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Abstract

In this thesis, we present novel methodology for emulating and calibrating computer mod-

els with high-dimensional output.

Computer models for complex physical systems, such as climate, are typically expensive

and time-consuming to run. Due to this inability to run computer models efficiently,

statistical models (‘emulators’) are used as fast approximations of the computer model,

fitted based on a small number of runs of the expensive model, allowing more of the

input parameter space to be explored. Common choices for emulators are regressions and

Gaussian processes.

The input parameters of the computer model that lead to output most consistent with

the observations of the real-world system are generally unknown, hence computer models

require careful tuning. Bayesian calibration and history matching are two methods that

can be combined with emulators to search for the best input parameter setting of the

computer model (calibration), or remove regions of parameter space unlikely to give output

consistent with the observations, if the computer model were to be run at these settings

(history matching). When calibrating computer models, it has been argued that fitting

regression emulators is sufficient, due to the large, sparsely-sampled input space. We

examine this for a range of examples with different features and input dimensions, and

find that fitting a correlated residual term in the emulator is beneficial, in terms of more

accurately removing regions of the input space, and identifying parameter settings that

give output consistent with the observations. We demonstrate and advocate for multi-wave

history matching followed by calibration for tuning.

In order to emulate computer models with large spatial output, projection onto a low-

dimensional basis is commonly used. The standard accepted method for selecting a basis

is to use n runs of the computer model to compute principal components via the singular
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value decomposition (the SVD basis), with the coefficients given by this projection emu-

lated. We show that when the n runs used to define the basis do not contain important

patterns found in the real-world observations of the spatial field, linear combinations of the

SVD basis vectors will not generally be able to represent these observations. Therefore,

the results of a calibration exercise are meaningless, as we converge to incorrect parameter

settings, likely assigning zero posterior probability to the correct region of input space. We

show that the inadequacy of the SVD basis is very common and present in every climate

model field we looked at.

We develop a method for combining important patterns from the observations with signal

from the model runs, developing a calibration-optimal rotation of the SVD basis that allows

a search of the output space for fields consistent with the observations. We illustrate this

method by performing two iterations of history matching on a climate model, CanAM4.

We develop a method for beginning to assess model discrepancy for climate models, where

modellers would first like to see whether the model can achieve certain accuracy, before

allowing specific model structural errors to be accounted for.

We show that calibrating using the basis coefficients often leads to poor results, with fields

consistent with the observations ruled out in history matching. We develop a method

for adjusting for basis projection when history matching, so that an efficient and more

accurate implausibility bound can be derived that is consistent with history matching

using the computationally prohibitive spatial field.
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1. Introduction

Determining the input parameter settings for computer models, so that the output is

consistent with real-world observations, is an important and challenging problem (Hourdin

et al., 2016). Careful parameter estimation (equivalently, solving of the inverse problem,

or ‘tuning’ in climate) of the inputs of computer models is required, so that parameter

settings that lead to accurate representations of the real world can be found, allowing

computer models to be used for tasks such as forecasting. This is commonly performed

for climate models, so that, for example, forecasts based on different future carbon dioxide

scenarios can be assessed (e.g. by the UKCP09 project (Murphy et al., 2009)). Many

computer models feature large input spaces and take a long time to run, so that it is not

possible to simply run the computer model at any input parameter choices of interest.

Instead, exploration of the input space is achieved using a small ensemble of model output

at different parameter settings.

The uncertainty quantification literature approaches this problem by building ‘emulators’

using the available runs of the computer model (Sacks et al., 1989b). An emulator is a

fast approximation of the computer model output at input parameters x. As this is only

an approximation to the model, there is a measure of uncertainty given with emulator

predictions. Within the statistics literature, the use of Gaussian process emulators is

common, with a correlated residual term fitted. In a number of applications to computer

experiments, regression is used instead, due to the ability to evaluate predictions more

efficiently. Emulators can be used as a proxy for complicated computer codes, and can be

used to identify input parameter settings that give output consistent with the observations.

Within the uncertainty quantification literature, there are two main methodologies used

to solve the tuning problem: Bayesian calibration (Kennedy and O’Hagan, 2001a) and

history matching (Craig et al., 1996).
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Bayesian calibration assumes that a ‘best input’ setting, x∗, of the input parameters exists,

such that the model output when run at x∗ is consistent with the observations, z, up to

observation error and model discrepancy (the difference between the real world and the

best setting of the model). Conditional on the observed runs of the model, and emulators

built for the model output, a posterior distribution for x∗ is found. A limitation of this

method is that because the result is a distribution, the posterior density must always

integrate to 1. Therefore, it is not possible for the result to be that there are no parameter

settings that lead to output consistent with z, whereas this may be the case in applications.

History matching requires no distributional assumptions, and makes no assumption about

the existence of x∗, instead ruling out regions of the input parameter space that are

considered unlikely to give model output consistent with z. The resulting not ruled out

space contains parameter settings that are ‘not implausible’, i.e. it is not yet known

whether the model output here will match z, but we cannot rule out these parameter

settings, based on the current knowledge about the model, from the known model runs

and the emulators. History matching is well suited to an iterative or ‘refocussed’ approach,

with new ensembles designed in the current not ruled out space (Vernon et al., 2010). This

allows more accurate emulation in the regions of parameter space that are of interest, i.e.

the regions that may lead to output consistent with z.

Bayesian calibration and history matching are both methods that can be applied to de-

termine input settings for computer models with high-dimensional output, for example

spatial or temporal data. This requires the emulation of multiple values. The most ef-

ficient method for achieving this is via projection of the output onto a low-dimensional

basis representation, to reduce the complexity of calculations, such as variance matrix

inversions. For reducing the dimensionality of spatial fields, a common basis choice is the

SVD basis, given by calculating the principal components of the ensemble, with emulators

built for the coefficients given by projection onto this basis (Higdon et al., 2008a). This

basis is the default choice in calibration exercises, particularly for climate models (Sexton

et al., 2011, Holden et al., 2013, Chang et al., 2014a).

Defining the low-dimensional basis using the ensemble of model runs, which is likely to be

small for expensive computer models, and performing a successful calibration using this

basis, relies on the assumption that the ensemble contains the main modes of variability

from the observations, z. Whilst it is generally assumed that the computer model is a
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reasonable approximation of the real-world system that it represents, there is no reason

that using a basis derived from a small ensemble of model runs will be completely suited

to representing z, unless there is little discrepancy in the model, and we have by chance

explored the correct region of the large input parameter space in the small ensemble.

The assumption that this basis choice requires has not been explored adequately in the

literature, with the SVD basis becoming an automatic choice in many applications of

high-dimensional Bayesian calibration.

1.1. Aims

In this thesis, we explore perceived wisdoms in emulation and calibration. Regression-only

emulators are often used in place of Gaussian process emulators in calibration and history

matching exercises, when the input space is large. When tuning high-dimensional spatial

fields, the output is commonly projected onto the SVD basis, with emulators built, and

Bayesian calibration performed using the coefficients on this basis. We investigate whether

these are sensible choices, and develop alternative methodology.

