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Abstract 
Background 

Preliminary studies conducted by our group utilised the Illumina Infinium 

Human Methylation 450k Beadchip array to perform an epigenome-wide 

association study (EWAS) of 15 matched rectal tumour (RT) and adjacent 

mucosa (AM) samples. 176 differentially methylated probes (DMPs) were 

identified (P<0.00001). RT was also characterised by significantly reduced 

global methylation in comparison to AM.  

 

Aims 

This study aimed to validate specific and global DNA methylation differences 

identified by our preliminary work. We then sought to replicate the findings in 

additional samples. Finally, we attempted to identify correlations between 

DNA methylation differences and clinicopathological tumour features.  

 

Materials and Methods 

Polymerase chain reaction (PCR) and bisulphite pyrosequencing assays were 

designed and optimised to quantify DNA methylation at nine DMPs nominated 

by our EWAS. Pearson’s test was used to calculate the correlation between 

450k and pyrosequencing methylation values. Replication was performed in 

an additional cohort of 68 matched colorectal tumour and AM pairs. Global 

DNA methylation of the discovery cohort was quantified using the 

luminometric methylation assay (LUMA). Potential relationships between 

tumour features and differential methylation were investigated using univariate 

(t-tests or ANOVA) and multivariate analyses (logistic regression).  

 

Results  

All DMPs selected for validation showed strong correlations between 

bisulphite pyrosequencing and Illumina 450k methylation values (r= 0.87-

0.97). Global hypomethylation was observed in RT (54.6%) when compared 

to AM (63.5%, P = 0.021). All probes displayed significant levels of differential 

methylation in the replication cohort (P = <2.2e-16). No significant 

associations were observed between DNA methylation and clinicopathological 
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tumour features, however this may reflect the relatively small number of 

samples assessed.  

 

Conclusions 

Our studies have identified and validated a novel methylomic signature of 

rectal cancer. Although no clinicopathological correlations were observed with 

the DMPs investigated, others may represent potential targets in the 

diagnosis, monitoring and risk stratification of rectal cancer.  
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1 Background 

1.1 Introduction to epigenetics  

1.1.1 Chromatin structure  
Each cell contains around two metres of DNA which must be densely 

packaged into its nucleus. This packaging is achieved through the highly 

ordered wrapping of DNA around histone proteins to form a structure termed 

chromatin. The functional unit of chromatin is the nucleosome, which consists 

of a core histone octamer, a single linking histone and the surrounding DNA 

(Figure 1.1). These components are held together by electrostatic interactions 

between the positive histone proteins and negatively charged DNA. Further 

compaction is permitted through interactions with scaffold proteins.  

 

  
Figure 1.1: Schematic diagram to illustrate chromatin structure. DNA 

can be seen to wrap around histone proteins to form functional units 

known as nucleosomes. Key epigenetic modifications, namely DNA 

methylation and histone tail modifications, are also demonstrated. 

Taken from Ref (1) 

 

DNA Methylation  
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The degree to which chromatin is compressed is modifiable— increasing or 

reducing the accessibility of DNA to transcription factors. Less densely 

packed chromatin is termed euchromatin and is associated with gene 

activation. In contrast, heterochromatin describes densely packed chromatin 

and is associated with gene silencing. These two states are each influenced 

by multiple epigenetic modifications.  

 
1.1.2 What is epigenetics?  

Literally translated as “upon genetics”, the term epigenetics describes the 

study of mitotically heritable changes in gene expression, that occur without 

changes in the underlying genetic sequence.(2) As all cells contain the same 

genetic code, epigenetic modifications permit the selective expression of cell-

type specific proteins and therefore lead to the phenotypic differences 

observed between genetically identical cells. In addition, epigenetic 

modifications also contribute to genomic stability and chromosomal structure.  

 

The mechanisms of epigenetic modification are summarised in Table 1.1. Of 

note, alternative routes to differential protein level and function, such as post-

translational modifications, microenvironmental and paracrine effects, also 

exist.(3) My current study focuses on DNA methylation and therefore other 

epigenetic modifications are considered beyond the scope of this thesis. 

 

Of note, some variation exists in the relative stability, and tissue specificity, of 

epigenetic markers.(4) This is an important consideration in the experimental 

investigation of epigenetics. In a study by Byun et al., the temporal stability of 

DNA methylation was positively associated with sequence characteristics 

such as CpG density and 3′ proximity to repeat elements.(5) Tissue specific 

patterns of aberrant DNA methylation have also been observed in cancer, and 

are heavily influenced by histone marks in the cell of origin.(6) 
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Modification  Overview of Mechanism  
DNA methylation Enzymatic addition of methyl group to 5th carbon of cytosine at 

CpG dinucleotides (see Section 1.1.3). 

 

These bring about changes in gene expression through:  

1) Interactions with methylated CpG binding proteins to 

promote the transition from euchromatin to 

heterochromatin. 

2) Directly blocking the binding of transcription factors.  

 

Histone tail 

modifications (7)  

Involve multiple modifications of the N-terminal tails of histone 

proteins including: Methylation, ubiquitination, phosphorylation, 

acetylation and sumoylation.  

 

These bring about changes in gene expression through:  

1) Disruption of the electrostatic charges between DNA and 

histone proteins.  

2) Acting as binding sites for specific proteins. 

 

ATP dependant 

chromatin 

remodelling 

complexes (8) 

Use the energy from ATP hydrolysis to move and/or evict 

histone proteins, resulting in the restructuring of chromatin. 

RNA interference 

pathways (9) 

Bring about post transcriptional silencing by the inhibition or 

degradation of cytoplasmic mRNA by utilising short antisense 

RNA strands. 

 

Histone variants 

(10) 

Non-canonical variants of histone proteins confer various 

mechanisms of altered gene expression and structure in a locus 

specific manner.  
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Non-coding RNA 

(11) 

Comprise both short (e.g. miRNAs) and long (e.g. lncRNAs) 

RNAs. They regulate gene expression at the transcriptional and 

post-transcriptional level. 

Table 1.1: An overview of key epigenetic modifications and their mechanisms 

of bringing about changes in gene expression.  
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1.1.3 DNA methylation  
DNA methylation is the most studied and well understood mechanism of 

epigenetic modification. It involves the enzymatic addition of a methyl group to 

the fifth carbon of cytosine to produce 5-methylcytosine (5mC, Figure 1.2).  

 

 
  

Figure 1.2: Enzymatic addition of a methyl group to the fifth carbon of 

cytosine by DNA methyltransferase to produce 5-methylcytosine. 5-

hydroxymethylcytosine is the first product in 5-methylcytosine 

demethylation. Importantly, 5-methylcytosine and 5-

hydroxymethylcytosine cannot be distinguished by traditional sodium 

bisulphite treatment and have different effects of gene expression. 

 

DNA methylation occurs almost exclusively at cytosine-guanine dinucleotides 

(CpGs). This palindromic sequence enables the presence of 5mC on each 

DNA strand and contributes the mitotic heritability of DNA methylation.  

 

Regions of DNA in which greater than 70% of the sequence is comprised of 

CpG dinucleotides, are collectively known as CpG islands (CGIs). These 

occur predominantly at the promoter regions of genes and generally remain 

unmethylated. When CGIs are methylated, they bring about gene silencing 

through multiple mechanisms. Interactions with methylated CpG binding 

proteins, such as MeCP1 and MeCP2, are considered the primary mechanism 

of promoter silencing. These interactions result in the transition of 

euchromatin to densely packaged heterochromatin. In some cases, 

methylation also interferes with gene transcription by directly blocking the 
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binding of specific transcription factors, however this is considered less 

significant.(12)   

 

DNA methylation also occurs at intergenic regions and at repetitive elements. 

In these regions, methylation increases genomic stability through the 

prevention of transposition and the reduction of transcriptional interference.  

 

The terms hypermethylation and hypomethylation refer to the increased and 

reduced DNA methylation of CpG dinucleotides respectively.  

 

Of note, demethylation of cytosine occurs through a series of oxidative 

reactions. The first product in this series, 5-hydroxymethylcytosine (5hmC), is 

of particular significance in the field of epigenetics as traditional sodium 

bisulphite treatment (see Section 4.6) cannot distinguish between the two 

states.(13) In contrast with 5mC, 5mhC is considered to promote gene 

expression and has been reported to play a role in gene splicing.(3, 13) 
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1.2 Introduction to Cancer 

1.2.1 Cancer terminology  
Neoplasia is characterised by the uncontrolled proliferation of abnormal cells 

and can be benign or malignant in nature. The formation of a malignant 

neoplasm defines cancer. These neoplasms, or tumours, possess the ability 

to invade surrounding tissues and metastasise. Metastasis describes the 

spread of cancer from its primary site to distant organs through the circulatory 

or lymphatic systems. Although less common, cancer cells can also cross 

body cavities directly in a phenomenon termed transcoelomic spread.(14) 

Importantly, benign tumours can progress into malignant tumours with time.  

  

Cancers are broadly classified depending upon their tissue of origin (Table 

1.2). Carcinomas account for around 85% of all cancers and originate from 

epithelial tissue. Adenocarcinoma describes a subclassification of carcinoma 

originating from glandular epithelium. 

 

 

 

 

 

 

 

 

Hyperplasia represents the initial stage of tumourigenesis and is 

characterised by an increased proliferation of cells with minimal morphological 

change. The term dysplasia, describes the presence of change in cellular 

organisation and nuclear appearance. With disease progression, invasion 

beyond the basement membrane distinguishes carcinoma in situ from 

carcinoma.  
 

Cancer type Tissue of origin  

Carcinoma Epithelial tissue  

Sarcoma  Connective tissue  

Leukaemia  Blood cells originating from the bone marrow 

Lymphoma  Blood cells originating from the lymphatic system  

Table 1.2: A summary of cancer type nomenclature on the basis of 

tissue of origin.  
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1.2.2 Cancer as a genetic disease  
The pathogenesis of cancer results from the detrimental accumulation of 

multiple genetic, epigenetic, transcriptomic and metabolomic changes over a 

period of time. The specific genetic and epigenetic changes observed in 

colorectal cancer are discussed at length in Section 1.4.  

 

Genetic mutations are the most well understood pathological process of 

tumorigenesis. Such mutations bring about disease by completely 

suppressing the expression of, or changing the final structure of, encoded 

proteins.  
 

With each mitotic division, a cell must fully replicate its DNA and other cellular 

contents. In normal cells, this process is tightly regulated through a series of 

cell-cycle checkpoints. At each of these checkpoints, the integrity of DNA is 

assessed and where abnormalities are identified, the ‘decision’ to attempt 

repair or trigger programmed cell death (apoptosis) is made. Key checkpoints 

between growth phase 1 and synthesis (G1/S), and between growth phase 2 

and mitosis (G2/M), each involve multiple proteins involved in the pathogeneis 

of colorectal cancer such as retinoblastoma protein and tumour suppressor 

p53 respectively (see Section 1.4.2).(15, 16) Likewise, the APC gene is 

commonly mutated in colorectal cancer and is particularly important in the 

pathogenesis of the hereditary condition, familial adenomatous polyposis (see 

Section 1.4.2).(17) The APC protein is key to the spindle checkpoint, which 

ensures proper chromatid attachment prior to progression from metaphase to 

anaphase.(3) 

 

Despite these checkpoints, errors in DNA replication lead to around 10.6x10-7 

mutations per cell division.(18) This mutation rate is relatively consistent 

between cell types throughout the body. As a result, Tomasetti et al. describe 

a strong correlation is seen between the cumulative number of divisions that a 

cell undergoes over an individual’s lifetime, and the risk of developing 
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cancer.(19)1 In addition, exposure to environmental carcinogens such as 

ultraviolet light, cigarette smoke and certain viruses significantly increase the 

rate at which mutations occur.  

 

Oncogenes and tumour-suppressor genes (TSGs) each promote and inhibit 

cell growth and proliferation respectively. In health, the expression of these 

gene types is carefully regulated to bring about controlled cell division during 

mitosis. In cancer cells however, mutations of these genes result in 

anomalous activation of oncogenes, and silencing of tumour suppressors. By 

their nature, loss of function mutations in a TSG can be compensated for by 

the expression of its functional, complimentary allele.(21) As a result, 

mutations must occur within both alleles for a cell to become cancerous. This 

concept was first described by Alfred Knudson and is known as the “two-hit” 

hypothesis.(3)   

 

Importantly, single gene mutations are insufficient to cause cancer. Instead, 

multiple mutations of genes involved in several metabolic processes are 

required. These metabolic processes are collectively termed the ‘Hallmarks of 

Cancer’— characteristic features initially proposed by Hanahan and Weinberg 

in 2000, and updated in 2011.(22, 23) The system aims to provide a 

framework for conceptualising the complex biological characteristics common 

to all cancer types (Figure 1.3). Through the multistep acquisition of these 

traits, cells obtain the capacity to proliferate and survive independently—

eventually enabling their invasion of local structures and the formation of 

distant metastases. Attainment of these hallmarks enables the tumour to 

become more aggressive and allows tumour cells to survive independently.   

 

                                                
1 Of note, the referenced paper by Tomasetti et al. remains highly controversial 
within the field. The so called “bad-luck” hypothesis argues that 2/3 of human 
cancers are unavoidable and as a result, public health measures and primary 
prevention are unlikely to be of value.(19) The study has been criticised however, 
due to the use of general population incidence data in the United States, without 
examination of specific at-risk groups such as smokers or alcoholics—both of whom 
are known to be at greater risk of lung and hepatocellular cancer respectively.(20) 
The debate holds important clinical relevance as the hypothesis seemingly 
undermines the importance of lifestyle modification in the prevention of disease.  
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Figure 1.3: A summary of the modified hallmarks of cancer—the common 

metabolic characteristics that enable cancer cells to survive, proliferate and 

ultimately metastasise. The hallmarks were initially described by Hanahan and 

Weinberg in 2000, and updated in 2011.(22, 23) Figure taken from Ref (23) 

 

The accumulation of mutations in DNA repair pathways and checkpoints, 

confounded by the genomic instability possessed by cancer cells, expedites 

the acquisition of further mutations in subsequent generations of tumour cell. 

This cascade of increased mutation frequency results in the formation of 

distinct subpopulations of cells within an individual tumour. According to this 

so called ‘Big Bang’ model, mutations acquired early in tumourigenesis 

pervade throughout the tumour whereas those acquired later result in distinct 

subclones.(3) This phenomenon accounts for the large degree of 

heterogeneity seen both within and between individual tumours.  
 

Germ-line mutations are present in gametes (sex cells) prior to conception 

and are inherited by an individual’s offspring. As a result, mutations are 

passed to all cells during development. In health, germline mutations account 
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for variation seen between parents and their children. However, the 

inheritance of certain pathological mutations also predispose individuals to 

developing cancer. Specific familial colorectal cancer syndromes are 

discussed briefly in Section 1.4.  

 

1.2.3 Cancer as an epigenetic disease (overview)  
In addition to the genetic changes discussed, aberrant changes in the 

epigenome of patients with cancer can constitute the second hit of Knudson’s 

two-hit hypothesis. This results in abnormal gene expression and genomic 

instability, which can mimic the phenotypic effects of genetic mutations. 

Epigenetic changes in colorectal cancer are discussed fully in Section 1.5.  

 

In brief, three main mechanisms underpin the epigenetic basis of cancer as 

follows: 

Global hypomethylation: 

Hypomethylation of repetitive sequences, such as long and 

small interspersed nucleotide elements (LINE and SINE 

respectively) result in genomic instability.  

Hypermethylation of promoter regions: 

Hypermethylation of tumour suppressor genes leads to the 

suppression of their action and thereby promote tumorigenesis. 

It is now understood that tumour suppressor gene 

hypermethylation occurs more frequently than genetic 

mutations.  

Direct mutagenicity: 

DNA methylation also promotes carcinogenesis directly due to 

the inherent susceptibility of 5MC to undergo deamination to 

thymine.(24)  
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1.3 Colorectal cancer: Background  

1.3.1 Anatomy of the colon and rectum 
The large intestine refers to the colon and the rectum.(25) The colon begins in 

the right iliac fossa as the caecum (Figure 1.4). It then ascends superiorly as 

the ascending colon before turning at the hepatic flexure to form the 

transverse colon. At the splenic flexure, the colon turns to descend on the left 

as the descending colon. The sigmoid colon represents the final portion of the 

colon and is highly variable in length. The sigmoid begins below the level of 

the pelvic brim where its distal end is relatively fixed at the level of the third 

sacral vertebrae. The sigmoid colon is continuous with the rectum and as a 

result, the anatomical distinction between the sigmoid colon and rectum 

remains a subject of debate.(26) For surgical purposes in the UK, the rectum 

is arbitrarily defined as the portion of alimentary tract 15cm proximal to the 

anal verge.(27) Distance from the anal verge is also used to subdivide the 

rectum into low (0-5cm), middle (5-10cm) and high (10-15cm).(25)    

 

The embryological origin of the colon differs throughout its length.(28) The 

caecum, ascending colon and proximal two thirds of the transverse colon are 

derived from the embryological midgut, whereas all distal structures to the 

level of the proximal anal canal (above the dentate line) are derived from the 

embryological hindgut. Midgut structures receive their blood supply from 

branches of the superior mesenteric arteries whereas hindgut structures are 

supplied by branches of the inferior mesenteric artery. The rectum also 

receives additional blood supply from the internal iliac arteries via the inferior 

and middle rectal arteries.(25) Branches subdivide between the muscular 

layers of the colon before terminal branches enter the mucosa and 

submucosa. Venous drainage of midgut and hindgut structures is achieved 

via the portal system via the superior and inferior mesenteric veins 

respectively.  
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Figure 1.4: Anatomy of large bowel. The large bowel/colon begins in the 

right iliac fossa as the caecum. It ascends to the hepatic flexure, inferior 

to the liver where it becomes the transverse colon. At the splenic 

flexure, the colon descends into the pelvis to become the sigmoid colon, 

before transitioning into the rectum. The small bowel and mesentery 

have been removed from this diagram for clarity. Taken from Ref (25) 

 

The colon is surrounded by visceral peritoneum. The ascending and 

descending colon are fixed within the retroperitoneal cavity. Other areas of the 

colon are suspended within the peritoneal cavity by mesentery. Until recently, 

the mesentery was considered a relatively quiescent structure— understood 

to simply facilitate the passage of neurovascular and lymphatic structures 

from the retroperitoneum to the bowel. The work of Coffey and O’Leary 

however, has challenged this traditional notion by demonstrating complex 

anatomical and physiological features of the structure in health and 

disease.(29)  
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The mesentery of the rectum is termed the mesorectum and is of great clinical 

importance in the staging and management of rectal cancer (Section 1.8). The 

mesorectum contains the vasculature and lymphatic drainage of the rectum, 

which act as a gateway to metastatic spread.(30, 31) The mesorectum is 

encased by an adapted layer of visceral peritoneum termed the mesorectal 

fascia (MRF), which is separated from the parietal pelvic fascia by a loose 

layer of areolar connective tissue.(32) This serves as an important landmark 

in the surgical excision of the rectum. 

 

1.3.2 Histology of the colon and rectum  
The wall of the large intestine consists of four layers; the mucosa, 

submucosa, muscularis externa and serosa.(25) The predominant epithelial 

cell types in the mucosa are columnar cells and mucinous cells. Columnar 

cells are responsible for absorption and ion exchange, whereas mucinous 

cells secrete mucin. The muscularis externa forms an important landmark in 

the staging of colorectal cancer (Section 1.7).  

 

In parallel to the anatomy of the colorectum, histological differences are also 

apparent throughout its length. For example, the rectum expresses greater a 

number of endocrine cells than elsewhere in the large intestine, whereas 

crypts of the proximal colon are shorter than those found distally.(33) 

Furthermore, metabolic (e.g. bile acid metabolism) and gene expression (e.g. 

Na+/H+ antiporter) differences are also well documented.(34) 

 

The potential clinical implications of such differences in the context of 

colorectal cancer are discussed in Section 1.6.  

 

1.3.3 Incidence of CRC  
After lung and breast, colorectal cancer (CRC) is the third most common 

cancer worldwide (35) and represents the second leading cause of cancer 

death. In the United Kingdom (UK), 41,265 new cases of CRC were 

diagnosed in 2014 and 15,903 lost their lives to the disease.(36)   
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Although significant disparities exist in the recording of cancer incidence 

between countries (37), the highest incidence of CRC is seen in North 

America, Western Europe and Australasia where the lifetime risk of 

developing CRC is around 3-5%.(35) However, the incidence of CRC in 

previously low risk regions such as eastern Europe and east Asia has 

increased in recent years—supporting the role of the western lifestyle in 

tumorigenesis.  

 

In contrast, the incidence of CRC in well developed countries such as the UK 

and USA has become relatively stable. Between 2003-2014, age 

standardised incidence of CRC in the UK remained constant for males, but 

increased by 4% in females.(36) This plateau has been largely attributed to 

the implementation of screening programmes, with consequent identification 

and removal of precancerous lesions, but it also reflects changes in 

population demographics and exposure to risk factors.  

 

1.3.4 Risk factors for developing CRC 
Increasing age remains the greatest risk factor in the development of the 

CRC—representing the accumulation of genetic and epigenetic changes 

within the bowel and reduced efficacy of DNA repair with time.(3) In the UK, 

approximately 44% of CRC cases are diagnosed in patients over 75 years old 

and incidence is highest in patients aged 85-89 years old.(36) As we move 

towards an aging population, this has important implications for future 

healthcare provision. 

 

- Males are also at increased risk of CRC—accounting for 55% of cases.(36) 

Other important risk factors include the presence of inflammatory bowel 

disease, diabetes mellitus and a positive family history of CRC.(38) Lifestyle 

factors such as smoking, obesity, excessive alcohol intake and diets rich in 

red and processed meats also significantly increase risk. Emerging evidence 

also supports the importance of interaction between host-microbiome and 

pathogens such as helicobacter pylori, Streptococcus gallolyticus and 

Fusobacterium spp, in triggering tumorigenesis.(39)  



	 31	

 

In contrast, diets high in fibre, exercise and the use of aspirin (a non-steroidal 

anti-inflammatory drug) and angiotensin converting enzyme inhibitors have 

each been associated with reduced risk.(40-42)  
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1.4 The Biology of Colorectal Cancer 
1.4.1 Pathogenesis of colorectal cancer  

As with other cancers, CRC results from the early development and 

subsequent accumulation of genetic and epigenetic changes within colorectal 

epithelial cells.  

 

Three major pathways to CRC have been traditionally described. These 

pathways are characterised by, and named after, their defining features of 

chromosomal instability (CIN), microsatellite instability (MSI) and CpG island 

methylator phenotype (CIMP).(43, 44)  

 

CIN and CIMP pathways generally drive tumourigenesis through the 

‘adenoma-carcinoma sequence’.(44) These tumours develop in aberrant 

crypts through the relatively predictable evolution from normal epithelial cells, 

to polyps, to adenomas and ultimately to adenocarcinomas. However, 

although the prevalence of adenomatous polyps is around 20%, only around 

10% of 1cm adenomas progress to CRC at 10 years.(45) The reasons why 

some polyps progress and others do not is currently poorly understood.   

 

CIN accounts for around 70-85% of sporadic CRC cases. In traditional 

descriptions, CIN is characterised by early mutation of the adenomatous 

polyposis coli (APC) tumour suppressor gene, followed by the sequential 

activation of the oncogene, KRAS and inactivation of the tumour suppressor 

gene, TP53.(44) However, it is important to note that this model is in fact an 

oversimplification of the complex interplay of mutations implicated in the 

development of the CRC phenotype. In reality, CRC is a highly 

heterogeneous disease, with individual tumours each possessing around 90 

mutations on average.(46) These mutations, in conjunction with defects in 

DNA damage repair, chromosomal segregation and telomere function result in 

the defining features of CIN— aneuploidy (imbalanced number of 

chromosomes) and loss of heterozygosity.  
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CpG island methylator phenotype, is characterised by the high frequency of 

aberrant DNA methylation within CpG islands and is discussed fully in Section 

1.5.  

 

MSI tumours account for around 15-20% of cases. They result from mutations 

in genes responsible for DNA repair such as MSH2, MLH1 and Exo1.(43) 

Their mutation permits the subsequent accumulation of further mutations 

throughout the genome. These mutations accumulate predominantly in 

microsatellites— highly repetitive regions comprising one to ten nucleotide 

tandems found throughout the genome.(3) MSI is more commonly featured in 

tumours of elderly females and in right sided CRCs. Prognostically, stage II 

and III MSI tumours are associated with favourable outcomes.(47) Tumours 

derived from sessile serrated adenomas most commonly display features of 

MSI. MSI is the predominant pathway responsible for the familial cancer 

syndrome, hereditary non-polyposis colorectal cancer (HNPCC or Lynch 

syndrome). 

 

1.4.2 Genetics of CRC 
Although most cases of CRC occur sporadically, the disease is associated 

with a significant heritable component.  

 

Specific inherited CRC syndromes, such as familial adenomatous polyposis 

(FAP) and HNPCC, have been identified and the specific genetic alterations 

associated with them have been well described.(48) HNPCC encompasses a 

spectrum of conditions which result from mutations in one or more DNA 

mismatch-repair genes, such as MLH1, MSH2, MSH6 or PMS2.(48) These 

mutations result in the common phenotype of microsatellite instability. FAP 

manifests from germline mutations in the APC gene and is characterised by 

the development of many colorectal adenomas at a young age. Affected 

patients are at high risk of progression to CRC and usually undergo total 

colectomy before the age of 30. However, although the risk of developing 

CRC for individuals affected by these conditions is high, they are collectively 

responsible for less than five percent of all CRC cases.  
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Even seemingly sporadic CRCs are often associated with a significant 

heritable component (see Section 1.4.3). In these cases, positive family 

history is implicated in around 15-20% of cases. In young patients, the 

presence of a first degree relative with CRC confers 2-fold risk increase. This 

risk is increased further for those with more affected relatives and earlier 

disease onset.(49) In contrast, lifestyle factors such as cigarette smoking and 

red meat consumption result in only a 6% and 13% increase in relative risk 

respectively.(50) Clinically, this heritable component is particularly clear in 

patients with strong family pedigrees for the development of CRC in later life. 

However, in this group, identifiable genetic conditions are often absent. Such 

phenotypes may result from yet undiscovered genetic or epigenetic 

aberrations in one or more genes.  

