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Microorganisms shape the composition of the medium they are growing in, which
in turn has profound consequences on the reprogramming of the population gene-
expression profile. In this paper, we investigate the progressive changes in pH and
sugar availability in the medium of a growing Escherichia coli (E. coli) culture. We
show how these changes have an effect on both the cellular heterogeneity within the
microbial community and the gene-expression profile of the microbial population. We
measure the changes in gene-expression as E. coli moves from lag, to exponential,
and finally into stationary phase. We found that pathways linked to the changes in
the medium composition such as ribosomal, tricarboxylic acid cycle (TCA), transport,
and metabolism pathways are strongly regulated during the different growth phases. In
order to quantify the corresponding temporal changes in the population heterogeneity,
we measure the fraction of E. coli persisters surviving different antibiotic treatments
during the various phases of growth. We show that the composition of the medium in
which β-lactams or quinolones, but not aminoglycosides, are dissolved strongly affects
the measured phenotypic heterogeneity within the culture. Our findings contribute to
a better understanding on how the composition of the culture medium influences both
the reprogramming in the population gene-expression and the emergence of phenotypic
variants.

Keywords: phenotypic heterogeneity, Escherichia coli, persisters, metabolism, bacterial physiology, antibiotics,
gene-expression profiling, KEGG pathways

INTRODUCTION

Within isogenic populations there may be substantial cell-to-cell heterogeneity in terms of
metabolic activity (Nikolic et al., 2013; Şimşek and Kim, 2018), growth rate (Kotte et al., 2014),
substrate assimilation (Sheik et al., 2016), compound secretion (Veening et al., 2008), virulence
(Arnoldini et al., 2014), and resistance to stress (Balaban et al., 2004). This heterogeneity has been
observed across all the domains of life and arises from the inherent random nature of biochemical
reactions (Elowitz et al., 2002; Kaern et al., 2005; Lidstrom and Konopka, 2010). Phenotypic
heterogeneity may allow some individual cells to survive shifts in the environmental conditions,
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and thus permitting the population to withstand fluctuating
environments (Balaban et al., 2004; Ackermann, 2015; Venturelli
et al., 2015; Schreiber et al., 2016; Bódi et al., 2017). It
has also been suggested that phenotypic heterogeneity can
accelerate evolutionary adaptation to different environmental
challenges (Beaumont et al., 2009; New et al., 2014). The culture
environment in turn affects the population transcriptome. For
instance, pH has been shown to regulate genes involved in
catabolism and transport (Hayes et al., 2006), whereas glucose-
lactose diauxie induces the downregulation of amino acid
biosynthesis and aerobic metabolism genes (Chang et al., 2002).
Additionally, changes in gene-expression levels in response to
nutritional changes are strongly linked to growth rate and cell
size (Weart et al., 2007; Scott et al., 2010; Chien et al., 2012; Yao
et al., 2012). Moreover, it has been suggested that a reduction in
cell size increases the heterogeneity in gene-expression within the
population (Kaern et al., 2005).

However, only a small subpopulation of bacteria shows
observable physiological variations, such as growth rate that is
more than twofold different than the remainder of the population
(Lidstrom and Konopka, 2010). Therefore, the identification and
study of such small subpopulations can be challenging but can
be simplified by analyzing the functional consequences of a given
case of phenotypic heterogeneity (Ackermann, 2015).

For example, persister cells are a small proportion of a
clonal microbial population that can survive otherwise lethal
doses of antibiotics and resume growth shortly after removing
the antibiotic (Hansen et al., 2008; Lewis, 2010; Maisonneuve
et al., 2013), but without acquiring genetic changes that confer
antibiotic resistance. In this paper we used persister cell
formation as a proxy for phenotypic heterogeneity. Persister
cells have been observed across all the domains of life (Lewis,
2010; Hangauer et al., 2017; Megaw and Gilmore, 2017) and
are believed to contribute to the survival of bacteria in biofilms
exposed to antibiotics (LaFleur et al., 2006; Lewis, 2010) and to
chronic infections in immunosuppressed hosts (Mulcahy et al.,
2010; Maisonneuve and Gerdes, 2014).

Persisters can form stochastically as a result of fluctuations
in gene-expression (Amato et al., 2013). However, a variety
of environmental factors favor persister formation, including
subinhibitory concentrations of antibiotics (Amato et al., 2013),
nutrient limitation (Vega et al., 2012), intra-species interactions
(Bernier et al., 2013), starvation (Fung et al., 2010), and in
the case of pathogens, interactions with the host (Helaine
et al., 2014). Amato et al. (2013) showed that diauxic growth
contributes to persister cell formation, whereas another study
by the same group showed that nutrient transitions contributed
to persister formation within bacterial biofilms (Amato and
Brynildsen, 2014). Keren et al. reported that the number
of ampicillin or ofloxacin persisters increased from lag to
stationary phase (Keren et al., 2004a). However, the temporal
windows when there are substantial increases in the formation
of persisters to different antibiotics during growth of Escherichia
coli (E. coli) on lysogeny broth (LB) have yet to be defined.
Moreover, gene-expression profiling has been carried out on both
exponential and stationary phase E. coli O157 growing on 3-
(N-morpholino)propanesulfonic acid (MOPS) minimal medium

supplemented with 0.1% glucose (Bergholz et al., 2007). However,
the changes in the transcriptome throughout the growth cycle of
E. coli K12 growing in LB remain to be determined, despite this
being an experimental model system employed in microbiology,
biotechnology, and molecular biology.

