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Abstract

Genetic polymorphism can contribute to local adaptation in heterogeneous
habitats, for instance as a single locus with alleles adapted to different habi-
tats. Phenotypic plasticity can also contribute to trait variation across habi-
tats, through developmental responses to habitat-specific cues. We show that
the genetic architecture of genetically polymorphic and plasticity loci may in-
fluence the balance between local adaptation and phenotypic plasticity. These
effects of genetic architecture are instances of ecological genetic conflict. A
reduced effective migration rate for genes tightly linked to a genetic poly-
morphism provides an explanation for the effects, and they can occur both
for a single trait and for a syndrome of co-adapted traits. Using individual-
based simulations and numerical analysis, we investigate how among-habitat
genetic polymorphism and phenotypic plasticity depend on genetic architec-
ture. We also study the evolution of genetic architecture itself, in the form
of rates of recombination between genetically polymorphic loci and plasticity
loci. Our main result is that for plasticity genes that are unlinked to loci with
between-habitat genetic polymorphism, the slope of a reaction norm is steeper
in comparison with the slope favored by plasticity genes that are tightly linked
to genes for local adaptation.

Keywords: Genetic conflict, local adaptation, phenotypic plasticity, ecotypes, ge-
netic architecture, linkage
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Introduction1

Genetic local adaptation and phenotypic plasticity can both contribute to trait vari-2

ation in heterogeneous habitats. Our aim here is to investigate how their relative3

contribution depends on genetic architecture. In particular, we examine the influ-4

ence on trait variation of the rate of recombination between genetically polymorphic5

loci, responsible for local adaptation, and plasticity loci influencing the intercept6

and slope of a reaction norm (fig. 1). As we explain, this issue is less straightfor-7

ward than is generally understood, even though it involves phenomena that have a8

long history of study in evolutionary ecology (e.g., van Tienderen 1991, 1997; West-9

Eberhard 2003; DeWitt and Langerhans 2004; Kawecki and Ebert 2004; Richards10

et al. 2006; Griffith and Sultan 2012). The reason is that there can be ecological11

genetic conflict between plasticity genes that are tightly vs. loosely linked to a ge-12

netically polymorphic locus. Ecological genetic conflict has been studied previously13

(Leimar et al. 2006; Dall et al. 2015; Leimar et al. 2016), but its importance for local14

adaptation and plasticity is not widely recognized. To shed light on the issue, we15

demonstrate the influence of genetic conflict on between-habitat genetic polymor-16

phism and phenotypic plasticity of a trait, in addition to the already well-studied17

effects of factors like gene flow between habitats, the strength of selection, and en-18

vironmental cue accuracy (Tufto 2000; Sultan and Spencer 2002). As we will show,19

ecological genetic conflict depends on genetic architecture.20

In general, genetic conflict occurs when genetic elements, such as alleles at differ-21

ent loci influencing the same phenotypic trait, differ in their selective circumstances,22

and thus in their evolutionary interests. This possibility has been given much at-23

tention (Hurst et al. 1996; Werren and Beukeboom 1998; Burt and Trivers 2006;24

Gardner and Úbeda 2017), resulting in the insight that genetic conflict can be im-25

portant for evolutionary change and innovation, as well as influence phenomena like26

sex determination (Werren 2011). Most work has focused on genetic conflict with a27

basis in the properties of genetic transmission systems. For instance, the different28

pathways of transmission for nuclear and mitochondrial genes has been put forward29

as a source of genetic conflict (e.g., Frank and Hurst 1996; Perlman et al. 2015).30

It is known that the balance between polymorphism and plasticity is influenced31

by the level of between-habitat migration (e.g., Tufto 2000; Sultan and Spencer 2002;32

Leimar et al. 2006), with less migration favoring between-habitat genetic polymor-33

phism. It is also known that the ‘effective migration rate’ (Bengtsson 1985; Barton34

and Bengtsson 1986), estimated for a neutral locus linked to a selected, genetically35

polymorphic locus, is lower for tighter linkage to the polymorphism, and is also36
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lower for stronger selection maintaining the polymorphism. Putting these observa-37

tions together suggests that the selective circumstances for plasticity loci depend38

on their linkage to a polymorphic locus, with weaker selection for plasticity when39

linkage is tight and the effective migration rate thus is low. This difference in how40

selection operates on plasticity genes, depending on their position in the genome,41

can be interpreted as an ecological genetic conflict.42

In our evolutionary modeling, we examine between-habitat variation of one trait,43

as well as of two different traits, for which the optimum differs between habitats.44

The kind of genetic architecture we are concerned with is the degree of linkage be-45

tween genetically polymorphic loci, epistatic modifiers of the effects at these loci,46

and genes influencing a reaction norm slope. We emphasize the distinction between47

the case where all loci are tightly linked together and that where modifier and slope48

loci are unlinked to genetically polymorphic loci (fig. 1B), but we also investigate49

intermediate cases, for instance a polymorphic locus with a tightly linked modifier50

and an unlinked locus determining the slope of a reaction norm. We also investi-51

gate effects of previously well-studied factors such as the rate of between habitat52

migration, the strength of selection, and the accuracy of environmental cues. Fi-53

nally, we study the question of the evolution of the rate of recombination between54

polymorphic loci, modifiers, and plasticity loci. Our aim is to determine if either55

tight or loose linkage of plasticity loci to a genetically polymorphic locus is favored56

by selection.57

For the analysis, we use individual-based evolutionary simulations of diploid pop-58

ulations, with several local populations in each habitat, as well as numerical analysis59

of evolutionary equilibria for a model with a very large population in each habitat.60

For simplicity, we let the sex of an individual be randomly determined (Perrin 2016).61

A complication we need to deal with is that, because of the presence of genetic con-62

flict, natural selection need not in general lead to a unique outcome for plasticity63

loci with different linkage to a polymorphism. The alleles in the polymorphism can64

also evolve in ways that counteract evolutionary change at plasticity loci. These65

kinds of ‘arms races’, where the outcome is influenced by such things as supply of66

mutations, position in the genome, and limits to gene expression are common for67

genetic conflicts (Hurst et al. 1996; Werren 2011). Our main way of dealing with this68

is to examine situations where there is selectively maintained genetic polymorphism69

at one or more loci, but where we do not focus on the possible evolution of the70

corresponding alleles. Instead, we examine the evolution of genes that modify the71

phenotypic effects of the polymorphism, for instance modify intercepts and slopes of72

a reaction norm (fig. 1). As an alternative, we also examine a situation where alleles73
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at a polymorphic locus can mutate and evolve, but there are limits to the sizes of74

the allelic effects.75

Our main finding is that for plasticity genes that are unlinked to a genetic poly-76

morphism, the slope of a reaction norm will be steeper in comparison with the slope77

favored by plasticity genes that are tightly linked to genes for local adaptation.78

