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Abstract

Recent advances in traffic engineering offer a series of techniques to address the network problems due to the explosive growth of Internet
traffic. In traffic engineering, dynamic path planning is essential for prevalent applications, e.g., load balancing, traffic monitoring and firewall.
Application-specific methods can indeed improve the network performance but can hardly be extended to general scenarios. Meanwhile, massive
data generated in the current Internet has not been fully exploited, which may convey much valuable knowledge and information to facilitate
traffic engineering. In this paper, we propose a learning-based network path planning method under forwarding constraints for finer-grained and
effective traffic engineering. We form the path planning problem as the problem of inferring a sequence of nodes in a network path and adapt a
sequence-to-sequence model to learn implicit forwarding paths based on empirical network traffic data. To boost the model performance, attention
mechanism and beam search are adapted to capture the essential sequential features of the nodes in a path and guarantee the path connectivity. To
validate the effectiveness of the derived model, we implement it in Mininet emulator environment and leverage the traffic data generated by both
a real-world GEANT network topology and a grid network topology to train and evaluate the model. Experiment results exhibit a high testing
accuracy and imply the superiority of our proposal.

c© 2018 Published by Elsevier Ltd.
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1. Introduction

Traffic Engineering (TE) is crucial for enhancing the utility
and performance of networks in the era of big data [1, 2]. It
has been a hot topic in recent research trend [1, 2, 3, 4, 5], due
to the increasing demands on dynamic network maintenance,
management and Quality-of-Service (QoS) guarantee [2].

Path planning is one of the most important aspects of TE,
providing selected routing and forwarding paths between nodes
to offer high-performance networks [6, 7]. Due to diversified
services and advanced networking techniques like network vir-
tualization, network dynamics have become a normal phenomenon,
resulting in an increasing demand for path planning under var-
ious requirements and/or conditions [7, 8, 9, 10]. For instance,
forwarding path is restricted to go through one or several given
nodes for e.g. traffic monitoring.

The emerging Software Defined Networking (SDN) paradigm
[11, 12] has gained its popularity and drawn considerable atten-
tions for smooth and rapid development of new TE algorithms,
due to its capability of decoupling the control plane from the
data plane. This decoupling releases computing resources in
commodity switches to simplify switch functions and pull the

forwarding decision making and computing into a high level
controller, which is able to take global information into consid-
eration.

With the increment of various emerging applications, mas-
sive data has been produced from the Internet [13, 14]. The
hidden information behind the data implies important knowl-
edge [15] for efficient TE [3]. Data-driven applications take as
input the massive data to help adapt learning algorithms into
distinctive circumstances. Successes in [16, 17] clarify the im-
portance of leveraging useful data generated from the network.
Their large-scale data analysis enables promising applications,
such as semantic interpretation and user experience improve-
ment.

We intend to extend data-driven learning promoted by deep
learning methods to the path planning problem. Deep learning
has been massively developed and rapidly deployed by a variety
of applications [18], which makes the utmost data be fully per-
ceived by the application. Though deep learning methods have
succeeded in many fields, challenges still exist when being in-
troduced into network applications [3]. For example, dynamics
in networking needs human-like behavior for model to fit. To
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solve this problem, the authors in [4, 5] incorporated reinforce-
ment learning to flexibly make decisions in a dynamic network
environment, but they focus on coarse flow split ratio control
for communication transferring.

To make a further progress, in this paper we aim to have
finer-grained network-level path planning driven by empirical
traffic data. To achieve this purpose, we treat the network path
as a sequential data, since a path with a set of forwarding hops
explicitly express its serializability. One notable sequence anal-
ysis technique comes from Natural Language Processing (NLP),
where sentences or phrases are intrinsically serialized. Inspired
by sentences analysis in NLP, we merge neural networks and
build a sequence-to-sequence (seq2seq) model [19] to capture
inner characteristics of sequence-like traffic forwarding and rout-
ing path. Abundant traffic information from the network can
provide a natural way for model training. We will extract se-
quential features from empirical traffic data and apply them into
path discovery.

The main contributions of this paper can be summarised as
follows:

• This paper proposes a learning-based data-driven model
for network planning under constrained conditions, which
can be used in SDN controllers to perform finer-grained
TE. The model is derived based on the seq2seq process-
ing model with empirical knowledge from historical traf-
fic data. With the derived model, we can have a sequence
of nodes as input and predict a sequence of nodes as tar-
get path.

• In order to infer a reasonable order of nodes in the tar-
get path, attention mechanism is adapted to calculate the
correlations between input sequence and target sequence.

