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ABSTRACT

In this paper we examine various options for the calculation of the forced signal in climate model simu-

lations, and the impact these choices have on the estimates of internal variability. We find that an ensemble

mean of runs from a single climate model [a single model ensemble mean (SMEM)] provides a good estimate

of the true forced signal even for models with very few ensemble members. In cases where only a single

member is available for a givenmodel, however, the SMEM fromothermodels is in general out-performed by

the scaled ensemble mean from all available climate model simulations [the multimodel ensemble mean

(MMEM)]. The scaled MMEM may therefore be used as an estimate of the forced signal for observations.

The MMEM method, however, leads to increasing errors further into the future, as the different rates of

warming in the models causes their trajectories to diverge. We therefore apply the SMEM method to those

models with a sufficient number of ensemble members to estimate the change in the amplitude of internal

variability under a future forcing scenario. In line with previous results, we find that on average the surface air

temperature variability decreases at higher latitudes, particularly over the ocean along the sea ice margins,

while variability in precipitation increases on average, particularly at high latitudes. Variability in sea level

pressure decreases on average in the Southern Hemisphere, while in the Northern Hemisphere there are

regional differences.

1. Introduction

The climate we observe is made up of an externally

forced component (dominated by the anthropogenic

warming trend, interspersed with the volcanic signal)

and a component due to the internal variability of the

climate system. Despite the fact that internal variability

and the forced signal are not necessarily separable,

especially on regional scales (see, e.g., Otterå et al. 2010;
Maher et al. 2015; Swingedouw et al. 2017), there are

many analyses for which it is useful to study the internal

variability and/or the forced signal in isolation, in so far

as it is possible. Accordingly, there has been some dis-

cussion on the best way to achieve the separation of the

two components. Previous methods include removing a

linear trend (e.g., Wyatt et al. 2012; Chylek et al. 2014,

among many others), removing the regression of the

global mean from regional sea surface temperatures

(SSTs; e.g., Trenberth and Shea 2006), removing the
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regression of the global mean and an estimate of aerosol

forcing (Mann and Emanuel 2006), and removing the

simple mean of an ensemble of climate simulations

(e.g., Knight 2009). However some of these methods,

particularly linear detrending, have been shown to be

inaccurate and may give rise to misleading results

(Mann et al. 2014; Steinman et al. 2015a; Frankcombe

et al. 2015).

One method of isolating the internal variability from

the response to external forcing is to estimate the

forced response using the average of an ensemble of

simulations from a climate model. Following from our

assumption of the separability of the forced and in-

ternal components, the phase, amplitude, and period-

icity of internal variability are functions of the initial

conditions only. Thus, given an increasingly large en-

semble of simulations from the same model driven with

identical external forcing, the ensemble average will

converge to the true forced response. Once this forced

response has been estimated, it can then be removed

from individual simulations, and what remains is the

internal variability. However, when making use of an

ensemble such as phase 5 of the Coupled Model

Intercomparison Project (CMIP5), which contains

members from different climate models that will have

slightly different responses to the same forcing, addi-

tional errors are introduced.

In applying the forced signal from the models

to observations, even more potential errors are in-

troduced, since the external forcings applied to the

models are not necessarily correct and complete, in

that the model responses to those external forcings will

also contain errors. To partly ameliorate this error, the

model-forced signal is scaled to match observations (to

take into account potentially different rates of warming

in the models and the real world). The remainder, after

this scaled forced signal is subtracted from the obser-

vations, then provides an estimate of the observed in-

ternal variability (Steinman et al. 2015a; Frankcombe

et al. 2015). There is, however, debate about the best

way of constructing the ensemble mean of the climate

models so as tominimize errors. Steinman et al. (2015a)

used the multimodel ensemble mean (MMEM), con-

structed as the average of all the available CMIP5

models, as well as an MMEM from a subset of the

CMIP5 models (those containing aerosol indirect ef-

fects). They also tested the effect of using a single-

model ensemble mean (SMEM) from models with 10

or more members in their ensembles. In each case the

estimate of the forced signal is scaled to match the

observations or model results (the so-called scaled

MMEM or scaled SMEMmethods). The scaled MMEM

method has been shown, in models, to be significantly

better than linearly detrending or using an unscaled

MMEMestimate for the forced signal (Frankcombe et al.

