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Abstract 13 

1. Climate is of fundamental importance to the ecology and evolution of all organisms. 14 

However, studies of climate–organism interactions usually rely on climate variables 15 

interpolated from widely-spaced measurements or modelled at coarse resolution, 16 

whereas the conditions experienced by many organisms vary over scales from 17 

millimetres to metres. 18 

2. To help bridge this mismatch in scale, we present models of the mechanistic processes 19 

that govern fine-scale variation in near-ground air temperature. The models are flexible 20 

(enabling application to a wide variety of locations and contexts), can be run using 21 

freely available data and are provided as an R package.  22 

3. We apply a mesoclimate to the Lizard Peninsula in Cornwall to provide hourly 23 

estimates of air temperature at resolution of 100m for the period Jan-Dec 2010. A 24 

microclimate model is then applied to a one km2 region of the Lizard Peninsula, 25 

Caerthillean Valley (49.969 ºN, 5.215 ºW), to provide hourly estimates of near-ground 26 

air temperature at resolution of one m2 during May 2010. 27 

4. Our models reveal substantial spatial variation in near-ground temperatures, driven 28 

principally by variation in topography and, at the microscale, by vegetation structure. 29 

At the meso-scale, hours of exposure to air temperatures at one m height in excess of 30 

25 ºC ranged from 23 to 158 hours, despite this temperature never being recorded by 31 

the weather station within the study area during the study period. At the micro-scale, 32 

steep south-facing slopes with minimal vegetation cover experienced temperatures in 33 

excess of 40 ºC. 34 

5. The microclima package is flexible and efficient and provides an accurate means of 35 

modelling fine-scale variation in temperature. We also provide functions that facilitate 36 

users to obtain and process a variety of freely available datasets needed to drive the 37 

model. 38 
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Introduction 41 

Climate is of fundamental importance to the physiology and ecology of organisms, and climatic 42 

variability has a critical influence on the behaviour, evolution and conservation of many, if not 43 

most, species (Clarke 2017). Predictive studies of climate–organism interactions usually rely 44 

on coarse-resolution climate variables derived from widely spaced point data or modelled at a 45 

resolution over tens to hundreds of kilometres. In contrast, the conditions experienced by 46 

many organisms vary over scales from millimetres to metres (Potter, Woods & Pincebourde 47 

2013). This spatial mismatch is bridged implicitly in many models by assuming that grid-cell 48 

average climatic variables are statistically meaningful predictors of ecological responses 49 

(Bennie et al 2014). Statistical associations between organism and coarse-gridded climate 50 

data are therefore widely used, and have shown themselves be powerful predictive tools 51 

(Guisan & Thuiller 2005). However, in order to investigate mechanistic links between climate 52 

and physiology, the effects of short-term variability and the role of microclimates in buffering 53 

ecological change, fine-resolution data is required.  Thus much ecological and evolutionary 54 

research is still hampered by an inability to model climate at fine-resolution (Potter, Woods & 55 

Pincebourde 2013; Suggitt et al. 2017). 56 

 57 

Despite the tendency for ecologists to use coarse-resolution climate data, studies of 58 

microclimate have a long history and many of the processes were well understood more than 59 

30 years ago (Geiger 1927; Hay 1979; Campbell 1986). However, many of these early studies 60 

drew on field measurements and studied aspects of microclimate at single locations. 61 

Ecologists often require data over larger spatial extents, and gridded climate data are 62 

particular useful (Hijmans et al. 2005).  Recent advances in remote-sensing and the growing 63 

availability of very fine-resolution remotely-derived datasets create a timely opportunity to 64 
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present methods and models capable of generating gridded climate datasets at fine-65 

resolution. 66 

 67 

To date, several approaches to downscaling from coarse-gridded to fine-scale microclimate 68 

data have been used by ecologists.  Dynamical downscaling, through the use of regional 69 

climate models that apply the full physics of global climate models at a fine-scale (Murphy 70 

2000), have the advantage that they can generate internally consistent data for variables and 71 

represent synoptic systems. However, due to high computing requirements they are rarely a 72 

practical solution for producing data at resolutions below five km.  Physically-based boundary-73 

layer models of atmospheric processes at finer scales (for example down to one m resolution) 74 

are usually limited in application to a small extent and highly simplified landscapes.  Land 75 

surface models (for example JULES, the UK land surface simulator) apply physical equations 76 

to solve the energy and water balance at a point, or across a grid, and in doing so predict key 77 

ecological variables such as near-surface temperature and humidity.  However, while land 78 

surface models incorporate vertical processes such as radiative heating of the surface and 79 

canopy shading, they do not incorporate meso-scale processes such as variation in wind 80 

speed, elevational lapse rates or lake/ocean effects.  While land surface models have been 81 

adapted for use in an ecological context (Bennie et al. 2010), most physically-based models 82 

are primarily designed for meteorological or hydrological applications.  A notable exception is 83 

the NicheMapR package in R (Kearney & Porter 2017), which is explicitly designed to 84 

mechanistically model the energy and mass budgets of organisms and their microclimate 85 

(including soil and snow), and has been widely tested (see e.g. Kearney et al. 2014).  Finally, 86 