 

Genes commonly mutated in CRC are summarised in Table 1.3. Those 

involved in the WNT signalling pathway, such as APC, are thought to play a 

central role in initiating tumorigenesis.(51) Subsequent genetic mutations are 

often seen to cluster within specific pathways such as MAPK, TGF-B and 

PI3K-AKT. 
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Gene or 

biomarke

r 

Chro

moso

me 

Gene Function Molecular lesion Frequency 

(%) 

Tumour suppressor genes  

APC  5  Regulates the WNT signalling 

pathway  

Inactivating 

mutations  

40–70  

ARID1A  1  Member of the SWI/ SNF 

family, and regulates chromatin 

structure and gene transcription  

Inactivating 

mutations  

15  

CTNNB1  3  Regulates the WNT signalling 

pathway  

Activating 

mutations  

1  

DCC  18  Netrin receptor; regulates 

apoptosis, is deleted but not 

mutated in colorectal cancer, 

and its role in primary cancer is 

still unclear  

Deletion or LOH  9 

(mutation); 

70 (LOH)  

FAM123B  X  Involved in the WNT signalling 

pathway  

Inactivating 

mutations  

10  

FBXW7  4  Regulates proteasome-

mediated protein degradation  

Inactivating 

mutations  

20  

PTEN  10  Regulates the PI3K–AKT 

pathway  

Inactivating 

mutations and loss 

of protein 

(assessed by 

immunohisto-

chemistry)  

10 

(mutation); 

30 (loss of 

expression)  

RET  10  Regulates the GDNF signalling 

pathway  

Inactivating 

mutations and 

aberrant DNA 

methylation  

7 

(mutation); 

60 

(methylation

)  

SMAD4  18  Regulates the TGFβ _and BMP 

pathways  

Inactivating 

mutations and 

deletion  

25  
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TGFBR2  3  Regulates the TGFβ _pathway  Inactivating 

mutations  

20  

TP53  17  Regulates the expression of 

target genes involved in cell 

cycle progression, DNA repair 

and apoptosis  

Inactivating 

mutations  

50  

Proto-oncogenes  

BRAF  7  Involved in the MAPK signalling 

pathway  

V600E-activating 

mutation  

8–28  

ERBB2  17  Involved in the EGF–MAPK 

signalling pathway  

Amplification  35  

GNAS  20  Regulates G protein signalling  Mutation  20  

IGF2  11  Regulates the IGF signalling 

pathway  

Copy number gain 

and loss of 

imprinting  

7 

(mutation); 

10 

(methylation

)  

KRAS  12  Regulates intracellular 

signalling via the MAPK 

pathway  

Activating 

mutations in 

codons 12 or 13 

but rarely in codons 

61, 117 and 146  

40  

MYC  8  Regulates proliferation and 

differentiation  

Amplification  2 

(mutation); 

10 (CNV 

gain)  

NRAS  1  Regulates the MAPK pathway  Mutation in codons 

12 or 13  

2  

PIK3CA  3  Regulates the PI3K–AKT 

pathway  

Mutations in the 

kinase (exon 20) 

and helical (exon 9) 

domains  

20  

RSPO2 

and 

8 and 

6, 

Ligands for LGR family 

receptors, and activate the 

Gene fusion and 10  
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RSPO3  respec

tively  

WNT signalling pathway  translocation  

SOX9  17  Regulates apoptosis  Copy number gain  9 

(mutation); 

<5 (CNV 

gain)  

TCF7L2  10  Regulates the WNT signalling 

pathway  

Gene fusion and 

translocation  

10  

Table 1.3: Common genetic mutations in CRC. Adapted from Kuipers et al.(38) APC, 

adenomatous polyposis coli; ARID1A, AT-rich interactive domain 1A; BMP, bone 

morphogenetic protein; CNV, copy number variation; CTNNB1, catenin β1; DCC, 

DCC netrin 1 receptor; EGF, epidermal growth factor; FAM123B, family with 

sequence similarity 123B; FBXW7, F-box and WD repeat domain-containing 7, E3 

ubiquitin protein ligase; GDNF, glial cell-derived neurotrophic factor; GNAS, guanine 

nucleotide-binding protein, α-stimulating complex locus; IGF, insulin-like growth 

factor; LGR, leucine-rich repeat-containing G protein-coupled receptor; LOH, loss of 

heterozygosity; MAPK, mitogen-activated protein kinase; N/A, not applicable; 

NDRG4, NDRG family member 4; PI3K, phosphatidylinositol 3 kinase; PIK3CA, 

phosphatidylinositol 4,5 bisphosphate 3 kinase catalytic subunit-α; PTEN, 

phosphatase and tensin homologue; RSPO, R-spondin; SEPT9, septin 9; SMAD4, 

SMAD family member 4; SOX9, SRY (sex-determining region Y) box 9; TCF7L2, 

transcription factor 7 like 2; TGFβ, transforming growth factor-β; TGFBR2, TGFβ 

_receptor 2; VIM, vimentin.  

 
1.4.3 Complex genetics of CRC 

Importantly, although some forms of CRC can be attributed to single genes, 

the vast majority of cases occur in a seemingly sporadic nature. These cases 

are now understood to result from the complex interaction of multiple 

mutations, with each other and with their environment.(3) Each of these 

mutations may alone carry only a negligible risk of cancer, however when in 

combination and in the correct environments, they result in disease.(52) 

Identification of such loci is challenging due to their individual low risk and 

relative frequency within a given population. Genome wide association studies 

(GWAS) have revolutionised our understanding of cancer genetics by 
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identifying single nucleotide polymorphisms (SNPs) across large patient 

populations.(3, 53-56) Our understanding of how these loci interact and their 

potential clinical application however remains in its infancy.(57) A full 

discussion of the complex genetics of CRC is considered beyond the scope of 

this thesis, however Figure 1.5 highlights some of the genetic loci implicated 

to date.(57) 

 

Figure 1.5: Complex genetics of CRC. The tumourigenic loci identified to date 

range can be broadly classified into two groups. The first comprise rare but 

high-penetrance mutations. These result in markedly increased risk and are 

associated with the hereditary CRC syndromes such as familial adenomatous 

polyposis. The second group consists of common polymorphisms, which each 

confer weak effects on CRC risk. These are associated with seemingly 

sporadic CRC. Figure taken from (57) 
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1.5 Epigenetics of CRC 

1.5.1 Hypomethylation 
Global reduction of 5-methylcytosine has been widely implicated in 

carcinogenesis and was initially described in the early 1980s.(58, 59) 

 

DNA hypomethylation is thought to contribute the formation of CRC through 

multiple pathways. The most well studied mechanism involves the activation 

of long-interspersed nucleotide element-1 (LINE-1). LINE-1 is a 

retrotransposon which comprises around 18% of the human genome.(60) The 

ability of LINE-1 to transpose, brings about chromosomal instability and has 

been associated with poor outcomes in CRC.(60, 61)  

 

LINE-1 hypomethylation has also been correlated with reduced tumour-

lymphocyte infiltration and loss of imprinting which may further contribute to 

the poor prognosis.(62, 63) 

 

1.5.2 Hypermethylation  
As discussed, the epigenetic silencing of tumour-suppressor genes, through 

the hypermethylation of gene promoters, plays an important role in colorectal 

tumourigenesis. Multiple studies have demonstrated correlations between 

specific epigenetic changes and risk factors for CRC development.(64-67) Of 

note, specific epigenetic markers also appear to affect the susceptibility of 

patients to develop CRC in response to given risk factors.(68) 

 

Many studies have interrogated the epigenome of CRC to identify potential 

diagnostic and/or prognostic biomarkers of disease.(69) In the vast majority of 

these studies, cancers of the colon and rectum are considered together as a 

single entity. However, as will be discussed in Section 1.6, the biology of CRC 

differs according to anatomical location of the primary tumour. Despite this, 

relatively few attempts have been made to assess the epigenome of rectal 

cancer specifically. These studies are summarised in Table 1.4.  
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Early studies targeted predetermined genes, based on established 

understanding of their direct or indirect roles in CRC pathways.(70-74) 

Commonly investigated genes include APC, RARB and ESR1.(75, 76) 
Although significant DNA methylation differences are observed between 

tumour and adjacent tissue at these loci, their ability to predict clinical 

outcomes has often failed to reach clinical significance.  

 

More recently, the clustering of multiple genes into panels, has enabled more 

meaningful conclusions to be drawn. In a study conducted by Gaedcke et al., 

a high DNA methylation profile (as determined by hierarchical clustering) was 

associated with increased disease free survival in a cohort of 61 matched 

rectal tumour and adjacent mucosa tissue samples (HR=3.57, 95% CI= 1.01-

12.55, P = 0.0345).(77)  

 

In addition, genome-wide studies have also been performed with the aim of 

providing a comprehensive methylomic signature of rectal cancer and 

identifying novel biomarkers for diagnostic and prognostic usage. Multiple 

studies have utilised the Illumina Infinium HumanMethylation450K assay to 

meet such goals.(78-82) Of these five studies, only three have attempted to 

draw correlations with cliniopathologic features (Table 1.4).(79, 80, 82) This 

method was also utilised in preliminary work conducted by our group (Section 

2) with the adoption of more stringent bioinformatic analyses than those 

reported to date.  

 

1.5.3 CpG island methylator phenotype  
CIMP, is characterised by the high frequency of aberrant DNA 

hypermethylation within CpG islands and is estimated to account for 15-20% 

of sporadic CRCs. This characteristic is more commonly associated with 

advanced age, female gender and tumours of the ascending colon.  

 

However, definitions of CIMP vary throughout the literature. In a recent 

systematic review, 16 individual gene panels were reported to determine 

CIMP status.(83) As a result, the reported incidence of CIMP also varies 
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widely from (6.4–48.5 %) although heterogeneous patient demographics and 

methods of analysis between studies are also likely to contribute to this 

variation. Commonly cited genes include CACNA1G, IGF2, NEUROG1, 

RUNX3, SOCS1, CRABP1, MLH1, p16, MINT1, MINT2 and MINT31.(83) 

 

Despite this variation, studies have demonstrated prognostic potential, as 

CIMP-high tumours often exhibit unfavourable outcomes.(84) This is 

particularly true of rectal cancers, where although relatively rare, its presence 

has been associated with increased incidence of extramural vascular invasion 

and metastasis.(85, 86) In addition, interval relapse (defined as relapse within 

5 years of screening), microsatellite instability and BRAF mutations are also 

more common in CIMP-high tumours.(87, 88)  

 

1.5.4 Metastasis  
Epigenetics also play an important role in tumour metastasis. In order for a 

carcinoma to metastasise, epithelial cells must acquire the ability to mobilise. 

Healthy epithelial cells are organised into sheets and are tightly bound to 

adjacent cells by adherens, desmosomes, tight junctions, and gap 

junctions.(89) Disruption of these junction molecules and consequent loss of 

contact with surrounding cells triggers the process of apoptosis.  

 

The epithelial-mesenchymal transition (EMT) describes the process by which 

mutated epithelial cells dedifferentiate to assume a mesenchymal 

phenotype.(90) EMT plays an important physiological role in wound healing 

and embryogenesis, however in cancer, EMT permits the mobilisation and 

invasion of tumour cells.(91) The ability to redifferentiate into epithelial 

phenotypes (mesothelial-epithelial transition, MET), however, is critical in the 

establishment of distant metastases. The reversibility of this process is 

therefore considered to result from epigenetic modifications.(92, 93) Multiple 

studies have investigated the effect of specific hypermethylated genes in 

metastatic rectal cancer. Although some associations have been found, these 

currently lack the sensitivity and specificity for clinical utility.(94, 95)  
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Author, 
Year 

Purpose Technique Tissues used Gene 
selection 
method 

Genes identified Clinicopathological associations 

de Maat, 
2008 (96) 

Prognosti

c 

Methylation 

specific PCR 

Matched rectal 

tumour, 

adenomatous and 

adjacent rectal 

mucosa (n=46) 

Predetermine

d 

MINT panel 

(MINT1,2,3,12,17, 

 25, 31) 

Cluster 3 (node negative, high MINT3, 

low MINT17) associated with distant 

recurrence (HR, 2.84; 95% CI, 1.22-

6.62; P = 0.02), cancer-specific 

survival (HR, 3.29; 95% CI, 1.33-8.12; 

P = 0.01), and OS (HR, 2.21;95%CI, 

1.13 to 4.29;P .02) 

No associations with tumour features 

or patient demographics 

de Maat, 
2010 (97) 

Prognosti

c 

Methylation 

specific PCR 

Matched rectal 

tumour, 

adenomatous and 

adjacent rectal 

mucosa (n=251) 

Predetermine

d 

MINT panel 

(MINT1,2,3,12,17,25

, 31) 

Combined clusters 1,2,4 associated 

with local recurrence (HR, 10.23; 95% 

CI, 1.38-75.91) 

No associations with tumour features  

or patient demographics 

Leong,  
2011(76) 

Prognosti

c 

Methylation-

specific 

multiplex 

ligation-

dependent 

Rectal 

adenocarcinoma 

tissue (n=51), 

adjacent mucosa 

(n=35) and 

Predetermine

d 

ESR1, CDH13, 

CHFR, APC, RARB, 

GSTP1 

RARB associated with M0 (P = 0·008).  

GSTP1 associated with N0 (P =0.006) 
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probe 

amplification 

mucosa of control 

patients (n=19) 

Molinari, 
2013 (75) 

Prognosti

c 

Methylation-

specific 

multiplex 

ligation-

dependent 

probe 

amplification 

Pre-nCRT rectal 

tumour tissue 

(n=74), adjacent 

mucosa (n=16, 

paired n=9) 

Predetermine

d 

ESR1, CDH13, 

IGSF4, APC, RARB, 

TIMP3 

TIMP3 associated with tumour 

regression (P = 0.015) 

Naumov, 
2013 (78) 

Diagnosti

c 

Illumina 

Infinium 

Human- 

Methylation 

450K 

BeadChip 

assay 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=22), 

rectal mucosa of 

control patients 

(n=19) 

Genome wide 

array 

15,667 DMPs (P =   

   <0.05) 

171 genes 

sequentially more 

methylated from 

control-> adjacent-> 

tumour tissue 

(Δβ >10%) 

Ability to distinguish tumour from non-

tumour: ADHFE1 (multiple CpGs, 

AUC= 0.990 to 0.998; 95% CI= 

0.9771-1), SND1 (AUC= 1; 95% CI= 1-

1), OPLAH (AUC= 0.999; 95% CI= 

0.9973-1), TMEM240 (AUC 0.997; 

95% CI= 0.9915-1), TLX2 (AUC= 

0.974; 95% CI= 0.9546-0.9928), 

ZFP64 (AUC= 0.919; 95% CI= 0.8849-

0.9532), NR5A2 (AUC= 0.995; 95% 
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CI= 0.9872-1), and COL4A (AUC= 

0.967; 95% CI= 0.9459-0.9878) 

Benard,  
2014 (95) 

Prognosti

c 

Real-time 

PCR 

Discovery cohort: 

Rectal tumour 

tissue (n=49), 

adjacent mucosa 

(n=10) 

Validation cohort: 

rectal tumour 

tissue (n=88), 

adjacent mucosa 

(n=18) 

Predetermine

d 

Apaf1, Bcl2 and p53 Increased number of methylated genes 

associated with reduced OS (HR = 

0.28, 95% CI = 0.09-0.83, P = 0.01), 

cancer-specific survival (HR = 0.13, 

95% CI = 0.03-0.67, P = 0.004), distant 

recurrence-free survival (HR = 0.22, 

95% CI= 0.05-0.94, P = 0.001) 

Gaedcke
, 2014 
(77) 

Prognosti

c 

MCIp 

enrichment 

and CpG 

island 

microarray 

analysis 

Discovery cohort: 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=11). 

Validation cohort: 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=61) 

CpG island 

microarray 

analysis 

(Agilent, 

Germany, 

Böblingen) 

ADAP1, BARHL2, 

CABLES2, DOT1L, 

ERAS, ESRRG, 

RNF220, 

ST6GALNAC5, 

TAF4, and SLC20A2 

High methylation group (determined by 

heirarchial clustering)  

associated with increased disease free 

survival in test cohort (HR=4.09, 95% 

CI=1.12-14.87, P = 0.0207) and 

validation cohort (HR=3.57, 95% CI= 

1.01-12.55, P = 0.0345) 
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Kohone
n-
Corish,  
2014 (98) 

Prognosti

c 

MethyLight 

assay 

Rectal cancer 

tissue (n=381) 

Predetermine

d  

CDKN2A Multivariate analysis found no 

association between CDKN2A 

methylation alone and outcomes. 

CDKN2A methylation + KRAS mutation 

associated with reduced OS (HR=2.5, 

95% CI= 1.5=4.2, P = <0.001) 

Leong, 
2014 (94) 

Prognosti

c 

Pyrosequenci

ng 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=133) 

Predetermine

d  

 

CHFR, CDH1, 

CXCL12, APC, 

MINT3, CDH13, 

ESR1, UNC5C, 

GSTP1, RARB and 

APC 

RARB and CHFR associated with T 

stage (P = <0.001 and 0.005). RARB, 

CXCL12 and DAPK1 associated with 

nodal metastasis (P = 0.008, 0.021 and 

0.022). RARB associated with LVI (P 

=0.038) 

Regression models to predict: LVI 

(CDH1, CDH13 and MINT3) AUC= 

0.76 (95% CI= 0.68-0.84); lymph node 

metastasis (CDH1, CDH13, MINT3, 

CXCL12, RARB and APC) AUC= 0.76 

(95% CI= 0.68-0.84); distant 

metastasis (CDH1, MINT3, CXCL12, 

RARB, ESR1 and CHFR) AUC= 0.82 

(95% CI= 0.73-0.91) 
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Vymetal
kova, 
2014 (99) 

Mechanis

tic 

Methylation-

specific PCR, 

high 

resolution 

melting  

Matched rectal 

tumour and 

adjacent mucosa 

tissues (n=27) 

 

Predetermine

d  

 

MLH1 Hypermethylation present only in 

samples with MSI-H (P = <0.001) 

No association with mRNA expression 

Exner, 
2015 
(100) 

Prognosti

c 

Targeted 

CpG-360 

DNA 

methylation 

array, 

methylation-

sensitive 

qPCR  

Discovery cohort: 

Rectal tumour 

tissue (n=22), 

matched adjacent 

mucosa (n=18). 

Validation cohort: 

Rectal tumour 

tissue (n=78), 

matched adjacent 

mucosa (n=59). 

Targeted 

CpG-360 

DNA 

methylation 

array 

TMEFF2, PITX2, 

TWIST1, ESR1, 

BOLL, TFPI2, WT1, 

GDNF, HLA-G, 

PENK, SEZ6L, 

SFRP2, RARB, 

DCC, GATA4, 

CLIC4 and S100A8  

TFPI2, DCC and PTGS2 allowed 

discrimination between tumour 

samples and peripheral blood 

(sensitivity=1, specficity=1, AUC=1). 

TMEFF2, TWIST1 and PITX2 allowed 

discrimination between tumour and 

adjacent tissue (sensitivity= 0.89-1..0, 

specificity= 0.94-1.0, AUC= 1.0) 

CDKN2A methylation associated with 

reduced OS (P = 0.017). 

Ha, 2015 
(79) 

Prognosti

c 

Illumina 

Infinium 

Human- 

Methylation 

450K 

BeadChip 

assay, 

Discovery cohort: 

Post- nCRT rectal 

tumour tissue 

(n=45), Validation: 

Post-nCRT rectal 

tumour tissue 

(n=67) 

Genome wide 

array 

Discovery: 15 loci 

associated with 

TRG1, 25 loci with 

TRG1-2) and 291 

loci with TRG1-3. 

DZIP1, ZEB1, 

DKK3, STL, 

KLHL34, and 

KLHL34 associated with response to 

nCRT (AUC= 0.701, P = 0.036. At 

39.7% methylation, sensitivity= 0.625; 

specificity=0.727) 
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pyrosequenci

ng. 

ARHGAP6 selected 

for validation. 

Laskar, 
2015 
(101) 

Prognosti

c 

Methylation 

specific PCR 

Rectal tumour 

tissue (n=80), 

adjacent rectal 

mucosa (n=20) 

Predetermine

d 

ASSF1, DAPK, 

ECAD, BRCA1, and 

GSTP1. 

RASSF1 associated 

with early onset (P = 0.003) and poorly 

differentiated tumours (P = 0.02), 

BRCA1 associated with late onset (P = 

0.02).  

GSTP1 associated with 

male gender (P = 0.01), early stage 

tumours (P = 0.04) and late onset (P = 

0.001) 

Lin, 2015 
(80) 

Prognosti

c 

Illumina 

Infinium 

Human- 

Methylation 

450K 

BeadChip 

assay, 

Sequenom 

MassCLEAVE 

Discovery cohort: 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=23). 

Validation cohort 

1: Matched rectal 

tumour and 

adjacent mucosa 

Genome wide 

array 

AGBL4, ZNF625, 

MDFI, TWIST1, and 

FLI1 

Using panel of AGBL4, FLI1 and 

TWIST1: Increased number of 

methylated markers associated with 

increasing disease stage (P = <0.01) 

and reduced DFS at 3 years (P = 

<0.001). 
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base-specific 

cleavage, 

MassARRAY 

tissue (n=75). 

Validation cohort 

2: Blood plasma 

(n=353) 

Liu, 2015 
(102) 

Mechanis

tic 

Methylation 

specific PCR 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=40) 

Predetermine

d 

CHD5 CHD5 methylation associated with 

reduced gene expression (P = <0.05) 

Vymetal
kova, 
2016 (81) 

Mechanis

tic 

Illumina 

Infinium 

Human- 

Methylation 

450K 

BeadChip 

assay, 

pyrosequenci

ng 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=25) 

Genome wide 

array 

5929 DMPs 

identified (P = 

<0.05). 

TIFPI2, HBBP1, 

ADHFE1, BPIL3, 

FLI1 and TLX1 

validated 

 

None reported 

Wei, 
2016 (82) 

Diagnosti

c 

Illumina 

Infinium 

Human- 

Methylation 

450K 

BeadChip 

Discovery cohort: 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=6). 

Validation cohort: 

Genome wide 

array 

18,568 DMPs 

identified (P = 

<0.05)  

Genes with >2 

DMPs within 

promoter: EYA4, 

GFRA1 and GSTM2 not associated 

with stage.  

Ability to distinguish tumour and 

adjacent tissue: GFRA1 (AUC= 0.949), 

GSTM2 (AUC= 0.926) 
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assay, 

methylation 

sensitive high 

resolution 

melting. 

Matched rectal 

tumour and 

adjacent mucosa 

tissue (n=44) 

GFRA1, FOXI2, 

SLITRK1, STOX2, 

CNRIP1, SFRP1, 

ADHFE1, C2orf40, 

KCNC2, KCNQ1, 

LONRF2, MEST, 

RALYL, HKDC1, 

KCNIP4 , SORCS1, 

CBLN2, FRZB, 

GALR1, PMEPA1, 

RARRES2, 

SLC6A5, AZGP1,  

C10orf81, 

FAM110A, GLRA3, 

GSTM2,  HSD11B1, 

MAL, PHACTR3, 

SST, TMEFF2, 

TNFRSF8, TUSC3, 

ZNF655 

Hua, 
2017 
(103) 

Mechanis

tic 

Bioinformatic miRNA, mRNA 

and DNA 

methylation data 

obtained from the 

Inverse 

relationship 

between 

methylation 

SORCS1, PDZRN4, 

LONRF2, CNGA3, 

HAND2, RSPO2 

and GNAO1 

None reported 
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Cancer Genome 

Atlas (n=155) 

and 

expression 

Yokoi, 
2017 
(104) 

Prognosti

c 

Quantitative 

methylation 

specific PCR 

Pre-nCRT rectal 

tumour tissues 

(n=33), Matched 

post-nCRT 

adjacent mucosa 

(n=33) 

Based on 

gene 

expression 

studies of 

radiation 

sensitive and 

resistant CRC 

cell lines 

CRBP1, STC2 and 

SLCO3A1 

CRBP1 methylation associated with 

tumour regression (P = 0.031) 

Table 1.4: Summary of the available literature investigating differentially methylated genes in rectal cancer. Studies investigating 
the role of CIMP exclusively have been excluded. n, number of patients; TRG, Tumour regression grade; nCRT, neoadjuvant 
chemoradiotherapy; PCR, polymerase chain reaction; AUC, area under receiver operated curve; OS, overall survival; LVI, 
lymphovascular invasion; EMVI, extramural vascular invasion; HR, hazard ratio; DFS, disease free survival. 
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1.6 The Impact of Tumour Location in CRC 
 1.6.1 Colon and rectal cancers as distinct clinical entities  

The rectum is the most common site of CRC, accounting for around 28% of 

cases.(105, 106) However, it has been largely accepted that colon and rectal 

cancers are discrete clinical entities with differing aetiology, prognosis and 

management. As discussed in Section 1.3, multiple anatomical and 

histological differences exist between the colon and rectum. In addition, the 

local conditions to which the mucosal epithelial cells are exposed, also vary 

according to site.  

 

Epidemiologically, lifestyle factors appear to have a greater oncogenic impact 

on the colon than the rectum.(107) Vast differences also exist in the 

management of colon and rectal cancer, predominantly as a result of 

anatomical restraints of the rectum within the narrow pelvis.(108) The 

management options of colon and rectal cancers are discussed further in 

Section 1.8.  

 

With regard to underlying tumour biology however, distinct dissimilarities 

between colon and rectal cancers are less apparent, with tumours of the 

rectum and distal colon often sharing characteristics. In contrast, clear 

biological distinctions have been demonstrated between proximal and distal 

CRCs as discussed below (Section 1.6.2).(109, 110) 

 

The Cancer Genome Atlas Network performed genome-wide analysis of 

mutations present in 224 matched tumour/adjacent mucosa tissue pairs.(110) 

In this study no clear differences were observed between tumours of the 

rectum and distal colon. These findings mirror those of other studies which 

support the notion of common mutational pathways between distal colon and 

rectal tumours.(109)  

 

1.6.2 Site dependent variation in features of colon cancers 

The concept of pathophysiologically distinct subgroups of CRC cancer, on the 

basis of anatomical location, was initially proposed by Bulfill in 1990.(111) 
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Bulfill suggested that tumours proximal and distal to the splenic flexure 

possessed discrete molecular features. Although some recent studies have 

suggested a more subtle transition, this dichotomous divide remains the most 

commonly described pattern.(112, 113) 

 

As discussed in Section 1.3, the proximal and distal colon are derived from 

the embryrological midgut and hidgut respectively. During development, these 

embryological differences confer different patterns of gene expression, which 

may underpin observed differences in the underlying tumour biology of 

proximal and distal CRCs in adult life.(114)   

 

In addition, multiple environmental differences throughout the length of the 

bowel may also influence underlying tumour development and biology. 