This holds in particular for intermediate rates of between-habitat migration. Fur-79

thermore, we do not find selection favoring either tight or loose linkage of plasticity80

genes to a genetic polymorphism, suggesting that this genetic architecture is set81

by other influences on genome organization. We discuss our results in relation to82

empirical work on the genomics of ecotypic variation and on the relative importance83

of local adaptation and plasticity for trait variation.84

Methods85

We first present our two-habitat metapopulation model for a single trait u, then86

extend it to two traits u1 and u2, followed by an explanation of our individual-based87

simulations. We have also performed a numerical analysis of a model with a very88

large population in each habitat, which is described in appendix A, with results89

reported in Table A1 and figure A1.90

Single trait91

The population is divided intoNp patches, each containing a local population with on92

average K diploid individuals with non-overlapping generations, and with survival93

selection operating in each patch. An individual’s sex is randomly determined,94

with equal chances for female and male, and each offspring is formed by randomly95

selecting a mother and a father from the local population. There is a genotype-cue-96

phenotype mapping, determining an individual’s phenotype u as a weighted sum of97

a ‘genetic effect’ z and an environmental cue xjuv observed by juveniles, such that98

u = αz + βxjuv, (1)

where z and the weights α and β are each determined by a diploid locus. This means99

that there is epistasis between the locus for the genetic effect z and the locus coding100

for α.101

A patch is in either of two environmental states, corresponding to two types102

of habitat, which could, for instance, be low and high resource availability, risk of103
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predation, or salinity. The two habitats are denoted by i = 1, 2, with juvenile-to-104

adult survival for phenotype u in habitat i given by105

si(u) = s0 + (1 − s0) exp

(
−(u− θi)

2

2σ2

)
, (2)

where s0 is a basic survival rate, θi is the optimal phenotype in habitat i and σ is the106

width of the Gaussian survival function. An individual can get information about107

which habitat it is in through the juvenile cue, given by108

xjuv = θi + εjuv, (3)

where θi is the mean cue in habitat i, for simplicity assumed to be the same as the109

optimal phenotype, and εjuv is a normally distributed random error with mean 0110

and standard deviation σjuv.111

There is a probability m of juvenile dispersal to a patch randomly selected in112

the entire metapopulation, including the patch of origin. The local populations are113

regulated such that a patch produces K juveniles, each of which has a probability m114

to disperse. There are equal numbers of patches for the two habitats, which means115

that the probability for a dispersing individual to change habitat is 1/2.116

The life cycle of individuals is as follows: (i) selection, with survival in habitat117

i as a function of phenotype u as in equation (2); (ii) within-patch random mating,118

forming K offspring in each local population, after which the adults die; (iii) each119

juvenile (independently) observes an environmental cue, as given in equation (3),120

and has its phenotype determined based on its genotype and the environmental cue;121

(iv) each juvenile has a probability m of migrating to a randomly chosen patch; and122

the cycle then returns to (i).123

At the locus for z there are alleles ζk, which we represent as real values limited to124

an interval. We are interested in situations where there is adaptively maintained ge-125

netic polymorphism at this locus. In principle the alleles ζk can mutate, be selected,126

and evolve, but in order to aid the interpretation of our results, we first make the127

simplification that there are only two alleles with fixed values ζ1 and ζ2. However,128

in appendix A we show results for a case where alleles can mutate and evolve within129

set limits (fig. A2).130

We think of the effects of the alleles at the locus for z as ‘genetic cues’, in the131

sense that they can provide statistical information to an individual about which132

habitat it is in (Leimar et al. 2006; Leimar and McNamara 2015; Dall et al. 2015).133

The nature of the information is that the allele frequencies at the locus for z can134
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differ between habitats, giving rise to a correlation between habitat and z. The135

value z then acts as a statistical predictor of the habitat in a similar manner as the136

environmental cue xjuv. The idea helps understanding how selection acts on the loci137

for α and β, because these are weights on z and xjuv for determining the phenotype138

(equation 1). A better match between habitat and phenotype gives higher survival139

(equation 2), and selection at the loci for α and β acts towards achieving high140

survival. As mentioned in the Introduction, this selection depends on the effective141

migration rate between habitats that a locus is exposed to.142

The locus for the weight α in equation (1) can be seen as a ‘modifier’ locus, with143

alleles αk, that influence gene expression at the cue locus (note also that evolutionary144

changes of a modifier that is fully linked to z has similar effects as evolutionary145

changes of the genes at the locus for z). We represent the alleles αk as real values146

in an interval. The phenotype in equation (1) is also influenced by the juvenile cue,147

mediated by the locus for the weight β, with alleles βk. In terms of plasticity, β is148

the slope of a reaction norm, and the alleles at the locus can be regarded as plasticity149

genes. We assume the loci are positioned in the order z, α, β along a chromosome,150

with ρzα the recombination rate between the cue locus and the modifier locus α,151

and ραβ the rate between the modifier locus and the plasticity locus β.152

The alleles at a locus are additive, producing diploid values as the sum of ma-153

ternal and paternal allelic values. For instance, at the genetic effect locus we have154

z = ζmat + ζpat. The value z is referred to as a genetic effect or ‘genetic cue’, which155

can be polymorphic across habitats. For the loci giving the weights in equation (1),156

we are interested in cases where the modifier and slope effects, α = αmat + αpat and157

β = βmat + βpat, display fairly little genetic variation over the metapopulation, but158

still evolve over the longer term.159

Two traits160

We extend the situation above to two traits, u1 and u2, determined as161

u1 = α1z1 + β1xjuv (4)

u2 = α2z2 + β2xjuv.