GIS-based statistical downscaling techniques apply empirical corrections (usually based on 87 

slope, aspect and elevation) to map climatic variables, and have been used in several studies 88 

to produce fine-resolution maps for species distribution modelling (e.g. Milling et al. 2018). 89 

 90 

The models and R package described here are not intended to replace physically-based 91 

regional climate models, land surface schemes or mechanistic approaches to the energy 92 
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budget of organisms and their environment such as NicheMapR.  Of note, however, many of 93 

required to model near-ground temperature are similar to those required for modelling the heat 94 

budget organisms, and the functions in microclima may be of use in so doing. However, our 95 

primary intention is to bridge the gap between the landscape and local-scale processes that 96 

cause spatial variation in temperature and can be modelled using fine-resolution Digital 97 

Terrain Models (DTMs) and point-based models to determine the energy balance (Table 1). 98 

We develop a flexible hybrid physically- and empirically- based approach in which the spatial 99 

patterns of physical factors directly influencing the near-ground temperatures at a point are 100 

calculated, and the relative influence of these factors within a given landscape or region can 101 

be fitted to data by empirically-derived parameters. This hybrid approach to mapping climatic 102 

variables at a fine scale is suitable for many ecological applications, avoiding the complexity 103 

and computational costs of attempting to fully resolve the physics of atmospheric processes 104 

at high resolution, but retaining much of the generality of a physically-based model. The 105 

models are designed to be flexible, enabling application in a wide variety of circumstances, 106 

though their modular design is such that easy development of improvements for application in 107 

specific circumstances is also possible. The models can also be easily applied using freely 108 

available data. While computing constraints remain a challenge, the models could, in theory, 109 

be applied over large spatial extents. The R package can be installed from 110 

https://github.com/ilyamaclean/microclima. The help documentation associated with the R 111 

package is included here (Appendix S3 and 4). 112 

 113 

Materials and methods 114 

Two nested models are presented: a mesoclimate model for estimating local variation in 115 

ambient air temperature and a microclimate model for estimating finer-scale variation in near-116 

ground temperatures. The microclimate model derives very fine-resolution (<5m) near-surface 117 

temperatures from weather station data or from the outputs of the mesoclimate model. The 118 

model is applied over one km2 of coastal Cornwall (Caerthillean Valley, 49.971 ºN, 5.214 ºW; 119 

Fig 1a) to provide hourly temperature estimates for May 2010. The mesoclimate model derives 120 

https://github.com/ilyamaclean
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moderate fine-resolution (~100m) air temperatures at one m above the ground from coarse-121 

gridded climate data. The model is applied to the Lizard Peninsula in Cornwall (50.0 ºN, 5.2 122 

ºW; Fig 1b) to provide hourly temperature estimates for the whole of 2010. 123 

 124 

Microclimate model 125 

Temperature 126 

From Bennie et al (2008), the difference between near-surface temperature (T0) and reference 127 

air temperature (T), i.e. that derived from a weather station or the mesoclimate model, is given 128 

by: 129 

 130 

 GLR
c

r
TT net

p

HR 


0                                                                                                    (1) 131 

 132 

where Rnet is the net radiation flux, L is the latent heat flux, G is the heat flux into the soil, ρ is 133 

the density of air, cp is the specific heat of air at constant pressure and rHR is a resistance for 134 

the loss of sensible heat. For efficient modelling of hourly surface temperature it is assumed 135 

that the most important energy fluxes determining near-surface temperature are those due to 136 

radiation and sensible heat flux that occur at the surface–atmosphere boundary. Heat fluxes 137 

into the soil and latent heat exchange are considered to be small and proportional to net 138 

radiation, and the heat capacity of the vegetation is considered to be relatively small so that, 139 

compared to the hourly time scale of the model, surface temperatures rapidly reach 140 

equilibrium. The difference between the near-ground temperature and the ambient 141 

temperature is thus a linear function of Rnet, the gradient of which is a measure of the thermal 142 

coupling of the surface to the atmosphere. If this relationship is applied to vegetation, 143 

assuming the canopy to act like a surface, while both ρ and cp are constant, rHR varies as a 144 

function of both the structure of the vegetation and wind speed and can be fitted to field 145 

calibration data using function microfit (see also equation 7). 146 

 147 
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Radiation 148 

The net radiation flux is determined by the balance of incoming shortwave radiation and 149 

emitted longwave radiation, with the former portioned between direct (Rdir) and diffuse (Rdif) 150 

components. Shortwave radiation is modified by topography and vegetation cover and 151 

downscaled using function shortwaveveg. Topography determines whether a given location 152 

is shaded and also the angle at which the sunlight strikes the surface. Vegetation attenuates 153 

radiation as it passes though the canopy.  154 

 155 

From Bennie et al. (2008), the direct radiation flux on an inclined surface is given by: 156 