In this paper, we report the changes in sugar levels and pH
and the associated reprogramming in gene-expression during
the transitions between the different phases of E. coli growth.
We then investigate the phenotypic heterogeneity within the
E. coli population throughout the growth cycle by using persister
formation, in response to ampicillin, gentamicin, or ofloxacin as
a proxy for studying cellular heterogeneity. Our findings will be
instrumental for investigations into the mechanisms underlying
microbial survival in transitioning environments and provide
key transcriptomic data for a commonly used model in many
bacterial studies.

MATERIALS AND METHODS

Chemicals and Culture Preparation
All chemicals were purchased from Fisher Scientific or Sigma-
Aldrich unless otherwise stated. LB medium (10 g/L tryptone,
5 g/L yeast extract, and 10 g/L NaCl, Melford) and LB agar
plates (LB with 15 g/L agar) were used for planktonic growth and
enumeration of colony-forming units (CFUs), respectively. E. coli
BW25113 was purchased from Dharmacon (GE Healthcare).
A single colony of E. coli BW25113 was grown in 200 ml
fresh LB in a shaking incubator at 200 rpm and 37◦C for
17 h (Supplementary Figure S1A). After 17 h incubation, the
culture was diluted 1:1000 in fresh LB and growth was measured
hourly by taking three aliquots that were then centrifuged
(13,000 g for 5 min), the supernatant was removed, the pellet
was resuspended in phosphate-buffered saline (PBS), and serial
dilutions were plated on LB agar for CFU counts (Supplementary
Figures S1B,C,H). This experiment allowed us to determine
that the culture was in stationary phase at t = 17 h (left axis
in Supplementary Figure S2). In order to avoid introducing
any bias in our measurements (Luidalepp et al., 2011), we
used the same LB autoclaving conditions in all our assays. The
relatively small error bars in our measurements and in other
recent reports (Orman and Brynildsen, 2016; Radzikowski et al.,
2016) demonstrate the suitability of autoclaved LB for these
microbiological assays.

Characterizing the Bacterial Environment
A culture was prepared as described above and eighty-one
100 µl aliquots were added to individual wells of a 96-well plate
(three technical replicates in biological triplicates for each of
the nine time points were investigated). The remaining wells
were filled with fresh LB for blank measurements. The plate was
placed in a preheated (37◦C) Infinite R© 200 PRO plate reader
(TECAN) shaking at 200 rpm. To quantify bacterial growth in
this assay, optical density at 595 nm (OD595) was measured
hourly in nine selected wells for each time point. Bacterial
growth measured via the plate reader method (right axis in
Supplementary Figure S2) was comparable to that measured via

Frontiers in Microbiology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 1739

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01739 August 13, 2018 Time: 20:0 # 3

Smith et al. Escherichia coli Gene Regulation and Phenotypic Heterogeneity

CFU counts in cultures growing in 200 ml flasks (left axis in
Supplementary Figure S2). To quantify the amount of reducing
sugars, preheated (100◦C) Benedict’s reagent (Sigma-Aldrich)
was then added to the same wells according to the manufacturer’s
instructions and absorbance at 490 nm was measured after 15 min
incubation. The absolute sugar concentration was determined
by extrapolation through a standard curve of known glucose
concentration (Supplementary Figure S3). This was obtained
by adding glucose in MilliQ water at concentrations of 125,
250, 500, or 1000 µM in triplicate in a 96-well plate. Preheated
(100◦C) Benedict’s reagent was then added to the same wells
and the absorbance at 490 nm was measured after a 15 min
incubation. The average reading from three wells containing
only MilliQ water was subtracted from the readings of the
glucose containing wells. These blank subtracted readings are
reported in Supplementary Figure S3 together with a linear
regression fitting of the experimental data. In order to measure
the culture pH, the probe of a PH-100 ATC pH meter (with
an accuracy of pH 0.01, Voltcraft) was immersed in a separate
culture prepared as described above and the pH was recorded
hourly. The measurements were taken in at least three biological
replicates.

Transcriptomic and qPCR Analysis
A culture was prepared as described above. Immediately after
dilution (0 h), 500 µl aliquots were taken from the overnight
(17 h) culture and 1, 2, 3, 3.5, 4, 4.5, 5, 6, or 7 h after dilution
in fresh LB (1:1000) and were incubated at 200 rpm and 37◦C as
described above. The RNA of the cells contained in each aliquot
was stabilized using RNAprotect Bacteria Reagent (Qiagen).
Extraction was performed with RNeasy Mini Kit (Qiagen) and
DNA removal with DNase I (RNase-free, Ambion), using the
recommended protocols. RNA concentration and purity were
determined using a 2100 Bioanalyzer (Agilent). cDNA libraries
from all samples with an RNA integrity number (RIN) greater
than eight were prepared and then sequenced using Illumina
HiSeq 2500. The paired reads were trimmed and sequencing
adaptors were removed using fastq-mcf. RNA ERCC spike-in
control sequences were removed using bowtie version 1.0.0,
and the remaining reads were aligned to the reference genome
using tophat2 version 2.1.0. The gene-expression was quantified
using HTseq-count. DESeq2 v1.6.3 was used to normalize the
raw transcript reads for all genes by using the median-ratio
normalization method and for library size (Love et al., 2014).
To reduce the number of false-positive results, the log2 fold
changes were shrunk toward zero for lowly expressed genes and
the adjusted p-values were calculated using a false discovery
rate (FDR) of 0.1. We then determined the log2 fold change
in the normalized transcript reads for each gene at different
time points, relative to the normalized transcript reads in the
overnight stationary phase sample (t = 17 h). In order to
identify the variables that best differentiate the data, as well as to
determine how well-clustered the replicates were, we performed
principal component analysis (PCA) using DESeq2 and a built-
in R method (prcomp) on the top 500 expressed genes. These
genes were normalized using a regularized log transform prior to
PCA to allow better visualization of the trends and clusters that

may otherwise remain hidden. The data shown represent the first
(PC1) and second principal components (PC2). The clustering of
the time point replicates indicates a high level of reproducibility
in our data. During the three different growth phases the top
10% of upregulated and downregulated genes, based on their
log2 fold change, were identified and goseq was used to identify
overrepresented pathways in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Ogata et al., 1999; Kanehisa et al., 2016,
2017). In order to check the results, qPCR was performed on
the same aliquots on a StepOnePlusTM Real-Time PCR System
for selected genes. Both RNA-seq and qPCR measurements were
performed in biological triplicates.

