Behaviour of L_{q} norms of the sinc_{p} function

David E Edmunds ${ }^{1}$ and Houry Melkonian ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK.
${ }^{2}$ Department of Mathematics, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

April 2018

Abstract

An integral inequality due to Ball involves the L_{q} norm of the sinc_{p} function; the dependence of this norm on q as $q \rightarrow \infty$ is now understood. By use of recent inequalities involving p-trigonometric functions ($1<$ $p<\infty$) we obtain asymptotic information about the analogue of Ball's integral when \sin is replaced by $\sin _{p}$.

Mathematics Subject Classification. Primary 33F05; Secondary 42A99. Keywords. p-Ball's integral inequality, generalised trigonometric functions, p-Laplacian operator, p-sinc function, asymptotic expansion.

1 Introduction

In [1], K. Ball proved that every section of the unit cube in \mathbb{R}^{n} by an ($n-$ $1)$-dimensional subspace has $(n-1)$-volume at most $\sqrt{2}$, which is attained if and only if this section contains an ($n-2$)-dimensional face of the cube. To show this, Ball made essential use of the inequality

$$
\sqrt{q} \int_{-\infty}^{\infty}\left|\frac{\sin x}{x}\right|^{q} \mathrm{~d} x \leq \sqrt{2} \pi, \quad q \geq 2
$$

in which equality holds if and only if $q=2$.
It is now known (see [3]) that

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \sqrt{q} \int_{-\infty}^{\infty}\left|\frac{\sin x}{x}\right|^{q} \mathrm{~d} x=\sqrt{\frac{3 \pi}{2}} . \tag{1}
\end{equation*}
$$

[^0]Moreover, the asymptotic properties of the q-norm of the sinc function were studied. In fact, more precise results of an asymptotic nature of the integral in Ball's integral inequality are now known (see [8] for more details).

Stimulated by applications to such differential operators as the p-Laplacian, there is now a large amount of recent work concerning generalisations of the sine function (and other trigonometric functions): see, for example, [5]. This encourages us to look for an extension of (1) to a more general setting. With this in mind, for $q \in(1, \infty)$, define

$$
I_{p}(q):=q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x
$$

where $p \in(1, \infty)$ and $\sin _{p}$ is the generalised sine function. This function is defined to be the inverse of the function $F_{p}:[0,1] \longrightarrow\left[0, \frac{\pi_{p}}{2}\right]$ given by

$$
\begin{equation*}
F_{p}(y):=\int_{0}^{y}\left(1-t^{p}\right)^{-\frac{1}{p}} \mathrm{~d} t \tag{2}
\end{equation*}
$$

where $\pi_{p}:=2 F_{p}(1)=\frac{2 \pi}{p \sin \left(\frac{\pi}{p}\right)}$; it is increasing on $\left[0, \frac{\pi_{p}}{2}\right]$ and is extended to the whole of \mathbb{R} to be a $2 \pi_{p}$-periodic function (still denoted by $\sin _{p}$) by means of the rules

$$
\begin{equation*}
\sin _{p}(-x)=-\sin _{p}(x) \quad \text { and } \quad \sin _{p}\left(\frac{\pi_{p}}{2}-x\right)=\sin _{p}\left(\frac{\pi_{p}}{2}+x\right) \tag{3}
\end{equation*}
$$

The choice $p=2$ corresponds to the standard trigonometric setting: $\sin _{2} \equiv \sin$, $\pi_{2}=\pi$. Moreover, π_{p} is a decreasing function in $p \in(1, \infty)$ such that

$$
\left\{\begin{array}{lll}
\pi_{p} \rightarrow \infty & \text { when } & p \rightarrow 1^{+} \tag{4}\\
\pi_{p} \rightarrow 2 & \text { when } & p \rightarrow \infty
\end{array}\right.
$$

The main purpose of this paper is to show that for each $p \in(1, \infty)$ there is an analogue of (1), namely

$$
\lim _{q \rightarrow \infty} q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} d x=p^{-1}(p(p+1))^{1 / p} \Gamma(1 / p)
$$

This is achieved by appropriate use of certain recently-obtained inequalities concerning $\sin _{p}$. Moreover, information is obtained about the asymptotic behaviour of the above integral as $q \rightarrow \infty$; this complements that known when $p=2$.

