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A large number of processes are involved in the chain from
emissions of aerosol precursor gases and primary particles to
impacts on cloud radiative forcing. Those processes are manifest
in a number of relationships that can be expressed as factors
dlnX/dlnY driving aerosol effects on cloud radiative forcing.
These factors include the relationships between cloud conden-
sation nuclei (CCN) concentration and emissions, droplet number
and CCN concentration, cloud fraction and droplet number, cloud
optical depth and droplet number, and cloud radiative forcing and
cloud optical depth. The relationship between cloud optical depth
and droplet number can be further decomposed into the sum of
two terms involving the relationship of droplet effective radius
and cloud liquid water path with droplet number. These relation-
ships can be constrained using observations of recent spatial and
temporal variability of these quantities. However, we are most
interested in the radiative forcing since the preindustrial era.
Because few relevant measurements are available from that era,
relationships from recent variability have been assumed to be
applicable to the preindustrial to present-day change. Our analysis of
Aerosol Comparisons between Observations and Models (AeroCom)
model simulations suggests that estimates of relationships from re-
cent variability are poor constraints on relationships from anthropo-
genic change for some terms, with even the sign of some relationships
differing in many regions. Proxies connecting recent spatial/
temporal variability to anthropogenic change, or sustained mea-
surements in regions where emissions have changed, are needed
to constrain estimates of anthropogenic aerosol impacts on cloud
radiative forcing.

aerosol radiative forcing | cloud−aerosol interactions | constraints | factors

Radiative forcing of climate change through interactions
between liquid clouds and anthropogenic aerosol arises

through a chain of processes from emissions of primary parti-
cles and aerosol precursor gases E, to establishment of a
balance between production and removal of cloud conden-
sation nuclei (CCN), to effects of the CCN on droplet num-
ber concentration Nd, to effects of Nd on cloud radiative
forcing R.
This chain can be expressed mathematically for a single-layer

liquid cloud

d ln  R
d ln  E

=
d ln  R
d ln Nd

d ln Nd

d ln  CCN
d ln  CCN
d ln  E

[1]

where overbars denote quantities averaged over a time period
long enough for clouds to adjust to the aerosol, and R is the

“clean-sky” shortwave cloud radiative forcing, i.e., the shortwave
cloud radiative forcing calculated as a diagnostic with aerosol
optical depth set to zero (1). Note that this formalism allows
feedbacks such as cloud effects on CCN, so the terms should
not be interpreted as only the response of the numerator to
changes in the denominator.
Cloud radiative forcing can be expressed as the product of

cloud fraction C and the clean-sky cloud radiative forcing for the
cloudy fraction of the sky, Rc, so the first term on the right-hand
side (RHS) of Eq. 1 can be expressed as

d ln  R
d ln Nd

=
d ln  C
d ln Nd

+
d ln  Rc

d ln Nd
. [2]

Because Rc depends almost entirely on the cloud optical depth τ,
the second term on the RHS of Eq. 2 becomes

d ln  Rc

d ln Nd
=
d ln  Rc

d ln  τ
d ln  τ
d ln Nd

. [3]

The relationship between τ and Nd can be decomposed into
contributions from changes in droplet effective radius re and
cloud liquid water path L using the common expression for
cloud optical depth τ ∝ L/re (2),

d ln  τ
d ln Nd

=
d ln  L
d ln Nd

−
d ln  re
d ln Nd

. [4]
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Combining Eqs. 1−4 gives

d ln  R
d ln  E

=
�
d ln  C
d ln Nd

+
d ln  Rc

d ln  τ

�
d ln  L
d ln Nd

−
d ln  re
d ln Nd

��
d ln Nd

d ln  CCN
d ln  CCN
d ln  E

.