• To further ensure the connectivity of the output target
path from the derived model, we apply beam search to
extensively search candidate sequences. Beam search is
able to help the prediction of target paths move out of
local optima and explore global optimal solutions. The
model can check the order of nodes in terms of the con-
nectivity of a path and only ouput the available ones.

• To validate the effectiveness of the derived model, we im-
plement it in a typical SDN emulator environment, i.e.,
Mininet, and leverage the traffic data generated by both
a real-world GEANT network topology and a grid net-
work topology to train and evaluate the model. Experi-
ment results exhibit a high testing accuracy and imply the
superiority of our proposal.

The remainder of the paper is organized as follows. In Sec-
tion 2, related work is described. Section 3 introduces prelim-
inary work. A detailed description of our proposed model is
presented in Section 4. Experiment results and analysis are con-
ducted in Section 5. Finally, we conclude this study in Section
6.

2. Related Work

Path planning has been widely studied in wireless networks
[8, 9, 10] for producing optimal forwarding paths under con-
straints. Especially, it is crucial for energy-sensitive applica-
tions in e.g. wireless sensor networks to meet resource con-
straints. Most of existing algorithms have been designed at
application-level.

Although application-level designs can surely improve net-
work performance, they are not optimised based on general
networking scenarios but are based on limited application sit-
uations, e.g., leveraging two classic layered approaches in [8].
In contrast, the network-level approaches are finer-grained and
can be generalized to different network architectures.

In [20], the authors studied and proposed dynamic rout-
ing algorithms for online unicast and multicast requests. The
authors considered switch bandwidth, link capacity and band-
width demand together to maximize accumulated bandwidth of
admitted requests. They separated the problem into two issues,
link resource cost regression and link capacity maximization
without the knowledge of previous request arrivals.

Encoding path is essential for forwarding table state main-
tained in a switch [21]. To relieve the pressure on the main-
tenance of switch tables, the authors in [21] proposed a path
encoding algorithm to handle variable length interface labels
that can shorten any network paths.

A dynamic routing framework based on SDN controller was
described in [22], which is to provide the solution for achieving
the maximum throughput and minimum cost. The authors used
an LSTM model to predict traffic matrix, based on which the
routing rules are generated by traffic routing units.

Very recently, in [5], the authors aimed to schedule conven-
tional dynamic traffic and Internet of Things (IoT) with flexi-
ble time. They proposed to integrate the reinforcement learn-
ing into the decision of IoT traffic transmission. They firstly
identified the inefficiency for IoT transmission, and then built
a learning model to formulate IoT traffic scheduling issue and
determine a controlled split ratio for it. The reward function
was given by weighted sum of three types of traffic volumes.

In [4], Chinchali et al. gave a clear definition of the tar-
geted Traffic Engineering (TE) problem, and successfully built
a model-free reinforcement learning for a general dynamic rout-
ing framework. Two key methods were included, an actor-critic
model with experience replay training and a TE-aware explo-
ration, which absorbs the trade-off policy of exploration and ex-
ploitation in reinforcement learning. In addition, they utilized
the network utility, formulated in [23], of throughput and delay
as the reward. Their empirical experiments showed promising
results for applying of reinforcement learning in TE problems.

In spite of the successful integration of deep learning, as
aforementioned, they only focused on high level flow-oriented
split ratio optimization [5], and assumed K available candidate
solutions prior to dynamic decisions [4]. In contrast, in this pa-
per we will consider a finer-grained traffic learning and achieve
network-level path planning.
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3. Preliminaries

The seq2seq model [19] is an expanded and specific encoder-
decoder model in neural networks for handling sequence data,
including sequence data learning, transferring and translation.
It now prevails in neural machine translation, text summariza-
tion and speech recognition in Natural Language Processing
(NLP), image captioning and other sequence data applications.
In this section, we give an overview of the formulation and the
details of the seq2seq model. To facilitate the understanding,
the basis of neural networks and the encoder-decoder structure
are introduced in Sections 3.1 and 3.2, respectively, followed
by the seq2seq model in Section 3.3.

3.1. Basis of neural networks

This study concentrates on building a prototype neural net-
work model to extract and restore hidden optimal paths between
network nodes based on empirical forwarding trace data. In this
section, we introduce fundamental concepts of prevalent neural
network models as background knowledge.

3.1.1. Artificial neural network
As is well known that neural network is deeply inspired by

the biological structure of human brain, an artificial neural net-
work consists of a collection of neurons (nodes), connections
(weights), and activations (linear or non-linear functions). Fig.
1 illustrates the standard architecture of an artificial neural net-
work.
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Fig. 1. The standard architecture of a fully connected neural network.

