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Abstract: 

The scaled boundary method (SBM) is an effective numerical approach for analysing 

elastostatics of bounded and unbounded media. To enhance abilities of the scaled boundary 

approach, this method can be coupled with mesh free technology. In this paper a point 

interpolation based SBM is proposed to analyse seismic soil-tunnel interaction problem. In the 

proposed approach, boundary of domain is modelled with the scaled boundary point 

interpolation method while interior domain is modelled by the conventional finite element 

method (FEM). This is the first time that a mesh-free scaled boundary method is used to analyse 

seismic problems. The presented method has some advantages over previously presented mesh-

free SBMs. In the scaled boundary point interpolation method, the shape functions have the 

Kronecker delta function property and do not require radial basis functions to discretize the 

boundary of 2D problems. A shaking table test is designed and used to verify the proposed 

method. It is shown that the proposed numerical approach leads to results that are in a good 

agreement with those of the designed shaking table tests.   

Keywords: Scaled boundary method; Point interpolation; Mesh-free; Seismic analysis; Shaking 

table. 

 

 

 

 

 

 

 



1. Introduction 

Numerical analysis has been commonly used for solution of engineering problems in recent 

years. The conventional finite element method (FEM) is a powerful tool to investigate different 

problems. Another numerical approach that is used for analyzing engineering problems, is the 

finite difference method (FDM). For example, FDM can be applied to evaluate the critical factor 

of safety for underground rock caverns [2] or it can be used to analyze pillar stresses and 

interaction effects for twin rock caverns [3]. FEM and FDM are powerful tools for numerical 

investigations but they also have a number of limitations. These methods cannot be applied for 

analysis of unbounded media without extra assumptions. In addition, entire domain must be 

discretized in the FEM and FDM. Different numerical procedures can be found in the literature 

especially for solving tunnel engineering problems [4].     

In recent years, the conventional boundary element method (BEM) has been applied to 

analyze different engineering problems. Seepage, [5, 6] static [7, 8] and dynamic problems [9, 

10] were analyzed by the BEM successfully. The boundary element method requires a 

fundamental solution which must satisfy the governing equations in the domain of the problem 

exactly [11]. Calculating the fundamental solution for different problems can be a very time 

consuming procedure. In the past two decades, Wolf and Song [12] developed a boundary 

element approach that does not require a fundamental solution. This method, which is named 

scaled boundary method, is a semi analytical method and couples the advantages of the two 

mostly used finite element (FE) and boundary element methods [13]. In the scaled boundary 

method (SBM), by using a scale center (SC) and two dimensionless local coordinates (η, 𝜉) (for 

two-dimensional (2D) problems) the governing equations can be transformed to a new 

coordinate system. The scheme for domain discretization of the scaled boundary method is 



shown in Fig. 1.  

Like the boundary element method, the scaled boundary method has been applied to solve 

different problems. For example, this method has been used to analyze seepage [14, 15], static 

[16, 17] and dynamic problems [18, 19].  

For seismic analysis, Junyi and his coworkers [20] proposed a free field input model based on 

the coupled scaled boundary finite element-finite element (SBFE-FE) method in time domain. 

Genes and Kocak [21] used the SBFE-FE method to analyze seismic soil structure interaction 

problems. Nonlinear seismic investigation was carried out in [22] to predict building responses to 

earthquake loading. Seiphoori et al. [23] used the SBFE-FE method for three-dimensional 

analysis of concrete rock fill dams. Bazyar and Basirat [24] detailed the formulation of the 

SBFEM to investigate seismic problems. Tohidvand and Hajialilue-bonab [25] carried out a 

seismic soil-structure interaction analysis using the coupled scaled boundary spectral element-

spectral element method. They used an adaptive method to calculate acceleration unit impulse 

matrix in seismic loading condition. All of the above mentioned seismic analyses were evaluated 

by mesh-based scaled boundary approaches.   

