as a P0-module and therefore
without p-torsion. Then the diagram (37) extends to the following diagram:

P S

A R

(38)

Let P̂ be the p-adic completion of P. Then P̂→ A is a frame D. By [Langer and
Zink 2007, Theorem 5.5] the universal family X defines a D-display U . We con-
sider also the trivial w-frame D0 = (A, 0, A, σ ). Again X defines a D0-window U0.
The two natural sections A → P̂ define two morphisms of w-frames D0 → D.
Since the construction of [loc. cit., Theorem 5.5] is compatible with base change,
we obtain U from U0 by base change with respect to both of these two morphisms.

We consider the morphism of frames

D0→→ D→ Ŵ S/R.

The two Ŵ S/R-displays associated with X ′ and X ′′ are obtained by base change
from U0 by the two morphisms

D0→→ Ŵ S/R.

We see that these two Ŵ S/R-displays are both obtained by the base change of U
with respect to D→ Ŵ S/R . This shows that the Ŵ S/R display does not, up to
canonical isomorphism, depend on the lifting X ′ of X . �
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Let X→ Spf A be the universal family (36). We set A0= A/p A and we consider
the formal scheme X0 = X⊗A A0. We write H 2

DR(X/A) = H2(X, �·X/A) for the
de Rham cohomology. By the isomorphism

H 2
DR(X/A)= H 2

crys(X0/A),

we obtain a σ -linear endomorphism F : H 2
DR(X/A)→ H 2

DR(X/A).

Lemma 21. We consider the following subcomplex of �·X/A:

F1�·X/A : p�0
X/A→�1

X/A→�2
X/A→ · · · .

The natural map

H2(X,F1�·X/A)→ H2(X, �·X/A)

is injective and the image is the set

{x ∈ H 2
DR(X/A) | Fx ∈ pH 2

DR(X/A)}.

The image of the natural map

H2(X,F1�·X/A)→ H2(X0, �
·
X0/A0

)

is the Hodge filtration Fil1 ⊂ H 2
DR(X0/A0).

Proof. We use the notation before Proposition 19. If we take the projective limit
of the Cn-displays

H 2
crys(XRn/Cn)= H 2

crys(XCn/pCn/Cn),

we obtain a display structure on H 2
DR(X, A) with respect to the frame A= (A, p A,

A0, σ, σ/p). We denote this display by P = (Pi , Fi , ιi , αi ). It follows from [Langer
and Zink 2007, Theorem 5.5] that P1 is the hypercohomology H2(X,F1�X/A).

The first assertion of the lemma follows from the fact that for an A-display

P1 = {x ∈ P0 | F0x ∈ pP0}.

Indeed, we take a normal decomposition of P , which in our case is a 2-display:

P0 = L0⊕ L1⊕ L2, P1 = pL0⊕ L1⊕ L2.

Then the Frobenius F0 is given by an invertible block matrix D with coefficients
in A:

F0

x0

x1

x2

= D

1 0 0
0 p 0
0 0 p2

σ(x0)

σ (x1)

σ (x2)

 .
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Multiplying this equation by D−1 we see that the right-hand side is in pP0 if and
only if σ(x0) ∈ pL0 or equivalently x0 ∈ pL0. This proves the first assertion.
The second assertion follows because by the definition of P , the image of P1 in
H2(X0, �X0/A0) is the Hodge filtration. �

3. The Beauville–Bogomolov form

Definition 22. A scheme of K3 type is a smooth and proper morphism f : X→ S
of relative dimension 2n with the following properties.

For each geometric point η→ S we have

Hq(Xη, �
p
Xη/η)= 0 for p+ q = 1, p+ q = 3,

dimκ(η) Hq(Xη,OXη)= 1 for q = 0, 2,

dimκ(η) H 0(Xη, �2
Xη/η)= 1.

(39)

We assume that for each η there is a nowhere degenerate σ ∈ H 0(Xη, �2
Xη/η); i.e.,

σ n
∈ H 0(Xη, �2n

Xη/η) defines an isomorphism,

OXη→�2n
Xη/η.

We assume that for each η there is a class ρ ∈ H 2(Xη,OXη) such that ρn generates
H 2n(Xη,OXη). (We note that this is a 1-dimensional vector space by Serre duality.)

Finally we require that for each η the pairing

H 1(Xη, �1
Xη/η)× H 1(Xη, �1

Xη/η)→ R, ω1×ω2 7→

∫
ω1ω2σ

n−1ρn−1, (40)

is perfect.

We note that (40) is equivalent to saying that the cup product

σ n−1ρn−1
: H 1(Xη, �1

Xη/η)→ H 2n−1(Xη, �2n−1
Xη/η )

is an isomorphism.
We denote by TX/S the dual OX -module of �1

X/S . By definition σ induces a
perfect pairing

TX/S × TX/S→OX , (41)

or equivalently an isomorphism TX/S ∼=�
1
X/S .

Remarks. If X is a hyper-Kähler variety over C such that H 3(X,C)= 0, then X
is of K3 type. [Salamon 1996, Introduction; Huybrechts 1999, 1.1–1.3 and 1.7].

Over any field, a K3 surface is of K3 type. Over a field of characteristic 0, the
Hilbert scheme K [n] of zero-dimensional subschemes of a K3 surface K is of K3
type [Beauville 1983, Theorem 3; Salamon 1996, Remark between 5.6 and 5.7 and
Example, p. 149]. In fact all odd Betti numbers of K [n] vanish. This follows from
a general formula proven by Göttsche [1990, Theorem 0.1].
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By [Mumford 1970; Hartshorne 1977, Chapter III, §12] it follows that for f :
X → S of K3 type the direct images Rq f∗�

p
X/S for p + q = 2 are locally free

and commute with arbitrary base change and f∗OX =OS . Therefore locally on S
we have sections σ ∈ H 0(S, f∗�2

X/S) and ρ ∈ H 2(X,OX ) which induce in each
geometric fibre the classes required in the definition.

It follows from [Hartshorne 1977] that the set of points of S where a smooth
and proper morphism f : X→ S is of K3 type is open.

We therefore obtain varieties of K3 type as follows. Let S be a scheme of finite
type and flat over Z. We consider a smooth and proper morphism f : X→ S such
that fQ is of K3 type. Then over an open subset of S, the morphism is of K3 type.
In particular the schemes K3n are for almost all prime numbers p of K3 type over
a field of characteristic p. The set of such primes p contains the set of primes for
which Charles [2013, Corollary 5] recently proved the Tate conjecture for varieties
of K3 type in characteristic p.

In the following we will assume without loss of generality that S = Spec R and
that σ and ρ are globally defined. We note that σ is closed because H 0(X, �3

X/S)=0.
Let X be a scheme of K3 type of dimension 2n over a ring R. It follows from

our assumptions that ε :=
∫
(σρ)n ∈ R is a unit.

We regard σ ∈ H 2
DR(X/R) and we choose an arbitrary lifting τ ∈ H 2

DR(X/R)
of ρ. We have

ε =

∫
σ nτ n.

Definition 23. We assume that n, n + 1 are units in R. We define the quadratic
form Bσ,τ (α) on H 2

DR(X/R) by

Bσ,τ (α)=
n
2

∫
(στ)n−1α2

+
1− n
ε

(∫
σ n−1τ nα

)(∫
σ nτ n−1α

)
+

1
ε2

n(n− 1)
2(n+ 1)

(∫
σ nτ n−1α

)2(∫
σ n−1τ n+1

)
. (42)

Later we will consider the case ε = 1.

Lemma 24. We assume that R is an integral domain whose fraction field has char-
acteristic 0. Let τ, τ ′ ∈ H 2

DR(X/R) be liftings of ρ. Then we have

Bσ,τ = Bσ,τ ′ . (43)

Up to a factor in R∗ the form Bσ,τ doesn’t depend on the choice of σ , ρ, and τ .
If R = C it coincides with the usual Beauville–Bogomolov form [Beauville 1983,

p. 772] up to a constant.

Proof. Let us assume the assertion (43). Then we show the uniqueness up to a
constant. Let σ1 = uσ and τ1 = vτ , where u, v ∈ R∗. We set B = Bσ,τ and
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B1 = Bσ1,τ1 . We have ε1 = (σ1τ1)
n
= (uv)nε. We obtain

B1(α)=
n
2
(uv)n−1

∫
(στ)n−1α2

+
1− n
(uv)nε

(uv)2n−1
(∫

σ n−1τ nα

)(∫
σ nτ n−1α

)
+

1
(uv)2nε2

n(n− 1)
2(n+ 1)

(∫
σ nτ n−1α

)2

(unvn−1)2
(∫

σ n−1τ n+1
)

un−1vn+1.

The (uv)-factors in the last summand together yield the factor

1
(uv)2n u3n−1v3n−1

= (uv)n−1.

Hence we get
B1(α)= (uv)n−1B(α). (44)

So the form B(α) changes by a unit in R.
We will now consider the case R = C. We can use the Hodge decomposition.

We take for ρ and τ the complex conjugate of σ ; i.e., we set τ := σ̄ . As σ̄ n+1
= 0

we obtain for the Beauville–Bogomolov form

Bσ,σ̄ (α)=
n
2

∫
(σ σ̄ )n−1α2

+
1− n
ε

(∫
σ n−1σ̄ nα

)(∫
σ nσ̄ n−1α

)
. (45)

This is the usual Beauville–Bogomolov form, if we change σ by a constant such
that ε =

∫
(σ σ̄ )n = 1; see (42), [Beauville 1983, p. 772; Huybrechts 1999, 1.9].

Now let τ = aσ + γ + σ̄ , where γ is a closed 1-1-form and a ∈ C, so τ ∈
H 2

DR(X/C) is a lifting of σ̄ ∈ H 2(X,OX ). We evaluate the forms Bσ,σ̄ and Bσ,τ

(the form in the definition) in an arbitrary form α ∈ H 2
DR(X/C) and show that

Bσ,σ̄ (α) = Bσ,τ (α). Without loss of generality let α = cσ + β + c′σ̄ with c′ 6= 0
and after multiplication with a constant we can assume that α = cσ +β + σ̄ , with
β a closed 1-1-form, also without loss of generality ε =

∫
(σ σ̄ )n = 1. Therefore

α2
= c2σ 2

+ 2cσβ + 2cσ σ̄ + 2βσ̄ + σ̄ 2
+β2.

