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We explore the possibility of achieving superdirectivity in metamaterial-inspired endfire antenna

arrays relying on the good services of magnetoinductive waves. These are short-wavelength slow

waves propagating by virtue of coupling between resonant meta-atoms. Magnetoinductive waves

are capable of providing a rapidly varying current distribution on the scale of the free space wave-

length. Using dimers and trimers of magnetically coupled split ring resonators with only one ele-

ment driven by an external source, we introduce an analytical condition for realising superdirective

current distributions. Although those current distributions have been known theoretically for a

good 60 years, this is the first time that a recipe is given to realise them in practice. Our key param-

eters are the size of the array, the resonant frequency and quality factor of the elements, and their

coupling constant. We compare our analytical results for coupled magnetic dipoles with numerical

results from CST simulations for meta-atoms of various shapes. The calculated bandwidth of

5 MHz for a dimer operating at 150 MHz indicates that, contrary to popular belief, superdirective

antennas exist not only in theory but may have practical applications. VC 2018 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5033937

I. INTRODUCTION

Superdirectivity is a topic that reappears at regular inter-

vals in the science and art of electrical engineering starting

with the 1922 paper by Oseen1 in which he refers to

“Einsteinian needle radiation.” Contrary to phased arrays

providing directive radiation by means of constructive inter-

ference, superdirectivity is based on the principle that there

can be destructive interference in all directions including the

direction of the main lobe but that happens to be the direc-

tion in which the destructive interference is minimum. The

result is somewhat controversial, against common sense. It

maintains that arbitrarily high directivity could be achieved

with an array of finite size. If this is true, there is no need for

enormous apertures: A linear array would do. Let us see an

example. At a wavelength of 1 m for a directivity of, say,

10 000, an aperture aerial would require a surface area of

about 800 m2, whereas a superdirective linear array in the

endfire configuration could be only a few meters long

and have a radial dimension of, say, 10 cm. This is fine in

principle. The difficulty is in realisation: how to realise the

required current distribution. Apart from the difficulty of

producing the right currents, superdirective antennas have of

course other limitations: narrow bandwidth, high tolerance

sensitivity, and low efficiency are the main ones. For those

disadvantages, see, e.g., Ref. 2. In the present paper, we shall

concentrate only on the realisation of the required currents

for some very limited scenarios. Our primary aim is to maxi-

mise directivity without worrying about the necessarily

reduced gain and about other limitations. We are interested

in applications in which a narrow beam is needed in scenar-

ios when space is limited, e.g., in CubeSats, nanosatellites

10� 10� 10 cm3 in size.3 Then what matters is accuracy not

power loss or narrow bandwidth.

It has been known for a long time (see, e.g., Ref. 4) that

in order to have superdirectivity, the field (or current) should

exhibit fast spatial variations. Since most antennas work in

free space, the variation has to be fast on the scale of the free

space wavelength. To do that is difficult. There have been ad
hoc solutions (see, e.g., Ref. 5) but no general theory, no gen-

eral approach. The novel idea in this paper is to use the pro-

gress in the theory and practice of metamaterials, in particular

that of magnetoinductive (MI) waves,6,7 to realise the current

distribution for 2 and 3-element endfire arrays with elements

in the form of split ring resonators.8,9 In general, MI waves

can be employed for guiding and manipulating electromag-

netic waves with potential applications ranging from the

detection of nuclear magnetic resonance10,11 to subwave-

length imaging12,13 and wireless power transfer.14,15 For our

purpose, in this paper, what is important is that MI waves are

slow waves and consequently have small wavelengths com-

pared to free space signal at equivalent frequencies. Thus,

slow change over the wavelength of the magnetoinductive

wave means fast change over the free space wavelength and

that is exactly what is needed for superdirectivity. Our
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solution is to realise a superdirective current distribution by

launching a magnetoinductive wave. To make that realisation

easier and the analogy with magnetoinductive waves even

more relevant, we shall restrict our attention to the case when

only one of the elements of the array is driven by an applied

voltage.

Superdirectivity has a vast literature. A very influential

paper was that by Schelkunoff16 who showed that arbitrarily

narrow beams can be obtained with the right design. A rather

surprising conclusion was reached by Uzkov17 who showed

that as the length of the linear endfire array tends to zero, the

directivity increases as the square of the number of elements

in the array. Gain maximisation for a finite number of ele-

ments of any linear array was performed by Bloch et al.18 and

by Uzsoky and Solymar19 who also introduced auxiliary con-

ditions defining both an array-Q and tolerance sensitivity.

Directivity maximisation for a linear array of dipoles was

done by Tai.20 Generalisation to any dipole distribution (lin-

ear, plane, or 3D arrays) was due to Shamonina and

Solymar.21 There were a number of optimisations of Yagi

antennas (see, e.g., Refs. 22 and 23) which resulted in much

improved directivity but they were still far from superdirectiv-

ity. Further progress in the theory of superdirectivity was

made by Lo et al.24 who introduced the signal-to-noise ratio

as an auxiliary condition when maximising directivity. For

some more recent directivity maximisations, see Azevedo25,26

and Smierzchalski et al.27 The experimental work gained new

momentum with the publication of the paper by Newman and

Schrote28 who built a four-element array. More recently, prac-

tical superdirective arrays consisting of two elements, driven

independently, or parasitic, were reported in Refs. 29–37. The

authors stressed the significance of using electrically small

resonant elements that eases the problems of impedance

matching. Work on metamaterial-inspired superdirective

antennas was published in Refs. 38–44.

