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Abstract 

The aim of the current work is to advance our understanding of both the mechanisms 

controlling perceptual learning and the face inversion effect. In the three double blind 

experiments reported here (total N=144) we have shown that anodal tDCS stimulation (10 

mins at 1.5mA) delivered over the left DLPFC at Fp3 affects perceptual learning and 

drastically reduces the, usually robust, face inversion effect. In Experiment 1, we found a 

significantly reduced inversion effect in the anodal group compared to that in the sham group. 

Experiment 2 replicated the pattern of results found in Experiment 1. In both experiments 

recognition performance for upright faces in the anodal group was significantly impaired 

compared to that in the sham group. Finally, using an active control in Experiment 3 (same 

behavioural task but different tDCS targeted brain area) we showed that the same Fp3 anodal 

tDCS stimulation effect is not obtained when a different brain area is targeted.  
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Perceptual learning generally denotes an improvement in learning with experience, 

such that familiarisation with the stimuli to be discriminated aids later performance (Gold & 

Watanabe, 2010). In this paper we will look at a particular version of perceptual learning, in 

which familiarisation with a class of stimuli promotes later discrimination among members of 

that class, even though the stimuli used at test are not those used for familiarisation. 

Although, perceptual learning of this type is well established as a phenomenon (see McLaren, 

Leevers and Mackintosh (1994) for one of the earliest experimental examples in humans), 

and we have some idea how it works, we do not know as much as we would like about the 

neural mechanisms involved or how to influence it. In this paper we set out to show that a 

particular form of transcranial Direct Current Stimulation (tDCS) can influence perceptual 

learning, causing a change in the way that people process images of faces (and other stimuli) 

so as to significantly reduce the inversion effect that would otherwise occur in an old/new 

recognition paradigm.   

The face inversion effect refers to a processing disadvantage for upside-down (i.e. 

inverted) face images compared to upright ones. In 1969, when it was first discovered by Yin 

(and subsequently reported by many others) the inversion effect was used as a robust marker 

for “special” face processing. This because studies reported the FIE to be larger for face 

stimuli than for other visual stimuli (e.g. house) (Valentine & Bruce, 1988; Yovel & 

Kanwisher, 2005). Diamond and Carey (1986)’s finding of an inversion effect for dog images 

when participants were dog breeders (vs novices), and Gauthier’s work on perceptual 

expertise and the inversion effect for novel objects named Greebles (Gauthier & Tarr, 1997) 

challenged the idea that faces are special and highlighted “expertise” as a contributing factor 

to the inversion effect. At the same time McLaren (1997)’s work made the first case for 

perceptual learning playing a vital role in the face inversion effect. Specifically, it was 

demonstrated that after a short period of pre-exposure to checkerboard exemplars drawn from 
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a prototype-defined category, participants would benefit when learning to discriminate 

between a new pair of upright exemplars from that now familiar category, but not if a pair of 

inverted exemplars from that same category were involved. These findings were later 

extended to an old/new recognition paradigm of the type conventionally used in studies that 

demonstrate the face inversion effect (Civile, Zhao, Ku, Elchhlepp, Lavric & McLaren, 

2014). Taken together, these studies provide evidence that exposure to, or experience with a 

set of stimuli drawn from a prototype defined category can improve within category 

discrimination, and that this in turn leads to a type of inversion effect with artificial stimuli 

that is similar to that found in faces.  

Our explanation of the inversion effect for checkerboards has as its basis the theory of 

representation development put forward by McLaren, Kaye, & Mackintosh (1989). More 

specifically, it relies on the differential latent inhibition of common elements mechanism first 

outlined in that paper. According to this theory, pre-exposure helps because it results in the 

unique elements or features of a stimulus (which help us discriminate between stimuli) being 

favoured (i.e. relatively more active) during learning compared to the common elements or 

features shared by the stimuli (which do not help in discrimination, they promote 

generalisation). This is a consequence of the common elements suffering from greater 

salience reduction than the unique elements as a result of latent inhibition because they are 

both more predictable and more frequently encountered, and so develop stronger associations 

both between themselves and from other elements present (McLaren & Mackintosh, 2000; 

McLaren, Forrest & McLaren 2012) resulting in a reduction in error, and a consequent loss of 

salience/activation.  