[5]

The last term in brackets on the RHS of Eq. 5 is often called the
first indirect, Twomey (3), or cloud albedo effect, and the first
and second terms are together called the second indirect,
Albrecht (4), or cloud lifetime effect. The cloud lifetime effect
was originally associated with changes in cloud fraction, but, as
can be seen from Eq. 5, it involves changes in both cloud fraction
and liquid water path. There is, however, an important distinc-
tion between Eq. 5 and the Twomey mechanism, which assumes
constant L: Eq. 5 makes no such assumption.
In model estimates, these influences are determined from the

difference between pairs of simulations [say, preindustrial (PI)
and present day (PD)] by each atmosphere model, with the only
difference in configuration being the anthropogenic emissions,

ΔR=R
Δ ln  R
Δ ln Nd

Δ ln Nd

Δ ln  CCN
Δ ln  CCN
Δ ln  E

Δ ln  E [6]

Δ ln  R
Δ ln Nd

=
Δ ln  C
Δ ln Nd

+
Δ ln  Rc

Δ ln  τ
Δ ln  τ
Δ ln Nd

[7]

Δ ln  τ
Δ ln Nd

=
Δ ln  L
Δ ln Nd

−
Δ ln  re
Δ ln Nd

[8]

where Δ denotes the difference in the temporal and spatial mean
of quantities between the two simulations (e.g., PD and PI). Note
that because the anthropogenic aerosol effect on R (about
1 W·m−2) is much smaller than R (about 50 W·m−2 in the global
mean) and the other numerators and denominators in Eq. 6
cancel, it is essentially a statement of an identity.
Uncertainty in estimates of the effective radiative forcing

through aerosol−cloud interactions (ERFaci) can arise through
uncertainty in each of the terms in Eq. 6. Although one might
argue that it is only the final uncertainty that matters, efforts to
reduce the uncertainty in ERFaci can be most effectively focused
if the uncertainty in each term is known. Quantification of the
uncertainty from each term has not been attempted before.
Uncertainty can arise from uncertainty in the value of model

parameters (parametric uncertainty), in the limitations of the
formulations of the physical processes represented in the model
(structural uncertainty), and in the numerical representation of
the physical processes (numerical uncertainty). Parametric un-
certainty can be quantified by simultaneously varying the values
of uncertain model parameters within the range of their un-
certainty (5, 6). Structural uncertainty is commonly estimated by
comparing the values of each term from different models against
observations. Additional uncertainty is evident through lack of
agreement between simulated and observed estimates of the terms.
Uncertainty in each term can be reduced if observations can

be used effectively to constrain the values. However, if radiative
forcing is estimated over a period predating reliable measure-
ments (e.g., beginning with preindustrial conditions), the neces-
sary observations are not available. Although spatial and
temporal variations in terms over recent periods (such as
the satellite era) have been used to estimate several of the terms
in Eqs. 6−8, Penner et al. (7) showed that, at least for the re-
lationship between Nd and aerosol optical depth (a proxy for
CCN) from one model, the relationship estimated from recent
variations is not a useful constraint on the preindustrial to pre-
sent-day relationship. Stier (8) has recently shown that aerosol

optical depth (AOD) is not always a good proxy for CCN, but we
avoid this issue by using CCN rather than AOD.
This study addresses several related issues. First, following

Schulz et al. (9), we estimate the structural uncertainty in each of
the terms in Eqs. 6−8 using differences between simulations by a
suite of nine Aerosol Comparisons between Observations and
Models (AeroCom) atmosphere models with present-day and
preindustrial emissions to determine which terms contribute
most to the diversity of the estimated radiative forcing. Second,
for each model, we determine how well the terms estimated
from present-day variations match the terms determined from
differences between results for PI and PD emissions. Third, we
discuss alternate methods of constraining the terms.

