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ABSTRACT:  Aiming to increase carrier mobility in nanosheet-network devices, we have 

investigated MoS2-graphene composites as active regions in printed photodetectors. 

Combining liquid-exfoliation and inkjet-printing, we fabricated all-printed photodetectors with 

graphene electrodes and MoS2-graphene composite channels with various graphene mass 

fractions (0≤Mf≤16wt%). The increase in channel dark conductivity with Mf was consistent 

with percolation theory for composites below the percolation threshold. While the 

photoconductivity increased with graphene content, it did so more slowly than the dark 

conductivity such that the fractional photoconductivity decayed rapidly with increasing Mf. We 

propose that both mobility and dark carrier density increase with graphene content according 

to percolation-like scaling laws while photo-induced carrier density varies only weakly with 

graphene loading. This leads to percolation-like scaling laws for both photoconductivity and 

fractional photoconductivity, in excellent agreement with the data. These results suggest that 

channel mobility and carrier density increase by ~100× on the addition of 16wt% graphene. 
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The growing demand for low-cost electronics has sparked a wide investigation into printable, 

low-performance devices and circuits. The field has developed over the last 25 years from early 

demonstrations of solution processed devices1, 2 to today’s ability to print integrated circuitry.3 

The most commonly studied materials in this area continue to be organic polymers and 

molecules which have been used to print in a range of devices, including light-emitting diodes 

and transistors.3 However, these materials suffer a number of disadvantages including 

relatively low mobility and high cost. This has led a number of researchers to investigate the 

use of printed networks of inorganic nanoparticles and nanotubes in device applications.4, 5 

While good device performance has been demonstrated from these materials (e.g. high 

mobilities and on:off ratios in printed transistors), it is not clear whether such technologies can 

be scaled at low cost due to difficulties in materials synthesis and processing.  

More recently, it has been shown that 2-dimensional nanosheets are promising 

candidates for electronic device applications, with single-nanosheet transistors displaying 

relatively high mobilities and on/off ratios.6, 7 In the context of printed electronics, fabricating 

printed nanosheet network-based devices will require access to nanosheet-containing inks. 

Critically, nanosheets can be produced cheaply in a form amenable to ink formulation by 

techniques such as liquid-phase exfoliation (LPE).8, 9 This method uses scalable processes, such 

as high shear mixing,9 to exfoliate layered crystals into few-layer nanosheets in appropriate 

liquids. Using simple, centrifugation-based, post-processing techniques, it is possible to size-

select the nanosheets while simultaneously exchanging the solvent and increasing the 

concentration up to ~10 mg/ml.10 Crucially, these procedures can be applied to a range of 

layered materials yielding a host of different nanosheets including graphene, BN, MoS2, 

Ni(OH)2, GaS, etc.8, 11, 12 The combination of exfoliation and post-processing techniques is 

ideal for producing inks which can be printed into nanosheet network-based devices 13, 14 and 

a number of network-based printed devices have now been reported. While the emphasis has 

been on printed photodetectors due to their simplicity,13, 15-19 memory devices 13 and, more 

recently, transistors have also been printed.20  

A key problem with networks composed solely of semiconducting nanosheets is the 

limited network mobility of ~0.1 cm2/Vs,20 relatively low compared to state-of-the-art printed 

organics which now perform at 10 cm2/Vs.3 This limitation is an intrinsic effect of the network 

itself as the network mobility is restricted by inter-nanosheet junctions.20 Obvious strategies to 

address this involve reducing junction resistance, for example by increasing nanosheet overlap 

at junctions or by chemical modification. Here, we suggest a different approach. Building on 
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work by Palermo et al,21 we propose that the mobility of a network of semiconducting 

nanosheets, such as MoS2, can be enhanced by adding small quantities of conducting 

nanosheets such as graphene. The presence of graphene islands in a sea of MoS2 nanosheets 

allows carriers to alternate between travelling through MoS2 and graphene, with the graphene 

sections acting as high mobility links in the overall conductive path. This would reduce the 

carrier transit times yielding an increase in effective mobility. This simple procedure to 

increase mobility may improve the performance of printed nanosheet devices to the point where 

they are competitive with printed organics. 

With this in mind, the aim of this work is three-fold. We aim to demonstrate the 

feasibility of fabricating all-printed devices with graphene electrodes and MoS2-graphene 

channels, focusing on photodetectors for simplicity. We investigate how the addition of 

graphene affects both the electrical and photoconductive properties of the channel. Finally, we 

will attempt to use this data to develop an understanding of how the presence of graphene 

affects generic device properties such as mobility and carrier density. 