2 Properties of the sinc_{p} function

Given $p \in(1, \infty)$, the function sinc_{p} is defined by

$$
\operatorname{sinc}_{p} x=\left\{\begin{array}{cc}
\frac{\sin _{p} x}{x}, & x \in \mathbb{R} \backslash\{0\}, \\
1, & x=0 .
\end{array}\right.
$$

It is even and its roots are the points $n \pi_{p}$ with $n \in \mathbb{Z} \backslash\{0\}$. Since $\left|\sin _{p} x\right| \leq 1$ for all $x \in \mathbb{R}, \lim _{|x| \rightarrow \infty} \operatorname{sinc}_{p} x=0$.

Lemma 2.1. (a) $\left|\operatorname{sinc}_{p} x\right| \leq 1$ for all $x \in \mathbb{R}$.
(b) The function sinc_{p} is strictly decreasing on the interval $\left(0, \frac{\pi_{p}}{2}\right)$.

Proof. (a) Observe that for $x \in\left(0, \frac{\pi_{p}}{2}\right]$ we have the p-analogue of the classical Jordan inequality [4, Proposition 2.3],

$$
\begin{equation*}
\frac{2}{\pi_{p}} \leq \operatorname{sinc}_{p} x<1 \quad \forall x \in\left(0, \frac{\pi_{p}}{2}\right] \tag{5}
\end{equation*}
$$

On the other hand, for $x \in\left(\frac{\pi_{p}}{2}, \infty\right)$ and since $\pi_{p} \in(2, \infty)$ for all $p \in(1, \infty)$ we conclude that

$$
\left|\operatorname{sinc}_{p} x\right|=\left|\frac{\sin _{p} x}{x}\right| \leq \frac{1}{|x|}<1
$$

Since sinc_{p} is an even function, (a) is complete.
(b) Observe that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \operatorname{sinc}_{p} x=\frac{\cos _{p} x}{x^{2}}\left(x-\tan _{p} x\right)
$$

and $\cos _{p} x>0$ for any $x \in\left(0, \frac{\pi_{p}}{2}\right)$. Let $g(x)=x-\tan _{p} x$. Then, $g^{\prime}(x)=-\tan _{p}^{p} x<$ 0 for all $x \in\left(0, \frac{\pi_{p}}{2}\right)$ and we conclude that $g(x)$ is strictly decreasing in this interval. Then $g(x)<g(0)=0$ for $x \in\left(0, \frac{\pi_{p}}{2}\right)$. The result follows.

3 The p-version of Ball's integral inequality

For $p, q \in(1, \infty)$ define

$$
I_{p}(q):=q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x
$$

Here we establish the existence of $\lim _{q \rightarrow \infty} I_{p}(q)$. We use Laplace's method for integrals which suggests approximating the integrand in a neighbourhood by simpler functions for which the integral can be evaluated after proving that the integral on the complementing interval is very small when q is large enough.

Lemma 3.1. Let $p, q \in(1, \infty)$. For any real $\alpha>0$, we have

$$
\int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq\left\{\begin{array}{ll}
\frac{1}{q-1} \alpha^{1-q} & \text { for }
\end{array} \quad \alpha \geq 1, ~\left(\frac{\sin _{p} \alpha}{\alpha}\right)^{q}(1-\alpha)+\frac{1}{q-1} \quad \text { for } \quad \alpha<1 .\right.
$$

Moreover,

$$
\lim _{q \rightarrow \infty} q^{1 / p} \int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x=0, \quad \forall \alpha>0
$$

Proof. We first discuss the case $\alpha \in[1, \infty)$.

$$
\begin{aligned}
\int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x & =\lim _{\beta \rightarrow \infty} \int_{\alpha}^{\beta}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \\
& \leq \lim _{\beta \rightarrow \infty} \int_{\alpha}^{\beta} x^{-q} \mathrm{~d} x \\
& =\lim _{\beta \rightarrow \infty} \frac{1}{1-q}\left[\frac{1}{\beta^{q-1}}-\frac{1}{\alpha^{q-1}}\right]=\frac{1}{q-1} \alpha^{1-q}
\end{aligned}
$$