In Fig. 1, an n-layer neural network model is presented.
Technically, three types of layers are involved: input layer, Ilayer,
hidden layer, hi, where i = 1, 2, 3, ..., n, and output layer, Olayer.
Essentially, the size of input layer equals to the dimension of
input data, and the size of output layer matches the dimension
of output layer. As for the size of hidden layer, it depends on
the choice of specific applications. Let −→x with dimension lx

represent the inputs, −→wi with dimension lwi denote the weights
in the i-th hidden layer, fi(−→wi, fi−1) with the inputs of the previ-
ous one fi−1 be the outputs of the i-th hidden layer, and −→y with
dimension ly represent the outputs of the output layer.

Depending on specific circumstances, the choice of the func-
tion f of hidden layer outputs could be linear or non-linear ac-
tivation functions:

• σ(·): sigmoid or logistic function;

• tanh(·): hyperbolic tangent function;

• Relu(·): rectified linear units [24].

The softmax function is widely used as the activation func-
tion of the output layer for multi-classification, and sigmoid is
usually used for binary classification.

3.1.2. Recurrent neural network
A noticeable drawback of basic artificial neural network is

that it cannot model sequential data which are interrelated or-
derly. In this section, we introduce a variant structure, Recur-
rent Neural Network (RNN), which is particularly devised for
sequential modeling in neural networks. RNN has gained its
popularity and shown promising performance thanks to its ca-
pability of taking information from past to subsequent inputs.

In detail, RNN attempts to memorize sequential histories
and merge them into current observation in order to predict the
next sample element in the same sequence. The “memory” unit
is usually called cell. A simple architecture of RNN is presented
in Fig. 2.
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Fig. 2. A simple architecture of RNN.

In Fig. 2, it can be seen that at time step t, an input sample
xt is pushed into a cell (described below), based on which the
hidden state st is generated. Ultimately, the output ot would be
given by the hidden state st.

The hidden states and outputs can be represented in a math-
ematical way as follows:

• st = f (Uxt +Wst−1), where U is an input matrix and W is
the weights similar to the basic artificial neural network;

• ot = so f tmax(V st), where V is an output matrix mapping
the hidden state st into classification scores;

• f (·) is considered as the core component, widely accepted
as the basic cell tanh(·), Long Short Term Memory (LSTM)
cell [25] and Gated Recurrent Unit (GRU) cell [26].

It is worth noting that the LSTM structure overcomes long
sequence learning and gradient vanishing problems with input,
output, and forget gate to sift and keep key information. It is
suitable for memorizing long-term forwarding hops and forget-
ting unnecessary interference caused by predecessors. There-
fore, we choose LSTM cell in our work.
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3.2. The Encoder-Decoder structure
The goal of Encoder-Decoder structure is regarded as a mech-

anism to map the data in the source space into the desired infor-
mation in the target space via an intermedia space. Specifically,
two parts are included: Encoder and Decoder. Let x and y de-
note the data in the source space and target space, respectively,
and m represent the data in the intermedia space. Therefore, we
have

Encoder : −→m = En(−→x ),∀−→x ∈ Ds,∀−→m ∈ Dm

Decoder : −→y = De(−→m),∀−→y ∈ Dt,∀−→m ∈ Dm

where Ds is the source space with dimension lx, Dm is the in-
termediate space with dimension lm, and Dt is the target space
with dimension ly.

The Encoder-Decoder structure is able to learn the source
space knowledge to align with the desired target space knowl-
edge, referred as “translation” or “transduction” in some cases.

Note that the setting of Ds = Dt ensures that our constrained
path planning problem in traffic engineering, consiering the re-
quest pairs (source -> destination nodes) and the constrained
conditions (source -> constraints -> destination), can be fitted
into this scheme, because they are in the same objective space
as controlled network nodes.

3.3. The sequence-to-sequence model
The seq2seq model was proposed in [19] for neural ma-

chine translation, which now is extended as general-purpose
sequential model in many other spheres, for instance, conver-
sational modeling, image captioning, etc. An evident advan-
tage of seq2seq model is that it can encode variable length se-
quences into a fixed-length coding vector bridging the gap be-
tween source space and target space.

𝑠"# 𝑠"$##𝑠"%##

𝑥"%# 𝑥" 𝑥"$#

𝑆𝑂𝑆 𝑜# 𝑜*

𝑜# 𝑜* 𝑜+

𝑠,#

𝐸𝑂𝑆

⋯

⋯

𝑠"/ 𝑠"$#/𝑠"%#/ 𝑠,/

⋮

⋮

Source input

Target output

Encoder

Decoder

Fig. 3. An abstract structure of seq2seq model.