The genetic effects z1 and z2 are each determined by a locus with additive alleles,162

as in the case for a single trait above, and the juvenile environmental cue is given163

by equation (3). The modifiers α1, α2 and slopes β1, β2 are determined genetically164
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by separate loci. The juvenile-to-adult survival in habitat i is given by165

si(u1, u2) = s0 + (1 − s0) exp

(
−(u1 − θ1i)

2 + (u2 − θ2i)
2

2σ2

)
. (5)

The loci are positioned in the order z1, z2, α1, α2, β1, β1 along a chromosome. In166

the same way as for the single trait, we make the simplification that there are only167

two alleles at each of the loci for z1 and z2, with fixed values ζ11 and ζ12 for z1168

and ζ21 and ζ22 for z2. Concerning recombination rates, ρzz is the recombination169

rate between the loci for the genetic effects z1 and z2, ρzα is the recombination rate170

between the locus for z2 and the locus for α1, and ραβ is the recombination rate171

between neighboring loci for α1, α2, β1 and β2.172

Simulation models173

For our individual-based simulations in figures 2 and 5, we started with a dimorphism174

at the locus for z, and kept the values of the two alleles fixed, while α and β evolved.175

For parameter values for which α became close to 0, the dimorphism at the locus176

for z was sometimes not maintained, because one of the alleles was lost from the177

population through genetic drift. In such a case, for figure 2 we ran that replicate178

simulation one more time, but for figure 5 we used the replicates where one of the179

alleles was lost. In either case, this did not influence the evolutionary outcome for180

plasticity loci. As mentioned, we used intervals for the allowed range of the values181

of alleles. For the simulations in Figs. 2 and 3 we used ζ1 = −0.4, ζ2 = 0.4 and182

the range [0.0, 0.5] for alleles at the loci for α and β. Mutational increments had a183

Laplace (reflected exponential) distribution with a standard deviation of 0.04, but184

allelic values were constrained to stay within the interval. The simulations were run185

for 50 000 generations with a mutation rate of 0.0050, to generate enough genetic186

variation for adaptation to proceed, followed by 50 000 generations with a mutation187

rate of 0.0001, to remove excess genetic variation. The simulations in Figs. 5 and 6188

were performed in a similar way.189

To investigate the evolution of rates of recombination between the loci for z1190

and z2, and between these and the plasticity loci in simulations similar to those191

in figure 5, we introduced additional loci controlling recombination. There were 9192

loci along a chromosome, coding for z1, z2, ρzz, ρzα, ραβ, α1, α2, β1, and β2. The193

loci for the recombination rates were tightly linked to the locus for z2, in order to194

maximize the chances of the evolution of tighter linkage of the plasticity loci to the195

polymorphic complex of z1 and z2. The effects of alleles at the recombination loci196
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were constrained to lie in the interval [0.0, 0.25], resulting in diploid recombination197

values in [0.0, 0.5]. The C++ source code for the different computer programs used198

in this work is available as an online electronic enhancement.199

Results200

The effect of genetic architecture on local adaptation and phenotypic plasticity is201

illustrated in figures 2 and 3, with data from individual-based simulations. There202

is a single trait u, with optimal survival at trait value θ1 and θ2 in habitat 1 and203

2 (equation 2). The determination of the phenotype is given by u = αz + βxjuv,204

where z is a genetic effect, α is an epistatic modifier of z, xjuv is an environmental205

cue (equation 3), and β is a plasticity effect, giving the slope of a reaction norm206

(equation 1). Each of z, α, and β is determined by a single diploid locus with additive207

allelic effects, and we are comparing the case where the loci are tightly linked with208

that where they are all unlinked (figs. 2, 3). As seen in figure 2, for intermediate209

rates of migration between habitats the genetic architecture strongly influences the210

values of α and β, and thus the contributions of genetic polymorphism and plasticity211

to variation in u. For tightly linked loci, the genetic contribution to the variation212

is larger than for unlinked loci, and the reverse is true for the contribution from213

plasticity. For high enough rate of migration, the modifier α evolves to be close214

to zero (fig. 2A), so that z in equation (1) has little influence on the phenotype u.215

There is then little section at the locus for z, and the allele frequencies undergo216

genetic drift, with an average frequency of 0.5 for the ‘locally fit’ allele (fig. 2B).217

A similar situation, but where the allelic values at the locus for z can mutate and218

evolve is shown in figure A2.219

The influence of genetic architecture is further exemplified by the reaction norms220

for migration ratem = 0.10 between local populations (corresponding to a migration221

rate of 0.05 between habitats), which are shown in figure 3, together with the dis-222

tributions of the environmental cue that adults in the different habitats observed as223

juveniles. For the linked case, there are reaction norms with shallower slopes, with224

different mean intercepts for individuals in habitats 1 and 2 with different genotypes225

(red and blue lines in fig. 3 represent habitat 1 and 2 specialists, cf. fig. 1A). There226

is genetic variation in z in each habitat: there are two alleles, each better adapted to227

one of the habitats, giving rise to alternative homozygotes and heterozygotes, with228

different frequencies in the habitats (fig. 2B; in principle, these alleles can evolve;229

see fig. A2). For the unlinked case, there is a single reaction norm with a steeper230
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slope (dashed line in fig. 3), corresponding to a phenotypically plastic generalist.231

Note that the only difference in model parameters between the linked and unlinked232

cases is the genetic architecture, demonstrating that ecological genetic conflict can233

have a pronounced influence on phenotype determination.234

This effect of genetic architecture hinges on whether genes tightly linked to one235

of the alleles at the polymorphic locus for z, adapted to one of the habitats, has236

an appreciable chance of recombining to become associated with an allele locally237

adapted to the other habitat, as well as migrating to that habitat. The way this can238

happen is if a modifier or slope allele occurs in a heterozygote between alleles at the239

locus for z, each adapted to different habitats. The strength of selection against such240

a heterozygote influences the chance for the modifier or slope allele to recombine241

to the other locally adapted allele. For the linked case shown in figure 3, this242

chance is small, illustrating that genes for specialism have their evolutionary future243

mainly in their own habitat. While studying between-habitat genetic polymorphism,244