Now we compute n
2

∫
(στ)n−1α2 for each summand:

c2σ 2: n
2

∫
(στ)n−1c2σ 2

=
n
2

∫
σ n−1(aσ + γ + σ̄ )n−1c2σ 2.

The p-degree (with respect to the p, q-Hodge decomposition) is ≥ 2n+ 2. So this
integral is zero.

2cσβ:
n
∫
σ n−1(aσ + γ + σ̄ )n−1σβ = 0

because σ n−1σβ has already p-degree 2n+ 1.

2cσ σ̄ :
nc
∫
σ n−1(aσ + γ + σ̄ )n−1σ σ̄ = nc

∫
σ σ̄ n.
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So the third summand is independent from the choice of τ .

2βσ̄ :
n
∫
σ n−1(aσ+γ+σ̄ )n−1βσ̄ = n

∫ ∑
i+ j+k=n−1

(n−1)!
i ! j !k!

σ n−1aiσ iγ j σ̄ kβσ̄ .

The form σ n−1+i σ̄ k+1γ jβ has p-degree 2n− 2+ 2i + j + 1.
Hence the integral can be nonzero only for i = 0 and j = 1 and k = n− 2. So

the above integral is

n
∫
(n− 1)!
(n− 2)!

σ n−1σ̄ n−1βγ.

This term depends on the choice of τ .

σ̄ 2: n
2

∫
σ n−1(aσ+γ+σ̄ )n−1

·σ̄ 2
=

n
2

∑
i+ j+k=n−1

∫
σ n−1aiσ iγ j σ̄ k+2

·
(n−1)!
i ! j !k!

.

The p-degree of σ n−1σ iγ j σ̄ k+2 is 2(n−1)+2i + j , which is 2n only for i = 1,
j = 0 and k = n− 2 or i = 0, j = 2, k = n− 3.

In the first case (i = 1, j = 0 and k = n− 2) the integral depends on the choice
of τ . One gets the summand 1

2an(n− 1).
In the second case (i = 0, j = 2, k = n− 3) one gets the summand

(n− 1)!
2! (n− 3)!

n
2

∫
σ n−1σ̄ n−1γ 2,

which depends on the choice of τ .

β2: n
2

∫
σ n−1(aσ+γ+σ̄ )n−1β2

=
n
2

∑
i+ j+k=n−1

(n−1)!
i ! j !k!

∫
σ n−1aiσ iγ j σ̄ kβ2.

The p-degree of σ n−1aiσ iγ j σ̄ kβ2 is 2n− 2+ 2i + j + 2, which is 2n only if
i = 0 and j = 0 and k = n− 1.

Hence this integral does not depend on the choice of τ .

Adding up all cases we obtain (one may assume
∫
(σ σ̄ )n = 1)

n
2

∫
(σ σ̄ )n−1α2

= nc+ n(n− 1)
∫
(σ σ̄ )n−1βγ + (n− 1)

n
2

a

+
n(n− 1)!
4(n− 3)!

∫
(σ σ̄ )n−1γ 2

+
n
2

∫
σ n−1σ̄ n−1β2. (46)

Now we compute the other summands in Bσ,τ (α).
We have∫

σ nτ n−1α =

∫
σ n(aσ + γ + σ̄ )n−1(cσ +β + σ̄ )=

∫
σ nσ̄ n

= 1.
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Then ∫
σ n−1τ nα =

∫
σ n−1(aσ + γ + σ̄ )n(cσ +β + σ̄ )

=

∑
i+ j+k=n

n!
i ! j ! k!

∫
σ n−1aiσ iγ j σ̄ k(cσ +β + σ̄ ).

The p-degree of σ n−1aiσ iγ j σ̄ kcσ is 2n+2i+ j , which is 2n only for i = j = 0
and k = n.

The p-degree of σ n−1aiσ iγ j σ̄ kβ is 2n− 2+ 2i + j + 1, which is 2n only for
i = 0, j = 1 and k = n− 1.

The p-degree of σ n−1aiσ iγ j σ̄ k σ̄ is 2n− 2+ 2i + j , which is 2n only for i = 1,
j = 0, k = n− 1 or for i = 0, j = 2, k = n− 2.

Using this we get the formula∫
σ n−1τ nα

= c
∫
(σ σ̄ )n + n

∫
σ n−1γ σ̄ n−1β + n

∫
aσ nσ̄ n

+
n!

2(n− 2)!

∫
σ n−1γ 2σ̄ n−1

= c+ na+ n
∫
(σ σ̄ )n−1βγ +

n
2
(n− 1)

∫
(σ σ̄ )n−1γ 2. (47)

Equations (46) and (47) then give us the following formula for the first two
summands in Bσ,τ (α):

n
2

∫
(στ)n−1α2

+ (1− n)
(∫

σ n−1τ nα

)(∫
σ nτ n−1α

)
= nc+

n
2
(n− 1)a+

n(n− 1)(n− 2)
4

∫
(σ σ̄ )n−1γ 2

+ n(n− 1)
∫
(σ σ̄ )n−1βγ +

n
2

∫
(σ σ̄ )n−1β2

+ (1− n)c+ (1− n)na

+ n(1− n)
∫
(σ σ̄ )1−nβγ + (1− n)

n
2
(n− 1)

∫
(σ σ̄ )n−1γ 2. (48)

A small calculation yields

n(n− 1)(n− 2)
4

+
(1− n)n(n− 1)

2
=−

n2

4
(n− 1).

Hence we can simplify (48) and get

n
2

∫
(στ)n−1α2

+ (1− n)
(∫

σ n−1τ nα

)(∫
σ nτ n−1α

)
= c+

n
2

∫
(σ σ̄ )n−1β2

−
n
2
(n− 1)a−

n2

4
(n− 1)

∫
(σ σ̄ )n−1γ 2. (49)
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Now we compute the last summand in Bσ,τ (α):∫
σ n−1τ n+1

=

∑
i+ j+k=n+1

(n+ 1)!
i ! j !k!

∫
σ n−1aiσ iγ j σ̄ k .

The p-degree of σ n−1aiσ iγ j σ̄ k is 2(n−1)+2i + j , which is 2n only for i = 1,
j = 0, k = n or for i = 0, j = 2, k = n− 1.

So we get for the last summand in Bσ,τ (α)

n(n− 1)
2(n+ 1)

∫
σ n−1τ n+1

=
n
2
(n− 1)a+

n2

4
(n− 1)

∫
(σ σ̄ )n−1γ 2. (50)

(We have that
∫
σ nτ n−1α = 1 because of

∫
(σ σ̄ )n = 1.)

Then (49) and (50) yield

Bσ,τ (α)= c+
n
2

∫
(σ σ̄ )n−1β2

= Bσ,σ̄ (α).

The last equality follows from [Huybrechts 1999, 1.9]. It proves (43) in the case
R = C.

We now prove (43) for arbitrary R. By base change we can replace R by it field
of fractions K . Finally we may assume K = C by the Lefschetz principle. �

With the notation of Definition 23, let R be arbitrary. Let S be an integral
domain whose field of fractions has characteristic 0 and let Y/S be a scheme of K3
type. We assume that there is a surjective ring homomorphism S→ R such that
X is obtained from Y by base change. Then Lemma 24 is true for R. This follows
because the second cohomology groups commute with base change by assumption.

Remark. In the following proofs we will assume that there is a form ρ∈H 2(X,OX )

such that 1 = ε =
∫
(σρ)n . If R is a strict henselian local ring whose residue

characteristic is relatively prime to n, such a form ρ always exists. For ε = 1 the
form (42) doesn’t up to a root of unity depend on the choices of σ and τ . For
R = C it coincides then with the usual Beauville–Bogomolov form up to a root of
unity of order n.

Lemma 25. Let X be a scheme of K3 type over S. Then the form

Bσ,τ : H 2
DR(X/R)× H 2

DR(X/R)→ R

is perfect.

Proof. We can reduce to the case where R is a complete local ring with separably
closed residue field. Then we may assume that

∫
(στ)n = 1. We do so to simplify

the computation. We consider the Hodge filtration

H 0(X, �2
X/R)= Fil2 ⊂ Fil1 ⊂ H 2

DR(X/R).
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We claim that with respect to Bσ,τ

Fil1 ⊂ (Fil2)⊥.

Let α ∈ Fil1; we have to show that

Bσ,τ (σ, α)=
1
2(Bσ,τ (σ +α)−Bσ,τ (σ )−Bσ,τ (α))= 0. (51)

The second summand on the right-hand side is clearly 0. We note that σ nα = 0
because Fil2n

∪Fil1 ⊂ Fil2n+1
= 0. We compute

Bσ,τ (σ +α)=
n
2

(∫
(στ)n−1σ 2

+ 2
∫
(στ)n−1σα+

∫
(στ)n−1(α2)

)
. (52)

The other terms on the right-hand side of (42) vanish because σ +α ∈ Fil1. We see
that the first two terms on the right-hand side of (52) vanish. This shows that (51)
vanishes too.

Therefore Bσ,τ induces a bilinear form Bσ,τ on Fil1 /Fil2 = H 1(X, �X/R). By
the verification above we obtain

Bσ,τ (α)=
n
2

∫
(στ)n−1α2

=
n
2

∫
(σρ)n−1α2.

By the requirement (40) this is perfect and

(Fil2)⊥ = Fil1 . (53)
Finally one has

Bσ,τ (σ, τ )=
1
2 ,

which is a unit. We omit the easy verification. Together with the perfectness of
Bσ,τ this implies perfectness. �

We prove the following proposition for the universal deformation of a variety of
K3 type. The general case of a scheme of K3 type over an artinian local ring will
follow from this (compare (73)).

Proposition 26. Let X0 be a scheme of K3 type over an algebraically closed field k.
We assume that X0 lifts to a smooth projective scheme over a discrete valuation
ring O of characteristic zero with residue class field k. We consider the universal
deformation of X0

X→ S = Spf W (k)[[T1, . . . , Tr ]].

Assume that σ and τ are chosen such that ε = 1. Then the form

Bσ,τ : H 2
DR(X/S)× H 2

DR(X/S)→W (k)[[T1, . . . , Tr ]]

is horizontal with respect to the Gauss–Manin connection (see [Deligne 1981b,
Corollaire 2.3] for the definition).
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Remark. Using the arguments of [Deligne 1981b] we will show in Proposition 29
that Xk lifts over some O if H 1(X0, TX0/k) 6= 0.