Although the microbiome of any individual patient is relatively consistent 

throughout the colon, Flemer et al. recently reported significant differences in 

the microbiome of patients with proximal (increased abundance of 

Faecalibacterium, Blautia and Clostridium) and distal CRCs (increased 

Alistipes, Akkermansia, Halomonas and Shewanella).(115) Although in its 

infancy, the ability of the gut microbiome to influence DNA methylation, 

histone modifications and non-coding RNAs has become increasingly 

recognised in recent years.(3, 116) Exposure to other mutagenic substances 

such as deoxycholic acid (a secondary bile salt), also differ between 

sides.(117, 118) As epigenetic modifications can be influenced by 

environmental factors, the epigenetic signature of CRCs may also vary 

according to location.   

 

Contrasting exposure to environmental factors and functional requirements 

necessitates differential gene expression throughout the colon, which is 

apparent even in healthy individuals.(119) Similarly, specific genetic and 

epigenetic profiles are also apparent between proximal and distal tumours. 

Whereas point mutations in APC, NRAS and TP53 are more common in distal 

tumours, those of BRAF, TGFBR2, FBXW7 and PIK3CA are more common in 

proximal disease.(110, 120) Other, more general genetic features are 

summarised in Table 1.5.  
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Tumour 
Site 

CIMP-High MSI-High MLH1 
Hypermethylation 

CIN 

Proximal High High High Low 

Distal Low Low Low High 

 

Table 1.5: The Prevalence of key genetic and epigenetic features in 
proximal and distal CRCs. Adapted from Lee et al. (114) CIMP, CpG 
island methylator phenotype; MSI, microsatellite instability; CIN, 
chromosomal instability. 
 

Multiple studies have sought to assess the prognostic value of left and right 

sided diagnoses. Weiss et al. reported a stage-specific pattern whereby 

proximal stage II tumours, but distal stage III tumours, demonstrate favourable 

outcomes.(121)  

 

In metastatic disease, Zhang et al. recently reported that palliative resection of 

left sided tumours prolonged overall survival by eight months (P = 0.009), 

whereas no benefit was attained from resection of right sided tumours (P = 

0.91).(122) In a meta-analysis of 2977 cases, Cao et al. reported increased 

overall survival of patients with left-sided, wild type KRAS tumours, treated 

with cetuximab in comparison to patients with right sided tumours.(123) 

Additional studies have also demonstrated location dependant sensitivity to 

specific chemotherapy regimens, which largely results from the site-dominant 

prevalence of specific mutations.(124) Key differences between proximal and 

distal CRCs are summarised in Figure 1.6. 
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Figure 1.6: Summary of key differences in clinicopathological tumour 
characteristics between proximal and distal CRCs. Tissues of the 
proximal and distal colon have different embryological origins, namely 
the midgut and hindgut respectively. Further differences exist in the 
local environment and microbiotia of the proximal and distal colon, 
which may further contribute to observed differences in underlying 
tumour biology. Taken from Ref (114) 
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1.7 Colorectal cancer screening and diagnosis  
1.7.1 Screening for CRC  

The protracted time taken for CRCs to develop creates a window of 

opportunity for early diagnosis. Early identification and subsequent removal of 

pre-cancerous lesions has resulted in reduced disease specific mortality in 

developed countries.(125, 126) 

 

Of note, it is important to acknowledge the concept of “lead time bias” in the 

context of screening. This describes the process by which early identification 

of disease gives the artificial impression of prolonged survival, without 

significant modification of the disease course.(127) This phenomenon is often 

neglected from studies and should therefore prompt cautious interpretation in 

improved survival outcomes.  

 

Effective screening techniques must be sensitive, safe, relatively inexpensive 

and considered acceptable by patients.(45) The faecal occult blood test 

(FOBT), sigmoidoscopy and colonoscopy are the most commonly cited 

qualifiers of these criteria and each allow for earlier identification of CRC in 

average-risk populations. (126, 128) In 2015, various combinations of these 

tests had been adopted into national screening programmes of 24 of 28 

European Union nations.(129)  

 

1.7.2 Epigenetic biomarkers in colorectal cancer 
CRC remains largely asymptomatic in its early stages. As a result, 52-56% of 

cases in the UK are diagnosed at stages III or IV, and 23-26% have 

established metastases by the time of diagnosis.(36)  

 

Molecular biomarkers offer a non-invasive, easily obtainable alternative to 

traditional screening methods. The clinical utility of potential biomarkers 

obtained from blood, stool and urine have each been investigated with 

variable success.(130) Multiple potential epigenetic biomarkers have been 

identified. Circulating SEPT9 promoter hypermethylation is the most well-

reported epigenetic biomarker and is available for use in clinical practice.(131) 
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However, although early studies described sensitivity and specificity of 72% 

and 90% respectively, subsequent studies have failed to reproduce such 

favourable statistics.   

 

Heiss et al. performed genome-wide methylation profiling of the DNA 

extracted from leukocytes of 139 patients with colorectal cancer and 140 

controls across screening and clinic populations.(132) They identified 

significant differential DNA methylation in the promoter region of the 

KIAA1549L gene. Logistic regression models calculated discrimination (as 

measured by c-statistic) as 0.69 and 0.73 between CRC cases in the 

screening setting and controls, and CRC cases in the clinical setting and 

controls, respectively. Although this would be insufficient to qualify for 

screening of patients, the study demonstrates the feasibility of such 

endeavours.  

 

Pellise et al. demonstrated the feasibility of hypermethylated gene promoter 

analysis to detect occult neoplastic cells in fine needle aspirate, however the 

genes analysed in this study (GMT, INK4a and ARF)2 failed to match the 

sensitivity and specificity of conventional cytology.(134)  

 

Greater understanding of the biological and clinical implications of specific 

epigenetic aberrations in CRC may enable the delivery of personalised care. 

 

1.7.3 Diagnosis 
Colonoscopy remains the gold standard for reasons described above.(135) 

Other methods including capsule endoscopy (sensitivity 88%, specificity 82%) 

and CT colonography (sensitivity 96%) each carry additional risks and 

benefits and are therefore usually reserved for patients unable/unwilling to 

undergo endoscopy.  

                                                
2 Of note, ARF and p16 comprise alternatively spliced forms of the gene 
CDKN2A.(133)  
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1.7.4 Classification and staging of colorectal cancer  
CRCs are classified according to the TNM system (Table 1.6). These 

classifications are then combined into an overall Union Internationale Contre 

le Cancer (UICC) stage (Table 1.7), which provides valuable prognostic 

information and is used to guide management. The modified Dukes’ 

classification system is based on the anatomical spread of a tumour and is 

summarised in Table 1.8. 

 

On an epidemiological scale, increasing TMN and/or modified Dukes’ stage 

each confer worse prognoses.(136) On an individual basis however, their 

prognostic value is limited. As such, recent years have witnessed an 

increased interest in determining more educated systems of classification 

based on biological characteristics.  
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Primary tumour (T)  
Primary tumor cannot be assessed TX 
No evidence of primary tumor T0 
Carcinoma in situ: intraepithelial or invasion of 
lamina propria 

Tis 

Tumor invades submucosa T1 
Tumor invades muscularis propria T2 
Tumor invades through the muscularis propria 
into the pericolorectal tissues  

T3 

Tumor penetrates to the surface of the 
visceral peritoneum 

T4a 

Tumor directly invades or is adherent to other 
organs or structures 

T4b 

Regional Lymph Nodes (N)  
Regional lymph nodes cannot be assessed NX 
No regional lymph node metastasis N0 
Metastasis in 1-3 regional lymph nodes N1 
Metastasis in one regional lymph node N1a 
Metastasis in 2-3 regional lymph nodes N1b 
Tumour deposit(s) in the subserosa, 
mesentery, or nonperitonealised pericolic or 
perirectal tissues without regional nodal 
metastasis 

N1c 

Metastasis in four or more regional lymph 
nodes 

N2 

Metastasis in 4-6 regional lymph nodes N2a 
Metastasis in seven or more regional lymph 
nodes 

N2b 

Distant Metastasis (M)  
No distant metastasis M0 
Distant metastasis M1 
Metastasis confined to one organ or site (eg, 
liver, lung, ovary, nonregional node) 

M1a 

Metastases in more than one organ/site or the 
peritoneum 

M1b 

Table 1.6: Tumour node metastasis (TNM) classification of colorectal 
cancer. The classification is based on the anatomical spread of the 
tumour, and can be made histologically or radiologically. This 
information is then used to calculate a Union Internationale Contre le 
Cancer (UICC) stage which can inform treatment (Table 1.7).(137) 
 
 



	 59	

 
Stage T N M 

0 Tis N0 M0 

I T1 N0 M0 

 T2 N0 M0 

IIA T3 N0 M0 

IIB T4a N0 M0 

IIC T4b N0 M0 

IIIA T1-T2 N1/N1c M0 

 T1 N2a M0 

IIIB T3-T4a N1/N1c M0 

 T2-T3 N2a M0 

 T1-T2 N2b M0 

IIIC T4a N2a M0 

 T3-T4a N2b M0 

 T4b N1-N2 M0 

IVA Any T Any N M1a 

IVB Any T Any N M1b 

Table 1.7. Union Internationale Contre le Cancer (UICC) 
colorectal cancer staging system. The UICC is based upon the 
tumour node metastasis system and provides valuable 
prognostic information and can be used to guide management. 
Taken from Ref (137) 
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1.7.5 Molecular classification of colorectal cancer  

Our greater understanding of the underlying pathophysiology, and the genetic 

and epigenetic changes seen in cancer; coupled with our increased ambition 

to determine their clinical significance, has fuelled the field of personalised 

oncology. In CRC, the search for consistent and reproducible 

subclassifications has been hindered in part by the large degree of clonal 

heterogeneity seen both within and between individual tumours.(139, 140) 

However, progress has been made. 

 

In 2015, the International CRC Subtyping Consortium (ICRCSC) assessed 

interconnectivity between of six independently reported subclassification 

systems.(141) This work resulted in the determination of four ‘consensus 

molecular subtypes’ (CMS) of CRC, the features of which are summarised in 

Table 1.9.  

 
The system has demonstrated prognostic value, with unfavourable outcomes 

associated with the CMS 1 and 4 phenotypes. However, although this 

classification system holds promise, it has yet to become widely adopted into 

clinical practice. The impact of stromal contamination on classification has 

Modified 

Dukes’ 

Stage 

 

Features  

5-year 

relative 

survival (%) 

Confidence 

interval (95%) 

A Limited to muscularis propria 93.2 92.5 - 93.9 

B Extending beyond muscularis 

propria 77 76.4 - 77.5 

C Lymph node involvement  47.7 47.1 - 48.3 

D Distant metastatic spread 6.6 6.1 - 7.0 

Table 1.8: Modified Dukes’ classification system. The system is based on the 
anatomical spread of the cancer; whereby more advanced stage confers 
poorer outcomes. Although the modified Duke’s classification is still 
commonly used in clinical practice, the TNM system is more informative and 
has largely replaced the Duke’s system with regard to informing 
management. Survival outcomes obtained from Ref (138) 
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drawn criticism from some, although the influence of stromal gene expression 

signals on sample classification is considered to be low.(142) In addition, the 

system depends upon multiple methods of analysis including 

histopathological, genetic and epigenetic analysis. Such analyses are 

inherently costly and time consuming—factors which again limit their clinical 

utility. Simplification and streamlining of subclassification systems are 

therefore desirable.  

 

To our knowledge, no rectal cancer-specific molecular subclassification 

systems have been described to date. Greater understanding of the 

molecular, epigenetic and transcriptomic processes involved in rectal cancer, 

and their impact on clinical outcomes and treatment responses, may facilitate 

the determination of such systems.  
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CMS Proportion/% Features  

1 (MSI 

immune) 

13 Microsatellite instability, hypermutated 

genome, high frequency of BRAF 

mutations, high immune infiltrate.  

More common in females, right sided 

tumours, high histopathological grade.  

Poor prognosis.   

2 (Canonical) 37 Somatic copy number aberrations, 

HNF4A enrichment and upregulation of 

WNT and MYC pathways.  

Mainly left sided tumours.  

3 (Metabolic) 13 Disruption of metabolic pathways, 

chromosomal instability, few somatic copy 

number aberrations, hypermutation, 

CIMP-low, high frequency of KRAS 

mutations.  

4 

(Mesenchymal) 

23 Upregulation of genes involved in 

epithelial-to-mesenchymal transition, 

angiogenesis, matrix remodelling and 

compliment activation.  

Late diagnosis and high recurrence.  

Table 1.9: Consensus molecular subtypes (CMS) of colorectal cancer 
and histological, epi/genetic and clinical features of each. Of note, 
these do not add up to 100% as a result of the difficulty in classifying 
some tumours. MSI, microsatellite instability.  
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2 Preliminary results 
Preliminary experiments were performed by Dr Rachel Dbeis at the University 

of Exeter Medical School during the 2015-2016 academic year.  

 

Matched rectal tumour (RT) and adjacent normal mucosa samples were 

prospectively obtained from 15 patients (RIST cohort, Section 4.2) and flash 

frozen prior to storage. DNA was treated with sodium bisulphite and analysed 

using the Illumina Infinium HumanMethylation 450k Beadchip array. Additional 

samples were obtained from a historically acquired cohort and preserved by 

formalin fixation and paraffin embedding (FFPE) prior to DNA extraction. 

However, this DNA failed to meet the required quality for genome wide 

analysis. 

 

DNA methylation data from the RIST cohort underwent stringent quality 

control using novel bioinformatics approaches. A linear regression model was 

used to identify differentially methylated probes (DMPs) and genomic 

differentially methylated regions (DMRs) associated with rectal cancer.  

 

Global DNA methylation levels of RT were decreased in comparison to 

adjacent mucosa. 176 highly statistically significant DMPs were identified (p 

<1E-07, Figures 2.1 and 2.2, Appendix 1). 79% of DMPs were located in CpG 

islands associated with gene promoters and silencing of regulatory genes. 

Region level analysis was performed using Comb-p to identify spatially 

correlated regions of differential DNA significantly associated with rectal 

cancer (P < 1E-07, number of probes >=5).(143) In total, 828 DMRs were 

identified between rectal cancer and normal tissue. 
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Figure 2.1: Manhattan plot showing the distribution of tumour associated 
DMPs across all autosomes. The red line represents the threshold 
(P < 1.25E-7). The dots above the red line portray the DMPs and the dots 
below the line depict all probes analysed on each chromosome. 
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Methylation Differences of DMPs Explored in the Current Study  
as Determined by Illumina 450k Methylation Array 
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Figure 2.2: Boxplots to represent 
methylation differences of DMPs 
explored later in the current 
study as determined by Illumina 
450k Methylation Array. T, 
Tumour; N, adjacent mucosa. 
Whiskers represent 1.5xIQR or 
min/max values. DNA 
methylation is reported as a 
proportion of methylated CpG 
sites / total CpG sites analysed. 
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3 Aims and objectives 
3.1 Purpose of this research  

Rectal cancer is a highly heterogeneous disease with respect to underlying 

tumour biology and to clinical outcomes. Although tumour features such as 

Dukes’ stage offer some prognostic value on an epidemiological level, our 

ability to predict tumour behaviour and clinical outcomes for individual patients 

is limited. This work primarily aims to assess the feasibility of a larger study to 

investigate the relationship between DNA methylation and response to 

neoadjuvant chemoradiotherapy (see Future work, Section 11.7).  

 

To date only a limited number of studies have conducted genome wide DNA 

methylation analysis with the aim of producing a rectal cancer specific 

methylomic signature. Our preliminary work is unique in its use of stringent 

bioinformatic tools to conduct its analysis. The first phase of this project was 

to validate the findings of our preliminary work through the development and 

application of specific bisulphite pyrosequencing assays.  

 
Subsequent replication in a larger cohort of mixed colon and rectal tumour 

samples was intended to support the biological reproducibility of our 

preliminary work. This stage also intended to determine the specificity of 

DMPs identified to rectal cancer, and to provide sufficient sample sizes for the 

assessment of the relationship between clinicopathological features with 

methylomic changes seen.  

 

Greater understanding of the underlying biology of rectal cancer and its 

clinical implications, may enable the development of improved screening, 

diagnostic and prognostic biomarkers for use in clinical practice.  

 

3.2 Research questions  
1. Do the DNA methylation differences identified at specific CpG sites in our 

preliminary epigenome-wide association study (EWAS) reflect true 

biological differences between tumour and adjacent tissue?  
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2. Do the global DNA methylation differences observed in our EWAS reflect 

true biological differences between tumour and adjacent tissue?  

3. Do the DMPs identified in our EWAS exist between other colorectal 

tumour and adjacent tissue samples?  

4. Are the DMPs identified in our EWAS associated with clinicopathological 

tumour features?  

 

3.3 Specific aims and objectives   
The work outlined in this thesis comprises four key components (Figure 3.1). 

These are as follows: 

 

Phase 1: To validate DNA methylation differences identified by preliminary 

work by:  

a. Developing polymerase chain reaction and pyrosequencing assays 

to quantify DNA methylation at selected CpG sites. 

b. The application of bisulphite pyrosequencing assays to DNA 

samples of the discovery cohort.  

 

Phase 2: To assess global methylation differences between tumour and 

adjacent tissue samples by:  

a. Comparison of published modifications to the luminometric 

methylation assay to determine the optimum methodological 

approach.  

b. Quantification of global DNA methylation levels in tumour and 

adjacent tissue samples of the discovery cohort.  

  

Phase 3: To determine the presence of DMPs in a replication cohort of mixed 

colon and rectal tissue samples by:   

a. Quantification of DNA methylation at selected CpG sites in a larger 

sample cohort of historically acquired colon and rectal tissue 

samples (n=68).  
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b. Determine the relationship between DNA methylation changes 

observed between matched tissue samples, and tumour cell 

content of the sample analysed. 

  

Phase 4: To assess the relationship between DNA methylation changes and 

clinicopathological features by: 

a. The retrospective collection of patient demographics and tumour 

features of samples obtained.  

b. The comparison of DNA methylation profiles observed between 

samples of differing clinicopathological subgoups.  

c. To use data of multiple DMPs to develop models for the prediction 

of tumour characteristics on the basis of DNA methylation.  

 

 

 

 

Figure 3.1: Overview of study design. Aims of the study are indicated by 
blue circles. * depicts preliminary work. DMP, differentially methylated 
probe; LUMA, luminometric methylation assay. Shaded boxes indicate 
tissue sample cohorts used for analysis. 
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4 Methods 1: Materials and Protocols  
4.1 Administration  
4.1.1 Exeter NIHR Clinical Research Facility Tissue Bank 

This work was conducted in partnership with the Exeter NIHR Clinical 

Research Facility Tissue Bank (ETB). The ETB works within the National 

Institute for Health Research (NIHR) funded Exeter Clinical Research Facility 

(CRF). Its role is to collect and store tissue obtained from consenting patients 

for research purposes. Ongoing support was provided by the ETB team 

throughout the study.  

 

4.1.2 Ethical approval 
The ETB and CRF possess ethical approval for the collection and storage of 

human tissue for use in genetic and epigenetic research projects. Projects 

were approved by The Royal Devon and Exeter Tissue Bank Steering 

Committee. 

 

4.1.3 Data collection and storage 
All biological samples were stored in line with guidelines described by the 

Human Tissue Act and Medical Research Council (MRC).  

 

Tissue samples were distinguishable only by unique tissue bank and study 

numbers. Hard copies of signed consent and data collection forms were 

stored in a study-specific folder within the ETB. Extracted data was also 

stored on password protected computers within the ETB. Patient identifiable 

data was accessible only to members of the ETB team, and to members of 

the study team on request. Archiving was undertaken as per standard Royal 

Devon & Exeter NHS Foundation Trust (RD&E) protocols. 
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4.2 Tissue samples 
4.2.1 Patients  

This study used tissue samples obtained from two distinct collection periods 

as follows:  

RIST samples: 

RIST samples were collected as part of an ongoing, prospective 

cohort between March 2015-April 2016. Full details of the RIST 

study are described in Section 11.7.  

 

Patients older than 18 years with known rectal cancer treated 

surgically with curative intent at the RD&E were recruited to this 

study. Rectal cancer was defined as histologically proven 

carcinoma in which the lower edge of the tumour was situated less 

than 15cm from the anal verge on mid-sagittal MRI. Patients under 

the age of 18 years, pregnant and/or unable to provide informed 

consent were excluded from recruitment. Eligible patients were 

identified by treating clinicians and invited to participate in the study 

by a member of the ETB (see “Tissue acquisition” below, Section 

4.2.2).  

 

Historically acquired samples:  

Collected between 2004-2007 and stored by the ETB. 

 

Patients older than 18 years with known colorectal cancer treated 

surgically with curative intent at the RD&E were recruited to this 

study. Histologically proven carcinoma situated anywhere within the 

colon or rectum were included in this cohort. Patients under the age 

of 18 years, pregnant, and/or unable to provide informed consent 

were excluded from recruitment.  
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4.2.2 Tissue acquisition  
Informed consent was obtained from each patient by a qualitied member of 

the ETB team prior to surgery in both cohorts.  

 

RIST samples 

Rectal tissue biopsies were taken at the time of defunctioning stoma 

formation, endoscopy or definitive surgery by the surgeon performing 

the procedure. Two biopsies were taken from each tumour and 

adjacent mucosa. Non-malignant tissue was identified visually at a 

distance determined by the operating surgeon. In cases where biopsy 

was not possible or contraindicated, samples were dissected by a 

consultant histopathologist following removal of the entire surgical 

specimen. Blood samples (plasma, serum and PAXgene blood RNA) 

were also obtained by the anaesthetist at the time of surgery and will 

be used in future studies to investigate epigenetic biomarkers. Samples 

obtained from each patient were allocated and labelled with unique 

tissue bank and study numbers. 

 

Tissue samples were transferred immediately to the CRF situated on 

the RD&E site, where they were flash frozen in liquid nitrogen and 

stored at -80� for future use.  

 

Historical samples 

Flash-frozen, matched colorectal tissue samples were identified from a 

database of historically acquired specimens stored by the ETB. 

Samples were selected to provide an even distribution of left and right 

sided tumours.  

 

An application was made to the ETB for the use of these samples 

(Approval no. STB41 / CRF266). Samples were transferred to the 

epigenetics research laboratory freezers situated in the same room as 

the ETB freezers with care taken to minimise transfer time and 

therefore avoid thawing.  
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FFPE samples 

An additional subset of historically acquired samples had been 

selected in preliminary work and preserved by formalin fixation and 

paraffin embedding (FFPE). DNA was extracted in preliminary work 

using the QIAamp DNA FFPE Tissue Kit (Qiagen) kit, however this 

failed to meet the required quality for genome wide analysis. These 

samples will be referred to as the FFPE cohort for the remainer of this 

thesis and will be discussed only in Section 10. All other reference to 

historically acquired samples will refer specifically to those preserved 

by flash-freezing.  

 

4.2.3 Clinical and demographic data 
Demographic information was collected at the time of consent (age, gender 

and ethnicity). Additional clinical information was obtained retrospectively from 

the RD&E’s CDM and PACs imaging software.  

 

Clinic letters, multidisciplinary team meeting summaries and operation notes 

were reviewed using the CDM system. The Path system was used to review 

histopathology reports. With regard to historically acquired samples, five-year 

outcome data was available. However due to the retrospective nature of the 

study, and lack of accessibility to death certificates, accurate data regarding 

cause of death, time to relapse and disease-free survival were not obtainable. 

Five-year overall survival (OS) was therefore the only outcome considered 

appropriate for inclusion. Five-year OS was defined as death from any cause 

within or equal to 60 months of specimen retrieval. 

 

Clinicopathological features of RIST samples  

Samples analysed in our preliminary studies were obtained from the 

RIST cohort. The clinicopathological features of these samples are 

summarised in Table 4.1.  

 

Rectal adenocarcinoma was diagnosed in 13/15 patients. The 

remaining two patients were diagnosed with tubulovillous adenoma 
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with high grade dysplasia (R05 and R06). Three tissue sample pairs 

were obtained from patients prior to neoadjuvant chemoradiotherapy 

(nCRT, Section 11.7). In these cases, biopsies were taken at the time 

of endoscopy where no assessment of EMVI, Dukes’ stage, T stage or 

N stage were reported. Two of these patients (R10 and R13) achieved 

complete pathological response following nCRT and so this data 

remains unavailable. 
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Characteristic  Total n=15 
Mean age (± SD) 68.7 ± 10.8 
Sex  

Male 6 
Female 9 

Tumour type  
Adenocarcinoma  13 
Tubulovillous adenoma with high grade dysplasia 2 

Tumour site   
Low rectum 8 
Mid rectum 2 
High rectum 5 

Differentiation   
Well/Moderate 11 
Poor 1 
NA/NR 3 

Dukes’ stage  
A 3 
B  2 
C 5 
NA/NR 5 

Pathological T stage  
1 2 
2 2 
3 6 
NA/NR 5 

Pathological N stage  
0 5 
1 5 
NA/NR 5 

EMVI   
Positive 3 
Negative 7 
NA/NR 5 

Table 4.1: Summary of clinicopathological features of the RIST 
cohort. SD, standard deviation; NA, not applicable; NR, not 
reported.  
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Clinicopathological features of historically acquired samples  

Table 4.2 summarises patient demographics and tumour features of 
the historically acquired sample cohort.  

 
Characteristic  Total n= 68 
Sex  
 Male  35 
 Female  33 
Mean age (± SD)  72.7 (± 10.0) 
Tumour site  

Left 35 
 Rectum  9 
 Rectosigmoid/ sigmoid  21 
 Descending colon 5 
Right 33 
 Ascending and transverse 
colon  

14 

 Caecum  19 
Histological tumour type  
 Adenocarcinoma  65 
 Mucinous Adenocarcinoma  3 
Duke’s stage  
 A 5 
 B 45 
 C 16 
 D 2 
Pathological tumour (T) stage  
 1 1 
 2 7 
 3 49 
 4 11 
Pathological node (N) stage   
 0 49 
 1 16 
 2 6 
Metastasis   
 Yes 2 
 No 66 
Extramural vascular invasion   
 Yes 10 
  No 57 
  NR 1 
Differentiation   
 Well/Moderate 64 
 Poor 4 
Table 4.2. Summary of patient and tumour characteristics of the 
historically acquired cohort. SD, standard deviation; NR, not 
reported. 
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4.3 Tissue dissection and DNA/RNA extraction 
4.3.1 Introduction 

Genomic DNA and total RNA were each extracted from historical tissue 

samples using the Qiagen AllPrep DNA/RNA Mini Kit. In this protocol tissue 

disruption and homogenisation are performed simultaneously to ensure the 

respective release and efficient binding of nucleic acids. DNA from RIST 

tissue samples had been extracted in preliminary studies using the same kit. 

 

A guanidine-isothiocyanate–containing buffer inactivates DNases and RNases 

during homogenisation and therefore prevents digestion of DNA and RNA 

respectively. As the lysate passes through an AllPrep DNA spin column, the 

high-salt buffer promotes the selective binding of DNA which is then washed 

and eluted.  