2015). Kravtsov et al. (2015), Kravtsov (2017), and

Kravtsov and Callicutt (2017) claimed that the SMEM

method, since it is constructed using only ensemble

members from individual climate models, is a more ac-

curate approach because it accounts for the differ-

ences in sensitivities of different climate models to

the various types of external forcings. Steinman et al.

(2015b) and Cheung et al. (2017a,b) maintained that the

scaled MMEM is a more useful method in practice be-

cause of the limited number of ensemble members

available to construct the SMEMs. Here we return to

this question using synthetic data where the ‘‘forced’’

and ‘‘internal’’ components are known by construction,

and take a more detailed look at the errors arising from

eachmethod, as well as the range of estimates of internal

variability obtained using the different estimates of the

forced signal. We then apply the method to a future

TABLE 1. Table of CMIP5models used. The number of ensemble

members available for the historical1RCP8.5 scenario are listed

in the second column, and the length of the control run in years is

listed in the third column. ACCESS1.0, ACCESS1.3, BCC_

CSM1.1,BCC-CSM1.1(m),CESM1(BGC),CMCC-CM,CMCC-CMS,

GFDL CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-CC,

GISS-E2-R-CC, HadGEM2-AO, HadGEM2-CC, INM-CM4.0,

IPSL-CM5A-MR, IPSL-CM5B-LR,MIROC-ESM,MRI-CGCM3,

MRI-ESM1, NorESM1-M, and NorESM1-ME each had only one

ensemble member available. EC-EARTH had six ensemble

members available and MIROC5 had five, but the time series did

not extend to the end of the RCP scenario. These models were

therefore used in the calculation of the MMEM but not for esti-

mates of future variability and are not listed in the table. (Expansions

of acronyms can be found online at http://www.ametsoc.org/

PubsAcronymList.)

Model name Historical 1 RCP8.5 Control run length

CanESM2 5 996

CCSM4 6 1051a

CESM1(CAM5) 3 319

CNRM-CM5 5b 850c

CSIRO Mk3.6.0 10 500

FGOALS-s2 3 501

FIO-ESM 3d 800

GISS-E2-H (p1) 2e 540

GISS-E2-H (p3) 2 531

GISS-E2-R (p1) 2 550

GISS-E2-R (p3) 2e 531

HadGEM2-ES 4 575

IPSL-CM5A-LR 4 1000

MPI-ESM-LR 3 1000

a 501 years of control run data were available for precipitation.
b No data were available for precipitation.
c 800 years of control run data were available for SLP.
d Only two ensemblemembers were available for SLP and none for

precipitation.
e No ensemble members were available for SAT.

5682 JOURNAL OF CL IMATE VOLUME 31

http://www.ametsoc.org/PubsAcronymList
http://www.ametsoc.org/PubsAcronymList


scenario from the CMIP5 archive to obtain estimates

of internal variability under increased anthropogenic

forcing.

2. Method

We use SSTs, surface air temperatures (SATs), sea

level pressure (SLP), and precipitation data from the

preindustrial control runs, the historical runs, and future

scenario (RCP4.5 and RCP8.5) runs from CMIP5

(Taylor et al. 2012). The CMIP5 models used are listed

in Table 1. For observations we use monthly SST from

theHadISST1 dataset (Rayner et al. 2003) between 1870

and 2015, and global surface temperatures from

GISTEMP (Hansen et al. 2010) between 1880 and 2015.

For comparison with observations, the CMIP5 historical

runs were extended from 2005 to 2015 using RCP8.5.

Note that we use model SATs rather than blended SSTs

and SATs (Cowtan et al. 2015); however, testing showed

that use of a blended product does not alter the con-

clusions. Likewise, model drift in the control run data

was not corrected for, since detrending the control runs

changed the variance by less than 0.01% per 100 yr on

average. Smoothed time series are calculated using an

adaptive low-pass filter (Mann 2008).

There are various methods of constructing the en-

semble mean from the CMIP5 ensemble to take into

account model independence and/or performance

(see, e.g.,Haughton et al. 2015); however, in this idealized

study we consider a simple mean of all available en-

semble members (here called the MMEM) as our first

estimate of the forced signal. Averaging simulations

from each model and then averaging over all the

models does not alter the conclusions. It is important

to note that there is a distinction between the confi-

dence interval of the MMEM and the potential dif-

ference between the MMEM and the true forced

signal. The MMEM is calculated from a large number

of ensemble members and thus has a narrow confi-

dence interval, as shown by bootstrap resampling in

Steinman et al. (2015a) and by the range of individual

estimates of the internal variability in Steinman et al.