The aim of this paper is to formulate the design rules for

constructing superdirective endfire arrays comprising strongly

coupled meta-atoms. The structure of the present paper is as

follows. In Sec. II, we treat theoretically the two-element case

based on the coupling between resonant elements approxi-

mated as magnetic dipoles. “Superdirective conditions” are

derived which tells us how two coupled circuits can realise the

required superdirective current distribution. The model is tested

in Sec. III by comparison to numerical simulations for realistic

elements resonant in the MHz frequency range. In Sec. IV, we

discuss the issue of the bandwidth, the extension of the model

to three-element arrays, and potential applications. Details of

analytical derivations are delegated to two Appendixes in order

not to interrupt the flow of argument.

II. SUPERDIRECTIVE CONDITIONS FOR A DIPOLE
DIMER

A schematic representation of the two-element array is

shown in Fig. 1(a). The elements are shown here as split ring

resonators7 widely used for metamaterials, although capaci-

tively loaded rings and squares will also be considered. We

shall model the elements arranged in the xy plane at a dis-

tance d as two vertical magnetic dipole radiators oriented

normally, i.e., along the z axis as shown in Fig. 1(b). The

current distribution required for realising superdirectivity is

derived in Ref. 21 and given in Appendix A for the general

case of N dipole radiators making up a linear array. We shall

evaluate them here for the case of two elements and radiation

in the endfire (x) direction. The optimum current distribution

for two elements presented in the form of a vector with two

components I1 and I2 has the form

Iopt ¼ A�1F ¼ 1

a2 � b2

a� bejkd

aejkd � b

 !
; (1)

where

A ¼
a b

b a

 !
and F ¼

1

ejkd

 !
; (2)

with

a ¼ 2

3
; b ¼ sin kd

kd
þ cos kd

ðkdÞ2
� sin kd

ðkdÞ3
: (3)

k¼x/c is the wave number, x is the frequency at which the

antenna is radiating, and c is the velocity of light.

We are interested in the kd� 1 condition when the dis-

tance between the elements is small relative to the free space

wavelength. We can therefore expand Eq. (1) in terms of kd.

We obtain for the ratio of the two currents

I2

I1

� �
opt

¼ �1� j
2

5
kd þ 2

25
ðkdÞ2 þ j

323

10500
ðkdÞ3

� 239

26250
ðkdÞ4 þ � � � : (4)

In the limit of kd ! 0, it is sufficient to take into account

only the first two terms.

We shall now return to our proposed technique of realis-

ing this current distribution. Our goal is to realise the

FIG. 1. Schematic representation of a dimer of coupled ring resonators (a),

its dipole approximation (b), and coupled LCR model (c).
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required current distribution by driving only one of the ele-

ments by external voltage and by choosing the right coupling

constant and the right quality factors of the two coupled cir-

cuits. In this section, we assume that the coupling constant is

negative and that element 2 is driven to enable superdirective

radiation in the positive x direction. By modelling the meta-

atoms as coupled LCR circuits as shown in Fig. 1(c), the

ratio of currents for two identical resonant circuits, coupled

by a mutual inductance M, is derived in Appendix B as

I2

I1

¼ � 2

j
1� �2 � j

�

Q

� �
; (5)

where

Q ¼ x0L

R
and j ¼ 2M

L
(6)

are the quality factor of the elements and the coupling con-

stant between them, respectively. x0 ¼ 1=
ffiffiffiffiffiffi
LC
p

is the reso-

nant frequency of the circuit, L is its self-inductance, R the

resistance, C the capacitance, and

� ¼ x0

x
(7)

is the reciprocal frequency of radiation, normalised to the

resonant frequency. If we want to realise the superdirective

current distribution, the ratio of currents in the coupled cir-

cuits should agree with the required current distribution for

superdirectivity, i.e.,

� 2

j
1� �2 � j

�

Q

� �
¼ �1� j

2

5
kd: (8)

Equating the real and imaginary parts, we find two important

conditions

j
2
¼ 1� �2 (9)

and

jjjQ
�
¼ 5

kd
: (10)

The first condition [Eq. (9)] may be rewritten as

x
x0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j=2

p ð‘SD1 condition’Þ (11)

that unsurprisingly happens to be the same as the resonance

frequency of the antisymmetric mode in coupled circuits

[Eq. (B9)]. This is very reasonable as superdirectivity for

two elements requires the elements to be nearly in antiphase.

The second condition [Eq. (10)] may be rewritten by

substituting Eq. (11) into Eq. (10) as

jjjQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j=2

p ¼ 5

kd
ð‘SD2 condition’Þ; (12)

which for small coupling constant j� 1 can be approxi-

mated by

jjjQ ¼ 5

kd
: (13)

This relationship is valid when the elements are composed of

elementary dipoles. For isotropic radiators, the right-hand-

side of Eq. (12) modifies to 6/kd, and, as we will see later,

for elements of different shapes, the coefficient on the right

hand side will again be different. In this section, we continue

considering dipoles but when we come to the CST results,

we shall have to modify Eq. (12).