More specifically, we aim to answer the following questions:

• Is there any benefit in fitting Gaussian process emulators in high-dimensional input

parameter spaces, or are regression emulators sufficient?

• Does performing Bayesian calibration after a multi-wave refocussed history match

lead to a greater accuracy in results, compared to calibrating using the initial en-

semble?

• When the observations for a spatial field are not similar to observed model runs,

is projecting onto the SVD basis an appropriate choice if we wish to learn about

whether there are parameter settings of the computer model that represent the

observations?

• How can we define more appropriate basis choices, based on the observations, model

runs and physical knowledge?

• How can we efficiently and accurately history match a large spatial field?
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• When a specification for the discrepancy variance is not available, how can we quan-

tify this?

• When the output of the spatial field is too large for history matching to be performed

over the field, how can we accurately history match using the basis coefficients?

1.2. Structure of the thesis

In Chapter 2, we outline the current literature in uncertainty quantification, with a focus on

Gaussian process emulation, Bayesian calibration, and history matching, both for models

with scalar output and multivariate output. We briefly discuss other methods for tuning

climate models.

Chapter 3 provides a comparison of two types of emulators, regressions and Gaussian

processes, in the context of a multi-wave history matching experiment, for functions with

a single output. We investigate whether the correlated residual term is necessary when

faced with sparse samples from large parameter spaces, and compare history matching and

Bayesian calibration results for each emulator type, across multiple waves, for four exam-

ples with features commonly found in computer models. We then assess the performance

of the emulator types for an environmental model.

In Chapter 4, we explore emulation and calibration for models with large spatial out-

put fields. We discuss the drawbacks of using the SVD basis for projection, when the

observations do not lie in the low-dimensional subspace spanned by the ensemble. We

illustrate the problem with an idealised example and for two climate models. We then

develop a method for combining important elicited patterns with basis vectors derived

from the ensemble, in order to find a basis that gives a more accurate representation of

the observations.

In Chapter 5, we extend the previous basis selection methodology into an automated

iterative method, based on a rotation of the SVD basis. This method identifies the optimal

basis for the goal of building emulators and searching for parameter settings that can

reproduce the observations. We investigate extensions required in order to find optimal

rotations for applications where there is a known structure to the observation error and
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discrepancy variances.

In Chapter 6, we extend the earlier methodology for history matching a spatial field

to overcome the challenges faced when the spatial field is large. We develop a Bayesian

hierarchical model for linking the implausibility over the field with the implausibility given

by the basis coefficients. We design a new ensemble of the climate model CanAM4, by

selecting optimal bases for three output fields, and history matching using our model for

the implausibilities to select the appropriate bound. We provide methods for defining a

spatial discrepancy, based on selecting patterns deemed to be a structural error, setting

the values so that the observations will not be ruled out when history matching.
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2. Literature review

2.1. Computer models

A computer model is a collection of code (often, thousands of lines) representing a real

system that acts as a function, taking a set of input parameters x and returning output

f(x). Computer models are used to simulate real-world systems, to either help understand

or predict the system under various scenarios (for example, studying the effect of different

emissions scenarios on climate change (Johns et al., 2003)), or to accurately represent

historical events (for example, matching historical output of a hydrocarbon reservoir (Craig

et al., 1997)).

Examples of areas that computer models have been used in include climate (Kiehl et al.,

1998, Gordon et al., 2000, Pope et al., 2000, Meehl et al., 2007), oil reservoir modelling

(Tavassoli et al., 2004), cosmology (Vernon et al., 2010, Gómez et al., 2012), simulating

geomagnetic storms (Heaton et al., 2015) as well as in biological applications such as

epidemic modelling (Farah et al., 2014), DNA modelling (Henderson et al., 2012) and

heart modelling (Harrild and Henriquez, 2000).

The output of a computer model can take many different forms, for example a single value,

a time series, a spatial field, or it may give multiple different outputs simultaneously. For

climate models, the output is given for each grid box over the entire world (for global

climate models, e.g. CanAM4 (von Salzen et al., 2013), over a horizontal and vertical

grid) or a region (e.g. over the western United States, as in Dickinson et al. (1989)), with

several different output fields, e.g. temperature, precipitation, and other aspects of the

climate.

The input parameters may range from inputs directly linked to physical processes, to
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parameters that control numerical integrations or other parametrisations of physical pro-

cesses. Models may have only a small number of input parameters, for example the 3

input parameters in the Lyon-Fedder-Mobarry model in Heaton et al. (2015) or the IC

fault model (Tavassoli et al., 2004), to tens or more parameters in climate models (e.g. 27

parameters for the atmosphere and ocean in HadCM3 (Williamson et al., 2015, Gordon

et al., 2000)).

Due to the complexity of modelling some real-world systems, especially the global climate,

computer models require a large amount of computing resources (Williamson et al., 2015).

Therefore, if the goal is to better explore the input parameter space and tune the model,

or perform other inference, statistical methods are required.

2.2. Uncertainty quantification

Uncertainty quantification is the general term for a group of methods that are used to

analyse and make inferences about computer model output.

Kennedy and O’Hagan (2001a) discuss the types of uncertainty that can be introduced

when seeking to model or learn about a real-world system, and how they may be accounted

for. One of the common goals of uncertainty quantification is to tune or calibrate the

input parameters of the model (see Section 2.5). Uncertainty is introduced here as the

values of these parameters are unknown. Although they may represent real processes,

parametrisations often contain simplifications, so that it may not be possible to set these

parameters based purely on physical knowledge. The uncertainty associated with not

knowing the true parameter values is known as ‘parameter uncertainty’.

Another source of uncertainty arises from the fact that it is often not possible to run the

computer model as often as may be required (‘code uncertainty’). Therefore, an alternative

statistical representation of the model may be necessary (emulators, see Section 2.3). This

is not the same as running the true model, and hence any output given by the statistical

model will not be known with certainty (unless the computer model is deterministic, and

we have observed the output at this input setting). Emulators are used to quantify this

uncertainty, by giving uncertainty bounds on any predictions.
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More uncertainty is introduced due to the fact that computer models are generally not

perfect. Physical systems represented by computer models can be extremely complex

(e.g. global climate), and hence it is not possible to perfectly parametrise every single

atmospheric or oceanic process. Some processes may occur on a more local level than

the resolution of the global model (‘sub-grid scale modelling’ (Chaboureau and Bechtold,

2005)), and approximations are required to represent these (von Salzen et al., 2013).

Therefore, it is likely that there is some inherent discrepancy between the real world and

the model, also referred to as model inadequacy. In addition to this, real world observations

of a process may be imperfect, for a variety of reasons (for example, a limitation of

instruments or human error). This error must also be considered.

Sensitivity analysis is another common tool in the uncertainty quantification literature

(Saltelli et al., 1999, 2000). The goal here is to identify how the input parameters affect

the model output. There are two main types of sensitivity analysis that are performed:

local, where the inputs are varied by small amounts, and global, where the entire input

parameter space can be considered.