MIC Determination
The minimum inhibitory concentration (MIC) of the employed
antibiotics against E. coli BW25113 was determined using a
96-well plate method. E. coli was grown for 17 h in LB
containing different concentrations of ampicillin (0.5–512 µg
ml−1), ofloxacin (0.0625–64 µg ml−1), or gentamicin (0.125–
128 µg ml−1) and the OD595 was measured hourly. The
MICs were measured as the lowest concentrations at which the
OD595 was the same as the control (bacteria-free LB) and were
determined as 5, 4, and 0.125 µg ml−1 for ampicillin, gentamicin,
and ofloxacin, respectively.

Persister Enumeration
A culture was prepared as described above and during mid-
exponential phase (t = 3 h after dilution) the respective
antibiotics were added to the culture to reach a concentration
of 25 × MIC, with persister levels typically not varying above
this concentration of antibiotics (Johnson and Levin, 2013).
Every 30 min an aliquot was taken from the treated culture,
centrifuged (13,000 g for 5 min), re-suspended in PBS, and plated
on LB agar plates. The plates were incubated and CFUs were
determined the following day. For each antibiotic, the fraction
of persister cells plateaued after 3 h of treatment, as previously
reported (Johnson and Levin, 2013), confirming that we were
studying persister subpopulations rather than antibiotic-tolerant
populations (Brauner et al., 2016).

In order to enumerate persisters based on the effect of different
antibiotics during the various phases of growth, a culture was
prepared as described above (Supplementary Figures S1A,B).
Nine 500 µl aliquots were withdrawn from the growing culture
hourly (Supplementary Figures S1C,E). Three of them were
used for untreated controls, the aliquots were centrifuged
(13,000 g for 5 min), supernatant was removed, the pellet was
resuspended in PBS, and serial dilutions were plated on LB agar
(Supplementary Figure S1H). Three aliquots were supplied with
500 µl LB (1:1 dilution) containing 50 × MIC of one of the
three above specified antibiotics (final concentration 25 ×MIC)
and were returned to the shaking incubator (Supplementary
Figure S1F). After 3 h, these aliquots were centrifuged, the
supernatant was removed, and the pellet was re-suspended in
PBS. Serial dilutions were then performed and plated on LB agar
(Supplementary Figure S1I). Three aliquots were injected with
10 µl of one of the three above specified antibiotics to reach a
final concentration of 25 × MIC and returned to the shaking
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FIGURE 1 | Characterization of the physical changes in the bacterial
environment. (A) Dependence of the concentration of reducing sugars in the
culture on the time elapsed from dilution in LB medium of an overnight E. coli
culture. (B) Dependence of sugar concentration per cell (squares, right axis)
and the expression of the glucose (ptsG, circles, left axis) and acetate (actP,
triangles, left axis) related genes on time elapsed from dilution in LB medium.
Gene-expression is reported as the log2 fold change with respect to the
measurements on the overnight samples (t = 17 h). Data and error bars are
the mean and standard error of the mean (SEM) calculated on measurements
obtained in biological triplicate.

incubator (Supplementary Figure S1G). After 3 h these aliquots
were centrifuged, the supernatant was removed, the pellet was
re-suspended in PBS, serially diluted and plated on LB agar
(Supplementary Figure S1J).

RESULTS

Nutritional and Chemical Environment
of a Growing E. coli Culture
We investigated how the sugar content and the pH of the growth
medium changed over time. Notably, both quantities are known
to affect the outcome of antibiotic treatment (Allison et al., 2011;
Cama et al., 2014). The measured concentration of fermentable
sugars in the LB medium we employed was 163 ± 35 µM.
A previous study found that LB contained less than 100 µM
fermentable sugars by using a genetic approach based on a hemA
deletion mutant unable to grow in the absence of fermentable
sugars (Sezonov et al., 2007). This discrepancy could be due to
the different sources of LB and the different techniques used to
quantify the sugar concentrations. This further emphasizes the
added value of carrying out the simple assay described in Section
3.2 to quantify the concentration of fermentable sugars during
bacterial growth.

After E. coli inoculation into LB medium, we measured the
remaining sugar concentration at various intervals throughout

the growth cycle (Figure 1A). We calculated the corresponding
concentration of sugar available per bacterium (squares in
Figure 1B) by dividing the measured sugar concentration by
the measured number of bacteria in the culture (full symbols in
Supplementary Figure S2, left axis). This revealed a one order of
magnitude decrease in the sugar available per bacterium between
3 and 6 h after inoculation, when the culture transitioned from
exponential to stationary growth-phase.