Proof. We begin by proving a complex-analytic version of this proposition. Let
X → S be a proper and smooth morphism of complex analytic manifolds. Let
3 ∈ H 0(X, R2 f∗Q). Then we have a pairing

q3 : R2 f∗Q× R2 f∗Q→ R2n f∗Q
∫
−→QS, (54)

defined by

q3(α, β)=
∫
32n−2αβ, α, β ∈ R2 f∗Q.

If 3 ∈ H 0(X, R2 f∗Q) is the class of a relative ample line bundle on X then the
pairing (54) is nondegenerate and we have

ν := ν(3) :=

∫
32n
6= 0.

If we tensor (54) with OS we obtain a horizontal pairing with respect to the
Gauss–Manin connection:

q3 : H 2
DR(X/S)× H 2

DR(X/S)→OS. (55)

Assume that3 is a cohomology class such that q3 is nondegenerate and ν(3) 6=0.
Then we denote by (R2 f∗Q)0 ⊂ R2 f∗Q the local system which is the orthogonal
complement of 3. The vector bundle H 2

DR(X/S) decomposes as a vector bundle
with connection

H 2
DR(X/S)= (H 2

DR(X/S))0⊕OS3.

Lemma 27. Let 3 ∈ H 2
DR(X/S) and ν(3) =

∫
32n
∈ OS . Then we have the

following formula for all α ∈ H 2
DR(X/S):

ν(3)2Bσ,τ (α)= Bσ,τ (3)

[
(2n− 1)ν(3)

∫
32n−2α2

− (2n− 2)
(∫

32n−1α

)2]
.

Proof. Both terms on each side are functions in OS . We consider them as func-
tions on the complex manifold S. For each s ∈ S(C) we evaluate the functions
at s. The analogous equality in s, namely for 3s, αs, σs, τs ∈ H 2

DR(Xs/C) =

H 2
DR(X/S)⊗OS k(s),

ν(3s)
2Bσs ,τs (αs)

= Bσs ,τs (3s)

[
(2n− 1)ν(3s)

∫
32n−2

s α2
s − (2n− 2)

(∫
32n−1

s αs

)2]
(56)

was shown in [Beauville 1983, Théorème 5(c)] for the Beauville–Bogomolov form
over C. Since this form differs from Bσs ,τs by a constant in C we obtain (56). Hence
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both functions coincide on S(C). But then the algebraic functions in OS coincide
as well. �

The formula (56) shows that for α ∈ (H 2
DR(X/S))0

ν2Bσ,τ (α)= Bσ,τ (3)(2n− 1)νq3(α). (57)

Let s ∈ S. Since Bσs ,τs is up to a root of unity of order n the Beauville–Bogomolov
form, we know that Bσs ,τs (3s) is a real number times an n-th root of unity by
[Beauville 1983, Théorème 5(a)]. From this it follows that the analytic function
Bσ,τ (3) on S is constant. Therefore Bσ,τ is by (57) a horizontal form with respect
to the Gauss–Manin connection on the bundle (H 2

DR(X/S))0.
We show that (H 2

DR(X/S))0 and OS are orthogonal for the form Bσ,τ too. We
have to show that

ν2(Bσ,τ (α+3)−Bσ,τ (α)−Bσ,τ (3))= 0 (58)

for all α ∈ (H 2
DR(X/S))0. From Lemma 27 we obtain

ν2Bσ,τ (α+3)= Bσ,τ (3)

[
(2n− 1)ν

∫
32n−2α2

+ (2n− 1)ν2
− (2n− 2)ν2

]
.

From this one obtains (58). Therefore it suffices to show that Bσ,τ is horizontal on
the subbundle OS3⊂ H 2

DR(X/S). This is equivalent to saying that Bσ,τ (3) ∈OS

is a constant function. This we have seen above.
Now we prove Proposition 26. The formal scheme Spf W (k)[[T1, . . . , Tr ]] has

(p, T1, . . . , Tr ) as an ideal of definition and this is also an ideal of definition for X .
On the other hand we can consider the universal deformation of a lifting X̃/O

of X0, which exists by assumption. Then we obtain a formal scheme Y over
Spf O[[T1, . . . , Td ]], where the ideal of definition in the last ring is now (T1, . . . , Td).
We may assume that O is complete. Then we a have a natural map

W (k)[[T1, . . . , Tr ]] → O[[U1, . . . ,Ud ]], (59)

which corresponds on the tangent spaces to the natural homomorphism

H 1(X̃ , �X̃/O)→ H 1(X0, �X0/k). (60)

Therefore we have r = d and we may arrange after a coordinate transformation that
Ti 7→Ui + ai by the map (59), where the ai are in the maximal ideal of O. We see
that the regular parameter system (p, T1, . . . , Td) of the local ring on the left-hand
side of (59) is mapped to a parameter system on the right-hand side. Therefore
the morphism (59) is injective. By definition, the push-forward of X by (59) is the
completion of Y in the adic topology defined by the maximal ideal. Because the
map induced by (59) on the de Rham cohomology is also injective, it suffices to
show that the Beauville–Bogomolov form of the family Y is horizontal. We take an
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embedding O→ C. Then we obtain the universal deformation of X̃C. It suffices to
show that Bσ,τ is horizontal for the Gauss–Manin connection of this family. Since
we obtain this by completion of the Kuranishi family f : X→ S of X̃C, we are
reduced to the case above. We have to ensure that there is a cohomology class
3 ∈ H 0(S, R2 f∗Q) such that

q3 is nondegenerate and ν(3) 6= 0. (61)

Let s0 ∈ S be the point such that f −1(s0)= X̃C. Let

30 ∈ (R2 f∗Q)s0 = H 2(X̃C,Q)

be the cohomology class of an ample line bundle on X̃C. By shrinking S we may
assume that R2 f∗Q is a constant local system on S. But then 30 extends to a
global section 3 of R2 f∗Q. Then 3 meets the requirements (61). This proves
Proposition 26. �

4. Deformations of varieties of K3 type

Let X0/k be a projective and smooth scheme of K3 type over a perfect field k of
characteristic p ≥ 3. We consider the universal deformation

X→ S = Spf A,

where
A =W [[T1, . . . , Tr ]], r = dimk H 1(X0, TX0/k).

We consider the Gauss–Manin connection

∇ : H 2
DR(X/S)→ H 2

DR(X/S)⊗A �
1
S/W .

If we compose this with the natural maps

∂/∂ti :�1
S/W → A, i = 1, . . . , r,

we obtain the maps
∇i : H 2

DR(X/S)→ H 2
DR(X/S).

The de Rham cohomology is endowed with the Hodge filtration

0⊂ Fil2 H 2
DR(X/S)⊂ Fil1 H 2

DR(X/S)⊂ Fil0 H 2
DR(X/S)= H 2

DR(X/S).

We have Fil2 H 2
DR(X/S)= H 0(X, �2

X/S). We denote by gr t H 2
DR(X/S) the subquo-

tients of this filtration. By Griffiths transversality, ∇ induces a map

gr t
∇ : gr t H 2

DR(X/S)→ grt−1 H 2
DR(X/S)⊗A �

1
S/W , (62)
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which is A-linear. We are interested in this map for t = 2. By duality we obtain an
A-linear map

TS/W → HomA(H 0(X, �2
X/S), H 1(X, �1

X/S)). (63)

It is proved for K3 surfaces in [Deligne 1981b] that this is an isomorphism. The
same argument works for varieties of K3 type. Indeed, the map (63) factors as

TS/W → H 1(X, TX/S)→ HomA(H 0(X, �2
X/S), H 1(X, �1

X/S)).

The first arrow is the Kodaira–Spencer map, which is an isomorphism, and the
second map is the cup product. To see that the second map is an isomorphism
we choose a generator ω ∈ H 0(X, �2

X/S). The multiplication with ω induces an
isomorphism TX/S ∼=�

1
X/S

. Therefore the cup product with ω is an isomorphism

H 1(X, TX/S)∼= H 1(X, �1
X/S
).

This proves that (63) is an isomorphism. The isomorphism (63) signifies that
∇1(ω), . . . ,∇r (ω) is a basis of H 1(X, �1

X/S).

Lemma 28. The maps gr t
∇ (62) are for t = 1, 2 split injections of A-modules.

Proof. Clearly it is enough to show that the maps

TS/W → HomA(gr t H 2
DR(X/S), grt−1 H 2

DR(X/S))

induced by gr t
∇, where t = 1, 2, are isomorphisms. We have already seen this for

t = 2. For t = 1 we have the A-module homomorphism

TS/W → HomA(H 1(X, �1
X/S), H 2(X,OX)). (64)

The Kodaira–Spencer map gives an isomorphism TS/W ⊗A k ∼= H 1(X0, TX0/k).
Using the Nakayama’s lemma we see that (64) is an isomorphism if and only if the
cup product induces a perfect pairing of k-vector spaces:

H 1(X0, TX0/k)× H 1(X0, �
1
X0/k)→ H 2(X0,OX0). (65)

This follows from the definition of a variety of K3 type and the following commu-
tative diagram in the notation of Definition 22:

H 1(X0, TX0/k)×H 1(X0, �
1
X0/k) H 2(X0,OX0)

H 1(X0, �
1
X0/k)×H 1(X0, �

1
X0/k) H 2(X0, �

2
X0/k)

H 2n(X0, �
2n
X0/k)

⋃
σ id

⋃
σ

⋃
σ n−1ρn−1
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The composition of the two vertical arrows on the right-hand side is an isomor-
phism because σ nρn is a generator of H 2n(X0, �

2n
X0/k). The perfectness follows

therefore from the perfectness of the pairing (40). �

Proposition 29. Let X0/k be a scheme of K3 type over a perfect field k and let L0

be a very ample line bundle on X0. We assume that dim H 1(X0, TX0/k)≥ 1.
Then there is a projective scheme X over a discrete valuation ring O of mixed

characteristic with residue class field k and a very ample line bundle L on X such
that

(X, L)⊗O k ∼= (X0, L0).

If we assume moreover that the first Chern class c1(L0) ∈ H 1(X0, �
1
X0/k) is not

zero, a projective scheme X exists over W = O.

Proof. We follow the proof of [Deligne 1981b] for K3 surfaces but we indicate
in detail the necessary changes for varieties of K3 type. We consider the functor
Def(X0, L0) of infinitesimal deformations of the pair (X0, L0). This functor is
represented by a closed subscheme of S = Spf A given by a single equation f ∈ A.
For this the arguments of [Deligne 1981b] apply with no changes.