Structural Uncertainty for Each Term
Each term contributes to the structural uncertainty in the aerosol
radiative forcing. Fig. 1A shows normalized values of each term
in Eq. 6, except emissions, for all nine models, after averaging
the numerators and denominators globally over five simulated
years (see Methods). Because the emissions of primary and pre-
cursor anthropogenic aerosol mass are the same for all models in
this study, we show the lnCCN change rather than its relationship
with the emissions change. Emissions are also a source of un-
certainty (10), but that source is not considered in this study.
The threefold range in the global mean radiative forcing is

driven by diversity in all factors.
Because satellite observations provide a strong constraint on

the present-day cloud radiative forcing, and because the differ-
ence between the “dirty sky” and clean-sky cloud radiative
forcing is less than 1 W·m−2 (much smaller than the present-day
shortwave cloud radiative forcing) (1), one might expect little
diversity in the simulated cloud radiative forcing, the first term in
Eq. 6. Indeed, there is little diversity when all clouds are sampled.
However, according to Fig. 1A, there is considerable diversity when
only warm clouds are sampled (normalized values ranging between
0.7 and 1.3), because the climate model calibration process focuses
on all clouds rather than on warm clouds only.
The relationship between R and Nd has somewhat more di-

versity, with normalized values between 0.7 for SPRINTARS
(Spectral Radiation Transport Model for Aerosol Species) and
HadGEM3-U.K.CA (Hadley Center Global Environmental
Model with United Kingdom Chemistry and Aerosols) and 1.4
for CAM5.3_CLUBB (Community Atmosphere Model 5.3 with
CLouds Unified By Binormals). This diversity is driven by di-
versity in several terms. Fig. 1B shows the same relationship, not
normalized by the multimodel mean, and, following Eq. 8, con-
tributions to that relationship from the relationships of low cloud
fraction and from in-cloud radiative forcing Rc with Nd. The large
value for the R−Nd relationship for CAM5.3_CLUBB is evi-
dently explained by the much larger contribution of cloud
fraction changes to the cloud radiative forcing response for
CAM5.3_CLUBB. This can be understood by noting that
CAM5.3_CLUBB treats aerosol effects on shallow cumulus
clouds (11), whereas most other models do not. However, it is
not clear why CAM5.3_CLUBB_MG2 (CAM5.3 with CLUBB
and second generation Morrison & Gettelman cloud micro-
physics), which also treats aerosol effects on shallow cumulus
clouds, does not produce a large contribution of cloud fraction
changes to the cloud radiative forcing response.
For almost all other models, Fig. 1B shows that the relationship

of the in-cloud radiative forcing Rc to Nd exceeds the relationship of
cloud fraction to Nd, but the diversity across models is comparable.
The relationship of Rc to Nd is particularly small for

CAM5.3_CLUBB. This is surprising, because Fig. 1C shows that the
relationship of τ to Nd is relatively strong for CAM5.3_CLUBB.
That implies, according to Eq. 7, that the relationship of Rc to τ
is much smaller for CAM5.3_CLUBB. Indeed, it is an order of
magnitude smaller for CAM5.3_CLUBB than for all other models
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(see Dataset S1). This unexpected result is difficult to explain.
Potential explanations are the sublinear dependence of cloud
albedo on cloud optical depth, a tendency for cloud changes to
occur over snow or ice, or the dominant influence of variations in
solar zenith angle on cloud radiative forcing. However, the mean
cloud optical depth is no larger for CAM5.3_CLUBB than for
other models, the spatial distribution of the cloud optical
depth change for CAM5.3_CLUBB is not predominantly over
bright surfaces, and weighting cloud fraction and cloud optical
depth by the incoming solar flux does not affect the relationship
between Rc and τ for CAM5.3_CLUBB.
Fig. 1C shows the relationship between τ and Nd. The re-

lationship differs considerably across the nine models, with a
range of a factor of 2, because the relationship depends on cloud
microphysical processes (12), which are treated differently in
different models. The low values of the relationship for the
SPRINTARS and HadGEM3-U.K.CA models clearly contribute
to their low estimates of the relationship between R and Nd,
although the cloud fraction relationship to Nd is also small. The
KK version of the SPRINTARS model produces a much larger
value of the τ−Nd relationship, as might be expected because it
uses the Khairoutdinov and Kogan (13) autoconversion scheme
used by all versions of CAM5.3, which also produce larger val-
ues. To confirm this, we use Eq. 8 to decompose the relationship
into contributions from changes in L and re. The diversity in
these two terms from global and annual mean changes in the
numerators and denominators is also shown in Fig. 1C. Note
that, because these terms are added rather than multiplied, their
values have not been normalized by the means across the mod-
els. However, the two terms don’t strictly add because the finite
differences in Eq. 8 approximate the differential form.
From Fig. 1C, it is obvious that the diversity in the relationship