 157 

𝑅𝑑𝑖𝑟 = 𝑅𝑏𝑒𝑎𝑚(cos 𝑍 cos 𝑆 + sin 𝑍 sin 𝑆 cos(Ω𝑠 − Ω) )              if A ≥ H 158 

0dirR                      if A < H 159 

 160 

where Rbeam is the direct beam radiation flux on a surface perpendicular to the beam, Z is the 161 

solar zenith, S is the angle of the slope of the surface, ΩS is the solar azimuth, Ω is the slope 162 

aspect, A is the solar altitude and H is the local horizon angle in the direction of the sun. Z, A 163 

and ΩS can be readily determined for a given time and geographic position and the slope and 164 

aspect of a surface and local horizon angles from digital elevation data.   165 

 166 

From Hay & McKay (1985), the diffuse radiation flux can be partitioned into that which is 167 

isotropically distributed (R*
dif), that which exhibits anistropic properties (R'

dif) and that which is 168 

reflected back from surrounding surfaces (RS
dif): 169 

 170 

𝑅𝑑𝑖𝑓
∗ = 0.5𝑠𝑅𝑑𝑖𝑓(1 + cos 𝑆)(1 − 𝑘) 171 

𝑅𝑑𝑖𝑓
′ = 𝑅𝑑𝑖𝑓𝑘(cos 𝑍 cos 𝑆 + sin 𝑍 sin 𝑆 cos(Ω𝑠 − Ω) )  if A ≥ H 172 

0' difR                                                                    if A < H 173 

  *cos15.0 SSRR Sdif

S

dif    174 
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 175 

where αS is the mean albedo of the surrounding surface and S* is the mean slope of the 176 

adjacent surfaces. The relative partitioning of radiation depends on an "anisotropy index" (k) 177 

given by: 178 

0R

R
k beam  179 

where R0 is the extraterrestrial radiation flux (~4.87 MJ m-2 h-1) and s is a correction for the 180 

proportion of sky, calculated using function skyviewtopo, as follows: 181 

 182 

𝑠 = 0.5 cos(2𝐻̅) + 0.5          (2) 183 

 184 

where H is the mean horizon angle. 185 

 186 

The transmission of radiation by vegetation is described using an equation similar to Beer's 187 

Law (Campbell 1986): 188 

 189 

𝑅𝑣𝑒𝑔 = (1 − 𝑎𝑔)[(𝑅𝑑𝑖𝑟 + 𝑅𝑑𝑖𝑓
′ ) exp(−𝐾′𝐿𝐴𝐼) + (𝑅𝑑𝑖𝑓

∗ + 𝑅𝑑𝑖𝑓
𝑆 ) exp(−𝐾∗𝐿𝐴𝐼)𝑠𝑣𝑒𝑔] 190 

                                                                             191 

where Rveg is the flux density of radiation absorbed by the ground below leaf area index (LAI), 192 

αg is the albedo of the ground below the canopy, K' and K* are the isotropic and anisotropic 193 

coefficients of the canopy and sveg is an adjustment applied if the sky view above the canopy 194 

is partially obscured (see later). K' is a function of solar inclination and leaf distribution 195 

character of the canopy. From Campbell (1986), a broad range of leaf types can be 196 

represented by an ellipsoidal distribution, and the extinction coefficient can thus be expressed 197 

as follows: 198 

 199 
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  733.0

22

182.1774.1

tan/1
'







xx

Ax
K                                                                                             (3) 200 

 208 

Here x is determined by canopy architecture and is the ratio of vertical to horizontal projections 209 

of a representative volume of foliage, and in our model is estimated allometrically from 210 

vegetation height using function leaf_geometry (Appendix S2). The extinction coefficient 211 

for isotropic component of radiation (K*) can be obtained by integrating over the portion of the 212 

hemisphere in view. For computational efficiency, the integral can be closely approximated by 213 

equation 3, with A (in degrees) substituted by a parameter A* which, for a given values of x, 214 

can be derived from LAI as follows: 215 

 216 

2

3/1

1

* pLpA AI                                                                                                      217 

 218 

where p1 and p2  are coefficients unique to each x (Table S3). If the sky view above the canopy 219 

is partially obscured, then the integral is between the limits determined by H  and the sky view 220 

correction factor (sveg) is applied. In function skyviewveg, this integral is approximated by 221 

equation 2, with H  replaced by H*: 222 

 223 

c

cH
H

90
90*  ,  where:  𝑐 = 𝑝3𝐿𝐴𝐼

𝑝4 + 0.564                                                                         (4) 224 

 225 

Here, p3 and p4 are parameters unique to each value of x (Table S4). 226 

 227 

Following Konzelmann et al. (1994), and assuming that differences in Rlw caused by difference 228 

between T and T0 are small, the net flux of longwave radiation under vegetated canopies (Rlw), 229 

calculated using function longwaveveg, can be approximated as follows: 230 

 231 

𝑅𝑙𝑤 = 𝑠𝑣𝑒𝑔(𝜎𝑇4 − 𝑅𝑙𝑤𝑔 + 𝑅𝑙𝑤𝑒 + 𝑅𝑙𝑤𝑐) 232 
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 233 

where σ is the Stefan-Boltzmann constant (2.043  x 10-10 MJ m-2 hour-1), Rlwg is radiation 234 

emitted back from the atmospheric that passes through gaps the canopy, Rlwe is radiation 235 

scattered downwards from leaves, Rlwc is radiation emitted by the canopy and T is temperature 236 

in Kelvin.  237 

 238 

The flux of radiation that passes through gaps in the canopy is given by: 239 

 240 

𝑅𝑙𝑤𝑔 = exp(−𝐾∗𝐿𝐴𝐼)𝑅𝑙𝑠𝑘𝑦 241 

 242 

Rlsky is radiation scattered back from the atmosphere which, assuming that differences in Rlw 243 

caused by differences between T and T0 are small, can be calculated as follows: 244 