Note that there are five variables x, x0, j, Q, and d, and

there are two equations to satisfy. A possible way to proceed

is to choose first the frequency, x, the coupling constant, j,

and the quality factor, Q, and then find the resonant fre-

quency from Eq. (11) and d from Eq. (12). An alternative is

to start with x and kd because the value of x is dictated by

the system which needs the antenna and d must be chosen so

that kd � 1. Once the physical realisation of the element is

chosen, we know the range of values which Q might take.

Then, the required coupling constant could be found from

Eq. (12).

Equations (11) and (12) have fundamental importance.

The first one defines the frequency at which, for a given sys-

tem of coupled resonators, superdirectivity can occur. The

second one is the condition for the existence of superdirec-

tivity, prescribing, for a given geometry (given kd), the

required values of the coupling constant j and the quality

factor Q. We shall refer to Eqs. (11) and (12) as the SD1 and

SD2 conditions. Provided we satisfy SD2, we have, in the

vicinity of the antisymmetric resonance, the current ratio

needed for superdirectivity and we can be sure that we have

a superdirective radiation pattern. It has been known for a

good 60 years what the desired current distribution should be

but this is the first time that a recipe has been given how to

achieve it. In the present section, the analysis is done for

only two elements but this metamaterial-inspired method can

also be used for multi-element cases as discussed later.

A superdirective current distribution will yield the maxi-

mum achievable for a given frequency and geometry. For a

small array with kd� 1, it is of the form

Dmax ¼
21

4
� 377

1120
ðkdÞ2þ 541

2822400
ðkdÞ4 � � � (14)

found by expanding Eq. (A10) from Appendix A. Taking

just the first two terms of the expansion offers a wide range

of validity of up to kd ’ 2 as illustrated by Fig. 2. The maxi-

mum as kd ! 0 is D¼ 5.25. It is a reasonable value consid-

ering that the maximum directivity of an array of N elements

is equal to N2 when kd ! 017 and the directivity of an ele-

mentary dipole (electric or magnetic) is 1.5. (Note here that

for finding the resultant radiation pattern, we need to multi-

ply the element radiation pattern with that of the array. This

simple method of multiplication does not apply to the respec-

tive directivities. The resultant directivity is always less than

the product of the individual directivities.)

Let us see now a few examples. In our first example, we

intend to show that it is worth adhering to the SD2 condition

and that it will indeed give a superdirective current distribution

104901-3 Radkovskaya et al. J. Appl. Phys. 124, 104901 (2018)



and the corresponding high directivity. We shall choose the res-

onant frequency as f0¼ 150 MHz, the inter-element distance as

d¼ 64 mm, and the coupling constant as j¼�0.1. The choice

of the coupling constant corresponds to a possible realisation in

the form of two closely spaced circular loops, each 62 mm in

diameter, in a planar arrangement side by side with the centre-

to-centre distance of 64 mm.45 We shall choose three different

values of the quality factor: Q¼ 26 (a), 2600 (b), and 2625 (c)

of which the second one satisfies the SD2 condition and the

two others do not, with Q being 10 times smaller than needed

in case (a) and 10 times larger than needed in case (c). The

modulus of the current ratio, its phase, and the corresponding

directivity are shown in Fig. 3 as a function of the normalised

frequency for the parameters given above. The maximum

directivities obtained in the vicinity of the antisymmetric reso-

nance are 2.28, 5.24, and 4.03 for the three cases, respectively.

Insets show the corresponding radiation patterns at the opti-

mum frequency. Although in each of the three cases, the opti-

mum directivity is found in the vicinity of the antisymmetric

resonance, i.e., when the SD1 condition is satisfied, the highest

directivity is obtained in case (b), when the SD2 condition is

satisfied as well. The directivity of 5.24 in case (b) does corre-

spond to the theoretical maximum expected for two dipoles

with the specified inter-element distance and wavelength, see

Eq. (14) and Fig. 2.

Maps of the overall dependence of the optimum direc-

tivity for dimer configurations with various values of j and

Q are shown in Fig. 4 as contour plots Dmax (j, Q) for the

parameters: (a) f0¼ 50 MHz and d¼ 16 mm, (b) f0¼ 50 MHz

and d¼ 64 mm, and (c) f0¼ 150 MHz and d¼ 64 mm. Every

point on each map corresponds to a dimer with specified j
and Q and the frequency yielding the best directivity. The

SD2 condition is also shown as a red dotted line. It may be

seen that configurations which satisfy the SD2 condition for

j and Q indeed show the maximum directivity, whereas for

configurations for which the jQ product is too low or too

high, the maximum achievable directivity is lower. It is

worth mentioning that as long as we keep kd� 1, the depen-

dence of the optimum directivity on kd is weak, with D grad-

ually reducing from 5.25 at kd ! 0 to 5.17 at kd¼ 0.5 [see

Eq. (14) and Fig. 2]. Therefore, there will also be very little

change in the shape of the optimum radiation pattern for any

optimum configuration shown by dashed lines in Fig. 4 in

comparison to the radiation pattern already shown in the

inset to Fig. 3(b).