In local sensitivity analysis, derivatives are calculated with respect to each input parameter

in turn, with every other parameter fixed at chosen values (Turányi, 1990). This identifies

how the output of the model changes with respect to each parameter in turn. To investigate

the effect that potential interactions have on the output, global sensitivity analysis instead

varies all parameters simultaneously. Saltelli et al. (1999) calculate the contribution of each

input variable on the variability in the output, accounting for both individual effects of

the inputs and any joint effects between parameters.

2.3. Emulation

An emulator is a statistical model that is used in lieu of being able to run a computer

model as often or efficiently as is required (Sacks et al., 1989b, Currin et al., 1991, Haylock

and O’Hagan, 1996, Santner et al., 2003). Emulators can be used as a surrogate for the

computer model in future analyses, such as Bayesian calibration (Kennedy and O’Hagan,

2001a) and history matching (Craig et al., 1996). Statistical emulators account for the

code uncertainty introduced when replacing the computer model with an approximation
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through the provision of uncertainty on any predictions from the emulator.

Given a computer model f(·), a vector-valued function taking inputs x ∈ X , where

X is the p-dimensional space of possible model inputs, and an ensemble of runs F =

(f(x1), . . . , f(xn))T , an emulator for f(·) can be constructed. The input space X may be

continuous, with input parameters xi allowed to take on any value in a finite, continuous

interval, but may also contain discrete ‘switch’ parameters (or ‘factors’), as is the case

for the climate model HadCM3 (Gordon et al., 2000). Switch parameters have a finite

number of allowable values. Hereafter, we assume that all parameters are continuous.

For output i of the computer model, the general form of an emulator is (Sacks et al.,

1989b)

fi(x) =
k∑
j=1

βijhj(x) + εi(x) (2.1)

where hj(x) are chosen functions of the parameters (e.g. linear terms, interactions between

the parameters, and higher powers thereof), βij are unknown coefficients to be estimated,

and εi is the residual. It is assumed that the βijs and εi are independent.

In (2.1), if the residual term εi(x) is assumed to have mean zero and a constant variance

σ2 for all x, and is assumed to be uncorrelated, then the emulator is a linear regression

model, where a polynomial surface is fitted to the model output (Rougier et al., 2009,

Sexton et al., 2011, Williamson et al., 2013, Holden et al., 2013, Williamson et al., 2015).

An argument used in favour of this approach is that it is computationally efficient (in the

sense that it is quick to evaluate predictions for large quantities of input points), as well

as being simple to fit, with only the coefficients needing to be estimated.

2.3.1. Gaussian processes

A Gaussian process is a type of emulator that allows correlations between the output at

different inputs to be incorporated into the emulator. A Gaussian process is a stochastic

process where the joint distribution of a finite number of random variables from this

process is Gaussian (Rasmussen and Williams, 2006), and is defined by a mean function

and a correlation function:

fi(·)|βi, δ, σ2 ∼ GP (mi(·), σ2Ci(·, ·)) (2.2)
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where βi is the vector of parameters in the mean function mi(·), δ is a vector of param-

eters used to define the correlation function Ci(·, ·), and σ2 is a variance parameter to be

estimated. Ci(x,x
′) gives the correlation between the response at points x and x′ in the

input space.

In the formulation of (2.1), this is equivalent to setting

mi(x) =

k∑
j=1

βijhj(x)

and

Cov(εi(x), εi(x
′)) = σ2Ci(x,x

′)

so that εi(·) is the systematic departure from the linear model, represented by a Gaussian

process with mean zero and the above covariance function (Sacks et al., 1989a).

Correlation functions

Correlation functions are generally defined so that as the distance between points x and

x′ in the input space X increases, the correlation C(x,x′) decreases to zero. Santner et al.

(2003) discuss various choices of C(·, ·), with different choices of the correlation function

giving varying degrees of smoothness. For ease of computation, correlation functions that

are weakly stationary (i.e. the function is only dependent on the distance between points,

regardless of location in X ) are typically used.

A common choice of correlation function is the Gaussian or squared exponential (Kennedy

and O’Hagan, 2000, 2001a, Vernon et al., 2010, Wilkinson, 2010):

C(x,x′) = exp

{
−
∑
i

(xi − x′i
δi

)2}
(2.3)

where δ is a vector of non-negative correlation length parameters. In each input dimension,

the difference between the two input parameters is squared and then scaled by the square

of the corresponding entry of the correlation length parameter vector. As the distance

between inputs increases, the correlation between them tends to zero.
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A more general form of the squared exponential correlation function is the power expo-

nential, where instead of the second power there is a new power parameter, αi, to be

estimated for each input dimension (Higdon et al., 2004, 2008a):

C(x,x′) = exp

{
−
∑
i

(xi − x′i
δi

)αi

}

where decreasing the power from 2 reduces the smoothness of the function.

Another regularly-used correlation function is the Matérn function, defined by non-negative

correlation length parameters δ and smoothness parameter α (Golchi et al., 2015, Tripathy

et al., 2016):

C(x,x′) =
21−α

Γ(α)

(
|x− x′|

δ

)α
Kα
(
|x− x′|

δ

)
where |x − x′| is the distance between two points in the input space, Γ(·) is the gamma

function, and Kα(·) is the modified Bessel function of the second kind (Watson, 1995).

Rather than a single parameter δ scaling the distance, this can be scaled in each input

dimension as in the squared exponential.

The Matérn correlation function does not give the assumption of infinite differentiability,

whereas the squared exponential does make this assumption. As α increases to infinity,

the Matérn converges to the squared exponential (Nychka et al., 2002), and hence the

smoothness of the correlation increases with α. A potential downside of the Matérn (and

power exponential) correlation function is that it has an extra parameter(s) to be estimated

compared to the squared exponential.

If there are a large number of ensemble runs, then calculating the full n × n ensemble

correlation matrix and inverting it may be challenging. There are alternative methods

for defining a correlation function for the situation of large n. Kaufman et al. (2011), for

example, impose sparsity in the correlation matrix, so that if the distance between two

points is above a chosen threshold, the correlation between these two points is set to be

zero. This simplification allows the appropriate calculations involved in emulation to be

performed. However, as the ensemble size is likely to be relatively small in any applications

used in this thesis, due to the complexity of climate models, the above correlation functions,

such as the squared exponential, are suitable.
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The nugget parameter

A Gaussian process as described in Section 2.3.1 will interpolate the data exactly, with

zero variance at observed points. This may not always be a useful property, hence Craig

et al. (1996) extend the emulator in (2.1) by adding a nugget term νi(·), independent to

βij and εi(·):

fi(x) =
k∑
j=1

βijhj(x) + εi(x) + νi(x) (2.4)

This has the effect of removing the condition that the model exactly interpolates the data

points from F, i.e. there is now a non-zero variance at observed points.

There are a number of reasons why it may be desirable to include a nugget in the emulator.

Craig et al. (1996) and Craig et al. (2001) divide the input variables in x into active and

inactive variables, where the active variables are those that are included in hj(x). The

nugget is then included to account for the variation in fi(x) that is due to the inactive

variables. The nugget is modelled with a zero mean and the same variance σ2ν for all x,

and is assumed to be uncorrelated with itself at different inputs, i.e.