between τ and Nd is dominated by the difference between the
SPRINTARS and HadGEM3-U.K.CA models and the other
models, and that the difference in the τ−Nd relationship between
the SPRINTARS and HadGEM3-U.K.CA models and the other
models is dominated by the difference in the relationship be-
tween L and Nd. Because the relationship between L and Nd for
SPRINTARSKK (SPRINTARS with Khairoutdinov and Kogan
autoconversion scheme) is about halfway between the relation-
ship for SPRINTARS and the rest of the models, we can con-
clude that, to a significant extent, the much weaker relationship
from SPRINTARS and HadGEM3-U.K.CA is due to their use
of a different autoconversion schemes. However, because the
liquid water path relationship from SPRINTARSKK is about
half of the relationship of the rest of the models that use the
same autoconversion scheme, there must be some other model
differences that also contribute to the weaker relationship in the
SPRINTARS and HadGEM3-U.K.CA models.
Note that the relationship between L andNd from CAM5.3_MG2

is nearly indistinguishable from that simulated by the other
versions of CAM5.3. This result is surprising because previous
work (11, 14, 15) suggested that the prognostic treatment of
rain in CAM5.3_MG2 would produce a weaker relationship be-
tween L and Nd than the diagnostic treatment in the other models.
It is also noteworthy that, for all models except SPRINTARS,

SPRINTARSKK, and HadGEM3-U.K.CA, the relationship be-
tween re and Nd is weaker than the relationship between L and
Nd. The metrics used in Fig. 1C provide a convenient method of
quantitatively comparing the magnitudes of these two different
mechanisms producing aerosol effects on cloud optical depth.
Note also that the relationship between re and Nd is sub-

stantially weaker for ECHAM6-HAM (Hamburg version of
European Center for Medium-range Weather Forecasting
model) than the other models, mostly because re changes for
ECHAM6-HAM are smaller.
Returning to Fig. 1A, the relationship between Nd and CCN

varies widely (more than twofold) across the models. The CAM5.3

versions produce fairly consistent relationships, but the two
SPRINTARS versions produce much weaker relationships, which
contribute substantially to the smaller estimates of radiative forcing.

A

B

C

Fig. 1. (A) Values of each term in the radiative forcing balance for all models,
normalized by multimodel mean after averaging numerator and denominator
globally over lowwarm clouds. (B) Values of the warm cloud fraction and in-cloud
radiative forcing relationship with droplet number contributing to the relation-
ship between cloud radiative forcing and droplet number, for all models after
averaging globally but not normalizing. (C) Values of the terms contributing to
the relationship between cloud optical depth and droplet number for warm
clouds simulated by all models, after averaging globally but not normalizing.
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Although all models except ECHAM6-HAM and HadGEM3-U.
K.CA use the same droplet nucleation scheme, SPRINTARS
and ECHAM6-HAM apply a lower bound on Nd (16, 17) that
clearly substantially limits the droplet number sensitivity to CCN
for clean conditions such as the preindustrial (18). Differences in
updraft velocity and in natural emissions could also contribute to
the diversity (19), but additional experiments without lower bounds
would be required to determine the contribution of the lower
bound to the diversity.
The response of boundary layer CCN concentration to an-