 245 

𝑅𝑙𝑠𝑘𝑦 = 𝜀𝜎𝑇4 246 

 247 

Here ε is the emissivity of the atmosphere, which can be determined as follows (Klok & 248 

Oerlemans 2002): 249 

 250 

𝜀 = (0.23 + 0.433 (
𝑒𝑎

𝑇
)

1/8

) (1 − 𝑛2) + 0.976𝑛2 251 

 252 

where n is fractional cloud cover and ea  is vapour pressure in kPa.  253 

 254 

From Zhao & Qualls (2006) the flux of radiation scattered downward through leaf reflection is 255 

given by: 256 

 257 

𝑅𝑙𝑤𝑙 = (1 − 𝛼𝑐)(1 − 𝑟)[1 − exp(−𝐾∗𝐿𝐴𝐼)]𝑅𝑙𝑠𝑘𝑦 258 

 259 
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where αC is the albedo of the canopy and r is the fraction of downward radiation scattered 260 

upwards, estimated as: 261 

 262 

)1(log
3

2

1
log 










x

r

r
ee  263 

 264 

Rlwc is given by: 265 

 266 

𝑅𝑙𝑤𝑐 = 0.51(1 − 𝛼𝑐)[1 − exp(−𝐾∗𝐿𝐴𝐼)]𝜎𝑇4 267 

 268 

Wind speed 269 

Wind speeds are affected by local terrain, and to account for this, function windheight 270 

implements the logarithmic wind-height profile assumed by Allen et al. (1998), and function 271 

windcoef applies the shelter coefficient described by Ryan (1977), as follows: 272 

 273 

 










65.1

17.0arctan
1635.0 101

wH
uu                                                                                      (5)                                                                                      274 

 275 

where u1 is local wind speed at one m above the ground, u10 is the wind speed at 10 m height  276 

and Hw is the tangent of the horizon angle upwind at one m above the ground. 277 

 278 

Mesoclimate model 279 

The mesoclimate model provides estimates of air temperature and ignores the effects of 280 

radiation transmissions though canopies and variation in ground surface albedo, as these are 281 

accounted for in the microclimate model. Differences between local temperatures (T1) and 282 

reference air temperature (T) are derived as a function of coastal, cold air drainage and 283 

elevation effects and also the effects of meso-scale topography on the radiation flux, as in 284 

equation 1: 285 
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 286 

𝑇1 − 𝑇 − Δ𝑇𝐸 − Δ𝑇𝐶 − Δ𝑇𝐾 =
𝑟𝐻𝑅

𝜌𝑐𝑝

(𝑅𝑛𝑒𝑡 − 𝐿 − 𝐺) 287 

 288 

here ΔTE is the difference in temperature due to elevation, ΔTC is the difference in temperature 289 

due to coastal effects and ΔTK is the difference in temperature due to cold-air drainage.  290 

 291 

Elevation 292 

Differences in temperature due to elevation are calculated as follows: 293 

 294 

∆𝑇𝐸 = ∆𝑧𝛤𝑤 295 

 296 

where Δz is the difference in elevation (m) between the locations of T and T1 and Γm is the 297 

lapse rate, calculated using function lapserate, as follows (Hess 1959): 298 

 299 

𝛤𝑚 = 𝑔 (1 +
𝐿𝑣𝑟𝑣

𝑄𝑇
) (𝑐𝑝𝑑 +

0.622𝐿𝑣
2𝑟𝑣

𝑄𝑇2 )

−1

 300 

 301 

where g is gravitational acceleration (9.8076 ms-1), Lv is the latent heat of vaporisation 302 

(2,501,000 Jkg-1), Q is the gas constant for dry air (287 Jkg-1K-1), cpd is the specific heat of dry 303 

air at constant pressure (1003.5 Jkg-1K-1), T is the reference temperature and rv is the mixing 304 

ratio of water vapour given by: 305 

 306 

a

a
v

eP

e
r




622.0
 307 

 308 

where P is atmospheric pressure (Pa). 309 

 310 
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Coastal effects 311 

Coastal effects are derived using function coastalTps, which uses thin-plate spline 312 

interpolation with three covariates to derive finer resolution temperature estimates for each 313 

time step from coarse-gridded reference temperature data. The three covariates are: 314 

differences between sea and reference land temperature, coastal exposure in an upwind 315 

direction and coastal exposure irrespective of direction. Upwind exposure is calculated as the 316 

inverse-distance2 weighted proportion of sea upwind of each location and general exposure 317 

by numerically integrating this ratio at fixed intervals over the full 360º.  318 

 319 

Cold-air drainage 320 

ΔTK is modelled as follows: 321 

 322 

FzIT mmCK log                                                                                                           (6) 323 

 324 

where IC is a binary variable, conditional on time of day, wind speed and emissivity, as cold air 325 

drainage typically occurs at night or shortly after, and in calm, still conditions (Barr & Orgill 326 