Graphene and MoS2 nanosheets were both produced by liquid-phase exfoliation using 

layered powders as starting materials (Timrex Timcal  and Sigma respectively).19 Briefly, each 

layered powder was exfoliated in solvent N-methyl-pyrrolidone (NMP) using a horn-tip 

sonicator (Sonics Vibracell VCX-750) and the resultant dispersion was subjected to liquid 

cascade centrifugation 10 to define the nanosheet size distributions. The nanosheets were size-

selected using a two-step cascade, a procedure often referred to as trapping.10 We employed a 

Hettich 220K centrifuge, and for MoS2, used rotation rates equivalent to 106g and 426g, 

parameters which should give nanosheets with lateral size of ~200 nm. Such small nanosheets 

are required to avoid clogging of the nozzle during printing (nozzle size ~20 m).14, 19 

However, we used slightly different centrifugation conditions for graphene, trapping between 

27g and 106g. This should result in larger nanosheets which would be expected to give larger 

graphene islands in the printed film and so better mobility enhancement. For both MoS2 and 

graphene, after the second centrifugation step,10 the sediments were redispersed in NMP at 

concentrations of ~1 mg/ml. These procedures resulted in nanosheet/NMP dispersions as 

shown in Figures 1A and 1B. Representative TEM images of both nanosheet types are shown 

in Figures 1C and 1D. In all cases, the samples are dominated by few-layer nanosheets with 

mean lateral sizes of ~650 nm and ~220 nm for graphene and MoS2 respectively. Although the 

graphene nanosheets are somewhat larger than the usual limit of one-fiftieth of the nozzle size, 

we found no problems with printing. The graphene and MoS2 dispersions were blended to give 
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a range of composite inks,22 all with total nanosheet content of ~1 mg/ml, but with the graphene 

mass fraction ( 2/ ( )f graphene graphene MoSM M M M  ) varying from 1wt% to 16wt%. Along with 

the pure graphene and MoS2 dispersions, these inks were used to print photodetectors in a 

manner similar to our previous report.19 

 Using the graphene-based ink, pairs of graphene interdigitated electrodes (IDE) (Figure 

1E, top) were inkjet printed with a Dimatix DMP 2850. These were designed to have inter-

electrode channel dimensions of: length, L=200 m; width, w=15 mm; depth (i.e. graphene 

electrode thickness), t=700 nm. Using the same procedure, we then printed an MoS2 or MoS2-

graphene composite channel on top of each IDE as a 700 nm thick layer (area ~2×5 mm2) 

which both filled the inter-electrode trench and covered the surrounding area (Figure 1E, 

bottom). The channels were printed with a range of graphene mass fractions from 0% (MoS2-

only) to 16wt%. SEM imaging showed the channel/electrode interface to be relatively smooth 

in all cases with line edge roughness of ~10 m (Figure 1F). Higher magnification imaging 

shows the channel region (i.e. the MoS2 or MoS2-graphene composite) can be clearly 

differentiated from the electrode (Figure 1G). Both channel (Figure 1H) and electrodes (Figure 

1I) visibly consist of disordered networks of nanosheets with visible porosity.  

 The electrical resistance (Keithley 2612A) measured (in the dark) for IDE/composite 

devices is plotted versus the mass fraction of graphene in the composite channel in Figure 2A. 

While the device with only MoS2 in the channel (Mf=0) displays a high resistance of ~200 M, 

the resistance drops significantly as graphene content is increased, reaching ~20 k for the 

sample with a channel containing Mf=16% graphene. Taking the conductivity of the graphene 

electrodes as ~104 S/m,23 this implies a series resistance associated with the electrodes of ~ k 

which is negligible compared to the overall device resistance over most of the compositional 

range studied here.  