It can also be seen from Fig. 4 that, for a sufficiently

small coupling constant, the SD2 condition appears as a

straight line on the double logarithmic scale of the graph,

yielding evidence that Eq. (13) would be a good

FIG. 2. Optimum directivity for two dipoles vs distance: exact (solid) and

Taylor expansion up to the quadratic term (dashed).

FIG. 3. Frequency variation for the amplitude (top row) and phase (middle row) of dimer’s currents and the resulting directivity (bottom row). f0¼ 150 MHz,

j¼�0.1, and d¼ 64 mm. Insets show the radiation pattern at the optimum frequency. (a) Q¼ 26; (b) Q¼ 262, and (c) Q¼ 2625.
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approximation of the SD2 condition. Comparing cases

(a)–(c), one can also notice that as kd increases [kd is the

smallest in case (a) and the largest in case (c)], the opti-

mum value of the jQ product reduces. This indicates that

the choice of j and Q depends strongly on the size of the

array and there might very well be situations when super-

directivity is not achievable, e.g., due to unrealistic values

for j and Q required.

III. SIMULATIONS

To verify our analytical approach enabling us to predict

the values of j and Q that would yield superdirectivity for a

chosen geometry, numerical simulations were performed

using the time domain solver of CST Microwave Studio. We

looked at two types of copper split pipe resonators, of circu-

lar and square shape, shown schematically in Fig. 5. To

enable a direct comparison between arrays of different

shapes, we chose the diameter of circular elements, 2R, and

the side length of the square element, a, both to be equal to

23 mm. Other geometric parameters of the elements were the

same for both circular and square elements, namely, the wall

thickness w¼ 1 mm, the height h¼ 5 mm, and the gap

g¼ 2 mm. By adjusting the value of an external lossless

capacitor inserted into the gap of an element, the resonant

frequency could be tuned. In the simulations, we excite one

of the split pipes by a voltage source and find the current dis-

tribution that optimises the directivity by varying the avail-

able parameters, namely, the distance between the elements

and the resonant frequency.

The capacitively loaded split-pipe elements, although

small relative to the wavelength, cannot be regarded simple

magnetic dipoles due to their extended height, and hence, we

need to generalise the dipole-model SD2 condition [Eq. (12)] to

jQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j=2

p ¼ 5a
kd

ð‘generalised SD2 condition’Þ; (15)

where a is a coefficient dependent on the shape of the meta-

atom. As mentioned in Sec. II, for isotropic elements, a
¼ 1.2, and for dipoles, a ¼ 1. We find that for the split pipe

elements of extended height h¼ 5 mm used in numerical

simulations, for both the circular and square varieties, we

need to use a ¼ 0.8.

In the first series of simulations, summarised in Fig. 6,

we keep the dimer geometry unchanged, with the centre-to-

centre distance d¼ 24 mm, i.e., with the separation between

FIG. 4. Maximum directivity Dmax for a coupled dimer vs. j and Q (contour plot) and the superdirective condition SD2 (dashed line). (a) f0¼ 50 MHz and

d¼ 16 mm; (b) f0¼ 50 MHz and d¼ 64 mm, and (c) f0¼ 150 MHz and d¼ 64 mm.

FIG. 5. Circular and square split-pipe elements used in simulations.

FIG. 6. Verifying superdirective condition SD2 with simulations. (a)

Circular split-pipes with 2R¼ 23 mm, d¼ 24 mm, and j¼�0.1. (b) Square

elements with a¼ 23 mm, d¼ 24 mm, and j¼�0.19. Top row: variation of

Q with f0. Middle row: LHS ðjjjQÞ and RHS (5a/kd) of SD2 with a¼ 0.8.

The crossing point of solid and dashed lines indicates the expected optimum

resonant frequency. Bottom row: directivity variation with resonant fre-

quency confirms the validity of SD2 yielding maximum directivity at the

expected frequency.
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the walls of the neighbouring meta-atoms being 1 mm. The

coupling constant for the circular-element dimer for this

geometry is found to be equal to j¼�0.1, and for the

square-element dimer, it is �0.19. These values of the cou-

pling constant are calculated from the split of the resonance

into the symmetric and the antisymmetric mode, see Eq.

(B9), by following the procedure detailed in Ref. 9. By

adjusting the value of the capacitors, the resonant frequency

varies in the range between 50 and 150 MHz. The left col-

umn, Fig. 6(a), shows the results for the circular elements

and the right column, (b), is for the square elements. The top

row in Fig. 6 shows the numerically calculated variation of

the quality factor of a single element with resonant frequency

f0. For elements of either shape, the quality factor increases

with the resonant frequency as expected for a copper resona-

tor of the chosen size in the chosen frequency range.

Knowing the numerical values for j, Q, and kd, we can

now employ the generalised SD2 condition to find the opti-

mum resonant frequency. The middle row of Fig. 6 shows

the plots for the frequency dependence of the left-hand side

of the generalised SD2 condition (solid line) and of the right-

hand side (dashed line) using the analytical SD1 condition

for the optimum frequency. The numerical data and the ana-

lytical data can be seen to agree well. Obviously, the left

hand side of SD2, jQ, increases with increasing frequency

because of the increase in Q. The right hand side, 4/kd,

decreases with f0. Their intersection predicts at what resonant

frequency the superdirective condition is fulfilled—this fre-

quency is marked by a vertical dotted line for both types of

arrays, for circles (left plot) and for squares (right plot). The

optimum frequencies predicted by the SD2 method are

100 MHz for the circular meta-atoms and 67 MHz for the

square meta-atoms.