We will show that f /∈ p A. We assume f ∈ p A and deduce a contradiction. In
this case L0 lifts to a line bundle L0 on X0 = X⊗A A0, where A0 = A/p A. We
consider the Chern class

x = c1(L0) ∈ H 2
crys(X0/A)= H 2

DR(X/A).

It is not zero because c1(L0) is not zero by our assumption that L0 is very ample.
By general facts on Chern classes we have [Deligne 1981b, Proposition 2.9]

Fx = px, ∇x = 0.

We write x = pm y, where y ∈ H 2
DR(X/A) is not divisible by p. Then y0 = y

mod p ∈ H 2
DR(X0/A0) is not trivial. Since p is not a zero divisor in H 2

DR(X/A)
we have

Fy = py, ∇ y = 0.

It follows from Lemma 21 that y0 ∈ Fil1 H 2
DR(X0/A0). Lemma 28 shows that the

following maps are for t = 1, 2 injective:

grt
∇ : grt H 2

DR(X0/A0)→ grt−1 H 2
DR(X0/A0)⊗A �

1
A0/W .

The injectivity of these maps and ∇ y0 = 0 implies that y0 = 0. This contradiction
shows that f /∈ p A.

We set B = A/ f A. The universal line bundle L on XB is very ample. Since A
is factorial, the prime p is not a zero divisor in B and in particular B[1/p] 6= 0.
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Let q̃ a maximal ideal in B[1/p]. We set q= q̃∩ B. The normalization O of B/q
is the desired ring.

It remains to prove the last statement. It follows from [Ogus 1979, Corol-
lary 1.14] and the perfectness of the pairing (65) that (X0, L0) doesn’t lift to A0/m

2
0,

where m0 denotes the maximal ideal of A0. But this implies that B = A/ f A is a
power series ring over W. In particular we find an augmentation B → W. We
obtain the desired scheme by base change of XB . �

Let α : R′ → R be a surjective homomorphism of local artinian W -algebras
with residue class field k. We set a = Kerα. We assume that amR′ = 0, where
mR′ denotes the maximal ideal of R′. Let X/R be a deformation of X0 and let X ′

be a deformation of X over R′. We have a natural isomorphism H 2
crys(X/R′) ∼=

H 2
DR(X

′/R′).
Let Y/R′ be another deformation of X . Then we obtain a natural isomorphism

H 2
DR(X

′/R′)→ H 2
DR(Y/R′). (66)

There is an explicit formula for this isomorphism in terms of the Gauss–Manin
connection on the universal deformation S; see (69) below.

We denote by FY ∈ H 2
DR(X

′/R′) the preimage of

H 0(Y, �2
Y/R′)= Fil2 H 2

DR(Y/R′)⊂ H 2
DR(Y/R′)

by the isomorphism (66).

Proposition 30. We assume that amR′ = 0. The direct summand FY ⊂ H 2
DR(X

′/R′)
is contained in Fil1 H 2

DR(X
′/R′). The map Y 7→ FY is a bijection between isomor-

phism classes of liftings Y/R′ of X/R and direct summands F ⊂ Fil1 H 2
DR(X

′/R′)
which lift the direct summand Fil2 H 2

DR(X/R)⊂ Fil1 H 2
DR(X/R).

Proof. We set F ′ = Fil2 H 2
DR(X

′/R′). Let F ⊂ H 2
DR(X

′/R′) be an arbitrary direct
summand which lifts Fil2 H 2

DR(X/R). We call this a lift of the Hodge filtration.
We consider the canonical map

F→ H 2
DR(X

′/R′)/F ′. (67)

Its image is in a(H 2
DR(X

′/R′)/F ′) ∼= a⊗k (H 2
DR(X0/k)/Fil2 H 2

DR(X0/k)). The
map (67) factors through F→ Fil2 H 2

DR(X0/k). Therefore liftings of the Hodge
filtration are classified by homomorphisms of k-vector spaces

~(F) : H 0(X0, �
2
X0/k)→ a⊗k (H 2

DR(X0/k)/Fil2 H 2
DR(X0/k)). (68)

The assertion that FY ⊂ Fil1 H 2
DR(X

′/R′) is equivalent to saying that

~(FY )(H 0(X0, �
2
X0/k))⊂ a⊗k (Fil1 H 2

DR(X0/k)/Fil2 H 2
DR(X0/k)).
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The deformation X ′/R′ of X0 is given by a uniquely determined W -algebra
homomorphism f : A→ R′ and the deformation Y is given by g : A→ R′. We
obtain a diagram such that the two compositions are equal:

A
f
−→
−→

g
R′ −→ R.

The isomorphism (66) is obtained as follows. Let u ∈ H 2
DR(X

′/R′). We find
ũ ∈ H 2

DR(X/S) such that u = f∗(ũ). We set v = g∗(ũ). Then (66) is given as
follows [Deligne 1981a, Lemma 1.1.2]:

H 2
DR(X

′/R′)→ H 2
DR(Y/R′), u 7→ v+

r∑
i=1

( f (ti )− g(ti ))∇̆i (ũ). (69)

We denote here by ∇̆i (ũ) the image of ∇i (ũ) in H 2
DR(X0/k). The formula (69)

makes sense because f (ti )− g(ti ) ∈ a.
Now we take for ũ a generator of the free A-module Fil2 H 2

DR(X/S). We deduce
from (66) that

u−
r∑

i=1

( f (ti )− g(ti ))∇̆i (ũ)

is a generator of FY . Let u0 ∈ Fil2 H 2
DR(X0/k) be the image of ũ. Then the map

~(FY ) is given by

~(FY )(u0)=−

r∑
i=1

( f (ti )− g(ti ))⊗∇̆i (ũ) ∈ a⊗k gr1 H 2
DR(X0/k).

This formula shows that FY ⊂ Fil1 H 2
DR(X/R). As we remarked, (63) implies that

∇̆i (ũ) form a basis of gr1 H 2
DR(X0/k). It follows that FY determines the elements

ai := f (ti )− g(ti ) ∈ a for i = 1, . . . , r . Given such elements ai we define g(ti )=
f (ti )− ai . The homomorphism g : A→ R′ thus defined gives the desired variety
of K3 type. �

We will now extend the proposition to the case where R′→ R is an arbitrary
pd-thickening with nilpotent divided powers on a.

We assume now that k is algebraically closed. We assume that 2n = dim X0

is prime to the characteristic p of k. We also assume that X0 lifts to a smooth
projective scheme over some discrete valuation ring O with residue class field k.
We fix generators σ and ρ of the 1-dimensional k-modules H 0(X0, �

2
X0/k) and

H 2(X0,OX0) respectively such that
∫
(σρ)n = 1. We can lift them to generators σ̃

and ρ̃ of the cohomology groups H 0(X, �2
X/S) and H 2(X,OX) respectively. Then

we obtain by Proposition 26 and Lemma 25 a horizontal perfect symmetric pairing

( , ) : H 2
DR(X/S)× H 2

DR(X/S)→ S, (70)
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which depends only on σ and ρ. With respect to this pairing the Hodge filtration
is self dual:

(Fil1)⊥ = Fil2, (Fil2)⊥ = Fil1 .

In the situation of the proposition it is equivalent to say that the lift of the
Hodge filtration F ⊂ H 2

DR(X
′/R′) is in Fil1 H 2

DR(X
′/R′) or that F ⊂ H 2

DR(X
′/R′)

is isotropic. Indeed, we take c̃ ∈ H 2
DR(X/S), which induces a generator of the

A-module H 2
DR(X/S)/Fil1. Then (ũ, c̃) is a unit in A. The image c of c̃ in

H 2
DR(X

′/R′) induces a basis of H 2
DR(X

′/R′)/Fil1 H 2
DR(X

′/R′).
Any lifting of the Hodge filtration has a generator of the form

u+βc+
r∑

i=1

αi ∇̆i (ũ), α, β ∈ a. (71)

Assume F is isotropic. Since u is orthogonal to ∇̆i (ũ) we obtain 2β(u, c) = 0
which implies β = 0. This implies F ⊂ Fil1 H 2

DR(X
′/R′). On the other hand the

vector (71) is isotropic if β = 0.

Theorem 31. Let X0 be a projective scheme of K3 type over an algebraically
closed field k of characteristic p > 0.

Let α : R′ → R be a surjective morphism of artinian local W -algebras with
residue class field k. We assume that the kernel a of α is endowed with nilpotent
divided powers which are compatible with the canonical divided powers on pW.

Let X/R be a deformation of X0 and X ′/R′ a lifting of X.
If Y/R′ is an arbitrary lifting of X , the Gauss–Manin connection provides an

isomorphism
H 2

DR(X
′/R′)→ H 2

DR(Y/R′) (72)

which respects the symmetric bilinear forms on both sides. We denote by FY the
preimage of Fil2 H 2

DR(Y/R′) by this isomorphism.
The map Y 7→ FY is a bijection between liftings Y/R′ of X and liftings of the

Hodge filtration Fil2 H 2
DR(X/R)⊂ H 2

DR(X/R) to isotropic direct summands F ⊂
H 2

DR(X
′/R′).

Proof. The assertion that (72) respects the pairing ( , ) follows because the pairing
is horizontal. Therefore FY is isotropic.

We consider the divided powers of the ideal a:

a⊃ a[2] ⊃ · · · ⊃ a[t−1]
⊃ a[t] = 0.

If t = 2, the theorem follows from the proposition. We consider the nilpotent
pd-thickenings

R′→ R′/a[t−1]
→ R.

By induction we may assume that the theorem holds for the second thickening.
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We start with an isotropic lifting F ⊂ H 2
DR(X

′/R′) of the Hodge filtration. Let
R1 = R/a[t−1]. Then F induces a filtration F1 ⊂ H 2

DR(X
′

R1
/R1). By induction

there is a lifting Z/R1 of X which corresponds to F1. We choose an arbitrary
lifting Z ′/R′ of Z . Since Z ′ is also a lifting of X , we have an isomorphism

H 2
DR(X

′/R′)→ H 2
DR(Z

′/R′).