Cov(νi(x), νi(x
′)) =


σ2ν if x = x′

0 otherwise

In the case of emulating climate model output, it is necessary to include a nugget due to

the internal variability in these models: varying the initial conditions can lead to different

model output for the same x (Hawkins and Sutton, 2009, Williamson and Blaker, 2014).

In this setting, an emulator that exactly interpolates model runs is inappropriate.

Andrianakis and Challenor (2012) discuss other reasons for including a nugget term in an

emulator, and investigate the effects of varying the nugget. One such reason is to overcome

numerical problems with the correlation matrix of the ensemble, which must be inverted

when fitting an emulator (Kennedy and O’Hagan, 2001a). Gramacy and Lee (2012) argue

that including a nugget term can lead to a better emulator, in terms of predictive accuracy.
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Fitting a Gaussian process emulator

A Bayesian approach is typically used to fit a Gaussian process emulator to data, so that

prior knowledge can be incorporated (Currin et al., 1991), and then updated to give a

posterior having observed an ensemble, F, of runs from the computer model. In this

section, it is assumed that there is only one scalar output given by f(·), so that the

subscript i can be dropped in order to give greater clarity. Furthermore, let φ be the

vector containing all of the parameters for the correlation function.

Haylock and O’Hagan (1996) assume a priori that f(·) is (or, more likely, can be repre-

sented by) a Gaussian process , i.e. that

f(·)|β, σ2,φ ∼ N(h(·)Tβ, σ2C(·, ·)) (2.5)

where h(·) = (h1(·), . . . , hk(·))T is the vector containing the functions of the parameters

that are used in the mean function.

Prior distributions are required for the unknown parameters β and σ2. In this paper, a

‘non-informative’ prior is assumed:

P (β, σ2) ∝ σ−2 (2.6)

as the modeller may not have any prior beliefs about these parameters before running

f(·). A benefit of this prior is that the posterior analysis is tractable: it is possible to

write down the posterior conditioned on the ensemble.

Using these descriptions of the prior distributions, a posterior distribution for f(·) can be

found, conditioned on the ensemble F:

f(·)|β, σ2,φ,F ∼ N(m∗(·), σ2C∗(·, ·))

where

m∗(x) = h(x)Tβ + t(x)TA−1(F−Hβ)

C∗(x,x′) = C(x,x′)− t(x)TA−1t(x′)

(2.7)

where H is the n × k design matrix with i, jth entry hj(xi), A is the n × n correlation
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matrix with i, jth entry C(xi,xj), and t(·) is a vector of length n with ith entry C(·,xi).

By integrating out β, as the true value of this is not known, the posterior distribution

becomes the Gaussian process

f(·)|σ2,φ,F ∼ N(m∗∗(·), σ2C∗∗(·, ·)) (2.8)

where

m∗∗(x) = h(x)T β̂ + t(x)TA−1(F−Hβ̂) (2.9)

and

C∗∗(x,x′) = C(x,x′)−t(x)TA−1t(x′)+(h(x)T−t(x)TA−1H)(HTA−1H)−1(h(x′)T−t(x′)TA−1H)T

(2.10)

for β̂ = (HTA−1H)−1HTA−1F. Finally, by integrating out the variance σ2, the result is

a t-distribution for f(x)|φ,F:

f(x)−m∗∗(x)√
FT (A−1 −A−1H(HTA−1H)−1HTA−1)FC∗∗(x,x)

n− q − 2

∼ tn−q (2.11)

where q is the rank of the design matrix H. From this distribution, a prediction of the

model output at parameter setting x can be evaluated, along with the uncertainty on this

prediction, given F and values for the correlation parameters φ.

This formulation does not account for the inclusion of a nugget in the emulator. How-

ever, the method of Haylock and O’Hagan (1996) can be adapted to include a nugget by

replacing the original correlation function C(·, ·) with

C̃(x,x′) = νIx=x′ + (1− ν)C(x,x′)

where the nugget parameter ν represents the proportion of residual variability that is

not explainable by the correlation function. Replacing C(·, ·) with C̃(·, ·) everywhere it

appears (for example, in the definitions of A and t(·)) yields the same posterior as in

(2.11), with the nugget included as an extra parameter in the correlation function.

Other choices can be made for the form of the prior distribution for the model parameters.
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Oakley and O’Hagan (2002) use a normal inverse gamma prior in place of (2.6), i.e.

P (β, σ2) ∝ σ−
1
2
(r+q+2) exp[−{(β − µ)TV −1(β − µ) + a}/(2σ2)] (2.12)

where r,µ, V and a are the parameters of this distribution, and must be specified. The

inclusion of these parameters changes the form of the posterior distribution, yielding:

f(x)−m∗∗(x)

σ̂
√
C∗∗(x,x)

∼ tr+n

where the equation for m∗∗(x) is as in (2.9), and

C∗∗(x,x′) = C(x,x′)−t(x)TA−1t(x′)+(h(x)T−t(x)TA−1H)V∗(h(x′)T−t(x′)TA−1H)T

for

β̂ = V∗(V−1µ+ HTA−1F)

σ̂2 =
a+ µTV−1µ+ FTA−1F− β̂T (V∗)−1β̂

n+ r − 2

V∗ = (V−1 + HTA−1H)−1

Oakley and O’Hagan (2002) note that the weak form of their prior is simply the prior

used by Haylock and O’Hagan (1996) (equation (2.6)), which is equivalent to assigning an

infinite prior variance to f(x), but that the full version of the prior should be used if prior

knowledge about f(·) is available. The parameters relating to prior distributions are often

referred to as hyperparameters. Oakley (2002) discusses how the hyperparameters of the

prior in (2.12) may be elicited, by first asking experts general questions about properties

of the model output, and then translating these into probabilistic judgements.

Estimating parameters

When fitting an emulator, there are a number of parameters that must be estimated in

order to complete the posterior distribution. The coefficients β for the mean function and

the variance σ2 are typically integrated out, removing the dependency on these quantities,

as in the previous section. However, the posterior distribution of the emulator still de-

pends on the parameters φ of the correlation function, which need to be considered before
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predictions can be evaluated from the emulator.

Sacks et al. (1989b) find the minimum of the following expression, which is only dependent

on the ensemble and the correlation lengths:

(detA)
1
n σ̂2

where

σ̂2 =
1

n
(F−Hβ̂)TA−1(F−Hβ̂)

After minimising this function, the resulting value for φ is ‘plugged-in’ to the emulator,

with these estimates treated as fixed, rather than uncertain, values. This completes the

specification of the emulator.

Kennedy and O’Hagan (2001a) take a similar approach, and fix the hyperparameters at

estimated values after conditioning on the ensemble. Fixed values are used in order to

reduce the computational burden required to calculate or sample from the intractable

posterior distribution. Fixing the hyperparameters of the model to simplify future cal-

culations, usually via using the maximum likelihood estimates for them, is a common

technique (Currin et al., 1991, Oakley and O’Hagan, 2002, Bayarri et al., 2007, Conti

et al., 2009, Bhat et al., 2010), and is justified by arguing that the uncertainty due to

the estimation of these parameters is small compared to the other sources of uncertainty,

hence the increased computational time required is unnecessary.