A illustration of the seq2seq model is depicted in Fig. 3.
As can be seen, two parts are included: Encoder marked red
and Decoder marked blue. With the source input −→x , adding an
ending symbol, EOS, there can be stacked by multiple layers

of the RNN instances in Encoder compressing ordered infor-
mation into final hidden states, which is then sent to the coun-
terparts in Decoder. On the opposite side, Decoder takes the
hidden states and the estimated outputs, adding a starting sym-
bol, SOS, as the initialization and inputs of its corresponding
RNN instances, respectively.

4. The Proposed Framework

This study aims to propose a forwarding method based on
seq2seq model for path planning between two nodes, through
learning common paths in a network from historical forwarding
experiences.

4.1. Problem formulation
For the sake of clarity of illustration, Definition 1 is first

given in this section.

Definition 1. The source sequence and target sequence are two
network paths between source node and destination node. Each
of them contains a set of network nodes to be traversed from
source to destination.

The problem we considered in this paper is that, given the
source sequence and constrained condition, we are going to find
the target sequence which satisfies the constrained condition.
For example, a source sequence can be (source, node 1, node 2,
..., node n, destination), and a constrained condition is that this
network path need go through a particular node k. The target
sequence is therefore (source, node 1, node 2, ..., node k, ...,
node n, destination).

For clarity, we denote source and target sequences as bold
vector −→x ,−→y , where −→x = (x1, x2, ..., xnx ) with length nx and−→y = (y1, y2, ..., yny ) with length ny. The lower case letter x, y
represent the element in a sequence.

4.2. The proposed forwarding method
Fig. 4 provides a high-level illustration of the proposed for-

warding method based on seq2seq model. The Encoder takes
the source sequence as input and produces hidden states that
are fed into the Decoder and the Attention (used to ensure rea-
sonable order of nodes in a sequence). The Decoder receives
the last hidden state from the Encoder to produce its own hid-
den states which are fed into the Beam search (used to enhance
the performance of the proposed model) and back to the At-
tention, as the dashed arrow shows. The Attention scores the
relevance between the hidden states of the Encoder and the De-
coder to output context vectors. Eventually, the context vectors
are jointly fed into the beam search with the hidden states of the
Decoder, which is represented by the addition icon in the fig-
ure. The details of Encoder and Decoder have been illustrated
in Section 3.2, and the details of Attention and Beam search will
be elaborated in Sections 4.3 and 4.4.

Let the Greek letters θ, ω represent parameters and weights
in neural networks, and let the capital letter Ds,Dt denote the
dataset of source sequence and target sequence, respectively.
The number of elements inDs andDt is k.
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⋯

⋯

Encoder Decoder

Attention
Context Vector

Beam search

Fig. 4. A high-level illustration of the proposed forwarding method based on
seq2seq model

As described in Section 3.2, we have the form of Encoder
below:

−→mi = En(−→xi , θ),
−→xi ∈ Ds, i = 1, 2, 3, ..., k (1)

where −→xi is one of k elements in the dataset Ds, and θ is the
parameters of Encoder.

The source sequence is encoded into a fixed-length (dimen-
sion) vector as an intermedia sequence to bridge the gap (in
terms of the number of network nodes) between a source se-
quence and a target sequence.

Equivalently, the Decoder can be given by:

y j
i = De(

−−→
y− j

i , ω|−→mi),
−→yi ∈ Dt,

i = 1, 2, 3, ..., k, j = 1, 2, 3, ..., ny

(2)

where − j indicates a sub-sequence (y1, y2, ..., y j−1) of −→yi before
the j-th element appears, and ω is the parameters of Decoder.

For simplicity, Eqs. (1) and (2) can be re-written as follows:

y j
i = F (

−−→
y− j

i , θ, ω|−→xi),
−→xi ∈ Ds,

−→yi ∈ Dt,

i = 1, 2, 3, ..., k, j = 1, 2, 3, ..., ny

(3)

Normally, −→xi is a two-element sequence, source xsrc and
destination xdst for basic forwarding. Meanwhile, with a con-
strained condition, −→xi will include particular network nodes, e.g.
node IDs, through which a flow should go. This can be ex-
pressed as:

y j
i = F (

−−→
y− j

i , θ, ω|xsrc, xres, xdst),

xsrc, xres, xdst ∈ Ds,
−→yi ∈ Dt,

i = 1, 2, 3, ..., k, j = 1, 2, 3, ..., ny

(4)

It is worth noting that xres represents a single restricted node,
whereas a set of restricted nodes can be added, namely, −−→xres =

{xres1, xres2, ...} ⊂ Ds.