Normalising to the channel dimensions, the dark conductivity, D, is plotted versus 

graphene mass fraction in Figure 2B. The conductivity of the MoS2-only channel was ~5×10-5 

S/m, reasonably close to previously measured values.24 The channel conductivity increased 

strongly with increasing Mf, reaching ~1 S/m for the 16wt% sample. Previous work 22 on the 

conductivity of MoS2/graphene composites has shown a similar increase occurs below the 

percolation threshold (i.e. the conductive filler loading level where the first continuous 

conducting path is formed), with a steeper conductivity increase occurring just above the 

percolation threshold. This will be discussed further below.  
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 We tested the photoresponse of these systems by measuring I-V curves at different 

incident light intensities for devices with different graphene contents in the channel. The 

illumination was provided using a =511 nm laser and the incident intensity was controlled 

using neutral density filters. The spot diameter was 3 mm which meant that approximately 55% 

of the device was illuminated. As a result, the absolute photoconductivity was always slightly 

lower than would have been the case for complete illumination. Examples of I-V curves for a 

range of laser intensities are shown in Figures 2E and 2F for two devices, one with an MoS2-

only channel (2E) and one with an MoS2-graphene (16wt%) channel (2F). While the 

photoresponse is clearly visible for the MoS2-only channel, it is much more subtle in the 

MoS2/graphene (16wt%) channel (see inset). The channel conductivity, extracted from the 

slope of the I-V curve around the origin, is shown in Figures 2E and 2F as a function of incident 

intensity for the two samples described above. In both cases, the conductivity under 

illumination, , increased sublinearly with intensity as observed previously for nanosheet 

networks.13, 24 The data is consistent with photoconductivity (i.e. the conductivity increase on 

illumination) increasing with intensity, I, as: D I    , where  is a material-dependent 

constant, as is expected for a trap-limited system.24 This relationship fitted all the samples well 

(dashed lines in Figures 2E and 2F) with values of  ranging between 0.54 and 0.61 (with the 

exception of one outlier). This is consistent with the previously reported value of 0.54 for in-

plane MoS2 networks.24 In simple models describing trap-limited photoconductivity, the 

exponent, , is a measure of the depth of the traps below (above) the conduction (valence) band 

for an n-type (p-type) system.24 We see no consistent trend of  with nanosheet content, which 

implies the presence of graphene has no significant effect on the trap profile. One interesting 

point (which we discuss below) is that while the absolute increase in conductivity is 

considerably larger for the 16wt% sample (~4 mS/m vs. ~40 S/m, at 200 mW/cm2), the 

fractional increase in conductivity is much smaller for the composite sample (~1% vs. ~70%, 

at 200 mW/cm2). 

In conductor-insulator composites, the (dark) conductivity as a function of conductive 

filler volume fraction () is usually described by percolation theory.25 An important parameter 

in this theory is the percolation threshold, c, which is the filler volume-fraction where the first 

continuous conductive path appears. Above the percolation threshold, the (dark) conductivity 

increases rapidly with filler content: ( )n

D c    , where n is usually >2.25-27 Above the 

percolation threshold, quite high conductivities can result as the current flows solely through 
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the conducting network and is limited only by interparticle charge transfer. It is this regime 

which is the topic of the vast majority of papers on electrical percolation in composites. 

Conversely, the regime below the percolation threshold, where <c, is much less studied. In 

this range, the filler particles are either isolated or aggregated in small clusters with no 

continuous paths of conductive filler. As a result, we can imagine two contributions to current 

flow; one solely through the insulating matrix and one which alternates through insulating and 

conducting sections which are arranged in series. If the matrix conductivity is very low, we 

would expect the former case to contribute very little to the conductivity. In the latter case, one 

can view charge carriers as travelling slowly in the insulating regions and rapidly in the 

conducting portions resulting in a decrease in carrier transit time as the filler content is 

increased.21 As a result, the latter contribution becomes more and more dominant as the 

conductive volume fraction increases, leading to a -dependent conductivity which is usually 

modelled using:26, 28, 29 

s

c
D M

c

 
 





 
  

 
       (1) 

where M is the (dark) conductivity of the insulating matrix, s is the percolation exponent and 

( ) /c c    is referred to as the reduced percolation threshold.  

In such composites, we would expect current flow to be spatially inhomogeneous and 

be dominated by paths of least resistance. Such low resistance pathways are those which 

minimise the portion of the journey through the matrix and maximise the number of traversed 

graphene nanosheets, resulting in low transit times. One would expect the network of paths of 

least resistance which contribute significantly to current flow to be very sensitive to the 

graphene loading level. This might lead to a highly nonlinear -dependence (i.e s>1) with the 

actual value of s reflecting the structure of the emergent conducting network. 

