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Abstract: 25 

Transpiration from the Amazon rainforest generates an essential water source at a global and 26 

local scale. However, changes in rainforest function with climate change can disrupt this 27 

process, causing significant reductions in precipitation across Amazonia, and potentially at a 28 

global scale. We report the only study of forest transpiration following a long-term (>10 year) 29 

experimental drought treatment in Amazonian forest. After 15 years of receiving half the 30 

normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 31 

30%. However, the surviving droughted trees maintained or increased transpiration because 32 

of reduced competition for water and increased light availability, which is consistent with 33 

increased growth rates. Consequently, the amount of water supplied as rainfall reaching the 34 

soil and directly recycled as transpiration increased to 100%. This value was 25% greater 35 

than for adjacent non-droughted forest. If these drought conditions were accompanied by a 36 

modest increase in temperature (e.g. 1.5°C), water demand would exceed supply, making the 37 

forest more prone to increased tree mortality. 38 

 39 

Introduction 40 

In South America, 25-35% of precipitation is estimated to be recycled via repeated 41 

precipitation-evaporation processes as air masses travel west over Amazonian rainforest
 

42 

(Eltahir and Bras, 1994; Zemp et al., 2014). Up to 70% of the water resources of the 43 

extensive Rio de La Plata basin are dependent on evapotranspiration from Amazonia (van der 44 

Ent et al., 2010). Changes in land cover properties in the Amazon basin can disrupt this 45 

recycling process, potentially causing significant reductions in precipitation both in 46 

Amazonia and regionally to the La Plata basin (Spracklen et al., 2012), with large economic 47 

consequences (Marengo et al., 2016). However, how tropical forest transpiration will respond 48 
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to future drought and temperature change remains uncertain. Despite the climatological 49 

importance of large gross fluxes of transpiration from the world’s tropical rainforests 50 

(Lawrence and Vandecar, 2015; Spracklen et al., 2012), predictions of how water recycling 51 

from tropical rainforest may change with climate, in particular climate extremes, are poorly 52 

constrained by data for this biome (Kume et al., 2011; Restrepo-Coupe et al., 2013). The 53 

frequency and intensity of sub-regional extremes in precipitation and temperature are 54 

predicted to increase this century, leading to increased drought at seasonal, interannual and 55 

decadal timescales (Duffy et al., 2015; Fu et al., 2013). How water use by forests will change 56 

remains unclear. Tropical rainforests generally transpire 30-70% of incoming rainfall 57 

(Kumagai, 2016), but at their climatic margins, where annual rainfall is 1200-1500 mm/yr 58 

(Zelazowski et al., 2011), this value rises to above 90% placing a cap on regional moisture 59 

supply, deep soil recharge and river runoff (Kume et al., 2011; van der Ent et al., 2010).  60 

Processes ranging in scale from plant tissue to ecosystem can control how the proportion of 61 

rainfall that is recycled changes in response to drought. For individual trees, long-term 62 

responses may include physiological changes in water use efficiency, turgor regulation and 63 

the sensitivity of xylem hydraulics to cavitation, structural acclimation in new root growth 64 

(Eller et al., 2016; Oliveira et al., 2005), or changes in leaf to sapwood or root area ratios 65 

(Wolfe et al., 2016). These responses can help regulate gross water demand by the canopy, 66 

but ultimately it will be the demographic regulation of stand density via competition for water 67 

that will determine whole-system water use and stability (Meir et al. 2015a). 68 

Measurements of sapflux (Js) are a powerful method to understand the annual and seasonal 69 

shifts in forest water use, including the relationship of transpiration to environmental 70 

variables (Eller et al., 2015; Fisher et al., 2007; Poyatos et al., 2013) and the physiological 71 

plasticity associated with stomatal regulation in trees (Martinez-Vilalta et al., 2014). There 72 

are however relatively few reports of continuous sapflux (Js) measurements in tropical 73 
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rainforest (Fisher et al., 2007; Granier et al., 1996), none of which have been conducted 74 

following long-term drought (>5 years). Studies during long-term drought are essential to 75 

establish whether tropical trees can adjust their water use to drier soils over timescales 76 

approaching those of possible changes in climate. By imposing a reduction in soil water 77 

availability, large scale through-fall exclusion (TFE) provides a unique way to examine the 78 

processes underlying long-term responses to increased deficit in soil water potential, and to 79 

examine how water use and stand-scale water cycling are altered.  80 

Here we quantify the effects of a prolonged experimental soil drought on water use as a 81 

proportion of available rainfall by an old-growth tropical rainforest in eastern Amazonia. We 82 

use the world’s only long-running tropical forest TFE experiment, at the Caxiuanã National 83 