(2015b). On the other hand, with no further in-

formation we cannot tell whether the MMEM thus

calculated is an accurate representation of the ob-

served forced signal.

To estimate potential errors in our methods for

assessing internal variability, we therefore use a large

ensemble of synthetic time series of global-mean surface

air temperature (GMST), where the forced and internal

variability components are known. These synthetic time

series are designed to approximately resemble the CMIP5

ensemble. First the internal variability of the CMIP5 en-

semble is characterized by removing the scaled MMEM

from each member of the historical ensemble, then cal-

culating the autocorrelation and amplitude of variability

FIG. 1. (a) GMST anomalies from CMIP5 models (thin colored lines), along with the

MMEM (black) and the observations (red). (b) MMEM (black) and SMEMs (colored lines)

for GMST anomalies from CMIP5 models. Anomalies are calculated relative to the mean

over the period 1880–1960.
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(as the standard deviation) of the resulting time series.

The synthetic time series of GMST are then generated as

165-yr-long (the same length as the CMIP5 historical

runs) time series of red noise, scaled by the average

autocorrelation and amplitude of the internal variability

estimated from the CMIP5 models. These synthetic time

series of internal variability are then converted into time

series of historical variability by adding either theMMEM

FIG. 2. Error in SMEMandMMEMmethods for a synthetic ensemble representingGMST.

Colored curves show (a) the error of the estimated time series of internal variability and

(b) the standard deviation of the estimated time series of internal variability, where the

variability is estimated using the SMEM method. The dependence on the number of en-

semble members is shown on the x axis. For comparison, the black line shows the median

error using the MMEM and the gray line shows the median error when applying the SMEM

method to the whole ensemble (including time series generated using unrelated SMEMs).

Solid lines show the median value; dotted lines show the 5th and 95th percentiles. In (a), the

colors represent different smoothing time scales applied to the SMEM. The red line in

(b) shows the amplitude of the original time series. In (b), only the results for the case where

no smoothing is applied to the SMEM are shown, since the amplitude correction is not valid

when smoothing is applied.
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or one of the SMEMs. Thus, the ‘‘forced’’ and ‘‘internal’’

components are known by construction. The construction

and use of this type of synthetic time series is further de-

scribed by Frankcombe et al. (2015).

When examining model variability under future

forcing scenarios, we use several different indices. The

Atlantic multidecadal oscillation (AMO) index is de-

fined as the average SST in the region 08–608N, 58–758W,

and the Pacific multidecadal oscillation (PMO) is de-

fined as the average SST in the region 08–608N, 1208E–
1008W. For the interdecadal Pacific oscillation (IPO),

we use the tripole index of Henley et al. (2015). For

ENSO, we use two indices in order to capture potential

shifts in the location of ENSO variability in the future—

the Niño-1.2 (SST in the region 08–108S, 908–808W) and

Niño-3.4 (SST in the region 58S–58N, 1708–1208W) in-

dices. For future variability of SLP, we look at changes

in the southern annular mode (SAM) index, calculated

as the difference between the normalized SLP at 408 and
658S, and the Southern Oscillation index (SOI), which is

defined as the pressure difference between normalized

SLP at the model grid points closest to Tahiti and

Darwin. These indices were chosen because of their use

in past studies or because there is considerable interest

in the future behavior of the modes of variability that

they represent.

3. Results

Figure 1a shows the observed GMST index (red)

along with the raw indices from the CMIP5 models

(colors) and the MMEM (black) calculated as the av-

erage of all the ensemble members. Figure 1b shows the

MMEM and six different SMEMs from CMIP5 models

with five or more available ensemble members. We can

see that the MMEM is smoother than the individual

SMEMs, as the MMEM is constructed from a larger

number of ensemble members and therefore the in-

ternal variability is more effectively averaged out. There

is also considerable spread between the different

SMEMs toward the end of the time series, as the dif-

ferent modeled rates of warming relative to the refer-

ence period become apparent.

a. How many ensemble members are required to
accurately estimate the forced signal?

First we investigate the number of ensemble members

from a single model that are required to accurately es-

timate the forced signal. This will allow us to judge

whether it is viable to use the small single-model en-

sembles from CMIP5 to estimate internal variability or

whether the residual forced signal that remains after

removal of the ensemble mean is so large that any

estimates are meaningless. Using our synthetic single-

model ensemble, an estimate of the forced signal is

calculated from a specified number of ensemble mem-

bers. This estimated forced signal may also be smoothed

to remove some of the unwanted residual variability.