thropogenic emissions is surprisingly similar across all models
except HadGEM3-U.K.CA, with agreement to within 20% for
the other models. The agreement would likely be worse for su-
persaturations higher than the chosen supersaturation (0.3%),
but supersaturations are higher than 0.3% only for strong up-
drafts or very clean conditions (20). Some of the agreement is
undoubtedly due to the use of common treatments of aerosol
emissions, properties, and processes in the CAM5.3 versions,
with only CAM5.3_PNNL (Pacific Northwest National Labora-
tory version of CAM5.3) using a different representation of
cloud effects on the aerosol. However, the representations of the
aerosol and its lifecycle in SPRINTARS and ECHAM6-HAM are
quite different, with external mixtures of components assumed in
SPRINTARS and internally mixed modes in ECHAM6-HAM. The
60% larger anthropogenic CCN change for HadGEM3-U.K.CA,
which also uses an internally mixed modal treatment, could be
due to differences in size distributions of primary anthropogenic
emissions (21–23) (which affects the number emitted), in the
treatments of particle nucleation (24), or in the representations
of clouds, which affects vertical transport, wet removal, and
aerosol lifetime (25). However, although the CCN change for
HadGEM3-U.K.CA is by far the largest, the aerosol radiative
forcing by HadGEM3-U.K.CA is among the smallest, mostly
because of its small sensitivity of cloud radiative forcing to
changes in Nd.
CCN measurements are sparse and seldom used to constrain

aerosol models, and previous studies have found considerable
dependence of CCN concentration on uncertainty in model pa-
rameters (5, 26) and processes (nucleation, wet removal) (24, 27,
28), so much greater diversity was expected. This shows that
model diversity is not always a reliable measure of structural
uncertainty (29). Comparison with more models using different
treatments of the aerosol lifecycle is needed (24).

Relationships from PD Variations vs. PI−PD Changes
Given the diversity of the relationships, constraints are needed to
guide model development and reduce uncertainty in estimates of
the radiative forcing. Unfortunately, the preindustrial observa-
tions needed to constrain the sensitivities are not available. One
could estimate relationships from regressions on spatial and
temporal variability during the recent decades when data from
satellite, aircraft, and surface-based remote sensing are available
(30–41). However, Penner et al. (7) have shown that, at least for
the relationship between Nd and aerosol optical depth from one
model, estimates from recent variability underestimate the re-
lationship from anthropogenic emissions.
We have explored this issue for all relationships estimated

from global mean anthropogenic change and from global spatial
and temporal variability. We have found that these two methods
of estimating the relationships differ considerably, differing even
in sign for some relationships and models. However, Grandey
and Stier (42) have found 20% biases in estimates of the rela-
tionships for regions larger than 15° and 50% errors for regions
larger than 30°. We therefore focus on the relationships at sub-
global scales, specifically for the 14 regions defined by Quaas
et al. (43) and used by Penner et al. (7). Rather than use aerosol
optical depth as a proxy for CCN, we use CCN concentration to
avoid ambiguity from the use of a proxy.

Fig. 2 explores this issue for all relationships using all models
in this study. Relationships estimated from the anthropogenic
change (PD−PI) are compared with estimates from regressions
over spatial (within each region) and temporal (3 h to 5 y) var-
iability of the 3-h PD simulation data.
For the relationship between Nd and CCN (Fig. 2A), the two

estimate methods yield similar results for some regions for all
models, but poor agreement for other regions for almost all
models. Six of the models yield a value less than 0.1 for the re-
lationship estimated from PD variability for one region, but
values exceeding 0.6 when estimated from the PI to PD change
for that region. The difference in the estimates could reflect
saturation in droplet number for PD conditions. Only CAM5.3-
CLUBB-MG2 and HadGEM3-U.K.CA yield agreement within
a factor of 2 for all regions. Most models have much less in-
terregional diversity in the relationship derived from variability
than from anthropogenic change, which suggests estimates of the
relationship from variability are poor constraints on the relation-
ships from anthropogenic change. Penner et al. (7) also found
spatial variability in the bias, but the estimate from variability
mostly underestimated the value from anthropogenic change.
For the relationship between τ and Nd (Fig. 2B), the estimate

from variability is less than the estimate from anthropogenic
change for all models and nearly all regions. Even the sign of the
relationship differs for at least one of the regions for most
models. Note that negative slopes for PD variability have also
been found using cloud-resolving model simulations (44), which
suggests that those simulations are not necessarily effective
constraints on the τ response to anthropogenic aerosol.
For L and Nd (Fig. 2D) the results are similar to those for τ