The bottom row in Fig. 6 shows plots of the directivity

values found numerically as a function of the resonant fre-

quency, clearly confirming that the SD2 condition is indeed

valid. Also, in these plots, we mark the optimum frequency

by a vertical dotted line, and it can be seen that the values

agree well with those predicted by the SD2 method. The cor-

responding directivities are close to 5 for both the circular

and square elements.

Our next series of simulations (Fig. 7) is analogous to

that shown in Fig. 6, but this time, the optimisation is by

inter-element distance at a resonant frequency of 150 MHz.

The left column (a) is for circular elements and the right col-

umn (b) is for square elements. The variation of the coupling

constant with the centre-to-centre distance is shown in the

top row. As expected, for any distance between the elements,

the coupling between square shaped elements is stronger

than the coupling between circular elements, because the

areas on the two coupled elements are closer to each other.

The middle row shows how the left-hand side and the right

hand side of the SD2 condition vary with the centre-to-centre

distance. The optimum distance, when the SD2 condition is

fulfilled, is marked by vertical dotted lines for both types of

arrays. The directivity plot versus distance in the bottom row

demonstrates clearly that our method works again—the max-

imum directivity corresponds to the predicted distance with

good accuracy for both types of arrays. The respective

optimum directivities are close to 5 in both cases. The opti-

mum centre-to-centre distance for the circular elements is

29 mm, and for the square elements, it is 35 mm. In both

cases, when elements are placed side by side, the resulting

coupling is too strong, and the elements have to be moved

away to reduce the coupling strength to the optimum value,

with square elements requiring a larger separation.

Similar optimisation procedures can be performed for

other scenarios, e.g., at any resonant frequency. It would not

be a difficult exercise to predict that at a lower resonant fre-

quency, as the right hand side of the SD2 condition is

inversely proportional to the frequency (see Fig. 6), a larger

value of the coupling constant would be required for the opti-

mum configuration than the values observed in Fig. 7. If the

chosen resonant frequency would be too low, the optimisa-

tion might fail altogether for the elements of the chosen

shape, and a different geometry of meta-atoms would be

required that would enhance the coupling constant even fur-

ther. Suitable candidates would be, e.g., elongated rectangu-

lar elements, for which the coupling constant is known to

increase significantly.46

IV. DISCUSSION

A. Bandwidth

Our SD method provides a simple test whether or not a

chosen geometry is capable of superdirectivity. By estimat-

ing the product of jQ and comparing it to 5/kd, we know

what changes to the inter-element distance, the resonant fre-

quency, or the shape of the elements are needed for a dimer

of meta-atoms to satisfy the SD2 condition. If, in an opti-

mised configuration, the actual frequency deviates from the

optimum one, then of course both the currents and the value

FIG. 7. Verifying superdirective condition SD2 with simulations. (a)

Circular split-pipes with 2R¼ 23 mm, f0¼ 150 MHz, and Q¼ 1000. (b)

Square elements with a¼ 23 mm, f0¼ 150 MHz, and Q¼ 750. Top row: var-

iation of jjj with d. Middle row: LHS ðjjjQÞ and RHS (5a/kd) of SD2 with

a¼ 0.8. The crossing point of solid and dashed lines indicates the expected

optimum centre-to-centre distance between split pipes. Bottom row: direc-

tivity variation with the centre-to-centre distance confirms the validity of

SD2 yielding maximum directivity at the expected distance.
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of kd change. As a consequence, both the radiation pattern

and the directivity will change, and the radiation pattern will

widen and the directivity of the array will decline, as can be

seen, e.g., in Fig. 3(b, bottom plot). Our measure of the band-

width is based upon the decline of directivity. We define the

array bandwidth in the usual way

array BW ¼ Df3 dB; (16)

where Df3 dB is the width between the points in frequency

where directivity drops by 3 dB from its maximum value

obtained at fopt.

How would the configurations shown in Fig. 4 score

in terms of the bandwidth? The bandwidth is plotted in

Fig. 8 against the absolute value of the coupling constant j
(solid lines) for the parameters corresponding to the opti-

mum SD2 curve in Fig. 4. We also plot in Fig. 8 the variation

of the passband of the corresponding magnetoinductive

waves with frequency (dashed lines). The two are obviously

correlated although they represent different physical quanti-

ties. One shows the frequency range yielding the directivity

close to the superdirective value and the other one is the

(much wider) frequency range in which magnetoinductive

waves can propagate. The fact that both depend on j in the

same manner is a corroboration of our method for realising

superdirectivity by virtue of inter-element coupling between

meta-atoms.