Bengtsson (1985) and Barton and Bengtsson (1986) introduced the concept of an245

effective migration rate for a neutral locus that is linked to a selected, genetically246

polymorphic locus. For instance, using equation (4) in Yeaman and Whitlock (2011),247

and ignoring the effects of plasticity, we find an effective migration rate of 0.0002248

for a linkage of ρ = 0.001 to z (fig. 3), so for such genes the two habitats are fairly249

isolated from each other.250

An alternative and potentially more informative way of showing how the selective251

circumstances vary with the degree of linkage to a between-habitat polymorphism252

is to examine how the reproductive value for a modifier or slope allele of being253

associated (linked) with an allele adapted to one or the other habitat depends on254

the rate of recombination. The reason this is informative is that the reproductive255

value measures the long-term representation in the population of a plasticity allele256

in a given position (i.e., linked to the locally more fit or the locally less fit allele257

at the locus for z). We have performed a numerical analysis of a model with a258

very large population in each habitat (see appendix A for model description), but259

otherwise similar to the simulation model with results in figures 2 and 3. The260

results of the numerical analysis, which takes into account plasticity, are given in261

Table A1 and figure A1. The outcome of the analysis using reproductive values262

is less extreme but qualitatively similar to the consideration of effective migration263

rates. As seen in Table A1, for m around 0.1 (m12 around 0.05) and with modifier264

and slope loci tightly linked to z, the reproductive value of being associated with265

the locally adapted allele at the genetic effect locus is around four times higher than266

that of being associated with the other allele, whereas these values are nearly equal267
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for loosely linked modifiers.268

In any case, for a migration rate above a critical value, phenotype determination269

for the linked case (as well as for the unlinked case) is dominated by plasticity,270

because the modifier α in equation (1) approaches zero. For instance, in figure 2 the271

critical migration rate is m = 0.14. The critical migration rate for a wider range of272

parameters is shown in figure 4. In general, stronger selection between habitats and273

less accurate juvenile environmental cues favor genetic polymorphism in z, and thus274

a higher value of the critical migration rate (fig. 4).275

For two traits, u1 and u2, each with different optima in the habitats, as given276

by equation (5), we again find a pronounced influence of genetic architecture on the277

relative importance of genetic polymorphism and plasticity (figs. 5, 6). For each278

trait, u1 and u2, there is a separate genetic effect, z1 and z2, coded by one locus,279

with modifier α1 and α2 and reaction norm slope β1 and β2, but the same juvenile280

environmental cue xjuv for both reaction norms, as given in equation (4). Three281

cases are illustrated in figure 5, one where all loci are linked, another where the282

two genetic effect loci are linked and the loci for α1, α2, β1 and β2 are unlinked283

from each other and from the genetic effect loci, and a third case where all loci284

are unlinked. From this figure, and the example in figure 6, it appears that the285

influence of genetic architecture is qualitatively similar but even stronger for a two-286

trait syndrome compared to a single trait. The reason for this difference between287

figures 2 and 5 is most likely that the total selection between habitats is stronger288

for the two-trait syndrome.289

For the two-trait syndrome, we explored the evolution of genetic architecture290

using individual-based simulations. Instead of specifying the recombination rates291

ρzz, ρzα and ραβ, we let these be coded by three loci. We found that tight linkage292

between the two polymorphic effect loci z1 and z2 promptly evolved (i.e., ρzz became293

close to zero; Table 1), so these loci emerge as a polymorphic complex. However, for294

α1, α2, β1 and β2 we did not find notable selection for either tighter or looser linkage295

to the z1 and z2 complex. Considerable genetic variation for the recombination rates296

ρzα and ραβ persisted in the population, perhaps as a result of mutation-drift balance297

(see Table 1 and figures 7 and A3 for illustrations of these simulations). Overall,298

the outcome for the modifiers α1, α2 and plasticity slopes β1, β2, shown in Table 1,299

was similar to the middle (gray) case in figure 5, with tightly linked z1 and z2 and300

unlinked loci for modifiers and slopes.301
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Discussion302

Both local adaptation and plasticity are well-studied phenomena (van Tienderen303

1991, 1997; West-Eberhard 2003; DeWitt and Langerhans 2004; Richards et al.304

2006; Griffith and Sultan 2012). Even so, by examining ecological genetic conflict,305

we have identified phenomena that were not studied before. Compared to previous306

work, the major new aspect here is that we show the influence of genetic architec-307

ture on the balance between genetic polymorphism and phenotypic plasticity, and308

that we interpret our results in terms of genetic conflict. We find that the rate of309

recombination between genetic effect, modifier and plasticity loci influences the evo-310

lutionary outcome, with more plasticity and less genetic polymorphism for unlinked311

loci. The effect of genetic architecture is strongest for intermediate migration rates312

(figs. 2 and 5).313

As we have mentioned, one way of understanding the effect of genetic architecture314

is as a low effective migration rate for loci tightly linked to a genetic polymorphism315

(Barton and Bengtsson 1986; Charlesworth et al. 1997; Bürger and Akerman 2011;316

Yeaman and Whitlock 2011; Aeschbacher and Bürger 2014; Aeschbacher et al. 2017).317

Another approach is to compute reproductive values of modifier and slope alleles,318

as we have done (Table A1). Based on our analysis we find that a plasticity allele319

tightly linked to a polymorphic genetic effect locus can leave copies of itself to320

future generations also when linked to a genetic effect allele that is not adapted to321

the current habitat, because migration can transport it to the other habitat. Thus,322

migration makes the distinction between linked and unlinked genetic architectures323

a matter of degree rather than kind.324

In fact, the general pattern of variation of the modifier α and plasticity slope β325

with the migration rate m is qualitatively similar for different genetic architectures,326

with a shift from mainly genetic polymorphism to mainly phenotypic plasticity as327

m increases (figs. 2, 5, A1, A2). One way of explaining this shift is in terms of the328

statistical information about the habitat that is contained in the ‘genetic cue’ z in329

comparison with the environmental cue xjuv (see Methods section and Leimar et al.330

2006; Leimar and McNamara 2015; Dall et al. 2015). Tufto (2000) provides a discus-331

sion of earlier papers dealing with this topic. For higher values of m, allele frequency332

differences between habitats are smaller (figs. 2B, 5B and Table A1), thus being less333

statistically informative about the habitat compared to the environmental cue xjuv.334

An optimal phenotype determination strategy will therefore put less emphasis on335

the genetic and more on the environmental cue for higher values of m. For high336

enough rates of migration, and provided that environmental cues are sufficiently337
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accurate, phenotypic plasticity dominates completely, as illustrated by figure 4. For338

a much simpler model with binary cues, inspired by the work of Sultan and Spencer339

(2002), an analytical solution is possible, leading to qualitatively similar results (see340

equation 4 and figure 5 in Leimar et al. 2006).341

Our main result that reaction norm slopes can depend on the genetic architecture342