To enhance the capabilities of the scaled boundary approach, researchers have applied a 

number of different modifications. An improvement can be applied by combining virtues of the 

mesh-free technology and the scaled boundary approach. In the boundary type mesh-free 

methods, discretization is only required in the boundary of the problem, so the number of 

degrees of freedoms (DOFs) required to solve problems can be decreased significantly. One of 

the first boundary type mesh-free methods proposed in the literature is the boundary node 

method (BNM) that was presented by Mukherjee and Mukherjee in 1997 [26]. Zhu and Atluri 

[27] presented the local boundary integral equation (LBIE) method. Both of the BNM and LBIE 



utilize the moving least squares (MLS) approximation to construct shape functions and their 

derivatives. Therefore, these methods cannot satisfy the Kronecker delta function property. The 

boundary point interpolation method (BPIM) was proposed by Liu and Gu [28] to analyze 

engineering problems. The boundary point interpolation method uses the point interpolation 

technique to construct shape functions, so shape functions have the Kronecker delta function 

property. 

Two mesh-free versions of the scaled boundary method, based on the mesh-free Local 

Petrov–Galerkin approach and element-free Galerkin approach, were presented by Deeks and 

Augarde [29] and He et al. [30]. These methods use MLS approximation in their formulations. 

The radial point interpolation based scaled boundary method (RPISBM) was recently used by 

different researchers to solve engineering problems. Fracture analysis of piezoelectric material 

[31], crack problem [32] and two dimensional elasto-static problems [33] were investigated by 

RPISBM. For two-dimensional problems, as the boundary acts like a continuous line in the 

mapped form, there is no need to use radial functions in constructing of shape functions. In other 

words, singularity cannot occur in point interpolation based boundary shape functions. In this 

paper an efficient scaled boundary method is presented by using the point interpolation 

technique. The advantages of the proposed method in comparison with previously presented 

methods are: 

(1) Scaled boundary point interpolation method (SBPIM) discretizes only the boundary of the 

problem, so the dimension of the problem can be reduced by one. 

(2) Scaled boundary point interpolation method uses polynomial basis to determine shape 

functions and these shape functions have Kronecker delta function property. This feature makes 

the SBPIM more efficient than the element-free Galerkin or the local Petrov Galerkin based 



boundary methods.  

(3)  SBPIM uses only the polynomial basis in shape functions, so computational efforts for 

calculating radial basis are removed.  

As mentioned above, the scaled boundary point interpolation method has some benefits that 

make this method more efficient than previously presented scaled boundary approaches. SBPIM 

does not use bell shape weight functions, therefore this method cannot ensure the compatibility 

feature for nodes in the global domain when a local support domain is used. To model bounded 

media, a radial basis point interpolation method is used in this paper. In this research, the 

coupled SBPIM-FEM is used to analyze seismic soil tunnel interaction problems.  

The paper is organized as follows: The basic equations of the scaled boundary point 

interpolation method are detailed in the next section. A number of example problems are solved 

in Section 3 to verify the methodology and to show the efficiency of the proposed approach. A 

shaking table test is designed and used to analyze wave propagation problems and the results of 

the coupled SBPIM-FEM are verified against the experimental data.  

 

2. Scaled boundary point interpolation method 

The fundamental solution-less scaled boundary method is a semi-analytical method which solves 

boundary value problems numerically in circumferential direction and analytically in radial 

direction [12]. This method transforms the governing partial differential equation to a set of 

ordinary differential equations (Cauchy–Euler differential equations in static problems). In the 

SBM boundary of the domain is discretized with respect to a scale center. This scale center with 

coordinates (x0, y0) must be selected in such manner that all of the boundary can be seen from it 