For example, Kravtsov et al. (2015) used a 5-yr

smoothing window to calculate estimates of the forced

signal for single-model ensembles. An estimate of the

internal variability component is obtained by subtract-

ing the estimated forced signal from the time series, and

this estimate of the internal variability is then compared

to the known internal variability of the original time

series. The error is calculated as the square root of the

sum of the squared differences at every time step be-

tween the original and estimated time series of internal

variability. Figure 2a shows this error in the estimate of

the internal variability for different numbers of ensem-

ble members (on the x axis) and different values of the

smoothing (different colors). Results using surrogates

based on the GMST are shown in Fig. 2; results for the

AMO and PMO are similar. We can see that the error

decreases as the number of ensemble members in-

creases, as expected. For very small ensemble sizes, less

than about 10 members, some smoothing may slightly

reduce the error. For larger ensembles, particularly for

large smoothing windows, the smoothing becomes

counterproductive. Out of 38 CMIP5models included in

this study, all but one have fewer than 10 ensemble

FIG. 3. Amplitudes for variability of GMST in the CMIP5 en-

semble estimated using theMMEMmethod and the SMEMmethod

with and without the correction factor applied. The error bars span

the 5th–95th percentiles of the ensemble spread for eachmodel. The

observed value is shown as the horizontal dashed line.
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members, so in this case either no smoothing or

smoothing with a small window gives the best result [e.g.,

the 5 years used by Kravtsov et al. (2015) is a sensible

choice]. Note that there are slight differences between

the effectiveness of smoothing for different indices. For

example, for extremely small ensemble sizes, 40-yr

smoothing gives slightly lower errors than no smoothing

for the AMO, but not for the GMST. The effectiveness

of smoothing is therefore dependent on both the ensem-

ble size and the index being analyzed. In addition, the

smoothing has an unphysical effect on the volcanic forced

signal, and therefore we do not use smoothing of the

forced signal any further in this analysis.

In cases of very small ensembles, such as those for

many models in the CMIP5 archive, does it still make

sense to use an SMEM, or would using the scaled

MMEM instead be more accurate? Out of our ensemble

of 38 CMIP5models, 32 have fewer than fivemembers in

their ensemble (24 have just one member, and thus no

SMEM can be calculated for these). To test the impact

of using a small-ensemble SMEM versus the MMEM,

we construct another ensemble of synthetic GMST data,

this time using six different SMEMs (from each of the six

CMIP5 models with five or more ensemble members).

For each of these six sets of synthetic data we use the

scaled MMEM as well as the six SMEMs (one related

and five unrelated) to make seven sets of estimates of

the internal variability. The errors in the time series of

the internal variability thus obtained are plotted in

Fig. 2a with the MMEM estimate in black and the

SMEM estimate in gray. The median error for the

SMEM-based estimates of the variability is higher than

the MMEM-based estimate. These results show that

while using an SMEM is more internally consistent for

an individual model, the mean bias is potentially much

larger than the MMEM method when applied to an

unrelated model. This does not rule out a particular

SMEM representing the forced signal better than the

MMEM (e.g., in closely related models). However, we

do not necessarily know which SMEM to use, particu-

larly for observations, which may be considered as a

model with one ensemble member. The MMEM

FIG. 4. The range of estimates for the observed (top) AMO, (middle) PMO, and (bottom) GMST indices ob-

tained using the different SMEMestimates of the forced signal (usingmodels with five or more ensemblemembers;

colored lines). TheMMEMestimate of each index is shown in black. Plots on the left show the annual data and plots

on the right show the annual data smoothed with a 40-yr low-pass filter.

5686 JOURNAL OF CL IMATE VOLUME 31



method is therefore a viable option for estimating the

forced signal in cases where no SMEM is available.

One drawback of the SMEM method is that most of

the models in the CMIP5 archive have very few en-

semble members, which limits our ability to accurately

estimate the forced response for those models. As we

have seen in Fig. 2a, this can lead to significant errors in

the estimation of the time series of internal variability

for small ensembles. If the amplitude of the variability is

calculated directly as the variance (or standard de-

viation) of each time series, this will result in large errors

in the estimated amplitude of internal variability.