(Figs. 2, 3, 5, 6, A1, A2) is new, and there appear to be no empirical data directly343

examining this question. It is known that ecotypic traits differ in how they are344

determined, with the variation in some traits being mainly genetic and in other traits345

mainly plastic (Lucek et al. 2014), but the possible influence of genetic architecture346

is unknown. There are observations showing that plasticity can decrease during the347

formation of an ecotype (Hasan et al. 2017), but the genomic basis of the reduction348

in plasticity is not known. Also, a study of so called expression quantitative trait349

loci (eQTLs) shows that ‘distant’, trans-regulatory changes on average had different350

effects than ‘local’, cis-regulatory changes, and were also more responsive to the351

environment (Ishikawa et al. 2017), which is at least suggestive of an influence of352

genetic architecture on trait expression.353

In our investigation of the evolution of recombination, for a two-trait situation,354

we found that a low recombination rate between the polymorphic loci for z1 and z2355

readily evolved (Table 1), and this is in accordance with the traditional understand-356

ing of such situations (Pinho and Hey 2010; Via 2012). On the other hand, we did357

not detect selection for either tighter or looser linkage between the polymorphic loci358

and epistatic modifiers and plasticity loci (fig. 7 and Table 1). The question appears359

not to have been analyzed previously, but perhaps other factors influencing genetic360

architecture, such as inversions or a tendency towards cis-regulatory influences, can361

play a greater role in determining recombination rates between plasticity loci and362

polymorphic loci. Overall, we hope that our work can inspire further empirical363

and theoretical investigation of the genomics of local adaptation and plasticity of364

ecotypes.365
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Tables

Table 1: Evolution of linkage for two-trait simulations similar to fig. 5. The table
gives the mean ± SD of the population average of individual recombination rates,
and the averages of the αn and βn, over 20 replicate simulations. The recombination
rate ρzz between z1 and z2 evolved towards tight linkage, but the other recombination
rates reached intermediate average values, with broad distributions over replicate
simulations, as illustrated in fig. 7.

m ρzz ρzα ραβ αn βn
0.12 0.0028±0.0018 0.296±0.091 0.261±0.112 0.870±0.011 0.067±0.009
0.18 0.0017±0.0009 0.260±0.072 0.294±0.097 0.807±0.017 0.126±0.013
0.24 0.0009±0.0005 0.259±0.106 0.251±0.124 0.690±0.029 0.239±0.027
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Figures
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specialist

specialist
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intercept
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plasticity locus tightly linked to polymorphic locus

plasticity locus loosely linked to polymorphic locus

B

Figure 1: Sketch of reaction norms and genetic architectures. There are two habi-
tats, with blue and red being used to indicate reaction norms and alleles adapted
to each habitat. A. At one extreme, reaction norms could be flat with intercepts
adapted to one or the other habitat (blue vs. red lines), corresponding to a pure
genetic polymorphism (habitat specialism), and at the other extreme there could be
a single reaction norm (dashed gray line), corresponding to pure phenotypic plastic-
ity (habitat generalism). Intercepts and slopes of reaction norms are determined by
plasticity genes, either influencing intercepts by epistatically modifying the effects
of a genetically polymorphic locus, or by determining the slope of a reaction norm.
There is genetic conflict between plasticity genes that are tightly vs. loosely linked
to a genetic polymorphism. B. A sketch of the placement of genes along a hypo-
thetical chromosome. A polymorphic locus with two alleles (blue and red) having
effects that are suited to each of the habitats. Two cases are illustrated, one with
plasticity genes (green) tightly linked to the polymorphic locus, and another with
loose linkage.
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Figure 2: Phenotype determination for linked and unlinked genetic architectures, as
a function of the rate of migration. Panel A shows how the value of the epistatic
modifier α (solid lines) of the genetic effect z and the slope β (dashed lines) of
the reaction norm for the environmental cue xjuv depend on the migration rate m
and on the genetic architecture. The mean ± SD over 10 replicate individual-based
simulations is displayed. The left-hand (green) lines correspond to the case where
the loci for z, α and β are all unlinked and the right-hand (orange) lines to the case
where the three loci are tightly linked. The lines between these (gray) correspond
to an intermediate case where the loci for z and α are linked but the locus for
β is unlinked to these. Panel B shows the average frequency of the ‘locally fit’
allele, i.e. the average of the frequency of ζ1 in habitat 1 and of ζ2 in habitat 2.
The dashed dark gray line shows the case of pure genetic polymorphism (α = 1
and β = 0). Survival selection between habitats is given by equation (2) and the
phenotype is determined as in equation (1). For the linked case, recombination
rates are ρzα = ραβ = 0.001, for the unlinked case ρzα = ραβ = 0.5, and for the
intermediate case ρzα = 0.001, ραβ = 0.5. Other parameter values: Np = 200,
K = 100, s0 = 0.1, σ = 1.0, θ1 = −0.75, θ2 = 0.75, ζ1 = −0.4, ζ2 = 0.4, σjuv = 0.5.
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Figure 3: Example of the effect of genetic architecture (linked or unlinked) on phe-
notype determination. Mean reaction norms (with slope β) for habitat 1 specialists:
thick and thin blue lines (slightly shifted up and down for clarity) represent indi-
viduals in habitat 1 with genotype ζ1ζ1 and ζ1ζ2 (with frequencies before migration
of 0.76 and 0.22; line widths proportional to frequencies); and habitat 2 specialists:
thick and thin red lines represent individuals in habitat 2 with genotype ζ2ζ2 and
ζ1ζ2 (with frequencies 0.77 and 0.21); and for phenotypically plastic generalists: gray
dashed line, slope and intercepts averaged over both habitats). For the generalist,
the reaction norm is very similar between habitats (not shown), because α is small
and β does not vary much, but the alleles ζ1 and ζ2 still segregate at the locus for
z. The distributions of the juvenile environmental cue xjuv are shown lightly shaded
for adult individuals in habitat 1 (left) and habitat 2 (right; not labeled to avoid
visual clutter). The figure corresponds to the cases in figure 2 for migration rate
m = 0.10, with tightly linked loci for specialism and unlinked loci for plasticity.



