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Abstract
The role of natural factors, mainly the sun, is explored onmajor tropospheric modes of variability in a holistic way. It formulates a
flow chart, depicting coupling in the ocean-atmosphere system, initiated by solar decadal variability that involves El Niño
Southern Oscillation (ENSO). Possible mechanisms for Canonic ENSO, Modoki ENSO and Canonic-Modoki ENSO are
proposed considering their relevance to the decadal variation of Hadley, Walker circulation and mid-latitude jets. The upper
stratospheric feature of the polar vortex is included too. Teleconnections by the ENSO on Indian SummerMonsoon (ISM) with a
special emphasis on the later two decades of the last century is discussed. The disruption of usual ENSO-ISM teleconnection
during that period is also attended. Subsequent analyses presented some results of solar signature which could possibly trigger
different types of ENSO, agreeing with proposed mechanisms of the flow chart. It addressed the changing pattern of ENSO
behaviour since the 1970s. The overall study can benefit the modelling community by an improved representation of ENSO in
models and a better representation of ISM teleconnection via regional Hadley cell.

1 Introduction

The El Niño Southern Oscillation (ENSO) is one of the most
important modes of variability in the troposphere that influ-
ences most parts of the world through teleconnection. It has
significant impacts on precipitation at seasonal time scale in
several places around the world. Different types of ENSO,
based on spatial patterns of sea surface temperature (SST)
around tropical Pacific have been detected and discussed in
recent studies. One type is dominated by variability around
East Pacific (EP), known as Canonical ENSO or EP type and
the other dominated by variability around Central Pacific
(CP), known as Modoki or CP type (Trenberth et al. 2002;

Larkin and Harrison 2005; Ashok et al. 2007; Hill et al. 2009;
Kug et al. 2009).

Studies suggest there are differences in global and local
influences between Canonical and Modoki ENSO (Global
(Weng et al. 2007; Ashok et al. 2007). Pacific Rim (Weng et
al. 2009). India (Roy and Tedeschi 2016; Roy et al. 2017).
South China Sea (Chang et al. 2008). Australia (Brown et al.
2009; Taschetto and England 2009; Cai and Cowan 2009)). It
indicates the importance of understanding the underlying
mechanism of these two types of ENSO to improve prediction
skill.

Kao and Yu (2009), in a review, compared these two types
of ENSO, regarding their evolution and structure. They
showed for CP ENSO, atmospheric forcing plays the domi-
nant role while for EP ENSO it is mainly regulated by ther-
mocline shifting (also discussed by Ashok et al. 2007).
Thermocline uplifting for El Niño (EN), while deepening
down for La Niña (LN) is related to oceanic Kelvin and
Rossby wave movement. That is the reason, the signal of
phase reversal is detected only in EP ENSO, but CP ENSO
occurs more as epochs or events rather than a cycle. For two
types of ENSO, Yu and Kao (2007) indicated the different
origins of formation mechanisms. For CP ENSO, its phase
transition (barrier, onset, etc.) happens in the spring and it is
phase locked with season; while for EP ENSO, though it is
mainly regulated by the thermocline shifting, the phase shift
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and barrier varies decade to decade. Considering different
times of onset of two types of ENSO, Kao and Yu (2009)
indicated it could be related to the timing of mechanisms re-
sponsible for triggering particular events. Two mechanisms
for extratropical connections for CP ENSO are proposed,
Equatorial Ocean Advection Theory (Kug et al. 2009) and
Extratropical Forcing Theory (Yu et al. 2010; Yu and Kim
2011; Kao and Yu 2009). Based on the first theory, anomalous
SST along the equatorial Pacific is grown by the zonal ocean
advection, while the second theory suggests that it is initially
excited by forcing from extratropics and then developed by
the advection from the tropical ocean. Various studies pro-
posed about a decadal connection of ENSO (Hegyi and
Deng 2011; McPhaden et al. 2011; Meehl et al. 2008, 2009;
Roy 2014). An underlying quasi-decadal variability in the
interannual ENSO is noted in many research (Chen et al.
2004; Zhang et al. 1997; White et al. 1997; Zhao and
Dirmeyer 2003).

