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Soil squeezing effect and formation disturbance caused by tunnel excavation can be simulated by cylindrical cavity expansion
due to the comparability between tunneling and cavity expansion. Although most of the existing theoretical derivation is based
on simple constitutive model of soil foundation, not only the relation between principal stress components was simplified in the
solution process, but also the stress history, initial stress anisotropy, and stress-induced anisotropy of structural soil were neglected.
The mechanical characteristics of soil are closely related to its stress history, so there is a gap between the above research and the
actual engineering conditions. A three-dimensional elastoplastic solution of cylindrical cavity expansion is obtained based on the
theory of critical state soil mechanics and engineering characteristics of shield tunneling. In order to fully consider the influence
of initial anisotropy and induced anisotropy on the mechanical behavior of soils, the soil elastoplastic constitutive relation of cavity
expansion is described in the course of 𝐾0-based modified Cam-clay (𝐾0-MCC) model after soil yielding. An equation with equal
number of variables is obtained under the elastic-plastic boundary condition based on the Lagrange multiplier method. By solving
the extreme value of the original function, the analytical solution of radial, tangential, and vertical effective stresses distribution
around the circular tunnel excavation is obtained. In addition, changes of elastic deformation area and plastic deformation area for
soil during the shield excavation have been analyzed. Calculation results are compared with the numerical solutions which usually
consider isotropic soil behavior as the basic assumption. In this paper, a constitutive model which is more consistent with the actual
mechanical behavior of the soil and the construction process of the shield tunnel is considered. Therefore, the numerical solutions
are more realistic and suitable for the shield excavation analysis and can provide theoretical guidance required for design of shield
tunneling.

1. Introduction

Theoretical analysis of cylindrical cavity expansion theory
in geotechnical engineering has been widely used in pile
sinking, shield tunneling, static cone penetration test (CPT),
pressuremeter test (PMT), and mixing pile construction
disturbance problems [1–6]. Hill (1950) first proposed the
spherical cavity expansion method and derived a general

solution of stresses and displacements in Tresca material [7].
Vesic (1972) obtained the classical solutions considering the
plastic zone volume change of ideal elastic-plastic expansion
problem based on Mohr-Coulomb model [8]. Cao et al.
(2001) presented closed form solutions for both spherical
and cylindrical cavities by assuming the ultimate deviator
stress distributions in the plastic zone and taking the in situ
stress conditions into consideration [9]. Alonso et al. (2003)
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Figure 1: Schematic diagram of compacting soil by shield.

obtained the self-similar solution for the circular tunnel
in strain-softening rock masses [10]. Wheeler et al. (2003)
and Nakano et al. (2005) adjusted yield surface equation on
the basis of 𝐾0-based modified Cam-clay, considering 𝐾0
consolidation caused by induced anisotropy and its evolution
law in the loading process [11, 12]. Yin and Hicher (2008)
identified parameters of modified Cam-clay model with
viscosity of soil from the cavity expansion [13]. The problem
of cavity expansion and cavity contraction has attracted
much attention in geotechnical problems with application
to the bearing capacity of deep foundations, interpretation
of pressuremeter tests, breakout resistance of anchors, pile
driving, wellbore instability, underground excavation, and
blasting fracturing by explosives.

However, based on the above-mentioned researches, the
conventional cylinder expansion theory assumes that initial
stress is isotropic (static earth pressure coefficient 𝐾0 = 1.0).
Due to the sedimentation history, mineralogical characteris-
tics, and other several factors, the initial stress of soil layer
is usually anisotropic. For example, the vertical stress and
horizontal stress of the cylinder bore are not the same in
the horizontal tunneling construction of the underground
pipe laying, tunnel engineering. As a result, the traditional
theory of cylindrical expansion generally used in practical
engineering fails in explaining some practical phenomenon.
Also, the traditional cylindrical expansion theory assumes
that the cylindrical boundary condition is controlled by
displacement, which presents around the cylinder in the form
of symmetrical distribution as a function of distance. The
traditional control theory can be applied in geotechnical
problems analysis such as cylindrical pile and static cone
penetration test. But in the practical engineering of shield
tunnel, boundary condition of the cylinder expansion is
controlled by stress and displacement of the cylinder, which
was unable to satisfy the condition of axial symmetry.
Hence, it may not be reasonable to explain such geotechnical
problems considering traditional theory of cylindrical expan-
sion.

In this paper, a three-dimensional elastoplastic solution of
cylindrical cavity expansion is obtained based on the theory

of critical state soilmechanics and engineering characteristics
of shield tunneling to calculate the undrained cylindrical
cavity expansion considered anisotropic clay of 𝐾0. This
research work not only contributes to the theoretical values
in field of geotechnical engineering but also has an important
practical engineering significance.

2. Definition of Soil-Compacting Effect and
Mechanical Model

2.1. Definition of Soil-Compacting Effect. Shield tunneling
is a typical three-dimensional problem. Soil deformation is
closely related to the relative position of the shield machine.
In actual shield construction, earth pressure and support
pressure ahead of excavation face are not completely balanced
[15]. When support pressure is greater than passive earth
pressure, the soil is extruded and then soil-compacting
effect presents. And the free surface may collapse if support
pressure is less than active earth pressure. This paper mainly
aims to study the soil-compacting effect produced when the
support pressure is larger than passive earth pressure. Soil-
compacting effect of shield tunneling is shown in Figure 1.

(a) Along with the shield approach, the soil, which is
squeezed by the excavation face, will be pushed around the
shield. And then, the soil is output by the screw conveyor to
form a void.The surrounding soil is excavated and unloaded,
the stress is released to cause soil expansion, and the front soil
moves to the void (Figure 1(a)).

(b) As the shield machine moves forward, the soil will be
squeezed around the shield and excavation face. In the plane
perpendicular to the axis of the tunnel, the soil is assume
subjected to uniform radial extrusion force, which generates
an equal amount of outward radial movement of the tunnel
(Figure 1(b)).