It may not seem immediately obvious how the effect just considered, latent inhibition, 

could lead to perceptual learning, but the key is in the stimulus representations that are 

involved. If, say, we have two similar stimuli, A and B, that share many features, then the 
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elements representing these features (common elements) will tend to be the source of any 

confusion when we try and discriminate one stimulus from the other. Pre-exposure to these 

stimuli will have the effect of decreasing the salience of these elements relative to others that 

are unique to one of the stimuli. This is partly because they are encountered twice as often – 

so associations between them form rapidly – and also because they are highly predictive of 

one another and reliably predicted by other elements present. The unique elements of A, 

however, only occur in A (by definition), and so can only be predicted by the common 

elements some of the time (i.e. when A occurs rather than B). Conversely, when A is 

presented, the unique A elements can always predict the common elements, and a similar 

analysis applies to presentations of B. The result is that the common elements, which we will 

denote by x, would decline in salience rapidly. The unique A elements (a) and unique B 

elements (b) remain relatively salient, and it is these elements that allow discrimination 

between A and B, hence perceptual learning. The advantage gained in discriminability 

outweighs any loss in overall rate of learning, and, in fact, there may not be any loss in 

overall rate of learning in any case in humans if changes in attention compensate for the 

average loss of salience (see McLaren, Graham and Wills, 2010 for a detailed exposition). 
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Figure 1. Associations between elements representing features leads to a reduction in salience for 

those elements, which means less learning to well-predicted features.  

Importantly, in terms of the connection with face recognition, Civile et al. (2014)’s 

findings were also supported by event-related potentials (ERPs) showing a larger and delayed 

N170 (a negative deflection that occurs 170ms after a face is presented) for inverted 

checkerboards compared to that for upright checkerboards, both drawn from a familiar 

prototype-defined category (Civile et al., 2014, Experiment 4). This effect is similar to that 

usually elicited by upside down faces (Eimer, 2000; Carmel & Bentin, 2002; Zion-Golumbic 

& Bentin, 2007; Civile, Elchlepp, McLaren, Galang, Lavric & McLaren, 2018),  

In a recent study, Civile, Verbruggen, McLaren, Zhao, Ku and McLaren (2016) 

extended their investigation of the inversion effect for checkerboards (taking this as an index 

of perceptual learning) by testing the effects of tDCS on it. The authors adopted the same 

tDCS montage previously used by Ambrus et al (2011) to influence categorisation of 

prototype-defined stimuli. Ambrus et al (2011) found that anodal tDCS delivered to 

dorsolateral prefrontal cortex (DLPFC) at the Fp3 site during the training phase of a 

categorisation task where participants had to identify prototype and low-distortion patterns as 

category members reduced classification accuracy on test for the prototype compared to sham 

stimulation. As Civile et al. (2014) obtained the inversion effect using prototype-defined 

categories of checkerboards, and the MKM model would imply that a strong representation 

of the prototype is a prerequisite for perceptual learning of the type we are considering, 

Civile et al. (2016) adopted the same tDCS montage as that used by Ambrus et al. (2011). 

Civile et al. (2016) were able to provide some evidence that anodal tDCS at the Fp3 area 

significantly reduced the inversion effect for checkerboards that was otherwise obtained in 

the sham group, and did this by affecting performance for upright checkerboards from the 

familiar category. To be specific, the upright checkerboards taken from a familiar category 
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were less well recognized than those drawn from the novel category, leading to a reduction of 

the inversion effect. This remarkable and informative result suggested that perceptual 

learning in humans can be affected by relatively brief tDCS stimulation. 

In line with Civile et al (2016)’s study on tDCS and perceptual learning for 

checkerboards and some more recent pilot work with faces (Civile, Obhi, & McLaren, 2018), 

in the current paper we report the results from three experiments that establish how the tDCS 

montage first used by Ambrus et al (2011) to reduce the prototype distortion effect, when 

extended to perceptual learning can significantly affect the robust inversion effect that is 

usually found for faces.   

Hence, in Experiment 1 we delivered tDCS anodal stimulation at Fp3 site and sham as 

a control (between-subjects) while participants performed an old/new recognition task with 

face stimuli. Experiment 2 aimed to replicate and thus establish the effects found in 

Experiment 1. Finally, Experiment 3 is an active control experiment that uses the same 

behavioural task but targeted a different tDCS brain area to test if we can still obtain the 

effects found in Experiment 1 and 2. In the discussion we compare the results we obtained in 

these experiments to those from the Civile et al (2016) study. We will conclude that our 

results require an explanation in terms of a salience reduction account of perceptual learning 

based on the MKM model.  