 

RNA is isolated from the flow through of the AllPrep DNA column. Ethanol 

promotes the binding of RNA to the RNeasy spin column which is again 

washed and eluted with RNase free water.  

 

4.3.2 Tissue sample preparation and histological assessment 

Historical tissue samples were transferred from the -80� freezer to the 

laboratory on dry ice to avoid thawing. Up to 30mg of frozen tissue was 

dissected macroscopically for DNA/RNA extraction, using a fresh scalpel and 

Petri dish on dry ice. The mass of each sample was weighed prior to 

homogenisation to ensure that 30mg limit was not exceeded.  

 

Immediately adjacent tissue to that extracted from, was dissected and fixed in 

formalin prior to paraffin embedding (Figure 4.1). Histological assessment was 

performed by a consultant histopathologist and reported in increments of 5%.  
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4.3.3 DNA/RNA extraction protocol 

The manufacturer’s protocol was followed as outlined in Figure 4.2.  

 

10 μl of β-ME was added per 1 ml Buffer RLT Plus prior to homogenisation. 

Work surfaces and pipettes were cleaned with RNaseZap (Applied 

Biosystems) prior to use and filter pipette tips were used throughout.  

 

Disruption and homogenisation was completed using a glass homogeniser 

and 600ul Buffer RLT Plus/ β-ME solution (Sigma Life Sciences). 

Homogenised lysate was transferred into 1.5ml ependorph tube. Additional 

disruption was completed using a rotary homogeniser and disposable tips 

where necessary.   

 

Solid material was separated from the remaining lysate by centrifuge at 

10,000 x g for three minutes. The supernatant was transferred to an AllPrep 

DNA spin column and centrifuged for 30 seconds. The AllPrep DNA spin 

column was placed into a new 2ml collection tube and stored at room 

temperature throughout the RNA extraction period. The resultant flow though 

was used for RNA extraction.   

 

600ul of 70% ETOH was added to the RNA-containing flow through and 

mixed by pipetting. 700ul of the solution was added to a RNeasy spin column 

and centrifuged for 30 seconds. The flow through was disposed of and 

process repeated using the remaining RNA-containing solution. 700ul and 

Figure 4.1: Schematic 
diagram to illustrate the 
way in which adjacent 
tissues were prepared 
for histological 
assessment and 
DNA/RNA extraction. 
FFPE, formalin fixed 
paraffin embedded.  
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500ul of buffers RW1 and RPE respectively were passed though the column 

at 10000 x g for 15 seconds each. An additional two-minute wash was 

performed using 500ul of RPE, followed by a one minute “dry” spin in a clean 

collection tube to minimise residual ethanol contamination. RNA was eluted 

using 40ul RNase free water into a sterile collection tube. This step was 

repeated to produce a final volume of 80ul. Eluted RNA was transferred into 

labelled Matrix collection tubes and immediately transported to a -20� freezer 

for storage.3  

 

The AllPrep DNA spin column was washed in two steps using 500ul of AW1 

and AW2 for 15 seconds and two minutes respectively. DNA elution was 

completed in two steps of 75ul EB buffer each (150ul total). DNA was 

transferred into labelled Matrix collection tubes and stored at 5� for 24-48 

hours prior to spectrophotometry and dilution. 

 

 

                                                
3 RNA extracted from these samples was not analysed in the current study. Instead, 
it was transferred to a -80˚C freezer for storage and will be utilised in future work. 
The extraction process has been included for the sake of completion.  
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  Figure 4.2: Overview of Qiagen AllPrep DNA/RNA Mini Kit protocol.   
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4.4 Spectrophotometry   
4.4.1 Introduction 

The Thermo Scientific NanoDrop spectrophotometer was used to determine 

the quality and quantity of DNA obtained from extraction (Figure 4.3). This 

method provides a simple, reproducible and accurate estimation of DNA 

concentration and purity.  

 

DNA concentration is measured based on the absorbance at 260nm and the 

selected analysis constant.(144) A modified Beer-Lambert equation is used to 

correlate the calculated absorbance with concentration.  

C= (A*e)/b 

Where: 

 c= Nucleic acid concentration in ng/l 

 A= Absorbance in AU 

 e= Wavelength-dependent extinction coefficient in ng-cm/μl (50 for ds-DNA) 

 b= Path length in cm 

 

Assessment of DNA quality is required in order to determine the suitability for 

further assessment. The purity of DNA is quantified using the ratio of 

absorbance at 260 and 280 nm. A 260/280 ratio between 1.7-2.0 is generally 

considered pure. Protein, phenol from DNA extraction and other contaminants 

each absorb strongly at/around 280nm. The presence of such contaminants 

therefore, results in a low 260/280 ratio. An additional absorbance ratio of 

260/230 provides a secondary measure of purity. 260/230 ratios below 1.8-2.2 

indicate the presence of co-purified contaminants.  

 

4.4.2 Protocol 
The NanoDrop 8000 software (Thermoscientific) was used to interpret data. 

The nucleic acid measurement function was selected. Pedestals were 

cleaned using lint free tissues before use and between subsequent additions 

of reagents or DNA samples. The Nanodrop was zeroed with 1.5μl of 

deionised water as prompted. Blanking was performed using 1.5μl of the EB 
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elution buffer. Sample IDs were entered into respective wells and 1.5μl of 

DNA solution was added to each pedestal for measurement.  

 

 

 

4.5 DNA dilution    
DNA elutions of concentration greater than 250ng/μl were manually diluted to 

approximately 200μl in EB buffer prior to robotic dilution. The MultiProbe II 

Plux HT EX Robotic Liquid Handling System (Perkin Elmer) Robot was then 

used to accurately pipette 20μl of DNA and dH2O into each well of a 96-well 

plate at a concentration of 25ng/μl.  

  

Figure 4.3: Nucleic acid quality and quantity as determined by NanoDrop 
8000 software for six samples. The purity of DNA is quantified using the 
ratio of light absorbance at wavelengths of 260nm and 280nm. A 260/280 
ratio between 1.7-2.0 is generally considered pure. Green boxes indicate 
the concentration of DNA analysed. 
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4.6 Bisulphite Conversion  
4.6.1 Background  

Sodium bisulphite conversion involves the selective conversion of 

unmethylated cytosine nucleotides to uracil. Methylated cytosines remain 

unconverted. The process therefore enables the distinction between individual 

cytosines and methylcytosines to be made via downstream sequencing 

techniques (Table 4.3).   

 

 Original sequence After bisulphite 

treatment 

After PCR 

Unmethylated 

DNA 

A-C-G-T-C-G-T-C-

A 
A-U-G-T-U-G-T-U-A A-T-G-T-T-G-T-T-A 

Methylated DNA A-C-G-T-C-G-T-C-

A 
A-C-G-T-C-G-T-U-A A-C-G-T-C-G-T-T-A 

Table 4.3. The effect of bisulphite treatment and amplification on DNA 
sequence. Changes are highlighted in red. PCR, polymerase chain 
reaction. Adopted from (145) 
 
Bisulphite conversion was performed using the EZ-96 DNA Methylation-

GoldTM Kit (Zymo Research, D5007). This kit uses temperature denaturation 

to permit the simultaneous denaturation and bisulphite conversion. The 

process allows efficient conversion of >99% of non-methylated cytosines to 

uracil and <1% of methylated cytosines.(146) DNA recovery is reported to be 

greater than 75%.  

 

4.6.2 Protocol  
The conversion process was carried out as per the manufacturer’s 

instructions with minor modifications as outlined (Figure 4.4).(146)  

 

9ml of dH2O, 500μl of M-Dissolving Buffer and 3ml of M-dilution Buffer were 

added to the CT Conversion Reagent bottle provided and mixed with frequent 

vortexing for 15 minutes. 144ml of 100% ethanol was added to the 36ml M-

wash buffer prior to use.  
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130μl of CT conversion reagent was added to 20ul of DNA (25g/μl) in a 96-

well plate and mixed by pipetting. The plate was sealed with an adhesive PCR 

plate seal (ThermoFisher Scientific) and transferred to a thermal cycler set to 

98� for ten minutes, 64� for 2.5 hours and 4� for up to 20 hours.  

 

400μl of M-Binding Buffer was added to a Silicon-A™ Binding Plate mounted 

on a Collection Plate provided. 150μl of DNA/Conversion reagent solutions 

were added and mixed by pipetting. The plate was then centrifuged for 5 

minutes at 3000 x g and the flow-through was discarded.  

 

400μl of M-Wash Buffer was added to each well and centrifuged for a further 

five minutes. 200μl of M-Desulphonation Buffer was added to each well and 

incubated at room temperature for 25 minutes. Following incubation, the plate 

was centrifuged for five minutes. Two additional wash cycles were performed 

with 400μl of M-Wash buffer and centrifugation for five minutes and ten 

minutes.  

 

25μl of M-Elution buffer was added to the Silicon-A™ Binding Plate on an 

elution plate provided. Following incubation at room temperature for 5 

minutes, the plates were centrifuged for three minutes. This step was 

repeated to produce a final volume of 50μl per well. Converted DNA was 

transferred to matrix tubes and stored at -20� for storage.  
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Figure 4.4: EZ-96 DNA Methylation-GoldTM Kit (Zymo Research, 
D5007). 
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4.7 Polymerase Chain Reaction 
4.7.1 Background 

Polymerase chain reaction (PCR) was required to produce sufficient DNA for 

pyrosequencing analysis. PCR allows the exponential amplification of 

genomic DNA.(147) The process is catalysed by the enzyme Taq polymerase, 

which remains stable at the high temperatures required for DNA denaturation. 

Primers are short sequences of nucleotides which act as a starting point for 

DNA synthesis by Taq polymerase. Specific primers are required to 

complement the 3’ end of each strand.   

 

Figure 4.5 illustrates the steps involved in PCR. Of note, PCR of bisulphite 

converted DNA results in the substitution of uracil nucleotides with thiamine. 

Final volumes of PCR reagents are shown in Table 5.5.  
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Figure 4.5: Schematic diagram to illustrate the steps of PCR.           
a) Heating of DNA results in the disruption of hydrogen bonds and subsequent 
separation of DNA strands.  
b) Cooling allows the annealing of primers to the single stranded DNA 
templates. The annealing temperature is specific to the individual primers 
used.        
c) Complimentary nucleotides are added to the template from 5’ to 3’ through 
the condensation of nucleotide 5’-phosphate groups with 3’hydroxyl groups of 
the extending strand. Figure from Ref (147) 
 
4.7.2 Primer design  

500 base pairs upstream and downstream to the CpG of interest were 

identified using UCSC genome browser (Feb. 2009 GRCh37/hg19. human 

assembly. http://genome-euro.ucsc.edu/cgi-

bin/hgGateway?clade=mammal&org=Human&db=hg19&redirect=manual&so

urce=genome.ucsc.edu) and copied into PyroMark Assay Design 2.0 

software.(148) The bisulphite conversion function was used to replace non-

CpG cytosine nucleotides with thymine and to highlight potentially methylated 

 
 
 
a) 
 
 
 
b) 
 
 
 
c) 
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CpGs. Primers for amplification of each DMP were designed with the following 

principles in mind.  

 

Potentially methylated CpG dinucleotides and repetitive sequences were 

avoided to prevent selective annealing of methylated/unmethylated CpGs and 

mispriming respectively (Figure 4.6). Where possible, the melting 

temperatures of each forward and reverse primer pair were kept close and 

within the 55-65� range. Predicted primer performance was used as a guide 

only and a low score did not exclude a primer set from further inclusion. 

 

 

The accuracy of pyrosequencing is diminished by strings of repetitive single 

nucleotides and with increasing distance from the sequencing primer. 

Sequencing primers were therefore designed in close proximity to the CpG of 

interest and single nucleotide repeats were avoided where possible. The 

primer on the complementary strand to the sequencing primer was 

biotinylated to facilitate immobilisation to streptavidin beads during 

pyrosequencing.  

 

Primers were ordered from Integrated Genome Technologies and 

resuspended to 100μM in sterile water. Working dilutions were made by 

diluting 20μl of forward and reverse primer in 200μl of total volume (10μM 

forward reverse primer mix). Sequencing primers were diluted separately to 

10μM. Primers were stored at -20� for future use.  

Figure 4.6: Screenshot demonstrating forward and sequencing primer 
design using the PyroMark Assay Design 2.0 software. The reverse 
primer is omitted from the figure. The pyrosequencing target 
sequence is highlighted in blue. The CpG of interest is located at 
position 501. 
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4.7.3 PCR Protocol  
PCR was performed in an AirClean® Systems AC600 Series PCR 

Workstation (ThermoFisher) following 30 minutes of ultra-violet irradiation. 

Empty PCR plates and Ependorph tubes were held in the workstation 

throughout the irradiation process. All DNA, primers and reagents (except Taq 

polymerase) were thawed completely at room temperature and vortexed prior 

to use. Taq polymerase was stored on ice throughout the process. Sterile 

filtered pipette tips were used to minimise contamination.  

 

1-4μl of DNA was initially transferred to each well of a 96-well PCR plate 

depending upon the efficiency of the PCR and pyrosequencing primers used 

(see Table 5.5, Section 5.3 for optimised PCR reaction conditions). All other 

reagents required for PCR were combined to create master mixes of sufficient 

volume in 1.5ml ependorph tubes. Master mixes were mixed by vortexing 

prior to addition of Taq polymerase. Appropriate volumes of master mix (final 

PCR volume – DNA volume) were added to the DNA of each well and mixed 

by gentle pipetting. Bisulphite converted 100% methylated HeLA DNA (New 

England BioLabs) was used as a control. Each PCR plate was sealed with an 

adhesive PCR plate seal prior to thermal cycling.  

 

The Applied Biosystems VeritiTM 96-Well Thermal Cycler was used to perform 

thermal cycling. Temperatures and times of each stage are displayed in Table 

4.4. 40 cycles were performed in all instances with the aim to maximise PCR 

product without excessive mutation rate.  

 

PCR optimisation and final reaction conditions are discussed fully in Section 

5.  
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Step  Time/mins Temperature/ ˚C 

Initiation  15.0 95.0 

Denaturation  0.5 95.0 

Annealing  0.5 Variable  

Extension  1.0 72.0 

Final extension  10.0 72.0 

Holding  ∞ 15.0 

Table 4.4: Summary of time and temperature conditions used for PCR. 
Specific annealing temperatures are listed in Table 5.5. 
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4.8 Agarose gel electrophoresis  
4.8.1 Background  

Agarose is a linear polymer of galactose which when dissolved in 

Tris/Borate/EDTA (TBE), forms a gel.(149) Tris base and boric acid solution 

acts as a pH buffer, whereas EDTA protects nucleic acids from enzymatic 

degradation through the chelation of magnesium ions. When an electric 

current is passed through the agarose gel, nucleic acid fragments are 

separated by molecular size. The presence of negatively charged phosphate 

groups results in the migration of DNA fragments from the negative to positive 

electrodes. Syto60 is a fluorescent nucleotide stain which enables the 

visualisation of DNA fragments following electrophoresis. A ladder, which 

comprises DNA fragments of specific sizes, is used to estimate the size of 

PCR products (Figure 4.7).  

 

 

 

Two protocols were used in this study. Amplified bisulphite converted DNA 

were assessed using protocol 1 following PCR. Protocol 2 was used to 

assess the integrity of untreated genomic DNA prior to global DNA 

methylation analysis.  

 

4.8.2 Protocol 1 (Syto60-stained)  
1.5g agarose powder (Sigma) was added to 100ml TBE (89mM Tris (pH 7.6); 

89mM boric acid; 2mM EDTA) in conical flask and heated using a microwave 

until all agarose powder was dissolved. 10μL Syto60 was added to the 

Figure 4.7: Example of 
agarose gel 
electrophoresis using a 
338bp PCR product at 

temperatures 50-60°C. 

The 100bp ladder on the 
left enables estimation of 

amplicon size.  
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agarose-TBE solution and allowed to set with 24 slot comb in situ to allow the 

formation of loading wells.  

 

The gel was submerged in TBE solution within an electrophoresis tank.  

 

5μL of PCR product was added to 2μL a loading buffer (Orange G, 0.05g; 

FICOLL 400, 1.5g; 0.5M EDTA pH8, 1ml; dH2O, 9ml) and mixed by pipetting 

in a clean PCR plate. 5μl of PCR product-loading buffer solution was added to 

each well formed in the agarose gel. A 100-base-pair ladder (New England 

BioLabs) was added to the first well of each row to enable quantification of 

amplicon size. The presence, size and intensity of each PCR product was 

visualised using the LI-COR Image Studio Lite software and LI-COR 

Odyssey® CLx scanner. Darker bands correspond to higher volumes of PCR 

product.  

 

4.8.3 Protocol 2 (ethidium bromide-stained)  
1.3g agarose powder (Sigma) was added to 150ml TBE (89mM Tris (pH 7.6); 

89mM boric acid; 2mM EDTA) in conical flask and heated using a microwave 

until all agarose powder was dissolved. 0.9μL of ethidium bromide solution 

was added to the agarose-TBE solution and allowed to set with 24 slot comb 

in situ to allow the formation of loading wells.  

 

The gel was submerged in TBE solution within an electrophoresis tank.  

 

100ng of genomic DNA was added to 2μL a loading buffer (Orange G, 0.05g; 

FICOLL 400, 1.5g; 0.5M EDTA pH8, 1ml; dH2O, 9ml) and mixed by pipetting 

in a clean PCR plate. 5μl of DNA-loading buffer solution was added to each 

well formed in the agarose gel. A 1 kilobase-pair ladder (New England 

BioLabs) was added to the first well of the row to enable quantification of 

amplicon size. DNA was visualised and photographed under ultraviolet light.  
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4.9 Pyrosequencing  
4.9.1 Background  

Bisulphite pyrosequencing was used to quantify DNA methylation at individual 

CpG dinucleotides. Pyrosequencing is a method of sequencing by synthesis. 

The principles of its use are illustrated in Figure 4.8. DNA methylation level is 

determined by the relative proportion of cytosine to thiamine peaks at 

potentially methylated CpGs.(150) 

 

4.9.2 Assay design  
Pyrosequencing assays were designed using the PyroMark Assay Design 

software version 2.0 (Qiagen). The target sequence previously identified 

during the primer design stage, was pasted into sequence generator. The 

dispensation sequence suggested by the PyroMark software was modified to 

include bisulphite controls and additional nucleotides in repetitive regions 

(Figure 4.9).  
  

4.9.3 Preparation   
Enzyme and substrate were each suspended in 620μL of fresh dH20. Three 

columns were cut from a 96-well PCR plate. 50ml of wash buffer, denaturing 

solution, dH20 and wash buffer were added to each trough of the wash station 

as indicated. 50ml of dH20 was vacuumed prior to use on each occasion to 

avoid contamination.  
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     Taken from Ref (145) 
 

Figure 4.8: Principles of 
pyrosequencing.  
a) The biotinylated strand of PCR 

product is isolated by 
denaturation and hybridized with 
a sequencing primer.  

b) Primer-template hybrids are 
incubated with DNA polymerase, 
ATP sulfurylase, luciferase, and 
apyrase, as well as the substrates 
adenosine 5' phosphosulfate 
(APS) and luciferin 

c) The incorporation of 
complimentary dNTPs results in 
the proportional release of 
pyrophosphate (PPi) molecules. 

d) PPi is converted to ATP in the 
presence of APS and ATP 
sulfurylase. ATP provides the 
energy to convert luciferin to 
oxyluciferin. This reaction 
produces a proportional amount 
of light which is detected by the 
pyrosequencer and represented 
as peaks on a pyrogram. 

e) Apyrase degrades 
unincorporated nucleotides and 
ATP between subsequent 
additions of dNTP. 

 

a) 

b)
a) 

c)
b)

d)
c)

e)
d)
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4.9.4 Pyrosequencing protocol 
Streptavidin beads (Qiagen) were gently shaken until a homogenous solution 

was formed. 2μl of streptavidin beads and 40μl of binding buffer (Qiagen) per 

sample were used. In each instance a sufficient volume of bead/buffer mix 

was made for 28 reactions (56μl beads, 1120μl binding buffer) in a 1.5ml 

ependorph tube. 42μl of bead/buffer mix was added to each well of the 3 

column plate prepared earlier. Between 15-25μl of PCR product was added to 

each well depending upon the efficiency of the individual 

PCR/pyrosequencing primer set (see Tables 5.4 and 5.5 for optimum 

pyrosequencing conditions). dH20 was added to make the final volume equal 

Figure 4.9: Example of a pyrosequencing assay designed using the 
PyroMark Assay Design software version 2.0 (Qiagen). The top sequence 
represents the sequence to be analysed and includes the target CpG. The 
bottom sequence represents the dispensation order of nucleotides. At the 
position indicated by the arrows, two thiamine nucleotides are dispensed 
to overcome the potential refractory period of polymerase caused by 
multiple thiamine repeats. A bisulphite control and three CpG 
dinucleotides are highlighted in yellow and blue respectively.  
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to 80μl. An adhesive PCR lid was used to seal the plate before placing onto a 

shaker for 10 minutes.  

 

0.85μl of sequencing primer and 24.15μl of annealing buffer per sample were 

used. In each instance a sufficient volume of primer/buffer mix was made for 

28 reactions (23.8μl sequencing primer and 676.2μl annealing buffer) in a 

1.5ml ependorph tube. 25μl of primer/buffer mix was added to each well of a 

24-well pyrosequencing plate and placed on the indicated position of the 

workstation. 

 

The DNA/bead/buffer plate was moved immediately from the shaker to the 

indicated position on the workstation and lid removed. The vacuum filter-

probes were placed into the wells until all sample was taken up. The probes 

were sequentially placed into the ethanol, denaturing and wash buffer troughs 

until liquid was seen to flow through the plastic tube for five, five and ten 

seconds respectively. The probes were removed from the wash buffer and 

held at 90’ for an additional two seconds.  

 

The vacuum was turned off and probes placed into the wells of the 

pyrosequencing plate. The beads were removed by gentle rocking within the 

primer/buffer solution. The plate was immediately transferred to an 80’ heat 

block for 90 seconds and allowed to cool for five minutes before beginning the 

pyrosequencing run.  

 

The cartridge was loaded as indicated by the Pyromark software.  

 

4.9.5 Analysis of pyrosequencing data 
All assays were performed with bisulphite converted DNA from corresponding 

tumour and adjacent mucosa tissue on the same PCR and pyrosequencing 

plates. Due to the large differences between tumour and adjacent tissue, 

duplicate analyses were not performed as a matter of routine.  
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Quality control (QC) was performed by the Pyromark software using pre-

determined tolerances set by the manufacturer. The software compares 

theoretical peak heights calculated according to the sequence analysed, with 

those of non-CpG reference sites obtained from the sample analysis. The 

bisulphite control (Figure 4.7), which should theoretically achieve a peak 

height of zero, is also used in the QC process. CpG sites that passed the 

programme’s internal QC were accepted. Low peak heights and/or the 

presence of background noise, result in uncertain or failed QC at one or more 

CpG sites. Where samples failed QC at the CpG site of interest, the assay 

was repeated using DNA of both tumour and adjacent mucosa. Where 

repeated assays failed the QC, for example due to very low peak height, both 

tumour and adjacent mucosa samples were excluded from analysis. It was felt 

that the high stringency of the internal QC was likely excessive in our study, 

as small inaccuracies in DNA methylation were dwarfed by large differences 

between tumour and adjacent tissue. As a result, CpG sites flagged as 

uncertain, and those that failed due to minor issues (e.g. failed bisulphite 

controls secondary to small amounts of background noise) were reviewed 

individually and repeated/excluded/included as appropriate.  
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4.10 Assessment of global DNA methylation: LUMA Assay   
4.10.1 Background  

The luminometric methylation assay (LUMA) was used to quantify global DNA 

methylation. This method was initially described by Karimi et al. and utilises 

the restriction endonucleases MspI and HpaII.(151) These isoschizomers 

each result in the digestion of DNA at 5’-CCGG-3’ sequences to produce 5’-

CG overhangs. Their action is determined however by the methylation status 

of the internal CpG dinucleotide.  

 

The MspI enzyme is insensitive to CpG methylation and therefore results in 

cleavage of all CCGG sequences across the genome. In contrast, HpaII is 

inhibited by CpG methylation and therefore cleaves at unmethylated CCGG 

sites only (Figure 4.10). Quantification of 5’-CG overhangs is permitted by the 

addition of nucleotides during pyrosequencing. Each enzyme is used to digest 

DNA from the same sample in parallel reactions. The ratio of overhangs 

produced from each digestion is then used to calculate the percentage of 

global DNA methylation in each sample.  

 

 
 

 

Figure 4.10: Schematic diagram to illustrate the methylation 
dependent action of a) HpaII and b) MspI restriction enzymes. The 
action of MunI (or EcoRI) is independent of methylation status and 

therefore acts to normalize DNA quantity.  

a) 

b) 



	 99	

The endonuclease MunI is also included in all restriction digests. MunI 

recognises the sequence GAATTC and is therefore uninfluenced by DNA 

methylation. As a result, the proportion of 5’-AATT overhangs produced 

remains consistent between reactions and thereby provides a reference for 

normalisation of DNA quantity. The restriction enzyme EcoRI exhibits similar 

action and is commonly used throughout the literature. The use of MunI was 

proposed by Lisanti et al. following the identification of star activity4 of 

EcoRI.(153) The authors reported that although star activity could be reduced 

by increasing concentration of Tango buffer, the activity of HpaII/MspI was 

compromised by such endeavours.  

 

LUMA assumes that all 5’-CG overhangs identified by pyrosequencing result 

from the enzymatic cleavage of HpaII and MspI. As a result, non-specific 

fragmentation of DNA may result in overestimation of HpaII activity and 

therefore the underestimation of global DNA methylation. Two methods have 

been described to address this concern. Duman et al. advocate the additional 

pyrosequencing analysis of undigested DNA, alongside digested samples, in 

order to quantify and correct for, the effects of fragmentation on a peak by 

peak basis.(154) However, this method poorly normalises DNA quantity 

between runs and demands considerably more DNA template than otherwise 

required. A more commonly adapted method was described by Bjornsson et 

al. (155) Their process involves the addition of GT repeats to the beginning of 

the pyrosequencing dispensation order in order to eliminate non-specific 

overhangs.  
 
As a result, disparity of global methylation values is seen between this and 

other methods. Knothe et al. reported consistent discordance between 

methylation values obtained by the LUMA and LINE-1 assays which was 

emphasised amongst specific tissues. (156)  

  

                                                
4 Star activity is the phenomenon by which restriction enzymes exhibit relaxed 
specificity, i.e. identify sequences similar, but not identical, to their defined 
recognition sequences, under suboptimal conditions.(152)  
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4.10.2 Protocol 
The LUMA assay was performed as described by Sant et al. with 

modifications as follows.(157)  

 

Restriction digest  

Master mixes were prepared for each digestion as follows:* 

Mix A: 2 µL of 10× Tango Buffer™, 0.5 µL MunI (10 U/µL), and 0.5 µL 

HpaII (10 U/µL) per sample. 