We also measured the pH of the culture throughout the
growth cycle (Supplementary Figure S4). The pH decreased
from 6.8 and reached it’s most acidic value of 6.2 during the
exponential phase at t = 4 h, then rose up to a maximum of
7.0 during the stationary phase at t = 7 h. We explain this
finding by considering that the culture environment is acidified
by the excretion of acetate during aerobic fermentation, resulting
from bacterial growth on carbohydrates during exponential phase
(Kleman and Strohl, 1994). However, upon exhaustion of these
carbohydrates, the bacteria use alternative carbon sources such as
amino acids and other gluconeogenic substrates (Sezonov et al.,
2007), resulting in the production and excretion of ammonia that
increases the culture pH. Losen et al. (2004) did not observe the
same growth-phase dependence for the pH of a growing E. coli
culture. However, their assay was performed using a different
E. coli strain (ATCC 53323) and different culture conditions
including a different LB supplier, a one order of magnitude
smaller LB volume and a one order of magnitude higher
inoculum concentration. All together, our data complement our
existing knowledge on the changes occurring in the medium
composition during E. coli growth in LB (Losen et al., 2004;
Sezonov et al., 2007).

Changes in Gene-Expression During
the Growth Cycle
The gene-expression profile of bacterial populations is
profoundly affected by changes in the culture (Hua et al.,
2004; Bergholz et al., 2007; Klumpp and Hwa, 2015; Vital
et al., 2015). However, to the best of our knowledge, this is
the first study reporting the progressive reprogramming of the
gene-expression profile of E. coli growing in LB throughout the
different phases of growth.

In order to study the effect of the changing nutritional
or chemical environment of the culture on the population
transcriptome, we measured gene-expression profile in aliquots
taken at different stages of growth in biological triplicates.
Supplementary Table S1 reports, for each gene, the mean and
SEM of the normalized transcript reads measured in the samples
taken at t = 17 h post inoculation. Supplementary Table S1 also
reports the mean and SEM of the log2 fold change in normalized
transcript reads in the samples taken at t = 0, 1, 2, 3, 3.5, 4,
4.5, 5, 6, or 7 h post inoculation relative to the t = 17 h sample.
The mean relative error, averaged on the relative errors for the
transcript reads of all genes at t = 17 h, is 24%, thus confirming
good reproducibility across biological replicates. Indeed, this
corresponds to a log2 fold change of 0.31, whereas in comparison,
the average absolute log2 fold change in gene-expression at t = 2 h
relative to t = 17 h is 1.9. We further confirmed the changes in
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gene-expression of selected genes using qPCR (Supplementary
Figure S5).

The PCA allowed clustering of the transcriptome profiles
measured from the different biological replicates at each time
point (Figure 2A), demonstrating good reproducibility of our
cultures grown in shake flasks without the need for fermenter
cultivation (Chang et al., 2002). The transcriptomes from
adjacent time points clustered close to each other forming
a nearly complete cycle, with the transcriptome measured at
t = 0 being close to that measured at t = 7 h. Similarly,
a cyclic transcriptional response of E. coli to acid adaptation
was previously reported (Stincone et al., 2011). Furthermore,
the transcriptomes measured at t = 0 and t = 1 h are
simultaneously similar in terms of PC2 but different in terms
of PC1 (Figure 2B), suggesting that part of the transcriptome

FIGURE 2 | Principal component analysis (PCA) of the transcriptome at
different stages of growth. (A) Correlation between the first (PC1) and second
(PC2) principal components of the transcriptome of samples taken in
biological triplicate at different time points during E. coli growth in LB. The
clustering of transcriptomes from the same time points confirms the
reproducibility of our measurements. Furthermore, adjacent time points
clustered close to each other forming a nearly complete cycle, the
transcriptome measured at t = 0 being close to that measured at t = 7 h.
(B) The temporal dependence of PC1 (circles) resembles that of E. coli growth
(Figure 3A) suggesting that genes used for PC1 may play a role in adaptation
to the exhaustion of nutrients, whereas the temporal dependence of PC2
(squares) resembles that of the culture pH (Supplementary Figure S4)
suggesting that these genes may be involved in the adaptation to pH
changes.

rapidly adapts to changes in the nutritional environment. The
population transcriptome then becomes increasingly different in
PC1 (circles in Figure 2B). This suggests that the regulation
of the genes used for PC1 analysis allows the culture to
progressively adapt to an environment unfavorable for growth,
as explained in the discussion below. On the other hand,
the PC2 variance reveals that the transcriptomes at t = 3.5
and t = 4 h differ the most from the transcriptome at
t = 0 h. The PC2 variance for the t = 0 h transcriptome is
instead similar to that of the t = 7 h transcriptome, a trend
similar to the temporal dependence of the average division
rate (Supplementary Figure S6) and a mirror image of the
trend in pH (Supplementary Figure S4). This suggests that
the regulation of the genes used in the PC2 analysis governs
the cell division and metabolism machineries, which in turn
drive the changes in the environmental pH. This is, to the
best of our knowledge, the first time PCA is carried out on
the transcriptome of an E. coli culture throughout its growth
cycle.

The decrease in sugar levels in the medium parallels the
regulation of a set of genes including ptsG, a glucose-specific
phosphotransferase (Luli and Strohl, 1990), and the dedicated
acetate uptake system actP (Luli and Strohl, 1990; Figure 1B).
Expression of ptsG increases during the lag phase (circles in
Figure 1B) when fresh medium is added to the culture and then
decreases as the sugar concentration per bacterium decreases
after t = 3 h (squares in Figure 1B). Bergholz et al. did not
investigate gene-expression profile during lag phase but reported
a similar downregulation of ptsG with a −3 log2 fold change
between 4.5 and 5 h growth. In comparison, actP expression
rapidly decreases between t = 0 h to t = 1 h as fresh medium is
added to the culture before increasing at t = 4 h as sugars are
metabolized and acetate becomes available in the environment
(triangles in Figure 1B) as previously reported (Bergholz et al.,
2007).