Because the sequence output from standard seq2seq model
could be variant in statistics due to flexibility and randomness,
the network path represented by the target sequence, y j

i , may
encounter the problem of non-connectivity. This is not tolerant
in the forwarding method for path planning in traffic engineer-
ing. To effectively alleviate this issue, the attention mechanism
[27, 28] and beam search [29] will be employed. The attention
mechanism is an enhancement for context relevancy learning,
and the beam search tops the best score and attempts to ensure
the link connectivity. The details of leveraging attention mech-
anism and beam search can be found in Sections 4.3 and 4.4.
The situation of rarely happened non-connectivity path in the
target sequence after the adoption of attention mechanism and
beam search is discussed at the end of Section 4.4.

4.3. Attention mechanism

The attention mechanism, also named alignment, has been
applied in [27, 28], aiming at aligning the elements of a sen-
tence or a phrase in a correct order in neural machine transla-
tion. In this study, it is adapted to ensure reasonable sequence
order by scoring the relevance of the elements between source
space and target space.
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context 
vector

Fig. 5. An illustration of attention mechanism

Fig. 5 illustrates the basic idea of attention mechanism.
Instead of directly using encoder hidden states, the attention
mechanism sums the encoder hidden states as the context vec-
tor by weights wai, which are scored with decoder hidden states.
Thus, along with the context vector, the model also takes hidden
states of the last decoder layer as comprehensive information to
obtain the final target outputs. The score function could be mul-
tiplicative or additive, depicted in [27, 28].

Because the attention mechanism captures key relevance,
we take advantage of it to effectively restore the complete re-
stricted forwarding paths. The Decoder can therefore use the
context vector −→c with the last decoding hidden state

−→
hD as fol-

lows:
5



/ Future Generation Computer Systems 00 (2018) 1–10 6

ϕi = FAttention(hE,i, hD,t−1)
∀i, 1 ≤ i ≤ nx

∀t, 1 ≤ t ≤ ny

(5)

αi = so f tmax(ϕi) (6)

−→ct =
∑

i

αi · hE,i (7)

where the relevance score between Encoder hidden states hE,i, 1 ≤
i ≤ nx and the Decoder previous step hidden state hD,t−1 is de-
noted as ϕi. αi is the weight for Encoder hidden states to com-
pute weighted sum of the context vector, −→ct .

The final output of target sequence with the context vectors
taken into account can be expressed as:

y j
i = F (

−−→
y− j

i , θ, ω,
−→ci |−→xi) (8)

y j
i = F (

−−→
y− j

i , θ, ω,
−→ci |xsrc, xres, xdst) (9)

where Eq. (8) shows the output without constrained condition,
and Eq. (9) denotes that with constrained condition taken into
account.

4.4. Beam search

The aforementioned LSTM cell, the seq2seq structure and
the attention mechanism enormously facilitate sequential data
sensing and cognition. However, the single output result (i.e.,
only one target output) may cause local optimum. Especially,
sequential models normally cannot rerun, failing to circumvent
temporary single highest score and gain rewards in the long run.
A potential solution is to collect as many candidate traces as
possible to avoid this local optimum problem. Hence, in this
study the beam search algorithm [29] is adapted to achieve this
purpose and boost the performance of the proposed model.

SOS

EOS

EOS

Fig. 6. An example of beam search with beam width-7

The idea of beam search is to widen the model search range
by buffering n traces, which provides a list of outputs by scor-
ing the sequence context. n is the beam search width. A simple
example is presented in Fig. 6, where 7 paths are drawn with 7
colors, marked with starting symbol, SOS, and ending symbol,
EOS. Beam search can efficiently explore the target space and
output the top-n paths against the single result. Compared to
breadth search, which exhausts all options, beam search elimi-
nates highly unlikely traces to accelerates training and testing.

In this study, beam search is adapted in the Decoder not
only for providing optimal target output, but also for presenting
the target output as valid forwarding path. Let beam search
width n be 5, a list of top 5 sequences are therefore buffered.
From the top 1 to the last (i.e., 5 in this case), any duplicate
nodes are eliminated canceling wasteful loops, and checking
whether the successor node is a neighbor of the previous node to
verify the connectivity of forwarding path of the output target.

It is worth noting that the consideration of attention mecha-
nism and beam search can still miss a very small fraction of path
validity (path non-connectivity) from the empirical results. As
a matter of the fact, we can conduct the last guarantee via re-
computing the non-connectivity path. For example, if all 5 can-
didates lose their validity, we choose the top 1 and recompute
the path between the disconnected node and the destination. In
practice, this situation may lead to long delay, however it occurs
very rarely.

5. Experiments and Analysis

In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed learning-based path planning model
under constrained conditions. SDN is used as the network envi-
ronment due to its popularity and pervasive application in traffic
engineering [2]. In this section, we employ the Mininet em-
ulator [30], and deploy our proposed learning-based forward-
ing model in POX, a typical and popular implementation of
SDN controller, to make decisions for path planning under con-
strained conditions. Mininet emulates a virtual network with a
set of virtual hosts that can run various network services. It is
specifically designed for SDN scenario embedded with Open-
Flow specification.