The sun is the principal source of energy for the climate of
the earth, but the level of scientific understanding relating to
its effects on the climate is still very low. Though regarding
terms of energy output, there is only a 0.1% variation (Lean
and Rind 2001) between minimum to maximum years of the
11-year cycle, too negligible to influence climate but studies
identified significant regional impacts which are often season-
ally dependent (Gray et al. 2010; Roy and Haigh 2010; Roy
2018a, b). The signal also fluctuates based on the chosen
period of reference (Roy and Haigh 2012). Nowadays, there
is a general agreement about solar-related mechanism involv-
ing the UV part of the spectrum in the stratosphere. It suggests
that the variations in the UV spectrum between solar maxima
and minima (6 to 8%) lead to more warming and ozone during
solar maxima in the upper region of the stratosphere (Crooks
and Gray 2005; Hood 2004). Following thermal wind balance
relationship, it is responsible for stronger (weaker) upper
stratospheric jet for maximum (minimum) years. There are
changes in various dynamical features also linked to such
variability. The work of Gray et al. (2010) and Roy (2018a)
nicely discussed various solar influences on an 11-year time
scale in the climate even excluding the effects of climate
change signal, represented by the longer-term trend. Specific
locations Aleutian Low (Roy and Haigh 2010) and Arctic
(Roy 2018b) during northern winter were also focused, which
detected a very significant influence of solar 11-year cyclic
variability even segregating the influence of the longer-term
trend, ENSO, volcano and Quasi-Biennial Oscillation (QBO).
Decadal signature of solar variability changes is noted in var-
ious atmospheric and oceanic fields. In terms of atmospheric
fields, it is detected in tropospheric circulations (Hadley
Circulation (Haigh 1999, 1996; Haigh et al. 2005). Walker
Circulation (Meehl et al. 2008, 2009), Polar Vortex (Kodera
and Kuroda 2002), Mid-latitude Jet (Haigh et al. 2005;
Brönnimann et al. 2006), and Intertropical Convergence

Zone (ITCZ) (Lee et al. 2009). The signal of decadal nature
is also distinguished in various oceanic parameters (thermo-
cline (Zhang and McPhaden 2006). North Pacific gyre circu-
lation (Lorenzo et al. 2010)) and shallow Meridional
Overturning Circulation (MOC) in Pacific (Zhang and
McPhaden 2006)).

The ENSO through teleconnection can affect various re-
gions around the world (Roy et al 2018). It also influences
seasonal precipitation in several places, among which the
Indian Summer Monsoon (ISM) is an important one. The
ISM has enormous impacts on the country’s economy as it
provides up to 80% of the annual mean precipitation. Indian
economy is mainly dominated by agriculture and associated
industries and being one of the most populated countries in the
world, ISM variability also impacts global economy. In terms
of the global-scale atmospheric circulation, the ISM plays an
important part, as it dominates the local Hadley circulation
and the boreal summer tropical meridional overturning
(Trenberth et al. 2006).

Studies have shown that the ENSO strongly modulates the
ISM (e.g. Kripalani and Kulkarni 1997; Maity and Kumar
2006; Roy 2017), where EN years are usually associated with
less rainfall, though LN experiences more rain. The ISM-
ENSO teleconnection was also captured by Coupled Model
Intercomparison Project Phase 5 (CMIP5) models matching
with observations in parts of the central north east (CNE)
region of India around ITCZ (Roy et al. 2017). This is the
location where the coupling mechanism of atmosphere and
ocean via ENSO through the Walker circulation could be
communicated strongly (Gill 1980). According to that mech-
anism (Gill 1980), the ISM represents a large-scale source of
heat around the CNE region and following the linear theory it
could be related to both Walker and regional Hadley cell.

The regionalmonsoon–ENSO relationship is shown hav-
ing common changing points around the 1970s. There was
an enhancement of the relations for the western North
Pacific, North American, Northern African and South
American summer monsoons, with a recovery in the late
1990s. Interestingly, for the ISM, it weakened over the same
period (Yim et al. 2013). Such a changing pattern of mon-
soon under global warming scenario is also discussed by
Huang et al. (2013) in a recent study. The direction of anom-
alous change in circulation, both the Walker and Hadley
circulation, and their relative strength around the Indian sub-
continent, mainly in the CNE region, under climate change
scenario, needs additional attention (Bollasina et al. 2011).
Interestingly, observation indicates that the nature of ENSO
also changed over the similar period; ENSOModoki became
more persistent and frequent since the 1970s (Ashok and
Yamagata 2009; Yeh et al. 2009). Research suggests that
the increase of ENSO Modoki during the latter decades of
the last century could also be due to parts of decadal nature
variability (McPhaden et al. 2011).
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This part of work focuses on the role of natural factors,
mainly the sun. It will discuss in a holistic way, how various
influences on different types of ENSO are generated especial-
ly via the solar cyclic variability. The related teleconnections
with the ISM will also be attended giving special emphasis on
the so-called climate change period when the mean state of
climate suffered certain deviations.

2 Methodology and data

Thisstudydiscussedvariousestablished research to formulatea
flow chart to depict a holistic representation of atmosphere-
ocean coupling. Later, it applied the method of multiple linear
regression(MLR)analysiswithAR(1)noisemodel to testa few
of the pathways. In this methodology, with the components of
variability,noisecoefficientsarecalculatedsimultaneously. It is
done in suchaway that the residual is consistentwitha rednoise
modeloforderoneand thus it ispossible tominimisenoise tobe
interpreted as a signature. Finally, measures of the significant
levels are calculated, usingStudent’s t test. Thismodel is devel-
oped byMyles Allen, the University of Oxford and this meth-
odology was widely used in various climate studies. Of late,
Roy and Haigh (2012), Roy and Collins, (2015), Roy and
Haigh (2011), Roy et. al (2016), and Roy (2018b) also applied
this technique to analyse solar signals on various climate data.