Then,

$$
\lim _{q \rightarrow \infty} q^{1 / p} \int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq \lim _{q \rightarrow \infty} \frac{q^{1 / p}}{(q-1) \alpha^{q-1}}=0
$$

For $\alpha \in(0,1)$, we have

$$
\int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x=\int_{\alpha}^{1}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x+\int_{1}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x .
$$

From the previous case we have,

$$
q^{1 / p} \int_{1}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq \frac{q^{1 / p}}{q-1},
$$

which approaches zero as $q \rightarrow \infty$.
For the remaining integral, the corresponding interval $(\alpha, 1)$ is a subset of ($0, \frac{\pi_{p}}{2}$) since $\pi_{p} \in(2, \infty)$. According to Lemma 2.1,

$$
0<\frac{\sin _{p} x}{x}<\frac{\sin _{p} \alpha}{\alpha}<1, \quad \forall x \in(\alpha, 1)
$$

Then,

$$
\int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x<\left(\frac{\sin _{p} \alpha}{\alpha}\right)^{q}(1-\alpha)+\frac{1}{q-1}
$$

Using Lemma $2.1(a)$, we conclude that

$$
\lim _{q \rightarrow \infty} q^{1 / p} \int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq \lim _{k \rightarrow \infty} q^{1 / p}\left[\left(\frac{\sin _{p} \alpha}{\alpha}\right)^{q}(1-\alpha)+\frac{1}{q-1}\right]=0
$$

Our main result is the following theorem:
Theorem 3.1. Let $p, q \in(1, \infty)$. Then

$$
\lim _{q \rightarrow \infty} I_{p}(q)=\frac{1}{p} \Gamma\left(\frac{1}{p}\right)(p(p+1))^{1 / p}
$$

Proof. From [6, 3.251, p. 324], for $\mu>0, v>0, \lambda>0$ we have

$$
\begin{equation*}
\int_{0}^{1} x^{\mu-1}\left(1-x^{\lambda}\right)^{v-1} \mathrm{~d} x=\frac{1}{\lambda} B\left(\frac{\mu}{\lambda}, v\right) . \tag{6}
\end{equation*}
$$

From [2, Theorem 1.1 (1)], for $0<x<\left(1-\left(\frac{2}{\pi_{p}}\right)^{p(p+1)}\right)^{1 / p}$ we have

$$
\begin{equation*}
\frac{x}{\sin _{p}^{-1} x}>\left(1-x^{p}\right)^{\frac{1}{p(p+1)}} \tag{7}
\end{equation*}
$$

Note that for all $p \in(1, \infty)$ we have

$$
0<\left(1-\left(\frac{2}{\pi_{p}}\right)^{p(p+1)}\right)^{1 / p}<1
$$

Let

$$
\alpha_{1}:=\sin _{p}^{-1}\left(1-\left(\frac{2}{\pi_{p}}\right)^{p(p+1)}\right)^{1 / p} \in\left(0, \frac{\pi_{p}}{2}\right)
$$

Changing the variable to $y=\sin _{p} x$ and using the inequality in (7) we see that

$$
\begin{aligned}
q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} & >q^{1 / p} \int_{0}^{\alpha_{1}}\left(\frac{\sin _{p} x}{x}\right)^{q} \mathrm{~d} x \\
& =q^{1 / p} \int_{0}^{\sin _{p} \alpha_{1}}\left(\frac{y}{\sin _{p}^{-1} y}\right)^{q}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& >q^{1 / p} \int_{0}^{\sin _{p} \alpha_{1}}\left(1-y^{p}\right)^{\frac{q}{p(p+1)}}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& =q^{1 / p}\left(\int_{0}^{1}-\int_{\sin _{p} \alpha_{1}}^{1}\left(1-y^{p}\right)^{\frac{q}{p(p+1)}}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y\right) \\
& =: J_{1}(p, q)-J_{2}(p, q)
\end{aligned}
$$

From (6) with $\mu=1, \lambda=p$ and $v=\frac{q}{p(p+1)}-\frac{1}{p}+1$ we get

$$
\begin{align*}
\lim _{q \rightarrow \infty} J_{1}(p, q) & =\lim _{q \rightarrow \infty} q^{1 / p} \frac{1}{p} \Gamma\left(\frac{1}{p}\right) \frac{\Gamma\left(\frac{q}{p(p+1)}-\frac{1}{p}+1\right)}{\Gamma\left(\frac{q}{p(p+1)}+1\right)} \\
& =\frac{1}{p} \Gamma\left(\frac{1}{p}\right)(p(p+1))^{1 / p} . \tag{8}
\end{align*}
$$