However, following Olonscheck and Notz (2017), if the

variance of the ensemble is calculated at every time step

and then averaged over the length of the time series,

rather than being calculated for each individual time

FIG. 5. (a) Ensemble average spatial pattern of unsmoothed annual-mean SAT variability

during the CMIP5 control runs, (b) change in amplitude between the control run and RCP8.5

over the period 2000–2100, and (c) percentage change in amplitude between the control run

and RCP8.5 over the period 2000–2100. Black stippling shows where two-thirds of the models

agree on the sign of the change, and white stippling shows where 90% of the models agree.
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series and then averaged over the ensemble, we obtain

an accurate estimate of the amplitude of the variability,

as shown in Fig. 2b for the synthetic GMST data. This

corresponds to a correction factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N/ (N2 1)

p
,

where N is the number of ensemble members. Thus an

accurate estimate of the amplitude of the variability can

be obtained with an ensemble of only two members. All

amplitudes of variability calculated using the SMEM

method from here onward include the small ensemble

size correction from Olonscheck and Notz (2017). It

must be noted, however, that this correction is applied

only to the estimated amplitudes; it does not correct the

estimated time series themselves. Accurate estimates of

the time series of the variability still requires a larger

ensemble, as shown in Fig. 2a.

In Fig. 3 we demonstrate the differences between

the SMEM and MMEM estimates of the amplitude of

the internal variability by applying the methods to the

CMIP5 model ensemble. This figure compares the

MMEM estimates of the variability in the historical

simulations with the SMEM estimates of the variability

(both uncorrected and corrected) for all models with

two or more ensemble members. The MMEM method

generally leads to higher estimates of the amplitude of

the variability compared to the SMEM method, since

the error in the estimate of the forced signal in the

MMEM method will appear as additional variability, as

discussed by Frankcombe et al. (2015) and Kravtsov and

Callicutt (2017). The MMEM-based estimate of the

amplitude of GMST variability in observations is shown

as the dashed black line. Since observations may be

considered as an ensemble with one member, it is not

possible to calculate an SMEM-based estimate of the

amplitude of the variability.

b. Application to observations

In application to the real world, the time series of

observations may be treated as an ensemble with one

member. There is no reason to assume that any one

CMIP5 model more accurately estimates the real forced

signal than the CMIP5 ensemble mean; therefore the

FIG. 6. Scatterplot of mean amplitude of unsmoothed annual-

mean SAT variability in the control run compared to a future

scenario for (a) the global mean, (b) low latitudes (408S–408N), and

(c) high latitudes (poleward of 408N and 408S). Small symbols show

the individual ensemble members while large symbols are the

 
ensemble mean values. ‘‘Hist’’ covers the period 1900–2000 while

‘‘RCP 8.5’’ covers the period 2000–2100. Points on the dashed 1:1

line show that no change in the amplitude of the variability oc-

curred between the control run and the historical or RCP scenario.

Points below (above) the 1:1 line show that variability has de-

creased (increased) in the historical or RCP scenario compared to

the control run. When only two ensemble members are available,

both ensemble members will have the same amplitude of vari-

ability because of the method used to estimate the forced signal.
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MMEM method remains a logical first choice for com-

parisons with observations. Figure 4 shows the estimates

of the internal variability component of the observed

AMO, PMO, and GMST indices calculated using the

scaled MMEM (in black) and the six different scaled

SMEMs. The choice of SMEM can make a considerable

difference, particularly toward the end of the time se-

ries, because of the differing rates of warming of the

individual models used to construct each SMEM. As

discussed earlier, the use of an SMEM to estimate the

forced signal in observations (which may be considered

to be an unrelated model with one ensemble member)

can potentially introduce larger biases in the estimates

of internal variability than using the scaled MMEM.

The difference in these estimates of the internal

variability highlights the importance of obtaining ac-

curate estimates of the forced signal in order to cor-

rectly partition the observed signal into forced and

internal components. For example, in Fig. 4, a majority

of the estimates of the AMO index (including the

MMEM estimate) show that the index was increasing

and then levelled off toward the end of the time series;

however, there is a large range of estimated amplitudes

of the AMO index. All estimates of the PMO show

decreases in the last one to two decades, as domost, but

not all, of the estimates of the internal component of

the GMST.

c. Estimates of amplitudes of variability into the
future

One drawback of the MMEM method is that the er-

rors in the estimate of the forced signal (and thus also in

the estimate of the internal variability) increase mark-

edly into the future, as the differences in the rates of

warming between the models become increasingly im-

portant. The SMEMmethod, since it treats the different

models separately, does not suffer from this problem, at

least when calculating the amplitude of the variability.