Variables and climate indices employed in the regression
are sea level pressure (SLP), monthly sun spot number (SSN),
Niño3.4 (to represent ENSO), stratospheric aerosol optical
depth (AOD) (indicative of volcanic eruptions) and longer-
term trends. The ENSO data used here are anomaly value
and all the data are normalised before an analysis. For SLP,
the in-filled HadSLP2 dataset, which covers the whole globe
(Allan and Ansell 2006) and available as monthly means from
1850 to 2004, are used. It can also be found at http://www.
metoffice.gov.uk/hadobs/hadslp2. Error estimates are
mentioned for HadSLP2 (unlike HadSLP1), to have ideas
about the regions of little confidence. It has been updated up
to 2012 using HadSLP2r_lowvar data (http://www.metoffice.
gov.uk/hadobs/hadslp2/data /down load.html). It is a version
of HadSLP2r and consistent with HadSLP2. The global
monthly HadSLP2r data that covers 2005 to 2012 is the
NCEP-NCAR reanalysis data (Kistler et al. 2001), which is
adjusted as its average for period 1961–1990 matches with
HadSLP2. In the recent version of HadSLP2r_lowvardata,
the deficiency concerning the difference in invariance be-
tween HadSLP2 and HadSLP2r is adjusted. Monthly SSN is
used to represent solar cyclic variability and obtained from
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_
NUMBERS/INTERNATIONAL/monthly/MONTHLY.PLT.
For the ENSO, Niño 3.4 index, obtained from Kaplan et al.
(1998) is used which is available since 1856 and can also be
found at http://climexp.knmi.nl. In the regression, AOD has

been used to represent volcanic eruptions and collected from
Sato et al. (1993) and available from https://data.giss.nasa.
gov/modelforce/strataer/tau_line.txt (up to 1999). It is then
extended up to 2005 with near zero value. It can also be
obtained from KNMI Climate Explorer (http://climexp.knmi.
nl). Longer-term trend is a rising linear line that represents
increasing anthropogenic influence.

3 Formulation of flow chart—proposed
mechanism

We develop a flowchart (Fig. 1) depicting a consolidated over-
view of ocean-atmosphere coupling, supported by highly cited
established research. Initiated by solar decadal variability,
how coupling in atmosphere-ocean is taking place is present-
ed. The major climate variabilities; viz. ENSO and solar are
shown with oval outlines; whereas, the major circulations
(Walker, Hadley and Ferrel cell), responsible for modulating
the influence of major variabilities are shown by non-
rectangular parallelograms. Pathways of the signature are
shown by labels that start from ‘A’, which is initiated by solar
variability and the direction of behaviour change during the
steps by ‘−’ (for decrease) and ‘+’ (for increase). The flow
chart depicts the role of the sun and how the atmosphere and
ocean coupling regulates the formation of various types of
ENSO, viz. the Canonic ENSO, Modoki ENSO and
Canonic-Modoki ENSO. The related teleconnection with
ISM is also presented. Dash-dotted lines mark the pathways
those are affected by so-called climate change signal. During
this period, the mean state of climate suffered certain devia-
tions. A similar flowchart was also formulated in the study of
Roy (2014); however, that did neither consider different forms
of ENSO nor included the part of ISM.

3.1 Solar ‘top-down’ vs. ‘bottom-up’ mechanism

Two fundamentally different routes for a solar influence on the
troposphere have been proposed: one is the ‘Bottom-Up’
mechanism (Meehl et al. 2008, 2009) and the other, the
‘Top-Down’ mechanism (Haigh 1996; Haigh et al. 2005;
Haigh and Blackburn 2006; Kodera and Kuroda 2002;
Baldwin and Dunkerton 2001). In the ‘Bottom-Up’ pathway,
the Sun can directly affect SST without stratospheric feed-
back; whereas, the ‘Top-Down’ influence of the sun is origi-
nated through the stratosphere. Roy (2014) elaborately docu-
mented more detailed discussions.