(c) The extruded soil moves outwards of the shield
machine and is also affected by the friction force arise from
the driving process of shield machine. Radial deformation
along the outer side of the tunnel finally formed under the
influence of initial stress field (Figure 1(c)).
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Figure 2: Expansion of a cylindrical cavity in 𝐾0 consolidated anisotropic clays.

It can be seen that the squeezing effect of shield con-
struction makes the surface subsidence or uplift and layered
soil movement, soil stress, water content, pore water pres-
sure, elastic modulus, Poisson’s ratio, strength, and bearing
capacity of the physical and mechanical properties are likely
to change. It is feasible to simulate the soil-compacting effect
of shield tunneling by using cylindrical cavity expansion
theory.

2.2. Mechanical Model. Figure 2 shows a cylindrical cavity
expansion in an infinite 𝐾0 consolidated saturated clay with
an in-plane initial horizontal pressure stress 𝜎ℎ = 𝐾0𝜎V and
vertical pressure stress 𝜎V at infinity, as well as the hydrostatic
pressure 𝑢0. Note that cylindrical polar coordinate system is
adopted for present analysis, and the occurring compressive
stresses and strains are taken as positive. As average internal
pressure gradually increases from𝜎ℎ to 𝜎𝑎, the soil adjacent to
the cavity wall yields first. Further increase in average internal
cavity wall pressure will lead to current cavity radius to the
elastic-plastic (EP) boundary 𝑟𝑝 with a further increased
internal cavity pressure with the continuation of the shield
excavation. The symbol 𝑟𝑝0 represents the initial position of
the soil when the soil becomes plastic state.

Under undrained condition, relationship between cur-
rent radius 𝑟𝑥, initial radius 𝑟𝑥0 of a material particle, and
current radius 𝑎, and initial radius 𝑎0 of the cylindrical cavity
is as follows: 𝑟2𝑥 − 𝑟2𝑥0 = 𝑎2 − 𝑎20 . (1)

At any stage of the shield excavation, any soil element
within the surrounding soil mass satisfies the following
equilibrium equation in both elastic and plastic regions
(effective stress form):

𝜕𝜎󸀠𝑟𝜕𝑟 + 𝜕𝑢𝜕𝑟 + 𝜎󸀠𝑟 − 𝜎󸀠𝜃𝑟 = 0 (2)

or alternatively in the total stress form

𝜕𝜎𝑟𝜕𝑟 + 𝜎𝑟 − 𝜎𝜃𝑟 = 0, (3)

where 𝜎󸀠𝑟 and 𝜎󸀠𝜃 are effective radial and tangential stresses,
respectively; 𝜎𝑟 and 𝜎𝜃 are total radial and tangential stresses,
respectively; 𝑢 is pore water pressure.

2.3. Constitutive Relations. The 𝐾0 consolidated clay is
assumed to be linearly elastic and infinitesimal deformation
until the onset of yield. Thus, according to the Hook’s Law,
the elastic stress-strain relationship can be expressed in the
increment form as follows:

𝑑𝜀𝑒𝑖𝑗 = 1 + ]𝐸 𝑑𝜎𝑖𝑗 − ]𝐸𝑑𝜎𝑚𝑚𝛿𝑖𝑗, (4)
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Figure 3: Yield curves of anisotropic elastoplastic model.

where𝐸 and𝐺 are the elasticmodulus and the shearmodulus,
respectively, which are defined in the 𝐾0-MCC model as
follows [6]: 𝐸 = 2𝐺 (1 + ])

𝐺 = 3 (1 − 2]) 𝜐𝑝󸀠2 (1 + ]) 𝜅 , (5)

where 𝜅 is the slope of swelling line, 𝜐 is the specific volume,
and ] is the Poisson’s ratio.

After yielding, elastoplastic behavior of soil can be
described by large deformation theory and 𝐾0-MCC model,
where a relative stress ratio 𝜂 ∗ (= 𝜂 − 𝜂0) is adopted instead
of the stress ratio 𝜂(= 𝑞/𝑝󸀠) as used in the MCC model to
consider the effect of initially stress-induced anisotropy on
mechanical behavior of 𝐾0 consolidated clay. Yield function(𝑓) for associative plasticity also serves as a plastic potential
function (𝑔) of the 𝐾0-MCC model can be expressed as
follows [6, 11, 12]:𝑓 = (𝑞 − 𝜂0𝑝󸀠)2 + 𝑀2𝑝󸀠 (𝑝󸀠 − 𝑝󸀠𝑐) = 0, (6)

where 𝜂0 = |3(1 − 𝐾0)/(2𝐾0 + 1)| is stress ratio under 𝐾0
consolidated condition, 𝑀 = 6 sin𝜑󸀠/(3 − sin𝜑󸀠) is slope of
critical state line, 𝜑󸀠 is effective friction angle, 𝑝󸀠𝑐 is effective
yield pressure, and stress parameters 𝑝󸀠 and 𝑞 are defined
respectively as follows:

𝑝󸀠 = 13𝜎󸀠𝑖𝑖 (7)

𝑞 = √32 (𝜎󸀠𝑖𝑗 − 𝑝󸀠𝛿𝑖𝑗) (𝜎󸀠𝑖𝑗 − 𝑝󸀠𝛿𝑖𝑗), (8)

where 𝛿𝑖𝑗 is Kronecker’s delta.
After taking strain hardening rule into consideration,

yield function or plastic potential function can be given as
follows:

𝑓 = 𝜆 − 𝜅1 + 𝑒0 ln 𝑝󸀠𝑝󸀠0 + 𝜆 − 𝜅1 + 𝑒0 ln(1 + (𝑞 − 𝜂0𝑝󸀠)2𝑀2𝑝󸀠2 ) − 𝜀𝑝V
= 0,

(9)

where 𝜆 and 𝜅 are slopes of consolidation and swelling lines,
respectively; 𝑒0 is initial void ratio of soil for 𝑝󸀠 = 𝑝󸀠0; 𝜀𝑝V
is plastic volumetric strain which is used as a hardening
parameter.