21

σjuv = 0.50

σjuv = 0.75

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6

Strength of selection

C
rit

ic
al

 m
ig

ra
tio

n 
ra

te

Figure 4: Critical migration rate, above which a genetic polymorphism in z is not
selectively maintained, resulting in pure phenotypic plasticity. There is a single
trait u and the loci for z, α and β are tightly linked. The critical rate is defined
as the value of m for which the genetic proportion of the trait variance in u is less
than 0.01. The critical migration rate is shown as a function of the strength of
selection in one habitat against a phenotype locally adapted to the other habitat,
defined as 1 − s1(θ2) = 1 − s2(θ1) (see equation 2 for definition of si). The points
correspond to s0 = 0.9, 0.7, 0.5, 0.3, 0.1, and the lines are labeled with the juvenile
environmental cue error, σjuv. The rightmost point on the line for σjuv = 0.50
corresponds to the rightmost point for the linked case in fig. 2A, B. Other parameter
values: ρzα = ραβ = 0.001, Np = 200, K = 100, σ = 1.0, θ1 = −0.75, θ2 = 0.75.
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Figure 5: Phenotype determination for different genetic architectures, as a function
of the rate of migration. Similar to figure 2, but there are two traits, u1 and u2,
each with optima that differ between the habitats. There are two genetic effect
loci, one for each trait, and modifiers α1 and α2 for each of the genetic effects z1
and z2, as well as slopes β1 and β2 for the reaction norms of u1 and u2 for the
juvenile cue xjuv, following equation (4). Panel A shows how the mean modifier
(α1 + α2)/2 and mean slope (β1 + β2)/2 depend on the migration rate m and on
the genetic architecture. The solid lines show the mean modifier over 10 replicates
of individual-based simulations, with the left-hand (green) line giving a case where
the loci for the two genetic effects and the modifiers α1, α2, β1, β2 are all unlinked.
The right-hand (orange) line shows the same thing, except that the six loci are
tightly linked. For the middle (gray) line, the two genetic effect loci are tightly
linked, but the modifier and plasticity loci are unlinked from these and from each
other. The dashed lines show the corresponding reaction norm slopes. The situation
is symmetric between the traits, and the results for each trait separately are very
similar to those shown here. Panel B shows the average frequency of the ‘locally
fit’ allele, i.e. the average of the frequencies of ζ11 and ζ21 in habitat 1 and the
frequencies of ζ12 and ζ22 in habitat 2 (for every second value of m in panel A). The
dashed dark gray line shows the case of pure genetic polymorphism (α1 = α2 = 1 and
β1 = β2 = 0). Survival selection between habitats is given by equation (5). For the
linked case, recombination rates are ρzz = ρzα = ραβ = 0.001, and for the unlinked
case ρzz = ρzα = ραβ = 0.5. Other parameter values: Np = 200, K = 100, s0 = 0.1,
σ = 1.0, θ11 = θ21 = −0.75, θ12 = θ22 = 0.75, ζ11 = ζ21 = −0.4, ζ12 = ζ22 = 0.4,
σjuv = 0.5.
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Figure 6: Example of the effect of genetic architecture (linked or unlinked) on phe-
notype determination. Mean reaction norms (with slope (β1 + β2)/2) for habitat
1 specialists: thick and thin blue lines (slightly shifted up and down for clarity)
represent individuals in habitat 1 with genotype ζn1ζn1, ζn1ζn2 and ζn2ζn2 at each of
the two genetic effect loci, n = 1, 2, (with frequencies after migration of 0.74, 0.15
and 0.10; line widths proportional to frequencies); and habitat 2 specialists: thick
and thin red lines represent individuals in habitat 2 with genotype ζn2ζn2, ζn1ζn2 and
ζn1ζn1 at each of the two genetic effect loci (with frequencies 0.73, 0.16 and 0.11);
and for phenotypically plastic generalists: gray dashed line, slopes and intercepts
averaged over both habitats). For the linked case (specialists), the genotypes at the
loci for z1 and z2 are highly correlated, both among habitats (correlation of genetic
effects: 0.999) and within habitats (0.998). For the unlinked case, the reaction norm
is very similar between habitats (not shown), because the αn are small and the βn do
not vary much, but the alleles ζ21 and ζ22 still segregate at the locus for z2, whereas
in this example z1 is fixed for ζ12. The distributions of the juvenile environmental
cue xjuv are shown lightly shaded for adult individuals in habitat 1 (left) and habitat
2 (right). The figure corresponds to the cases in fig. 5 for migration rate m = 0.24,
with tightly linked loci for specialism and unlinked loci for plasticity.
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Figure 7: Illustration of the distributions of effect sizes of recombination alleles in
the population, for 20 replicate simulations for each studied migration rate. Effects
of alleles at the loci for ρzα and ραβ were constrained to lie in the interval [0.0, 0.25].
For each replicate simulation, the allelic effects in the population were put into 5
bins (i.e., on average a proportion of 0.2 per bin), and the mean and SD proportions
over the replicates were computed. Panels A and B show effects for ρzα and ραβ for
simulations withm = 0.12, B and C show the same for a simulations withm = 0.18,
and E and F show the same for a simulations with m = 0.24. Figure A3 shows
examples of the population distributions of diploid recombination values from the
replicate simulations.
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Appendix A

Numerical analysis

Our approach here shows similarity to the numerical analysis by Leimar et al. (2016).
The main aim of the analysis is to illustrate the difference in long-term representation
in the population for a plasticity allele between being linked to the locally adapted
vs. the locally non-adapted allele at a polymorphic genetic effect locus. We achieve
this through the use of reproductive values, as illustrated in Table A1. We also show
how the modifier α and the slope β vary as the rate of recombination between these
loci and the genetic effect increases from 0 to 0.5 (fig. A1).

Let habitat i, i = 1, 2, support a large population of size ni and let mij be a
rate of migration to habitat i from habitat j, in the sense that, after migration, the
respective proportionsm11 andm12 of individuals in habitat 1 originate from habitat
1 and 2, and similarly in habitat 2. We are mostly interested in the symmetric case
where n1 = n2, m11 = m22 and m12 = m21 The life cycle of individuals is a version
of that in the main text: (i) within-habitat random mating, forming ni offspring in
habitat i, conceptualized as random unions from a pool of gametes, drawn from the
adults in the habitat (after which the adults die); (ii) each juvenile (independently)
observes an environmental cue, as given in equation (3), and has its phenotype
determined based on its genotype and the environmental cue; (iii) each juvenile has
a probability mijni/nj of migrating from its habitat j to habitat i; (iv) selection,
with survival in habitat i as a function of phenotype u as in equation (2); and the
cycle then returns to (i).