In order to fully account for uncertainty in the model parameters, x (as these have un-

known values), a full Bayesian analysis can be carried out (Higdon et al., 2004). Prior

distributions are specified for all of the unknown parameters, and a joint posterior distri-

bution, conditional on the observations and the model runs, can be written down. This

distribution is difficult to write analytically, and hence is sampled from numerically us-

ing MCMC: the posterior for the output of f(·) at a value of the input parameters is

calculated, with all uncertainty accounted for.
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2.3.2. Bayes linear methods

An alternative to the usual Bayesian approach to fitting emulators comes through the use

of Bayes linear methods (Goldstein and Wooff, 2007). Instead of specifying full proba-

bility distributions for the model parameters as in the full Bayesian approach, the Bayes

linear approach requires only 2nd-order specifications. This relaxation of the need for

distributional assumptions can simplify the calculation of the posterior distribution of the

emulator.

Given observed data D, the prior expectation and variance of a quantity B can be updated

to give the adjusted expectation and variance of B given D:

ED(B) = E(B) + Cov(B,D)[Var(D)]−1(D − E(D))

VarD(B) = Var(B)− Cov(B,D)[Var(D)]−1Cov(D,B)

Craig et al. (1996) describe fitting an emulator using Bayes linear methods. Prior speci-

fications are required for each of the quantities in the statistical model from (2.4). Each

coefficient βij in the linear component of the model requires a prior mean and variance.

The residual term is given a correlated structure (as in Gaussian process emulation), with

a zero prior expectation and a chosen covariance function relating the output at different

input values. Finally, a nugget term is also included, and this is given a prior mean equal

to zero, and some prior variance. The different terms in the emulator are assumed to be

independent. This simplifies the prior specification, as the covariances between them are

all set equal to zero.

Given an ensemble of model runs F, the emulator for f(·) can be updated using the

equations for the adjusted expectation and variance (Craig et al., 2001):

EF(f(x)) = E(f(x)) + Cov(f(x),F)[Var(F)]−1(F− E(F))

VarF(f(x)) = Var(f(x))− Cov(f(x),F)[Var(F)]−1Cov(F, f(x))

This expectation and variance has a similar form to the mean and covariance where the

emulator has been conditioned on the ensemble in the full Bayesian case (2.7). However,

due to the distributional assumptions required for the full Bayesian case, these are not the

same. Using this conditioning, predictions can be made for unseen x similarly as in the
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full Bayesian case.

Not requiring distributional assumptions is a powerful simplification. This approach

clearly lends itself to tuning a model via history matching (see Section 2.7), where again

only expectations, variances and covariances are required for the extra statistical model

parameters introduced. However, an emulator of this form is unsuitable for other goals of

uncertainty quantification, for example Bayesian calibration (Section 2.5), as full distri-

butions are required, and given as the results of the calibration.

In this thesis, history matching and Bayesian calibration are compared and combined,

and as such adopting a Bayes linear approach to emulation may not be suitable. In order

to perform Bayesian calibration, emulators admitting full probability distributions are

required, but these fully Bayesian emulators can however still be used in history matching.

Therefore, full Bayesian emulators will be used hereafter to provide a fair comparison

between both tuning methods, and to avoid the need to construct separate emulators. We

note that the additional distributional specification of full Bayesian emulators implies that

they should pass more stringent diagnostics than their Bayes linear counterparts.

2.4. Multivariate emulation

The above equations for univariate computer model output can be extended to cases where

the output is multivariate. Computer models give various types of multivariate output,

including time series, spatial fields, spatio-temporal fields, and different attributes of a

physical system (e.g. salinity and sea surface temperature in an ocean model). Multivari-

ate outputs can require different emulation approaches due to the nature of relationships

and correlations between, for example, local grid boxes in a spatial model, and adjacent

time points.

One approach for emulating multivariate output is to build univariate emulators using the

methodology of Section 2.3 for each of the responses separately, as in Lee et al. (2013).

In this paper, the output is the monthly mean at every spatial location (equivalently,

every grid box) for a time series of months, and a Gaussian process emulator is fitted

independently to the scalar output for each month and grid box, ignoring any spatial

or temporal correlations over the output space. A drawback of this method is that it
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may be important to include the information from correlations across outputs in order to

build more accurate emulators. Furthermore, there will be significant computational time

needed to fit thousands of emulators, as well as the time required to evaluate predictions

from these thousands of emulators, for every parameter choice x.

Gu et al. (2016) employ a similar approach to emulating high-dimensional output, by

fitting an independent Gaussian process emulator to every individual spatial and temporal

output. The difference here is that the terms in the mean function are constrained to be

the same. Furthermore, the correlation length parameters for the Gaussian process are set

at common values for every emulator. This considerably reduces the computation time

required to fit the emulators, as correlation parameters only need to be estimated once,

rather than for every emulator.

These simplifications allow predictions at a new parameter setting x to be calculated

efficiently, giving further savings over the method in Lee et al. (2013). However, although

Gu et al. (2016) claim that their method is more accurate than building thousands of

completely separate emulators, the Lee et al. (2013) method should give emulators at

least as accurate if fitted carefully, due to the increased flexibility allowed. The question

then becomes what trade-off of accuracy, against the time required to fit the large number

of emulators, is acceptable in a problem.

A method for emulating time series output is given by Liu and West (2009), where mul-

tivariate time-varying autoregressive models are used to model f(·). An autoregressive

model is fitted for the response at each time t, for an input x and specified lag p:

ft(x) =

p∑
j=1

φt,jft−j(x) + εt(x)

where correlation over the input space X is included via εt(x) being modelled as a zero-

mean Gaussian process with Cov(εt(x), εt(x
′)) = σ2tC(x,x′). This assumes that the cor-

relation function is the same for all time t, although the variance can change. The au-

toregressive parameters φt = (φt,1, . . . , φt,p)
T are also allowed to vary over time, and are

modelled as a random walk:

φt = φt−1 + wt, wt ∼ N(0, σ2Wt) (2.13)
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for a matrix Wt.

An extension of this method for emulating time series in climate models, or any computer

model that exhibits ‘structured chaos’, is outlined in Williamson and Blaker (2014). Struc-

tured chaos means that a small change to the input parameters may result in short-term

fluctuations in the output, although longer trends should still be similar, so a nugget term

is required so that the emulator does not interpolate the ensemble exactly. Similarly to

Liu and West (2009), the temporal relationships are modelled using a time-varying au-

toregressive model, with a Gaussian process for the parameter-dependent relationships. A

dynamic regression is added to capture additional variation over the input parameters, as

well as a temporal nugget term νt, giving the following emulator:

ft(x) =

p∑
j=1

φt,jft−j(x) +

k∑
i=1

βt,ihi(xt) + εt(x) + νt

where εt(x) is now a zero-mean Gaussian process with Cov(εt(x), εt(x
′)) = τσ2tC(x,x′),

for parameter τ ∈ [0, 1], and νt ∼ N(0, (1 − τ)σ2). The autoregressive parameters are

modelled as in (2.13).