As Figure 3 shows, plastic potential surface of 𝐾0-MCC
model in𝑝󸀠−𝑞 space is a rotated ellipse, and degree of rotation
portrays the extent of anisotropy. When shearing starts from
isotropic stress 𝜂∗ = 𝜂 = 𝑞/𝑝󸀠 because 𝜂0 = 0, the 𝐾0-MCC
model becomes the MCC model. The yield surface rotation
can also be found in more detail in Yin et al. (2011, 2015) [16,
17].

For elastoplastic constitutivemodel, the total strain incre-
ments 𝑑𝜀𝑖𝑗 are decomposed into elastic and plastic strain
increments; i.e.,

𝑑𝜀𝑖𝑗 = 𝑑𝜀𝑒𝑖𝑗 + 𝑑𝜀𝑝𝑖𝑗, (10)

where elastic strain increments 𝑑𝜀𝑝𝑖𝑗 can be still calculated
using (3), and plastic strain increments 𝑑𝜀𝑝𝑖𝑗 in the 𝐾0-MCC
model can be derived by taking account the associated plastic
flow rule as follows:

𝑑𝜀𝑝𝑖𝑗 = Ω 𝜕𝑓𝜕𝜎󸀠𝑖𝑗 , (11)

where the scalar multiplier Ω is given as follows:

Ω = −(𝜕𝑓/𝜕𝑝󸀠) 𝑑𝑝󸀠 + (𝜕𝑓/𝜕𝑞) 𝑑𝑞(𝜕𝑓/𝜕𝜀𝑝V ) (𝜕𝑓/𝜕𝜎󸀠𝑖𝑖) , (12)

where

𝜕𝑓𝜕𝑝󸀠 = 𝜆 − 𝜅1 + 𝑒0 1𝑝󸀠𝑀
2𝑝󸀠2 − (𝑞2 − 𝜂20𝑝󸀠2)𝑀2𝑝󸀠2 + (𝑞 − 𝜂0𝑝󸀠)2 (13)
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𝜕𝑓𝜕𝑞 = 𝜆 − 𝜅1 + 𝑒0 2 (𝑞 − 𝜂0𝑝󸀠)𝑀2𝑝󸀠2 + (𝑞 − 𝜂0𝑝󸀠)2 (14)

𝜕𝑝󸀠𝜕𝜎󸀠𝑖𝑗 = 𝛿𝑖𝑗3 (15)

𝜕𝑞𝜕𝜎󸀠𝑖𝑗 = 3 (𝜎󸀠𝑖𝑗 − 𝑝󸀠𝛿𝑖𝑗)2𝑞 (16)

𝜕𝑓𝜕𝜀𝑝V = −1 (17)

𝜕𝑓𝜕𝜎󸀠𝑖𝑗 = 𝜕𝑓𝜕𝑝󸀠 𝜕𝑝󸀠𝜕𝜎󸀠𝑖𝑗 + 𝜕𝑓𝜕𝑞 𝜕𝑞𝜕𝜎󸀠𝑖𝑗 . (18)

Substituting (13)–(16) into (18) yields the following equa-
tion:

𝜕𝑓𝜕𝜎󸀠𝑖𝑗 = 𝑐𝑝 [[
𝑀2𝑝󸀠2 − (𝑞2 − 𝜂20𝑝󸀠2)𝑀2𝑝󸀠2 + (𝑞 − 𝜂0𝑝󸀠)2

𝛿𝑖𝑗3𝑝󸀠
+ 3 (𝜎󸀠𝑖𝑗 − 𝑝󸀠𝛿𝑖𝑗)𝑀2𝑝󸀠2 + (𝑞 − 𝜂0𝑝󸀠)2 𝑞 − 𝜂0𝑝󸀠𝑞 ]] ,

(19)

where 𝑐𝑝 = (𝜆 − 𝜅)/(1 + 𝑒0).
Substituting (18) and (13)–(18) into (11), the scalar multi-

plier Ω can be obtained as follows:

Ω = 𝑑𝑝󸀠 + 2 (𝜂 − 𝜂0)𝑀2 − (𝜂2 − 𝜂20)𝑑𝑞. (20)

Then, detailed relationship between the plastic strain
increment 𝑑𝜀𝑝𝑖𝑗 and the stress increment 𝑑𝜎𝑖𝑗 can be expressed
as follows:

𝑑𝜀𝑝𝑖𝑗 = Ω𝑐𝑝𝑝󸀠2 [𝑀2 + (𝜂 − 𝜂0)2] [[𝑀2 − (𝜂2 − 𝜂20)] 𝑝󸀠𝛿𝑖𝑗3
+ 3 (𝜎𝑖 − 𝑝󸀠𝛿𝑖𝑗) (1 − 𝜂0/𝜂)] .

(21)

3. Exact Numerical 3D Solution

3.1. Elastic Zone. Based on the small-strain theory and
(2) and (3), stress and displacement in the spherical

coordinates of the elastic region can be obtained as follows
[9, 14, 18]:

𝜎𝑟 = 𝜎ℎ + (𝜎𝑝 − 𝜎ℎ) (𝑟𝑝𝑟 )2 (22)

𝜎𝜃 = 𝜎ℎ − (𝜎𝑝 − 𝜎ℎ) (𝑟𝑝𝑟 )2 (23)

𝜎𝑧 = 𝜎V (24)

𝑈𝑟 = 𝜎𝑝 − 𝜎ℎ2𝐺0 𝑟2𝑝𝑟 (25)

Δ𝑢 = 0, (26)

where 𝜎𝑝 is the total radial stress in the phase plane at
EP boundary. It is worth noticing that there is no excess
pore water pressure in plastic region, because effective mean
stress is constant under undrained condition (𝑑𝜐 = 3(1 −2V)𝑑𝑝󸀠/𝐸 = 0) and total mean stress, 𝑝, also keeps constant
in elastic zone.