The bandwidth can be seen to vary between 100 kHz and

5 MHz for realistic values of the coupling constant, j¼�0.1

to �0.4, for frequencies in the range of 50–150 MHz and dis-

tances between the meta-atoms of 16–64 mm. For example,

in case (c) with the frequency of 150 MHz, the inter-element

distance of 64 mm, and the coupling constant of �0.1, the

array bandwidth is 1.6 MHz, and for the coupling constant of

�0.4, it is 4.8 MHz. This may be a reasonable value for wire-

less data transfer applications. Using 64QAM modulation,

this would deliver up to 30 Mb/s sufficient for several com-

pressed video channels. Clearly, increasing the frequency or

increasing the size of the array, we can increase that number

even further. Taking as another example parameters suitable

for 700 MHz band UHF TV channel frequencies, choosing

f0¼ 744.5 MHz, d¼ 16 mm, j¼�0.19, and Q¼ 120, we

obtain the 3 dB bandwidth of over 16 MHz (frequency range

703.2–719.4 MHz), sufficient to cover completely two UHF

TV channels, channel 50 and channel 51. Simulation results

for split pipes confirm the values of the bandwidth obtained

from the dipole model supporting the conclusion that the

array bandwidth depends primarily on the coupling strength

rather than on the radiation properties of individual

resonators.

It can be seen from Fig. 8 that for a larger-size dimer,

the bandwidth curve approaches the MI passband curve.

Importantly, the values of the bandwidth estimated analyti-

cally for dimers agree with those obtained numerically for

split-pipe resonators of extended height, suggesting that it is

the nature of the magnetoinductive waves and the coupling

strength that determine the bandwidth and not so much the

actual shape of the resonators. As mentioned before, in a

practical realisation, the bandwidth can be increased by mak-

ing the dimer structure larger by scaling up all the dimen-

sions, while still staying within the requirement of it being

small on the scale of the free wavelength. The passband of

the magnetoinductive wave sets the asymptotic limit for the

bandwidth; hence, realising dimers with a very strong cou-

pling would be the way of achieving a large-bandwidth

superdirective performance. Hence, equipped with our sim-

ple method of designing superdirective dimers by relying on

the SD2 condition, we can embark on the next stage of opti-

mising superdirectivity by looking at meta-atoms of different

shapes while ensuring that the coupling strength is sufficient.

B. Trimers and beyond

Can we find the superdirective condition, analogous to

SD2 for dimers, for a general case of “meta-molecules” com-

prising many coupled resonators? It would be a worthwhile

exercise, considering that the maximum directivity of an

array of N elements follows the N2 trend for kd ! 0.17 The

recipe would be the same: by comparing the superdirective

current distribution (Appendix A) to that prescribed by the

generalised Ohm’s law for coupled LCR circuits (Appendix

B), we can identify required values of the quality factors and

of the coupling constants. How can we match the superdirec-

tive current distribution for N elements? The solution is

known—the distribution is close to binomial in terms of the

amplitude, and the phases are such that the elements are

nearly in antiphase. Our intuitive solution is to excite an end-

fire array of meta-atoms in the centre, the MI wave that goes

in the backward direction from centre to element 1 has to be

a backward wave, and hence, the inter-element coupling has

FIG. 8. Array bandwidth for a coupled

dimer of dipoles vs. j at SD2 condition

(solid line) and bandwidth of the MI

wave (dashed line). (a) f0¼ 50 MHz

and d¼ 16 mm; (b) f0¼ 50 MHz and

d¼ 64 mm, and (c) f0¼ 150 MHz and

d¼ 64 mm.
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to be negative. The other half of the array, from the centre to

the end of the array, has to carry a forward wave and that

requires positive inter-element coupling. Figure 9 illustrates

the principles upon which a superdirective array, realised by

magnetoinductive waves, can be built. How can the positive

coupling be realised in the planar configuration? One solu-

tion would be to use differently shaped elements, e.g., fig-

ure-of-eight shaped resonators with an overlap yielding

strong positive coupling.11 Another possibility would be to

rely on electric and not magnetic coupling, e.g., by using ele-

ments with splits on both sides—that would give positive

electric coupling.47,48

We test this approach taking a trimer as an example. We

return to our analytical dipole model used in Sec. II but con-

sider a trimer, an endfire array of three equidistantly spaced

dipoles arranged along the x axis and pointing in the z direc-

tion. The optimum directivity of an endfire linear trimer with

kd� 1 can be written as

Dmax ¼
735

68
� 12265

16184
ðkdÞ2 � 4658201

381327408
ðkdÞ4 þ � � � (17)

found by expanding Eq. (A10) from Appendix A. The theo-

retical value we aim at is a directivity, D¼ 10.81 for kd! 0,

a massive improvement in comparison to the two-element

directivity, D¼ 5.25. Finding the corresponding expression

for the optimum current distribution from Appendix A and

expanding it in terms of kd, we obtain

I1

I2

� �
opt

¼ � 1

2
þ j

17

168
kd � 5

84
ðkdÞ2 þ j

16

1323
ðkdÞ3

� 11

3024
ðkdÞ4 þ � � � ; (18)

and

I3

I2

� �
opt

¼ conj
I1

I2

� �
opt

: (19)

As before, in the limit of kd ! 0, we shall only take into

account the first two terms.