Method 
Subjects 

Overall, 144 naïve subjects (111 women; mean age = 21, age range = 18-59 years) 

took part in the three experiments. Each experiment included 48 subjects randomly assigned 

to either sham or anodal tDCS groups (24 in each group). All the subjects were from the 

University of Exeter (mostly students) and were given course credit or cash for their 

participation. They were right-handed and were selected according to the safety screening 

criteria approved by the Research Ethics Committee at the University of Exeter.  The sample 
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size was determined from earlier studies that used the same behavioural paradigm (i.e., an 

old/new recognition task) for face stimuli (Civile, McLaren & McLaren, 2014; 2016) and 

tDCS montage (Civile, Obhi and McLaren, 2018).  

Materials  
The study used a set of 128 male and 128 female face images standardized to 

grayscale on a black background (pics.stir.ac.uk). These face stimuli were the same as those 

used in previous studies with the old/new recognition task paradigm (Civile, McLaren, & 

McLaren, 2014, 2016). The stimuli, whose dimensions were 5.63 cm x 7.84 cm, were 

presented at a resolution of 1280 x 960 pixels. The experiment was run using Superlab 

4.0.7b. on an iMac computer. Participants sat about 70 cm away from the screen on which the 

images were presented. 

Behavioral Task 
The old/new recognition task consisted of two parts: a ‘study phase’ and an ‘old/new 

recognition phase’. In the study phase, each subject was shown 64 upright and 64 inverted 

male and female face stimuli for 128 images in total. The face stimuli were presented one at a 

time in random order with no response required from the subject.  In the old/new recognition 

phase, 128 novel face stimuli (half upright and half inverted) were added to the 128 face 

stimuli seen in the study phase, and all 256 images were presented one at a time in random 

order.  The subject had to respond according to whether or not they thought they had seen the 

face stimuli during the study phase. For a given subject, each face stimulus only appeared in 

one orientation (upright or inverted) during the experiment.   

Following the instructions, in each trial of the study phase subjects saw a fixation 

cross in the center of the screen, presented for 1 second, then a face stimulus was presented 

on screen for 3 seconds before moving on to the next trial. After all the 128 face stimuli had 

been presented, the program displayed another set of instructions, explaining the recognition 

task. In this task, subjects were asked to press the ‘.’ key if they recognized the face stimulus 
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as having been shown in the study phase on any given trial, or press ‘x’ if they did not (the 

keys were counterbalanced). During the recognition task, the face stimuli were each shown 

for 3 seconds during which time subjects had to respond (Figure 1a).  

tDCS apparatus 

Stimulation was delivered by a battery driven constant current stimulator (neuroConn 

DC-Stimulator Plus) using a pair of surface sponge electrodes (7cm x 5cm i.e.35 cm2) soaked 

in saline solution and applied to the scalp at the target areas of stimulation. We adopted a 

bilateral bipolar-non-balanced montage with one of the electrodes (anode) placed over the 

target stimulation area (Fp3 or rIFG) and the other (cathode) on the forehead over the 

reference area (right or left eyebrow respectively). For the Fp3 montage (Experiment 1&2) 

once we had identified the Cz for each of the subjects (half the distance between the inion 

and nasion area) we measured 7 cm anterior relative to the Cz and 9cm to the left (see 

Ambrus et al., 2011, Civile et al., 2016). The right-Inferior Frontal Gyrus (rIFG) has been 

implicated in several tasks (e.g. go/no go tasks) and previous studies have shown tDCS 

administered over the rIFG to be effective (for examples on go/ no go tasks see Cunillera, 

Brignani, Cucurell, Fuentamilla, Miniussi, 2014, 2016; Jacobson, Jawitt, Lavidor, 2011; 

Stramaccia, Penolazzi, Sartori, Braga, Mondini, Galfano, 2014). However, so far there have 

been no experiments that looked at the effects of tDCS delivered over the rIFG while 

participants perform in a perceptual learning task. Thus, we selected the rIFG as the targeted 

area for our active control study (Experiment 3). To locate the stimulation area for rIFG we 

adopted what other studies have used before (Cunillera et al., 2014, 2016; Jacobson et al., 

2011; Stramaccia et al., 2014). Hence, the rIFG was identified as the area underlying the 

crossing point between T4-Fz and F8-Cz in the 10-20 EEG system.	We measured the heads 

of several individuals to find the position for the anode between T4-Fz and F8-Cz (EEG 

equivalent site FT8).  We found that, on average, this site can be located by finding Cz (the 
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mid-point between the inion and nasion area) and then measuring at right-angles (in line with 

the ear) 14cm and then forwards 3.5cm.  The reference electrode was positioned just above 

the left eyebrow. 