Thus we can use the SMEM method to obtain model

estimates of the amplitude of internal variability further

into the future for individual models with sufficiently

large ensembles, and compare those future estimates to

current or past variability.

Figure 5 shows the spatial pattern of the amplitude of

variability of SAT during control runs as well as the

change in the variability between the control run and the

period 2000–2100 under RCP8.5, using the SMEM

method. To obtain these patterns the standard deviation

of SAT was calculated at each grid point over the

specified period in each of the 13 models that have two

or more ensemble members with the requisite data, and

then the results of all themodels were averaged. Figure 6

shows the amplitude of variability of annual SAT aver-

aged over the globe as well as divided into low- and high-

latitude bands for the control runs compared to the

historical runs and the RCP8.5 scenario. In 11 of the 13

models, the globally averaged SAT variability decreases

in the future. There is little agreement between the

models on the spatial pattern of the change, especially at

low latitudes, where most models show on average no

change while a few models show a large increase in the

amplitude of variability from the control run to the

RCP8.5 scenario. At higher latitudes, however, the re-

sults are more consistent, with all the models showing a

decrease in SAT variability, particularly over the ocean

along the sea ice margins. This decrease in SAT vari-

ability over the ocean in a band at high latitudes exists at

lower frequencies as well (using time series smoothed

with 5- and 40-yr filters). Note that when only two en-

semble members are available, both ensemble members

will have, by definition, the same amplitude of vari-

ability as estimated by the SMEM method. This is be-

cause in these cases the SMEM is constructed using only

two time series, and therefore the two time series of

FIG. 7. Percentage change in amplitude of variability in unsmoothed annual-mean pre-

cipitation between the control run and RCP8.5 over the period 2000–2100. Black stippling

showswhere two-thirds of themodels agree on the sign of the change, andwhite stippling shows

where 90% of the models agree.
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variability that result when subtracting the SMEM are

perfectly anticorrelated.

These results are largely similar to results from studies

looking at the changes in higher-frequency variability

(Huntingford et al. 2013; Screen 2014; Holmes et al.

2016; Olonscheck and Notz 2017, etc.). For example,

Huntingford et al. (2013) found that overall variability

will decrease under high greenhouse gas forcing sce-

narios, with the largest decreases in a band at around

508–708 in each hemisphere. It also confirms the results

of Olonscheck and Notz (2017) and Brown et al. (2017),

who found similar patterns of changes in variability and

associated the decrease at high latitudes with the loss of

sea ice volume and the accompanying reduction in

variability of albedo and increase in surface heat ca-

pacity of the open ocean compared to sea ice, while the

increase in variability over land at low latitudes was

linked to the decreasing availability of surface moisture

as the mean temperature increases.

Using the same method we can also calculate the

amplitude of simulated indices of variability such as the

AMO, PMO, IPO, and ENSO in control, historical, and

future scenarios. For annually averaged as well as 5- and

40-yr smoothed indices, most models do not show robust

changes in the amplitude of the variability (i.e., a change

that is larger than the spread between the different en-

semble members of each model), and for models that do

show robust changes, there is no agreement on the sign

of the change in variability, as has been discussed in the

literature for ENSO (e.g., Taschetto et al. 2014).

The model results also show that there is an overall

increase in the amplitude of the variability of pre-

cipitation in RCP8.5 compared to the control runs, as

shown in Fig. 7 for the spatial pattern of the percentage

change in annual-mean precipitation, and Fig. 8 for the

change in global mean. This is in broad agreement with

past studies showing an increase in both wet and dry

extremes in future scenarios (e.g., Sillmann et al. 2013;

Alexander and Arblaster 2017). The largest regional

change is in the equatorial Pacific; however, this may be

an artifact of the shifting of the double ITCZ, which

appears in many of themodels. Themost robust changes

across the ensemble occur at high latitudes, particularly

over the Northern Hemisphere where there are in-

creases in variability of up to 20%. The large apparent

magnitude of the change in the amplitude of the vari-

ability is due to the lowmean precipitation in this region

under preindustrial conditions and accompanies the

well-known increase in mean precipitation over the

Arctic in both observations andmodels under increasing

greenhouse forcing (e.g., Kattsov and Walsh 2000;

FIG. 9. Percentage change in amplitude of unsmoothed annual-mean SLP variability be-

tween the control run and RCP8.5 over the period 2000–2100. Black stippling shows where

two-thirds of the models agree on the sign of the change, and white stippling shows where

90% of the models agree.