The last equality is due to the fact that

$$
\begin{equation*}
\frac{\Gamma(q+a)}{\Gamma(q+b)} \sim q^{a-b} \quad \text { as } \quad q \rightarrow \infty \tag{9}
\end{equation*}
$$

which follows from Stirling's formula: see also [7, Problem 2, p.45]. Moreover,

$$
\begin{align*}
\lim _{q \rightarrow \infty} J_{2}(p, q) & =\lim _{q \rightarrow \infty} q^{1 / p} \int_{\sin _{p} \alpha_{1}}^{1}\left(1-y^{p}\right)^{\frac{q}{p(p+1)}}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& \leq \lim _{q \rightarrow \infty} q^{1 / p}\left(1-\sin _{p}^{p} \alpha_{1}\right)^{\frac{q}{p(p+1)}} \int_{\sin _{p} \alpha_{1}}^{1}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& \leq \lim _{q \rightarrow \infty} q^{1 / p}\left(1-\sin _{p}^{p} \alpha_{1}\right)^{\frac{q}{p(p+1)}} \int_{0}^{1}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& =\frac{\pi_{p}}{2} \lim _{q \rightarrow \infty} q^{1 / p}\left(1-\sin _{p}^{p} \alpha_{1}\right)^{\frac{q}{p(p+1)}}=0 . \tag{10}
\end{align*}
$$

Then from (8) and (10),

$$
\begin{equation*}
\liminf _{q \rightarrow \infty} q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \geq \frac{1}{p} \Gamma\left(\frac{1}{p}\right)(p(p+1))^{1 / p} \tag{11}
\end{equation*}
$$

On the other hand, from [6, 3.251, p.325], for $0<\mu<p v, b>0$ and $p>0$ we have

$$
\begin{equation*}
\int_{0}^{\infty} x^{\mu-1}\left(1+b x^{p}\right)^{-v} \mathrm{~d} x=\frac{1}{p} b^{-\mu / p} B\left(\frac{\mu}{p}, v-\frac{\mu}{p}\right) \tag{12}
\end{equation*}
$$

From [2, Theorem 1.1 (1)], for $x \in(0,1)$ we have

$$
\begin{equation*}
\frac{x}{\sin _{p}^{-1} x}<\left(1+\frac{x^{p}}{p(p+1)}\right)^{-1} \tag{13}
\end{equation*}
$$

Now let $\alpha_{2} \in\left(0, \pi_{p} / 2\right]$. Changing the variable to $y=\sin _{p} x$ and using the inequality in (13) we obtain

$$
\begin{align*}
\int_{0}^{\alpha_{2}}\left(\frac{\sin _{p} x}{x}\right)^{q} \mathrm{~d} x & =\int_{0}^{\sin _{p} \alpha_{2}}\left(\frac{y}{\sin _{p}^{-1} y}\right)^{q}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& <\int_{0}^{\sin _{p} \alpha_{2}}\left(1+\frac{y^{p}}{p(p+1)}\right)^{-q}\left(1-y^{p}\right)^{-1 / p} \mathrm{~d} y \\
& <\left(1-\sin _{p}^{p} \alpha_{2}\right)^{-1 / p} \int_{0}^{\sin _{p} \alpha_{2}}\left(1+\frac{y^{p}}{p(p+1)}\right)^{-q} \mathrm{~d} y \\
& =:\left(1-\sin _{p}^{p} \alpha_{2}\right)^{-1 / p} J_{3}(p, q) \tag{14}
\end{align*}
$$

From (12), with $\mu=1, b=(p(p+1))^{-1}$ and $v=q \in(1 / p, \infty)$, we obtain

$$
\begin{align*}
J_{3}(p, q) & <\frac{1}{p}(p(p+1))^{1 / p} B\left(\frac{1}{p}, q-\frac{1}{p}\right) \\
& =\frac{1}{p}(p(p+1))^{1 / p} \Gamma\left(\frac{1}{p}\right) \frac{\Gamma\left(q-\frac{1}{p}\right)}{\Gamma(q)} . \tag{15}
\end{align*}
$$