Let G be the image of F under this isomorphism. Then G is a lifting of the
Hodge filtration Fil2 H 2

DR(Z/R1) ⊂ H 2
DR(Z/R1). If the proposition is applicable

to R′→ R1 we find a lifting Y/R′ of Z/R1 which corresponds to G ⊂ H 2
DR(Z

′/R′)
and therefore to F ⊂ H 2

DR(X
′/R′). Thus our map is surjective.

Therefore it suffices to show our theorem for R′→ R1. The kernel b= a[t−1] is
endowed with the trivial divided powers and we have b2

= 0. Decomposing R′→
R1 into a series of small surjections (as in the proposition) R′→ Rm→ · · · → R1,
we may argue as above.

The injectivity follows easily in the same manner. �

We may reformulate this in the language of crystals. Let X be the deformation
of X0 over an artinian local ring R with residue class field k (or equivalently a
continuous homomorphism A→ R).

Suppose R′→ R is a nilpotent pd-thickening where R′→ R is a homomorphism
of local artinian rings with residue field k. We consider the crystalline cohomology

H 2
crys(X/R′).

This is a crystal in R′ which is induced from the Gauss–Manin connection on
H 2

DR(X/S). Therefore (70) induces a bilinear form of crystals

H 2
crys(X/R′)× H 2

crys(X/R′)→ R′. (73)

The Hodge filtration on H 2
DR(X/R)= H 2

crys(X/R) is selfdual with respect to this
bilinear form.

We may reformulate the last theorem.

Corollary 32. Let R′→ R be a surjective homomorphism of artinian local rings
with algebraically closed residue class field k whose kernel is endowed with nilpo-
tent divided powers compatible with p.

Let X/R be a deformation of X0. Then the liftings of X to X ′ correspond bijec-
tively to liftings of the Hodge filtration to selfdual filtrations of H 2

crys(X/R′).

Corollary 33. Let R′ → R be a nilpotent pd-thickening and let X/R be as in
Corollary 32. Let X ′/R′ be a lifting of X. Let α : X→ X be an automorphism of
the R-scheme X (but not necessarily of the deformation).

Then α lifts to an automorphism α′ : X ′→ X ′ if and only if α∗ : H 2
crys(X/R′)→

H 2
crys(X/R′) respects the Hodge filtration given by X ′.
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Proof. The universal deformation space S classifies pairs (X, ρ) where X is a
scheme of K3 type over R and ρ : X0→ Xk is an isomorphism.

Since X is a deformation of X0, the map ρ is given. Let α0 : X0→ X0 be the
automorphism induced by α. The data α is equivalent to saying that the two pairs
(X, ρ) and (X, ρα0) are isomorphic as deformations.

The existence of a lifting α′ is equivalent to saying that the pairs (X ′, ρ) and
(X ′, ρα0) are isomorphic as deformations. Thus we conclude by Corollary 32. �

We will now prove the compatibility of the Beauville–Bogomolov form with the
Frobenius endomorphism. Let X0/k be a projective and smooth scheme of K3 type
over an algebraically closed field k of characteristic p. We will write W =W (k)
for the ring of Witt vectors. We consider the universal deformation

X→ S = Spf A,

as in Section 4. By Proposition 26 we have a perfect and horizontal Beauville–
Bogomolov form,

B : H 2
DR(X/A)× H 2

DR(X/A)→ A.

We set X0 = X⊗A A0. Then we have the canonical isomorphisms

H 2
DR(X/A)∼= H 2

crys(X0/A).

We will denote by σ a ring endomorphism of A =W [[T1, . . . , Tr ]] which extends
the Frobenius on W and induces the Frobenius endomorphism modulo p. We will
denote by ρ : Spf A→ Spf A the morphism Spf σ . The relative Frobenius Fr is
given by the diagram

X0 X
(p)
0 X0

Spf A Spf A Spf A

Fr

ρ

where the second square is cartesian and the composition of the upper horizontal
arrows is the absolute Frobenius. Taking the crystalline cohomology we obtain the
morphisms

A⊗σ,A H 2
crys(X0/A)∼= H 2

crys(X
(p)
0 /A) F

−→ H 2
crys(X0/A).

We may view this as morphisms of crystals on Spf A0. We will set

H= H 2
DR(X/A) and H(σ )

= A⊗σ,A H.

Then we may write
F :H(σ )

→H.
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Since this A-module homomorphism is induced by a morphism of crystals we have
the following commutative diagram:

H(σ ) H

�1
A/W ⊗A H(σ ) �1

A/W ⊗A H

F

∇
(σ ) ∇

id⊗F

We denote here by �1
A/W the continuous differentials, by ∇ the Gauss–Manin

connection and by ∇(σ ) the inverse image of the Gauss–Manin connection by ρ.

Proposition 34. We assume that X0 lifts to a projective smooth scheme X over W
(compare Proposition 29). We have on H(σ ) two horizontal forms

B(σ ) := A⊗σ,A B, B(F α̃, F β̃), where α̃, β̃ ∈H(σ ). (74)

For a suitable choice of the Frobenius lift σ : A→ A, we have after multiplying
B by a unit in W the relation

B(F α̃, F β̃)= p2B(σ )(α̃, β̃). (75)

If we regard F as a σ -linear homomorphism H→H and if we take α̃ = 1⊗α
and β̃ = 1⊗β for α, β ∈H with α, β ∈H, we may rewrite the last relation as

B(Fα, Fβ)= p2σ(B(α, β)). (76)

Proof. We consider the relative Frobenius

W ⊗σ,W H 2
crys(X0/W )∼= H 2

crys(X
(p)
0 /W ) F

−→ H 2
crys(X0/W ). (77)

We take a very ample line bundle L on X0. It defines a cohomology class,

3 ∈ H 2
crys(X0/W )= H 2

DR(X/W ). (78)

By Lemma 27 the form

B3(α) := (2n− 1)ν(3)
∫
32n−2α2

− (2n− 2)
(∫

32n−1α

)2

coincides with the Beauville–Bogomolov form induced by B on the right-hand
side of (78) up to a factor in W ⊗Q. Indeed, to reduce this to the case of analytic
manifolds we take an embedding of W into a field. Finally we may assume that
the field is C.

We denote by L(p) the inverse image of L by the map X (p)
0 → X0 and by 3(σ )

its cohomology class. It is the inverse image of 3 by the map H 2
crys(X0/W )→

H 2
crys(X

(p)
0 /W ). Since we may interpret ν(3) as an intersection product we have

ν(3)= ν(3(σ )) ∈ Z

is nonzero.
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We claim that

B3(F α̃)= p2B3(σ )(α̃), α̃ ∈ H 2
crys(X

(p)
0 /W ). (79)

For this we use that F(3(σ ))= p3 and that we have a commutative diagram:

H 4n
crys(X

(p)
0 /W ) H 4n

crys(X0/W )

W W

F

∫ ∫
p2n

(80)

Now we can compute

B3(F α̃)= (2n− 1)ν(3)
∫
32n−2(F α̃)2− (2n− 2)

(∫
32n−1 F α̃

)2

= (2n− 1)ν(3)(1/p2n−2)

∫
(F3(σ ))2n−2(F α̃)2

− (2n− 2)(1/p2(2n−1))

(∫
(F3(σ ))2n−1 F α̃

)2

= (2n− 1)ν(3)(1/p2n−2)p2n
∫
(3(σ ))2n−2(α̃)2

− (2n− 2)(1/p2(2n−1))p4n
(∫

(3(σ ))2n−1α̃

)2

= p2B3(σ )(α̃).

The last equation holds by (80). This shows (79).
We may multiply the Beauville–Bogomolov form B by a constant in W ⊗Q

such that it induces on H 2
crys(X0/W )= H 2

DR(X/W ) the form B3 if we make base
change by the natural map ρ : A → W induced by X . There is a lift σ of the
Frobenius to A such that ρ commutes with Frobenii. Indeed, after a coordinate
change we may write A =W [[T1, . . . , Tr ]] in such a way that ρ(Ti )= 0. We take
for σ the Frobenius such that σ(Ti )= T p

i .
The two horizontal forms (74) may be regarded as two horizontal sections of the

bundle H(σ )
⊗ (H(σ ))dual endowed with its natural integrable connection. We have

shown that these two sections differ by the factor p2 if we make the base change
A→W. Hence the sections themselves differ by the factor p2. This shows (75). �

We can now prove a refinement of Proposition 19.

Proposition 35. Let k be an algebraically closed field and let X0 be a projective
scheme of K3 type which lifts to a projective smooth scheme over W (k).

Let f : X→ Spec R be a deformation of X0 over an artinian local ring R with
residue class field k. Then the crystalline cohomology H 2

crys(X/Ŵ (R)) has the
unique structure of a selfdual Ŵ R-display which is functorial in R.
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Proof. We can use the w-frames Cn introduced before Proposition 19. We consider
the Cn-window P we introduced on H 2

crys(XRn/Cn). We have to show that the
Beauville–Bogomolov form induces a bilinear form of Cn-displays

P ×P→ U(2). (81)

Here we choose the Beauville–Bogomolov form in such a way that ε = 1, which
is possible by the remark preceding Lemma 25. Because we are in the torsion-free
case it suffices to show that this pairing is compatible with F0, which follows from
Proposition 34. We already know that the Beauville–Bogomolov form induces a
selfdual pairing on

H 2
crys(XRn/Cn)= H 2

DR(XRn/Cn)

with respect to the Hodge filtration on the right-hand side. This shows that (81) is
perfect. The assertion of the proposition is obtained by base change. �

Remark. In the same way, one can generalize the corollary of Proposition 19 and
obtain duality on the displays there.

We denote by (P0,B0) the selfdual Ŵk-2-display associated to X0. We assume
that this 2-display is F0-étale (Definition 12). By Corollary 18 the deformation
functor of (P0,B0) is prorepresentable by

Sdisp = Spf Adisp,

where Adisp is a power series ring over W (k). The universal object is a Ŵ Adisp-
display. Let X→ S be the universal deformation of X0. By Proposition 35 we
have a general morphism

S→ Sdisp. (82)

Let f : X → Spec R be as in Proposition 35 and let (P, λ) be the corresponding
Ŵ R display. Let R′→ R be a surjection of artinian local rings with residue class
field k and kernel a′. We assume that (a′)2 = 0. Then the liftings of X to R′ and
of (P, λ) to R′ are by Proposition 17 and Corollary 32 in natural bijection. In
particular (82) is an isomorphism. We obtain:

Theorem 36. Let k be an algebraically closed field. Let X0 be a scheme of K3 type
over k which lifts to a projective scheme over W (k). We assume that the associated
selfdual Ŵk-2-display (P0, λ0) is F0-étale.