1989). The function cadconditions, used for calculating IC allows the user to specify these 327 

conditions. Δzm is the elevation difference in metres of a given location and the highest point 328 

of a drainage basin, and F is accumulated flow expressed as a proportion of the maximum in 329 

each basin, and calculated using function flowacc. Quantification of F and Δzm requires 330 

drainage basins to be delineated, using function basindelin.  331 

 332 

Data 333 

To calibrate and run the models, the following high spatial, low temporal resolution datasets 334 

are needed (summarised in Appendix S5). (1) Digital elevation data. Such data are widely 335 

available at very fine-resolution for specific regions of the world, or globally at 30m from the 336 

Shuttle Radar Topographic Mission (Farr et al. 2007). (2) Estimates of leaf area and albedo. 337 
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Both measures can be readily derived from multi-spectral aerial or satellite imagery. (3) 338 

Estimates of the leaf distribution character of vegetation. This can be approximated using 339 

airborne LiDAR data (Appendix S2) or potentially by performing image classification to identify 340 

specific vegetation types. In addition, the following high temporal, low spatial resolution 341 

datasets are needed. (1) Surface pressure, wind speed and direction, humidity and 342 

temperature. These variables are routinely recorded by weather stations and also available 343 

as global datasets (e.g. Kalnay et al.1996). (2) Direct and diffuse radiation and cloud cover. 344 

These datasets are freely available for most of the globe (Posselt et al. 2012). Additionally 345 

sea-surface temperature data are required, though coarse spatial and temporal data are 346 

adequate (see e.g. Rayner et al. 1996 for a global dataset). We used the following datasets. 347 

 348 

Digital Elevation Data. A Digital Surface Model (DSM), representing the elevation of the top of 349 

vegetated surfaces, and a DTM, representing the elevation of the underlying ground were 350 

obtained from the Tellus SW Project (CEH, Wallingford). Both are provided at a grid resolution 351 

of one m. We used the DTM layer for calculating slope, aspect and topographic shading and 352 

the DSM layer for calculating wind shelter, and both to calculate vegetation height. For the 353 

mesoclimate model, data were coarsened by computing mean values within each 100 m grid 354 

cell.  355 

 356 

Vegetation characteristics. Following e.g. Carlson & Ripley (1997), we estimated leaf-area 357 

index from the normalized difference vegetation index (NDVI), using visual and colour-infrared 358 

aerial imagery obtained from Bluesky International Ltd (Coalville, UK; imagery captured 11th 359 

Sep 2009; Fig. S4a). We estimated the leaf distribution character of vegetation from vegetation 360 

height (Appendix S2 and function lai).  361 

 362 

Albedo. We derived albedo from the same visual and colour-infrared aerial imagery, adjusting 363 

values for brightness and contrast using MODIS data obtained from USGS Land Processes 364 

Distributed Archive Centre (Appendix S2 and functions albedo and albedo_adjust).  365 
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 366 

Cloud cover and shortwave radiation. We used 0.05º gridded satellite-derived estimates of 367 

cloud cover, and direct and diffuse radiation (Posselt et al. 2012). Radiation data are available 368 

hourly, though missing values and those within an hour either side of sunrise and sunset, for 369 

which satellite estimates are unreliable (Posselt et al. 2012), were imputed (Appendix S2). 370 

Cloud cover is available at ~15 minute intervals and each grid cell is assigned a value of 'full', 371 

'partial' or 'unobscured'. Fractional cloud cover was calculated by calculating the mean in each 372 

hour, making the assumption that partial cloud cover equates to fractional value of 0.5.  373 

 374 

Surface pressure and wind data. We obtained six-hourly surface pressure and wind data from 375 

the National Center for Environmental Prediction (Kalnay et al. 1996). These data are available 376 

at a grid cell resolution of 2.5º, and the values for the grid cell corresponding to our study area 377 

were extracted. Values were then interpolated to hourly data using a cubic-spline.  378 

 379 

Humidity and temperature. Daily specific humidity data, mean daily near-surface air 380 

temperature, and daily temperature ranges, available at a one km grid resolution, were 381 

obtained from the Centre for Ecology and Hydrology Climate (Robinson et al. 2015). Hourly 382 

specific humidity data were derived by interpolation using a cubic-spline. To derive hourly 383 

temperature data, we implemented a more complex interpolation algorithm, whereby diurnal 384 

patterns and variation in cloud cover and radiation are accounted for (Appendix S2 and 385 

function hourlytemp). 386 

 387 

Sea-surface temperature. We obtained one degree gridded datasets of monthly sea ice and 388 

sea surface temperatures, available as a global dataset from the Met Office Hadley Centre 389 

(Rayner et al. 1996), and extracted data for the grid cell corresponding to our study area. We 390 

obtained hourly values using cubic-spline interpolation, assuming that the mean value for each 391 

month corresponded to the mid-point of that month. Due to the high volume and specific heat 392 
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capacity of water, sea surface temperatures undergo only minor high frequency fluctuations, 393 

so simple interpolation was deemed reasonable. 394 

 395 

Model fitting 396 

Prior to fitting the mesoclimate model we accounted for cold-air drainage, elevation and 397 

coastal effects. To calculate elevation effects, we first removed the fixed lapse-rate applied to 398 

the temperature data and then applied our variable one.  399 

 400 

To fit our mesoclimate model, 56 iButton thermachrons were deployed across the Lizard 401 