Frame and Gray (2009) showed using the observation that
there is a cooling (warming) in the lower equatorial strato-
sphere during solar minimum (maximum) years (A, Fig. 1).
The results from Haigh (2003) also showed that there is a
positive solar response in the tropical lower stratosphere. It
extends in vertical bands throughout the troposphere via
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mid-latitudes (with a maximum amplitude of 0.5 K around
40–50° N) in both the hemispheres. Haigh et al. (2005;
Haigh and Blackburn 2006; Haigh 1996) noted, an impact
on tropospheric mean meridional circulation, characterising
a weakening and expansion of the tropical Hadley cells, along
with a shift of the Ferrel cells poleward (A–C, Fig. 1). It leads
to coherent changes in the width and latitudinal location of the
mid-latitude jet stream (D). Their studies established opposing
solar influence in the tropospheric circulation fields in maxi-
mum years to those from minimum years in either models or
observation. Those did not even involve the complex interac-
tion of upper stratospheric polar vortex to detect that influ-
ence. Observational work of Brönnimann et al. (2006) also
supports such findings. A possible mechanism was proposed
by Kodera and Kuroda (2002), whereby the solar influence
can change the equatorial stratospheric region through chang-
es in the meridional circulation, which also involve polar vor-
tex (E). According to them, the sun can influence the path of
upward propagating planetary waves because the sun’s
heating anomalies can alter the strength of polar upper strato-
spheric jet. These planetary waves weaken the Brewer-
Dobson Circulation (BDC) via depositing their zonal momen-
tum on the poleward side of the jet in solar maximum years
and subsequently warm the tropical lower stratosphere. Solar
decadal variability regulates the strength of polar vortex by
normal thermal wind balance relationship as labelled here by
F. Baldwin and Dunkerton (2001) showed perturbations in the
polar vortex, are related to polar annular modes (G). They

discussed a dynamical mechanism that might communicate
stratospheric circulation anomalies downward to the tropo-
spheric surface via polar modes.

Meehl et al. (2008, 2009) discussed the bottom-up route of
solar influence and presented a mechanism related to sea-air-
radiative coupling involving the sun. According to them, the
spatial asymmetries of solar forcing, induced by cloud distri-
butions, can cause greater evaporation in the subtropics. It
consequently causes more moisture transport and intensifica-
tion of the tropical convergence zone and strengthens the trade
winds around the tropical Pacific (H, I).

3.2 Ocean coupling and atmosphere-ocean
interactions

First, we will discuss the mechanism of ENSO that involves
thermocline, Walker circulation and trade wind. In normal
ENSO mechanism, triggering of the trade wind can cause
uplifting of the thermocline (J, K), and subsequently can in-
tensify the Walker circulation (L). Shifting of the thermocline
is regulated by Oceanic Rossby and Kelvin wave movements
which control the interannual nature of ENSO. It is consistent
with studies that detected decadal signature in thermocline
(Zhang and McPhaden 2006). Some wind triggering mecha-
nism around tropical Pacific responsible for initiation of
Kelvin and Rossby wave is needed, though source being still
unclear (Vecchi and Soden 2007). The proposed flowchart
suggests the sun could be a possible candidate. Roy and

Fig. 1 Flow chart showing the role of the sun in an atmosphere and ocean coupling mainly during DJF and the possible mechanism for Canonic ENSO,
Modoki ENSO and Canonic-Modoki ENSO. ENSO-related teleconnection (e.g. ISM) affected by climate change period is shown by the dash-dotted line
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Haigh (2010) also captured similar decadal signature in trade
wind (I) in an observational analysis. The proposed pathway
(K) matches to that with EP ENSO. Ashok et al. (2007) and
Kao and Yu (2009) suggested that thermocline shifting is
known to be the main driver for EP ENSO. A signature of
phase reversal is also identified in EP type of ENSO with its
major phase transition and the barrier was found to change
decade to decade (Kao and Yu 2009).

The semi-permanent pressure systems in the troposphere
are an integral part of the tropospheric circulations and play an
important role in controlling their behaviour. Christoforou and
Hameed (1997) studied the variations of semi-permanent
pressure systems, the Aleutian Low (AL) and the Pacific
High (PH) and found that solar variability influences their
locations. Those can cause changes in storm tracks and large
anomalies in regional climatic conditions. That study
emphasised the location of AL and showed that solar variabil-
ity not only shifts its location but also causes a significant
difference in intensity (M). Observational analysis by Roy
and Haigh (2010) and Van Loon et al. (2007) is also consistent
with such findings. The weakening of Ferrel cell as noted by
Haigh (1996; Haigh et al. 2005; Haigh and Blackburn 2006)
and Brönnimann et al. (2006) can also be associated with the
weakening of AL. Decadal variability around AL could be
responsible for North Pacific warming (N) during high solar
years. Such decadal signature around mid-latitude was cap-
tured in observation by Frame and Gray (2009) and Haigh
(2003). North Pacific Gyre circulation in the ocean, which is
wind driven, is also likely to be affected by the modulation of
AL system. Decadal signature in North Pacific Gyre was ob-
served by Lorenzo et al. (2010).