FIG. 8. Scatterplot of global-mean amplitude of variability in

unsmoothed annual-mean precipitation in the control run com-

pared to scenario runs. Symbols are as in Fig. 6.
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Kattsov et al. 2007). There is also an area of increased

rainfall variability in the Arabian Sea, indicating possi-

ble changes in monsoonal rainfall in the region. There

are regions of decreasing rainfall variability, mostly over

the ocean basins at midlatitudes, although these may not

be robust apart from the midlatitude North Atlantic

where there is some agreement between the models. At

lower frequencies the model average of the spatial pat-

terns of the change in precipitation variability is similar

to the annual-mean variability; however, there is less

agreement between the models.

The spatial pattern of the change in the amplitude of

variability in SLP shows an average increase in ampli-

tude in the Northern Hemisphere and decrease in the

Southern Hemisphere (Fig. 9). There is not a great deal

of agreement between the models apart from in a few

centers of action; however, hemispheric means (Fig. 10)

show that most models predict a small decrease in the

amplitude of variability in the Southern Hemisphere

while results for the Northern Hemisphere are mixed.

This may be related to the finding from Barnes and

Polvani (2013) that under future climates in both the

Southern Hemisphere and the North Atlantic the mid-

latitude jet moves poleward and exhibits less meridional

shifting, while in the North Pacific the jet exhibits more

meridional shifts.

In line with the prediction of decreased SLP vari-

ability in the Southern Hemisphere is the finding that

there is a decrease in the amplitude of variability on

annual and 5-yr time scales for the SAM (Fig. 11). No

robust changes are seen for the SOI, which agrees with

the lack of model agreement on the future behavior of

the SAT-based ENSO index.

4. Conclusions

The issue of how best to separate internal variability

from the forced signal is a nuanced one. It has previously

been shown (Mann et al. 2014; Steinman et al. 2015a,b;

Frankcombe et al. 2015) that the heretofore commonly

usedmethod of linear detrending introduces large errors

and that the removal of a scaled ensemble mean is a

more accurate method. The discussion has now moved

to the choice of construction of that ensemble mean. In

this paper we have shown that where multiple ensemble

members from a model are available, a good estimate of

the forced signal for that model can be calculated using

the single-model ensemble mean (SMEM) method. The

amplitude of internal variability thus calculated can be

corrected to take into account the small ensemble size;

however, the time series themselves will still contain

some error. Where only a single time series is available

(as is the case for observations, as well as a significant

FIG. 10. Scatterplot of mean amplitude of unsmoothed annual-

mean SLP variability in the control run compared to scenario

runs for the (a) global mean, (b) Southern Hemisphere, and

(c) Northern Hemisphere. Symbols are as in Fig. 6.
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proportion of the CMIP5 archive), the scaled multi-

model ensemble mean (MMEM) estimate of the forced

signal gives, on average, smaller errors than an estimate

of the forced signal from an unrelated model’s SMEM.

As an illustration of the use of the SMEMmethod we

have calculated the change in the amplitude of annual-

mean SAT, precipitation, and SLP variability in future

climate under RCP8.5 for the models with multiple en-

semble members for this scenario. We confirm the re-

sults of Huntingford et al. (2013), Olonscheck and Notz

(2017), and Brown et al. (2017) (among others) that

there are robust decreases in the variability of SAT

along the sea ice margins in both hemispheres. We also

see robust increases in the variability of precipitation,

particularly at high latitudes [as follows from the results

of Kattsov et al. (2007) that the mean precipitation at

high latitudes increases under anthropogenic warming],

and less robust but potentially interesting hemisphere-

wide changes in SLP variability.

In summary, we find that both theMMEMand SMEM

methods are useful, and to some extent, complementary.

The SMEMmethod is the most accurate when applied to

each model individually, especially for future scenarios.

However, an SMEM cannot be calculated for observa-

tions, and while applying an SMEM from one of the

models may result in a more accurate estimate of the

observed forced signal than using the MMEM, it is im-

possible to know at this stage which model is the most

correct one to use. Our results therefore indicate that the

scaled MMEMmethod remains the most sensible choice

for the estimation of the observed forced signal.
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