Forest Reserve, Pará State, Brazil (da Costa et al., 2010; Meir et al., 2015b; Rowland et al., 84 

2015b), to compare how transpiration and through-fall recycling (the percentage of canopy 85 

through-fall transpired by the forest) are altered between a normal forest and a drought-86 

treated forest, with the latter having experienced a 50% TFE treatment since 2002.  We 87 

previously reported (Rowland et al., 2015a) the loss of about 40% biomass after 14 years 88 

since the TFE started. Because measurements of stand scale transpiration were also available 89 

for the years 2002-2003, i.e., at the start of the experiment, but before the large waves of 90 

mortality occurred, we are also able to determine how total water use and its partitioning 91 

changed in response to changes in stand density and structure. 92 

 93 

Materials and Methods 94 

Site 95 

The site is a long-term through-fall exclusion (TFE) experiment located at the Caxiuanã 96 

National Forest Reserve in the eastern Amazon (1°43'S. 51°27W). The site has a mean 97 
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rainfall of 2000-2500 mm yr
-1

, a pronounced dry season between June and November 98 

(rainfall <100 mm month
-1

) and is situated on terra firme forest, with yellow oxisol soils 99 

(Ruivo and Cuhha, 2003). 100 

The TFE experiment consists of two 1 ha plots located on old-growth tropical forest. The 101 

treatment plot (TFE) has been covered with plastic panels and guttering 1-2 m in height since 102 

2002. This structure excludes 50% of the incoming canopy through-fall. A control plot, on 103 

which no rainfall exclusion has taken place, is located <50 m from the TFE. For further 104 

details on the experimental design and results see: da Costa et al., 2010, Meir et al. 2015 and 105 

Rowland et al.,
 
2015. Following 14 years of continuous drought the plot has experienced a 106 

40% loss in biomass (equivalent to 100 Mg C ha
-1

), this loss generated a substantial reduction 107 

in basal and thus sapwood area, a reduction in leaf area index (LAI) and an increase in light 108 

interception in the lower canopy (see Rowland et al., 2015a). 109 

 110 

Meteorological and soil moisture data 111 

All meteorological variables were obtained from a weather station situated at the top of a 40 112 

m tower located in the control forest. During the period of 2014-2016 air temperature, 113 

relative humidity, solar radiation and rainfall were monitored half hourly using HC2S3 114 

(Campbell Scientific, Logan, USA), CM3 sensors (Kipp and Zonen, Delft, The Netherlands), 115 

and a tipping bucket rain gauge (TE525MM, Campbell Scientific, Logan, USA) respectively. 116 

Vapour pressure deficit (VPD) was calculated from temperature and relative humidity. Soil 117 

access pits are located in the control and TFE plots. In each soil access pit volumetric soil 118 

water content sensors (CS616, Campbell Scientific, Logan, USA) have been placed at depths 119 

of 0, 0.5, 1, 2.5 and 4 m, to monitor soil moisture every hour (cf. Fisher et al., 2007, for full 120 

methodology). Here we use the data collected during 2014-2016, the period during which 121 
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sapflux (Js) data were collected. Hourly relative extractable water (REW) aggregated across 122 

the first two meters was calculated using the soil moisture data and following the 123 

methodology in Meir et al.
 
2015. Daily values were calculated using a 30 day running mean 124 

so that the seasonal trend of REW was captured, rather than daily or hourly spikes in soil 125 

water concentrations. 126 

 127 

Js Data 128 

Js was measured using the heat balance method (Cermak et al., 1973; Cermak et al., 2004; 129 

Kucera et al., 1977) and previously used at the site (Fisher et al.,
 
2007). EMS51 sensors 130 

(Environmental monitoring systems; http://www.emsbrno.cz), were used on all trees. The 131 

installation process and functioning of these sensors are described in the supplementary 132 

information.  Between November 2014 and December 2016 the EMS51 sensors were 133 

installed on 16 trees in the control plot and 13 trees in the TFE plot. The start date of 134 

sampling varied among trees (see Table S1). Trees for which sensors were installed in 2016 135 