With the help of (9) it follows that

$$
\limsup _{q \rightarrow \infty} q^{1 / p} \int_{0}^{\alpha_{2}}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq\left(1-\sin _{p}^{p} \alpha_{2}\right)^{-1 / p} \frac{1}{p}(p(p+1))^{1 / p} \Gamma\left(\frac{1}{p}\right)
$$

Letting $\alpha_{2} \rightarrow 0^{+}$we conclude that,

$$
\limsup _{q \rightarrow \infty} q^{1 / p} \int_{0}^{\alpha_{2}}\left(\frac{\sin _{p} x}{x}\right)^{q} \mathrm{~d} x \leq \frac{1}{p}(p(p+1))^{1 / p} \Gamma\left(\frac{1}{p}\right) .
$$

From Lemma 3.1 we conclude that

$$
\begin{align*}
\limsup _{q \rightarrow \infty} q^{1 / p} \int_{0}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x & =\limsup _{q \rightarrow \infty} q^{1 / p}\left(\int_{0}^{\alpha_{2}}+\int_{\alpha_{2}}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x\right) \\
& \leq \frac{1}{p}(p(p+1))^{1 / p} \Gamma\left(\frac{1}{p}\right) . \tag{16}
\end{align*}
$$

From (11) and (16) we deduce that

$$
\lim _{q \rightarrow \infty} I_{p}(q)=\frac{1}{p} \Gamma\left(\frac{1}{p}\right)(p(p+1))^{1 / p}
$$

4 Asymptotic Expansion

Here we investigate the asymptotic expansion of the p-Ball integral $I_{p}(q)$ by performing explicit calculations leading to a precise knowledge of the first two coefficients of the expansion. The study involved provides another proof of Theorem 3.1, the technique used is an adaptation of that developed in [8].

Theorem 4.1. There exist constants $\gamma_{3}, \gamma_{4}, \ldots$ such that for q large enough
$I_{p}(q) \sim(p(p+1))^{1 / p}\left(\frac{1}{p} \Gamma\left(\frac{1}{p}\right)+\frac{1}{p} \Gamma\left(\frac{1}{p}\right) \frac{\left(-p^{2}+p+1\right)(p+1)}{2 p(2 p+1)} \frac{1}{q}+\sum_{j=3}^{\infty} \Gamma(j+1 / p) \frac{\gamma_{j}}{q^{j}}\right)$.
Proof. For $\alpha \in(0,1)$, let

$$
\begin{aligned}
J(q, \alpha) & :=q^{1 / p} \int_{0}^{\alpha}\left(\frac{\sin _{p} x}{x}\right)^{q} \mathrm{~d} x \\
& =q^{1 / p} \int_{0}^{\alpha} \exp \left(\frac{-q x^{p}}{p(p+1)}\right)\left[\exp \left(\frac{x^{p}}{p(p+1)}\right) \frac{\sin _{p} x}{x}\right]^{q} \mathrm{~d} x .
\end{aligned}
$$

By Lemma 3.1

$$
q^{1 / p} \int_{\alpha}^{\infty}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x \leq q^{1 / p}\left(\frac{\sin _{p} \alpha}{\alpha}\right)^{q}(1-\alpha)+\frac{q^{1 / p}}{q-1} .
$$

It is therefore enough to establish the existence of constants $\gamma_{3}, \gamma_{4}, \ldots$ such that
$J(q, \alpha) \sim(p(p+1))^{1 / p}\left(\frac{1}{p} \Gamma\left(\frac{1}{p}\right)+\frac{1}{p} \Gamma\left(\frac{1}{p}\right) \frac{\left(-p^{2}+p+1\right)(p+1)}{2 p(2 p+1)} \frac{1}{q}+\sum_{j=3}^{\infty} \Gamma(j+1 / p) \frac{\gamma_{j}}{q^{j}}\right)$.
Changing the variable to $u=\frac{x}{(p(p+1))^{1 / p}}$ yields
$J(q, \alpha)=q^{1 / p}(p(p+1))^{1 / p} \int_{0}^{\frac{\alpha}{(p(p+1))^{1 / p}}} \exp \left(-q u^{p}\right)\left[\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}\right]^{q} \mathrm{~d} u$.
For the exponential term we have