Let us use notation like ζk to denote alleles at the locus for z. We take (i) as our
census point, and let pik be the frequency among the gametes (that form the next
generation) of allele ζk in habitat i. If we order the gametes as maternal-paternal,
the genotype frequencies among the offspring at the census point in habitat i are
pikpil. Concerning environmental cues, note that the mean cue in habitat i is θi,
according to equation (3). The survival in habitat i of individuals with genotypes
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with alleles ζk and ζl who have observed the juvenile cue in habitat j becomes

Wijkl = s0 + (1 − s0)
1√

2πσ2
juv

× (A1)

∫
exp

(
−−(α(ζk + ζl) + β(θj + η) − θi)

2

2σ2

)
exp

(
− η2

2σ2
juv

)
dη

= s0 + (1 − s0)
σ√

β2σ2
juv + σ2

exp

(
−1

2

(α(ζk + ζl) + βθj − θi)
2

β2σ2
juv + σ2

)
,

where the integration variable η represent the environmental cue error. Note that
we have the symmetry Wijkl = Wijlk. Defining an average survival as

W̄ij =
∑
kl

Wijklpjkpjl,

we get the genotype frequencies at the end of phase (iv) as

P111(p..) =
m11W1111p11p11 +m12W1211p21p21

m11W̄11 +m12W̄12

(A2)

P112(p..) =
m11W1112p11p12 +m12W1212p21p22

m11W̄11 +m12W̄12

P121(p..) =
m11W1121p12p11 +m12W1221p22p21

m11W̄11 +m12W̄12

P122(p..) =
m11W1122p12p12 +m12W1222p22p22

m11W̄11 +m12W̄12

,

in habitat 1, and

P211(p..) =
m21W2111p11p11 +m22W2211p21p21

m21W̄21 +m22W̄22

(A3)

P212(p..) =
m21W2112p11p12 +m22W2212p21p22

m21W̄21 +m22W̄22

P221(p..) =
m21W2121p12p11 +m22W2221p22p21

m21W̄21 +m22W̄22

P222(p..) =
m21W2122p12p12 +m22W2222p22p22

m21W̄21 +m22W̄22

.

in habitat 2. The notation Pikl(p..) means that there is a dependence on the allele fre-
quencies: p.. = (p11, p21, p12, p22). Again, we have the symmetry Pikl(p..) = Pilk(p..),
and the index combination kl means that k is the maternal and l the paternal allele.
From one generation to the next, we then have the following iteration for the allele
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frequencies at the census point:

pi1(t+ 1) = Pi11(p..(t)) + Pi12(p..(t)) (A4)

pi2(t+ 1) = Pi21(p..(t)) + Pi22(p..(t)),

where we have taken into account the symmetry Pi12 = Pi21. We can note that
pi1(t + 1) + pi2(t + 1) = 1, as it should, so we only need the equation for pi1. The
iteration (A4) can be used to determine numerically the equilibrium allele frequencies
for a given situation, as is done in Table A1. In the following, we let p̂ik denote such
an equilibrium.

Mutant invasion

We now consider a rare mutant modifier, that modifies either ζ1, ζ2, α or β, and
that has a rate of recombination ρ with the polymorphic locus for z. To make it
simple, we assume that a modifier changes either ζ1 to ζ ′1, or ζ2 to ζ ′2, when linked to
that allele, or modifies α to α′ or β to β′. Thus, we examine one particular mutant
modifier at a time. Let p′ik be the frequency in habitat i of a mutant modifier linked
to allele k, with p′ik � p̂ik, and let W ′

ijkl be the modified survival where the modifier
is linked to allele l. Here, we do not distinguish maternal and paternal origin. Similar
to equations (A2, A3), we have the first-order terms in mutant frequencies as

P ′
111 =

2

w̄1

(m11W
′
1111p̂11p

′
11 +m12W

′
1211p̂21p

′
21) (A5)

P ′
121 =

2

w̄1

(m11W
′
1121p̂12p

′
11 +m12W

′
1221p̂22p

′
21)

P ′
112 =

2

w̄1

(m11W
′
1112p̂11p

′
12 +m12W

′
1212p̂21p

′
22)

P ′
122 =

2

w̄1

(m11W
′
1122p̂12p

′
12 +m12W

′
1222p̂22p

′
22),

and

P ′
211 =

2

w̄2

(m21W
′
2111p̂11p

′
11 +m22W

′
2211p̂21p

′
21) (A6)

P ′
221 =

2

w̄2

(m21W
′
2121p̂12p

′
11 +m22W

′
2221p̂22p

′
21)

P ′
212 =

2

w̄2

(m21W
′
2112p̂11p

′
12 +m22W

′
2212p̂21p

′
22)

P ′
222 =

2

w̄2

(m21W
′
2122p̂12p

′
12 +m22W

′
2222p̂22p

′
22),
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where we used the notation w̄1 = m11W̄11 + m12W̄12 and w̄2 = m21W̄21 + m22W̄22.
These represent mutant heterozygote genotypes surviving to the census point, ready
to produce gametes for next generation: P ′

ikl is the frequency of mutant heterozy-
gotes in habitat i where the mutant modifier is linked to the l allele. Recombination
when forming gametes from P ′

i12 and P ′
i21 can transfer the mutant modifier to be-

come linked to the other allele at the locus for z. Using this, the iteration from one
generation to the next for the p′ik becomes:

p′11(t+ 1) =
1

2
[P ′

111(t) + (1 − ρ)P ′
121(t) + ρP ′

112(t)] (A7)

p′21(t+ 1) =
1

2
[P ′

211(t) + (1 − ρ)P ′
221(t) + ρP ′

212(t)]

p′12(t+ 1) =
1

2
[P ′

122(t) + (1 − ρ)P ′
112(t) + ρP ′

121(t)]

p′22(t+ 1) =
1

2
[P ′

222(t) + (1 − ρ)P ′
212(t) + ρP ′

221(t)] .