Let R be a local artinian ring with residue class field k. The map which asso-
ciates to a deformation of X/R of X0 its selfdual Ŵ R-2-display (P, λ) is a bijection
to the deformations of (P0, λ0) to R.

Moreover an automorphism of X0 lifts to an automorphism of X (necessarily
unique) if and only if the induced automorphism of (P0, λ0) lifts to (P, λ).

Proof. The last statement is a consequence of Corollary 33. �
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5. The relative de Rham–Witt complex of an ordinary K3 surface

We now relate our results to the results of [Nygaard 1983] and prove the degener-
ation of the integral de Rham–Witt spectral sequence for ordinary K3 surfaces.

Let R be a ring such that p is nilpotent on R, and let X/Spec R be a smooth
projective scheme.

We assume that there exists a formal lifting X of X over Spf W (R) and let
�·X/W (R) be its de Rham complex. We recall the following complex from [Langer
and Zink 2007, Section 4] denoted by Fm�·X/W (R):

IR ⊗W (R)�
0
X/W (R)

pd
−→· · ·

pd
−→ IR ⊗W (R)�

m−1
X/W (R)

d
−→�m

W (R)
d
−→· · · ,

where IR = V W (R).
Let W�X/R denote the relative de Rham–Witt complex and N m W�·X/R the

Nygaard complex (compare [Langer and Zink 2007, Introduction]):

(WOX/R)[F]
d
−→· · ·

d
−→ (W�m−1

X/R )[F]
dV
−→W�m

X/R
d
−→W�m+1

X/R
d
−→· · · .

Here F means the restriction of scalars via F :W (R)→W (R).
Then we recall the following.

Conjecture 37. There exists a canonical isomorphism in the derived category
D+(Xzar,W (R)) between the Nygaard complex and the complex Fm�X/W (R):

N m W�·X/R
∼= Fm�·X/W (R).

This is proved in [Langer 2018, Theorem 0.2] for m < p.

Remark 38. Let us assume that the de Rham spectral sequences associated to
�·X/R and �·X/W (R) degenerate and commute with base change. Then it is proved
in [Gregory and Langer 2017] under some additional assumptions that the hyper-
cohomology groups Hn(X, N m W�X/R) define for varying m a display structure
on the crystalline cohomology H n

crys(X/W (R)).

In [Langer and Zink 2007, Conjecture 5.8], this was predicted in general.
Before we state the main result we give a very general fact.

Lemma 39. Let X→ Spec R be a proper scheme over the spectrum of a complete
local ring.

Then for all integers r, s ≥ 0 the cohomology group H s(X,W�r
X/R) is V -

separated; i.e., ⋂
n>0

V n H s(X,W�r
X/R)= 0. (83)

Proof. The composition of the following maps is zero:

W�r
X/R

V n
−→W�r

X/R→Wn�
r
X/R.
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Indeed, V n maps a differential of the type ξdη1 · · · dηr to V n
ξ d V n

η1 · · · d V n
ηr .

Therefore the composition of the following arrows is zero:

H s(X,W�r
X/R)

V n
−→ H s(X,W�r

X/R)→ H s(X,Wn�
r
X/R). (84)

Let us denote by M ⊂ H s(X,W�r
X/R) the left-hand side of (83). We conclude

from (84) that for each n the group M is mapped to zero by

H s(X,W�r
X/R)→ H s(X,Wn�

r
X/R).

On the other hand we have

H s(X,W�r
X/R)= lim

←−
n

H s(X,Wn�
r
X/R)

by [Langer and Zink 2004, Corollary 1.14]. Since the map from M to each group
in the projective system is zero we conclude that M = 0. �

Theorem 40. Let X/R be a smooth projective scheme such that R is artinian with
perfect residue field k of characteristic p > 2 and such that the closed fibre Xk is
an ordinary K3 surface.

Then the de Rham–Witt spectral sequence associated to the relative de Rham–
Witt complex

E i, j
1 = H j (X,W�i

X/R)→ Hi+ j (W�·X/R)

degenerates. Moreover, one has the following properties:

• H 0
crys(X/W (R))= H 0(X,WOX/R)=W (R).

• H 1
crys(X/W (R))= H 3

crys(X/W (R))= 0.

• H i (X,W�
j
X/R)= 0 for i + j odd, or i + j > 4, or i + j = 4, i 6= j .

• H 2(X,W�2
X/R)= H 4

crys(X/W (R))=W (R).

• H 2
crys(X/W (R))∼=H 0(X,W�2

X/R)⊕H 1(X,W�1
X/R)⊕H 2(X,WOX ), which

is a Hodge-de Rham–Witt decomposition (slope decomposition) in degree 2,
lifting the slope decomposition over W (k).

H 2(X,WOX ) inherits from WOX the operators F and V and it is with this
structure the Cartier module of B̂rX/R ∼= Ĝm/R, the formal Brauer group of X. The
Frobenius F : W�1

X/R→ W�1
X/R induces an endomorphism of H 1(X,W�1

X/R),
which we denote by F1. Let P = (P, Q, F, F1) be the display defined by P = Q =
H 1(X,W�1

X/R), F1 := F1 and F := pF1. Then P is the display of the étale part
9et

X/R of the extended Brauer group 9X/R .

Remark 41. This is the first nontrivial example where the spectral sequence of the
relative de Rham–Witt complex degenerates. Note that for the absolute de Rham–
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Witt complex in the case R = k, it is known that the de Rham–Witt spectral se-
quence degenerates modulo torsion [Illusie 1979, II, Théorème 3.2] and degener-
ates at E1 in the following two cases:

(a) All H i(X,W�
j
X ) are W(k)-modules of finite type [Illusie 1979, II,Théoréme 3.7].

(b) All H i(X,W�
j
X ) are p-torsion free [Illusie 1979, II, Corollaire 4.9].

Proof. First we prove Theorem 40 using Conjecture 37 (proven in [Langer 2018,
Theorem 0.2]) and then give an alternative proof using the universal deformation
of Xk over the universal deformation ring and applying [Langer and Zink 2007,
Corollary 4.7].

It is well known that the crystalline cohomology H i
crys(X/W (R)) is isomor-

phic to the de Rham cohomology H i
DR(X) of a smooth formal lifting X over

Spf W (R), commutes with base change and is locally free of rank 1, 0, 22, 0, 1
for i = 0, 1, 2, 3, 4 respectively; see [Langer and Zink 2007, p. 151] and [Illusie
1979, II, Section 7.2].

It is known that, as we are in the ordinary case, B̂rX/R ∼= Ĝm,R by [Artin and
Mazur 1977, IV, Proposition 1.8; Nygaard 1983, Introduction] and H 2(X,WOX )

is the Cartier module of B̂rX/R; hence H 2(X,WOX )=W (R) by [Artin and Mazur
1977, II, Proposition 2.13].

Let G be an arbitrary p-divisible group over R. We will denote by D(G) the
Grothendieck–Messing crystal of G. Its evaluation at the pd-thickening W (R)→ R
will be denoted by

D(G)= D(G)W (R).

Note that in [Nygaard and Ogus 1985] this W (R)-module is denoted by D(G∗)W (R).
It is endowed with a display structure.

By [Nygaard and Ogus 1985, Theorem 3.16] we have a Frobenius equivariant
map,

D(B̂rX/R)→ D(9X/R)→ H 2
crys(X/W (R))= H2(X,W�·X/R).

Using the natural Frobenius equivariant map of complexes W�·X/R→WOX we
obtain a Frobenius equivariant map,

D(B̂rX/R)→ H 2
crys(X/W (R))→ H 2(X,WOX ). (85)

The first and the last W (R)-module in this sequence are free of rank 1. Therefore
we conclude by reduction to the case R = k (compare [Nygaard and Ogus 1985,
p. 490]) that the composite of the arrows in (85) is an isomorphism. Therefore we
obtain an F-equivariant section ρ of the last map.

Since H 1(X,OX ) = 0 we conclude that V is surjective on H 1(X,WOX ). We
conclude by Lemma 39 that H 1(X,WOX )= 0. We consider the exact sequence
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of complexes

0→W�
≥1
X/R→W�·X/R→WOX → 0.

If we take hypercohomology and use the section ρ above, we obtain an F-equivariant
decomposition,

H 2
crys(X/W (R))= H 2(X,WOX )⊕H2(W�

≥1
X/R). (86)

Let X be a formal lifting of X over Spf W (R). It is known that the Hodge–
de Rham spectral sequence of X degenerates; moreover the Hodge–de Rham spec-
tral sequence associated to the complex Fm�·X/W (R) degenerates too; see [Langer
and Zink 2007, Propositions 3.1 and 3.2].

Remark 42. Using the isomorphism N 2W�•X/R ' F2�•X/W (R) we compute the
cohomology of the Nygaard complex:

H0(N 2W�•X/R)
∼=H0(F2�•X/W (R))

∼= IR H 0(X,OX),

H1(N 2W�•X/R)
∼=H1(F2�•X/W (R))

∼= IR H 1(X,OX)⊕IR H 0(X,�1
X)= 0,

H2(N 2W�•X/R)
∼=H2(F2�•X/W (R))

∼= IR H 2(X,OX)⊕IR H 1(X,�1
X)⊕H 0(X,�2

X),

H3(N 2W�•X/R)
∼=H3(F2�•X/W (R))

∼= IR H 3(X,OX)⊕IR H 2(X,�1
X)⊕H 1(X,�2

X)= 0,

H4(N 2W�•X/R)
∼=H4(F2�•X/W (R))

∼= H 2(X,�2
X)
∼= H 4

DR(X)
∼=W (R).

We will consider the following map from the Nygaard complex to the usual de
Rham–Witt complex:

WOX W�1
X/R W�2

X/R : N 2W�·X/R

WOX W�1
X/R W�2

X/R : W�·X/R

d

pV

dV

V =

d, d

(87)

Lemma 43. We consider the complexes W�1
X/R

d
−→ W�2

X/R and W�1
X/R

dV
−→

W�2
X/R in degree 0 and 1. Then we have

H0(X,W�1
X/R

d
−→W�2

X/R)= 0, H0(X,W�1
X/R

dV
−→W�2

X/R)= 0.