When a computer model has several outputs of the same type (for example, time series

output), it is possible to use the index of the outputs as an additional input, as done

by Rougier (2008). In this paper, given a space S of l different outputs s1, . . . , sl of the

computer model f(·), an emulator with a similar form to that in (2.1) is fitted, with

the inclusion of a dependence on the index of the output in the linear functions and the

residual term:

fi(x) =
k∑
j=1

βijhj(x, si) + εi(x, si)

where the linear functions hj(·, ·) should be the same for each of the l outputs for tractabil-

ity. A normal inverse gamma prior is placed on the hyperparameters as in (2.12), with

a common variance multiplier used across the outputs. The difficulty here comes in the

specification of the correlation function C(·, ·) for the residual, as it is defined on X × S,

across the space of the inputs and outputs.

Rougier (2008) assumes a separable structure for this correlation function, i.e. the joint

correlation function can be written as the product of a correlation function over the inputs
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multiplied by a correlation function across the outputs:

C((x, s), (x′, s′)) = CX (x,x′)CS(s, s′)

where CX (·, ·) and CS(·, ·) are the correlation functions over the input parameter space

and the output space respectively. This assumption allows the use of Kronecker products,

simplifying the required matrix inversions when predicting output using the emulator.

Using a common variance multiplier across the outputs may not be a suitable assumption,

because the variance may, for example, increase over time, as the model output may

diverge for different input parameter settings as it is run for longer.

Conti et al. (2009) and Conti and O’Hagan (2010) remove the need for a constant variance

multiplier across all of the l different outputs, and do not require a correlation function to

be specified across both the inputs and outputs, instead representing the vector output of

f(·) as an l-dimensional Gaussian process:

f(·)|β,Σ,φ ∼ Nl(m(·), C(·, ·)Σ)

where Σ is an l× l matrix representing the covariance between the l outputs at an input,

C(·, ·) is the correlation over X , dependent on parameters φ, and β is a k × l matrix of

coefficients for the functions of input parameters.

Using the non-informative prior function for the coefficients β and the covariance matrix,

P (β,Σ) ∝ |Σ|−(l+1)/2

conditioning on the ensemble

F = (f(x1), . . . , f(xn))

now a matrix with dimension l×n containing the output at xi in the ith column, proceeds

similarly as in the univariate case with a non-informative prior, as in Haylock and O’Hagan

(1996). The multivariate generalisation of equation (2.8), the output of the computer

model given the ensemble, is

f(·)|Σ,F,φ ∼ Nl(m
∗∗(·), C∗∗(·, ·)Σ)

44



2. Literature review

where m∗∗(·) and C∗∗(·, ·) are the multivariate generalisations of (2.9) and (2.10) respec-

tively, so that:

m∗∗(x) = β̂
T
h(x) + (FT −Hβ̂)TA−1t(x)

C∗∗(x,x′) = C(x,x′)−t(x)TA−1t(x′)+(h(x)−HTA−1t(x))T (HTA−1H)−1(h(x′)−HTA−1t(x′))

where

β̂ = (HTA−1H)−1HTA−1FT

is a k × l matrix of coefficients, h(·) = (h1(·), . . . , hk(·))T contains the functions of the

parameters from the mean function, H is the n× k design matrix with i, jth entry hj(xi),

A is the n× n correlation matrix with i, jth entry C(xi,xj), and t(·) is a vector of length

n with ith entry C(·,xi).

As in the 1-dimensional case, the dependency on Σ can be removed by integrating out

this parameter, giving the following t-distribution:

f(·)|F,φ ∼ Tn−k(m∗∗(·), C∗∗(·, ·)Σ̂)

where

Σ̂ = (n− k)−1(FT −Hβ̂)TA−1(FT −Hβ̂)

Conti and O’Hagan (2010) give an example showing that this multi-output emulator (with

φ fixed at an estimate) gives superior predictions than the method using time as an input

when applied to time series output from a computer model.

The methodology of Conti and O’Hagan (2010) has the advantage of tractability due to

specifying the same spatial correlation function C(·, ·) for each of the l outputs. However,

this may not be a reasonable assumption, especially if the outputs represent a variety

of different quantities, as is assumed to be the case by Fricker et al. (2013). In this

paper, non-separable correlation functions are considered, allowing spatial correlations to

be different across outputs.

The Gaussian process for the l-dimensional residual ε can be defined via process convolu-

tions (Higdon, 2002):

εi(x) =

∫
X
κi(u− x)w(u)du i = 1, . . . , l (2.14)
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where κi(·) is a smoothing kernel chosen for output i, and w(u) is a Gaussian white noise

process. If this white noise process has mean zero and variance equal to one, then an

individual element of the correlation matrix can be written as

Cij(x,x
′) =

∫
X
κi(u− x)κj(u− x′)du

This method doesn’t allow for any direct specification of between-output correlations, as

this is completely defined by the smoothing kernels for each individual output. This is

overcome by instead allowing a multivariate white noise process (Fricker et al., 2013), so

that w(u) in (2.14) is wi(u), with

Cov(wi(x), wj(x
′)) = pijδ(x− x′)

where pij are the entries of some correlation matrix, used to control the between-output

correlations. This generalisation to multivariate white noise leads to the following entries

of the covariance matrix:

Cij(x,x
′) = pij

∫
X
κi(u− x + x′)κj(u)du

For large l, this method, and the previously described technique of Conti et al. (2009),

may not be practical due to the difficulty in inverting the l × l correlation matrix, as

will be required in calibration (Section 2.5). Therefore, methods that allow for dimension

reduction are also considered.

2.4.1. Basis methods

The previous methods are suited for modelling time series output, but other methods may

be required for spatial or spatio-temporal data, as instead of correlations between time

points, there are correlations between locations, which may need to be treated differently.

Furthermore, the problem of large l referred to previously needs to be taken into account.

The most common approach to emulating spatial output is by projecting the data onto

a low-dimensional basis, using, for example, principal components (Higdon et al., 2008a),

and then emulating the coefficients on this basis.
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Principal component analysis (PCA) (Jolliffe, 2002) is used to extract the main modes

or directions of variability within a data set. Variability is used in a climate setting to

describe the total variance in a data set, and is used as such hereafter. In the setting

of multivariate emulation, PCA is applied over the output fields, F, of f(·), so that the

patterns and directions of variability across the ensemble are explained. The majority of

variability in an ensemble may be explainable by a small number of orthogonal directions,

hence dimension reduction can be achieved without a large loss of information. The

decomposition of the data using PCA is equivalent to the singular value decomposition

(SVD) (Golub and Reinsch, 1970) and finding empirical orthogonal functions (EOFs). In

the future, this basis will be referred to as the SVD basis.