The growth curve in Figure 3A shows the three characteristic
phases of growth: lag phase between t = 0 h and t = 2 h,
exponential phase from t = 2 h to t = 5 h, and stationary
phase from t = 5 h onward. We considered gene regulation
during each of these phases based on the log2 fold change
in transcript levels at t = 2 h relative to t = 0 h, t = 5 h
relative to t = 2 h, and t = 7 h relative to t = 5 h,
respectively. Furthermore, for each growth phase we grouped the
top 10% of upregulated genes, from the 4313 genes analyzed.
Then for each KEGG pathway we determined the number of
genes that were in the top 10% group. We then used goseq
to calculate the probability of this number occurring when
compared to the total number of genes in the pathway (p-
value in Figure 3). For example, the KEGG pathway “Microbial
metabolism in diverse environments” has 201 associated genes.
Therefore, in the top 10% group of the upregulated genes from
all pathways one would expect to find 20 genes associated to this
KEGG pathway. However, in the top 10% group of upregulated
genes during exponential phase, we identified 54 genes from
the “Microbial metabolism in diverse environments” pathway.
Therefore, this pathway was overrepresented in the 10% group
of upregulated genes during exponential phase with a p-value
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FIGURE 3 | Regulation of KEGG pathways during different phases of the growth cycle. (A) Growth phases of an E. coli culture. (B–D) Heat map tables of the top
twenty overrepresented KEGG pathways during lag, exponential, and stationary phase, respectively. Each top table reports upregulated genes (in red) while each
bottom table reports downregulated pathways (in blue). Pathways were ranked by significance of their p-values. Both growth and gene-expression profile
measurements were performed in biological triplicate. In (A) data and error bars are the mean and SEM of measurements. Error bars are small compared to the
corresponding mean values and are hidden behind some of the data points.

of 1.12 × 10−12. We repeated this process for the top 10%
downregulated genes, before ranking all the KEGG pathways by
p-value, and reported the top 20 overrepresented pathways for
the up- and downregulated genes (in red and blue, respectively,
in Figure 3) during lag phase (Figure 3B), exponential phase
(Figure 3C), and stationary phase (Figure 3D). Supplementary
Table S2 reports the p-value and number of genes in each
of these pathways for lag, exponential, and stationary phase.
We could not directly compare our results with previously
reported datasets (Weber et al., 2005; Bergholz et al., 2007)
because these studies did not employ the KEGG database.
Therefore, we report below the expression of strongly regulated
genes for each growth phase and discuss our findings in the
context of data reported in previous studies investigating either
persisters or the influence of the medium composition on gene
regulation.

The average expression dynamics for the whole transcriptome
(dashed line in Figure 4) remained relatively constant throughout
the different phases of growth. However, unlike previous reports
(Chang et al., 2002), we found significant changes in the
expression of several pathways during the lag phase (t = 0 to

t = 2 h). Metabolism pathways were strongly downregulated
(Figure 3B bottom table and Supplementary Table S2) and in
particular the most overrepresented of these KEGG pathways
was “Microbial metabolism in diverse environments.” This
pathway was previously found to play a key role in Klebsiella
pneumoniae adaptation to cold or heat shocks (Tripathy et al.,
2014). Among the 10 most downregulated genes, we found
astA (−13.0 log2 fold change, squares in Figure 4A), astB,
and astC in the AST pathway controlling arginine degradation;
gadA and gadB controlling glutamate decarboxylase activity
(De Biase et al., 1999); the biofilm regulator bssR; and the
aldehyde dehydrogenase aldB. These genes were then all strongly
induced during the exponential phase (between 8 and 10 log2
fold).

Among the upregulated pathways (Figure 3B top table
and Supplementary Table S2), “Ribosome” was the most
overrepresented indicating induction of the translation
machinery. Furthermore, among the 10 most upregulated
genes, we found yghG (7.9 log2 fold change, circles in Figure 4A)
and yghF that were induced at t = 1 h and have previously been
linked to type II secretion (Kim et al., 2017); borD encoding a
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FIGURE 4 | Pattern of expression of the top most upregulated and
downregulated genes during each phase. Expression profiles of the most
upregulated (circles) and downregulated (squares) genes between
t = 0–2 h (A), t = 2–5 h (B), and t = 5–7 h (C) from dilution in LB medium of an
overnight E. coli culture. Gene expression is reported as the log2 fold change
with respect to the measurements on the overnight samples (t = 17 h). The
average expression dynamics for the whole transcriptome (dashed line)
remains relatively constant throughout the different phases of growth. The
expression dynamics for all the 4373 analyzed genes is reported in
Supplementary Table S1. Data and error bars are the mean and SEM of
measurements obtained on biological triplicates. Error bars are hidden behind
some of the data points.

prophage lipoprotein; proV, proW, and proX also induced at
t = 1 h, encoding parts of an ABC transporter for the uptake
of glycine, betaine, and proline; iraM induced at t = 1 h and
encoding an anti-adapter protein that inhibits RpoS proteolysis;
and stpA encoding a DNA-binding protein. yghG, yghF, borD,
iraM, and stpA were then strongly downregulated (between
−6 and −8 log2 fold) during exponential phase. Notably,
gene-expression profiling during the lag phase was not reported
in a previous transcriptomic study carried out on E. coli O157
(Bergholz et al., 2007).