(seven on the control and three on the TFE) were excluded from the upscaling analysis (see 136 

below) on the basis that they had an insufficient data time series. To ensure we could up-scale 137 

with confidence, sensors were strategically placed across trees with a range of diameters at 138 

breast height (DBH) values (15-56 cm) and on common species in the control and TFE plots 139 

known to be both sensitive and resistant to drought stress (see Table S1). 140 

Values of Js obtained from the EMS51 sensors were always offset from zero as a constant 141 

part of the heat loss from the heated electrodes is conducted into the xylem tissue. To remove 142 

this effect the data were baselined, as performed in other standard sap flux processing 143 

protocols (e.g. Poyatos et al., 2013). To baseline the data, the minimum value of the Js for 144 

each night was subtracted from all values for the subsequent day, provided evaporative 145 
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demand was low (preventing night-time Js, VPD < 0.15 kPa). If night-time VPD > 0.15 kPa, 146 

a minimum value was linearly interpolated from the baseline values from surrounding days 147 

using the approx function in R (R Core team 2014).  148 

 149 

Gapfilling Js Data 150 

Gaps in the data varied from 0% to 63% (average of 8%) and were generally caused by 151 

power failure or broken sensors. Gaps in the hourly baselined Js data since sensor installation 152 

were gap-filled using an autoregressive (AR1) style model, accounting for the autocorrelation 153 

in the data. Firstly, the boxcox function in R was used to determine the lambda value to 154 

power transform the Js data of each tree (lambda range 0.46-0.84). Secondly, a linear 155 

regression was performed between the power-transformed Js, the three independent variables 156 

VPD, radiation, REW and six vectors of the power-transformed Js preceding the dependent 157 

variable by one to six hours. We correlated each Js data point with the six hourly data points 158 

preceding it, as this was the number required to remove the autocorrelation effect across all 159 

trees (determined using ACF plots). Data from all but one of the trees were gap filled with a 160 

model which had an r
2
>0.90; the mean model fit was r

2
 = 0.93±0.07 (s.e.m.), demonstrating a 161 

very good fit between modelled and measured Js. 162 

 163 

Statistical Analysis 164 

All statistical analyses of Js data were conducted within R 3.0.2 (R Core Team
35

) and all 165 

errors are shown as standard deviation. To compare diurnal responses between plots and 166 

seasons an average diurnal Js pattern was calculated for the control and TFE plots, during 167 

peak wet and dry season. Peak wet and dry season were determined as the two months with 168 

the highest (October and November) and lowest (March and April) monthly average VPD. 169 
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Multiple linear regressions between mean daytime transpiration rate per tree, per plot 170 

(calculated as the average Js from all trees per plot) and environmental conditions were fitted 171 

to estimate the most important environmental controls on daily Js. Initially VPD or 172 

temperature with radiation, and REW were included in the model and sequentially non-173 

significant variables were excluded in stepwise linear regressions determined by Akaike's 174 

information criterion. For the TFE the use of a single model across both wet and dry season 175 

was compared to the model fit of using separate wet and dry season models (considering wet 176 

season as Feb-Jul and dry season as Aug-Jan). Two models were most effective on the TFE 177 

(see Results) and the same seasonal modelling approach was followed with the control plot. 178 

The relaimpo package in R (Grömping, 2006) was used to calculate the proportion of the 179 

explained variance which was accounted for by each variable retained in each of the final 180 

models. 181 

Seasonal relationships of VPD to Js were created by fitting a sigmoidal function using the 182 

SSllogis function in R through average hourly Js data for the trees on the control and TFE, 183 

binned by VPD classes. Separate relationships were created for peak wet and dry season and 184 

the data were normalised using the maximum average Js, across plots and seasons, to make 185 

the relationships comparable between plots and seasons. 186 

 187 

Scaling Js to calculate plot-scale transpiration and its temperature sensitivity 188 

Scaling Js from the measured trees for the measured periods to plot level at the yearly time 189 

scale involved the following steps in order to properly propagate the sources of uncertainty 190 

deriving from tree-to-tree variability in Js as well as uncertainties in the scaling of Js with tree 191 

DBH. 192 
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To obtain a scaling relationship between tree Js and DBH, we regressed Js data from April-193 

May 2015 (i.e., peak of wet season and when tree DBH were measured) against DBH. This 194 

allowed us to additionally included data obtained by Fisher et al. (2007; also collected at peak 195 

wet season); all data were obtained using the same measurement method (Environmental 196 

monitoring systems; http://www.emsbrno.cz). There was a linear relationship between DBH 197 

and mean daytime Js, with an r
2
 of 0.39 and p<0.01 (Fig. S1). This scaling relationship was 198 

assumed on the control and TFE plot based on similarity of Js values across the two plots 199 

during the wet season (see Results section), and it was applied to the DBH of all trees on both 200 

plots measured in 2015 (see Rowland et al.
 