To calculate this basis, the singular value decomposition for the ensemble F = (f(x1), . . . , f(xn)),

the l × n matrix of multivariate computer model output, is written as

FT = UΣVT (2.15)

where U is an n × n matrix of the left singular vectors, Σ is an n × l matrix containing

the singular values on the leading diagonal (with zeros elsewhere), ordered so that the

largest is first, and VT is an l× l matrix containing the right singular vectors (Golub and

Reinsch, 1970). In the majority of applications in the computer model literature where

dimension reduction is considered, n << l (i.e. the ensemble size is smaller than, and

often considerably so, the number of outputs). Therefore, only the first n rows of VT

correspond to the singular values in Σ, and the basis required to represent the ensemble

with n orthogonal directions is given by the first n columns of V.

In Higdon et al. (2008a), the computer model gives output over a 20 × 26 grid, giving

l = 520 values for each setting of the parameters. The spatial output is vectorised by

‘stacking’ the columns, i.e. the vector is filled by first taking the first column of the grid,

then the second, and so on. From this point onwards, it will be assumed that output over

a spatial grid is always converted into a vector in this manner. In order to reduce the

dimensionality of the problem, first the ensemble mean µ = (µ1, . . . , µl)
T is calculated,

where

µi =
1

n

n∑
j=1

fi(xj)

i.e. µi is the ensemble mean of the ith output. This is subtracted from each column of the
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ensemble F, giving the centred ensemble Fµ, from which the principal component basis is

calculated, as in (2.15). Let this basis be denoted by Γ, where

Γ = (γ1, . . . ,γn−1)

are the first n−1 columns of V. Each individual basis vector γi has length l, the dimension

of the output, and there are n− 1 basis vectors, one less than the size of the ensemble F

as the ensemble mean has been removed. These vectors are orthogonal by construction.

Given this basis, f(·) can be written as a linear combination of the basis vectors:

f(x)− µ =
n−1∑
i=1

γici(x) + ε (2.16)

where ci(x) is the coefficient for basis vector γi and parameter setting x, and ε is a residual

vector of length l. A residual is included as the basis is not of full rank, hence it may not

be possible to accurately represent any general output f(·) with linear combinations of

the vectors in the basis Γ, because n << l. The residual is orthogonal to each γi.

The previous equation can also be written in matrix form:

f(x)− µ = Γc(x) + ε

where c(x) is the vector of coefficients for input parameter x given this basis, and has

length n− 1. From this, an expression for c(x) can be derived:

f(x)− µ = Γc(x) + ε

=⇒ ΓT (f(x)− µ) = ΓTΓc(x) + ΓT ε

=⇒ c(x) = (ΓTΓ)−1ΓT (f(x)− µ)

(2.17)

By performing this calculation for each member of the ensemble, each member of the

ensemble is now associated with n− 1 coefficients, rather than the original l outputs, and

hence the dimensionality of the data has been reduced, perhaps significantly. This process

is referred to as projecting the ensemble onto a basis, and (2.17) is the projection equation.

The projected ensemble can be written

Fc = (c(x1), . . . , c(xn))
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Exploiting the fact that the basis vectors of Γ are orthogonal, Higdon et al. (2008a)

fit univariate Gaussian process emulators for the coefficients ci(·) for each basis vector

separately:

ci(·)|Fc,φ ∼ GP(0, λ−1i Ci(·, ·)) (2.18)

This paper uses a zero-mean Gaussian process, with a power exponential correlation func-

tion C(·, ·) and precision λi, although any univariate emulation approach from Section 2.3

may be used in general. For example, Wilkinson (2010) fits Gaussian processes with a

mean function as in (2.2). It is possible to fit emulators with different mean functions,

correlation function forms and correlation function parameters for each set of coefficients,

overcoming the issue of constant correlations across different outputs required by previ-

ously described methods.

Using this method for reducing the dimensionality of the model output, Higdon et al.

(2008a) reduce it further by only considering the first three basis vectors, as these are all

that are required to explain over 99% of the variability in the ensemble. The justification

for this is that it is difficult to fit emulators with any predictive ability to the coefficients

for later basis vectors, and that using only the first few still allows for the model output

to be represented accurately. This truncated basis of the first q vectors can be written as

Γq = (γ1, . . . ,γq)

From the set of univariate emulators on the first q basis coefficients (equation (2.18)), a

model can be written for the vector output of f(·):

f(·)|F,φ ∼ N(0l,ΓqΣcΓ
T
q + λ−1ε Il)

where 0l is a zero vector of length l;

Σc = diag(λ−11 C1(·, ·), . . . , λ−1q Cq(·, ·))

i.e. Σc is a q × q matrix with the variances from the individual coefficient emulators

on the diagonal, with zeros elsewhere as it is assumed that the emulators for different

coefficients are independent; λε is the error precision, included as it is assumed that the

error vector from (2.16) is Normal with this precision; and Il is the l × l identity matrix.
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To complete the model specification, priors are specified for all of the unknown parameters

(λ1, · · · , λq, λε, and the Gaussian process correlation lengths).

Projecting spatial data onto the SVD (principal component) basis prior to emulating

the coefficients has been applied in many papers, including Wilkinson (2010), Holden

and Edwards (2010), Sexton et al. (2011), Holden et al. (2013), Chang et al. (2014a,b),

Bounceur et al. (2015), Holden et al. (2015), Oyebamiji et al. (2015), Chang et al. (2016),

with slight differences or extensions to the methodology used by Higdon et al. (2008a).

Wilkinson (2010) extends the previous methodology with an addition to the variance of

the emulator. As only the first q basis vectors are used for emulation, some ensemble

variability has been ignored. In order to account for this, multiples of the discarded basis

vectors are added to the variance term. These are modelled using a zero-mean Normal

distribution. Therefore, the reconstruction r(·) of a particular field can be written as

r(·) = Γqc(·) + Γ−qΨ

so that r(·) is a vector of length l. The matrix Γ−q is Γ with the first q columns removed

so that

Γ = (Γq,Γ−q)

and Ψ is a vector of multiples with length (n− 1− q), where the ith entry of the vector is

sampled from the distribution

Ψi ∼ N(0,Σq+i,q+i)

Σq+i,q+i denotes the eigenvalue associated with the (q+i)th basis vector of Γ (from (2.15)).

To emulate the coefficients for the first q basis vectors, Wilkinson (2010) then follows the

method of Haylock and O’Hagan (1996). Univariate Gaussian process emulators are fitted

for each of the first q basis vectors:

ci(·)|βi, σ2i ,φi ∼ N(hi(·)Tβi, σ2iCi(·, ·)) i = 1, . . . , q

with all quantities defined as in (2.5), with the addition of i subscripts as these quantities

can all vary for each coefficient emulator. Conditioning on the (projected) ensemble pro-

ceeds as in the univariate case described earlier, leading to separate posterior means and
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covariances (as in (2.9) and (2.10)) for each of the q emulators. Let m∗∗i (·) and C∗∗i (·, ·)

denote the posterior mean and covariance for the emulator of the coefficients on basis

vector i, and

µc(x) = (m∗∗1 (x), . . . ,m∗∗q (x))T

Σc(x,x) = diag(σ21C
∗∗
1 (x,x), . . . , σ2qC

∗∗
q (x,x))

Using this notation, the posterior distribution for the reconstruction of f(·) can be written

as

f(x)|Fc,σ
2,φ ∼ N(Γqµc(x),ΓqΣc(x,x)ΓTq + Γ−qΣ

∗ΓT−q) (2.19)

where

Σ∗ = diag(Σq+1,q+1, . . . ,Σn−1,n−1)

and σ2 = (σ21, . . . , σ
2
q ).