 All three experiments were conducted using a double-blind procedure reliant on the 

neuroConn study mode in which the experimenter inputs numerical codes (provided by 

another experimenter otherwise unconnected with running the experiment), that switch the 

stimulation mode between “normal” (i.e. anodal) and “sham” stimulation. In the anodal 

condition, a direct current stimulation of 1.5mA was delivered for 10 mins (5 s fade-in and 5 

s fade-out) starting as soon as the subjects began the behavioural task and continuing 

throughout the study phase only. In the sham group, the identical stimulation mode was 

displayed on the stimulator and subjects experienced the same 5 s fade-in and 5 s fade-out, 

but with the stimulation intensity of 1.5mA delivered for just 30 s, following which a small 

current pulse (3 ms peak) was delivered every 550 ms (0.1mA over 15 ms) for the remainder 

of the 10 mins to check impedance levels. For every subject the stimulation finished towards 

the end of the study phase.  Although no stimulation took place during the remaining part of 

the experiment, the tDCS electrodes remained on the participant (Figure 1b & c).  
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Figure 1. Panel a illustrates the old/new recognition task used in the three experiments here 

reported. Panel b shows the tDCS montage adopted in Experiment 1 and 2. This was the same 

montage used in Civile et al (2016)’s study.  Panel c shows the tDCS montage used for the active 

control study.  

Results 
Data Analysis 

Our primary measure was performance accuracy in the recognition task. The data 

from all the participants was used in the signal detection d' analysis of the recognition task 

(where a d’ = of 0 indicates chance-level performance). We assessed performance against 

chance to show that both upright and inverted face stimuli in both the tDCS sham and anodal 

groups across the three experiments were recognized significantly above chance. (For all four 

conditions we found p < .005 for this analysis). Each p-value reported for the comparisons 

between conditions is two-tailed, and we also report the F or t value along with effect size. 

We also analysed the data for the accuracy scores which confirmed our results, and for the 

reaction times (RTs) to check for any speed accuracy trade-off. We do not report these 

analyses here because they do not add anything to the interpretation of our results.  

We computed a 2 x 2 x 3 mixed model design using, as a within-subjects factor, Face 

Orientation (upright or inverted), and the between-subjects factors tDCS Stimulation (sham 

or anodal) and Experiment (Fp3, replication, rIFG). A mixed model Analysis of Variance 

(ANOVA) revealed a significant main effect of Face Orientation F(1, 138) = 146.01, p < 

.001, η2
p = .51 as well as a significant interaction between Face Orientation and tDCS 

Stimulation F(1, 138) = 6.16, p = .011, η2
p = .04. No significant interaction was found 

between Face Orientation and Experiment F(2, 138) = 0.37, p = .688, η2
p = .005. 

Importantly, a significant three-way interaction was found, F(2, 138) = 4.16, p = .018, η2
p = 

.05. We decomposed the three-way interaction by examining the two-way interactions (Face 

Orientation x Stimulation) separately for the three experiments. Follow-up paired t test 
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analyses were conducted to compare performance on upright and inverted face stimuli (the 

inversion effect) in each tDCS group (sham, anodal) within each experiment.  

Planned comparisons to measure the inversion effect were used because we have a 

considerable amount of data (Civile, McLaren, McLaren, 2012, 2014, 2016) showing an 

inversion effect obtained with these same stimuli and behavioural procedure. Hence, our 

primary measure is the face inversion effect given by comparing performance on upright and 

inverted faces. Importantly, we also directly compare the performance for upright faces in the 

sham vs anodal tDCS group. This comparison is also motivated by previous work conducted 

in our lab (Civile et al., 2016, and more recent pilot work by Civile, Obhi, McLaren, 2018) 

where anodal tDCS delivered over the Fp3 was found to reduce performance for upright 

familiar checkerboards or faces, compared to the same condition in the sham group. This 

comparison is particularly appropriate because the same stimulus sets are rotated across 

participants in a counterbalanced manner; so that each upright face seen in the anodal group 

for a given participant will equally often serve as an upright face for the participants in the 

sham group.  