2015a, for further details). To account for the 201 

uncertainty in the parameters of this relationship, 1000 parameter estimates were randomly 202 

generated from the model using the covariance matrix for the intercept and slope. These 203 

parameters were used to create 1000 estimates of average daytime April and May Js for all 204 

trees >10 cm DBH on both plots. The average daytime Js values for each tree, for each of the 205 

1000 parameter combinations, were then summed to give 1000 plot-scale estimates of 206 

transpiration for April and May of the measurement years, accounting for the error on our 207 

DBH to Js relationship. Following this, a second procedure was employed using similar 208 

principles to propagate uncertainty from 1,000 estimates of the measured April-May data to 209 

the whole year and across the two plots. We employed the best-fit multilinear model per plot, 210 

which described how mean daily Js varies with climate variables (see above). Because of the 211 

strong autocorrelation between VPD, RH and air temperature, only the best regressor among 212 

these three was finally employed in the upscaling procedure (see supplementary information 213 

for further details). Besides the two estimates for the Control and TFE plots, a third estimate 214 

of plot-scale transpiration was generated by applying the estimated Js from the multiple 215 

regression models of Control to the standing biomass of TFE. This estimate gives downscaled 216 

values of transpiration on Control with the effect of the loss in basal area on the TFE imposed 217 
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on Control, and the changes in transpiration rates with environmental variables remaining 218 

equal to those on Control. 219 

To estimate the effects of increasing temperatures on plot scale transpiration, the 1000 model 220 

coefficients from above were re-run with temperature, relative humidity and VPD altered 221 

according to a 1.5, 2, 3, 4, and 5˚C increases in mean air temperature. We emphasise that the 222 

purpose of these temperature rise scenarios is not for future prediction, but to estimate the 223 

effects of long-term drought on the sensitivity of the forest to other changes in climate. The 224 

scaling procedure was then repeated as above. The transpiration rates at each temperature 225 

level were then compared to the canopy through-fall received by each plot assuming a canopy 226 

storage term of 21.5% on the control plot, as measured at the site in 2008
 
(Oliveira et al., 227 

2008; and within the ranges of canopy storage terms measured across other Amazonian 228 

forests
 
(Czikowsky and Fitzjarrald, 2009)). On the TFE we scaled down this estimate of 229 

canopy storage to 18.1% (Oliveira et al., 2008), in proportion with the leaf area index 230 

measured in TFE relative to Control (See Rowland et al., 2015a), assuming that canopy 231 

interception decreases proportionally with leaf area. The analysis was also repeated using a 232 

canopy storage term of 12% (Czikowsky and Fitzjarrald, 2009) to account for uncertainty in 233 

throughfall resulting from differences in LAI across plots (see sensitivity to canopy 234 

interception term section). Also we would expect it to provide a lower limit to the sensitivity 235 

in TFE because of fewer interception surfaces in TFE (i.e., lower LAI and biomass; Rowland 236 

et al., 2015a). However due to an inability to accurately estimate LAI on a per tree basis, 237 

which may have changed over time due to the treatment effect and due to the likely increase 238 

in atmospheric coupling on the drought relative to the control plot due to increasing mortality 239 

over time, we were not able to accurately scale sapflux according to leaf area to estimate 240 

differences in leaf level conductance between the plots (e.g. Eller et al., 2015). 241 

 242 

Page 10 of 32Global Change Biology



11 

 

Results 243 

During the study period (November 2014-December 2016) there were strong seasonal 244 

changes in relative extractable water (REW), precipitation and moderate seasonal changes in 245 

vapour pressure deficit (VPD) at our study site (Fig. 1). An El Niño event took place across 246 

Amazonia in 2015-16, but had limited distinctive influence on climate drivers at our site, 247 

which is demonstrated by the El Niño year not creating substantial climate anomalies relative 248 

to previous years (Fig. S2). Therefore considering 2015 to represent standard climatological 249 

conditions, we find average transpiration is 1389±279 (s.d.) mm yr
-1

 on the control forest 250 

plot. On the TFE forest plot a transpiration rate of 964±245 (s.d.) mm yr
-1

 in response to the 251 

50% experimental reduction in throughfall was observed; this represents a 30% decline in 252 

transpiration relative to the control. Transpiration therefore comprised 75% (s.d. range = 60-253 

90%) of canopy through-fall on the control, compared to 101% (s.d. range = 75-127%) on the 254 

TFE (Fig.
 
2). These estimates of through-fall recycling at Caxiuanã are similar to the mean 255 

values previously quantified at the start of the TFE treatment for the years 2002-3 using 256 

updated estimates for canopy interception for the plots
 
(59-71% and 78-103%, control and 257 

TFE, respectively,
 
Fig.