(Fig. 1). The essence of the scaled boundary method is mapping of Cartesian coordinate system 

to the scaled boundary coordinate system. For each point in the boundary of the domain it can be 



stated that 

 (1                             )                    )( )( 0  xxx  

(2                              )                     )( )( 0  yyy  

where 𝜉 is the radial coordinate and η is the circumferential coordinate. An approximation of 

field variable can be defined using Eq. (3). 
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In Eq. (3) Nh(η) is matrix of shape functions. uh(𝜉) is a set of n functions of 𝜉 [30]. Strains in 

Cartesian coordinate system can be calculated using Eq. (4). 
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As the boundary of the domain is mapped to the scaled boundary coordinate system, to calculate 

stains in the new system, a new operator (L*) instead of the conventional differential operator L 

must be used. This new operator is defined in the form: 
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where [b1(η)] and [b2(η)] are functions of coordinates and shape functions. These matrices can be 

calculated using Eq. (6) and Eq. (7).  
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In these equations, |jac| is the Jacobian of the support domain and can be determined as: 
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In Eq. (8), x, y, and their derivatives can be determined as follows: 
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In this paper, the point interpolation method (PIM) is used to create shape functions and their 

derivatives. The point interpolation method uses polynomial basis in the interpolation functions. 

By considering a support domain with n nodes (for example 6 nodes in Fig. 2) to interpolate field 

variable (u(η)), Eq. 13 can be considered as the starting point of the PIM formulation.   
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Where the coefficient ai is the ith unknown coefficient and pj is the jth monomial. As the scaled 

boundary method only models the boundary of domain, the dimension of the problem is reduced 



by one. Therefore, one dimensional monomials are sufficient in this study. The number of 

monomials should be equal to the number of nodes in the PIM. Eq. (14) shows the vector of 

monomials for a 1D boundary:  
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In order to calculate the unknown coefficients ai in Eq. (13), field variable u(η) can be enforced 

in Eq. (13) to pass nodal values [34]. So, n equations for each node can be constructed. The 

resulted system of equations can be written in a matrix form as:  
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where Pm is the moment matrix and can be defined as 
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Solving Eq. (15) for the unknown vector a leads to 
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For one dimensional problems, pm
-1 

 always exists. However, for 2D problems, singularity can 

occur.  

Substituting Eq. (17) back into Eq. (13) yields: 
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where N is a vector of shape functions and can be defiend as 
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The derivatives of the PIM shape functions can be easily obtained by using Eq. (20).  
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By substituting Eq. (3) and (5) in Eq. (4) it can be found that 
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B1 and B2 can be obtained using equations (22) and (23). 
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By multiplying equation (21) in elasticity matrix (D), stresses can be found.  
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The principle of virtual work (by ignoring the effect of body force) can be written as: 
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 In Eq. (25), {δ u(η)} is the virtual displacement field and {δ ε (𝜉, η)} is the virtual strain field. 

The first term is the internal work and the second term is the external work. By substituting Eq. 

(21) in the first term of Eq. (25) and using some mathematical manipulation, the expression for 

internal work can be written as: 
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In the above equation, E0, E1 and E2 are coefficient matrices of the scaled boundary method and 

have the form  
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In the above equations [D] and [𝜌] are elasticity and density matrices respectively. It should be 

noted that |J| in Eqs. (27-29) is not the same as |jac| in Eq. (6-7). |jac| is the Jacobian of support 

domain while |J| is Jacobian of integration cell.   

The second term of the principle of virtual work can be obtained as: 
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Therefore, the full expression of the principle of virtual work can be written as: 
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By setting virtual displacement equal to zero, two equations can be obtained; one of them is a 

second order differential equation (Eq. (32)) that is called the scaled boundary equation in 

displacements.  
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For dynamic or seismic loading cases, the equation of motion can be written as: 

   















































































)()(

)(

)(

)(

)(

)(

)(

)(

0 trtp

tp

ta

ta

tMMM

MM

tv

tv

CC

CC

tu

tu

kk

kk ii

i

iiii

i

iiii

i

iii


                (33) 

where [M], [C] and [K] are mass, damping and stiffness matrices respectively and {a}, {v} 

and {u} are acceleration, velocity and displacement vectors. The subscript 𝛤 indicates degrees of 

freedom of the nodes on the near and far field interface. The subscript (i) denotes degrees of 

freedom on the remaining nodes of the structure. In this equation, {r𝛤} is the interaction force 

vector and for seismic loading case can be calculated as: 
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where M∞ (t) is the acceleration unit impulse response matrix and ag is the seismic acceleration.  