Warming around North Pacific is connected to the shallow
conveyor belt of the ocean which has a rising branch around
North Pacific near AL. That shallow ocean conveyor belt is
flowing through tropical Pacific and links tropics to North
Pacific via ocean pathway (Q). That tropical Pacific part can
sometimes be termed as shallow meridional ocean circulation
(MOC) in the Pacific. It characterises the equatorward conver-
gence of the pycnocline volume transport across 9° S and 9°
N. Using historical hydrographic data, Zhang and McPhaden
(2006) observed decadal variability in the Pacific shallow
MOC. Ocean subduction pathways could also act as links
between North Pacific to tropics mass exchanges.

The strength of annular mode has the potential to change
the intensity and location of tropospheric jets via usual mech-
anism and can influence North Pacific (O, P) (double-ended
arrow show the two-way interactions). It can subsequently
modulate mid-latitude ocean gyre through wind stress. The
decadal signal around North Pacific could be transported to
tropical Pacific via ocean pathway (P–R) to trigger Modoki
ENSO feature (R). Lorenzo et al. (2010) showed decadal var-
iations in the North Pacific gyre circulation are characterised
by a pattern of SST anomalies resembling the CP type ENSO.

Sullivan et al. (2016) discussed that CP ENSO shows a dom-
inant spectral peak at a decadal timescale, which on an inter-
annual period possess a comparatively weaker variance. They
showed there is a significant reduction in the frequency of the
CP ENSO in observation and also in CMIP5 simulations of
historical, preindustrial, and future scenario if that decadal
component is removed.

The decadal signature in CP ENSO has a complex mecha-
nism. Apart from oceanic connections, changes in the mid-
latitude jets and AL can also directly impact CP ENSO
through dynamic variability of the Hadley circulation. For
CP ENSO, as seen in the flowchart, atmospheric forcing plays
the dominant role as proposed by (Kao and Yu 2009) and it
has extratropical connections. AL could play one dominant
role as shown by S. Two mechanisms for CP ENSO for
extratropical connections were discussed earlier, e.g.
Equatorial Ocean Advection Theory (Kug et al. 2009) and
Extratropical Forcing Theory (Yu and Kim 2011; Yu et al.
2010; Kao and Yu 2009) which are in agreement with those
proposed pathways. The first theory suggests anomalous SST
along the equatorial Pacific is grown by the zonal ocean ad-
vection, while the second indicates it is initially excited by
extratropical forcing and then developed by the advection
from the tropical ocean. It is also consistent with the observa-
tion that the CP ENSO occurs more as events or epochs than
as a cycle (Kao and Yu 2009), which is noted for EP type. The
phase locking of CP ENSO with the season, having phase
transition in spring (Yu and Kao 2007) also supports a solar
connection. Mantua and Hare (2002) indicated that Pacific in
the mid-latitude and tropics is connected via ocean pathway.
The pathway that establishes the linkage between tropics (via
thermocline shift) and extratropics as shown by T, governs
ENSO Canonical and Modoki (CM) combined feature.

Overall, the flowchart is consistent with studies those de-
tected an underlying quasi-decadal variability in the interan-
nual ENSO (White et al 1997; Zhang et al. 1997; Zhao and
Dirmeyer 2003; Chen et al. 2004), even if different types of
ENSO are considered.

3.3 ISM teleconnection

Now, we present discussions that also involve the ISM. The
ISM represents a large-scale heat source on the equator locat-
ed at a mean position of about 20–30° N (around ITCZ) cov-
ering the region of CNE. Following the linear theory, the re-
sponse to such a heat source suggests that it will be related to
Walker circulation as well as regional Hadley circulation (Gill
1980). TheWalker cell is related to equatorial heat sources and
is regulated remotely by tropical Pacific; whereas, the local
Hadley cell shows a direct response to the off-equatorial heat
source. The location and strength of the monsoon heat source
can also impact Walker and regional Hadley cell. Lee et al.
(2009) studied decadal variability on ITCZ and found during
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active solar periods there is an enhancement of the strength.
Pathways Vand W indicate about such relationship with ISM
and tropical circulations involving ITCZ.