Next, we shall treat the elements of the trimer as cou-

pled LCR circuits and apply the generalised Ohm’s law (see

Appendix B). We assume for simplicity that only nearest-

neighbour coupling matters (hence mutual coupling between

elements 1 and 3 is taken as zero, M13¼ 0). Then, the solu-

tion for the currents can be written as

In

I2

� �
¼ �jn2

2
1� �2

n � j
�n

Qn

� ��1

; n ¼ 1; 3 (20)

with jn2 being the coupling constant between elements n and

2, Qn is the quality factor of element n, and �n is the recipro-

cal frequency normalised to the resonant frequency x0n of

element n, see also Appendix B. We further assume that

although the resonant frequencies in the three elements can

be different, x01 6¼ x02 6¼ x03, their self-inductances and

resistances are the same, Ln¼ L and Rn¼R for n¼ 1, 2, 3.

The design idea is similar to that of the superdirective dimer

case: to have the edge currents almost in anti-phase to the

central one, we have to rely on anti-symmetric modes for

both the central-left pair and the central-right pair of resona-

tors. To achieve opposite phase shifts for the edge currents

I1/I2¼ conj(I3/I2), we detune the resonances of the edge ele-

ments in opposite directions x01;03 ¼ x02

ffiffiffiffiffiffiffiffiffi
16d
p

and choose

the coupling constants between the central element and the

edge elements as of opposite sign but equal in magnitude

j12¼�j32¼�j¼�d. This enables our design frequency to

be equal to the resonant frequency of the central element,

x02, and to be simultaneously in the vicinity of the lower res-

onance of the left-central pair of resonators (close to the

anti-symmetric mode for the pair of I1 and I2 currents) and in

the vicinity of the upper resonance of the right-central pair

(close to the anti-symmetric mode for the pair of I2 and I3

currents). Then, the SD2 condition for such a trimer takes the

form

jQffiffiffiffiffiffiffiffiffiffiffi
1þ j
p ¼ 84

17kd
; (21)

which, for small coupling, practically coincides with the SD2

condition obtained for the dimers, jQ¼ 5/kd.

Figure 10 shows the frequency variation of the currents

[the amplitudes (a) and the phases (b)] and the resulting

directivity (c) for the optimum case for the same set of

parameters as in Fig. 3, f02¼ 150 MHz, d¼ 64 mm, j¼ 0.1,

and Q2¼ 236. It can be seen that at x02, I1/I2 and I3/I2 are

complex conjugates of each other and have both the required

magnitude and phase yielding the superdirective radiation

pattern. Superdirectivity is indeed achieved at x¼x02 with

D¼ 10.78 which is the maximum value for the chosen dis-

tance between the elements. The inset shows the superdirec-

tive radiation pattern at 150 MHz. The array bandwidth is

1.4 MHz, and it would further increase to 2.2 MHz if we

would use j¼ 0.4.

So far, we have relied on the ability of slow magnetoin-

ductive waves to produce a rapidly varying current distribu-

tion required for superdirectivity. Magnetoinductive waves

are of course not unique in this sense; one can rely on plas-

mon waves,7 on waves traveling on electric dipole arrays,49

or on complementary dipole arrays,50 or indeed on other

kinds of slow waves. Applications can include wireless com-

munication, and the bandwidth achievable seems reasonable.

Another potential application for superdirective

metamaterial-based compact-size antennas could be in 1U

CubeSats, nanosatellites where space is limited, e.g., to

10� 10� 10 cm3, and enhanced directivity is required.3 X

band superdirective antennas would be sufficiently small and

compatible with this kind of size-limited platform although

efficiency might be a problem.

FIG. 9. Schematic of a superdirective array with the central element driven

by an external voltage source, with half of the array carrying backward MI

waves, and with another half carrying forward MI waves.
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V. CONCLUSIONS

For the first time to our knowledge, we formulated the

design rules for constructing superdirective endfire arrays

comprising coupled meta-atoms with only one element being

driven by external voltage. The mechanism of imposing the

required rapidly varying current distribution is the propaga-

tion of slow magnetoinductive waves. Our analytical

“superdirective conditions” for the values of the quality fac-

tor and the coupling constant allow rapid design of superdir-

ective dimers consisting of two coupled meta-atoms. The

analytical model is verified numerically for dimers of capaci-

tively loaded split pipe resonators of circular and square

shape. The array bandwidth is shown to be determined by

the passband of the magnetoinductive waves and increase

with the coupling constant reaching significant values mov-

ing superdirectivity from the area of scientific curiosity to

the area of practical applications. We conjecture that this

model can be generalised to superconductive arrays of 2N þ
1 elements in which the central element is excited and the

desired current distribution is obtained by a magnetoinduc-

tive forward wave in the direction of endfire radiation and by

a magnetoinductive backward wave in the opposite

direction.
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APPENDIX A: SUPERDIRECTIVE LINEAR ENDFIRE
ARRAY