During the exponential growth phase (t = 2 h to t = 5 h)
there was an extensive reprogramming of gene-expression.
The “Ribosome” pathway was the most overrepresented in the

top 10% downregulated genes, indicating repression of the
translation machinery at the transition between exponential and
stationary phase (t = 5 h) in response to the depletion of
nutrients in the culture conditions. This was reflected in the
measured division rate (Supplementary Figure S6). Among the
10 most downregulated genes, we found plaP (−9.4 log2 fold
change, squares in Figure 4B) encoding a putrescine importer
required for the induction of pili-driven motility, in accordance
with the reported low motility of exponentially growing E. coli
(Amsler et al., 1993); cspA encoding a cold shock protein; fhuF
encoding an iron reductase protein; lpxT encoding the lipid
A 1-diphosphate synthase; fecA encoding an outer membrane
receptor in the Fe3+ dicitrate transport system; and the above
discussed yghF. fhuF and plaP were then upregulated by a factor
of 6 and 2 log2 fold, respectively, during stationary phase.

Metabolism related pathways were upregulated with
“Microbial metabolism in diverse environments” now being
the most overrepresented KEGG pathway (Figure 3C top table).
Among the 10 most upregulated genes, we found gadA (11.1 log2
fold change, circles in Figure 4B), gadB, gadC, and gadE that
were induced at t = 4 h and whose upregulation at the transition
between exponential and stationary phase have previously been
reported (De Biase et al., 1999; Weber et al., 2005; Bergholz et al.,
2007); glcD and glcE induced at t = 3.5 h, encoding a subunit of
the glycolate oxidase; narU induced at t = 3 h, encoding a nitrate
and nitrite inner membrane transporter; aldB already discussed
above; and tnaC discussed below. glcD, glcE, and tnaC were then
downregulated during the stationary phase. The tnaC gene is
part of the tnaCAB operon that regulates tryptophan catabolism
and is comprised of a 24 residue upstream peptide TnaC, the
tryptophanase TnaA, and the low affinity tryptophan permease
TnaB (Konan and Yanofsky, 1997). TnaA is responsible for
the breakdown of tryptophan, which is utilized by E. coli as an
energy source to produce pyruvate, ammonia, and indole (Luli
and Strohl, 1990). Interestingly, as the sugars were depleted in
the culture, we observed an increase in expression of the tnaCAB
operon (Supplementary Table S1). This was in accordance
with a previous proteomic study carried out on E. coli K12
BW25113 growing on minimal medium (Soufi et al., 2015),
suggesting a correlation between tryptophan related gene and
protein expression. Furthermore, Gaimster and Summers (2015)
observed an increase in tnaA expression in a growing E. coli
culture, correlating this to an increase in the concentration
of extracellular indole (Gaimster et al., 2014). Finally, we also
observed an upregulation of transport genes including ompF and
lamB encoding two of the major E. coli outer membrane porins
(Supplementary Table S1), which was not previously observed
(Bergholz et al., 2007).

Metabolism related pathways were downregulated as the
population entered stationary phase (t = 5 h to t = 7 h) with
“Microbial metabolism in diverse environments” now being
the most overrepresented KEGG pathway (Figure 3D bottom
table). This coincided with the previously mentioned reduction
in sugar availability (Figure 1B). Almost all of the genes in
the phosphoenolpyruvate (PEP)-dependent phosphotransferase
system (PTS) pathway, a major bacterial mechanism for
the accumulation of carbohydrates (Shimizu, 2013), were
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downregulated as the bacteria moved from late-exponential to
stationary phase (Figure 3D). The downregulation of the PTS
pathway may cause reduced levels of glycolysis intermediates
such as fructose 1,6-bisphosphate (FDP), which in E. coli results
in the activation of cra and the subsequent transcriptional
repression of pfkA and pykF (Shimizu, 2013). Both pykF and pfkA
were downregulated as the culture transitioned from exponential
to stationary phase (Supplementary Figure S7) resulting in
the downregulation of the TCA cycle (Figure 3D). This is in
agreement with a previous transcriptomic study carried out on
E. coli O157, reporting a downregulation of the tricarboxylic
acid (TCA) cycle pathway after t = 4.5 h compared to t = 3 h
growth on minimal medium (Bergholz et al., 2007). Similarly,
we found agreement between Bergholz’s data and ours on
the downregulation of the sulfur metabolism pathway, sulfur
being present in LB and instrumental for the biosynthesis of
the amino acids cysteine and methionine (Sekowska et al.,
2000).

Among the 10 most downregulated genes were glcD (−5.1
log2 fold change, squares in Figure 4C), glcE, glcA, and glcB;
ansB encoding L-asparaginase 2; fumB encoding a fumarate
hydratase; and adiY encoding a transcriptional regulator. glcD,
glcE, glcA, and glcB were further downregulated during the lag
phase. Finally, genes encoding transporters including ompF and
lamB, were also downregulated as previously reported (Chang
et al., 2002).