 
2). These estimates are robust to assumptions made regarding the 258 

magnitude of canopy rainfall interception as a proportion of total rainfall and to differences in 259 

canopy storage caused by different values of leaf area index across plots (see Supplementary 260 

Table 2). 261 

Relative to the control, we observed changes in the transpiration rates of trees on the TFE 262 

(Fig. 3). However, there was only a 5% difference between 2015 transpiration on the TFE 263 

and the transpiration expected if estimates from the control were downscaled to reflect the 264 

40% reduction in biomass and related basal area which occurred between 2002 and 2015 265 

(Fig. 2). This small reduction by low dry season transpiration was countered with higher wet 266 

season transpiration on the TFE (Fig.3). Increased seasonality in TFE transpiration meant that 267 
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daytime Js was modelled more effectively using a separate multiple regression model for dry 268 

(Aug-Jan) and wet (Feb-Jul) season on the TFE (r
2
 dry = 0.60, r

2
 wet = 0.69, r

2
 whole year = 269 

0.61, all p values <0.01). Dry season variation in transpiration on TFE was explained mostly 270 

by REW (44%) and radiation (47%). During the wet season, radiation explained 60% of the 271 

variance, VPD 33% and REW 7%. On the control plot air temperature (32%) and radiation 272 

(67%) controlled dry season transpiration (r
2
=0.81) and radiation (65%) and VPD (35%) 273 

were the most important for controlling wet season fluxes (r
2
=0.72). 274 

The reduced dry season transpiration flux on the TFE (Fig. 3) was caused by substantially 275 

lower peak daytime (11am-4pm) fluxes in the dry season (Fig 4b) compared to the wet 276 

season. In contrast, the control plot maintained higher Js throughout the day in the dry season 277 

relative to the wet (Fig. 4a), suggesting low REW constrained Js during periods of high 278 

atmospheric demand on the TFE. The REW constraint resulted in an altered relationship 279 

between Js and VPD in the dry season on the TFE, contrasting with the wet season 280 

relationship, which was similar to that observed on the control (Fig. 5). However, this 281 

increased seasonality had a limited effect on plot-scale reductions in transpiration relative to 282 

the effect of the loss of biomass and related basal area and active sapwood area (Fig. 2 & 3). 283 

Using the multivariate linear models which specified how Js varied with environmental 284 

conditions on the control and TFE plots (see Methods), we explored how transpiration would 285 

vary on both plots if an increase in mean temperature of 1.5-5 ˚C and the resultant increases 286 

in VPD were imposed, assuming all else remained equal. The increase in absolute 287 

transpiration with a 5 ˚C increase in temperature was greater on the control than the TFE, but 288 

was proportionally similar (20%, Fig. 6a). However, the TFE would risk exceeding the 289 

imposed canopy through-fall supply even at the lowest temperature rise tested (1.5 ˚C, Fig. 290 

6a). In contrast, even with a 5 ˚C rise in temperature, the control forest only reaches a 291 

through-fall recycling rate of 91% for transpiration, still below that of the TFE within the 292 
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current climate. In addition, both control and TFE recycle >100% of the water they receive 293 

between July-December (dry season) under current climate (Fig. 6b), with this value 294 

increasing substantially with a 5 ˚C rise in temperature (Fig. 6c). Under the current climate, 295 

between July and October the TFE forest transpires more than 6 times the precipitation it 296 

receives and this rises to almost 8 times with a 5 ˚C rise in temperature, creating a 297 

substantially greater imbalance between transpiration and precipitation (Fig 6b-c).  298 

Discussion 299 

Until now the long-term responses of water use in a tropical forest exposed to soil drought 300 

stress have not been studied. With new sapflow data spanning a two-year period we are able 301 

to demonstrate that the 40% loss of forest biomass observed on the TFE (Rowland et al 302 

2015a) resulted in a 30% reduction in total forest transpiration. We are also able to 303 

demonstrate for the first time that the surviving trees are able to maintain or increase their 304 

transpiration rate on a per-tree basis, causing 100% of the available rainfall received by the 305 

droughted forest to be used for transpiration. Furthermore we demonstrate that if such 306 

drought conditions were combined with a mild temperature rise, further tree mortality would 307 

be inevitable, as forest water demand would substantially exceed supply over an annual and 308 

multi-annual timescale. 309 

Our estimates of transpiration rates and through-fall recycling rates (Fig. 2, Table S2) are 310 

consistent with previous measurements and modelling at this old-growth rainforest site 311 