The expressions in this Appendix (used in Secs. II and

IV) adopt a more general case derived in Ref. 21 for an end-

fire array of N parallel magnetic dipoles. In the far field, the

electric field produced by an N-element array of identical

magnetic dipoles placed equidistantly along the x axis point-

ing in the z direction may be written as the inner product of

two N-dimensional vectors I and F

E ¼ CFI; (A1)

where

I ¼ I1 … Im … IN½ � (A2)

is the current distribution within the array,

F ¼ sin h 1; e2ju;…; eðN�1Þju
� �

(A3)

gives information about the geometry of the array, C is a

constant, and

u ¼ kd sin h cos u; k ¼ 2p=k: (A4)

h and u are the elevation and the azimuthal angle of the

spherical coordinate system, with h measured from the axis

of dipoles (z axis) and u measured in the xy plane from the

axis of the array (x axis), d is the distance between the ele-

ments, and k is the free space wavelength. The power density

is then of the form

Pd ¼
jEj2

2Z0

¼ C2

2Z0

IHBI; (A5)

where B, an N-dimensional matrix, is expressed as

B ¼ FH � F; (A6)

the outer product of the vector F with itself, and the subscript

H indicates the Hermitian transpose of the vector. The aver-

age power density over the solid angle 4p is given by

hPi ¼ IHAI; (A7)

where

A ¼ 1

4p

ð
B sin hdhdu (A8)

with the diagonal and non-diagonal elements in the form

Ann ¼
2

3
;

Anm ¼
sin ðjn�mjkdÞ
jn�mjkd

þ cos ðjn�mjkdÞ
ðjn�mjkdÞ2

� sin ðjn�mjkdÞ
ðjn�mjkdÞ3

:

(A9)

The directivity is then

D ¼ IHBI

IHAI
; (A10)

FIG. 10. Superdirective trimer. d¼ 64 mm. Resonant frequencies:

f01¼ 157.3 MHz, f02¼ 150 MHz, and f03¼ 142.3 MHz. Quality factors:

Q1¼ 247, Q2¼ 236, and Q3¼ 223. Coupling constants: j12¼�j31¼�0.1.

Frequency variation for the amplitude (top row) and phase (middle row) of

the currents and the resulting directivity (bottom row). The inset shows the

radiation pattern at the optimum frequency x¼x02.
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where the power density in the numerator is taken in the endfire,

h¼ p/2, u¼ 0, direction. The optimum current is given as19

Iopt ¼ A�1F (A11)

and the maximum available directivity is

Dopt ¼ FHA�1F: (A12)

APPENDIX B: GENERALISED OHM’S LAW FOR
COUPLED CIRCUITS

Consider a linear array of N resonant elements modelled

as LCR circuits with an inductance, Ln, capacitance, Cn, and

resistance, Rn, coupled by mutual inductances, Mnm. The

general relationship to satisfy is the generalised Ohm’s law

V ¼ ZI (B1)

for the column vectors of the excitation voltages and the

resulting currents

V ¼

V1

V2

…

VN

0
BBBB@

1
CCCCA; I ¼

I1

I2

…

IN

0
BBBB@

1
CCCCA: (B2)

The impedance matrix Z contains self-impedances of the

elements

Znn ¼ jxLn 1� �2
n � j

�n

Qn

� �
(B3)

as the main diagonal terms, where

�n ¼
x0n

x
; Qn ¼

x0nLn

Rn
; x0n ¼

1ffiffiffiffiffiffiffiffiffiffi
LnCn

p (B4)

are the reciprocal frequency normalised to the resonant fre-

quency x0n, the quality factor, and the resonant frequency of

element n. The non-diagonal elements of the matrix Z are the

mutual impedances

Zmn ¼ jxMnm; m 6¼ n: (B5)

The current vector may be obtained as

I ¼ Z�1V: (B6)

In the special case of a dimer with identical elements (self-

impedance, Z0, mutual impedance, ZM, with element 2 being

excited by an external voltage and element 1 being passive),

the currents I1 and I2 can be found as

I1 ¼ �
ZM

Z2
0 � Z2

M

; I2 ¼
Z0

Z2
0 � Z2

M

: (B7)

The resonant frequency will split due to the coupling, so

there will be a lower and an upper resonance at the frequen-

cies defined by the condition

Z2
0 � Z2

M ¼ 0; (B8)

yielding

x01;02 ¼
1ffiffiffiffiffiffiffiffiffiffi

16
j
2

r ; (B9)

where

j ¼ 2M

L
(B10)

is the coupling constant widely used in the theory of MI

waves.6,7 Note that if the coupling constant is negative, then

the lower resonance is antisymmetric, with the currents in anti-

phase, whereas the upper resonance is symmetric, with both

currents in phase. The symmetric and antisymmetric resonan-

ces swap if the sign of the coupling constant changes.

Note that the concept of magnetoinductive waves propa-

gating on a chain of coupled meta-atoms is valid also in this

elementary case of two coupled meta-atoms. Within the gen-

eral MI wave picture,7 a chain of N meta-atoms supports N
distinct eigenmodes of magnetoinductive waves (standing

MI waves with sinusoidally varying current along the struc-

ture with zero currents at the boundaries, i.e., in elements at

sites zero and Nþ 1)

IlðnÞ ¼ sin
npl

N þ 1

� �
(B11)

for an element n of an eigenmode l, with l varying from 1 to

N and n from 0 to Nþ 1. In the special case of just two cou-

pled meta-atoms, the two eigenmodes correspond to the sym-

metric and antisymmetric resonances of Eq. (B9).
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