Peninsula between 1st March and 31st Dec 2010, and set to record temperatures at hourly 402 

intervals. Loggers were placed to capture the full spatial gradients in the main determinants of 403 

climate in order to minimise extrapolation errors, and provided 137,218 measurements of 404 

temperature. Loggers were attached to a wooden pole one m above the ground. To fit the 405 

microclimate model, 55 iButton thermachrons were deployed in Caerthillean Valley on the 406 

Lizard Peninsula (49.9687 ºS, 5.2142 ºW), from 10th-31st May 2010. Loggers were set to record 407 

temperatures at 10 minute intervals, and the mean temperature in each hour used to calibrate 408 

the model. 27,530 hourly temperature measurements were obtained. The valley is a coastal 409 

grassland with complex topography, enabling temperatures to be recorded across a wide 410 

range of slopes and aspects and in vegetation of varying height. Loggers were attached to a 411 

short wooden stake 5 cm above the ground. In both instances, loggers were orientated north, 412 

and shielded from direct sunlight using a white plastic screen. Data from half the loggers was 413 

used for calibration and from the rest for testing. 414 

 415 

Temperature anomalies (T0 – T) were modelled using standard linear regression as a function 416 

of the following sets of terms: 417 

 418 

𝑇0 − 𝑇 = 𝛽1 + 𝛽1𝑅𝑛𝑒𝑡 + 𝛽1𝑢𝑓 + 𝛽1𝑅𝑛𝑒𝑡𝑢𝑓 + 𝛽1Δ𝑇𝐾 + 𝜀𝑖                                                            (7) 419 

 420 
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Here uf is a factor that allows the relationship with net radiation to vary with wind speed, set at 421 

0 when wind speeds at one m are below 3.66 ms-1, and one when above (β4 is assumed to be 422 

negative), with this threshold established by iteratively trying out different thresholds, and 423 

selecting that which yielded the best fit. The terms β1...5 are coefficients estimated by linear 424 

regression and ε the error associated with each term i. Other terms have already been defined. 425 

The terms are listed in anticipated descending order of importance. We first assessed whether 426 

including each set of terms improved model performance by computing the Akaike Information 427 

Criterion (AIC) and then estimated coefficients associated with each term using standard linear 428 

regression. To reduce the effects of temporal autocorrelation we randomly selected 2000 of 429 

the temperature measurements and repeated the analyses 9999 times, computing AICs and 430 

coefficient estimates for each model run. Median model coefficient estimates were then used 431 

to drive our model.  The microclimate model was fitted in the same way, except that here (T0 432 

– T) is the difference in near ground temperatures at the output of the mesoclimate model and 433 

the value of uf   that yielded the best fit was 0.398 ms-1. The function fitmicro implements 434 

the method described above, though also includes the option to use all data for fitting. 435 

 436 

Running and testing the model 437 

Both models can be run using function runmicro and fully executable examples are provided 438 

in the associated help file. We ran the models in hourly time steps for the period 1st January 439 

to 31st December 2010 (mesoclimate model) and 1st – 31st May 2010 (microclimate model), 440 

deriving temperature estimates for each grid cell of our study areas. The model was then 441 

tested by comparing model predictions with the observed data obtained from 56 loggers 442 

placed at separate locations within the study site over the same period. The model was 443 

relatively computationally efficient. On a standard desktop, the model fitting procedure took 444 

29 seconds. The time taken to run the model on a 1000 x 1000 pixel dataset took 0.25 seconds 445 

for one time-step, equating to just 36 minutes for a year (though additional time is required to 446 

write model outputs to disk). 447 

 448 
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Results 449 

In all 9999 model simulations both sets of models performed best when all terms were 450 

included. This mesoclimate model explained 90.8% of the variation in local temperature 451 

anomalies and 96.2% of the variation in total temperature, with a Mean Absolute Error (MAE) 452 

of 0.97 ºC and Root Mean Square Error (RMSE) of 1.23 ºC (Figs. 2a,c). The microclimate 453 

model explained 78.7% of the variation in local temperature anomalies and 90.9% of the 454 

variation in total temperature, with a MAE of 1.25 ºC and RMSE of 1.61 ºC (Figs. 2a,c). Model 455 

coefficients for both the meso- and microclimate model are shown in Table 2. 456 

 457 

At the meso-scale, there was relatively little spatial variation in mean temperature, which in 458 

2010 ranged from 8.6 to 10.0 ºC (Fig. 3a). The warmest temperatures were in sheltered low-459 

lying coastal valleys, particularly on south-facing slopes.  Minimum temperatures ranged from 460 

-6.7 to -5.3 ºC, being coldest at higher elevations and inland (Fig. 3b). Maximum temperatures 461 

ranged from 27.2 to 31.2 ºC, and were highest on low-lying south-facing slopes (Fig. 3c). There 462 

were larger differences in bioclimate variables. Accumulated-degree hours varied from 8,446 463 

to 16,008 (Fig. 3d), hours of exposure to temperatures below 0 ºC from 391 to 669 (Fig. 3e), 464 

and hours of exposure to temperatures in excess of 25 ºC from 23 to 158 (Fig. 3f).  465 

 466 

At the micro-scale, there was greater temperature variation, with mean temperatures in May 467 