It is worth noting that, in this work, we are dealing with networks which contain both 

MoS2 and graphene nanosheets. In any network, the conductivity is partially limited by the 

effective resistance associated with carriers hopping/tunnelling from nanosheet to nanosheet.20 

It is not yet clear what the magnitude of the junction resistance is or how it differs between 

MoS2-graphene, MoS2-MoS2 or graphene-graphene junctions. In fact, very little is known 

about inter-nanosheet charge transport. However, for single component networks of MoS2, the 

conductivity has been measured at ~10-6-10-5 S/m while graphene-only networks display ~104 
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S/m, a difference of ~9-10 orders of magnitude.22, 23 This implies that, as long as the probability 

of MoS2-graphene charge transfer is not prohibitively low, the addition of graphene will result 

in significant conductivity increases. 

 For the printed composites described here, the dark conductivity versus graphene mass 

fraction data (reproduced in Figure 3A) shows a smooth increase to a maximum value of ~1 

S/m at 16 wt% graphene. As the observed conductivities are relatively low and because no 

sharp conductivity increase was observed, we can conclude that all samples are below the 

percolation threshold. This implies the percolation threshold is much higher than the values of 

~1% usually observed in graphene-polymer composites.30 However, this data is consistent with 

previous work on MoS2/graphene composites and in line with theory which suggests that 

percolation thresholds can be high in systems of aligned discs.22 If our samples are all in the 

pre-percolation regime (i.e. <c), no continuous graphene-only conductive paths are available. 

This is important as it means that here, all current flow will involve some transit via sections 

of MoS2. 

If these composite channels are indeed below the percolation threshold, then Equation 

1 should apply. However, to properly analyse these composites, the mass fraction, Mf, must be 

converted to volume fraction, . Although this conversion is trivial in polymer-matrix 

composites, only requiring knowledge of matrix and filler densities, it is less straightforward 

in nano:nano composites such as these because of the presence of porosity.20 In relatively thick 

nano:nano composite films, the volume fraction can be found if the film density is known (

/f film fillerM   ) but for thin printed channels such as these, measurement of the density is 

not trivial. To address this, we have derived a simple equation for the filler volume fraction in 

two-phase composites which include porosity (defined by a fractional porous volume, P, see 

SI): 

(1 )

1 (1/ 1) /f G M

P

M


 




 
       (2a) 

where M=5060 kg/m3 and G=2200 kg/m3 are the densities of the matrix (MoS2) and filler 

(graphene) respectively. We note that we define the volume fraction as the volume of graphene 

divided by the total film volume including pore volume (see SI). 
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However, because we do not know the porosity, P, this equation cannot be used directly 

to transform Mf into . To resolve this, we use Equation 2a to relate the reduced percolation 

threshold to the graphene mass fraction in porous composites (see SI):  

,1 /

1 ( / 1)

f f cc

c f M G

M M

M

 

  




 
       (2b) 

where Mf,c is the mass fraction equivalent of the percolation threshold. This equation relies on 

the assumption that the porosity does not change with volume fraction, which should hold true 

when both filler and matrix have similar geometries.  

To test the validity of Equation 1, we calculated the reduced volume fraction for 

different values of Mf,c. In each case, we plotted the measured dark conductivity versus 

( ) /c c    to find the value of Mf,c which gave the most reasonable fit. In this way, we found 

a well-defined power relationship between D and ( ) /c c    when we take Mf,c=0.25 (Figure 

3B). Fitting Equation 1 (solid line) then gave a percolation exponent of s=7.6, in reasonable 

agreement with a previously reported value of s=5.2.22 While it is impossible to convert Mf,c 

into volume fraction (i.e. c) without knowing the film porosity, we note that nanosheet 

networks generally have porosity close to 50%,20 allowing us to estimate c ~22vol%, very 

close to the value of ~23vol%, previously reported for MoS2-graphene composites.22 In 

addition, we can use Equation 2b to express Equation 1 in terms of Mf, allowing us to plot the 

percolation fit in Figure 3A, yielding very good agreement as shown by the solid line. 

  While electrical percolation in MoS2-graphene composites has been observed 

previously, photoconductivity in such systems has not. Figure 3C shows the photoconductivity 

(i.e. the conductivity increase on illumination), measured at 206 mW/cm2 using a =511 nm 

laser, plotted versus the mass fraction of graphene in the channel. We find a two order increase 

in photoconductivity from ~4×10-5 S/m for the MoS2-only channel to ~4×10-3 S/m for the 16 

wt% graphene channel. It is clear that adding graphene below the percolation threshold results 

in large increases in photoconductivity. This is probably because photo-induced charge carriers 

can travel rapidly to the electrodes due to the higher channel mobility conferred by the addition 

of graphene. This indicates that the photoconductivity could be tuned over a relatively wide 

range, simply by control of the graphene content in composites such as these. 