Proof. Since H 1
crys(X/W (R))= 0= H 1(X,WOX ) we have

H0(W�1
X/R

d
−→W�2

X/R)= 0.
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From Remark 42 we get an exact sequence

0→ H0(N 2W�•X/R)→ H 0(X,WOX )
∂
−→H0(W�1

X/R
dV
−→W�2

X/R)→ 0,
∼= IR H 0(X,OX) ∼=W (R)
∼= IRW (R)

(88)
where ∂ is induced by the differential d and therefore is the zero map since d
vanishes on W (R)∼= H 0(X,WOX ). �

Now consider the following commutative diagram of de Rham complexes:

OX �1
X �2

X : �
•

X/W (R)

IR ⊗OX IR ⊗�
1
X �2

X : F
2�•X/W (R)

d d

pd d

·p = (89)

The diagram (89) and the degeneracy of the Hodge–de Rham spectral sequences
associated to �•X/W (R) and F2�•X/W (R) yield a commutative diagram of exact rows:

H2(�
≥1
X/W (R)[−1]) H 2

d R(X/W (R)) H 2(X,OX)

H2(0→ IR ⊗�
1
→�2

→ 0) H2(F2�X/W (R)) IR H 2(X,OX)

·p (90)

The vertical map on the left-hand side may be identified with

IR H 1(X, �1
X/W (R))⊕ H 0(X, �2

X/W (R))→ H 1(X, �1
X/W (R))⊕ H 0(X, �2

X/W (R)).

Since the cohomology H j (X, �i
X/W (R)) commutes with arbitrary base change we

obtain that the cokernel of the left vertical map coincides with H 1(X, �1
X/R). The

vertical map in the middle is the map described in [Langer and Zink 2007, Defi-
nitions 2.1 and 2.5], in terms of the predisplay structure on H 2

d R(X/W (R)). Then
we have:

Lemma 44. The map (87) induces the following diagram with exact rows:

H1(W�1 d
−→W�2) H 2

crys(X/W (R)) H 2(X,WOX )

H1(W�1 dV
−→W�2) H2(N 2W�·X/R) H 2(X,WOX )

(V,id) pV (91)

(We wrote here W�?
=W�?

X/R).
Moreover, the diagram is isomorphic to the diagram (90); hence the left vertical

arrow is injective and its cokernel is H 1(X, �1
X/R).
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Proof. The last vertical arrow of the diagram factors through

H 2(X,WOX )
V
−→ H 2(X, V WOX )

·p
−→ H 2(X,WOX ).

Indeed, this follows from the exact sequence

0→WOX
V
−→WOX →OX → 0.

Since H 1(X,OX )= 0, the map H 2(X,WOX )
V
−→ H 2(X,WOX ) is injective and

we may identify its image with H 2(X, V WOX ). Moreover H 1(X,WOX )= 0 by
Lemma 39, since V H 1(X,WOX )= H 1(X,WOX ). Therefore the horizontal left-
hand maps in (91) are injective. Since D(B̂rX/R) is a crystal and B̂rX/W (R) =Gm/X

by rigidity, we have

D(B̂rX/R)W (R) = D(B̂rX/W (R))W (R) = H 2(X,OX)= Lie B̂rX/W (R)

(compare the bottom lines in [Nygaard and Ogus 1985, p. 492]). Under the identi-
fication H 2(X,WOX )= H 2(X,OX), the top exact sequences in (90) and (91) are
isomorphic under the isomorphism H 2

d R(X/W (R))∼= H 2
crys(X/W (R)). The exact

sequence
0→ IR→W (R)→ R→ 0

yields

0→ IR H 2(X,WOX )→ H 2(X,WOX )→ H 2(X,OX )→ 0

and
0→ IR H 2(X,OX)→ H 2(X,OX)→ H 2(X,OX )→ 0;

hence
IR H 2(X,WOX )∼= H 2(X, V WOX )∼= IR H 2(X,OX).

Using the isomorphism N 2W�•X/R
∼= F2�•X/W (R) we can identify the middle

vertical arrows in diagrams (90) and (91). Moreover, since H 2(X,WOX ) is iso-
morphic to H 2(X,OX)∼=W (R), we see that the whole diagram (91) is isomorphic
to the diagram (90). By the remark after (90) this implies that the left vertical map
in (91) is injective and has cokernel H 1(X, �1

X/R). �

Lemma 45. We have H 0(X,W�1
X/R)= 0.

Proof. Lemma 43 implies that the rows in the commutative diagram

0 H 0(X,W�1) H 0(X,W�2) H1(W�1
X/R

d
−→W�2

X/R)

0 H 0(X,W�1) H 0(X,W�2) H1(W�1
X/R

dV
−→W�2

X/R)

d

dV

V = (V, id)
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are exact. Since (V, id) is injective by Lemma 44, the map

V : H 0(X,W�1)→ H 0(X,W�1)

is an isomorphism. We conclude by Lemma 39. �

Now consider the following commutative diagram with exact rows:

H 0(X,W�2
X/R) H1(X,[W�1

X/R
d
−→W�2

X/R]) H 1(X,W�1
X/R) H 1(X,W�2

X/R)

H 0(X,W�2
X/R) H1(X,[W�1

X/R
dV
−→W�2

X/R]) H 1(X,W�1
X/R) H 1(X,W�2

X/R)

= α̂ V = (92)

α̂ denotes the left vertical arrow of (91). By Lemma 44, α̂ is injective and has
cokernel H 1(X, �1

X/R).

Lemma 46. The sequence

0→ H 1(X,W�1
X/R)

V
−→ H 1(X,W�1

X/R)→ H 1(X, �1
X/R)→ 0 (93)

is exact and H i (X,W�1
X/R)= 0 for i ≥ 2.

Proof. Let us begin with the short exact sequence. We have to show that the kernels
(and cokernels) of α̂ and V in the diagram (92) are the same. This follows formally
if we prove that the last two horizontal arrows in this diagram are surjective. The
continuation of the diagram (91) gives a commutative diagram:

0 H2(W�1
X/R

d
−→W�2

X/R) H 3
crys(X/W (R))

0 H2(W�1
X/R

dV
−→W�2

X/R) H3(N 2W�·X/R)

α̂ (94)

By Remark 42 we see that all terms in the diagram (94) vanish. This shows that
in the diagram (92) the last horizontal maps are surjective. The exactness of (93)
follows.

For the last assertion we need only to consider the case i = 2 because the coho-
mological dimension of X is 2 by Grothendieck’s theorem.

To show the vanishing we continue the exact cohomology sequences which lead
to (92):

H 2(X,W�1
X/R) H 2(X,W�2

X/R) H3(W�1
X/R

d
−→W�2

X/R)

H 2(X,W�1
X/R) H 2(X,W�2

X/R) H3(W�1
X/R

dV
−→W�2

X/R)

V = α̂ (95)
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The horizontal arrows on the left are injective by the vanishing of (94). By Lemma 39
it suffices to show that the α̂ on the right-hand side is an isomorphism because then
V on the left-hand side is bijective. To see this we continue the diagram (91) in
higher degrees and obtain:

H3(W�1
X/R

d
−→W�2

X/R) H 4
crys(X/W (R))

H3(W�1
X/R

dV
−→W�2

X/R) H4(N 2W�•X/R)

'

'

α̂

The horizontal arrows are isomorphisms because X is a noetherian space of
Zariski dimension 2 and therefore H 3(X,WOX )= H 4(X,WOX )= 0.

Under the isomorphism H 4
crys(X/W (R))∼= H 4

DR(X)
∼= H 2(X, �2

X), Remark 42
implies that the right vertical arrow is an isomorphism; hence α̂ is an isomorphism
as well. �

From the F-equivariant decomposition (86) we obtain by projection an F-equi-
variant morphism

D(9X/R)→ H2(X,W�
≥1
X/R). (96)

The Frobenius on the right-hand side is inherited from H 2
crys(X/W (R)). It is in

a natural way divisible by p. By the definition of the decomposition (86), the
submodule D(B̂rX/R)⊂ D(9X/R) is mapped to zero by the map (96). Therefore
we obtain a map

D(9et
X/R)→ H2(X,W�

≥1
X/R). (97)

We will write (P, Q, F, F1) = D(9et
X/R). Then P = Q because this is a display

of an étale group. The Frobenius F and the Verschiebung V on W�1
X/R induce

maps on the cohomology H 1(X,W�1
X/R) which we denote by the same letter.

Composing the map (97) with H2(X,W�
≥1
X/R)→ H 1(X,W�1

X/R) We obtain a
map

ς : P→ H 1(X,W�1
X/R) (98)

such that the following diagram is commutative:

P H 1(X,W�1
X/R)

P H 1(X,W�1
X/R)

F pF

Lemma 47. The W (R)-module homomorphism

ς : P = D(9et
X/R)→ H 1(X,W�1

X/R)
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is an isomorphism. We have a commutative diagram:

P H 1(X,W�1
X/R)

P H 1(X,W�1
X/R)

F1 F

Proof. We already know that the last diagram is commutative if we multiply the
vertical arrows by p. Indeed, on the left-hand side we have pF1 = F by the
definition of a display. To prove the commutativity we may replace X by the
universal deformation

X→ Spf W (k)[[t1, . . . , t22]].

Then the groups of the diagram have no p-torsion and the result follows. We will
write IR = V W (R) as before. We define F2 : IR P→ P by

F2(
Vξ x)= ξF1x, ξ ∈W (R), x ∈ P.

Because F1 is an F-linear isomorphism, F2 is bijective. Then we have a commu-
tative diagram:

P H 1(X,W�1
X/R)

IR P H 1(X,W�1
X/R)

ς

V

ς

F2

Indeed,

Vς(F2(
Vξ x))= V (ς(ξF1x))= V ξFς(x)= Vξς(x)= ς(Vξ x).

The next-to-last equation holds because the corresponding equation holds for W�1
X/R

by the last equation of [Langer and Zink 2004, Definition 1.4].
We set In = V nW (R). From the preceding remark we obtain

ς(In P)⊂ V n H 1(X, �1
X/R).