3.4 ENSO via polar vortex or troposphere

The influence of ENSO, in reverse direction, to various atmo-
spheric fields, is also noted in many studies. The ENSO
through Brewer-Dobson circulation can influence polar vortex
(U) and subsequently to extratropics in an inverse pathway, as
shown in the flowchart. During winter, Camp and Tung
(2007) showed that warm-ENSO years are significantly
warmer at the Northern Hemisphere polar and mid-latitudes
in the stratosphere than the cold-ENSO years. Taguchi and
Hartmann (2006) and Sassi et al. (2004), using a GCM
showed that the warming difference between La Niña and El
Niño years is statistically significant. They showed in the El
Niño winters, stratospheric sudden warming (SSW) are twice
as likely to occur than La Niña years. It indicates a possible
connection between the ENSO and polar stratosphere. The
ENSO can also influence tropospheric jets and polar annular
modes were shown by Carvalho et al. (2005) and Haigh and
Roscoe (2006) (O, P in a reverse direction). Carvalho et al.
(2005), using data analysis for the period 1979 to 2000, ob-
served that during the austral summer (December, January,
February (DJF)), cold events of the ENSO are linked with
dominant positive Antarctic Oscillation (AAO) and vice
versa. Positive AAO phases are associated with the poleward
shift and weakening of the subtropical feature accompanied
by an intensification of the high-latitude feature. Following
usual annular mode behaviour, such signature is also expected
in the surface NAM/SAM. The analysis of Haigh and Roscoe
(2006) is also in agreement, who, using data from the latter
half of the twentieth century, showed in their MLR technique
that there is an anti-correlation between the ENSO and polar
modes in the lower troposphere.

Observations, as well as model simulations, suggested that
it could be two-way interactions and both types of ENSO also
have potentials to modulate the extratropics. CP ENSO influ-
ence is mainly seen around the Southern Hemisphere (SH),
though EP in the NH. For CP ENSO, the variations in wind
etc. are mainly localised around the central Pacific (Kao and
Yu 2009). It enhances convective activity in the South Pacific
Convergence Zone in austral spring and affects Antarctic sur-
face temperatures and sea ice concentrations (Song et al. 2011;
Schneider et al. 2012). The mechanism how EP ENSO could
influence extratropics of NH is also discussed (Randel et al.
2009; Manzini et al. 2006; Garcıa-Herrera et al. 2006). As EP
ENSO is mainly regulated by thermocline shifting and shows
basin wide variation of several features (Kao and Yu 2009;
Ashok et al. 2007), it possesses the potential to perturb
planetary-scale Rossby waves, which are mainly generated
in the NH due to ocean land contrast. The enhanced planetary

wave driving leads to a weakening of the Arctic vortex and
warms the polar stratosphere in boreal winter. It subsequently,
deepens the north Pacific AL. In the absence of land-ocean
contrast, planetary wave activity in the SH plays a nominal
role and hence EP ENSO does not impact the extratropics in
SH (Hurwitz et al. 2011).

3.5 Disruption of ISM teleconnection in climate
change period

McPhaden and Zhang (2004), Vecchi and Soden (2007) and
Held and Soden (2006) suggested there is a substantial de-
crease in the strength of both Walker and Hadley circulation
since the 1950s as marked here by X and Y. It is likely to be
reflected simultaneously in ISM as well as ENSO (Z). Roy
and Haigh (2012) showed over the similar period, decadal
signature around trade wind as demonstrated by J is missing,
probably due to change in mean state. It indicates a weakening
of the EP ENSO-related mechanism that involves thermo-
cline. A recent study suggests, ENSO Modoki has become
more frequent and persistent than Canonic ENSO since the
later period of last century (Yeh et al. 2009; Ashok and
Yamagata 2009). The change in ISM over a similar period is
also well documented in various studies (Ashrit et al. 2001;
Ashok et al. 2001). The climate change signal via X–Z sub-
sequently affects ISM, using pathways V and W.

In the flowchart (Fig. 1), there could be various other path-
ways for, e.g. including major variability of QBO (shown in
Roy 2014); but for clarity, we avoided enough complexities.
Also, for presenting climate change signals (shown by the
dotted-dash line) we avoided complicated pathways. More
related discussions on so-called climate change are covered
in a subsequent analysis, the part 2 of this study.

Labels agreeing on various pathways/studies as discussed
here in (Fig. 1) are listed underneath to improve clarity:

A: Haigh (2003), Frame and Gray (2009),
A–D: Haigh et al. (2005), Brönnimann et al. (2006),
Haigh (1996, 1999).
E: Kodera and Kuroda (2002).
F: Usual mechanism following thermal wind balance.
G: Baldwin and Dunkerton (2001).
H, I: Meehl et al. (2008, 2009).
I: Roy and Haigh (2010).
J–L: Normal ENSO (interannual) mechanism.
K: Kao and Yu (2009), Ashok et al. (2007), Zhang and
McPhaden (2006).
M: Christoforou and Hameed (1997), Roy and Haigh
(2010), van Loon et al. (2007).
N, P: Haigh (2003), Frame and Gray (2009).
N–Q: Usual ocean-atmosphere interaction involving
wind stress.
O, P: Carvalho et al. (2005), Haigh and Roscoe (2006).
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R: Kao and Yu (2009), Yu and Kao (2007), Sullivan et al.
(2016).
S: Kao and Yu (2009).
T: Mantua and Hare (2002).
U: Camp and Tung (2007), Sassi et al. (2004), Taguchi
and Hartmann (2006).
V, W: Gill (1980).
X, Y: Held and Soden (2006), Vecchi and Soden (2007),
McPhaden and Zhang (2004).
Z: Ashok and Yamagata (2009), Yeh et al. (2009).