3.2. Elastoplastic Zone. For the problem of shield excavation,
soil position around the tunnel cavity can be described as𝑟, 𝜃, and 𝑧 in cylindrical polar coordinate system. Corre-
spondingly, there are only variables of principal stress and
principal strain without the deviator stress and deviator
strain induced during shield excavation process. Therefore,
elastoplastic constitutive relation of the 𝐾0-MCC model can
be simplified to a much simple matrix equation:

{{{{{
𝑑𝜀𝑟𝑑𝜀𝜃𝑑𝜀𝑧

}}}}}
= [[[[[[[

1𝐸 + 𝑏𝑎2𝑟 − V𝐸 + 𝑏𝑎𝑟𝑎𝜃 − V𝐸 + 𝑏𝑎𝑟𝑎𝑧− V𝐸 + 𝑏𝑎𝑟𝑎𝜃 1𝐸 + 𝑏𝑎2𝜃 − V𝐸 + 𝑏𝑎𝜃𝑎𝑧− V𝐸 + 𝑏𝑎𝑧𝑎𝑟 − V𝐸 + 𝑏𝑎𝑧𝑎𝜃 1𝐸 + 𝑏𝑎2𝑧
]]]]]]]

{{{{{{{
𝑑𝜎󸀠𝑟𝑑𝜎󸀠𝜃𝑑𝜎󸀠𝑧

}}}}}}}
,
(27)

where

𝑎𝑟 = 𝑝󸀠 [𝑀2 − (𝜂2 − 𝜂20)]3 + 3 (𝜎󸀠𝑟 − 𝑝󸀠) (1 − 𝜂0𝜂 )
𝑎𝜃 = 𝑝󸀠 [𝑀2 − (𝜂2 − 𝜂20)]3 + 3 (𝜎󸀠𝜃 − 𝑝󸀠) (1 − 𝜂0𝜂 )
𝑎𝑧 = 𝑝󸀠 [𝑀2 − (𝜂2 − 𝜂20)]3 + 3 (𝜎󸀠𝑧 − 𝑝󸀠) (1 − 𝜂0𝜂 )
𝑏 = 𝑐𝑝𝑝󸀠3 [𝑀2 + (𝜂 − 𝜂0)2] [𝑀2 − (𝜂2 − 𝜂20)] .

(28)
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Taking the inverse calculation to (27) gives

{{{{{{{
𝑑𝜎󸀠𝑟𝑑𝜎󸀠𝜃𝑑𝜎󸀠𝑧

}}}}}}}
= 1𝜉 [[[

𝑐11 𝑐12 𝑐13𝑐21 𝑐22 𝑐23𝑐31 𝑐32 𝑐33
]]]

{{{{{
𝑑𝜀𝑟𝑑𝜀𝜃𝑑𝜀𝑧

}}}}} , (29)

where

𝑐11 = 1𝐸2 (1 − V2 + 𝐸𝑎2𝜃𝑏 + 2𝐸V𝑎𝜃𝑎𝑧𝑏 + 𝐸𝑎2𝑧𝑏)
𝑐12 = 1𝐸2 [−𝐸𝑎𝑟 (𝑎𝜃 + V𝑎𝑧) 𝑏

+ V (1 + V − 𝐸𝑎𝜃𝑎𝑧𝑏 + 𝐸𝑎2𝑧𝑏)]
𝑐13 = 1𝐸2 [−𝐸𝑎𝑟 (V𝑎𝜃 + 𝑎𝑧) 𝑏

+ V (1 + V − 𝐸𝑎𝜃𝑎𝑧𝑏 + 𝐸𝑎2𝜃𝑏)]
𝑐22 = 1𝐸2 (1 − V2 + 𝐸𝑎2𝑟𝑏 + 2𝐸V𝑎𝑟𝑎𝑧𝑏 + 𝐸𝑎2𝑧𝑏)
𝑐23 = 1𝐸2 [V + V2 + 𝐸V𝑎2𝑟𝑏 − 𝐸𝑎𝜃𝑎𝑧𝑏

− 𝐸V𝑎𝑟 (𝑎𝜃 + 𝑎𝑧) 𝑏]
𝑐33 = 1𝐸2 (1 − V2 + 𝐸𝑎2𝑟𝑏 + 2𝐸V𝑎𝑟𝑎𝜃𝑏 + 𝐸𝑎2𝜃𝑏)
𝑐21 = 𝑐12𝑐23 = 𝑐32

(30)

𝜉 = −1 + V𝐸3 [(−1 + V + 2V2)
+ 𝐸𝑏 (−1 + V) (𝑎2𝑟 + 𝑎2𝜃 + 𝑎2𝑧)
− 2𝐸V𝑏 (𝑎𝜃𝑎𝑧 + 𝑎𝜃𝑎𝑟 + 𝑎𝜃𝑎𝑧)] .

(31)

For undrained cylindrical cavity expansion, 𝑑𝜀V = 𝑑𝜀𝑧;
thus, according to the large deformation theory, radial and
tangential strains can be given in incremental form as follows:

𝑑𝜀𝑟 = −𝑑𝜀𝜃 = 𝑑𝑟𝑟 . (32)

Substituting (32) into (29), constitutive matrix can be
reduced to a set of first-order ordinary differential equations
as follows:

𝑑𝜎󸀠𝑟𝑑𝑟 − 𝑏11 − 𝑏12𝜉𝑟 = 0 (33)

𝑑𝜎󸀠𝜃𝑑𝑟 − 𝑏12 − 𝑏22𝜉𝑟 = 0 (34)

𝑑𝜎󸀠𝑧𝑑𝑟 − 𝑏31 − 𝑏32𝜉𝑟 = 0 (35)

which can be solved by Lagrangian analysis method as an
initial value problem with 𝑟 starting at 𝑟𝑥𝑝, provided that
initial values of 𝜎󸀠𝑟(𝑟𝑥𝑝), 𝜎󸀠𝜃(𝑟𝑥𝑝), and 𝜎󸀠𝑧(𝑟𝑥𝑝) are given. Here𝑟𝑥𝑝 denotes the position of a specific particle which comes
into plastic state instantly. All of the initial values required for
solving the differential equations can be derived from the EP
boundary conditions, which are further analyzed as follows.