(Carswell et al., 2002; Fisher et al., 2007). They suggest a remarkably constant water flux 312 

partitioning over the 15 years of the experiment, despite a substantial shift in forest structure 313 

because of high mortality in the TFE-treated plot. The increase in the recycling rate to 100% 314 

on the TFE suggests that a high sensitivity by the trees to atmospheric demand for water is 315 

maintained even following long-term drought. Our data suggest that drought-induced 316 
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mortality of the tallest trees changed stand water use patterns, facilitating greater growth 317 

competition in the lower canopy, thereby maintaining very high levels of through-fall 318 

recycling on the TFE. This is consistent with the observation (Rowland et al. 2015a) that 319 

small- and medium-sized trees increased their growth rates after mortality of the taller trees, 320 

by responding plastically to increased light availability in the lower canopy. This hypothesis 321 

is also consistent with current hydraulic theory, which suggests that trees will continue to 322 

compete for, and use up, a limited water supply, provided the advantages accrued from the 323 

related carbon gain exceeds the cost of hydraulic damage (Sperry and Love, 2015; Wolf, 324 

2016). Plastic reductions in water use as REW declines from wet to dry season on the TFE 325 

are likely to only partially alleviate the water stress (Fig. 3 & 4), which would be substantial 326 

during climate extremes, and would impose increased tree mortality risk. The intense 327 

regrowth by small-to-medium diameter trees
 
(Rowland et al., 2015a) is therefore likely to be 328 

the primary driver maintaining through-fall recycling at the high levels seen in 2002-03. 329 

Following the mortality of the largest trees, competitive release of small-to-medium diameter 330 

trees considerably elevated wet season stem growth on the TFE (Rowland et al., 2015a). As 331 

transpiration accompanies photosynthesis and responds to increased radiation availability, it 332 

is possible that the TFE trees have acclimated, with elevated water use in the wet season to 333 

maximise growth, and restricted growth in the dry season (Figs. 2-3), thus explaining the 334 

increased seasonality in transpiration observed on the TFE (Fig. 1). Our sample size prevents 335 

us from examining whether sap flux from small-to-medium diameter trees increased relative 336 

to large trees. Comparison of sap flux values and canopy through-fall in 2002/03 with those 337 

in 2015 provides indirect confirmation of similar levels of competition for water following 338 

mortality-related release on TFE. Yearly stand-scale sap flow values on the TFE were 339 

estimated as 953 and 805 mm in 2002/03 vs 945 mm in 2015 (Table S2). Therefore, despite a 340 

40% biomass reduction, water use remained similar over time on a per unit ground area, but 341 
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increased on a tree-level basis on the TFE, due to having fewer trees per unit ground area. 342 

However, we note that our LAI measurements estimate only about a 12-20% reduction in leaf 343 

area on the TFE relative to Control (see Rowland et al 2015a), significantly lower than our 344 

estimate of a 30% reduction in transpiration. Measurements of LAI in complex multi-layered 345 

canopies are notoriously challenging (Breda, 2003) and these difficulties may explain the 346 

discrepancy between the two estimates.  347 

A shift from radiation and air temperature controlling dry season transpiration on the control 348 

plot, to REW and radiation controlling it on the TFE suggests that trees on the TFE adjusted 349 

to limit water use during the dry season when REW was low. The strong controlling 350 

influence of REW on dry season transpiration on the TFE, but not the control plot suggests 351 

low REW restricts dry season transpiration and is most likely linked to significant hydraulic 352 

stress as water demand approaches or exceeds supply on seasonal time-scales (Fig. 6). 353 

Relative to Control, the TFE forest maintains higher through-fall recycling rates also in the 354 

wet season (January to June) when precipitation levels are substantially elevated (Fig 6b-c), 355 

resulting in a reduced capacity to recover from dry season water stress. Given predicted 356 

changes in VPD, and thus leaf water potential, combined with lower soil water potentials, 357 

under some future climate scenarios, there is potential that trees could rapidly be pushed 358 

beyond their species-specific hydraulic safety margins (the difference between normally-359 

occurring minimum xylem pressures, and those causing damage to xylem tissues and 360 

restricting water transport), potentially causing xylem embolism (Sperry and Love, 2015; 361 

Sperry et al., 2016) and/or leaf loss, with the ultimate risk of increased drought-induced 362 

mortality. Furthermore, as total annual tropical forest water use approaches total soil water 363 

supply, the likelihood of hydraulic damage occurring in the xylem becomes greater. This is 364 

particularly the case for large canopy-top trees, which are exposed to greater variability and 365 

extremes in VPD, high air temperatures, and larger xylem tensions (Bennett et al., 2015; 366 
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McDowell and Allen, 2015), which together have been hypothesised to lead to a series of 367 

processes causing drought-induced mortality (Anderegg et al., 2016; McDowell and Allen, 368 

2015; Mecuccini et al., 2015; Rowland et al., 2015a; Sperry et al., 2016; Wolfe et al., 2016). 369 