Table 1 indicates how each link is explained by a mecha-
nism, evidenced by observation, or be viewed as a hypothesis
at this stage. All pathways we used are either explained by a
mechanism or evidenced by observation. However, some
pathways are kept as hypothesis stage (Lower Stratosphere:
H, M and Atmosphere-Ocean coupling: N, P, Q, S) partly
because understanding in those directions may be improved.

Some model-based analyses also explored areas that need
attention and pointed directly or indirectly towards lack of
understanding of solar influences. A very recent study
(Zheng and Yu 2017) indicated that further improvements in
CP ENSO prediction skill should be a key and high-priority
task for the climate prediction community. The feedback from
shortwave has a key role in explaining the spread of ENSO
characteristics among models as noted in new research
(Dufresne et al. 2013; Lloyd et al. 2012). Thus, modelling
communities, in general, will be greatly benefited from the
analyses of Fig. 1.

The current weaker solar cycle may also have contributions
on recent warming hiatus, but detailed analyses and mecha-
nisms are yet to be proposed and established. In the model,
the solar direct influence (0.1% variability) part is included;
whereas, indirect effects through the dynamical coupling,
which are playing major roles to influence climate are not so
well represented. Hedemann et al. (2017), discussed the con-
cern about our inability to explain the reason for the so-called
hiatus in global mean temperature. Using energy budget for the

ocean surface layer in their model revealed that hiatus can be
produced by deviations of energy-flux as low as 0.08Wm−2. It
can originate in the ocean, at the top of the atmosphere or both.
According to them, unless the uncertainty of observational es-
timates can be considerably reduced, the true origin of the re-
cent hiatus may never be determined. Our analyses through the
flowchart could, however, also address the hiatus from a differ-
ent angle. It suggests that the current weaker solar cycle with
reduced energy-flux and through mechanisms of indirect dy-
namical coupling could also be likely candidates.

Though we focused on ISM, such flowchart is also relevant
for other teleconnections that involve different types of
ENSO. There are differences in global (Weng et al. 2007;
Ashok et al. 2007) and local influences (Pacific Rim (Weng
et al. 2009). South China Sea (Chang et al. 2008). Australia
(Brown et al. 2009; Taschetto and England 2009; Cai and
Cowan 2009)) between Canonical and Modoki ENSO as
widely discussed in various studies. Incorporating the knowl-
edge of solar variability on various types of ENSO, our un-
derstanding of various global and regional teleconnection fea-
tures are likely to be improved. Thus, this study has implica-
tions which are not only limited to the local scale of India but
also applicable to the wider context of the globe and different
regional climatic scenarios.

4 Results of MLR: signature due to the sun
on various ENSO phases

We further analysed the solar signature on SLP and studied the
effect of a change in mean state. It is similar to the MLR
analyses of Roy and Haigh (2012) but considered SLP data
up to 2012 instead of 2004. The previous study also did not
consider different types of ENSO, neither did it separate out
period from the 1970s, as we did in the current study.

First, we addressed why ENSO Modoki has become more
persistent and frequent than Canonic ENSO since the 1970s
(Yeh et al. 2009; Ashok and Yamagata 2009). Three separate

Table 1 Indicate whether the
pathways are evidenced or
hypothesised.

Observation Mechanism

Explained Hypothesised

Atmosphere

(A–I, M, O)

Lower stratosphere

(A–D, H, I, M)

A–D, H, I, M A–D, I H, M

Upper stratosphere

(E–G, O)

F, G E, F, O

Atmosphere-ocean coupling

(J–L, N, P–T, U–W)

J–L, U, S, P, R J–L, N, T, V, W, Q N, P, Q, S

Climate change

(X–Z)

X–Z Z
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Fig. 2 The solar cycle signal
(max–min, hPa) in DJF
HADSLP2 data obtained from a
multiple linear regression analysis
usingmonthly SSN. Other indices
used are ENSO, AOD (volcano)
and trend. Different periods are
used: aResult for the entire period
(1856–2012), b for an earlier
period (1856–1970) and c a latter
period (1971–2012). Significant
regions at the 95% level using a
two-sided Student’s t test are
shaded and dotted lines indicate
negative contours
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MLR analyses on SLP data (DJF) are carried: one for the
whole period (Fig. 2a) and the other two before and after
1970 (Fig. 2b, c, respectively). Strong signal around AL
is noticed in all plots. Interestingly, such strong solar
signature in SLP around AL during northern winter is
robust and found insensitive to various methodologies
and time periods (van Loon et al. 2007; Christoforou
and Hameed 1997). Roy et al. (2016) did seasonal anal-
ysis too and showed that solar signature around AL is
only present during DJF. That signal is seen to be re-
duced in Fig. 2c to that from Fig. 2b.