In what follows, we will show the environment settings, re-
sults and discussions of our experiments. The experiments con-
sist of two major parts:

1. The training and evaluation of seq2seq model
2. SDN network simulation employing the model

5.1. The sequence-to-sequence model
The seq2seq model is built on top of the TensorFlow library

published by Google [31]. Two types of network topology are
selected in our evaluation: the 2012 Europe GEANT network
topology with 40 nodes, shown in Fig. 7, and a 10x10 Grid net-
work topology with 100 nodes, shown in Fig. 8. We also con-
strain the bandwidth between switches 1 as 50Mbps and link

1In SDN, network nodes are called switches.
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delay as 2ms. Meanwhile, to eliminate the impact of connec-
tion between host and switch on network performance, the host-
switch link bandwidth is set to be 1000Mbps with 2ms link de-
lay. In our experiments, we set the constrained condition, −−→xres,
to be one-node and multi-node (i.e., two nodes), respectively.
Namely, the planned network path between source and destina-
tion need go through one particular node (one node constrained)
and two particular nodes (multi-node constrained) in the net-
work. In the following, we will show training data preparation
and the training and evaluating of the proposed model, for each
of the two topologies.
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Fig. 7. The topology of Europe GEANT network

Fig. 8. The topology of 10x10 grid network

• Training data preparation

To collect the training data, we first implement the Dijk-
stra’s shortest path algorithm to generate a collection of static
paths between nodes in a network. The shortest paths between
nodes are usually not unique, but we focus on the unicast scheme
and extract only one for each source and destination pair. These
paths are considered as optimal experiences. In addition to
these optimal experiences, we shall generate the restricted ex-
periences as the experiences for traffic forwarding under con-
strained conditions.

First of all, the data preparation for one-node constraint
(i.e., the path between source and destination need go through a
given node) is detailed below, followed by the multi-node con-

straint (for the convenience of presentation, two-node constraint
is considered).

To obtain the restricted experiences, all network nodes will
get chance to be selected as the restricted node (one is selected
each time) except for the ones that have already been in the
paths collected for optimal experiences and those that lead to
routing loops (the examples will be provided below to illus-
trate this routing loop situation). In order to form the restricted
paths (the paths collected for restricted experiences) with the
one-node constraint, two separated paths are calculated: the
one between the source and the constrained node and the one
between the constrained node and the destination, respectively.
Then, these two paths are concatenated as the restricted path.

Let us use the example below in the GEANT network topol-
ogy to illustrate how the restricted path is collected. We con-
sider two scenarios of traffic forwarding, each with one con-
strained node. The first scenario has node 1 as the source, node
5 as the destination, and node 2 as the constrained node, i.e.,
xsrc = 1, xres = 2, and xdst = 5, represented by (1, 2, 5). A
second scenario has xsrc = 1, xres = 16, and xdst = 5, denoted
by (1, 16, 5). The two separated paths for (1, 2, 5) are:

(1, 2)⇒ (1, 0, 2), (2, 5)⇒ (2, 0, 4, 5),

and the two separated paths for (1, 16, 5) are:

(1, 16)⇒ (1, 33, 34, 16), (16, 5)⇒ (16, 4, 5).

The path for the scenario of (1, 2, 5) will not be collected as
the restricted path for restricted experiences, because a routing
loop is involved in this path due to the overlapped node 0 in
these two separate paths. In contrast, the path for the scenario
of (1, 16, 5) will be collected as the restricted path for restricted
experiences.

One sample data in the dataset for model traning is a pair of
source and destination and the path for the target sequence:

{(1, 5), (1, 0, 4, 5)},
or

{(1, 16), (1, 33, 34, 16)}.
When generating the restricted paths for restricted experi-

ences, we also consider the number of hops in the network, i.e.,
we only collect the paths whose length in terms of hops be-
tween source and destination is equal to or less than 20. Table
1 shows the size of collected data based on the length of paths.
Note that there is no big difference between the data size when
considering different path lengths in GEANT network topol-
ogy. That is because most of the forwarding paths between any
random source and destination pair are close to 10 hops. There-
fore, in the experiments, we train and test the proposed model
using GEANT network topology with the path length of 20, as
it contains the cases of path length of 10 and 15 hops.

Table 2 presents the data size for training and testing dataset
split by the ratio of 80%:20%. Note, as mentioned above, only
the path length of 20 in GEANT network is used for training.