Mix B: 2 µL of 10× Tango Buffer™, 0.5 µL MunI (10 U/µL), and 0.5 µL 

MspI (10 U/µL) per sample. 

 

3 µL of each mix was added to alternative wells of a 96-well PCR plate. The 

amount of sample required to yield 300 ng of DNA was added to each well 

and mixed by pipetting. DNase-free water was added to a final volume of 20 

µL. Samples were immediately incubated at 37� for four hours in a thermal 

cycler.  

 

Following incubation, 15µL of Annealing Buffer was added to each sample 

and mixed by pipetting. 17µL of Annealing Buffer/restriction digest solution 

was transferred to a Pyrosequencing plate in duplicate** (Figure 4.11).  

 

 
 

 
Figure 4.11: Flowchart of LUMA assay protocol. See text for full 
description. 
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Pyrosequencing of samples  

Pyrosequencing assays were created using the PyroMark Q24 2.0.6 software 

(Qiagen) using the ‘AQ Assay’ (SNP) setup.  

 

During assay optimisation, initial comparisons were made between the 

methodologies described by Karimi et al. and Bjornsson et al. (see Section 

4.10).(151, 155) In order to achieve this, the order of nucleotides added by the 

pyrosequencer (dispensation order) to the primer-template hybrid solution 

were programmed as “ACTCGA” and “GTGTCACATGTGTG” 

respectively.(151, 155) These dispensation orders were used in separate 

assays to compare the global DNA methylation value recorded by each 

methodology.  

 

The pyrosequencing cartridge was loaded as recommended by the PyroMark 

software prior to analysis.*** All duplicates and matched samples obtained 

from the same patient were analysed in parallel.  

 

Analysis of data  

Pyrograms produced from each assay were analysed using the PyroMark 

Q24 2.0.6 software (Qiagen). Mean peak heights were calculated from 

technical replicates. Global methylation level was determined using the 

following equations as described by Karimi et al. and Bjornsson et al. 

respectively:(151, 155)  

 

 For assays using the dispensation order “ACTCGA”:  

  

 

 

Where: 

HpaII (C+G)= mean peak height of dispensation number 2 (Mix 

A)  

   MunI (Aa) = mean peak height of dispensation number 1 (Mix A)  

  MspI (C+G)= mean peak height of dispensation number 2 (Mix     

                      B) 

1- x 100 
  HpaII (C+G) / MunI (Aa)     
  MspI (C+G) / MunI (Ab) 
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  MunI (Ab) = mean peak height of dispensation number 1 (Mix B) 

 

For assays using the dispensation order “GTGTCACATGTGTG”: 

 

 

 

 

 

Where: 

HpaII (G)= mean peak height of dispensation number 10 (Mix A)  

   MunI (Ta) = mean peak height of dispensation number 9 (Mix A)  

   MspI (G)= mean peak height of dispensation number 10 (Mix B) 

  MunI (Tb) = mean peak height of dispensation number 9 (Mix B) 

 

 

* During LUMA optimisation, the performance of EcoRI and MunI was 

compared. In these reactions, 0.5 µL MunI (10U/ µL) was substituted for 0.5 

µL EcoRI (10U/ µL) in each digestion mix. All other steps were unchanged.  

 

** During LUMA optimisation, pyrograms and methylation values produced 

from the analysis of samples containing 300ng and 150ng of genomic DNA 

were compared. 300ng analyses were performed using all of the Annealing 

Buffer/restriction digest solution available (20 µL restriction digest + 15 µL 

Annealing Buffer). In these cases, analysis was performed in duplicate by 

preparing two initial solutions per restriction reaction. 150ng analyses were 

performed using 17 µL Annealing Buffer/restriction digest solution as 

described.  

 

*** For dispensation order “ACTCGA”, nucleotides C and G were mixed and 

loaded together into position C of the pyrosequencing cartridge. Position G 

was loaded with dH2O. Nucleotides were loaded as usual for dispensation 

order “GTGTCACATGTGTG”.  

  

1- x 100 
  HpaII (G) / MunI (Ta)     
  MspI (G) / MunI (Tb) 
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5 Methods 2: Assay Optimisation  
5.1 PCR Optimisation 
5.1.1 Primer design  

In order to produce adequate quantities of DNA for bisulphite pyrosequencing, 

amplification of bisulphite converted DNA must first be performed by PCR. 

PCR requires high quality forward and reverse primers in order to replicate 

the specific amplicon of interest. Specific sequencing primers to the targeted 

sequencing region are also required for pyrosequencing.  

 

The 176 DMPs identified via the Illumina Infinium 450k Beadchip assay were 

ranked by statistical significance. Primers were designed as outlined in 

Section 4.7.2. High quality primer design was not possible in all cases due to 

repetitive sequences and high CpG densities surrounding some DMPs of 

interest. As CpG sites undergo methylation sensitive conversion of cytosine to 

uracil during bisulphite treatment, primers overlapping CpGs may favour 

binding in one state or the other. In contrast, repetitive sequences interrupt 

the ability to produce primers specific to the site of interest. In these 

instances, the next most significant DMP was selected. Ten primer sets 

(forward, reverse and sequencing) were designed to assess eight 

hypermethylated and three hypomethylated DMPs (total n= 11). Coverage of 

both cg14650610 and cg24847829 within the SPOCK_1 gene with a single 

primer set was possible due to their close proximity. DMPs selected for 

validation are shown in Table 5.1. All DMPs selected were within the top 24 

most statistically significant.  

 

In most cases, other CpGs in proximity to the DMP of interest were included 

within the ‘target region’ of the sequencing primer. For the remainder of this 

manuscript, DMPs selected for validation will be referred to by their 

associated gene name or chromosome number for clarity. 
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CpG ID 

Array P 

Value 

Array 

Δ / % Chr Position 

Annotated 

gene 

Gene 

group 

cg14650610 7.30E-10 +48 5 136834492 SPOCK1 5'UTR 

cg18538668 3.79E-09 -20 14 103839038   

cg24847829 6.29E-09 +40 5 136834464 SPOCK1 5'UTR 

cg26034516 6.48E-09 +35 17 76228121 

LOC28399

9 Body 

cg03576469 6.83E-09 +29 19 46917061 CCDC8 TSS200 

cg05447008 9.87E-09 +40 6 73331114 KCNQ5  

cg13356896 1.15E-08 +40 2 198650987 BOLL  

cg09129067 1.29E-08 -35 8 103750904   

cg24685755 1.39E-08 +35 19 53758031 ZNF677 5'UTR 

cg10224098 2.26E-08 +40 1 44873229 RNF220 5'UTR 

cg26314722 2.36E-08 -24 1 234867300   

Table 5.1: Summary of CpG sites selected for validation as determined by 
Illumina Illumina Infinium 450k Beadchip assay. Δ, methylation difference 
between tumour and adjacent tissue; Chr, chromosome.  

 

Final primer designs are demonstrated in Table 5.2. Melting temperatures of 

primers were predicted by the PyroMark Assay Design software based upon 

primer size and composition of nucleotides. This temperature represents the 

optimal annealing temperature in the PCR reaction. However, this prediction 

is often inaccurate and therefore it must be established experimentally.  
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Gene Primer sequence BP Tm 
/ °C 

Amplicon 
size 

SPOCK_1  
(cg14650610   
& cg24847829) 

   542 

   Forward TTATTGGTTATTGTTTAGGAAATTG 25 55  

   Reverse*  AATACTACTAAAACCCTATTCTC 23 54  
   Sequencing  GAATGGGGGATTTATTTA 18 40  
CCDC8  
(cg03576469) 

   330 

   Forward* TTTAGATTTTGGAAGATTGATAGG 24 55  
   Reverse AATACCCATTTCTCTACCCA 20 55  
   Sequencing  AACTAAAAACTTACACAT 18 40  
KCNQ5 (cg05447008)    250 
   Forward TGGATTGGAAAGGATGTTTAGT 22 58  
   Reverse* CTACCCTACCTTCCAAATATTATCT 25 58  
   Sequencing  ATTGGGATGGAAAGTTATA 19 44  
BOLL (cg13356896)    389 
   Forward* GGTAGTTGTAGGGAAGTAGG 20 58  
   Reverse CCTTAAAATCACCTCAACCTCT 22 59  
   Sequencing  AATCCCAAAACCACA 15 44  
LOC283999 
(cg26034516) 

   387 

   Forward* GGGATTGGAGTTTAAGTTTTAG 22 55  
   Reverse CACCTCCAAAATATACCAATAATC 24 55  
   Sequencing  CTAAACAATACACCCAAAAC 20 45  
ZNF677 (cg24685755)    400 
   Forward GAAGAGGGAGTTAGAGAAGAGT 22 60  
   Reverse* CCCTACCCTTACCCCTTAC 19 59  
   Sequencing  GGGGTTTTAATTTATAGG 18 41  
RNF220 (cg10224098)    338 
   Forward* GTAAAGGGGAATGAGTAGAGG 21 58  
   Reverse AACCCTTCCAACTCCTAAACTA 22 58  
   Sequencing  CAAACAAATATATATCCC 19 39  
Chr.1 (cg26314722)    209 
   Forward ATGTAGTAGTGTTAGTAGGAGTA 23 55  
   Reverse* CACCAATTCTTACATTTATTCACA 24 55  
   Sequencing  AGTTAAAGTTAGTATAGTGT 20 42  
Chr.8 (cg09129067)    154 
   Forward* TAGGGAAAGAAGAGGATGGT 20 59  
   Reverse ACTCTCCTACCCAACCTAATACA 23 60  
   Sequencing  CTTCTTACTTCTCCACTA 18 44  
Chr.14 (cg18538668)    282 
   Forward* GGTGTAGATTGGAGGATTTGT 21 59  
   Reverse TCTACTACCTCCTCTCCCT 19 58  
   Sequencing  CCTCTAAATCAACCCTA 17 43  
Table 5.2: Summary of primers used for each PCR/pyrosequencing assay. 
BP, base pairs; Tm, melting temperature. Biotinylated primers denoted *. 
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5.1.2 PCR temperature optimisation 
In order to determine the optimal annealing temperature of each 

forward/reverse primer pair, a PCR temperature gradient was performed 

using 100% methylated HeLA DNA as outlined in Section 4.7.3. Annealing 

temperatures were programmed at 50, 52, 54, 56, 58 and 60�. PCR product 

was analysed by gel electrophoresis as outlined in Section 4.8.2.  

 

 

  

 

Figure 5.1: Electrophoresis gel of initial PCR temperature 
optimisation for all PCR primer sets. * ZNF677 was duplicated due 
to a processing error and covered for clarity. RNF220 temperature 
optimization gel inset. All PCR reactions were most effective at 58-
60°C. The two optimum annealing temperatures selected for 
pyrosequencing are highlighted with black arrows. Those without 
arrows were assessed beyond 60°C.  
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All primer sets successfully resulted in amplicon formation of the correct 

molecular weight (Figure 5.1). Chr14, SPOCK_1, LOC283999, CCDC8, 

BOLL, RNF220 and ZNF677 each displayed maximum intensity of PCR 

product at 60�. To determine whether the efficiency of the reaction continued 

to increase beyond 60�, additional PCR reactions with annealing 

temperature gradients ranging from 56-66°C were performed. All other 

reaction conditions were maintained from the initial gradient.   

 

Increased efficacy above 60°C was noted in Chr14, LOC28399, CCDC8, 

BOLL and ZNF677 (Figure 5.2). The two temperatures with maximum PCR 

product in each primer set were selected for pyrosequencing (Table 5.3).  

 

 
 

 

 

 

 

 

 

 

Figure 5.2: Electrophoresis gel of further PCR annealing 
optimization from 56-66°C. Optimum annealing temperatures 
selected for pyrosequencing are highlighted by black arrows. A 
100bp ladder is used to quantify amplicon size.  
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Gene Optimum annealing 

temperatures /°C 

SPOCK_1 (cg14650610  & 

cg24847829) 

58 & 60 

CCDC8 (cg03576469) 60 & 62 

KCNQ5 (cg05447008) 58 & 60 

BOLL (cg13356896) 62 & 64 

LOC283999 (cg26034516) 60 & 62 

ZNF677 (cg24685755) 62 & 64 

RNF220 (cg10224098) 62 & 64 

Chr1 (cg26314722) 58 & 60 

Chr8 (cg09129067) 58 & 60 

Chr14 (cg18538668) 62 & 64 

Table 5.3: Two optimum annealing temperatures for 
each primer set as determined by gel electrophoresis 
for further analysis by pyrosequencing.  
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5.2 Pyrosequencing optimisation  
In order to determine which PCR annealing temperature produced the optimum 

product for pyrosequencing, the two PCR products highlighted in Table 5.3 

(Section 5.1.2) were selected from each assay. Pyrosequencing assays were 

designed to assess each DMP as described in Section 4.9.2. Initial 

pyrosequencing was performed using 15μl of PCR product as outlined in 4.9.4. 

 

The optimum PCR annealing temperatures for pyrosequencing are summarised 

in Table 5.5. KCNQ5 and Chr8 displayed no considerable difference in assay 

performance between temperatures analysed. In these cases, the higher 

temperature was selected in order to reduce primer dimer formation.  

 

BOLL and RNF220 demonstrated evidence of secondary annealing around their 

respective target CpGs and were therefore excluded from further experiments. All 

other assays successfully produced peaks in the nucleotide positions expected. 

 

Additional changes were made to the volume of PCR product analysed and 

nucleotide dispensation orders as to increase pyrosequencing signal and to 

account for prolonged refractory times of repeated dNTP sequences respectively. 

Modified assays were repeated under new conditions in duplicate and further 

improvements were made as necessary. Final dispensation orders and the 

volume of PCR product required for pyrosequencing are summarised in Table 

5.4.  

 

The ability of assays to accurately assess DNA methylation at the target CpG site 

using 100% methylated HeLa DNA is shown in Figure 5.3. Of note, some assays 

such as KCNQ5 and Chr1 appreciably underestimate the value of DNA 

methylation at these sites. This underestimation may also persist when analysing 

DNA obtained from our CRC cohorts. The correlation between Illumina 450k data 

and data obtained from pyrosequencing is therefore more important than 

matching absolute values. 
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DMP Volume of 

PCR product 

/ μl 

Final dispensation sequence 

ZNF677 25 TGTCGATTAATCGATCATGTCGATGTCGTGATGTA

GTCATGTCGATGTCGTCA 

KCNQ5 15 TGTCGTCAGTGAGTGATGTCATGTCGAGATGTGTA 

GTTCATGTCGATGTCATGTCTATGTCGTTAGTCGT

G 

LOC283999 25 CAGATCAGACAAACATCGATAGACGACATCAGACA

TGAAT 
SPOCK_1 25 ATCGTATCGAGAGTATGTCGCTGATCGTATCGAGT

AGTCGTATATCAGGTATCAGTTCGT 

CCDC8 25 CTACAGATACATAATACGACTAGCTCAAACATAGC

TATCGATACACTATCGACTACGACTAA 
Chr1 15 ATTTGTCATGAGTATATTTATCATGATAGTGTTATC

GTTA 

Chr8 15 CTCTCCAGACTCTACAGATCGACTGACACATACGA

TACGATCGATCT 
Chr14 15 CATCACTATGATACGACTACCGATAACTGACTACT

CAACTC 

 

Table 5.4: Final nucleotide dispensation orders and volume of PCR product 
required for pyrosequencing assays. 
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5.3 Additional assay optimisation 
Significant primer-dimer formation was noted in the gel images of LOC283999, 

BOLL, ZNF677 and Chr14 (Figures 5.1 and 5.2). As secondary sequences can 

produce background signal during pyrosequencing, further optimisation was 

conducted to reduce the amount of primer-dimer formed.  

 

PCR was therefore conducted using 0.4, 0.8, 1.2 and 1.5μl of 10μM forward and 

reverse primer for each 30μl reaction. Gel electrophoresis demonstrated reduced 

primer-dimer formation and relatively increased desired product at lower primer 

concentrations (Figure 5.4). Subsequent pyrosequencing demonstrated that 0.8μl 

of forward and reverse LOC283999 primer solution resulted in reduced 

background noise and peak height deviation, whilst maintaining sufficient peak 

height for successful analysis. Adjusted primer volume had no impact on the 

background noise or methylation values of other assays assessed, however did 

result in reduced peak height.  

Figure 5.3: Methylation value of target CpG as calculated by 
each pyrosequencing assay using 100% methylated HeLa 
DNA as control.  

Methylation of Target CpG Using Fully  
Methylated Control DNA 
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Optimised PCR conditions for pyrosequencing assays are summarised in Table  

5.5. 

 
 

 

 

 ZNF67

7 

KCNQ5 SPOCK_1 LOC283999 CCDC8 Chr1 Chr8 Chr14 

10x B1 

Buffer / μl 
3.0 2.0 3.0 3.0 3.0 2.0 2.0 2.0 

MgCl/ μl 2.0 1.3 2.0 2.0 2.0 1.3 1.3 1.3 

dNTP/ μl 0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.2 

F/R Primer/ 
μl 

1.5 1.0 1.5 0.8 1.5 1.0 1.0 1.0 

Hotstart Taq/ 
μl 

0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.2 

H20/ μl 19.9 13.3 18.9 20.6 19.9 13.3 13.3 12.3 

DNA/ μl 3.0 2.0 4.0 3.0 3.0 2.0 2.0 3.0 

Total  30.0 20.0 30.0 30.0 30.0 20.0 20.0 20.0 

Annealing 
temperature 
/ °C 

62.0 60.0 58.0 60.0 62.0 60.0 60.0 62.0 

Table 5.5: Summary of optimum PCR conditions for downstream bisulphite 
pyrosequencing assays.  

Figure 5.4: Primer volume optimization gel demonstrating 
reduced primer-dimer and increased product at lower primer 
concentrations. 
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5.4 Optimisation of the LUMA assay 
Global DNA methylation was determined using the LUMA assay as outlined in 

Section 4.10. As discussed, multiple modifications have been described since 

the method was initially proposed. Modified nucleotide dispensation orders 

and the use of the MunI restriction enzyme in place of EcoRI, aim to fill non-

specific overhangs and reduce STAR activity respectively. In order to 

determine the effect of these modifications, variations of dispensation orders 

and restriction enzyme were compared. The ability to include technical 

replicates with 150ng of genomic DNA was also assessed. DNA obtained 

from H37T was used as control.  

 
The assay upheld reproducibility between all duplicated conditions (Figure 

5.5). Little variation was seen between DNA methylation levels determined 

using 150ng and 300ng of DNA. Use of the restriction enzyme MunI and the 

Figure 5.5: Methylation values determined by the LUMA assay under 
varying conditions. Restriction enzymes MunI and EcoRI. The 
GTGTCACATGTGTG dispensation order and the use of the MunI 
restriction enzyme in place of EcoRI, aim to fill non-specific overhangs 
and reduce STAR activity respectively.  
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modified dispensation order (GTGTCACATGTGTG) each resulted in higher 

levels of global DNA methylation as expected.  

 
5.5 Identification of eligible samples for LUMA assay 

The LUMA assay works on the assumption that all fragmentation occurs as 

result of restriction enzymes. Therefore, the integrity of DNA used must be 

determined prior to analysis.  

 

The analysis was performed using DNA obtained from RIST samples. 

Sufficient DNA (600ng) was available to perform LUMA analysis of 11 of 14 

matched sample pairs. The quality of DNA was assessed by electrophoresis 

using a 0.87% ethidium bromide stained gel as described in 4.8.3 (Figure 

5.6).  

 

 
 

 

 

 

DNA from sample R01N was highly fragmented and therefore excluded from 

the analysis. Some fragmentation was also seen in R04T, R07T, R014T and 

R015T. However due to the relatively large amount of high molecular weight 

product seen in these samples, the significance of this fragmentation was 

deemed low. These samples were therefore included in LUMA analysis. 

Figure 5.6: Ethidium bromide stained gel of DNA obtained from 
RIST samples. The smeared band of DNA sample R01N represents 
degradation/fragmentation (white box). 
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6 Results: Application of Optimised Assays to 
Discovery Samples  
6.1 Application of pyrosequencing assays to discovery set  

DMPs identified in our preliminary studies were identified by an EWAS using 

the Illumina 450k assay. In order to technically validate these findings, assays 

developed in the previous Section were applied to the same DNA samples 

(RIST cohort) as the preliminary work.  

 

The concentration of DNA obtained from RIST samples (15 tumour and 15 

matched adjacent mucosa) was quantified by photospectrometry and 

bisulphite treated as described in Sections 4.4 and 4.6. PCR and 

pyrosequencing assays were applied to this bisulphite converted DNA. Failed 

analyses of individual samples were repeated alongside their corresponding 

tumour/adjacent samples.  

 

ZNF677, LOC283999 and all hypomethylated DMPs were successfully 

applied to all DNA samples. The forward and reverse primers of the 

SPOCK_1 assay consistently failed to amplify DNA from tumour sample six 

(T006), although adjacent/normal sample 6 (N006) amplified successfully, 

indicating a potential mutation within one of the primer binding sites. With 

regard to KCNQ5, SPOCK_1 and CCDC8, several DNA samples failed to 

amplify in pairs (i.e. both tumour and adjacent mucosa, Figure 6.1). 
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  Figure 6.1: Graph to show the number of successfully amplified RIST 

samples for each primer set. Unsuccessful assays are subdivided 
into those that failed in pairs (tumour and adjacent tissue) and those 
in which only a single sample failed to amplify. 
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6.2 Single nucleotide polymorphisms  
Failure to amplify both tumour and normal tissue DNA obtained from the same 

patient was observed in nine, seven and one cases of the KCNQ5, CCDC8 

and SPOCK_1 assays respectively (Figure 6.2). We hypothesised that this 

paired amplification failure could result from the presence of SNPs within the 

forward and/or reverse primer binding sites of each assay, which in turn could 

interfere with PCR amplification.  

 

 
 

 

 

 

 

The UCSC genome browser was used to identify common SNPs within these 

regions. (148) Two common SNPs were identified within the biotinylated 

reverse primer of KCNQ5. To avoid the 5’ C/A SNP, the primer binding site 

was moved in a 3’ direction and an A/G substitution of the 3’ SNP was made 

(Figure 6.3). The modified primer sequence was 
ACAACCCTACCCTACCCTC. One uncommon G/A SNP was also identified 

Figure 6.2: Electrophoresis gel of a) KCNQ5 and b) SPOCK_1 
amplification of RIST samples. Both tumour and non-tumour DNA 
obtained from patients R04, R05, R06, R07, R10, R13, R14, R15 and 
R16 failed to amplify KCNQ5. Paired amplification failure of R15 
was also observed in R15. T, tumour sample DNA; N, non-
tumour/adjacent tissue sample DNA. 
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within the forward primer, however this was reported to occur with low 

frequency (0.09%) and was therefore overlooked. 

 

 

 

One common SNP (A/G) was identified within the reverse primer of SPOCK_1 

(Figure 6.4). Although three SNPs were identified within the forward primer, 

these occurred at frequencies less than 1%. Therefore, no modifications were 

made to the forward primer. The revised reverse primer sequence was 

AATACTATTAAAACCCTATTCTC. 

 

            
 

 

 

 

Only one C/T SNP was identified within the reverse primer of CCDC8. 

However these were relatively uncommon, occurring in 98.2% (T) and 1.8% 

(C) of the population. Primer modification was not attempted for this DMP.  

Figure 6.3: SNPs identified within the primer sequence of the 
reverse KCNQ5 primer (highlighted in red). BSC, bisulphite 
converted. 

Figure 6.4: SNP identified within the primer sequence of the 
reverse SPOCK_1 primer (highlighted in red). BSC, 
bisulphite converted.  
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Modified primers were optimised using 100% methylated HeLA DNA as 

previously described. The optimum PCR conditions of these assays is shown 

in Table 6.1. The pyrosequencing dispensation orders were unchanged.  

 

 

 SPOCK_1 
(SNP) 

KCNQ5 (SNP) 

10x B1 Buffer 3 2 

MgCl 2 1.3 

dNTP 0.3 0.2 

F/R Primer  1.5 1 

Hotstart Taq 0.3 0.2 

H20  19 13.3 

DNA 4 2 

Total  30 20 

Temperature 
/ °C 

56 62 

Table 6.1: Optimum PCR conditions of modified 
primers.  

 

Application of these primers to previously failed samples resulted in 

successful amplification and pyrosequencing in all cases.  
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6.3 Correlation of pyrosequencing data with 450k 
The correlation between methylation values determined by genome-wide 

analysis and pyrosequencing was assessed by calculating the Pearson’s 

correlation coefficient (r, Figure 6.5).  

 
Strong correlations were observed between assessment methods of all DMPs 

analysed. However, considerable discordance was observed in the 

methylation values of DNA samples T003 and N003 (circled Figure 6.5) in 

assays assessing ZNF677, Chr1 and Chr14. T003 also demonstrated 

methylation values consistent with those of non-tumour tissue at all other loci. 

These anomalies persisted following multiple repeats. Given the strong 

concordance of all other samples, this was likely caused by a sample error 

and therefore N003 and T003 were excluded from further analyses. Exclusion 

of these samples resulted in fewer outlying data points and strengthened the 

correlation between assessment methods (Figure 6.6).  
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Figure 6.5: Scatterplots to demonstrate the correlation between methylation 
values of DMPs assessed by pyrosequencing and the Illumina 450k genome 
wide assay. Values corresponding to RIST sample R03 are circled. These 
samples displayed considerable discordance between DNA methylation 
levels obtained from pyrosequencing and the 450K array despite multiple 
repeats. r, Pearson’s correlation coefficient.  
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Figure 6.6: Scatterplots to demonstrate the correlation between methylation 
values of DMPs assessed by pyrosequencing and the Illumina 450k genome 
wide assay following the exclusion of samples obtained from patient R03. r, 
Pearson’s correlation coefficient.  
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6.4 Methylation differences between tumour and normal mucosa 

6.4.1 Differential methylation  
Significant differences were observed between the methylation values of 

matched tumour and adjacent mucosa for all DMPs assessed (Figure 6.7). 

These results parallel those obtained from the Illumina 450k array.  