We can write the mutant population projection as

p′ik(t+ 1) =
∑
jl

A′
ikjlp

′
jl(t), (A8)

where A′
ikjl is the population projection matrix. We get

A′
i1j1 =

mij

w̄i

(
W ′
ij11p̂j1 + (1 − ρ)W ′

ij21p̂j2
)

(A9)

A′
i1j2 =

mij

w̄i
ρW ′ij12p̂j1

A′
i2j1 =

mij

w̄i
ρW ′ij21p̂j2

A′
i2j2 =

mij

w̄i

(
W ′
ij22p̂j2 + (1 − ρ)W ′

ij12p̂j1
)
.

The mutant projection is a 4 × 4 matrix, and each line of equation (A9) represents
a partitioning of this matrix into 2 × 2 sub-matrices.

Invasion fitness

The leading eigenvalue λ of the matrix A′, with elements A′
ikjl, or rather its log-

arithm, log λ, gives the mutant invasion fitness. For the case where the mutant is
equal to the resident, we have λ = 1, with (p̂11, p̂21, p̂12, p̂22) as right eigenvector
and the reproductive values (v11, v21, v12, v22) as left eigenvector. Furthermore, the
mutant can invade if λ > 1.
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We developed a C++ program that follows a path of small steps through either
ζ1ζ2–space, or αβ–space, each of which increases the invasion fitness, until reaching
an accurate approximation of the equilibrium. We first put α = 1 and β = 0 and
looked for an equilibrium dimorphism ζ1ζ2. We then retained this dimorphism and
let α and β evolve to an equilibrium, for different values of the rate of recombination
ρ between the locus for ζ1ζ2 and the loci for α and β. In this analysis, we made the
assumption that α and β are tightly linked to each other. The result of the analysis
is presented in Table A1. An important point of the analysis appears in the final
column, giving the ratio v11/v12 of the reproductive value for a small-effect modifier
(in the limit of being neutral) of being associated with the locally favored allele ζ1
to being associated with the other allele ζ2. This ratio expresses how much a small
increase in survival in one habitat is weighed against a corresponding decrease in
survival in the other habitat.
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Table A1: Numerical analysis of the alternative model. It is similar to the simu-
lation model explored in the main text, with results in figures 2 and 3. The main
difference is that, in the alternative model, each habitat supports a single very large
population, instead of several smaller local populations. Phenotype determination
follows equation (1) with survival in each habitat given by equation (2) and environ-
mental cues as in equation (3). The rate of migration between habitats is denoted
m12 (with m21 = m12) and corresponds to m/2 in the model in the main text. The
table shows the rate of between-habitat migration m12, the rate of recombination ρ
between the genetic effect locus and the loci for α and β, the value ζ1 of the allele
adapted to habitat 1 at the genetic effect locus (with ζ2 = −ζ1), the equilibrium
values of the modifier α and the slope β, the frequencies p̂11 and p̂12 in habitat 1
of the alleles ζ1 and ζ2 at the time of reproduction, and the reproductive values v11
and v12 of small-effect mutant modifiers, with recombination rate ρ the the genetic
effect locus. The value v11 applies when the mutant modifier is linked to the locally
adapted allele ζ1 and v12 when linked to the alternative allele ζ2. The final column
gives the ratio of the reproductive values, which indicates how strongly modifica-
tions that improve performance in habitat 1 are favored. Note that the situation
is symmetric, with p̂21 = p̂12, p̂22 = p̂11, v21 = v12 and v22 = v11. Other parameter
values: s0 = 0.1, σ = 1.0, θ1 = −0.75, θ2 = 0.75, σjuv = 0.5.

m12 ρ ζ1 α β p̂11 p̂12 v11 v12 v11/v12
0.005 0.001 −0.377 0.978 0.016 0.991 0.009 1.009 0.022 46.461
0.005 0.10 −0.377 0.973 0.020 0.991 0.009 1.007 0.281 3.588
0.005 0.50 −0.377 0.966 0.026 0.991 0.009 1.003 0.655 1.531
0.01 0.001 −0.380 0.955 0.032 0.981 0.019 1.018 0.041 24.822
0.01 0.10 −0.380 0.945 0.041 0.981 0.019 1.014 0.301 3.362
0.01 0.50 −0.380 0.930 0.054 0.981 0.019 1.006 0.673 1.495
0.03 0.001 −0.388 0.856 0.112 0.937 0.063 1.058 0.132 8.008
0.03 0.10 −0.388 0.817 0.145 0.933 0.067 1.043 0.402 2.596
0.03 0.50 −0.388 0.759 0.195 0.926 0.074 1.019 0.757 1.347
0.05 0.001 −0.395 0.735 0.216 0.880 0.120 1.101 0.255 4.316
0.05 0.10 −0.395 0.642 0.297 0.860 0.140 1.074 0.547 1.961
0.05 0.50 −0.395 0.448 0.459 0.800 0.200 1.028 0.888 1.157
0.055 0.001 −0.396 0.699 0.247 0.863 0.137 1.112 0.293 3.792
0.055 0.10 −0.396 0.579 0.351 0.833 0.167 1.081 0.600 1.802
0.055 0.50 −0.396 0.000 0.677 0.500 0.500 1.000 1.000 1.000
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Figure A1: Numerical analysis of the alternative model. The panels show the mod-
ifier α (solid lines) and slope β (dashed lines) for different values of the parameters
m12 = m21 (orange and green lines), σjuv, and s0, as a function of the recombination
rate ρ between the genetic effect locus and the loci for α and β. Other parameter
values: σ = 1.0, θ1 = −0.75, θ2 = 0.75.
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Figure A2: Phenotype determination for linked and unlinked genetic architectures,
as a function of the rate of migration, similar to figure 2. The difference from figure
2 is that here the alleles at the locus for z can evolve, such that the value of each
allele lies in the interval [−0.5, 0.5]. Except for migration rates for which α evolved
to be close to zero, the allelic vales at the locus for z evolved to be close to the lower
and upper limits. As a result, the distributions of values for z are trimorphic, with
peaks at -1.0 (both alleles near -0.5), at 0.0 (one allele near -0.5 and the other near
0.5) and at 1.0 (both alleles near 0.5). Other parameter values are the same as in
figure 2 and panels A and B show the same quantities as in that figure.
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Figure A3: Examples of the distribution of recombination rates over individuals
in the population, from three evolutionary simulations. Panels A and B show ρzα
and ραβ for a simulation with m = 0.12, B and C show the same for a simulation
with m = 0.18, and E and F show the same for a simulation with m = 0.24. The
examples are randomly chosen among the simulations for figure 7.