The “Ribosome” pathway was the most overrepresented in
the top 10% upregulated genes. However, the mean expression
of all the 48 genes in this pathway was downregulated by
a factor of 2.8 log2 fold at t = 7 h compared to t = 2 h.
Among the 10 most upregulated genes, we identified fhuF (6.1
log2 fold change, circles in Figure 4C); astA, astC, and astE
in the AST pathway, that were induced at t = 6 h; prpB
induced at t = 4 h, encoding the 2-methylisocitrate lyase; bfd
encoding bacterioferritin-associated ferredoxin; rmf induced at
t = 4 h, encoding a ribosome modulation factor; ynfM encoding
an inner membrane transporter; sodA induced at t = 6 h,
encoding a superoxide dismutase, previously associated with the
emergence of metabolic heterogeneity during nutrient starvation
(Şimşek and Kim, 2018); and obgE encoding the essential GTPase
ObgE/CgtA. In the AST pathway, rmf, ynfM, and prpB were
then strongly downregulated (between −5 and −10 log2 fold)
during lag phase. Furthermore, a major regulator of the stress
response in bacteria, particularly their entry into stationary
phase, is the sigma factor rpoS controlling the expression of
approximately 10% of genes in E. coli (Weber et al., 2005).
Our data shows that rpoS expression increases rapidly as the
culture enters stationary phase (Supplementary Figure S8), in
accordance with previously reported data (2.4 and 2.8 log2 fold
change, respectively, between t = 4 h and 5 h from inoculation)
(Bergholz et al., 2007). Bergholz, et al. also reported that the
most highly upregulated gene during the transition to stationary
phase was acs, which encodes acetyl CoA synthetase, confirming
the data reported in a separate study on E. coli MG1655
(Baev et al., 2006). Similarly, between t = 4 h and t = 4.5 h
from inoculation, we observe a 7.4 log2 fold change in the
expression of acs and 4.7 log2 fold change of aceB expression,

in accordance with Bergholz, et al. who reported a 5.4 log2
fold change for aceB during the same temporal window. These
data suggest that at least some E. coli responses to changes
in growth medium are conserved across evolutionary distance
and are not specific to the growth medium employed. All
together, our data on the reprogramming of the culture gene-
expression during the transitions between the different growth
phases (Figures 3, 4 and Supplementary Tables S1, S2) will be
relevant for studying the responses of microbial communities to
environmental changes.

Growth Stage Dependent Persister
Formation
We then studied the growth cycle dependence of phenotypic
heterogeneity within the population by measuring persistence
to antibiotics as a phenotypic proxy. We used three antibiotics
with distinct modes of action: ampicillin, gentamicin, and
ofloxacin. Specifically, ampicillin is a β-lactam that binds to
the penicillin-binding proteins located inside the bacterial cell
wall. It inhibits the last stage of bacterial cell wall synthesis
leading to lysis mediated by autolytic enzymes. Gentamicin is
an aminoglycoside that works by irreversibly binding to the 30S
subunit of the bacterial ribosome, thereby interrupting protein
synthesis. Ofloxacin is a second-generation fluoroquinolone that
acts on DNA gyrase and topoisomerase IV, and thus altering the
control of DNA supercoiling and inhibiting normal cell division
(Aldred et al., 2014).

To investigate the growth-dependent heterogeneity
of the response to each antibiotic, we performed two
different treatments (see Supplementary Figure S1): three
culture aliquots were injected with antibiotic and fresh LB
(Supplementary Figure S1F), while three other aliquots
were injected with antibiotic only (Supplementary Figure
S1G). In both cases, the final antibiotic concentration
was 25× the antibiotic MIC. For each time point and
each antibiotic treatment, we then calculated the ratio
between the measured number of persisters in the culture
relative to the total number of bacteria in the culture
(Figure 3A), defining this as the persister fraction. We finally
normalized each persister fraction dataset to their maximum
values.

When gentamicin was added to the culture aliquots with fresh
LB, the fraction of persisters showed a 3.4 log10 fold increase
between t = 3 h and t = 4 h, before remaining relatively constant
for the remainder of the growth cycle (Figure 5A). When only
gentamicin was added to the culture aliquots the fraction of
persisters showed a similar pattern, except for a shift of 1 h, with
a 3.6 log10 fold increase between t = 2 h and t = 3 h (Figure 5B).

When ofloxacin was added to the culture aliquots with fresh
LB, there was a small increase in the persister fraction during the
lag phase (Figure 5C). However, the persister fraction showed
a 2.6 log10 fold increase during the exponential phase (between
t = 2 h and t = 4 h) when only ofloxacin was added to the culture
aliquots (Figure 5D).

When ampicillin was added to the culture aliquots with fresh
LB, we measured a 2 log10 fold increase in the persister fraction
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FIGURE 5 | Growth phase dependence of the fraction of persisters to gentamicin, ofloxacin, or ampicillin. Temporal dependence of the normalized fraction of
persisters to treatment either with gentamicin (A), ofloxacin (C), or ampicillin (E), with the addition of fresh LB, or with antibiotics only [(B,D,F), respectively]. At t = 0
an overnight E. coli culture was diluted 1:1000 in LB medium and the culture growth started. Each data set is normalized to its maximum persister fraction. Data and
error bars are the mean and SEM of measurements obtained at least on biological and technical triplicates.

during the stationary phase (Figure 5E). When only ampicillin
was added to the culture aliquots, we measured a 1.5 log10 fold
increase in the fraction of persister cells during the lag phase
(t = 1 h, Figure 5F).

Growth-dependent bacterial susceptibility has recently been
reported (Greulich et al., 2015). Here, we demonstrate that as the
composition of the medium in the culture environment changes,
the microbial population becomes increasingly heterogeneous in
response to the treatment to antibiotics with different modes of
action.

Furthermore, antibiotic susceptibility and persister assays are
often carried out by supplementing antibiotics with fresh LB
medium (Wu et al., 2015; Orman and Brynildsen, 2016). We
demonstrate that in the case of gentamicin, the addition of
fresh LB medium does not substantially affect the dependence of
persister fraction on growth phase. Indeed, it has recently been
demonstrated that nutrient-rich environments do not increase
susceptibility to antibiotics that irreversibly bind to the 30S
subunit of the bacterial ribosome (Greulich et al., 2015). On
the contrary, we observed that the formation of persisters to
β-lactams and quinolones is strongly affected by the medium
composition, suggesting that this should be carefully considered
when screening for antibiotics against persister cells.