 

Leong et al. classified hypermethylated tumour samples as those with DNA 

methylation values greater than two standard deviations (2σ) above the mean 

(μ) of non-tumour samples. Hypomethylated tumour samples were defined as 

those with DNA methylation values less than two standard deviations below 

the mean of non-tumour samples. Most samples analysed in our cohort met 

these criteria (Table 6.2). CCDC8 DNA methylation demonstrated the lowest 

predictive value, with only four of nine samples reaching the required 

methylation level characteristic of tumour tissue. T001, T008, T010 and T016 

each failed to meet these definitions of DNA hyper/hypomethylation in more 

than one assay. N013 and N001 displayed methylation levels characteristic of 

tumour samples in the SPOCK_1 (CpG 5) and Chr14 assays respectively. 
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Figure 6.7: Boxplots to demonstrate the median difference in methylation 
between tumour (T) and non-tumour/adjacent mucosa (N) tissue samples. 
Whiskers represent 1.5 time the interquartile range or min/max values.  
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 T samples  

≥ μ + 2σ of N  
/ total 

T samples  
< μ + 2σ of 

N 

N samples  
≥ μ + 2σ of N  

/ total 

N samples  
≥ μ + 2σ of 

N 
KCNQ5 13/14 T008 0/14 - 
ZNF677  12/14 T001, T016 0/14 - 
LOC283999 13/14 T010 0/14 - 
CCDC8 4/9 T001, T004, 

T008, T010, 
T011 

0/9 - 

SPOCK_1(5) 13/13 - 1/13 N013 
SPOCK_1(7) 13/13 - 0/13 - 
 T samples  

≤ μ - 2σ of N  
/ total 

T samples  
> μ - 2σ of N 

N samples  
≤ μ - 2σ of N  

/ total 

N samples  
≤ μ - 2σ of N  

 
Chr1 14/14 - 0/14 - 
Chr8 12/14 T007, T016 0/14 - 
Chr14 13/14 T016 1/14 N001 
Table 6.2: Number of samples containing DNA methylation values greater/less 
than the mean of adjacent mucosa. T, tumour; N, non-tumour/adjacent 
mucosa; μ, mean; σ, standard deviation 

 
6.4.2 Methylation of surrounding CpGs  

Individual DMPs selected for validation were identified using the Illumina 450k 

assay. In order to determine whether the DNA methylation changes observed 

at target DMPs selected for this study are representative of changes in nearby 

CpG sites, the coefficient of variation (σ/μ) between individual CpGs was 

calculated for each pyrosequencing assay (Table 6.3) and illustrated in Figure 

6.8. Due the low density of CpGs within the Chr1 assay, DNA methylation 

data was available for the target DMP only.  

 

As illustrated in Figure 6.8, the degree of variation observed between 

individual CpGs was small, particularly with regard to tumour samples. The 

pattern of DNA hyper/hypomethylation between tumour tissue and adjacent 

mucosa was maintained across all CpG sites, indicating that the pattern is 

likely representative of the surrounding genome. LOC283999 and SPOCK_1 

assays displayed the greatest degree of variation in non-maligant tissue, 

whereas Chr14 displayed the greatest variation in tumour tissue. 
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 σ of all CpGs: 

Non-Tumour 

Coefficient of 

variance: 

Non-Tumour 

σ of all 

CpGs: 

Tumour 

Coefficient of 

variance: 

Tumour 

KCNQ5 5.5 0.29 7.1 0.12 

ZNF677  2.5 0.15 4.8 0.09 

LOC283999 9.1 0.56 4.9 0.10 

CCDC8 7.2 0.16 5.2 0.08 

SPOCK_1 3.9 0.32 5.3 0.10 

Chr8 2.8 0.06 1.0 0.07 

Chr14 10.8 0.19 11.0 0.41 

Table 6.3: Standard deviation (σ) and coefficient of variance (σ/μ) of 
the average methylation of individual CpGs within each 
pyrosequencing assay.   
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Figure 6.8. Plots to show the average methylation of all CpGs 
assessed by each pyrosequencing assay. Red boxes highlight the 
target DMP/s of each assay. T, tumour; N, non-tumour/ adjacent 
mucosa.     
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7 Results: Global DNA Methylation  
7.1 Global DNA methylation analysis of RIST samples 

Application of the LUMA assay to the ten eligible RIST samples demonstrated 

significantly lower global DNA methylation in tumour (mean 54.6%) than in 

adjacent tissue samples (mean 63.5%, P = 0.021, Figure 7.1). 

 
  Figure 7.1: Median global DNA methylation levels of 

tumour (T) and non-tumour/ adjacent mucosa (N) tissue 
samples. Whiskers represent 1.5 time the interquartile 
range or min/max values. A paired t-test was used to 
compare global DNA methylation levels between tumour 
and adjacent mucosal.   
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8 Results: Application of Assays to Validation Set 
8.1 Introduction 

Preliminary studies and subsequent validation was performed in a relatively 

small number of tissue sample pairs (n=15). Pyrosequencing assays 

confirmed that the DNA methylation data obtained by 450k analysis was 

reproducible in the same sample cohort and are therefore likely to represent 

true biological variation. In order to determine whether these findings could be 

reproduced in an independent sample cohort, replication was performed using 

historically acquired sample pairs. Increased sample size and the availability 

of clinical outcome data in this cohort would also enable deeper exploration of 

the relationship between DNA methylation patterns and clinicopathological 

features. 

 

8.2 Selection of tissue samples 
8.2.1 Historically acquired samples  

Matched tumour and adjacent mucosa tissue samples collected from 87 

patients were obtained from the Exeter Tissue Bank (Section 4.2.1). Sufficient 

tissue for histological assessment and DNA extraction was available from 82 

patients.  

 

8.2.3 Histological evaluation of tumour load 
Some studies have used predetermined minimum tumour percentage for 

inclusion in subsequent analysis. However, few have given any tangible 

justification. As histological assessment of RIST samples had been prohibited 

by small tissue volumes, we aimed to investigate the true value of histological 

assessment in the determination of DNA methylation level. We hypothesised 

that exclusion on the basis of tumour load5 of adjacent tissue may be a flawed 

method as a result of tumour heterogeneity. To test this hypothesis, we 

determined the histological tumour load of immediately adjacent tissue to that 

                                                
5 Here we define tumour load as the percentage of a histological specimen occupied 
by tumour cells, to the nearest 5%, as determined by an experienced consultant 
histopathologist.  
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analysed and sought to assess the impact of this on DNA methylation values 

observed.  

 

82 samples were dissected and histologically assessed as described in 

Section 4.3. 13 samples contained no tumour cells and/or were necrotic. One 

adjacent tissue sample contained all soft tissue with no epithelium. Therefore, 

histologically confirmed tumour was present in 68 sample pairs (total n=136). 

Remaining samples contained a mean tumour load of 67.8% (±29.2%, Figure 

8.1). Tumour load greater than or equal to 80% was present in 39 samples. 

Tumour load less than or equal to 40% was present in 19 samples.  

 
  Figure 8.1: Histogram to illustrate the histologically confirmed tumour 

load of historically acquired tissue samples. We define tumour load as 
the percentage of a histological specimen occupied by tumour cells, to 
the nearest 5%, as determined by an experienced consultant 
histopathologist. 
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8.3 Pyrosequencing  
8.3.1 Correlation between DNA methylation values of RIST and historically 
acquired samples 

Whereas the RIST cohort comprised entirely of patients with rectal cancer, 

historically acquired samples were obtained from patient with tumours of both 

the colon and rectum. We therefore aimed to assess whether the DNA 

methylation levels determined in these cohorts were representative of one 

another. The correlation between average DNA methylation in each cohort 

was calculated using Pearson’s test. As demonstrated in Figure 8.2, a strong 

linear relationship between the two cohorts was observed (r=0.98-0.99).  

 

 

 
 

 

 

a) b) 

c) 

Figure 8.2: Correlations 
between mean methylation level 
of each DMP within the RIST 
cohort and the historically 
acquired cohort. a) Non-tumour, 
b) tumour and c) absolute 
methylation differences are 
plotted separately. Each point 
represents a separate assay. r, 
Pearson’s correlation 
coefficient.  
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Little difference was observed between the mean DNA methylation values of 

non-tumour tissues of each cohort. In contrast, mean DNA methylation was 

slightly higher in tumour samples of the RIST cohort than those of the 

historical cohort. The greatest variation was observed in LOC283999 (RIST 

46.9% vs. Historical 35.7%, P = 0.075, 95% CI= -23.5 - 1.3) and the fifth CpG 

of SPOCK_1 (RIST 58.0% vs. Historical 46.4%, P = 0.090, 95% CI= -25.3-

2.0). These discrepancies may result from the inclusion of colon cancers 

within the historical acquired cohort.  

 
8.3.2 Association between tumour load and DNA methylation  

In order to determine the relationship between tumour load and DNA 

methylation levels, correlations were calculated using Pearson’s test. We 

hypothesised that absolute tumour methylation, as well as methylation 

difference between tumour and adjacent tissue, would be greater in tissue 

samples with high tumour load. Strong correlations may then be used to 

justify the use of a lower tumour percentage threshold for inclusion in the 

study.  

 

The relationship between tumour load and DNA methylation was stronger at 

some loci, such as SPOCK_1and ZNF677 than others (Figure 8.3). However 

high and low levels of DNA methylation were present across all levels of 

tumour cellularity. Therefore, we did not feel that any of the assays displayed 

sufficient predictive power to exclude any samples from inclusion in the study. 

Similar relationships were also observed between tumour load and DNA 

methylation difference between tumour and adjacent tissue (Figure 8.4).  
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Figure 8.3: Scatterplots 
to illustrate the 
relationship between 
tumour load and tumour 
methylation. r, 
Pearson’s correlation 
coefficient. 
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Figure 8.4: Scatterplots to 
illustrate the relationship 
between tumour load and 
methylation difference 
between tumour and 
adjacent tissue. r, 
Pearson’s correlation 

coefficient.  
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8.3.3 Differences between tumour and adjacent tissue 
Aim to determine whether these differences remained in the historically 

acquired cohort. DNA methylation levels of each target CpG in tumour and 

adjacent tissue were compared using paired t-tests (Figure 8.5)  

. 

P = 1.56e-22 

P = 5.92e-28 
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P = 1.95e-17 

P = 1.57e-19 
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P = 1.65e-17 

P = 1.25e-27 
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P = 1.32e-31 

P = 2.36e-20 

Figure 8.5: Boxplots to illustrate methylation differences between 
tumour tissue and adjacent mucosa. P values of paired t-tests are 
given. Boxes represent upper and lower quartiles and median DNA 
methylation values. Whiskers represent 1.5 times IQR or min/max 
values.  
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Raw DNA methylation data obtained from pyrosequencing is given in 

Appendix 3. All CpGs of interest displayed highly significant levels of 

differential methylation between tumour and adjacent mucosal tissue (Table 

8.1). The range of DNA methylation values present in tumour tissues was 

greater than that of adjacent tissue which may represent differences in tumour 

characteristics.  

 

 
DNA methylation levels of individual samples are visualised in Figure 8.6. 

Hierarchical clustering successfully discriminated tumour sample assays from 

adjacent tissue samples. No clear association was observed with relation to 

Dukes’ stage or tumour site in this plot. Absolute change in DNA methylation 

level between tumour and adjacent tissue varied considerably between 

patients. In addition, some variation was also observed in the pattern of hyper/ 

hypomethylated CpGs within the same sample. This variation may represent 

differences in clinicopathological features of each sample or may result from 

tumour heterogeneity. 

 ZNF677 KCNQ5 
LOC28399

9 SPOCK(5) 
SPOCK(7) 

Chr1 Chr8 Chr14 
Samples 
anaylsed 67 66 67 65 

65 
67 66 66 

t 14.7 18.8 11.5 12.9 11.7 18.4 21.8 -13.4 

P-value 
1.56e-

22 5.92e-28 1.95e-17 1.57e-19 
1.65e-17 

1.25e-27 
1.32e-

31 
2.36e-

20 

95% CI 
26.1-
34.3 

35.3-
43.7 21.7-30.9 27.7-37.8 

27.8-39.2 -26.3-   
-21.2 

-29.7- 
-24.7 

-23.8-  
-17.6 

Average 
DNA 
methylation 
Difference  30.2 39.5 26.3 32.7 

33.5 

-23.7 
 -27.2 -20.7 

Table 8.1: Number of successfully analysed samples and summary statistics of paired t-
tests for each DMP. 
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Figure 8.6: Heatmap to demonstrate methylation values of individual tissue 
samples at each CpG site. Hierarchical clustering successfully discriminated 
tumour sample assays from adjacent tissue samples. No clear association was 
observed with relation to Dukes’ stage or tumour site in this plot. 
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8.3.4 Predictive power of selected DMPs as a panel 
Interpatient and intratumour heterogeneity between individual DMP 

methylation levels, may limit their ability to distinguishing tumour from 

adjacent tissue when used in isolation. We therefore aimed to create a model 

with the ability to predict tumour status using combined DNA methylation data 

from a panel of CpGs.  

 

DNA methylation data from the historical tissue cohort was used as a training 

set to create a logistic regression model for the prediction of tissue type 

(tumour or adjacent mucosa). Due to strong collinearity between regressors, 

no single DMP could significantly describe the model. Five of eight DMPs 

significantly added to the model when added sequentially (Table 8.2). Data 

from all DMPs were included in the final model. Significantly increased ability 

to distinguish tumour from adjacent tissue was observed in comparison to a 

null model defined by the intercept only (P = 8.03E-27).  

 
 Deviance Residual 

Deviance 

Pr (>Chi) 

ZNF677 87.95 72.86 < 2.20E-16 

KCNQ5 20.66 52.20 5.48E-06 

SPOCK_1 (5) 8.05 44.15 4.55E-03 

SPOCK_1 (7) 2.92 41.23 0.09 

LOC283999 0.53 40.70 0.46 

Chr.1 16.31 24.39 5.39E-05 

Chr.8 5.35 19.04 0.02 

Chr.14 0.49 18.55 0.48 

Table 8.2. Contribution of DMPs to the model when sequentially 
added.  

 
 

The model was applied to RIST samples for which complete DNA methylation 

data was available (n=26). The model successfully predicted tumour status in 

100% of cases with a high degree of confidence (Figure 8.7) 

 
 
.   
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  Figure 8.7: The ability of a logistic regression model to predict 
tissue type in the RIST cohort. Probabilities greater than 0.5 (red 
line) correspond to likely tumour samples. In this case the model 
was able to successfully predict tumour vs. non- tumour in 100% 
of cases.  
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9 Results: Associations between clinicopathological 
data and DNA methylation  
9.1 Univariate analyses  
9.1.1 Introduction  

A greater understanding of the relationships between DNA methylation and 

clinicopathological features may provide insight into the biological impact of 

DMP methylation. Initial investigations were performed through univariate 

analysis of each DMP and cliniopathological feature (Table 4.2) in turn. 

 

Only one and seven sample pairs were obtained from patients with tumours of 

T-stage one and two respectively. These groups were therefore combined for 

analysis. Similarly, only four patients in the cohort possessed N2 tumours. N 

stage was therefore considered a binary variable based on the presence or 

absence of nodal involvement. Right and left sided tumours were defined as 

those proximal and distal to the splenic flexure respectively. Tumours of the 

descending (n=5) and sigmoid colon (n=21) were grouped together with 

tumours of the rectum (n=9) under this definition. Most tumours were of 

Dukes’ stage B (n=45) or C (n=17). Dukes’ stages A and B, and stages C and 

D were therefore combined to form two groups. Insufficient group sizes were 

available for meaningful analysis of tumour metastasis or histological tumour 

type.  

 

Univariate analysis was conducted using unpaired t-tests and ANOVA for 

binary and polytomous variables respectively. Each analysis was conducted 

for tumour tissue, adjacent mucosa and methylation difference in turn.  

 

9.1.2 Associations between selected CpGs and tumour characteristics 
Table 9.1 summarises P-values for each of these analyses. Associations with 

P-values <0.05 are illustrated in Figure 9.1.  

 

No associations were observed between DNA methylation and gender or 

DNA methylation and the presence of extramural vascular invasion (EMVI). 
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Tumour site was the most commonly significant feature—arising in seven of 

the tests performed. Midgut tumours displayed higher DNA methylation values 

than hindgut tumours at ZNF677 and Chr1 in adjacent mucosa, and at 

KCNQ5 and SPOCK_1(7) in tumour tissue. DNA hypomethylation of Chr1 in 

tumour tissue was associated with advanced Dukes’ stage and lymph node 

involvement.  

 

Of the 12 tests that reached significance in this study, three were in relation to 

DNA methylation difference between tumour and adjacent tissue. DNA 

methylation of the corresponding tumour samples also reached significance in 

all three of these cases. As methylation difference is dependent upon 

absolute tumour methylation, both tests are likely to reflect the same 

phenomenon.  

 

These findings should be viewed with caution however, as in the 168 

independent analyses performed 8.4 would be expected to reach statistical 

significance by chance alone (using 95% confidence intervals). The corrected 

P value to achieve statistical significance in this study, as determined by the 

Bonferroni method, was 2.98e-04. This was not met by any of the analyses 

performed however may be over-stringent given the probable correlation 

between variables assessed.  
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 ZNF677 
N 

ZNF677 
T 

ZNF677 
D 

KCNQ
5 N 

KCNQ
5 T 

KCNQ
5 D 

SPOCK_
1 (5) N 

SPOCK_
1 (5) T 

SPOCK_
1 (5) D 

SPOCK_
1 (7) N 

SPOCK_
1 (7) T 

SPOCK_
1 (7) D 

LOC 
28399 

N 

LOC 
28399 

T 

LOC 
28399 

D 

Tumour site � 0.02 0.11 0.70 0.30 0.02 0.07 0.29 0.07 0.20 0.87 0.01 0.02 0.64 0.063 0.082 

Gender� 0.49 0.40 0.61 0.82 0.89 0.79 0.52 0.92 0.89 0.15 0.69 0.89 0.97 0.16 0.17 

EMVI � 0.39 0.97 0.78 0.35 0.62 0.44 0.37 0.88 0.70 0.19 0.59 0.47 0.69 0.67 0.63 

Dukes' � 0.87 0.86 0.92 0.46 0.76 0.96 0.63 0.29 0.39 0.12 0.49 0.75 0.70 0.31 0.40 

Differentiation � 0.03 0.16 0.71 0.48 0.22 0.54 0.38 0.86 0.78 0.94 0.61 0.65 0.08 0.17 0.22 
Nodal 
involvement � 

0.81 0.81 0.71 0.53 0.98 0.79 0.65 0.39 0.51 0.13 0.89 0.86 0.75 0.42 0.49 

T Stage * 0.71 0.95 0.93 0.82 0.87 0.67 0.20 0.33 0.12 0.002 0.35 0.15 0.41 0.99 0.90 

 Chr1 N Chr1 T Chr1 D Chr8 
N 

Chr8 
T 

Chr8 
D 

Chr14 N Chr14 T Chr14 D       

Tumour site � 0.01 0.61 0.03 0.75 0.45 0.64 0.03 0.49 0.05       
Gender � 0.18 0.15 0.91 0.81 0.75 0.91 0.94 0.21 0.31       
EMVI � 0.48 0.72 0.79 0.13 0.45 0.87 0.24 0.72 0.38       
Dukes' � 0.51 0.01 0.03 0.97 0.46 0.65 0.54 0.31 0.72       
Differentiation � 0.62 0.63 0.60 0.26 0.68 0.24 0.30 0.72 0.57       
Nodal 
involvement � 

0.34 0.01 0.01 0.94 0.36 0.56 0.52 0.24 0.64        

T Stage * 0.62 0.82 0.74 0.16 0.37 0.94 0.49 0.82 0.67       

Table 9.1: Summary of p-values obtained from univariate analysis of relationships between DNA methylation and 

cliniopathological features. P-values <0.05 are highlighted. EMVI, extramural vascular invasion; T, tumour; N, non-tumour/adjacent 

mucosa; D, methylation difference between tumour and adjacent tissue. t-test�, ANOVA*.  
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  Figure 9.1: Boxplots of nominally significant relationships (P<0.05) between 
DMPs and clinicopathological features. Boxes are coloured according to 
variable analysed. L, left; R, right; W/M, well/moderately differentiated; P, poorly 
differentiated; N, no lymph node involvement; Y, positive lymph node 
involvement.  
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9.2 Multivariate analysis  
Univariate analyses failed to provide any clear associations between DNA 

methylation and clinicopathological features. We therefore aimed to determine 

whether the incorporation of DNA methylation data from multiple CpG sites 

could be used to provide greater insight into these relationships.  

 

Tumour site was the most commonly significant feature in univariate analyses 

and was therefore chosen for further investigation. As the RIST sample cohort 

comprised entirely of patients with rectal cancer, its use as a test set in the 

context of left vs right sided tumours would be of limited value. The historical 

cohort was therefore split into training and test sets containing 49 and 19 

patients respectively. The training set was used to formulate two individual 

logistic regression models using DNA methylation data obtained tumour tissue 

(modT) and methylation difference (modD). All DMPs were incorporated into 

the model as predictors. Null models were defined by the intercept only in 

each instance.  

 

ModT failed to outperform the null model (P = 0.21) and was therefore omitted 

from further analysis. ModD significantly outperformed the null model (P = 

0.04). KCNQ5 was the only DMP significantly associated with tumour site (P = 

0.03) and to contribute significantly to the model (P = 0.006).  

 

Data from all DMPs were included in the final model and applied to the test 

set containing 16 complete cases (proximal tumours n=8, distal tumours n=8). 

Correct prediction of tumour site was possible in only 75% and 50% of left and 

right sided cases respectively (Figure 9.2).  
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Figure 9.2: Ability of logistic regression model (modD) to predict 
tumour site. Probability values greater than 0.5 correspond to 
right sided tumours.  
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10 Results: Applicability of assays to FFPE samples 

10.1 Introduction  

FFPE is routinely performed in clinical practice to enable histological 

assessment of tissue. Through the formation of cross-links between the lysine 

residues of proteins, formalin fixation prevents the progression of enzymatic 

proteolysis within cells.(158) This enables the preservation of histological 

morphology and strength. However, FFPE also results in DNA fragmentation 

and the formation of sequence artefacts which renders genetic analysis of 

these samples difficult.(159)  

 

DNA obtained from FFPE samples in our preliminary studies failed to reach 

sufficient quality for assessment by Illumina 450k analysis. We therefore 

aimed to determine the applicability of our pyrosequencing assays to genomic 

DNA obtained from these samples.  

 

10.2 PCR of DNA from FFPE samples 
DNA samples were obtained from 22 formalin fixed paraffin embedded paired 

tissue samples. Tissue processing and DNA extraction had been performed in 

advance. 

 

Samples were diluted and bisulphite converted as described in Section 4.6. 

Three FFPE DNA samples were randomly selected and amplified using PCR 

primers of each assay. 100% methylated HeLA DNA was used as a control in 

each case. Identification of successful assays was determined by the 

presence of appropriately sized amplicons by gel electrophoresis as 

described in Section 4.8.2 (Figure 10.1). 
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10.3 Pyrosequencing  

KCNQ5, Chr1 and Chr8 each displayed strong bands following amplification 

of all samples assessed. SPOCK_1 failed to produce amplicons from any 

samples. Bands consistent with amplification of ZNF677, LOC28399 and 

Chr14 were apparent although these were weaker than those of KCNQ5, 

Chr1 and Chr8. KCNQ5, Chr1, Chr8 and ZNF677 were therefore selected for 

further analysis by pyrosequencing. 

 

Pyrograms of KCNQ5 and ZNF677 failed to reach sufficient peak height for 

reliable interpretation. Chr 1 and Chr8 were assessed successfully and 

correlated strongly with average DNA methylation values of the historical 

cohort (r=0.98, Figure 10.2).  

 

Figure 10.1: Gel electrophoresis image demonstrating the applicability of 
pyrosequencing assays to FFPE tissue samples. Amplification of four FFPE 
DNA samples was attempted per assay. KCNQ5, Chr1 and Chr8 each displayed 
strong bands following amplification of all samples assessed.  
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These findings demonstrate that where bisulphite pyrosequencing assays are 

able to successfully assess DNA methylation in DNA obtained from FFPE 

samples, the data obtained is very comparable to that of fresh frozen tissue. 

The success of PCR amplification was correlated with amplicon size (Table 

5.2) with sufficient product for bisulphite pyrosequencing produced in the 

small Chr 1 (209bp) and Chr 8 (154bp) assays only. SPOCK_1 was the 

largest assay (542bp) and failed to amplify DNA from FFPE samples at all. 

Future studies should therefore aim to produce amplicons of the smallest 

possible size if work with DNA from FFPE tissues is anticipated.   

Figure 10.2: Correlation between average methylation values of 
historical and FFPE tissue samples at Chr1 and Chr8. These 
findings demonstrate that where bisulphite pyrosequencing 
assays are able to successfully assess DNA methylation in DNA 
obtained from FFPE samples, the data obtained is very 
comparable to that of fresh frozen tissue. 
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11 Discussion  
11.1 Summary of findings  

The primary purpose of this study was to validate DNA methylation 

differences between rectal tumour and normal mucosa as determined by our 

preliminary EWAS. All DMPs selected for validation demonstrated strong 

correlations between bisulphite pyrosequencing and Ilumina 450k methylation 

values (r=0.87-0.97). Replication in an independent CRC cohort (n=68) 

mirrored findings of the initial cohort with significant levels of DNA methylation 

noted at all CpG sites assessed (P = <1.95e-17). These findings support our 

hypothesis that differences observed reflect true biological differences. Global 

DNA hypomethylation was observed in RT (54.6%) compared to AM (63.5%, 

P = 0.021) using a modified luminometric methylation assay (LUMA). We 

explored potential clinicopathological associations with DNA methylation in 

the replication cohort, however no significant relationships were detected.   

 

11.2 DNA methylation data obtained from 450k genome-wide 
analysis reflect true biological differences between tumour and 
adjacent tissue  

Strong correlations were observed between pyrosequencing and Ilumina 450k 

array DNA methylation values of all DMPs investigated. This indicates that 

differences observed reflect true biological differences, as opposed to 

technical artefacts, between tumour and adjacent mucosa in the RIST sample 

cohort. This conclusion is further supported by the successful replication in 

our second independent cohort of 68 CRC patients. Extrapolation of these 

findings enables us to consider the DNA methylation data obtained for all 176 

DMPs to be true. These DMPs may play important biological roles in the 

pathogenesis of rectal cancer and warrant further investigation in future 

studies (see Section 11.3).  

 

Replication in an independent CRC cohort (n=68) mirrored findings of the 

initial cohort with significant levels of DNA methylation noted at all CpG sites 

assessed (P = <1.95e-17). This suggests that these differences are 
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generalisable to CRCs more generally and as opposed to the initial RIST 

cohort only.  

 

Other studies have utilised the Ilumina 450k array to identify between 5929-

18568 DMPs in CRC tissue samples.(78, 81, 82) These studies however, 

have employed less stringent bioinformatic approaches and did not correct P 

values for multiple tests. In contrast, the 176 DMPs identified in our study 

each achieved significance levels below 1.0E-07.  