On top of one-node constraint dataset, two-node constraint
dataset is easily constructed and the path representation is very

7
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Table 1. Data size by path length of one-node constrain

Length = 10 Length = 15 Length = 20

GEANT 16094 17946 17962
Grid 89086 290424 421844

Table 2. Data size of the training and testing set of one-node constrain

Length = 10 Length = 15 Length = 20

GEANT
Training 14369
Testing 3593

Grid
Training 71269 232339 337475
testing 17817 58085 84369

similar. We firstly select a source and destination pair as our ob-
jective, then search the extracted one-node constraint dataset to
pick all paths that share the same source but are not embedded
into its shortest path. Finally, we concatenate the one-node con-
strained path with the destination as the two-node constrained
path. An example is presented below:

Suppose we want the pair (1, 3) to be a two-node constrained
path. In one-node constrained path dataset, we have the path of
(1, 16, 5) as (1, 33, 34, 16, 4, 5). It is easy to check that (1, 16, 5)
is not a segment of the shortest path of (1, 3). As such, (1, 16, 5, 3)
shall be the two-node constrained path of the pair (1, 3),

(1, 16, 5)⇒ (1, 33, 34, 16, 4, 5), (5, 3)⇒ (5, 3)

and the complete path shall be:

(1, 16, 5, 3)⇒ (1, 33, 34, 16, 4, 5, 3)

The dataset size is shown in Table 5.

• Training and evaluating the proposed model

As has been described in the above sections, we set the
hyper-parameters of the proposed model as follows: in the En-
coder, two stacked bi-directional LSTM layers are adopted,
which can be regarded as four layers. As opposite, the Decoder
has four uni-directional LSTM layers. The size of hidden layer
is 1024, the embedding size is 100 for nodes (e.g., their IDs)
mapping into a vector space, and the beam search width is 5.
The model is trained using the mini-batch method with batch
size 100 and the Adam optimizer [32]. The experiments are run
in a server with Intel 24-core Xeon E5-2650 CPU, 32GB mem-
ory and GTX GeForce 1080Ti. The training results of GEANT
network topology and grid network topology are shown in Ta-
ble 3 and Table 4, respectively.

Table 3 indicates that beam search helps gain better perfor-
mance of the model. The beam width of 1 refers to the sit-
uation that only the first outcome is taken into consideration,
while beam width of 5 refers to the situation that the model will
output 5 candidate paths, and if there is any disconnected path

Table 3. The accuracy of the training and evaluating of the proposed model in
the GEANT network

Beam=1 Beam=5
Length=20 Length=20

GEANT
Training 0.9794 1.0
Testing 0.9740 0.9991

Table 4. The accuracy of the training and evaluating of the proposed model in
the grid network

Beam=5
Length=10 Length=15 Length=20

Grid
Training 1.0 0.9990 0.9998
Testing 0.9901 0.9984 0.9987

found, the model will move to the next candidate and perform
the same check.

An intriguing discovery of path inference is worth to note.
Since the dataset contains non-restricted paths (shortest paths in
this study) and restricted paths, and it is evenly randomly split
into training and testing set, the model might not witness the
shortest path, i.e., {(1, 5), (1, 0, 4, 5)} may only occur in testing
data. The model is somehow still able to discover the corre-
sponding non-restricted path. That is {(1, 5), (1, 0, 4, 5)} is not
witnessed in training, nevertheless the model can still output
(1, 0, 4, 5) with the input (1, 5). We conjecture that the neural
network is capable of extracting sub-sequential structure em-
bedded in a super-sequence. This feature implies that the pro-
posed model can effectively capture correct paths with partial
experiences. Another fact is there is still a tiny fraction of paths
that cannot be covered to guarantee their connectivity. We con-
duct a final check to fix this problem as discussed in the end of
Section 4.4.

Furthermore, we extend our experiments to two-node con-
straint as an example of multi-node constraint, where the col-
lection is based on one-node constraint, as described above.

Table 5. The accuracy of the training and testing in two-node constraint exper-
iments and dataset size, beam width=5.

Training Testing Data Size

GEANT 1.0 0.9999 154663
Grid 0.9993 0.9999 4038738

Table 5 shows the accuracy of the training and testing with
two-node constraint experiments. The data sizes of two net-
work collections, GEANT and Grid topology, are 154663 and
4038738, respectively.

5.2. Experiment results and analysis

In what follows, we will introduce the details of the exper-
iment results conducted by our proposed model. In order to
show the performance of our proposed model, we use the result
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from the model for the network without any constrained con-
ditions as the baseline. The results of one-node constraint are
shown in Table 6 and Table 7, respectively, for GEANT topol-
ogy and grid topology.