3.3. Elastic-Plastic Boundary Conditions. As shown in (22),
(23), (24), and (26), the change of mean effective stress, Δ𝑝󸀠,
is equal to zero in elastic region, which is still valid at the EP
boundary; i.e.,

𝑝󸀠𝑝 = 𝑝󸀠0, (36)

where 𝑝󸀠𝑝 denotes mean effective stress at the EP boundary.
Substituting (36) into (6), the deviator stress at the EP

boundary, 𝑞𝑝, can be obtained as follows:

𝑞𝑝 = 𝜂0𝑝󸀠0 + 𝑀𝑝󸀠0√OCR − 1, (37)

where OCR is overconsolidation ratio, defined as 𝑝󸀠𝑐0/𝑝󸀠0, and
pressure, 𝑝󸀠𝑐0, is the maximummean preconsolidation stress.

According to (7), the deviator stress at the EP boundary
can also be written as

𝑞𝑝
= 1√2√(𝜎󸀠𝑟𝑝 − 𝜎󸀠

𝜃𝑝
)2 + (𝜎󸀠𝑧𝑝 − 𝜎󸀠

𝜃𝑝
)2 + (𝜎󸀠𝑟𝑝 − 𝜎󸀠𝑧𝑝)2, (38)

where 𝜎󸀠𝑟𝑝, 𝜎󸀠𝜃𝑝, and 𝜎󸀠𝑧𝑝 are effective radial, tangential, and
vertical stresses, respectively, at the EP boundary.

From (22)–(24) and (36), one obtains

𝜎󸀠𝑟𝑝 + 𝜎󸀠𝜃𝑝 = 𝜎󸀠𝑟0 + 𝜎󸀠𝜃0 = 2𝜎󸀠ℎ (39)

𝜎󸀠𝑧𝑝 = 𝜎󸀠𝑧0 = 𝜎󸀠V0, (40)

where 𝜎󸀠𝑟0, 𝜎󸀠𝜃0, and 𝜎󸀠𝑧0 are initial effective radial, tangential,
and vertical stresses, respectively.

For the𝐾0 consolidated clay, relationship between in situ
horizontal effective stress, 𝜎󸀠𝑟0 (or 𝜎󸀠𝜃0), and in situ vertical
stress, 𝜎󸀠𝑧0, can be given as follows:

𝜎󸀠𝑟0 = 𝜎󸀠𝜃0 = 𝐾0𝜎󸀠𝑧0, (41)

where symbol 𝐾0 denotes the anisotropic degree of clay.
Substituting (39), (40), and (41) into (38), effective radial

and tangential stresses at the EP boundary can be derived as

𝜎󸀠𝑟𝑝 = 𝜎󸀠𝑟0 + 1√3√𝑞2𝑝 − (1 − 𝐾0)2 𝜎󸀠2𝑧0
𝜎󸀠𝜃𝑝 = 𝜎󸀠𝑟0 − 1√3√𝑞2𝑝 − (1 − 𝐾0)2 𝜎󸀠2𝑧0. (42)
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The position, 𝑟𝑥𝑝, where the specific particle becomes
plasticity, can be derived by taking the displacement at EP
boundary, 𝑈𝑟𝑝, and the undrained condition into consider-
ation. According to (25), one can obtain

𝑈𝑟𝑝 = 𝑟𝑥𝑝 − 𝑟𝑥0 = 𝜎󸀠𝑟𝑝 − 𝜎󸀠𝑟02𝐺0 𝑟𝑥𝑝. (43)

Substituting (1) into (43) gives [14]

𝑟𝑥𝑝 = 2𝐺0𝑎2𝐺0 − (𝜎󸀠𝑟𝑝 − 𝜎󸀠𝑟0)√(𝑟𝑥𝑎 )2 + (𝑎0𝑎 )2 − 1. (44)

Furthermore, current location of the EP boundary, 𝑟𝑝,
which is required for full analysis of stress distributions
around the cavity, can be obtained by equating both 𝑟𝑥𝑝 and𝑟𝑥 to 𝑟𝑝 [18]:

𝑟𝑝𝑎 = √ (𝑎0/𝑎)2 − 1((𝜎󸀠𝑟𝑝 − 𝜎󸀠𝑟0) /2𝐺0 − 1)2 − 1 . (45)

So far, (40), (42), and (44) provide initial conditions for
solving the first-order ordinary differential equations (33),
(34), and (35).

After solving these first-order ordinary differential equa-
tions by numerical method, excess pore water pressure at an
arbitrary location in the plastic zone, Δ𝑢𝑟𝑥, can be computed
by integrating (2) from the EP boundary 𝑟𝑝 to the point 𝑟𝑥:

Δ𝑢𝑟𝑥 = 𝜎󸀠𝑟𝑝 − 𝜎󸀠𝑟𝑥 + ∫𝑟𝑝
𝑟𝑥

𝜎󸀠𝑟 − 𝜎󸀠𝜃𝑟 𝑑𝑟. (46)

4. Closed Form 3D Analytical Solution

In the front section (refer to Figure 3), the semianalytical
solution of expansion of the cylindrical hole has been pre-
sented with the limitation of high computation cost. In order
to reduce the computational cost and achieve the purpose
of practical application, this paper deduces a closed 3D total
stress solution for cylindrical cavity undrained expansion in𝐾0 consolidated clay.