 

In addition to the DMP of interest, pyrosequencing enables the assessment of 

neighbouring CpG sites. In all cases, DNA methylation levels of all CpGs 

within a given amplicon remained relatively consistent throughout. These DNA 

methylation values are therefore likely to represent those of the surrounding 

genome.  

 
The sparc/osteonectin, cwcv and kazal-like domains proteoglycan-1 

(SPOCK_1) gene, also known as testican-1, encodes a matricellular 

glycoprotein belonging to a calcium binding proteoglycan family.(160) Other 

members of this family include SPARC, testican-2 and -3 and are implicated 

in cell proliferation, adhesion, and migration.(161) Our preliminary genome-

wide analysis identified two significant DMPs within the 5’ untranslated region 

(UTR) of the SPOCK_1 gene (cg24847829, P = 6.29E-09; cg14650610, P = 

7.30E-10). Due to their close proximity, both of these DMPs were analysed by 

a single pyrosequencing assay in this study. Significantly differential 

methylation was observed in both validation and replication cohorts.  

 
Zinc finger protein (ZNF) 677 is located at the chromosomal region 19q13. 

Two DMPs were identified within the 5’ UTR of ZNF677 within our genome-

wide analysis (cg24685755, P = 1.39E-08; cg18335068, P = 7.99E-08). It 

belongs to a diverse family of proteins defined by their requirement for 

stabilisation by binding to at least one zinc ion.(162) The individual functions 

of ZNF proteins are diverse but include DNA recognition, RNA packaging, 

transcriptional activation, regulation of apoptosis, protein folding and lipid 

binding.(162) DMPs within ZNF334, ZNF625 and ZNF132 genes were also 



	 162	

highlighted in our genome-wide study and have been previously implicated in 

CRC, breast and prostate cancers.(80, 163, 164)   

 
Two DMPs (cg05447008, P = 9.87E-9; cg04377145, P = 2.72E-8) were 

identified within 1500 nucleotides of the transcriptional start site (TSS) of 

Potassium voltage-gated channel, KQT-like subfamily, member 5 (KCNQ5) 

following our initial genome-wide analysis. Potassium channels are the most 

abundant ion channel in eukaryotic cells. Multiple subtypes, each in 

possession of subtly unique biological functions, exist and are expressed 

throughout the body. In mammals, five KCNQ genes encode voltage-gated 

potassium channels Kv7.1–Kv7.5 (or simply KCNQ1–5). Other members of 

the KCNQ family have been associated with multiple congenital abnormalities 

including long QT syndrome, deafness and epilepsy.(165-167) However, little 

is currently known about the biological implications of KCNQ5 mutation in 

human disease.(168) 

 
A single DMP (cg03576469) was highlighted within 200 nucleotides of the 

coiled-coil domain-containing protein 8 (CCDC8) TSS (P = 6.83E-9). CCDC8 

has multiple biological functions and has been implicated in the regulation of 

gene expression, cell division, and membrane fusion.(169) CCDC8 also acts 

as a cofactor for P53-mediated apoptosis following DNA damage and 

therefore acts as a tumour suppressor.(170)  

 
Cg26034516, situated within the body of LOC283999, was hypermethylated in 

our genome wide study (P = 6.48E-9). The function of LOC283999 is currently 

unspecified and to our knowledge, has not been investigated in the context of 

human disease or cancer.  

 

Likewise, the hypomethylated DMPs investigated in this study were not 

annotated to any individual gene. They were included however, in order to 

ensure that both hypermethylated and hypomethylated DMPs could be 

validated by pyrosequencing. Hypomethylation of intergenic regions is a 

common finding in cancer and contributes to genomic instability. Global DNA 

hypomethylation of rectal tumour tissue was also demonstrated in this work 

using the LUMA assay (see Section 11.5 for full discussion).  
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11.3 Possible biological implications of findings  
As discussed, the purpose of the current study was to validate DNA 

methylation differences between tumour and normal tissue as nominated by 

our preliminary EWAS. Mechanistic experiments were not conducted. As a 

result, we currently remain unable to comment on the biological implications 

of the DNA methylation changes hightlighted in our work. Other transcriptomic 

and proteomic analyses conducted by other groups however, may provide 

some insight.  

 

Overexpression of SPOCK1 has been demonstrated to occur in multiple 

forms of cancer including gallbladder, gastric, breast and colorectal.(160, 171-

173) The mechanism by which SPOCK1 expression is increased, however is 

poorly understood. To date, interactions with chromodomain 

helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1L), 

microRNA-129-5p and transforming growth factor beta (TGF-β) have all been 

implicated. (160, 174, 175) DNA hypermethylation, as in our study, may 

represent an additional mechanism of SPOCK1 activation. 

 

Shu et al. proposed that SPOCK1 brings about its effects via two main 

mechanisms: the induction of EMT (Section 1.5.4) and via the inhibition of the 

pro-apoptotic phosphoinositide 3-kinases (PI3K)/Akt pathway.(161) These 

findings are supported by Zhao et al. who investigated the role of SPOCK1 in 

CRC cell lines. (171) The P13K/Akt signalling pathway plays an important role 

in regulating cancer cell growth and proliferation, and has been previously 

associated with CRC.(176). More recently, activation of the Wnt/β-catenin 

pathway by SPOCK1, has also been demonstrated in glioma cells.(177) 

 

In cancer, the gene acts as an oncogene, with multiple studies reporting 

reduced cell line viability, invasiveness and propagation following gene 

silencing.(160, 161, 171) SPOCK1 knockdown models have demonstrated 

reduced growth, migration and invasion in CRC cell lines.(171) Subsequent 

western blot analysis of EMT-related markers, displayed significantly 
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increased levels of E-cadherin in knockout models— loss of which is a well-

established feature of EMT. (178, 179) Loss of this protein weakens 

intracellular adhesion and consequently increases mobility. 

 
To our knowledge, only one study has described the impact of ZNF677 

expression in cancer.(180) Heller et al. analysed publically available 

databases in the context of non-small cell lung cancer (NSCLC) and identified 

tumour specific downregulation of ZNF677 (P = < 0.0001). Further analysis 

recognised DNA hypermethylation as the cause of reduced expression, with 

resultant transcriptional effects in multiple growth and interferon signalling 

pathways. 

 
In a study by Ashkorab et al., promoter region methylation of KCNQ5 was 

highlighted to occur consistently within colorectal cancer tissue samples. 

(181) However, the study did not seek evaluate the effect of this finding 

further.  

 

Hypermethylation of CCDC8 has been associated with reduced gene 

expression in both breast and renal cell carcinomas.(182, 183) Reduced 

expression of the gene has also been identified in multiple other tumour types 

including hepatocellular and lung cancer.(184, 185) 

 
Some DMPs identified in our initial EWAS, such as RNF175, PRKAR1B and 

LONRF2, were not amenable to bisulphite pyrosequencing due to limitations 

of primer design. Single nucleotide polymorphisms (SNPs) of PRKAR1B have 

previously been implicated in renal cell and non-small cell lung carcinoma, 

however to our knowledge, have not yet been reported in CRC.(186, 187) In 

contrast LONRF2 hypermethylation has been reported to result in reduced 

gene transcription in rectal adenocarcinoma by Hua et al.(103) The biological 

and clinical implications of changes in these genes however, have not been 

identified.   
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11.4 Clinicopathological implications of DNA methylation 
The clinical utility of epigenetic biomarkers depends upon their ability to 

stratify patients according to clinicopathological features. This concept is of 

particular importance in the fields of personalised medicine and treatment 

selection. The potential of epigenetic biomarkers to predict response to 

neoadjuvant chemoradiotherapy are discussed in Section 11.7 and form the 

basis of our future work.  

 

Other studies have identified multiple associations between DNA methylation 

and clinicopathological features. Of these, only a limited number of 

associations have been reported with the genes investigated in this study. 

These relate predominantly to overall survival, nodal and distant 

metastasis.(161, 172, 180, 184) In our study, only two patients had distant 

metastasis and so comparison was not possible. Associations with nodal 

involvement were not reproduced in our cohort and overall survival was not 

assessed. Larger sample sizes, with greater numbers of patients within each 

clinical subcategory, may have revealed more significant findings. 

 

Importantly, these analyses were very explorative in nature and were not 

factored into the initial study design. The failure to identify additional 

associations may therefore be rooted in our initial method of DMP selection 

(i.e. according to statistical significance). DMPs of the highest statistical 

significance, are by nature the most likely to occur in all samples. As a result, 

these changes are expected to occur at an early stage of tumourgenesis and 

are unlikely to differ considerably between clinicopathological subgroups. 

Therefore, although this method of selection was well suited to the purpose of 

validation and replication, other selection methods, such as consideration of 

biological function, may have yielded findings of greater clinical relevance.  

 

Due to these limitations, it is important to note that failure to identify 

clinicopathological associations in our study, does not provide definitive 

evidence that true effects do not exist.   
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Indeed, animal studies using xenografted SPOCK1 silenced cancer cells have 

reported smaller tumour volumes and fewer pulmonary metastases than those 

with unrestricted SPOCK1 expression in the context of gallbladder and 

prostate cancer respectively.(161, 188) In our study, SPOCK1 

hypermethylation did not correlate significantly with any clinicopathological 

tumour features assessed. In contrast, Zhang et al. investigated the 

implications of SPOCK1 gene expression in CRC (n=84).(172) They reported 

that increased SPOCK1 expression was associated with increased tumour 

size (P = 0.020) and TNM status (P = 0.012), but not age, gender, location or 

lymph node metastasis.(172) In gallbladder cancer, Shu et al. reported that 

increased expression was significantly associated with histological 

differentiation (P = 0.012), lymph node metastasis (P = <0.001) and shorter 

overall survival time (log rank, 11.301; P = 0.001).(161)  

 
Clinical outcome data of 97 non-small cell lung cancer patients also indicated 

reduced overall survival in the presence of high ZNF677 methylation levels (P 

= 0.013). Tumour specific downregulation of ZNF677 was also identified in 

other solid tumours including colorectal (P = 1.5E-7), breast (P = 8.2E-42) and 

renal cancer (P = 1.0E-10).(180) 

 
In non-small cell lung cancer, Jiang et al. identified that reduced CCDC8 

expression was associated with tumour differentiation (P = 0.039), TNM stage 

(P = 0.009), lymph node metastasis (P = 0.038), and overall survival (P 

= .043).(184) The study also identified a direct relationship between CCDC8 

and E-cadherin expression— which may result from the inhibition of pathway 

signalling molecules such as p-P38, p-IκBα and Snail. Reduced expression 

therefore, may promote EMT and tumour invasiveness. These findings are 

supported by Pangeni et al. who also demonstrated the presence of CCDC8 

hypermethyaltion in both primary and secondary metastatic breast tumours—

indicating that the change occurs at an early stage of metastatic 

evolution.(182) 
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11.5 Rectal cancer tissues display global DNA hypomethylation   
The LUMA assay was initially described by Karimi et al. in 2006.(151) The 

utilisation of methylation dependent and independent isoschizomers enables 

the estimation of global DNA methylation. Since its initial description, multiple 

modifications to the LUMA assay have been proposed (see 4.10.1). These 

modifications primarily aim to overcome the major limitation of the LUMA 

assay— the requirement for high quality, unfragmented DNA. In this study, 

the substitution of EcoRI for MunI, and modification of the pyrosequencing 

dispensation order, as described by Lisanti et al. and Bjorrnson et al., were 

adopted.(153, 155) The combination of these modifications resulted in the 

highest predicted value of global DNA methylation. As nonspecific 

fragmentation of DNA results in the underestimation of global DNA 

methylation, a higher percentage of methylation was attributed to greater 

compensation for fragmentation.  

 

In this study, sufficient DNA for LUMA analysis was available for only ten of 

the 15 RIST sample pairs. However, global DNA methylation was significantly 

reduced in tumour samples when compared to adjacent tissue. These findings 

of global DNA hypomethylation, in conjunction with hypermethylation of 

specific genes, reflect two key epigenetic mechanisms by which normal cells 

become malignant.  

 

Due to the selective analysis of CCGG sequences, the LUMA assay does not 

assess all CpGs in the genome. The CCGG sequence is more highly enriched 

within gene promoters and CpG islands (11.7 and 12.9%) than repetitive 

elements and other unique sequences (4.1 and 3.9%).(156) As the latter 

regions are usually the principal sites of DNA hypomethylation in cancer, the 

LUMA assay may not fully reflect the true methylation changes inherent to 

malignancy.  

 

Other methods of global DNA methylation quantification are available and 

assess different regions of the genome.(189) As DNA hypomethylation occurs 

predominantly in intergenic regions such as long interspersed nucleotide 
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element-1 (LINE-1, see Section 1.5.1), specific LINE-1 assays are likely to 

detect greater differences than those observed in our study.(156) In a study 

by Knothe et al., although global DNA methylation values determined by 

LINE-1 and LUMA were correlated, tissue-specific biases were observed 

between the two methods.(156)   

 

11.6 Limitations of the study 
11.6.1 RIST samples  

We acknowledge multiple limitations of this study. The relatively small number 

of samples within the initial RIST cohort, were obtained from a single centre in 

the South West of England and therefore may not be representative of 

changes seen in the population more generally. Samples obtained by biopsy 

were too small for formal histological assessment and tumour characteristics 

were therefore obtained from separate samples. Finally, the Illumina Human 

Methylation 450 BeadChip array, used in the preliminary EWAS has its own 

limitations. Although the array it interrogates 482422 cytosine sites, these 

represent only around 1.7% of all CpG sites in the human genome. This is 

confounded by the fact that CpG sites assessed are predetermined and as a 

result, many important sites may have been missed—some of which may 

configure important biological properties.  
 

11.6.2 Tumour heterogeneity   
Colorectal cancer is a highly heterogeneous disease with significant variation 

in tumour features both between and within individual tumours. As a result, 

the amount of tumour present at any given site is variable. Some studies have 

utilised minimum tumour load for inclusion of tissues. Few however, provide 

rationale for this decision. As DNA methylation differences would be expected 

to increase with increasing tumour cellularity, we expected to observe a 

strong correlation between the two parameters. However, this relationship 

was not evident in our analysis. Furthermore, high and low DNA methylation 

values were observed at both extremes of tumour cellularity. The employment 

of a minimum threshold in our study therefore appeared arbitrary.  
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In a study by Tournier et al., a maximal deviation of 3.6% methylation was 

observed despite 20% variation in tumour cellularity between samples of the 

same tumour.(190) Given the large DNA methylation differences between 

tumour and non-tumour tissue in our cohorts, such variations are unlikely to 

be of significant impact. 

 

Other techniques to enrich for tumour cell content and their impact on DNA 

methylation measurements have been described. Ishara et al. compared the 

global DNA methylation levels of tumour tissues prepared by macro dissection 

(i.e. as in our study) and laser capture micro dissection (LCM)—a method 

which enables isolation of tumour cells from a sample.(191) The study found 

no significant impact of contamination by non-malignant cells on global DNA 

methylation. These findings are supported by Leong et al. who found no 

advantage of LCM over manual dissection in the assessment of APC gene 

methylation.(192) 

 

These findings are of relevance as samples collected from the initial RIST 

cohort were too small for histological assessment and therefore analysed 

without quantification of tumour load. RIST tissue samples were obtained 

primarily by tissue biopsy at endoscopy or at the time of surgery. Biopsies are 

easy and quick to perform. However due to tumour heterogeneity, biopsies 

taken from a tumour may not be completely representative of the tumour as a 

whole. As discussed, it is likely that the DMPs investigated in our study occur 

early in tumourgenesis. As a result, such changes may be present in 

apparently normal cells prior to malignant transformation.  

 

Furthermore, colorectal tumours are highly heterogeneous in their molecular 

characteristics.(193, 194) As a result, it is plausible that the tumour load of 

immediately adjacent tissue may not reflect that of the tissue used for DNA 

extraction anyway. Ooki et al. investigated the extent by which methylation 

status is influenced by tumour heterogeneity in relation to the HOPX-β 

gene.(195) They analysed superficial, intermediate and deep tumour tissue 

and reported no significant difference in DNA methylation status between the 

sections.  
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11.6.3 Possible implications of ‘field change’ 
Field change describes the phenomenon by which seemingly non-malignant 

cells develop underlying pro-oncogenic molecular, epigenetic and genetic 

changes consistent with neoplasia.(196) Multiple models to explain the 

underlying mechanism of field change have been proposed.(197) Each of 

these models stem from the notion that similar environmental exposures 

within an organ, predispose the surrounding tissues to undergo the same 

neoplastic transformation as seen within the primary tumour. Subsequent 

genetic and epigenetic changes subsequently lead to the clonal expansion of 

cellular populations with changes advantageous to growth and survival.  

 

The impact of field cancerisation in rectal cancer remains unclear. In a 

genome-wide study conducted by Naumov et al., little overall variation was 

seen in the DNA methylation signature of tissue taken adjacent to rectal 

carcinoma and that of healthy controls.(78) Other studies have identified 

specific genes implicated in field change including MGMT, P14ARF and 

EVL/miR-342.(198, 199) In a study by Grady et al., the adjacent mucosa 

(10cm from tumour) of patients with CRC displayed increased methylation of 

EVL/miR-342 in comparison to healthy controls.(199) These findings imply a 

large field of change. In contrast, Shen et al. reported greater MGMT 

methylation in adjacent tissue samples taken 1cm from the tumour than those 

taken at 10cm.(200) It is therefore likely that different genes are involved in 

field change to differing extents.  

 

In our study, the distance between adjacent tissue and tumour was decided at 

the discretion of the surgeon performing the procedure. No attempt was made 

to standardise the biopsy method and the distance was not measured in 

either cohort. As a result, we are unable to comment on whether our DMPs 

were influenced by field change. The phenomenon may be exemplified by 

greater variance between DNA methylation levels of the non-tumour samples, 

although this was not assessed in the current study. However, as genes 

involved in field change would display smaller differences between tumour 
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and adjacent tissue, the impact of this phenomenon is more likely to have 

been influential in the initial EWAS study than subsequent pyrosequencing 

assays.  

 

11.7 Future work: Risk Stratification in Rectal Cancer (RIST) 
11.7.1 Overview of RIST 

The work described in this thesis forms part of a larger study, which aims to 

identify epigenetic biomarkers to predict response to neoadjuvant 

chemoradiotherapy (nCRT).  

 

Surgery to remove the rectum has traditionally been considered the only 

treatment option to offer long term cure in locally advanced rectal 

cancer.(201) However, this carries significant risks of complications, poor long 

term function and reduced quality of life.(202-204)   

 

The use of nCRT is intended to reduce tumour bulk prior to surgery and 

increase the chances of complete excision. However, the response to nCRT 

is highly variable.(205)  

 

The ability to predict who will and will not respond to CRT is of crucial 

importance to improving patient treatment and care. The project aims to 

explore epigenetic and transcriptional changes that may be associated with 

outcomes from rectal cancer treatment. This may enable us to identify 

potential methylomic biomarkers for cancer prognosis and prediction of 

response to nCRT. These biomarkers would then be evaluated in future larger 

prospective studies. 

 
The RIST study aims to identify novel epigenetic changes that can be used 

individually, or together in a panel, to predict the response of patients with 

locally advanced rectal cancer to nCRT.  
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11.7.2 Lessons learnt from this study 
In addition to the matched tissue samples analysed in this study (RIST001-

RIST016), additional samples from a total of 45 patients have now been 

obtained. Through this work, we identified that fewer patients than expected 

were treated with nCRT at our centre. In addition, coordination of all team 

members to ensure effective patient recruitment and tissue collection was not 

always possible. As a result, our future studies may benefit from a multicentre 

approach to tissue collection in order to ensure that adequate sample sizes 

can be obtained.   

 

Through our work, our team has gained greater understanding and 

experience with methodological processed employed in this study. The 450k 

genome-wide analysis with pyrosequencing as a validation method have 

proven to be suitable assessment methods of paired tumour samples. This 

study successfully compared tumour with adjacent non-malignant mucosa. In 

order to identify specific DMPs associated with response to nCRT, the RIST 

study should make direct comparisons of patients with successful and 

unsuccessful treatment responses.  

 

As discussed in Section 11.6, tumour DNA methylation was not significantly 

influenced by tumour load. This is important as tissues in the RIST cohort 

were obtained predominantly from tissue biopsies and were therefore too 

small for histological assessment. The lack of obvious relationship between 

tumour cellularity and DNA methylation levels support the notion that 

histological assessment is of limited value and therefore not required.  

 

In this work, no significant clinicopathological associations were identified with 

the nine DMPs investigated. The DMPs selected for validation in this work 

were chosen according to their statistical significance from data obtained by 

comparison of tumour and adjacent tissue. As a result, they are likely to be 

common to all tumour samples and probably occur early in tumorigenesis. As 

a result, they are unlikely to impart any significant influence on tumour 

characteristics or behaviour. Other studies have selected DMPs on the basis 

of known biological function. This method is limited however, in its 
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requirement for an idea of which genes are likely to be implicated. It would 

therefore be unable to identify novel markers in the absence of obvious 

biological mechanisms. Direct comparison of epigenome-wide DNA 

methylation data obtained from responders and non-responders, would 

represent an unbiased approach to this problem.  
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12 Conclusion  
This study, in conjunction with our previously conducted EWAS, has 

successfully identified and validated a novel methylomic signature of rectal 

cancer. Successful validation of EWAS data enabled us to conclude that its 

findings reflect true biological differences between cancer and normal tissue. 

Although no clinicopathological correlations were observed with the DMPs 

investigated, others may represent potential targets in the diagnosis, 

monitoring and risk stratification of rectal cancer. Future work will use the 

methodologies employed to investigate the relationship between DNA 

methylation and response to neoadjuvant chemotherapy.  

 

 

  



	 175	

Appendices  
1. DMPs identified by epigenome-wide association study 

2. RIST pyrosequencing and Ilumina 450k DNA methylation data  

3. Pyrosequencing DNA methylation data of historical cohort  

4. Clincopathological features of historical cohort  
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Appendix 1: DMPs identified by epigenome-wide association study 
 