DISCUSSION

Within an isogenic population, there is inherent phenotypic
heterogeneity which allows an adaptive response to an ever-
changing extracellular environment (Balaban et al., 2004; Ryall
et al., 2012; Nikolic et al., 2013; Kotte et al., 2014). For example,
within a growing isogenic population of bacteria there are
multiple growth phenotypes present, from exponentially growing
to slow growing, or dormant bacteria (Ryall et al., 2012; Kotte
et al., 2014). Persister cells are an example of a phenotype which
differs from the majority of cells in a clonal population in terms
of growth rate (Lewis, 2010; Maisonneuve et al., 2013), motility,
gene expression, and cell size (Ryall et al., 2012). Furthermore,
persister cells can be generated in response to a number of
environmental conditions (Keren et al., 2004b; Vega et al., 2012;
Bernier et al., 2013; Helaine et al., 2014), including nutrient
limitation (Fung et al., 2010; Maisonneuve and Gerdes, 2014)
and nutrient transitions (Amato et al., 2013) that also generate
a variety of other bacterial responses (Lidstrom and Konopka,
2010).

Therefore, we utilized the persister phenotype as a proxy
for changes in population-wide heterogeneity throughout the
E. coli growth cycle where the environmental conditions are
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constantly changing. We observed homogeneity in response
to all antibiotics during lag phase with very few persisters to
any of the tested antibiotics. However, the different persister
fractions observed in response to the different antibiotics further
emphasize the phenotypic heterogeneity within the population
during the exponential and stationary phases. In fact, population
based heterogeneity allows rapid response to alterations in
the nutritional environment; it is only when the environment
becomes favorable to a given subpopulation that they are able
to dominate the whole population-level response (Lidstrom
and Konopka, 2010). Indeed, within the growth cycle we
observed changes in both nutrient availability (Figure 1) and pH
(Supplementary Figure S4).

These changes in the culture medium also influenced the
population transcriptome during the same temporal windows
where we measured notable increases in the fraction of persisters.
We observed upregulation of carbon fixation pathways and
tryptophan metabolism (Figure 3C), potentially as a result of an
increase in the concentration of extracellular indole (Gaimster
et al., 2014). Indole has also been linked to persister cell formation
(Vega et al., 2012, 2013) and the induced expression of a variety
of drug exporters (Meng and Bennett, 1992; Balaban et al.,
2004). Moreover, ompF and lamB, encoding two of the major
outer membrane porins that have been associated with drug
uptake (Ziervogel and Roux, 2013; Lin et al., 2014; Cama et al.,
2015) were also upregulated at the whole population level during
exponential phase (Supplementary Table S1).

In comparison, during stationary phase we observed a clear
downregulation of metabolism related pathways (Figure 3D).
The downregulation of the TCA cycle as the population moves
from exponential to stationary phase (Figure 3D) results in the
excretion of acetate into the extracellular environment and its
subsequent utilization (Figure 1; Luli and Strohl, 1990; Shimizu,
2013). Kotte et al. (2010) modeled population adaptation to
different nutrients in silico, showing that as glucose levels reduce,
cells are predicted to utilize their natively produced acetate. This
ability to adapt to nutrient availability appears to be a result
of metabolic flux at the single-cell level (Kotte et al., 2010;
Kochanowski et al., 2013) and results in the diversification of
growing and non-growing phenotypes, such as persisters (Kotte
et al., 2014). Indeed, we measured an increase in persister
fraction in response to all three antibiotics as the available sugars
become limited (Figure 1). However, each type of antibiotic
reveals different levels of heterogeneity suggesting that different
biological pathways underlie persistence to different antibiotics.

We also found that the outcome of antibiotic treatment is
strongly influenced by the composition of the medium containing
the antibiotic. In fact, the addition of antibiotics and fresh LB
alters the native culture environment and causes a reduction
in the number of persisters (Figure 5), reducing phenotypic
heterogeneity within the E. coli community.

One of the current limitations within our knowledge of
persister bacteria is that their transcriptome has been examined
only after treatment with antibiotics (Keren et al., 2004b) owing
to the lack of biomarkers to isolate persisters from the majority of
susceptible cells before antibiotic challenge. However, antibiotic
treatment is known to alter the bacterial transcriptome (Lewis,

2010). Our current study identifies molecular pathways that
are strongly regulated at the whole population level when
the environment changes and, coincidentally, the fraction of
persisters within the population increases. Some of the identified
pathways such as tryptophan metabolism and TCA cycle (Vega
et al., 2012; Kotte et al., 2014), have indeed previously been
associated with persisters. However, it is noteworthy that our
approach measures the mean transcriptomic response of the
whole population. Therefore, our measurements do not allow
us to determine whether the pathways that we have identified
are also strongly regulated in the minority of persister cells.
Indeed, the differential response of persisters could be masked
by that of the majority of susceptible cells. Considering that
cell-to-cell variation increases with increasing mean gene-
expression (Silander et al., 2012), these comprehensive data
sets provide well defined culturing time points, medium
compositions, and putative pathways that could be investigated
with single-cell approaches (Henry and Brynildsen, 2016;
Bamford et al., 2017) to determine molecular pathways that are
differentially regulated in persisters compared to the majority of
susceptible cells.

Our approach could easily be extended to investigate the
dynamics of phenotypic heterogeneity in different microbial
communities such as bacterial biofilms (Domka et al., 2007),
natural yeast and fungal populations (LaFleur et al., 2010;
Holland et al., 2014), or cancer cells (Hangauer et al., 2017)
responding to a variety of environmental cues.
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