2010 varying from 12.0 to 16.7 ºC (Fig. 4a). The warmest temperatures were on south-facing 468 

slopes with short vegetation.  Minimum temperatures ranged from 3.4 to 5.7 ºC and were 469 

primarily affected by vegetation cover, being coldest in sparsely vegetated areas with a clear 470 

horizon (Fig. 4b). Maximum temperatures varied from 25.2 to 41.8 ºC, with the highest 471 

temperatures recorded on dark, sparsely-vegetated, south-facing rock faces (Fig. 4c). There 472 

were also large differences in bioclimate variables. Growing-degree hours varied from 1,644 473 

to 4,223 (Fig. 4d), mean diurnal temperature variation from 11.1 to 21.3 ºC (Fig. 4e) and hours 474 

of exposure to temperatures in excess of 30 ºC from 0 to 53 (Fig. 54).  475 

 476 
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Discussion 477 

The main aim of this study is to present general methods for modelling micro- and mesoclimate 478 

that can be readily applied to determine the range in near-ground air temperatures 479 

experienced by organisms across any landscape or region.  While the models accurately 480 

predict temperatures at locations other than those used for model calibration, their 481 

transferability to different sites altogether has yet to be tested and, although calibration and 482 

testing were performed under a wide range of climatic conditions, there may be errors 483 

associated with extrapolating the model beyond the conditions used for calibration. However, 484 

an important characteristic of our models is that the spatial patterns of variables are based on 485 

the underlying physics of heat budgets and airflow rather than on spatial interpolation, and 486 

while recalibration or the incorporation of other macro- to micro-scale processes may be 487 

necessary at some locations, the physical laws governing these processes are universal.  488 

 489 

Overall, the predictive power of our models compare well with other more location-specific 490 

models (Pike, Pepin & Schaefer 2013; Aalto et al., 2017), and build on previous methods by 491 

presenting a method for capturing the effects of vegetation structure on microclimate (cf. 492 

Bennie et al 2008) or by incorporating mesoclimatic processes (cf. Kearney et al. 2017). 493 

Nonetheless, some aspects of the model remain poorly developed, in part due to the limited 494 

extent over which it has been tested, and hence, the range of conditions that influence climatic 495 

processes within our study area. Key among these is the effects of latent heat flux on 496 

temperatures, which can be particularly important in cold environments, where snow freeze-497 

thaw is frequent (Weller & Holmgren 1974), or under drought conditions when soil 498 

temperatures may heat up by more than predicted (Hunt et al. 2002). In contrast to other 499 

models (e.g. Kearney et al. 2017), heat exchange between the soil and near-ground air layer 500 

and heat storage in the soil are also unaccounted for, and may result in delayed effects of 501 

radiation on near-ground temperatures. Environmental lapse-rates are also rather crudely 502 

handled by our model; for our study area this does not cause large errors due to the limited 503 

elevation range, but further development and testing may be necessary for applications in 504 
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mountainous regions. A further limitation is that our model does not presently account for 505 

seasonal variation in albedo, which in temperate regions can be significant due to leaf-loss in 506 

winter, and in Arctic regions may be influenced strongly by snow cover (Weller & Holmgren 507 

1974; Aalto et al. 2017). Vegetation structure is also rather simplistically determined from 508 

aerial imagery. Better three-dimensional assessment of seasonal variation in vegetation 509 

structure, made possible through full‐waveform laser-scanning for example (Wagner et al. 510 

2008), represents one of the best opportunities for further development. These limitations 511 

aside, our models provide accurate physically based predictions of the effects of topography 512 

and vegetation on local scale climate at the landscape scale. 513 

 514 

At both micro- and meso-scales, slope and aspect are the principal determinants of spatial 515 

variation in maximum temperatures, with the warmest temperatures on steep south-facing 516 

slopes. However, at the micro-scale, where surface albedo and vegetation structure are also 517 

accounted for, these also exert a strong influence, with temperatures highest on dark surfaces 518 

with sparse vegetation cover. This is to be expected given the overriding importance of net 519 

solar radiation on temperature (Geiger 1927). At the meso-scale, elevation and coastal effects 520 

dominate spatial variation in minimum temperatures, though variation is small, reflecting the 521 

limited elevational range and maritime nature of our study area. At the micro-scale, vegetation 522 

cover exerts the greatest influence on minimum temperature, though the degree of 523 

topographic sheltering has opposing influences, decreasing temperatures due to low wind 524 

speeds, but increasing them by influencing the degree of longwave radiation that is reflected 525 

from adjacent surfaces. During May, the coldest temperatures were recorded on a calm night 526 

in relatively exposed areas with short vegetation, where temperatures were up to two ºC cooler 527 

than in vegetated areas. Dense vegetation thus serves to buffer microclimates, with mean 528 

daily temperature ranges approximately 10 ºC greater in sparsely vegetated areas than in 529 

areas with dense vegetation.  530 

 531 
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Longer-term temperature records from Culdrose weather station on the Lizard Peninsula 532 

reveal that 2010 was a particularly cold year, with mean annual temperatures approximately 533 

0.8 ºC cooler than the 1977-2016 baseline (Maclean et al. 2017). This is largely due to the 534 

particularly cold winter that affected much of north and north-western Europe, caused by 535 

record persistence of the negative phase of the North-Atlantic Oscillation (Cattiaux et al. 2010). 536 