CpG ID Array P 
value 

Array 
∆/% 

Chr Position Annotated gene 

cg02647878 3.66E-10 -0.45 4 154681197 RNF175 
cg14650610 7.30E-10 -0.48 5 136834492 SPOCK1 
cg13001868 1.58E-09 -0.45 17 43339223 C17orf46 
cg13895235 2.22E-09 -0.57 7 752292 PRKAR1B 
cg18538668 3.79E-09 0.20 14 103839038  
cg03061682 4.83E-09 -0.42 15 28352098  
cg24847829 6.29E-09 -0.40 5 136834464 SPOCK1 
cg26034516 6.48E-09 -0.35 17 76228121 LOC283999 
cg03576469 6.83E-09 -0.29 19 46917061 CCDC8 
cg18601167 8.02E-09 -0.56 7 752286 PRKAR1B 
cg05447008 9.87E-09 -0.40 6 73331114 KCNQ5 
cg13356896 1.15E-08 -0.40 2 198650987 BOLL 
cg09129067 1.29E-08 0.35 8 103750904  
cg23977631 1.30E-08 -0.46 2 100938799 LONRF2 
cg26238800 1.38E-08 -0.37 20 45142206 ZNF334 
cg24685755 1.39E-08 -0.35 19 53758031 ZNF677 
cg24820783 1.41E-08 -0.25 10 26504969 GAD2 
cg25480336 1.50E-08 -0.39 20 50720908 ZFP64 
cg16964348 1.65E-08 -0.39 7 24323799 NPY 
cg11328303 1.94E-08 -0.27 10 26505440 GAD2 
cg09734791 2.06E-08 -0.46 8 72756155 MSC 
cg10224098 2.26E-08 -0.40 1 44873229 RNF220 
cg04921989 2.32E-08 -0.37 2 132183100  
cg26314722 2.36E-08 0.24 1 234867300  
cg04504205 2.42E-08 0.32 20 45946429 ZMYND8 
cg11220565 2.48E-08 -0.36 20 47934802  
cg18324583 2.48E-08 0.22 5 142975083  
cg19752627 2.51E-08 -0.39 7 98467380 TMEM130 
cg25884711 2.52E-08 -0.42 7 24323840 NPY 
cg03470088 2.52E-08 -0.03 1 24513939 IL28RA 
cg06952671 2.55E-08 -0.47 2 182322268 ITGA4 
cg04377145 2.72E-08 -0.33 6 73331191 KCNQ5 
cg14168530 2.84E-08 -0.51 2 45155991  
cg00859129 2.87E-08 0.22 1 109422184 GPSM2 
cg26958524 2.90E-08 -0.34 16 86613067 FOXL1 
cg25024074 2.94E-08 -0.31 2 182322501 ITGA4 
cg26328335 3.26E-08 -0.45 12 50354840 AQP5 
cg22434409 3.29E-08 -0.41 4 21950722 KCNIP4 
cg26020069 3.29E-08 0.27 6 52382441 TRAM2 
cg08266366 3.38E-08 -0.38 12 50354998 AQP5 
cg18607529 3.47E-08 -0.41 7 50343869 IKZF1 
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cg06319475 3.67E-08 -0.38 8 145105829  
cg07589773 3.80E-08 -0.37 7 50343883 IKZF1 
cg03020208 3.85E-08 -0.30 12 50354962 AQP5 
cg11751707 3.85E-08 -0.27 2 38302587 CYP1B1 
cg09220050 3.88E-08 0.03 20 48770642 TMEM189 
cg20415809 3.92E-08 -0.39 2 182321855 ITGA4 
cg21938148 4.01E-08 -0.48 13 110958977 COL4A1;COL4A2 
cg13405887 4.37E-08 -0.42 9 132382812 C9orf50 
cg25340966 4.46E-08 -0.34 1 119532195 TBX15 
cg17200768 4.62E-08 -0.39 13 28503373  
cg26415547 4.82E-08 -0.32 12 66583048 IRAK3 
cg07921384 4.84E-08 -0.33 2 220299740 SPEG 
cg10013343 4.86E-08 -0.50 13 29106503  
cg12628196 4.87E-08 -0.40 7 127672458 SND1;LRRC4 
cg06072021 4.99E-08 -0.52 11 128564106 FLI1 
cg16674351 5.03E-08 -0.35 1 121260892 LOC647121 
cg24190603 5.05E-08 -0.36 6 84418433 SNAP91 
cg17170568 5.05E-08 -0.18 7 156433406 C7orf13;RNF32 
cg15336765 5.15E-08 -0.43 12 50355307 AQP5 
cg25223771 5.45E-08 -0.38 8 145105503  
cg00741836 5.50E-08 -0.45 20 53092233 DOK5 
cg02155398 5.53E-08 -0.36 2 45160490  
cg25680916 5.76E-08 0.03 3 53916015 ACTR8 
cg24924779 5.98E-08 -0.38 20 49639998 KCNG1 
cg25773267 6.14E-08 -0.36 20 61992187 CHRNA4 
cg17393267 6.15E-08 -0.29 3 192127356 FGF12 
cg12441126 6.21E-08 -0.41 7 751962 PRKAR1B 
cg13267264 6.29E-08 -0.43 8 70983600 PRDM14 
cg11901272 6.34E-08 -0.38 6 29760447 HCG4 
cg11947981 6.39E-08 -0.39 2 182322749 ITGA4 
cg02742906 6.39E-08 -0.34 13 112758625  
cg26718707 6.46E-08 0.42 10 518370 DIP2C 
cg20381963 6.48E-08 -0.51 7 752238 PRKAR1B 
cg20107395 6.60E-08 -0.50 20 53092334 DOK5 
cg24242823 6.79E-08 -0.37 7 24323675 NPY 
cg11601252 6.92E-08 -0.35 15 68122139 LBXCOR1 
cg04366687 7.26E-08 -0.35 8 145107199 OPLAH 
cg18355902 7.28E-08 -0.40 4 154681128 RNF175 
cg08206318 7.33E-08 -0.30 5 134363637 PITX1 
cg13554086 7.39E-08 -0.39 5 76507100 PDE8B 
cg25645268 7.81E-08 -0.31 4 154710598 SFRP2 
cg17101450 7.85E-08 -0.38 10 102900365  
cg00321614 7.88E-08 0.17 5 172856932  
cg14215472 7.91E-08 -0.35 17 27940404 ANKRD13B 
cg18335068 7.99E-08 -0.32 19 53757910 ZNF677 
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cg09296001 8.21E-08 -0.52 7 127672564 SND1 
cg03424342 8.35E-08 -0.28 3 120169783 FSTL1 
cg26593267 8.47E-08 -0.34 13 113764871 F7 
cg10120816 8.61E-08 -0.26 6 99296305  
cg09871471 8.62E-08 -0.41 1 121260900 LOC647121 
cg03147907 9.20E-08 0.34 3 62926690  
cg07719492 9.24E-08 -0.32 8 70983348 PRDM14 
cg10928466 9.24E-08 -0.11 19 11353961 DOCK6 
cg21995919 9.27E-08 -0.41 2 182322279 ITGA4 
cg10770742 9.31E-08 -0.37 7 151107285 WDR86 
cg23383871 9.31E-08 -0.37 20 47934987  
cg04023150 9.33E-08 -0.45 1 44873064 RNF220 
cg17228900 9.42E-08 -0.45 6 391764 IRF4 
cg27532621 9.61E-08 -0.23 1 164593763 PBX1 
cg10065823 1.00E-07 -0.30 9 96108467 C9orf129 
cg11573679 1.03E-07 -0.48 2 68546467 CNRIP1 
cg23572908 1.05E-07 -0.37 7 158937969 VIPR2 
cg01440841 1.06E-07 -0.35 4 154681066 RNF175 
cg05946309 1.07E-07 0.21 16 85926085  
cg05288172 1.07E-07 0.27 8 103751006  
cg18918321 1.08E-07 -0.26 8 41424524  
cg16437728 1.09E-07 -0.36 11 7273046 SYT9 
cg02177231 1.09E-07 -0.33 1 119529930 TBX15 
cg08957069 1.11E-07 -0.32 6 28743700  
cg23934404 1.13E-07 -0.42 13 112758491  
cg23933289 1.14E-07 -0.23 1 178998656 FAM20B 
cg11338643 1.16E-07 -0.41 6 166580983 T 
cg08750504 1.20E-07 -0.39 2 172946193  
cg09073398 1.20E-07 -0.39 5 168727762 SLIT3 
cg14337134 1.21E-07 -0.18 7 102920323 DPY19L2P2 
cg21232488 1.23E-07 0.28 6 30079203 TRIM31 
cg16504626 1.25E-07 -0.38 8 57070013  
cg01618245 1.29E-07 0.24 20 61990279 CHRNA4 
cg14015706 1.30E-07 -0.50 9 132382433 C9orf50 
cg14443519 1.30E-07 -0.43 6 29760410 HCG4 
cg27141850 1.30E-07 -0.38 2 20869434 GDF7 
cg24171907 1.32E-07 -0.45 2 68546579 CNRIP1 
cg20652954 1.33E-07 0.20 20 61716293  
cg10210594 1.34E-07 -0.33 1 208132787  
cg12433277 1.34E-07 -0.31 7 151106990 WDR86 
cg02700626 1.35E-07 -0.24 11 64739320  
cg20295442 1.37E-07 -0.48 8 67344665 ADHFE1 
cg06401021 1.37E-07 -0.42 6 55443868 HMGCLL1 
cg21647227 1.37E-07 -0.36 1 119527111 TBX15 
cg08332074 1.37E-07 -0.31 16 51189941  



	 179	

cg23641267 1.39E-07 -0.25 11 58343791 LPXN 
cg23092823 1.39E-07 -0.25 1 53528612 PODN 
cg14595003 1.41E-07 -0.38 3 129694156 TRH 
cg27341128 1.41E-07 -0.33 20 53092259 DOK5 
cg25771271 1.41E-07 -0.32 1 119550191  
cg25189564 1.43E-07 -0.29 7 158938051 VIPR2 
cg24645214 1.45E-07 -0.30 8 54789978 RGS20 
cg07878486 1.46E-07 -0.33 19 58951885 ZNF132 
cg18303242 1.48E-07 0.37 17 25879250 KSR1 
cg17892556 1.49E-07 -0.47 19 12267464 ZNF625 
cg12619536 1.49E-07 -0.42 1 108508067 VAV3 
cg04415599 1.49E-07 -0.24 19 37464508  
cg08516516 1.50E-07 -0.30 5 115152492 CDO1 
cg02065637 1.51E-07 -0.36 20 61809035 MIR124-3 
cg08569799 1.52E-07 -0.29 5 1886828  
cg17226446 1.53E-07 -0.14 4 154408845 KIAA0922 
cg19991022 1.56E-07 -0.55 20 53091929 DOK5 
cg25060829 1.56E-07 -0.31 6 28367571 ZSCAN12 
cg13850380 1.60E-07 -0.32 1 1475143 C1orf70 
cg27200446 1.62E-07 -0.57 6 41606439 MDFI 
cg15745900 1.62E-07 -0.38 8 68864549 PREX2 
cg20912169 1.64E-07 -0.48 8 67344720 ADHFE1 
cg07790085 1.64E-07 0.25 13 29597447 MTUS2 
cg00250422 1.65E-07 -0.42 15 28352347  
cg09632907 1.68E-07 -0.24 4 54969963  
cg03064067 1.70E-07 -0.39 12 85306916 SLC6A15 
cg18435449 1.70E-07 -0.33 19 58095445 ZIK1 
cg17371081 1.70E-07 -0.28 11 20690957 NELL1 
cg12868067 1.71E-07 -0.38 12 128752246 TMEM132C 
cg13389502 1.72E-07 -0.16 17 1961440 HIC1 
cg06427779 1.73E-07 -0.32 5 54180079  
cg27188703 1.76E-07 -0.33 12 50297581 FAIM2 
cg11903130 1.82E-07 -0.35 10 26506751 GAD2 
cg18921980 1.82E-07 -0.28 2 175594943  
cg16306898 1.83E-07 -0.48 1 1475675 C1orf70 
cg02640612 1.84E-07 -0.28 8 53853444 NPBWR1 
cg16366473 1.88E-07 -0.41 3 192126849 FGF12 
cg22862480 1.91E-07 -0.49 10 7450355 SFMBT2 
cg14658804 1.92E-07 -0.33 5 168728213 SLIT3 
cg23575688 1.93E-07 0.21 11 119486443  
cg21013866 1.95E-07 -0.36 14 23834985 EFS 
cg24663256 1.96E-07 -0.38 4 21950307 KCNIP4 
cg22663389 1.97E-07 0.35 17 57929274  
cg01046104 1.98E-07 -0.26 19 58095588 ZIK1 
cg04803843 1.99E-07 -0.42 15 28351906  
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Appendix 2: RIST pyrosequencing and Ilumina 450k methylation data  

 Type 
KCNQ5 
Pyro 

KCNQ5 
450K 

ZNF677 
Pyro 

ZNF677 
450K 

Chr1 
Pyro 

Chr1 
450K 

Chr8  
Pyro 

Chr8 
450K 

Chr14  
Pyro 

Chr14 
450K 

SPOCK 
(5)  
Pyro 

SPOCK 
(5) 
450K 

SPOCK 
(7)  
Pyro  

SPOCK 
(7) 
450K 

LOC  
Pyro 

LOC 
450K 

CCDC8  
Pyro 

CCDC8 
450K 

N001 N 18 34.7 14 37 32 40.9 37 57.8 32 36.1 16 29 10 21.9 19 15.2 30 25 
T001 T 37 59 21 63.5 14 12.5 18 18.7 22 25.2 59 61 49 66.1 33 47.3 34 40.2 
N002 N 18 29.9 17 50.6 43 42 35 45.7 57 48.8 7 24.2 7 24.1 13 17.4 44 42.1 
T002 T 56 70.4 48 81.6 10 13.9 10 12.7 15 22.2 68 72.6 68 79.5 59 50.1 69 75.8 
N004 N 23 46.2 17 45.6 39 38 51 66.5 54 50.4 15 38.8 11 22.1 19 35.9 41 42.8 
T004 T 77 85.5 50 72.7 15 18.6 6 12.1 11 22.2 57 75.5 59 82.6 33 59.6 50 65.6 
N005 N 11 26.6 13 45.6 37 38.3 43 51.6 48 42 14 32.2 11 21.2 14 30.1  36.5 
T005 T 43 65.5 82 81.2 15 10.8 4 12.2 7 19 81 86.1 30 88.9 37 58.5  81.2 
N006 N 19 35.6 21 43 38 41.2 45 48.9 45 47.9  41.5  31 17 26.1 53 53.3 
T006 T 90 87.4 84 88.9 5 11.9 4 10 6 21  88.1  92.8 82 67.4 86 88.4 
N007 N 22 26.2 21 48.1 39 37.9 60 69.2 46 51.6 15 34.6 6 27.3 11 21.2  40.6 
T007 T 62 67.8 49 74.9 17 18.4 28 44.2 30 35.3 44 55.9 28 48.6 34 53.5  66 
N008 N 9 12.3 7 24.3 45 45.6 42 53.5 43 35.8 5 16.4 2 22.5 8 11.4 25 25.4 
T008 T 17 63.4 30 61.4 8 13 11 12.5 12 21.1 71 73.4 53 68.2 62 61.9 46 50.4 
N010 N 15 23.1 11 42.5 40 40 47 64.4 46 38.1 9 31.8 12 11.5 4 13.3 38 40.5 
T010 T 30 38.9 29 71.7 14 12.2 20 28.3 27 29.2 35 50.9 34 46.9 13 42 54 60.2 
N011 N 8 18.4 14 35.1 50 47.1 47 55.8 48 39.7 13 12.9 12 7.6 11 13.8 38 21.6 
T011 T 39 66.8 34 72.5 17 17.3 15 22.8 22 23 29 61.2 30 62.4 56 56.4 54 61 
N012 N 12 24.3 13 44 40 44 54 65.8 52 46.9 7 37.9 9 26.5 11 27.6  51.4 
T012 T 89 85.5 87 89.9 10 16.7 4 6.9 15 25.7 86 83.3 58 80.5 75 68.3  85 
N013 N 7 29 5 25.6 37 37.6 37 42.6 50 58.6 24 26.9 13 17.8 2 22.3 24 37.5 
T013 T 74 69.3 61 79 12 15.6 10 20.6 24 36.3 77 72.9 59 74.4 40 64.8 70 77.7 
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 Type 
KCNQ5 

Pyro 
KCNQ5 

450K 

ZNF 
677 

Pyro 

ZNF 
677 

450K 
Chr1 
Pyro 

Chr1 
450K 

Chr8  
Pyro 

Chr8 
450K 

Chr 
14  

Pyro 

Chr 
14 

450K 

SPOCK 
(5)  

Pyro 

SPOCK 
(5) 

450K 

SPOCK 
(7)  

Pyro  

SPOCK 
(7) 

450K 
LOC  
Pyro 

LOC 
450K 

CCDC8  
Pyro 

CCDC8 
450K 

N014 N 19 32.4 16 44.4 35 37.1 36 52.3 42 44.7 14 46.6 9 45.9 11 27 38 43.4 
T014 T 91 85.3 48 83.7 9 16.8 7 17.3 15 26.4 84 81.5 92 86.7 67 66.8 77 77.5 
N015 N 15 34.2 11 31.2 52 47.2 26 32.8 57 53.3 12 21.4 8 14.8 8 20.1  35.5 
T015 T 65 73.3 57 81.7 17 17.2 6 13.4 25 27.2 31 62.4 41 65.1 43 62.8  66.2 
N016 N 7 16.8 7 22.7 34 34.6 39 63 50 51.8 9 14.2 4 10.4 5 10.2  30.8 
T016 T 40 56 21 55.4 21 18.4 27 32.8 40 34.3 32 61.2 26 62 22 46.5  48.8 
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Appendix 3: Pyrosequencing DNA methylation values of historical cohort 

ID 
ZN
F.N 

ZN
F.T 

KC
NQ
5.N 

KC
NQ
5.T 

SP
OC
K5.
N 

SP
OC
K5.
T 

SP
OC
K7.
N 

SP
OC
K7.
T 

LO
C.
N 

LO
C.T 

Chr
1.N 

Chr
1.T 

Chr
8.N 

Chr
8.T 

Chr1
4.N 

Chr1
4.T 

Chr1
4.D 

3CR 3 28 4 39 4 37 5 40 3 32 29 11 40 22 19 17 -2 

4CR 7 67 11 73 12 55 10 54 7 59 41 6 46 7 45 16 -29 

6CR 19 35 2 43 NA NA NA NA 7 33 47 13 41 17 45 22 -23 

8CR 8 32 6 58 15 41 9 15 6 25 28 15 42 25 46 19 -27 

11CR 7 35 6 48 10 14 7 45 9 52 41 7 49 5 49 10 -39 

13CR 18 18 8 33 13 33 8 2 8 21 48 10 41 9 42 16 -26 

15CR 22 40 14 57 20 49 11 48 11 40 41 8 47 17 40 8 -32 

20CR 5 29 7 35 7 34 5 35 4 17 42 14 40 10 49 40 -9 

24CR 18 34 16 40 16 25 11 50 15 56 33 10 37 9 52 16 -36 

25CR 20 51 20 58 18 45 16 52 12 30 27 12 38 14 42 12 -30 

28CR 13 20 5 39 14 42 10 9 8 30 43 19 40 15 41 35 -6 

30CR 20 57 16 78 15 77 5 75 12 62 22 22 52 38 36 8 -28 

31CR NA NA 12 56 13 50 10 48 10 89 31 18 NA NA NA NA NA 

33CR 23 29 22 37 NA NA NA NA 21 21 27 11 34 10 40 21 -19 

35CR 11 47 6 39 7 11 6 11 7 38 34 9 36 12 49 15 -34 

37CR 8 22 8 15 NA NA NA NA 5 10 46 13 49 32 48 34 -14 

38CR 22 64 14 67 13 69 11 69 10 52 38 11 39 7 45 14 -31 

39CR 5 64 8 62 8 63 6 61 8 48 37 8 47 6 48 19 -29 

40CR 17 56 14 60 13 55 11 71 13 43 40 29 45 13 42 24 -18 

41CR 11 29 3 56 12 51 7 53 5 36 33 10 44 11 40 19 -21 

42CR 24 37 6 22 10 20 7 15 5 20 39 19 39 12 39 34 -5 

43CR 19 59 19 67 16 64 12 63 15 58 35 7 45 10 41 24 -17 
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ID 
ZN
F.N 

ZN
F.T 

KC
NQ
5.N 

KC
NQ
5.T 

SP
OC
K5.
N 

SP
OC
K5.
T 

SP
OC
K7.
N 

SP
OC
K7.
T 

LO
C.
N 

LO
C.T 

Chr
1.N 

Chr
1.T 

Chr
8.N 

Chr
8.T 

Chr1
4.N 

Chr1
4.T 

Chr1
4.D 

44CR 19 79 12 91 13 84 4 82 8 72 NA NA 39 3 42 49 7 

45CR 18 51 10 56 13 58 6 24 9 38 48 12 39 12 39 18 -21 

47CR 20 64 22 77 19 3 11 10 12 61 43 16 45 10 40 12 -28 

51CR 18 17 NA NA 14 20 10 10 6 14 36 31 40 37 51 47 -4 

52CR 16 65 12 79 11 68 11 72 9 42 41 7 34 4 17 9 -8 

56CR 10 49 15 56 17 50 10 49 8 28 40 15 44 18 41 31 -10 

57CR 14 15 9 15 11 14 9 4 5 9 43 31 53 46 51 47 -4 

59CR 14 37 6 39 9 31 10 30 8 22 39 15 56 31 48 34 -14 

61CR 47 62 65 86 14 39 7 40 24 42 23 6 20 5 28 6 -22 

64CR 11 34 14 51 19 30 10 26 5 7 41 22 44 30 48 34 -14 

66CR 10 57 10 78 17 58 10 56 5 56 40 7 51 7 47 15 -32 

67CR 35 50 26 56 8 39 5 54 10 37 43 21 34 19 42 25 -17 

68CR 14 56 NA NA 9 80 5 74 8 19 42 24 50 12 48 18 -30 

74CR 7 61 2 19 5 55 1 61 4 26 35 5 39 11 45 12 -33 

75CR 15 44 13 34 7 59 5 63 9 54 50 9 40 11 50 13 -37 

76CR 21 37 4 67 9 48 4 46 NA NA 32 15 42 7 45 27 -18 

 77CR 26 39 12 51 13 44 11 41 9 26 48 19 53 23 46 13 -33 

81CR 11 53 7 45 14 49 8 33 5 53 38 8 55 11 55 18 -37 

85CR 5 67 9 46 6 69 6 63 12 17 42 33 37 5 48 11 -37 

86CR 13 30 16 61 12 55 13 40 7 16 45 19 51 17 43 24 -19 

87CR 12 23 13 28 8 30 8 28 10 21 50 26 48 32 53 41 -12 

92CR 25 71 17 58 19 67 7 68 16 43 40 19 36 9 45 12 -33 

96CR 25 65 9 58 14 51 10 41 9 30 35 13 45 10 48 12 -36 
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ID 
ZN
F.N 

ZN
F.T 

KC
NQ
5.N 

KC
NQ
5.T 

SP
OC
K5.
N 

SP
OC
K5.
T 

SP
OC
K7.
N 

SP
OC
K7.
T 

LO
C.
N 

LO
C.T 

Chr
1.N 

Chr
1.T 

Chr
8.N 

Chr
8.T 

Chr1
4.N 

Chr1
4.T 

Chr1
4.D 

97CR 2 49 1 53 3 53 3 53 7 47 57 10 47 17 NA NA NA 

98CR 12 59 11 62 20 67 15 66 12 57 29 8 43 8 52 26 -26 

99CR 4 28 8 43 4 19 6 25 7 34 41 20 NA NA 22 33 11 
100C
R 1 8 2 16 11 44 5 67 4 6 49 24 38 7 37 26 -11 
101C
R 22 42 16 44 15 13 15 6 13 34 40 13 46 21 36 19 -17 
102C
R 15 55 6 57 9 52 7 54 8 52 32 11 23 10 45 24 -21 
103C
R 11 63 8 53 9 33 7 25 5 40 46 23 44 13 47 26 -21 
106C
R 10 49 9 53 10 53 6 36 11 33 38 11 42 10 50 15 -35 
110C
R 21 77 7 70 11 73 6 72 10 74 41 9 38 7 45 10 -35 
111C
R 15 43 5 45 15 20 6 7 8 3 40 38 37 9 57 26 -31 
113C
R 15 40 8 60 50 42 7 37 10 45 47 12 44 13 41 21 -20 
114C
R 7 56 7 33 11 29 7 28 8 31 41 9 32 2 42 20 -22 
116C
R 6 45 7 45 10 47 6 36 5 34 50 14 38 22 25 30 5 
119C
R 16 50 11 54 25 49 21 48 9 34 25 11 48 22 41 20 -21 
120C
R 28 69 23 76 21 77 13 74 14 20 49 8 47 4 45 11 -34 
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122C
R 20 66 5 72 13 64 11 63 9 57 47 21 49 7 47 32 -15 
123C
R 10 45 12 50 12 7 9 4 10 14 38 38 44 5 51 11 -40 
124C
R 15 46 13 40 18 43 15 10 15 8 49 11 48 11 48 16 -32 
126C
R 9 39 4 55 12 65 4 59 8 50 36 12 44 19 38 17 -21 
127C
R 33 78 10 73 14 71 10 71 12 66 24 28 35 17 39 46 7 
128C
R 25 28 15 28 32 31 15 18 14 18 32 18 34 21 38 28 -10 
129C
R 41 50 36 40 37 52 22 51 28 24 40 29 21 23 41 36 -5 
132C
R 2 4 5 11 6 10 9 9 7 9 48 11 33 26 26 20 -6 

 
  



	 186	

Appendix 4: Clinicopathological features of historical cohort 

ID Sex Age Site Side Dukes 
Differentiatio

n T stage N stage 
Metastasi

s EMVI 

Death 
within 5 
years 

3CR M 49 
Recto-
sigmoid L B Mod 3 0 N N Y 

4CR M 75 Caecum  R D Well/mod 3 1 Y N Y 
6CR M 77 Caecum R B Well/mod 3 0 N N N 

8CR M 49 
Distal 

sigmoid L A Well/mod 1 0 N N N 

11CR F 71 
Distal 

sigmoid  L B Well/mod 3 0 N N N 

13CR F 71 
Anorectal 
junction L B Mod 3 1 N N Y 

15CR M 86 Caecum  R A Mod 2 0 N N N 

20CR F 54 
Descending 

colon  L C Well/mod 3 1 N N N 
24CR M 83 Sigmoid L B Well/mod 4 0 N N N 

25CR M 69 
Rectosigmoi

d junction L B Mod 3 0 N N Y 
28CR F 77 Caecum  R B Well/mod 3 0 N Y N 

30CR F 71 
Distal 

sigmoid L B Well/mod 3 0 N N N 

31CR F 83 
Distal 

sigmoid L C Mod 3 1 N N Y 
33CR M 88 Low rectum L C Well/mod 2 1 N N N 

35CR F 72 
Distal 

sigmoid L A Mod 2 0 N N N 
37CR F 79 Caecum R B Well/mod 4 0 N N N 
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38CR F 85 
Proximal 

transverse R C Well/mod 3 1 N N N 
39CR F 61 Mid sigmoid L B Well/mod 3 0 N N N 
40CR M 85 Caecum R B Well/mod 3 0 N N Y 

41CR F 71 
Rectosigmoi

d junction L C Well/mod 3 1 N N N 
42CR M 84 Caecum  R B Well/mod 3 0 N N N 

43CR F 76 
Distal 

transverse L B Mod 3 0 N N N 
44CR F 82 Caecum R B Well/mod 3 0 N N N 
45CR M 82 caecum  R C Well/mod 3 1 N N Y 
47CR F 72 Caecum  R B Well/mod 4 0 N Y N 
51CR M 75 Low rectum L B Well/mod 3 0 N N N 
52CR F 84 Caecum  R B Well/mod 3 0 N N N 

56CR F 57 
Ascending 

colon R B Well/mod 4 0 N N N 
57CR F 60 Mid sigmoid L B Well/mod 4 0 N Y N 
59CR M 87 Rectal  L B Well/mod 3 0 N N N 
61CR M 89 Caecum  R B Well/mod 3 0 N N Y 
64CR M 83 High rectum L B Well/mod 3 0 N N N 
66CR M 66 Caecum  R C Well/mod 3 1 N N N 
67CR M 85 Caecum  R B Poor 3 0 N N Y 

68CR M 71 
Rectosigmoi

d junction L B Well/mod 3 0 N Y N 

74CR F 80 
Proximal 
sigmoid  L B Well/mod 3 0 N N N 

75CR M 66 Transverse  R C Well/mod 3 2 N Y N 
76CR F 81 Caecum  R B Well/mod 3 0 N N N 
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 77CR F 75 
Hepatic 
flexure R B Well/mod 3 0 N N N 

81CR F 73 Mid sigmoid L C Well/mod 3 1 N N N 

85CR M 61 
Lower 

sigmoid L B Well/mod 3 0 N N N 
86CR M 73 Descending  L C Well/mod 4 1 N Y N 

87CR F 77 

Distal 
ascending 

colon  R B Well/mod 3 0 N N N 
92CR M 67 High Rectal  L A Well/mod 2 0 N N N 
96CR F 87 Caecum  R B Well/mod 3 0 N N Y 
97CR M 69 Caecum  R B Well/mod 3 0 N N N 

98CR F 71 
Rectosigmoi

d  L B Well/mod 4 0 N N N 

99CR M 77 
Ascending 

colon R B Well/mod 3 0 N N N 
100CR M 68 Caecum  R B Well/mod 3 0 N N N 

101CR F 65 
Descending 

colon  L C Poor 4 2 N N Y 
102CR F 70 High rectal L B Well/mod 3 0 N N N 
103CR M 51 Sigmoid L A Mod 2 0 N N N 

106CR M 59 
Distal 

sigmoid L B Well/mod 3 0 N N N 

110CR M 82 
Proximal 

transverse R C Poor 4 1 N Y Y 

111CR M 76 
Upper 
rectum L B Well/mod 3 0 N N N 

113CR M 81 
Ascending 

colon R B Mod 3 0 N N N 
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114CR F 75 
Distal 

sigmoid  L B Well/mod 3 0 N N N 

116CR F 86 
Hepatic 
flexure  R C Well/mod 3 1 N N N 

119CR F 59 
Ascending 

colon R D Mod  4 2 Y Y Y 

120CR F 80 
Ascending 

colon R C Well/mod 3 1 N N Y 

122CR M 71 
Ascending 

colon R B Mod 2 0 N N N 
123CR M 64 Sigmoid L B Well/mod 3 0 N N N 

124CR M 64 
Distal 

sigmoid  L B Well/mod 4 0 N Y N 
126CR M 65 Caecal  R B Well/mod 3 0 N N N 

127CR F 75 Transverse  R B Poor 3 0 N N N 
128CR F 62 Low rectum L B Well/mod 2 0 N Y N 

129CR F 63 
Hepatic 
flexure  R C Well/mod 3 1 N N N 

132CR M 62 Rectum L C Mod 3 1 N N N 
 Supplementary Table 4: Clinicopathological features of historical cohort. M, male; F, female; L, left; R, right; N, 

no; Y, yes.  
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