Under the undrained condition, the total volume of the
soil is equal to zero. That is,

𝜅𝑑𝑝󸀠𝜐𝑝󸀠 + (𝜆 − 𝜅) 𝑑𝑝󸀠𝑐𝜐𝑝󸀠𝑐 = 0. (47)

Taking EP boundary conditions into consideration in
(47), the following equation can be found:

𝑝󸀠𝑐 = 𝑝󸀠OCR(𝑝󸀠𝑝󸀠0)
−𝜅/(𝜆−𝜅) . (48)

According to (37) and (48), the relationship between
average effective stress and the plastic zone can be presented
as follows:

𝑞 = 𝜂0𝑝󸀠 + 𝑀𝑝󸀠 [OCR(𝑝󸀠𝑝󸀠0)
−1/Λ − 1]1/2 , (49)

where Λ is the plastic volumetric strain ratio, defined as (1 −𝜅/𝜆).
For the 𝐾0-MCC model, critical state condition can be

expressed as follows:

𝜂 = √𝑀2 + 𝜂20 (50)

Substituting (50) into (49), ultimate effective mean stress,𝑝󸀠𝑓, and ultimate deviator stress, 𝑞𝑓, can be obtained as
follows:

𝑝󸀠𝑓 = 𝑝󸀠0 [[[[
𝑀2OCR

(√𝑀2 + 𝜂20 − 𝜂0)2 + 𝑀2
]]]]
Λ

(51)

𝑞𝑓 = 𝑝󸀠0√𝑀2 + 𝜂20 [[[[
𝑀2OCR

(√𝑀2 + 𝜂20 − 𝜂0)2 + 𝑀2
]]]]
Λ

. (52)

On the other hand, the closed form 3D solutions in elastic
regionhave been already derived, as shown in (22)–(26).Only
the solutions in plastic region are derived in this study. Total
radial stresses at an arbitrary location in plastic region, 𝜎𝑟𝑥,
can be obtained by integrating (4) from the EP boundary, 𝑟𝑝,
to the point, 𝑟𝑥,

𝜎𝑟𝑥 = 𝜎𝑟𝑝 − 2√3 ∫𝑟𝑥
𝑟𝑝

𝑞𝑟 𝑑𝑟, (53)

where 𝜎𝑟𝑝 is the total radial stress at the EP boundary. The
deviator stress, 𝑞, is related to the location 𝑟𝑥, so that (53)
cannot be integrated directly.Therefore, in order to obtain the
closed form 3D solution, the following two assumptions have
to be made at first.

(a) Relationship between Deviator Stress and Radial Distance
in the Plastic Region. The deviator stress, 𝑞, in the plastic zone
is assumed to be equal to the ultimate deviator stress, 𝑞𝑓,
which is similar to 𝑞.
(b) Relationship between and among Total Radial, Tangential,
and Vertical Stresses in the Plastic Region. The vertical total
stress 𝜎𝑧 is assumed to be the mean of radial stress 𝜎𝑟 and
tangential stress 𝜎𝜃 after soil yields.

Although these assumptions seem to be bold and strong,
the approximate analytical results match the exact numerical
results fairlywell in the plastic region,whichwill be compared
and discussed in detail later in the paper.

According to assumption (a), substituting (25) into (45)
and ignoring higher order terms of √𝑞2

𝑓
− (1 − 𝐾0)2𝜎2V0/𝐺,
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position of the EP boundary, which is related to the current
cavity radius, can be written as

(𝑟𝑝𝑎 )2 = √3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎2V0 [1 − (𝑎0𝑎 )2] . (54)

Then, taking assumption (a) into consideration, radial
stress in the plastic zone can be derived from (53) and can
be written as follows:

𝜎𝑟𝑥 = 𝜎ℎ0 + √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3 [[[1

+ ln
√3𝐺√𝑞2

𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0 (

𝑎2 − 𝑎20𝑟2𝑥 )]]] .
(55)

According to the previous two assumptions, substituting
(55) into (8) and taking (52) into consideration, total tangen-
tial and vertical stresses in the plastic region can be obtained:

𝜎𝜃 = 𝜎ℎ0
+ √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3 [[[ln

√3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0

⋅ (𝑎2 − 𝑎20𝑟2𝑥 ) − 1]]]
𝜎𝑧 = 𝜎ℎ0 + √𝑞2

𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3

⋅ ln √3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0 (

𝑎2 − 𝑎20𝑟2𝑥 ) .

(56)

Furthermore, excess pore water pressure in plastic region
can be derived by effective stress principle:

Δ𝑢𝑟𝑥 = (𝐾0 − 1) 𝑝󸀠01 + 2𝐾0 + √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3

⋅ ln √3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0 (

𝑎2 − 𝑎20𝑟2𝑥 )

+ 𝑝󸀠0 [[[[
1 − ( 𝑀2OCR√𝑀2 + 𝜂20 + 𝑀2)

Λ]]]]
.

(57)

Equating 𝑟𝑥 to 𝑎, pressure-expansion relationship and
excess pore water pressure at cavity wall can be derived from
(55) and (57), respectively, as follows:

𝜎𝑟𝑎 = 𝜎ℎ0
+ √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3 [[[ln

√3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0

⋅ (1 − 𝑎20𝑎2) + 1]]]

(58)

Δ𝑢𝑎 = (𝐾0 − 1) 𝑝󸀠01 + 2𝐾0 + √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3

⋅ ln √3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0 (1 − 𝑎20𝑎2) + 𝑝󸀠0 [[[[

1

− ( 𝑀2OCR√𝑀2 + 𝜂20 + 𝑀2)
Λ]]]]

.
(59)

From (58), as the cavity continues to expand to infinity
(𝑎/𝑎0 → ∞), the limit cavity wall pressure, 𝜎𝑟𝑢𝑙𝑡, and excess
pore water pressure, Δ𝑢𝑎𝑢𝑙𝑡, for undrained cavity expansion
in 𝐾0 consolidated anisotropic clay can be obtained:

𝜎𝑟𝑢𝑙𝑡 = 𝜎ℎ0
+ √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3 (ln

√3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0

+ 1)
(60)

Δ𝑢𝑎𝑢𝑙𝑡 = (𝐾0 − 1) 𝑝󸀠01 + 2𝐾0 + √𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0√3

⋅ ln √3𝐺√𝑞2
𝑓
− (1 − 𝐾0)2 𝜎󸀠2V0 (1 − 𝑎20𝑎2) + 𝑝󸀠0 [[[[

1

− ( 𝑀2OCR√𝑀2 + 𝜂20 + 𝑀2)
Λ]]]]

.
(61)
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Table 1: Physical and mechanical parameters of soil [14].