Experiment 1 (Fp3). A 2 x 2 ANOVA produced a significant interaction, F(1, 46) = 

5.93, p = .019, η2
p	= .11, indicating that the inversion effect differed between the two groups. 

A significant inversion effect was found in the sham group, t(23) = 6.12, p < .001, η2
p = .62, 

and, critically, a reduced (but still significant) inversion effect was found in the tDCS anodal 

group, t(23) = 3.50, p = .002, η2
p = .34 (see Figure 2). An additional analysis showed that 

recognition for upright face stimuli in the anodal group was significantly reduced compared 

to that in the sham group, t(46) = 2.62, p = .015, η2
p = .24. No difference was found for 

inverted faces in the two groups, t(46) = .50, p = .619, η2
p = .01. 

Experiment 2 (Replication). As in Experiment 1 we found a significant interaction, 

F(1, 46) = 5.93, p = .006, η2
p	= .15. Thus, a significant inversion effect was found in the sham 
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group, t(23) = 7.66, p < .001, η2
p = .71, and once again we found a significantly reduced 

inversion effect in the tDCS anodal group, t(23) = 2.91, p = .008, η2
p = .27 (see Figure 2). In 

this experiment, as in Experiment 1, recognition for upright face stimuli in the anodal group 

was significantly reduced compared to that in the sham group, t(46) = 3.18, p = .004, η2
p = 

.26. No difference was found for inverted faces in the two groups, t(46) = .05, p = .957, η2
p 

=0. 

Experiment 3 (Active Control). A 2 x 2 ANOVA produced no reliable interaction, 

F(1, 46) = 0.65, p = .42, η2
p	= .01. A significant inversion effect was found in the sham 

group, t(23) = 4.04, p < .001, η2
p = .41, and  in the tDCS anodal group, t(23) = 5.51, p < .001, 

η2
p = .57, i.e. this montage did not result in the reduced inversion effect found in Experiments 

1 and 2 (see Figure 2).  

 

Figure 2 reports the results from the three experiments. The x-axis shows the stimulus 

conditions. The y-axis shows sensitivity d’ measure. Error bars represent s.e.m.  
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Bayes Factor Analysis 

Using the procedure outlined by Dienes (2011), we first conducted a Bayes analysis on the 

Face Orientation by Stimulation interaction found in both Experiment 1 and 2. Thus, we used 

the interaction found in Experiment 1as the prior, setting the standard deviation of p 

(population value | theory) to the mean for the difference between the inversion effect in 

sham group minus that in the anodal group (0.26).  We used the standard error (0.10) and 

mean difference (0.35) between the inversion effect in the sham group minus that in the 

anodal group in Experiment 2 in our calculation. We assumed a one-tailed distribution for our 

theory and a mean of 0. This gave a Bayes factor of 148, which is very strong evidence 

indeed for the theory (because greater than 3, for the conventional cut-offs see Jeffrey et al., 

1961), in this case that the interaction will be positive and non-zero. Because in both 

Experiment 1 & 2 performance for the upright faces was significantly better in the sham 

group compared to that in the anodal group, we calculated the Bayes factor for this effect 

using as prior Experiment 1, setting the standard deviation of p as the mean difference 

between sham upright faces minus anodal upright faces (0.22). We then used the standard 

error (0.11) and mean difference (0.34) between sham upright faces minus anodal upright 

faces in Experiment 2 in the calculation. Once again, we assumed a one-tailed distribution for 

our theory and mean of 0. This gave a Bayes factor of 40, which is again very strong 

evidence that the performance on the sham upright faces will be higher than that on the 

upright faces experienced under anodal tDCS. Finally, we calculated the Bayes factor for the 

Face Orientation by Stimulation interaction in Experiment 3 using as the prior (standard 

deviation of p) the interaction averaged over Experiment 1 and 2 (0.30). We used the 

standard error (0.13) and mean difference (-0.09) for the interaction in Experiment 3, and 

again assumed a one-tailed distribution for our theory and a mean of 0. This gave a Bayes 

factor of 0.26, which is good evidence for the null (because close to 0). 
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Discussion 