In future climate scenarios, areas of tropical forest experiencing drought stress are also likely 370 

to experience increases in temperature well beyond the moderate levels of 1.5-2 °C 371 

(Christensen et al., 2013; Duffy et al., 2015; Fu et al., 2013; Sanderson et al., 2016). Using a 372 

novel modelling approach, we demonstrate here that a forest exposed to long term drought is 373 

far more likely to have transpiration demand exceed supply than a non-droughted forest (Fig. 374 

6). This is driven mostly by transpiration rates exceeding precipitation supply in the dry 375 

season by up to eight times in a droughted forest simultaneously experiencing temperature-376 

driven rises in VPD, as would be expected during natural drought. This puts a very large 377 

strain on soil water supply, which the non-droughted forest can easily buffer, due to the 378 

higher overall wet season recharge of soil water from higher precipitation. Without this re-379 

charge we demonstrate that even a very moderate rise in temperature necessitates tree 380 

mortality in order to balance transpiration demand and soil water supply. Although a 50% 381 

decline in canopy through-fall on a 10 year time-scale is unlikely within current climate 382 

projections, reductions of up to 50% are predicted across parts Amazonia, in a range of recent 383 

climate scenario analyses (Christensen et al., 2013, Duffy et al., 2015). This result thus has 384 

strong implications for future climate change and carbon cycle feedback predictions, as it 385 

suggests that tropical trees will maintain substantial transpiration fluxes even in the face of 386 

drought and rising VPD, and that the forest appears to maintain a similar water balance 387 

through the process of tree mortality.    388 

The overall picture emerging from these results is that compensation processes acting at 389 

tissue, tree and stand level have maintained the high levels of through-fall recycling on the 390 

TFE-treated forest over more than a decade. While high mortality tended to reduce levels of 391 
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competition for water, the mortality-related growth release for small-to-medium sized trees 392 

tended to increase it. Additional processes, such as acclimation in leaf:sapwood and leaf:root 393 

ratios could also have affected competition for water. Estimated through-fall recycling rates 394 

are already at approximately 100% on the TFE after 15 years of reduced soil moisture 395 

availability, suggesting that further demands for water can only be facilitated by additional 396 

tree mortality. As recycling rates are already >100% in the dry season, even in un-droughted 397 

forest, it suggests that rainforest trees must rely on soil (and likely internal) water storage to 398 

carry them through to the next wet season, potentially limiting their capacity to maintain 399 

carbon uptake, whilst simultaneously also elevating their mortality risk. If the effects of our 400 

50% rainfall reduction, or indeed a similar reduction in basal area imposed by widespread 401 

logging, were to occur at a large scale, even the minimum increase in atmospheric 402 

temperature which is now deemed unavoidable in the coming century would imply severely 403 

reduced deep soil water recharge and runoff, and increased tree mortality risk. The potential 404 

implications for regional economies, water supply and climate-carbon cycle feedbacks are 405 

substantial. 406 

 407 

 408 

Acknowledgements 409 

This work is a product of UK NERC grant NE/J011002/1 to PM and MM, CNPQ grant 410 

457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to ACLD, an ARC grant 411 

FT110100457 to PM and a UK NERC independent fellowship grant NE/N014022/1 to 412 

LR. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU 413 

FP5-Carbonsink and EU FP7-Amazalert to PM. RP acknowledges support of MINECO 414 

(Spain), grant CGL2014-5583-JIN. LR would also like to acknowledge the support of Dr. 415 

Tim Jupp, University of Exeter, Jiří Kučera EMSBrn, and two anonymous referees 416 

Page 17 of 32 Global Change Biology



18 

 

 417 

418 

Page 18 of 32Global Change Biology



19 

 

Figure Captions 419 

Figure 1: Meteorological data for the Caxiuanã site during the sapflux measurement period. 420 

In panel (a), precipitation (mm day
-1

) is shown as grey bars alongside average daily relative 421 

extractable water (REW) integrated across three meters soil depth for the control plot 422 

continuous black line) and TFE plot (dashed grey line). Panel (b) shows average daily air 423 

temperature (°C, grey line) and average daily VPD (kPa, black line). 424 

 425 

Figure 2: How transpiration per year (red arrows), canopy through-fall per year (blue arrows) 426 

and annual through-fall recycling rate (% circular black arrows) change on the control (a, c) 427 

and TFE (indicated by panel structure b, d) plots from 2002-3 (a, b) to 2015 (c, d). The 428 

diagram depicts the change in above ground biomass and the shift in forest structure which 429 

occurred during the full experimental period because of tree mortality on the TFE. 430 