However, by comparison of Figures 3A and 3C, it is clear that the photoconductivity 

increases significantly more slowly than the dark conductivity as the graphene content is 
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increased. To explain this, we consider both dark and illuminated composite conductivity in 

terms of carrier density and mobility; D D Dqn   and qn  , where q is the carrier charge, 

nD and n are the dark and illuminated effective carrier densities and D and  are the dark and 

illuminated mobilities. Under illumination, photocarriers are generated in the MoS2 and the 

carrier density becomes Dn n n   at steady state where n is the photoinduced carrier 

density. Then, assuming the mobility is not changed significantly under illumination (i.e. 

D  ), the photoconductivity can be written as D Dq n     . 

In the dark, we expect both mobility (D) and carrier density (nD) to increase with 

graphene content,31 with the mobility increase due to the effect of graphene on transit time 

described above.21 however, we must also consider that the graphene sheets will generally have 

a much higher free carrier density than the MoS2, leading to an increase in the effective carrier 

density as graphene content increases. In a percolating system, we might expect both carrier 

density and mobility follow percolation-like scaling laws. While this has not been reported to 

our knowledge, reanalysing the data of Tan et al.31 shows this to be approximately true. 

Assuming this is the case, we can write: 

, 

N M

c c
D M D M

c c

n n
   

 
 

 

    
    

   
      (3a) 

where nM and M are the dark carrier density and mobility of the matrix (MoS2). This means 

that the dark conductivity can be written as 

( )N M

c
D M M

c

qn
 

 


 

 
  

 
        (3b) 

This shows that the -dependence of the dark conductivity has contributions from both mobility 

and carrier density and, by comparison with Equation 1, means that s=N+M. 

Turning to the photoconductivity, we would expect the photo-induced carrier density, 

n, to depend weakly on graphene content below percolation since the main effect of the 

graphene is to reduce the amount of MoS2 available to generate photocarriers, i.e. 1n    . 

Approximating n as independent of  allows us to write the photoconductivity as: 

M

c
D M

c

q n
 

  




 
    

 
        (4a) 



10 
 

This expression implies that, at this level of approximation, the -dependence of the 

photoconductivity has a contribution from the mobility but not the carrier density. In addition, 

it implies percolation-like scaling behaviour. To test this, in Figure 3D we plot 

photoconductivity versus reduced volume fraction, calculated using the same percolation 

threshold as was found for the dark conductivity (Mf,c=25wt%, c~22vol%). As predicted by 

Equation 4a, we find good linearity, consistent with M=3.8, implying that the data in Figure 

3C reflect the dependence of mobility on graphene content.  

The data in Figure 3C show the photoconductivity increasing by 100× between the 

MoS2-only and 16wt% channels. Such an increase is consistent with previous work which 

showed that the mobility of organic devices could be increased by up to 1000× by adding 

graphene.21 The mobility of an MoS2 nanosheet network has been quoted as ~0.1 cm2/Vs,20  

implying the network mobility of the 16wt% composite to be as high as ~10 cm2/Vs. If this 

inferred value were correct, the mobility of these simple devices would be competitive with 

the best printed organic devices.3 

The fact that the photoconductivity increases less rapidly with graphene content than 

the dark conductivity means the fractional photoconductivity, ( ) /D D   , decays with mass 

fraction. This data is plotted in Figure 3E and shows a rapid fall-off in ( ) /D D    with Mf, 

falling from ~0.7 for the MoS2-only channel to ~0.01 for the 16wt% sample. Combining 

Equations 3b and 4a predicts the fractional photoconductivity to scale with reduced volume 

fraction as  

N

cD

D M c

n

n

  

 

  
  

 
        (4b) 

Figure 3F plots the fractional photoconductivity versus reduced volume fraction, calculated 

using the same percolation threshold found for the dark conductivity (Mf,c=25wt%, 

c~22vol%). As predicted by Equation 4b, percolation-like scaling is observed, consistent with 

N=3.7. Again, this means the data in Figure 3E reflects the increase in dark carrier density with 

increasing graphene content. Because the carrier density of an MoS2 network has been reported 

at ~1012 cm-3,20 the 100-fold reduction in fractional photoconductivity implies the 16wt% 

sample has a carrier density of ~1014 cm-3. 