Building on previous work with checkerboards (Civile et al., 2016) and pilot work 

with faces (Civile, Obhi and McLaren, 2018), the evidence we present here establishes that 

anodal tDCS to Fp3 using our electrode montage (based on that used by Ambrus et al, 2011) 

affects the mechanisms supporting perceptual learning in humans; and this impairs their 

ability to discriminate between faces, mainly by reducing the advantage enjoyed by upright 

relative to inverted faces in a standard study/test recognition experiment. But we will argue 

that it is not just a matter of "switching off" perceptual learning as might be thought by taking 

Civile et al (2016)’s title at face value. Rather, it can be described as a reconfiguration of the 

processing that produces representations of stimuli, such that instead of pre-exposure to a 

prototype-defined category enhancing the discriminability of (even novel) exemplars taken 

from that category (McLaren, Leevers and Mackintosh, 1994; McLaren, 1997), it now 

enhances generalization between them, and makes features common to those exemplars more 

prominent rather than exaggerating their differences. As a consequence, the stimulation can 

be said to change how the mind works, rather than just disabling a component of it. This is a 

bold claim, and we present our arguments in support of it below. 

In Experiment 1, we show that anodal tDCS delivered (10 mins at 1.5mA) over the 

left DLPFC at Fp3 significantly reduces the face inversion effect relative to a sham control 

condition under double blind conditions. This is the first demonstration of this kind. 

Experiment 2 confirmed this effect by replicating the pattern of results found in Experiment 1 

to establish its reliability. These results are supported by the Bayesian analysis that we 

conducted on the critical Face Orientation by Stimulation interaction using priors from 

Experiment 1, which gives a Bayes factor of 148, providing conclusive evidence in favour of 

the hypothesis that the inversion effect is greater in sham than in anodal groups using this 

procedure. In both Experiment 1 and 2 performances for upright faces in the anodal group 
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was impaired compared to sham. Finally, in Experiment 3, we show that stimulation applied 

to a different targeted brain area i.e. rIFG (our active control) does not have the same effect, 

providing the first evidence that the reduction in the inversion effect is not obtained by 

stimulating any brain area. Taking all three studies together, we suggest that the reduction in 

the inversion effect, in those conditions in which it occurs, is due mainly to a reduction in 

performance on the upright faces consequent on Fp3 stimulation, with the inverted faces 

relatively unaffected. This last point establishes that the effect is not merely due to a general 

decrement in learning, making the case for an effect based on perceptual learning per se.  

To see this, consider that the main finding emerging from these experiments is that 

the robust inversion effect that would usually be obtained for face stimuli is reduced when 

relatively brief tDCS stimulation is delivered over the Fp3 brain area. We are arguing that 

this cannot be due to tDCS affecting recognition performance in general, because if it was, 

then the anodal groups in Experiments 1 and 2 would have shown a reduction in recognition 

performance (compared to sham) for inverted faces as well as for upright faces. However, 

this was not the case, and inverted faces were recognised significantly above chance and, 

most importantly, showed no differences across groups.  

To accommodate this pattern of results we propose that tDCS has a quite specific 

effect on perceptual learning, in that it disrupts the modulation of feature salience based on 

prediction error that normally produces perceptual learning in these circumstances (McLaren, 

et al, 2016; Civile et al, 2016). It is this change in perceptual learning that causes the 

reduction in the face inversion effect, because it reduces people's ability to discriminate 

between different upright faces, which is normally enhanced by their expertise for face 

processing acquired via experience and manifesting as perceptual learning. Under normal 

conditions, the theory predicts that the salience of units representing features of the stimulus 

that have strong associations with other units that are also active is reduced by this process 
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(see any of McLaren, Kaye and Mackintosh, 1989; McLaren and Mackintosh, 2000; 

McLaren, Forrest and McLaren, 2012 for a discussion). This has the effect of making the 

prototypical features of an exemplar (which it will tend to share with other exemplars drawn 

from that category) less salient and enhances the relative salience of features unique to that 

exemplar, thus improving its discriminability from other exemplars. Disrupting this process 

via tDCS means that the same associations that led to a low error and hence low salience for 

some features now make these units more (rather than less) active and quite possibly the most 

salient. This will now enhance generalization between exemplars as a consequence of 

familiarity with that category, rather than producing the enhanced discriminability that is the 

hallmark of perceptual learning (McLaren, et al, 2016). The result is the elimination of the 

inversion effect seen in Civile et al (2016)’s study with checkerboards, and the reduction of 

the inversion effect for faces reported here.  