3. Numerical verifications 

 

In this section, two numerical examples are presented to show the accuracy and efficiency of the 

proposed scaled boundary point interpolation method to analyze soil structure interaction 

problems. The accuracy of the method is investigated by solving two wave propagation problem.  

3.1- An elastic half space subjected to Ricker wavelet type dynamic load    



In this example, to analyze wave propagation in unbounded soil media, an elastic half space is 

considered. The elastic half space on Cartesian coordinate system is shown in Fig. 3a. This half 

space has a Young’s modulus E=2.66×105 kN/m2, Poisson’s ratio v=0.33 and a mass density 

ρ=2×103 kg/m3. Fig. 3a also shows the details of loading and observation points. Fig. 3b shows 

the distribution of nodes in the considered domain and Fig. 3c shows a Ricker wavelet type 

dynamic load which is applied to the domain, horizontally.  

In order to model the bounded medium, the conventional finite element method is used. A 

coupled SBPIM-FEM is used to evaluate the problem. The result of a coupled boundary element-

finite element (BE-FE) method extracted from [35] are used to verify the obtained results. The 

results of the calculated horizontal displacement of point A are shown for both of the above 

mentioned approaches in Fig.4. It is shown that an excellent agreement has been achieved 

between the coupled SBPIM-FEM and BE-FE approaches.  

 

3.2- An elastic half space subjected to a vertical dynamic load    

A rectangular soil medium subjected to a vertical dynamic load is considered in this example. 

Fig. 5a shows the considered medium and the applied dynamic load. The finite element mesh 

used is shown in Fig. 5b. The considered half space has elastic modulus E=1.77 ×107 kN/m2 and 

shear wave velocity equal to 4.74×102 m/s. The load intensity is equal to 68980 kN/m. The 

results of the proposed SBPIM-FEM are compared with the results of the boundary element 

method extracted from the literature [36]. The comparison of the results is shown in Fig. 5c. It is 

shown that an excellent agreement is obtained between the two methods. To ensure the accuracy 

of the proposed SBPIM-FEM in other parameters, acceleration time history of points B and C are 

calculated by the scaled boundary finite element- finite element method. Then the results are 



compared with the SBPIM-FEM in Fig. 6a and Fig. 6b. It is shown that the two mentioned 

methods have excellent agreements with each other.  

 

4. Numerical and experimental study  

Fast population growth in large cities, as a global phenomenon, has led to a serious shortage of 

above ground space, and has therefore led to the development of underground structures such as 

metro transportation lines. Construction and development of underground transportation lines 

like metro tunnels in urban areas is a suitable choice to reduce volume of traffic especially in 

large cities. Seismic response analysis of these tunnels has attracted increasing attentions in 

recent years.  

For this section, a shaking table test was designed to verify the proposed scaled boundary point 

interpolation method. A rectangular tunnel with rigid lining is considered. Fig. 7 shows the 

shaking table apparatus and the shear box used for this test.  

The soil container used in the study is a laminar shear box with overall dimensions of 1.32 m 

length (x), 0.86 m width (y) and 0.82 m height (z). The soil container was constructed by 21 steel 

frames stacked on each other.  To model rigid lining, an aluminum box with a high elastic 

modulus is used (Fig. 8).  

Shear wave velocity of the soil in the used model is evaluated by a hammer test and mass density 

of the soil is determined directly from the constructed model. The material properties of the 

surrounding soil in the model are defined by the shear wave velocity vs=50 m/s, Poisson’s ratio 

v=0.3 and mass density ρ=1.55 ton/m3. Table 1 shows values of material properties for the 

considered model.  