$$
\exp \left(u^{p}\right)=\sum_{j=0}^{\infty} \frac{u^{p j}}{j!}
$$

While for $\frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}$, we have from [4, (2.17)] the power series expansion of $\sin _{p}^{-1} x$, and by the Lagrange reversion theorem this gives the existence of constants a_{j} such that

$$
\frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}=\sum_{j=0}^{\infty} a_{j}(p(p+1))^{j} u^{p j}
$$

the series converges for sufficiently small u. The coefficients of the first three terms of this expansion involve $a_{0}=1, a_{1}=\frac{-1}{p(p+1)}$ and $a_{2}=\frac{-p^{2}+2 p+1}{2 p^{2}(p+1)(2 p+1)}$. The Cauchy product formula then gives,

$$
\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}=1+\sum_{j=2}^{\infty} b_{j} u^{p j}
$$

where

$$
b_{j}=\sum_{l=0}^{j} \frac{a_{j-l}(p(p+1))^{j-l}}{l!}
$$

and the power series converges for sufficiently small u.
We know that for small values of u,

$$
\left|\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}-1\right|=\left|\sum_{j=2}^{\infty} b_{j} u^{p j}\right| \leq \sum_{j=2}^{\infty}\left|b_{j}\right| u^{p j}<1
$$

Note that the power series $\sum_{j=2}^{\infty} b_{j} u^{p j}$ is absolutely convergent for sufficiently small u.

Therefore by the Binomial expansion we get

$$
\begin{aligned}
{\left[\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}\right]^{q} } & =1+q\left[\sum_{j=2}^{\infty} b_{j} u^{p j}\right]+\frac{q(q-1)}{2}\left[\sum_{j=2}^{\infty} b_{j} u^{p j}\right]^{2} \\
& +\cdots+\frac{q(q-1) \ldots(q-m+1)}{m!}\left[\sum_{j=2}^{\infty} b_{j} u^{p j}\right]^{m}+\cdots
\end{aligned}
$$

Since the right hand side of the Binomial expansion is bounded from above by

$$
\begin{aligned}
& 1+q\left[\sum_{j=2}^{\infty}\left|b_{j}\right| u^{p j}\right]+\frac{q(q-1)}{2}\left[\sum_{j=2}^{\infty}\left|b_{j}\right| u^{p j}\right]^{2} \\
& +\cdots+\frac{q(q-1) \ldots(q-m+1)}{m!}\left[\sum_{j=2}^{\infty}\left|b_{j}\right| u^{p j}\right]^{m}+\cdots=\left[1+\sum_{j=2}^{\infty}\left|b_{j}\right| u^{p j}\right]^{q}
\end{aligned}
$$

we may rearrange terms and, for small enough u, obtain (17). Hence,

$$
\begin{equation*}
\left[\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}\right]^{q}=\sum_{j=0}^{\infty} c_{j} u^{p j} \tag{17}
\end{equation*}
$$

where $c_{0}=1, c_{1}=0$ and $c_{2}=q b_{2}=\frac{q p\left(-p^{2}+p+1\right)}{2(2 p+1)}$. Observe that the other coefficients $c_{j}=c_{j}(q)(j \geq 3)$ can be obtained by the following rearrangements:

$$
q b_{3} u^{3 p}=c_{3} u^{3 p}, \quad\left(q b_{4}+\frac{q(q-1)}{2} b_{2}^{2}\right) u^{4 p}=c_{4} u^{4 p}, \ldots
$$

Specialised to our case, [9, Theorem 8.1, p. 86] (with $x=q, p(t)=u^{p}, q(t)=$ $\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}, s=p j, \lambda=1$ and $\left.\mu=p\right)$ establishes the existence of real constants $\gamma_{0}, \gamma_{1}, \ldots$ such that

$$
\begin{aligned}
J(q, \alpha) & \sim q^{1 / p}(p(p+1))^{1 / p} \sum_{j=0}^{\infty} \Gamma(j+1 / p) \frac{\gamma_{j}}{q^{j+1 / p}} \\
& =(p(p+1))^{1 / p} \sum_{j=0}^{\infty} \Gamma(j+1 / p) \frac{\gamma_{j}}{q^{j}}, \quad(q \rightarrow \infty)
\end{aligned}
$$

where

$$
\gamma_{0}=\frac{1}{p}, \quad \gamma_{1}=0 \quad \text { and } \quad \gamma_{2}=\frac{q\left(-p^{2}+p+1\right)}{2(2 p+1)}
$$