Now, the focus is around central tropical Pacific and it
is observed that the signature of the sun is also different in
two periods (Fig. 2b, c). A small but significant decadal
signature is present in SLP before 1970 (Fig. 2b), which
could play a role in triggering trade wind. Figure 2a for
the whole period also indicates significant signal though
weaker in magnitude than Fig. 2b. Such solar signal on
trade wind could be responsible for initiating ENSO
through an indirect dynamical coupling. Instigating
Oceanic Rossby and Kelvin waves it has a potential in
shifting thermocline and subsequently trigger EP ENSO
features. Such signature, decadal in nature, could be pres-
ent in EP ENSO in addition to its interannual variability,
which is regulated by oceanic Kelvin and Rossby wave
movements. A decadal signal on thermocline is noted in
various studies (Zhang and McPhaden, 2006 among
others). It is also consistent with the earlier discussion,
(Yu and Kao 2007) who indicated that for EP type, the
phase transition and barrier change decade to decade and
it is mainly regulated by thermocline shifting. That solar
signature in trade wind is absent since 1971 (Fig. 2c) and
could be one possible cause for dominance of CP ENSO
over EP (Ashok and Yamagata 2009; Yeh et al. 2009).

Positive North Atlantic Oscillation (NAO) pattern for
the sun is clearly distinguished in the later period
(Fig. 2c), which is different during an earlier period
(Fig. 2b). Perturbations around North Atlantic was found
as a precursor of CP ENSO (Ham et al. 2013a, b) and the
mechanism involves atmospheric Rossby wave. Positive
NAO via triggering Rossby wave around mid-latitudes
could influence north Pacific (AL is likely to be modulat-
ed) and subsequently has the potential to initiate CP
ENSO through the atmospheric and oceanic bridge (for
e.g. Extratropical Forcing Theory (Yu et al. 2010; Yu
and Kim 2011; Kao and Yu 2009)). It was noted that the
change in CP ENSO in recent decades could also partly be
due to decadal nature variability (McPhaden et al. 2011).
Sullivan et al. (2016) discussed that CP ENSO shows a
dominant spectral peak at a decadal timescale, which on
an interannual period possess a comparatively weaker
variance. Over the last few decades, that decadal varia-
tions have an important contribution to the occurrence of

CP ENSO (Sullivan et al. 2016). Regression results sug-
gest the Sun-NAO changing behaviour (Fig. 2c) could
also be a responsible factor.

Regional Hadley circulation plays a role too. Bjerknes
(1966) showed that the major warming along the central
and equatorial Pacific during boreal winter is often accom-
panied by an anomalous strength of the mid-latitude west-
erlies. There is a two-sided interaction. The anomalously
great heat from the equatorial ocean to the rising branch of
the Hadley circulation would strengthen the cell. It will
generate above normal flux of angular momentum to the
westerly winds around mid-latitude belt. Thus, warming in
the tropical Pacific can also strengthen the mid-latitude
westerly jets during boreal winter and subsequently can
favour positive phase of the NAO. Following the similar
mechanism—which can be a two-sided interaction—a pos-
itive NAO can also favour positive phase of CP ENSO.

Earlier studies showed that winter NAO can have an im-
pact on ISM (Chang et al. 2001). Thus, the shift in a solar
decadal signal via the winter NAO (Fig. 2b vs. Fig. 2c) and
through regional Hadley circulation can also alter ISM fea-
tures (Fig. 1).

5 Discussion

The flowchart is a holistic way of presenting ocean and
atmosphere coupling. The role of natural factors mainly
the solar 11-year cycle is investigated to understand how
that decadal-scale variability can modulate stratosphere-
troposphere-ocean coupling. Based on highly cited
established research, possible mechanisms for Canonic
ENSO, Modoki ENSO, and Canonic-Modoki ENSO are
proposed. Different mechanisms for three different types
of ENSO are explored attending their decadal connections.
Initiated by solar variability how mid-latitude jets and tro-
pospheric circulations (Walker and Hadley circulation) are
affected and in turn, influence the ENSO is discussed. In
terms of the atmospheric part, it considered the routes in
both the troposphere as well as the stratosphere. In the
stratosphere, the possible pathway of the polar vortex is
also attended. Such flowchart will help improve the under-
standing of different types of ENSO and benefit the model-
ling community by better representations in models. The
subsequent teleconnections by ENSO (for e.g.) on ISM is
also presented. Focusing on the later two decades of the
last century, we analysed how such connection could have
been disrupted.

Some results of solar signature those could possibly trigger
different types of ENSO are presented applying the technique
of multiple linear regression. Such analyses help in addressing
the changing pattern of ENSO and ISM behaviour since the
1970s, as noted in previous studies.
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