One reason why we believe this is the correct explanation for the effects reported in 

this paper is that, in contrast to other possible theories of the basic effect on perceptual 

learning, this account has the advantage of explaining why tDCS can affect the results of 

perceptual learning acquired over a lifetime of experience (e.g. with faces), rather than just 

the perceptual learning process itself. To see this, recall that our demonstration with 

checkerboards used tDCS during what was, effectively, the stimulus exposure phase. The 

elimination of any perceptual learning effect in those circumstances could have been due to 

tDCS simply preventing perceptual learning from occurring. But now we have a result where 

an effect, at least partially attributable to perceptual learning (the inversion effect for faces) 

but dependent on perceptual learning that has taken place over a long period before 

stimulation was applied, still produces a similar result. This quite clearly indicates that it is 

not the process by which exposure leads to perceptual learning that must necessarily be 

impacted to produce our results. It is possible to transform processing of the stimuli in a way 
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that is based on learning that has taken place much earlier to arrive at our effect. Changing 

the way that salience is modulated based on prediction error (i.e. past learning) fits this 

specification. Other theories that rely on the allocation of attention or some process of 

comparison (e.g. Mundy, Dwyer and Honey, 2006; Mundy, Honey and Dwyer 2007, Wang, 

Lavis, Hall and Mitchell, 2012; Jones and Dwyer, 2013) do not so obviously do so.  

One may notice that, while anodal tDCS over the Fp3 significantly reduced the face 

inversion effect compared to sham, it did not eliminate it entirely. This bring us to one of the 

main debates about face recognition: Are faces special or not? Clearly, our results must offer 

some support to the expertise account of face recognition, but if the face inversion effect was 

entirely due to perceptual learning, then, by analogy with the results obtained with the 

checkerboard stimuli in Civile et al (2016)’s work, we would have expected to eliminate the 

inversion effect for our face stimuli. However, this was not case. One potential explanation is 

that there may be two separate components contributing to the face inversion effect. One is 

that due to perceptual learning, a component that we have shown we are able to influence by 

means of tDCS stimulation. But, this leaves the possibility that the other component may well 

be specific to face stimuli. The current data do not directly address this issue, but future 

studies should. There are, of course, other potential explanations for the residual inversion 

effect observed with faces even under stimulation using our procedures, and we note them 

here as they may provide a challenge to the MKM-based approach that we have adopted. It 

may be that the stimulation itself was not strong enough to completely eliminate the effect, 

but recall that it was for the checkerboards. We can try to explain this difference by appealing 

to the fact that people have so much experience of faces, and this could make the perceptual 

learning based on that experience particularly resistant to modification. But there is a 

potential difficulty with this argument. To succeed, it requires some reduction in the benefits 

of perceptual learning that is not complete. How can this be achieved? If we take the MKM 
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approach as an example, we can imagine reducing the error-based modulation of salience just 

enough to get the desired effect. But this reduction would be in no way dependent on the 

amount of experience with the stimuli, it is an effect on the mechanism for perceptual 

learning itself, and so should also have manifested in the case of the checkerboards. Clearly, 

then, our MKM-based approach cannot easily explain the results with faces and those with 

checkerboards without appealing to some other process at work in the case of faces.  But the 

problem here, if we dispense with the MKM account, is to find a theory of perceptual 

learning that would naturally integrate amount of experience with a stimulus class with the 

effects of tDCS, and at present, there are no obvious candidates. This is obviously an area for 

further research. 

To sum up, in this paper we have shown how a brief anodal tDCS stimulation at Fp3 

on the scalp is able to reduce the inversion effect for faces, an effect analogous to previous 

effects found for checkerboard stimuli drawn from familiar categories. Our current results 

contribute to the perceptual learning account of face recognition, and provide evidence for a 

causal relationship between tDCS delivered in a manner that affects perceptual learning and 

the reduction of the inversion effect that would otherwise be obtained for familiar 

checkerboards and for face stimuli.  
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