and Nd, but with more regions with more negative PD slopes.
The sign of the relationship differs for about half of the regions
and for at least one region for all but one model.
The two methods yield much more consistent estimates of the

relationship between re and Nd (Fig. 2B) for all models except
SPRINTARS and SPRINTARSKK, which yield opposite signs
for several regions. For most models and most regions the esti-
mates from present day spatial/temporal variability can be used
to constrain the anthropogenic change.
For R and τ (Fig. 2E), the signs agree for nearly all regions and

models, but, for many regions and models, the relationship es-
timated from variability exceeds that from anthropogenic change
by more than a factor of 2; spatial variations in solar zenith angle
within those regions could explain some of this difference. For
six of the nine models, the relationship from variability in at least
one region is less than 0.05, whereas the estimate from anthro-
pogenic change is larger than 0.25.
For cloud fraction and Nd (Fig. 2F), the signs of the re-

lationship from variability and anthropogenic change differ for
most regions and models, with a positive value from anthro-
pogenic change and a negative value for variability from many
regions, and vice versa in other regions. Processes other than
aerosol activation, such as turbulence or large-scale motion,
likely play a relatively larger role when only spatial/temporal
variability is driving the relationship.

Emerging Constraints on Estimates of Past Forcing
Given the poor agreement between the two methods of esti-
mating most relationships for most models, other ways of using
recent measurements based on spatial/temporal variability are
needed to constrain the anthropogenic influence of aerosol on
clouds and the Earth’s energy balance.
One method would be to use recent trends in regions where

emissions have changed substantially during the period when
reliable measurements are available. For example, Cherian et al.
(45) used measurements of trends in the downward solar radi-
ance at European sites from the period 1990–2005, when SO2
emissions declined threefold (46), to constrain global estimates
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of aerosol radiative forcing since the preindustrial era. Although
such an analysis is highly informative, it does not provide guid-
ance on removing biases in models that overestimate or un-
derestimate the downward solar trend over Europe, which could
be due to errors in any of the factors that produce the cloud
radiative forcing change or the clear-sky change, as well as nat-
ural variability in cloud cover. Removing those biases is necessary
if climate models are to be used for simulations of future climate
change. Additional data characterizing each of the factors and
components are needed. Some of the necessary data (L, re, aerosol
optical depth) are available from 1990, but reliable estimates of Nd,
τ, and R are not available for years before 2001, when the Earth
Observing System satellite constellation was launched.
Although most of the reduction in emissions from Europe had

already occurred by 2001, emissions from east Asia continued to
rise through 2007 (47). This presents an opportunity to constrain
the factors and components that contribute to aerosol radiative
forcing, if the aerosol signature exceeds radiance changes due to
natural variability in clouds.
A third opportunity is the large tropospheric emission of SO2

from the Bárðarbunga volcano on Iceland between 29 August

2014 and 27 February 2015. A group led by James Haywood is
studying this promising case.
Another approach is to develop metrics from variability that

can constrain the anthropogenic sensitivity of selected factors
and components. For example, Wang et al. (48) have shown that
Spop ≡ −dln(POP)/dlnAI, a measure of the sensitivity of the
probability of precipitation (POP) to aerosol [expressed as
Aerosol Index (AI), the product of the aerosol optical depth and
the Angstrom exponent], is highly correlated with the simulated
anthropogenic change in L to CCN. Because Spop can be deter-
mined from recent measurements, both satellite (48) and ground-
based (49), the Spop measurements can be used to constrain the
relationship between anthropogenic changes in L and CCN.
Ref. 48 considered only three fundamentally different models,

and then adjusted parameters in one model to produce a wider
range in results. Fig. 3 applies the ref. 48 analysis to the nine
aerosol models in this study. As in ref. 48, the two variables are
well correlated, but land values (not considered in ref. 48) are
less well correlated. Interestingly, the SPRINTARS model pro-
duces values of Spop closest to the ocean mean value (0.12) es-
timated from satellite by ref. 48. The strongly negative values of
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Fig. 2. Relationships between (A) droplet number and CCN concentration, (B) cloud optical depth and droplet number concentration, (C) droplet effective
radius and droplet number concentration, (D) liquid water path and droplet number concentration, (E) cloud radiative forcing and cloud optical depth, and
(F) low cloud fraction and droplet number concentration, estimated from PD–PI change vs. spatial and temporal variability during PD conditions for each
model, averaged within each of the 14 regions defined by Quaas et al. (43).