The total number of frost-hours (<0 ºC) recorded at Culdrose was the greatest on record, more 537 

than eight times higher than the 1977-2016 median. This is reflected in spatial patterns of frost 538 

exposure across the study region, which even in sheltered valleys is relatively high, despite 539 

being frost frost-free in many years (Maclean et al. 2017). Rather uncharacteristically, the 540 

maximum recorded temperature in 2010, 22.3 ºC, was recorded at 16:00 hours on the 25th of 541 

May, whereas in most other years maximum temperatures are recorded in July (Maclean et 542 

al. 2017). The range in maximum temperatures predicted across the study area relative to that 543 

recorded at the weather station serves to illustrate an important point: maximum temperatures 544 

at or close to the ground are almost universally much warmer than those recorded by weather 545 

stations inside a Stevenson Screen. At the meso-scale, hours of exposure to temperatures in 546 

excess of 25º C ranged from 23 to 158 hours, despite this temperature never being recorded 547 

by the weather station within the study area. At the micro-scale, all areas except sheltered 548 

gullies in cliffs experienced some exposure to temperatures in excess of 30 ºC, and maximum 549 

temperatures on steep south-facing cliffs with little vegetation cover exceeded 40 ºC. In 550 

contrast, minimum temperatures were only marginally cooler than those recorded at the 551 

weather station (-5.9 ºC in 2010, 3.6 ºC in May 2010).  552 

 553 

Biological responses to climate change within our study region are influenced strongly by fine-554 

scale spatial and temporal variation (Maclean et al. 2015). Consequently, predictions of the 555 

responses of species to climate change will need to account for the spatial variation in 556 

microclimate at resolution smaller than most available climate data, and the dynamics of 557 

microclimate at a temporal resolution smaller than long-term climatic means. More generally, 558 

the study of relationships between species and climate is currently hampered by the coarse 559 
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resolution at which climate is currently modelled (Potter, Woods & Pincebourde 2013; Bramer 560 

et al 2018; Suggitt et al. 2018). This study is intended to demonstrate the importance of fine-561 

scale variation in temperature and to show that this variation can be modelled.  562 
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 (a)  (b) 

 

 
 

Fig. 1. Study areas depicting the locations covered by the mesoclimate (a) and microclimate 
(b) models. Black squares indicate the locations of iButton temperature data loggers deployed 
across the Lizard Peninsula between March 2010 and December 2010 (a) and at Caerthillean 
Cove in May 2010 (b). The shaded relief maps were derived from a DTM obtained the Tellus 
South West Project. 
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(a) (b) 

  
(c) (d) 

  
Fig. 2. Observed and predicted temperatures. In (a) temperatures recorded by iButtons place 
one metre above the ground are compared to outputs obtained from the mesoclimate model, 
and in (b) temperatures recorded by iButtons five cm above ground level are compared to the 
outputs of the microclimate model. In (c) recorded (black squares), modelled (grey line) and 
reference (black line) mesoclimate temperatures on a south-facing slope in Kynance Valley 
(49.979 ºN, 5.228 ºW) during October 2010 are shown. In (d) recorded (black squares), 

modelled (grey line) and reference (black line) microclimate temperatures on a south-facing 
slope in Caerthillean Valley (49.969 ºN, 5.215 ºW) during May 2010 are shown. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
Fig. 3. Spatial variation in mesoclimate in 2010. (a) mean temperature (ºC); (b) minimum 
temperature (ºC); (c) maximum temperature (ºC); (d) accumulated degree-hours (thousands, 
base 10 ºC, ceiling 30 ºC); (e) hours of exposure to frost (<0 ºC); (f) hours of exposure to 
temperatures in excess of 25 ºC. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
Fig. 4. Spatial variation in microclimate in May 2010. (a) mean temperature (ºC); (b) minimum 
temperature (ºC); (c) maximum temperature (ºC); (d) accumulated degree-hours (thousands, 
base 10ºC, ceiling 30ºC); (e) mean daily temperature range (ºC); (f) hours of exposure to 
temperatures in excess of 30 ºC. 
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Table 1. Summary of modelling approaches used for microclimate research. 
 

 Regional 
climate 
models 

Land surface 
schemes (eg. 
JULES) 

NicheMapR Empirical 
DTM-based 
models 

Resolution > five km Point Point Usually >=1m 

Vertical and/or horizontal 
fluxes considered 

Both Vertical Vertical None 

Meso-scale processes 
represented 

Yes No No Yes 

Computing requirements High Intermediate Intermediate Low 

Physical basis High High High Low 

Ecological relevance Low Intermediate High Intermediate 

 

 

Table 2. Median, mean (± one standard deviation) model coefficients associated with meso- 
and microclimate model. 
 

Variable Mesoclimate model Microclimate model 

Intercept 0.210, 0.209 (0.05) -0.989, -0.981 (0.105) 

Radiation (MJ m-2 hr-1) 2.53, 2.260 (0.09) 4.28, 4.31 (0.313) 

Wind factor  
(>3.66 meso; >0.398 micro) 

0.447, 0.448 (0.101) 
0.639, 0.638 (0.104) 

Radiation x wind -1.25, -1.21 (0.254) -1.99, -2.02 (0.327) 

 
 