Table. 1. Material properties for the considered model 



Material property - 

Mass density (ton/m3) 1.55 

Shear wave velocity (m/s) 50 

 

As the scaled boundary method is able to evaluate wave propagation problems, only a small part 

of the soil medium is modeled. In addition, because of the symmetry, only half of the system is 

modelled. Fig. 9 shows the geometry of the system which is used in the investigation. 

The model is subjected to a periodic base shaking. The acceleration time history of the applied 

vibration is shown in Fig. 10a.  

The resulted horizontal displacement of point A is shown in Fig. 10b and the horizontal 

acceleration of this point is shown in Fig. 10c. A good agreement is observed between the results 

of the experimental tests and the SBPIM-FEM method. Fourier amplitudes of displacements for 

both the numerical and experimental models are shown in Fig. 11. The figure shows a good 

agreement between the results.   

For another verification, a different acceleration time history is applied to the apparatus. The 

time history of the selected acceleration is shown in Fig. 12a. The resulted displacement and 

acceleration time histories are shown in Figs. 12b and 12c, respectively. As the figures indicate, 

a good agreement is observed between the experimental and the SBPIM-FEM results.  

As a further verification using the shaking table test, another acceleration time history is used. 

Fig 13a shows the selected time history of acceleration. The resulted acceleration and 

displacement time histories of point A are shown in Figs. 13b and 13c respectively. Again an 

excellent agreement is observed between the experimental and numerical results.   



5. Discussion and conclusion   

In this paper, a mesh-free scaled boundary point interpolation method was presented to analyze 

seismic soil structure interaction problems. Like other scaled boundary approaches, no 

fundamental solution is needed in SBPIM. The point interpolation method uses only polynomial 

basis in its formulation. There is no need to add radial basis in the 2D scaled boundary method. 

To model bounded media, the conventional finite element method is employed. The application 

of the proposed mesh-free scaled boundary approach was illustrated using two numerical 

examples. An excellent agreement was achieved between the results of the proposed model and 

the other numerical approaches. A final verification was presented by using an experimental 

study. The results of the coupled SBPIM-FEM were compared with those of a shaking table test 

and a good agreement was obtained between them. It can be concluded that the proposed method 

can model seismic soil tunnel interaction problems with a very high accuracy.  
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Fig.1. Domain discretization scheme of the scaled boundary method. 

 

Fig.2. Support domain of a Gauss point in scaled boundary point interpolation method. 
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Fig. 3 (a) Considered elastic half space (b) Distribution of nodes in the domain (c) Time history 

of the load function. 
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Fig.4. Horizontal displacement of point A due to the horizontal load R(t). 
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(c) 

Fig. 5. (a) Considered rectangular soil medium and the applied load time history. (b) The finite 

element mesh used (c) Displacement time history of points B and C.  
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(b) 

Fig. 6. (a) Acceleration time history of point C (b) Acceleration time history of point B.  

 

 

 

Fig. 7. Shaking table apparatus and the used shear box for experimental seismic response 

analysis of underground tunnel. 

 

Fig. 8. The used aluminum box to model lining of tunnel 

 



Fig. 9. Geometry of the system comprising of a rectangular tunnel and surrounding soil medium. 
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(c)   



Fig. 10. (a) Acceleration time history of the applied vibration in the shaking table test. (b) 

Horizontal displacement of point A. (c) Horizontal acceleration of point A. 
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Fig. 11. Fourier amplitude of displacement of point A. 
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(c) 

Fig. 12. (a) Time history of the selected acceleration. (b) Displacement time history of point A. 

(c) Acceleration time history of point A. 
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(c) 

Fig. 13. (a) Time history of the selected acceleration for third verification. (b) Acceleration time 

history of point A. (c) Displacement time history of point A. 