𝑀 = 1.2, 𝜆 = 0.15, 𝜅 = 0.03, V = 0.278𝐾0 OCR 𝜎V0 (kPa) 𝐺0 (kPa) 𝜐0 𝑢0 (kPa)
0.625 1 160 4348 2.09 100
1 3 120 4113 1.97 100
2 10 72 3756 1.8 100

It is interesting to note here that, taking√𝑞2
𝑓
− (1 − 𝐾0)2𝜎󸀠2V0 as 𝑞𝑓, the present solutions are similar

to previous MCC model based solutions obtained by Cao
et al. [9]. Especially for isotropic clay (𝐾0 = 1), the closed
form 3D solutions presented in this paper reduce to the
solutions obtained by Cao et al. [9], which demonstrates
that the solution obtained by Cao et al. [9] is just a special
case of the presented solution. Actually, for nature clay, the
horizontal in situ stress is different from the vertical one,
and the soil is initial anisotropy (i.e., 𝐾0 ̸= 1). Note that
the term of √𝑞2

𝑓
− (1 − 𝐾0)2𝜎󸀠2V0 in the presented solution

reflects the effect of initially stress-induced anisotropy on
shield excavation. Therefore, presented solutions can yield
more reasonable results for cylindrical cavity expansion in
anisotropy clay. In addition, the term of (𝐾0 − 1)𝑝󸀠0/(1 + 2𝐾0)
in (57), (59), and (61) implies that initial anisotropy also has
notable effects on excess pore water pressure during shield
excavation process.

5. Calculation Result Analysis and Discussion

In order to verify the accuracy and suitability of this method
considering the influencing factors of initial anisotropy and
induced anisotropy, calculation results of presentmethod and
Chen and Abousleiman’s solution [18] using MCC constitu-
tive model results were, respectively, validated in this paper.

Physical and mechanical parameters of soil used in
this paper are taken from Chen and Abousleiman [18].
Table 1 shows the properties of three typical 𝐾0 consolidated
clays.

5.1. Pressure-Expansion Relationship. As shown in Figure 4,
comparison of pressure-expansion relationship around shield
tunnel is calculated by the proposed 3D closed form solu-
tion and Chen’s solution. All calculated stresses have been
normalized. Effective radial stress and vertical stress have
been overestimated, while the tangential stress is noted to be
underestimated in the plastic zone based on Chen’s solution
apart from 𝐾0 = 1. Therefore, the anisotropy induced
by initial stress has a significant influence on the stress
distribution in the plastic zone. If the tunnel is in the isotropic
stress conditions, that is to say 𝐾0 = 1, 𝐾0-MCC constitutive
model will degenerate into a MCC constitutive model; in
this case, the results of the two calculations are in complete
agreement.

It is also interesting to note in Figure 4 that vertical stress
is always equal to the average of radial and tangential stresses

in critical state zone for all cases, which can be proved exactly
as follows. Combining (33)–(35) gives

𝑑 (𝜎󸀠𝑟 + 𝜎󸀠𝜃 − 2𝜎󸀠𝑧)𝑑𝑟
= −3 (1 − 2V) (𝑎𝑟 − 𝑎𝜃) (𝜎󸀠𝑟 + 𝜎󸀠𝜃 − 2𝜎󸀠𝑧) 𝑏𝐸𝜉𝑟 (1 − 𝜂0𝜂 ) . (62)

Since the stress components keep constant in the critical
region, therefore, the left side of (62) is equal to zero; thereby
(62) can be reformulated as

𝜎󸀠𝑧 = 12 (𝜎󸀠𝑟 + 𝜎󸀠𝜃) . (63)

Equation (63) indicates that the second assumption for
approximate closed form 3D solution holds in the critical
region.

It can also be seen from Figure 4(d) that excess pore
water pressure is underestimated near the cavity wall but
overestimated as the radial distance increases. Besides, the
excess pore water pressure keeps constant in critical region,
and thus the second assumption for the approximate closed
form 3D solution still holds well in the critical region. When
the shield is compacted to a certain degree, excess pore
water pressure in the soil squeezing effect zone is gradually
stabilized, and the same level of pressure can be achieved,
regardless of the value of 𝐾0.
5.2. Shield Excavation Process Analysis. According to cylin-
drical cavity expansion theory, effect of soil compaction
caused by shield tunneling is mainly revealed in dynamic
change of the normalized excess pore water pressure Δ𝑢𝑎/𝑝󸀠0,
the soil pressure inside the cavity 𝜎𝑎/𝑝󸀠0, and the cavity radius𝑟𝑝/𝑎. Figure 5 shows variations of normalized cavity pressure,
soil pressure, and excess pore water pressure with cavity
radius during shield excavation process. Results computed
by the three different typical values of 𝐾0 (0.625, 1, and
2) [14], as well as the results from the MCC model based
solutions, are presented in the same figures for comparison.
Similar to previous analysis, all calculation results have been
normalized.

It can be seen from Figure 5 that excess pore water
pressure and internal cavity pressure are affected by the initial
stress-induced anisotropy significantly when 𝑎/𝑎0 > 2. In
the process of gradual expansion of inner wall of the tunnel,
the result of MCC constitutive model is smaller than that of
the 𝐾0-MCC constitutive model. Stress values at the inner
wall of the tunnel and excess pore water pressure around the
tunnel increase dramatically when 𝑎/𝑎0 < 2. Both parameters
gradually achieve a stable level as the shield continues to
advance. Compared to Figures 5(a), 5(b), and 5(c), it is clear
that, as the𝐾0 value increases, internal cavity pressure caused
by shield tunneling is effectively suppressed, while the impact
of excess pore water pressure and plastic radius is not very
obvious.This is because, at the initial stage of pore expansion,
negative pore pressure first occurs at the hole wall. Then,
with the increase of pore size, the excess pore pressure will
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Figure 4: Comparison of pressure-expansion relationships around shield tunnel calculated by 3D closed form solution and Chen’s solution.

turn to a positive value from negative to a critical state.
Furthermore, when the surrounding soil is in isotropic initial
stress state condition (𝐾0 = 1), the 𝐾0-MCC constitutive
model is reduced to the MCC constitutive model, and the
results are consistent with numerical results. However, effect
of anisotropy degree on discrepancy of excess pore water
pressure calculated from the two solutions is not obvious,
which implies that the OCR also has a pronounced effect
on excess pore water pressure at cavity wall during cavity
expansion process.