In addition, Equation 4b implies that the fractional photoconductivity will approach 

zero as the percolation threshold is approached. This is as expected given that the amount of 
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current flowing through the MoS2 should be negligible compared to the current flowing through 

the graphene above the percolation threshold. 

These data suggest that the increase in dark conductivity with graphene content below 

the percolation threshold is due to graphene-induced increases in both mobility and effective 

carrier density. The similarity of the N and M exponents indicates that the relative contributions 

of mobility and carrier density are comparable in magnitude. However, the graphene content 

dependence of the photoconductivity depends only on the graphene-induced mobility increase. 

Similarly, the Mf dependence of the fractional photoconductivity depends only on the 

graphene-induced carrier density increase. As a result, measuring the photoconductivity in such 

composites is a useful way to differentiate the effects of filler content on mobility and carrier 

density, parameters which are usually aggregated in the conductivity. 

In conclusion, this work shows that all-printed, all-nanosheet devices can be fabricated 

where the active channel is a composite material and the graphene electrodes contribute 

negligible series resistance. Both dark- and photo-conductivity are described by percolation 

theory with the photoconductivity reflecting the increase in channel mobility associated with 

the graphene. It is possible that these results could be translated to other device types. One 

possibility might be to fabricate transistor channels from MoS2/graphene composite networks 

where the addition of graphene would be expected to increase the mobility, albeit at the likely 

cost of increased off currents. 
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Figure 1: a-b) Photographs of nanosheet dispersions in NMP of (a) graphene and (b) MoS2. c-

d) Representative TEM images of exfoliated nanosheets of (c) graphene and (d) MoS2. e) 

Micrograph showing interdigitated graphene electrodes before (top) and after (bottom) printing 

of the MoS2/graphene composite (Mf=5%) channel. The arrow indicates the position where the 

SEM images in (f) and (g) were collected.  f-g) Low-resolution (f) and high resolution (g) SEM 

images of composite/graphene interface (collected from position marked by arrow in e). h-i) 

Representative SEM images of portions of the device printed from MoS2/graphene composite 

(Mf=5%, h) and graphene (i) nanosheets. 
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Figure 2: a-b) Device resistance (a) and channel conductivity (b) as a function of the mass 

fraction of graphene nanosheets in the composite channel, both measured in the dark. c-d) 

Current-voltage characteristics for devices with (c) an MoS2-only channel and (d) an 

MoS2/graphene composite (Mf=16%) channel. The inset in (d) shows a small but well defined 

intensity dependence. e-f) Light intensity-dependent conductivity for devices with (e) an MoS2-

only channel and (f) an MoS2/graphene composite (Mf=16%) channel. 
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Figure 3: Dark conductivity, D, (a, b), photoconductivity (c, d) and fractional 

photoconductivity (e, f) plotted versus graphene mass fraction (top row) and reduced volume 

fraction (bottom row). In c-f, the conductivity under illumination, , was measured at an 

incident intensity of 206 mW/cm2 using a 511 nm laser. In the bottom row, the reduced volume 

fraction is defined as ( ) /c c    where  and c are the graphene volume fraction and the 

percolation threshold respectively. The solid lines represent the predictions of percolation 

theory. The mass fraction equivalent of the percolation threshold was Mf,c=25wt%. 
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Calculation of volume fraction and reduced volume fraction 

The mass fraction is related to the volume fraction by: 

G G G G
f

T T T T

M V
M

M V

 


 
    

where the symbols M, V and  refer to mass, volume and density and the subscripts G, T and 

M refer to graphene, total and MoS2. Thus MG is the mass of graphene in the sample. We note 

that here we define the volume fraction as the volume of all graphene divided by the entire film 

volume (including porous volume). 

In a porous film, the film density is given by 

/ / / / /

G M G M G MT
T

T G M pore G G M M T G G M M T T

M M M M M MM

V V V V M M PV M M PM


    

  
   

     
 

where P is the porosity (fractional pore volume, i.e. /pores filmP V V ) 

Rearranging: 
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and  
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1 (1/ 1) /f G M
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 
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The reduced volume fraction is given by c

c

 




 

This can be written as  
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Where Mf,c is the mass fraction associated with the percolation threshold. Rearranging: 
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