We set up a host for each switch to generate packets. 100
source-destination pairs are randomly selected. Clearly, the 100
pairs interfere with each other heavily, which causes frequent
request conflicts and bandwidth competition. Hence, the net-
work congestion happens frequently as well.

Table 6. Experiment results of one-node constraint in the GEANT network

Throughput Congest Delay Delay

Non-res 1136.15Mbps 295.45ms 15.62ms

Res
100% 711.48Mbps 343.36ms 23.21ms
50% 908.04Mbps 312.49ms 20.02ms
20% 1048.17Mbps 307.03ms 16.74ms

Table 7. Experiment results of one-node constraint in the grid network

Throughput Congest Delay Delay

Non-res 1267.67Mbps 329.13ms 25.71ms

Res
100% 781.39Mbps 344.29ms 41.15ms
50% 1105.09Mbps 380.40ms 33.00ms
20% 1217.33Mbps 364.47ms 36.76ms

In Table 6 and Table 7, three metrics of network perfor-
mance are presented, i.e., average throughput, delay in con-
gested condition, and delay in non-congested condition. “Non-
res” represents the network without any constrained conditions,
and “Res” denotes the network with constrained conditions.
The percentage in “Res” indicates the volume of traffic that are
forwarded by restricted paths. Note that, as our main work is
focusing on proposing a learning-based forwarding strategy, at
this point, the forwarding strategy is to randomly choose a con-
strained node without taking the performance metrics into ac-
count. It is reasonable that the random pick might deteriorate
the throughput because the paths may lead to unexpectedly long
path. It therefore overlaps with more other traffic paths, which
triggers more traffic congestion.

As can be seen from the results shown in Table 6 and Ta-
ble 7, despite the performance being polluted under 100% re-
stricted paths, it is not affected heavily for regulating a part of
traffic in both topologies. 20% restrictions show very promising
throughput since it is very close to baseline result (network per-
formance under no constrained conditions). As for delay of the
network with constrained conditions, both congested and non-
congested conditions have no big difference compared with the
network without any constrained conditions, emphasising the
superiority of the proposed model.

For two-node constraint experiment results, in Table 8 and
Table 9, three experiments are conducted, measured by three
performance metrics.

Table 8. Experiment results of two-node constraint in the GEANT network

Throughput Congest Delay Delay

Non-res 1136.15Mbps 295.45ms 15.62ms

Res
100% 494.32Mbps 373.97ms 29.08ms
50% 877.31Mbps 358.21ms 22.27ms
20% 1076.22Mbps 338.40ms 18.24ms

Table 9. Experiment results of two-node constraint in the grid network

Throughput Congest Delay Delay

Non-res 1267.67Mbps 329.13ms 25.71ms

Res
100% 690.67Mbps 378.26ms 40.01ms
50% 1056.25Mbps 358.82ms 31.67ms
20% 1242.23Mbps 390.22ms 28.79ms

For GEANT topology, the throughput of 100% one-node
constraint paths is significantly higher than that of two-node
constraint paths as well as the counterpart of grid topology.
However, in 50% situation, the throughput of two-node con-
straint are just slightly below the one-node case, in both two
network topologies. It is worth noting that the throughput of
two-node constraint is slightly higher than that of one-node sit-
uation. This may indicate that the network transferring with
more hops do not always cause more interference. We conjec-
ture that some of two-node constraint paths truly circumvent
local busy cliques, which trades off delay but reduces routing
conflicts. It also brings the chance that reasonable paths plan-
ning could increase the network throughput trading off accept-
able delays to achieve optimized network utility.

There are numerous case studies that require fine-grained
traffic engineering, e.g., traffic filtering, load balancing, fire-
wall, etc. Our work leverages the experiences learned from his-
torical traffic data, which abundantly exist in current Internet,
to achieve this target. The self-learning feature of the proposed
model intends to make full use of existing experiences to dis-
cover implicit traffic trend.

6. Conclusion

In this paper, we have proposed a learning-based network-
level forwarding method for path planning in the network with
constrained conditions. We have sought to introduce well-defined
deep learning model into network traffic engineering sphere by
formulating the traffic forwarding problem as a sequence pre-
diction problem. We have developed the learning-based model
for traffic forwarding based on the sequence-to-sequence model
enhanced by attention mechanism and beam search. Our pro-
posed model has been implemented in the controller of an SDN
architecture in Mininet emulator. Experiment results have shown
the superiority of the proposed model in path planning in the
network with constrained conditions.
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Highlights 
 

 A sequential model learns implicit paths from historical traffic experiences 

 Attention mechanism captures correlations between source paths and target paths 

 Beam search guarantees path connectivity by holding candidate paths 

 A high testing accuracy implies the superiority of our proposal 