Evolution of normalized plastic radius, 𝑟𝑝/𝑎, with nor-
malized instant cavity radius, 𝑎/𝑎0, for three different values
of 𝐾0 and OCR, together with the MCC model based results
is also plotted in Figure 5 for comparison. It is seen that,
for normally consolidated clay with 𝐾0 = 0.625, plastic
radius during whole cavity expansion process is significantly
affected by initially stress-induced anisotropy. However, for
heavily overconsolidated clay, discrepancy between presented

solution and MCC model based solution is not apparent,
because OCR also plays a major role in plastic radius for
heavily consolidated clay during cavity expansion process.

5.3. Effective Stress Path in 𝑝󸀠-𝑞 Plane. Figure 6 shows
effective stress path (ESP) in 𝑝󸀠-𝑞 plane for a soil particle
located at cavity wall in three typical 𝐾0 consolidated clays,
where two stress parameters 𝑝󸀠 and 𝑞 have been normalized
by 𝑝󸀠0. Note that points O, P, and F in Figure 6 denote
the in situ stress point, yield stress point, and failure stress
point, respectively. It is also clear that initial yield loci are
rotational ellipses for anisotropic clays (𝐾0 ̸= 1), and degree
of rotation reflects degree of anisotropic. For isotropic clay
(𝐾0 = 1), 𝐾0 line overlaps with 𝑝󸀠 axis, and yield locus is
symmetric to 𝑝󸀠 axis, and thus 𝐾0-MCC model reduces to
MCC model. For anisotropic clays, yield locus and CSL of
the 𝐾0-MCC model are higher than that of MCC model.
Therefore, yield and failure stresses during cavity expansion
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Figure 5: Evolution of cavity pressure and excess pore water pressure with cavity radius during shield excavation process.

process are underestimated by previous MCC model based
solutions.

For normally (OCR = 1) consolidated clay with 𝐾0 =0.625 in Figure 6, yielding occurs immediately after cavity
expansion, so that in situ stress point O overlaps the yield
stress point P. The corresponding ESP starts form point O
which is located in 𝐾0 line and moves up to the left until
ESP reaches critical state line (CSL) at point F. For lightly
(OCR = 3) and heavily overconsolidated clay (OCR = 10),
ESP firstly moves vertically and soil keeps elastic until the
ESP approaches initial yield locus at point P. Then soil yields,
and the ESP turns up to the right until reaching CSL at
point F.

5.4. Stress Distribution of Shield Tunneling under Different𝐾0 Conditions. Figure 7 shows stress distribution of shield
tunneling under different 𝐾0 conditions calculated by the
approximate closed form 3D solution, where normalized

vertical total stress 𝜎𝑧/𝑝󸀠0, mean of radial stress 𝜎𝑟/𝑝󸀠0, tan-
gential stress 𝜎𝜃/𝑝󸀠0, and excess pore water pressure Δ𝑢𝑎/𝑝󸀠0
are plotted against normalized radial distance 𝑟/𝑎0. It is seen
when 𝑟/𝑎 < 2, the rise of 𝐾0 leads to a significant change of
stress distribution, which will reach a relatively stable state
after EP boundary presents. Besides the value of 𝐾0 has
no effect on the final stress except the vertical total stress𝜎𝑧/𝑝󸀠0. Stress values under different 𝐾0 values finally reach
the same magnitude near the cavity wall. It also indirectly
verifies that the two basic assumptions of the closed form 3D
solution is feasible and reasonable.Therefore, the closed form
3D solution is exact enough to interpret and solve general
geotechnical problems.

6. Conclusions

This paper aims to study the soil-compacting effect produced
by shield tunneling by a precise semianalytical solution.
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Figure 6: ESP in 𝑝󸀠-𝑞 plane for a soil particle located at cavity wall during shield excavation process.

Particular emphasis is given to develop an approximate closed
3D solution of cylindrical cavity undrained expansion in
saturated anisotropic clay based on the 𝐾0-based modified
Cam-clay model. Furthermore, efforts have been made to
examine (a) the effects of the initial anisotropic and initially
stress-induced anisotropy on shield excavation and (b) stress
distribution of shield tunneling under different𝐾0 conditions
calculated by the approximate closed form 3D solution. Some
of key observation and findings from the study are as follows.

(a) Both numerical solution and closed from 3D solution
presented in this study improve the understanding of con-
ventional solutions by considering anisotropic properties of
natural clay and reducing MCC model based solutions when𝐾0 = 1. Therefore, presented solutions can yield a more
realistic stress field induced by cylindrical cavity expansion
in natural clay.

(b) Vertical total stress 𝜎𝑧, radial stress 𝜎𝑟, and tangential
stress 𝜎𝜃 become intermediate principal stress and major
and minor principal stress, respectively, when soil came into
critical state, and vertical total stress 𝜎𝑧 is equal to themean of
radial stress 𝜎𝑟 and tangential stress 𝜎𝜃 in critical state region
around the cavity for all cases.

(c) Initially stress-induced anisotropy has significant
influence on stress field and plastic radius around the cavity,
especially in normally consolidated clay. Excess pore water
pressure is not only affected by the initially stress-induced
anisotropy but also by the initial anisotropy of clay.The stress
state of the soil around the borehole wall changes greatly due
to the expansion of the column hole in the 𝐾0 consolidated
clay, and the stress around the hole decays logarithmically
with the increase of the radial distance and tends to the stress
state at the time of departure.

(d) The initial stress anisotropy and stress history
have obvious influence on the expansion process of cylin-
drical cavity, especially for the ultimate expansion pres-
sure of cylindrical cavity expansion process. Stress field
caused by shield excavation is overestimated, whereas plastic
radius during cavity expansion process is underestimated by
MCC constitutive model based on solutions in anisotropic
clays.
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