5808 | www.pnas.org/cgi/doi/10.1073/pnas.1514036113 Ghan et al.

www.pnas.org/cgi/doi/10.1073/pnas.1514036113


Spop produced by HadGEM3-U.K.CA are suggestive of aerosol
invigoration of convective clouds, but HadGEM3-U.K.CA neglects
that influence, and the focus of this analysis on low warm clouds
should preclude that mechanism.
A third approach is to separate clouds further into different

cloud regimes, e.g., sorting by large-scale vertical velocity and
lower-troposphere static stability (50, 51). Such stratification
might improve consistency between estimates of relationships
from anthropogenic change and temporal variability.

Conclusions
We have found that uncertainty in anthropogenic aerosol effects
on cloud radiative forcing arises from uncertainty in several

relationships, and that estimates of several of those relationships
from recent spatial and temporal variability are not necessarily
relevant constraints on the relationship from anthropogenic
change. Because few measures of preindustrial aerosol are
available, this manifestation of equifinality (52) presents con-
siderable challenges for constraining estimates of anthropogenic
aerosol radiative forcing. Constraining Rc using the observed
present-day relationship between Nd and AOD and the strong
correlation between Rc and the relationship between Nd and
AOD (43) might not be justified.
Fortunately, the Spop parameter, which can be characterized

from recent measurements, correlates well with the anthropo-
genic relationship between cloud liquid water path and aerosol.
However, it is disconcerting that SPRINTARS, the model pro-
ducing an Spop most consistent with the estimate from satellite
retrievals, apparently does so because of an unrealistically large
lower bound on Nd, and that HadGEM3-U.K.CA produces neg-
ative values of Spop. Moreover, Lebo and Feingold (53) showed
that cloud regime can influence the sign of the relationship
between Spop and the influence of CCN on L.
Further analysis differentiated by cloud regime in regions

influenced by recent trends in emissions could constrain other
terms affecting ERFaci (50, 51). Such analyses could be used to
constrain the selection of model parameter values that affect the
estimate of ERFaci. Constraining the cloud fraction response is
more challenging because the influence of natural variability on
cloud fraction must be overcome.
Uncertainty in estimates of radiative forcing by cloud−aerosol

interactions due to the choice of parameter values and numerical
integration methods is an emerging area of investigation (5, 6,
10, 54). Further investigations of parametric sensitivity involving
cloud lifetime effects and dependence on numerical integration
methods are underway.

Methods
A total of nine global aerosol models participated in this study. Salient
features of each model are summarized in Table 1. Five of the nine models
are versions of CAM5.3, and two are versions of SPRINTARS. CAM5-PNNL
differs from CAM5 in the treatment of cloud effects on the aerosol (15).

All models were driven by the same AeroCom emissions for years 1850 and
2000 (55). All simulations were nudged toward winds analyzed by opera-
tional forecast centers; some were also nudged toward analyzed tempera-
tures, but this was discouraged because moist convection simulated in some

Table 1. Model treatments

Model name Aerosols Stratiform clouds Activation Autoconversion

CAM5 L12: 3 modes: MG: 2-mom liquid: ARG KK
internal mixtures of sulfate, BC, OC, dust, seasalt L07, G10 ice: LP, L07

CAM5-PNNL L12: 3 modes MG: 2-mom ARG, LP, L07 KK
CAM5-CLUBB L12: 3 modes MG: 2-mom ARG, LP, L07 KK