 431 

Figure 3: Daily transpiration (mm day
-1

) from December 2014 - July 2016 for the control plot 432 

(black line), the TFE (dashed black line), and the estimated transpiration flux from the control 433 

plot if its values were downscaled to reflect only the effect of basal area loss on the TFE plot 434 

(dashed grey line). Grey shaded area shows the standard error on the estimates calculated 435 

using a bootstrapping technique (see Methods). 436 

 437 

Figure 4: Average diurnal Js patterns normalised using seasonal maxima per tree during peak 438 

wet (March and April, solid black line) and peak dry season (October and November, solid 439 

grey line) for trees on control (a.), and TFE (b.). The black dashed line shows the peak wet 440 

minus the peak dry season response for each panel and the grey shaded area shows the 441 

standard error. 442 

 443 

Figure 5: Optimised sigmoidal relationships between Js and VPD for trees on the control (C, 444 

a. & c.) and TFE (b. & d.) plot in peak dry and peak wet season. Js is binned by VPD and 445 

normalised by max hourly Js per year to make relationships comparable across plots and 446 

season. 447 

  448 
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Figure 6: The effect of increasing temperature on annual transpiration fluxes for control (C) 449 

and TFE (a.), under current temperature climate (T, year 2015 used) and under the climate of 450 

this year + 1.5, 2, 3, 4, and 5˚C, accounting for temperature-driven changes in relative 451 

humidity and vapour pressure deficit. Dashed lines (a.) indicate the rainfall reaching the 452 

forest floor on control (black) and TFE (grey). Rainfall reaching the forest floor is estimated 453 

from rainfall minus a canopy interception estimate of 21.5% (see Methods). Panel b. and c. 454 

show the % of seasonal through-fall recycled as transpiration during the four quarters of the 455 

year, under the current climate (b.) and with a 5 °C increase in temperature (c.). Solid lines in 456 

b. and c. indicate 100%, where transpiration exceeds the rainfall reaching the soil. Error bars 457 

show the standard deviation across the 100 estimates made of each scenario (see Methods). 458 

 459 
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Figure 1: Meteorological data for the Caxiuanã site during the sapflux measurement period. In panel (a), 
precipitation (mm day-1) is shown as grey bars alongside average daily relative extractable water (REW) 
integrated across three meters soil depth for the control plot continuous black line) and TFE plot (dashed 

grey line). Panel (b) shows average daily air temperature (°C, grey line) and average daily VPD (kPa, black 
line).  
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Figure 2: How transpiration per year (red arrows), canopy through-fall per year (blue arrows) and annual 
through-fall recycling rate (% circular black arrows) change on the control (a, c) and TFE (indicated by panel 
structure b, d) plots from 2002-3 (a, b) to 2015 (c, d). The diagram depicts the change in above ground 

biomass and the shift in forest structure which occurred during the full experimental period because of tree 
mortality on the TFE.  
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Figure 3: Daily transpiration (mm day-1) from December 2014 - July 2016 for the control plot (black line), 
the TFE (dashed black line), and the estimated transpiration flux from the control plot if its values were 

downscaled to reflect only the effect of basal area loss on the TFE plot (dashed grey line). Grey shaded area 
shows the standard error on the estimates calculated using a bootstrapping technique (see Methods).  
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Figure 4: Average diurnal Js patterns normalised using seasonal maxima per tree during peak wet (March 
and April, solid black line) and peak dry season (October and November, solid grey line) for trees on control 
(a.), and TFE (b.). The black dashed line shows the peak wet minus the peak dry season response for each 

panel and the grey shaded area shows the standard error.  
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Figure 5: Optimised sigmoidal relationships between Js and VPD for trees on the control (C, a. & c.) and TFE 
(b. & d.) plot in peak dry and peak wet season. Js is binned by VPD and normalised by max hourly Js per 

year to make relationships comparable across plots and season.  
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Figure 6: The effect of increasing temperature on annual transpiration fluxes for control (C) and TFE (a.), 
under current temperature climate (T, year 2015 used) and under the climate of this year + 1.5, 2, 3, 4, 
and 5˚C, accounting for temperature-driven changes in relative humidity and vapour pressure deficit. 

Dashed lines (a.) indicate the rainfall reaching the forest floor on control (black) and TFE (grey). Rainfall 
reaching the forest floor is estimated from rainfall minus a canopy interception estimate of 21.5% (see 
Methods). Panel b. and c. show the % of seasonal through-fall recycled as transpiration during the four 

quarters of the year, under the current climate (b.) and with a 5 °C increase in temperature (c.). Solid lines 
in b. and c. indicate 100%, where transpiration exceeds the rainfall reaching the soil. Error bars show the 

standard deviation across the 100 estimates made of each scenario (see Methods).  
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