Remark 4.1. The asymptotic expansion in Theorem 4.1 complements that of [8] when $p=2$; it involves the coefficients b_{j} of the expansion of $\exp \left(u^{p}\right) \frac{\sin _{p}\left((p(p+1))^{1 / p} u\right)}{(p(p+1))^{1 / p} u}$ which depend on the constants a_{j} of the power series of the function sinc_{p}. So far the first three terms in the expansion of $\sin _{p}$ are known and no regular pattern has been obtained for the other subsequent terms. It remains to see whether or not higher-order terms in the expansion of $I_{p}(q)$ can be determined.

5 Concluding remarks

In this section we present some results obtained from Theorem 3.1. The proofs are natural adaptations of those given in [3] and are therefore omitted.

For $q \in(1, \infty)$ and $n \in \mathbb{N} \cup\{0\}$, define

$$
\varphi_{p}(n, q):=\int_{0}^{\infty}\left(\ln \left|\frac{\sin _{p} x}{x}\right|\right)^{n}\left|\frac{\sin _{p} x}{x}\right|^{q} \mathrm{~d} x
$$

Note that $\varphi_{p}(0, q):=\varphi_{p}(q)=I_{p}(q)$.
A more general result of p-Ball integral inequality can also be achieved by induction for any non-negative integer n.

Lemma 5.1. For $n \in \mathbb{N} \cup\{0\}$ and $p \in(1, \infty)$. Then

$$
\lim _{q \rightarrow \infty} q^{n+\frac{1}{p}} \varphi_{p}(n, q)=(-1)^{n} \frac{1}{p} \Gamma\left(\frac{1}{p}\right)(p(p+1))^{1 / p} \Gamma\left(n+\frac{1}{p}\right)
$$

The following gives the analyticity of the function $\varphi_{p}(q)$ in a region containing $(1, \infty)$. The proof makes use of the L_{q}-Lebesgue integrability of the sinc_{p} functions when $p, q \in(1, \infty)$.

Corollary 5.1. Let $q \in(1, \infty)$. For $1-q<z<q-1$,

$$
\varphi_{p}(q-z)=\sum_{n=0}^{\infty}(-1)^{n} \varphi_{p}(n, q) \frac{z^{n}}{n!},
$$

where $\varphi_{p}^{(n)}(q)=\varphi_{p}(n, q)$.

References

[1] K. Ball, Cube slicing in \mathbb{R}^{n}, Proceedings of the American Mathematical Society, 97 (1986), pp. 465-473.
[2] B. A. Bhayo and M. Vuorinen, On generalized trigonometric functions with two parameters, Journal of Approximation Theory, 164 (2012), pp. 1415-1426.
[3] D. Borwein, J. M. Borwein, and I. E. Leonard, L_{p} norms and the sinc function, The American Mathematical Monthly, 117 (2010), pp. 528539.
[4] P. J. Bushell and D. E. Edmunds, Remarks on generalized trigonometric functions, Rocky Mountain J. Math., 42 (2012), pp. 25-57.
[5] D. E. Edmunds and J. Lang, Eigenvalues, Embeddings and Generalised Trigonometric Functions, vol. 2016 of Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2011.
[6] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier/Academic Press, Amsterdam, seventh ed., 2007.
[7] P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley, 1977.
[8] R. Kerman, R. Ol'hava, and S. Spektor, An asymptotically sharp form of Ball's integral inequality, Proceedings of the American Mathematical Society, 143 (2015), pp. 3839-3846.
[9] F. W. J. Olver, Asymptotics and Special Functions, 2nd ed., AK Peters/CRC Press, Natick, MA, 1997.

[^0]: ${ }^{1}$ Email address: davideedmunds@aol.com
 ${ }^{2}$ Email address: hm189@hw.ac.uk