Larson
CAM5-MG2 L12: 3 modes MG2: 2-mom. prog rain, snow ARG, LP, L07 KK

L07, G10, G15
CAM5-CLUBB-MG2 L12: 3 modes MG2: 2-mom. prog rain, snow ARG, LP, L07 KK

L07, G10, G15, Larson
ECHAM6.1.0-HAM2.2 Z12: 7 modes: Internal mixtures of sulfate, BC, OC,

sea salt, dust
Lo07: 2-mom liquid: LL97 KK

ice: KL02, Lo04
HadGEM3-U.K.CA Mann10: 5-mode GLOMAP: Internal mixtures of

SU, BC, OC, SS, W01: 6-bin mineral dust
PC2 liquid: ARG TC

SPRINTARS T00, T02, T05: external mixtures of sulfate, BC,
OC, dust, seasalt

W10: 2-mom liquid: ARG Berry
ice: LD06

SPRINTARSKK T00, T02, T05: external mixtures of sulfate, BC,
OC, dust, seasalt

W10: 2-mom ARG, LD06 KK

Reference sources are as follows: ARG (58), Berry (59), G10 (60), G15 (11), KK (13), KL02 (61), Larson (62), LL97 (Lin H, Leaitch R, WMO Workshop on
Measurements of Cloud Properties for Forecasts of Weather, Air Quality and Climate, June 23−27, 1997, Mexico City, pp 328–335), LP (63), L07 (64), L12 (21),
LD06 (65), Lo04 (66), Lo07 (17), Mann10 (22), MG (67), PC2 (68), T00 (69), and T02 (70). T05 (16). TC (71). W10 (72). Z12 (23).

Fig. 3. Global, land, and ocean mean relationship between anthropogenic
change in cloud liquid water path and change in CCN concentration, vs. Spop
parameter for each model, averaged over land, ocean, or both.
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models is sensitive to temperature nudging (56). Nudging greatly limits
natural variability in the aerosols and clouds, permitting robust estimates
from simulations of 5 y (57).

To focus the analysis on liquid clouds, all variables in Eqs. 6−8 are sampled
from 3-h history only when cloud top temperature exceeds −10 °C. This fil-
ters out both cold clouds and warm clouds obscured by cold clouds above.
Droplet number is at cloud top. CCN concentration at 0.3% supersaturation
is at 1 km above ground. The ratios in Eqs. 6−8 are determined after tem-
poral and spatial averaging of the preindustrial to present-day change in
each variable. For in-cloud values of Rc and τ, the grid cell mean values are
averaged over time and space and then divided by the mean of the total
cloud fraction. To permit comparison of the relative contribution of the
diversity from each factor in Eq. 6 to the total diversity, the values of the
terms for each model are normalized by the multimodel mean of the term,

SXYj =
�
Δ ln  X

Δ ln  Y

�
j

,X
k

�
Δ ln  X

Δ ln  Y

�
k

[9]

where the overbars denote temporal and spatial mean and subscripts j and k
denote different models. Terms in Eqs. 7 and 8 are not normalized because
they add rather than multiply.

To characterize structural uncertainty, we follow a method used by Schulz
et al. (9) to diagnose the factors driving uncertainty in aerosol effective radiative
forcing through cloud−radiation interactions (formerly called aerosol direct
radiative forcing). Structural uncertainty can be quantified as the SD σ across all
models. If the factors xi driving a product y are uncorrelated across all models,
one can show that

σ2y

y2
=

XN
i=1

σ2xi
x2i

[10]

where the overbar represents the multimodel mean and N is the number of
factors. In practice, the factors can be negatively correlated for radiative
forcing (9).

For the relationships estimated from present-day spatial and temporal
variability shown in Fig. 2, regressions were formed after binning by L
and lower tropospheric stability (LTS) to isolate aerosol effects from
thermodynamics (48), and then averaging the regression over the joint pdf of
L and LTS. The regressions are performed after binning by equally sampled bins
in the denominator of each term using the 3-h model data.
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