Then we also have the following diagram:

In−1 P V n−1 H 1(X,W�1
X/R)

In P V n H 1(X,W�1
X/R)

ς

VF2

ς

(99)

Here again the map F2 is bijective.
The map ς induces an R-module homomorphism

ς̄ : P/IR P→ H 1(X, �1
X/R). (100)
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We claim that this is an isomorphism. To see this we note that both sides are free R-
modules of the same rank and that both sides commute with arbitrary base change
R→ R′. Therefore it suffices to prove that (100) is surjective in the case R = k. In
this case the F-crystal H 2

crys(Xk/W (k)) decomposes into a direct sum of isoclinic
crystals. This has the consequence that [Illusie 1979, II, Section 7.2]

H 2
crys(Xk/W (k))= H 2(Xk,WOXk )⊕H 1(Xk,W�1

Xk/k)⊕H 0(Xk,W�2
Xk/k) (101)

is this decomposition as a sum of isoclinic crystals, i.e., the isoclinic components
are canonically isomorphic to the cohomology groups on the right-hand side. In
particular these groups are free W (k)-modules of ranks 1, 20, 1 respectively. The
F-crystal of the extended Brauer group is the part of the F-crystal H 2

crys(Xk/W (k))
with slopes in [0, 1]; i.e., it corresponds to the first two direct summands of (101).
Therefore the map (100) is induced by

H 1(Xk,W�1
Xk/k)→ H 1(Xk, �

1
Xk/k).

But we know by Lemma 46 that this map is surjective. Then (100) is also surjective
in the case R = k and this proves our claim that (100) is an isomorphism.

Now we can check easily by induction that the maps induced by ς ,

In P/In+1 P→ V n H 1(X,W�1
X/R)/V n+1 H 1(X,W�1

X/R), (102)

are surjective. In the case n = 0 this follows from the isomorphism (100) and
Lemma 46.

Let m ∈ H 1(X,W�1
X/R). Then we find by induction elements x ∈ In−1 P and

m1 ∈ H 1(X,W�1
X/R) such that

V n−1m = ς(x)+ V nm1.

We write x = F2(y) for y ∈ In P. Then we obtain

V nm = Vς(F2 y)+ V n+1m1 = ς(y)+ V n+1m1.

This ends the induction.
Recall H 1(X,W�1

X/R) is V -separated. By [Bourbaki 1961, §2.8, Théorème 1]
it follows from (102) that ς : P→H 1(X,W�1

X/R) is surjective and H 1(X,W�1
X/R)

is complete in the V -adic topology. Since V is also injective by Lemma 46,
H 1(X,W�1

X/R) is a reduced Cartier module.
We consider (102) as a homomorphism of Wn+1(R)-modules.

Assertion. Both sides of (102) are isomorphic as Wn+1(R)-modules and are noe-
therian.

Because a surjective endomorphism of a noetherian module is an isomorphism,
the assertion implies that (102) is an isomorphism. But then ς is an isomorphism.
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To finish the proof it remains to show the assertion. From the bijection F2 :

In P→ In−1 P, F2(
V n
ξ x) 7→ V n−1

ξF1x we deduce the bijection

F2 : In P/In+1 P→ In−1 P/In P.

We denote by P/I1 P[Fn] the Wn+1(R)-module obtained by restriction of scalars
with respect to Fn

: Wn+1(R)→ R. Iterating F2 we obtain an isomorphism of
Wn+1(R)-modules

Fn
2 : In P/In+1 P→ (P/I1 P)[Fn].

Because R is F-finite, the last module is a noetherian Wn+1(R)-module [Langer
and Zink 2004, Proposition A.2]. We note that Wn+1(R) is a noetherian ring be-
cause it is a W (k)-module of finite length.

For the reduced Cartier module M = H 1(X,W�1
X/R) we obtain in the same

way the isomorphism

V n
: M/V M[Fn]→ V n M/V n+1 M.

Therefore the isomorphism (100) together with Lemma 46 shows the assertion
above. �

The isomorphism ς of Lemma 47 factors by definition through (97):

D(9et
X/R)→ H2(X,W�

≥1
X/R)→ H 1(X,W�1

X/R). (103)

Therefore the last arrow is a split surjection. Since H 0(X,W�1
X/R)= 0 we obtain

a split exact sequence

0→ H 0(X,W�2
X/k)→ H2(W�

≥1
X/R)→ H 1(X,W�1

X/R)→ 0.

Together with (86) this gives the Hodge–Witt decomposition

H 2
crys(X/W (R))= H 2(X,WOX )⊕ H 1(X,W�1

X/R)⊕ H 0(X,W�2
X/R).

We see that the free W (R)-modules on the right-hand side have ranks 1, 20, 1 since
we know the height of the formal Brauer group and the extended formal Brauer
group.

It follows from the above that

D(9X )W (R) ∼= H 2(X,WOX )⊕ H 1(X,W�1
X/R)

and since

D(9X )W (R) = ker(H 2
crys(X/W (R)) π

−� D(B̂r∗X/R)(−1)W (R))

(this surjective map is defined in [Nygaard and Ogus 1985, (3.20.1)]), π factors
through an isomorphism

H 0(X,W�2
X/R)−→

∼ D(B̂r∗X/R)(−1)W (R)
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of rank-1-W (R)-modules. This identifies all direct summands of H 2
crys(X/W (R))

as Cartier–Dieudonné modules as in Theorem 40.
The Hodge–Witt decomposition for H 2

crys(X/W (R)) implies a surjection,

H 2
crys(X/W (R))� H2(X,W�

≤1
X/R)= H 2(X,WOX )⊕ H 1(X,W�1

X/R)

Then the map H 1(X,W�2
X/R) → H 3

crys(X/W (R)) is injective and therefore
H 1(X,W�2

X/R) vanishes too, because H 3
crys(X/W (R))= 0.

We get the exact sequence

0→ H 2(X,W�2
X/R)→ H 4

crys(X/W (R)) → H4(WOX
d
−→W�1

X/R).

=W (R)

We have seen that H 3(X,WOX )= H 4(X,WOX )= 0.
By the same arguments one shows that V : H 3(X,W�1

X/R)→ H 3(X,W�1
X/R)

is injective with vanishing cokernel = H 3(�1
X/R).

So H 3(W�1
X/R)= 0; this means

H 2(X,W�2
X/R)
∼= H 4

crys(X/W (R))

and this finishes the proof of the theorem. �

Proposition 48. Under the assumptions of Theorem 40, the Hodge–de Rham–Witt
decomposition of H 2

crys(X/W (R)) extends to a direct sum decomposition of dis-
plays (over the usual Witt ring W (R)) associated to the formal Brauer group,
the étale part of the extended Brauer group and its Cartier dual, twisted by −1
and where H 2

crys(X/W (R)) is equipped with the display structure arising from the
Nygaard complex (see [Langer and Zink 2007]).

Proof. This is clear. �

Alternatively we can derive a Hodge–Witt decomposition for H 2
crys using the

universal deformation ring.
Let as before B be the universal deformation ring of Xk , X B be the universal

family of Xk over Spf B, and define Xn = X B×Spf B Spec B/mn. Let Ỹ be a formal
p-adic lifting to W (B) with induced liftings Yk

n over Spec Wk(B/mn), compatible
with the liftings Xn . We assume that n is big enough so that B→ R factors through
B/mn

→ R.
By [Langer and Zink 2007, Theorem 4.6] we have for r < p a quasiisomorphism

Run∗ J [r ]Xn/Wk(B/mn)→ I r Wk�
·
Xn/(B/mn),

where un : Crys(Xn/Wk(B/mn))→ Xn is the canonical morphism of sites and
I r Wk�

·
Xn/(B/mn) denotes the complex

pr−1V Wk−1(OXn )→ · · · → V Wk−1�
r−1
Xn/(B/mn)→Wk�

r
Xn/(B/mn) · · · .
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By [Berthelot and Ogus 1978, Theorem 7.2], Run∗ J [r ]Xn/Wk(B/mn) is represented
by the complex (I k

n := V Wk−1(B/mn))

pr−1 I k
n�

0
Yk

n /Wk(B/mn)
→ · · · → I k

n�
r−1
Yk

n /Wk(B/mn)
→�r

Yk
n /Wk(B/mn)

→ · · · .

As we pass to the projective limit with respect to k, n and note that all inverse
systems of sheaves in the above complexes are Mittag–Leffler systems, we get an
isomorphism of complexes in the derived category of W (B)-modules between

pr−1V W (B)�0
Ỹ/W (B)→ · · · → V W (B)�r−1

Ỹ/W (B)→�r
Ỹ/W (B)→ · · ·

and
pr−1V WOX B → · · · → V W�r−1

X B/B→W�r
X B/B→ · · ·

which is the inverse limit of the complexes I r Wk�
·
Xn/(B/mn) with respect to k, n.

As multiplication by p is injective on �·Ỹ/W (B) and W�·X B/B (this can be re-
duced to a local argument, and can be made explicit for polynomial algebras), the
first complex is isomorphic to Fr�Ỹ/W (B) (notation as in Conjecture 37) and the
second complex is isomorphic to the Nygaard complex N r W�·X B/B . The above
considerations hold for any smooth proper X/R with a smooth deformation ring B
and r < p. For K3 surfaces we take r = 2 and see that Conjecture 37 holds for the
universal family X B over B. Thus the statement of Theorem 40 holds for X B over
Spf B. In particular the de Rham–Witt spectral sequence

H j (X B,W�i
X B/B)→ Hi+ j (X B,W�·X B/B)

degenerates and we have a Hodge–Witt decomposition

H 2
crys(X B/W (B))=

⊕
i+ j=2

H i (X B,W�
j
X B/B). (104)

By base change we get a decomposition over W (R) as follows:

H 2
crys(X/W (R))=

⊕
i+ j=2

H i (X B,W�
j
X B/B)⊗W (B) W (R). (105)

Moreover we have the following evident properties of the direct summands:

• H 2(X B,WOX B )⊗W (B)W (R)= H 2(X,WOX ) is the Cartier–Dieudonné mod-
ule of B̂rX R = Ĝm/R.

• H 1(X B,W�1
X B/B)⊗W (B) W (R)= H 1(X,W�1

X/R) is the Dieudonné module
of 9et

X/R .

• H 0(X B,W�2
X B/B) ⊗W (B) W (R) = H 0(X,W�2

X/R) is the (shifted by −1)
Dieudonné module of the Cartier dual B̂r∗X/R .
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As in Proposition 48, the decomposition (105), which is a direct sum decom-
position of Dieudonné modules of p-divisible groups, extends to a direct sum
decomposition of the corresponding displays, where H 2

crys(X/W (R)) carries the
display structure obtained by base change via B→ R from the display structure
on H 2

crys(X B/W (B)).
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