Holden and Edwards (2010) and Holden et al. (2013) apply the technique of Higdon

et al. (2008a) to spatio-temporal climate model output, emulating the decadal averages

for temperature anomalies and precipitation in the former, and surface air temperature

variability in the latter. The spatio-temporal model output is converted into a single

vector for each parameter choice by first turning the spatial grid for each time point into

a vector as described previously, before the vectors for each time point are concatenated

into a single vector for f(x). Linear regression is used for each of the coefficient emulators

in both of these papers, with the first 5 and 10 SVD basis vectors used respectively.

Similar methods have been used by Sexton et al. (2011), where the coefficients for the

eigenvectors are emulated univariately using linear regression, before a covariance term is

added to account for dependencies between the emulators. Chang et al. (2014a) calculate

the average across rows of spatial output to give a vector response at each parameter choice,

and then build independent Gaussian process emulators for the first 10 basis vectors.

An alternative basis method is given by Bayarri et al. (2007). This paper considers em-

ulating time series output using basis functions known as the wavelet decomposition (Vi-

dakovic, 2009). The computer model output is represented as

f(x, t) =
∑
i

wi(x)ψi(t)
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where ψi(t) are the wavelet basis functions, defined over the range of the model time series,

and wi(x) are coefficients, dependent on the parameter setting, and are assumed to be

independent across i. The basis elements are chosen in order to be able to accurately

reconstruct the original time series output, with default R choices used here due to the

nature of the output. As in the SVD projection case, the coefficients wi(x) are then

emulated using Gaussian processes.

Another representation of time series output using basis functions has been used by

Williamson et al. (2012). Here, instead of using the wavelet decomposition, the model

output is represented using a spline basis (Fahrmeir and Tutz, 2001). Splines are polyno-

mials defined over time (in this case), used to smoothly represent the output. Given these

basis functions, coefficients that minimise a chosen criteria are fitted for the ensemble runs,

and these coefficients are then emulated. Therefore, the representation of the computer

model output is

f(x, t) =
∑
i

ci(x)Bi(t) + η(x, t)

for coefficients ci(x) dependent on x, and spline basis function Bi(t) that varies with

time, where η(x, t) is the difference between the smooth spline representation and the true

output. A benefit of this basis is that the splines can be defined so that their coefficients

have physical meaning.

For spatial climate model output, Furrer et al. (2007) use a basis constructed using spher-

ical harmonics (Jones, 1963) to represent the main variability in the output, with the

coefficients on this basis modelled. However, in this model there is an assumption that

the ensemble coefficients are centred around the ‘true’ value for these coefficients i.e. it

assumes that there are not systematic biases away from the true climate. This may not

always be a valid assumption, as there will often be common biases observed for any choice

of input parameter.

2.5. Bayesian calibration

Given emulators for the output of a computer model f(·), inferences can be made about

the model. Emulators give efficient predictions, with associated uncertainty, for any cho-

sen x, and hence can be used as a tool for exploring the output space of f(·) as the input
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parameters vary. Of particular interest is finding settings for the parameters that lead

to model output that is consistent with observed real-world values for the system repre-

sented by f(·) (Kennedy and O’Hagan, 2001a, Annan et al., 2005, Rougier, 2007, Bellprat

et al., 2012). These parameter settings are generally not known, due to the complexity of

computer models. Only a small sample from the often large parameter space X is usually

available, so that a vanishingly small percentage of this space has been explored, and it is

generally unlikely that a perfect representation of the real-world is contained in this small

sample.

It is important to find parameter settings that give output consistent with the underlying

system represented by the model for a number of reasons. If the computer model output

is similar to the real-world, then it should be more suitable for tasks such as prediction, if

the computer model is run into the future. Using climate model output to assess long-term

climate change scenarios (for example, under different carbon dioxide forcings) is a critical

feature of, and provides key evidence for, Intergovernmental Panel on Climate Change

reports (Bindoff et al., 2013). These future predictions (or forecasts) ought to be more

accurate if they start from the present-day state of the climate. However, rigorous model

validation, for example ensuring we have not overfitted to the available data, is important:

it is possible for the climate model to make poor predictions, even if it matches current

observations.

Bayesian calibration is a statistical method that can be used to find a probability distribu-

tion over the unknown input parameters of a computer model, conditional on an ensemble

of runs and real-world observations (Kennedy and O’Hagan, 2001a, Higdon et al., 2004,

Rougier, 2007). Generally, the computer model takes a long time to run, and hence em-

ulators are used in place of running the true model. Calibration can be performed for a

single output or for multiple outputs jointly (see Section 2.6 for methods for calibrating a

large number of outputs).

In Bayesian calibration, a statistical model linking the computer model, f(·), to the real-

world system that it represents is used, as the computer model may not be able to exactly

reproduce this system for any x (the model discrepancy). Observations of the real-world

system are also required. These are likely to be subject to some error (for example,

measurement error from instruments), termed the observation error. Given a statistical

model that links the computer model (equivalently, its emulators), the discrepancy, and
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the observation error, calibration gives a posterior distribution over X , with more posterior

density at points more likely to give output consistent with the observations.

Calibration assumes that a ‘best input’ setting, x∗, of the parameters exists (Kennedy

and O’Hagan, 2001a). That is, if the computer model is run at x∗, then the output

will be the true value for the system, up to the statistical model linking this to model

discrepancy and observation error. This assumption may not always be valid, particularly

if the discrepancy is not correctly specified. For example, if the discrepancy between the

model and reality is assumed to be zero, whereas in fact there is a non-zero discrepancy,

then there will be no parameter settings that satisfy the best input requirement. However,

calibration always returns a probability distribution over the inputs, so by definition must

have posterior density for some x∗. In the scenario of the best input not existing, the

posterior distribution will not necessarily highlight suitable parameter settings.

Kennedy and O’Hagan (2001a) perform Bayesian calibration as follows. The input param-

eters are first divided into two groups: the calibration parameters, xcal, and the control

or decision inputs, xcon, so that x = (xcal,xcon). The calibration parameters have un-

known values, and are the parameters for which the best input x∗ is desired. The control

parameters have known values, and are fixed at these throughout the calibration process.

These parameters relate to systems where it is possible to obtain multiple observations

of the real system for different values of xcon. The multiple observations are written

z = (z1, . . . , zN )T , where zi is the observation for known control input xicon.

A statistical model is defined that describes the relationship between f(·) and the under-

lying system that it represents, y(·):

y(xcon) = ρf(x∗,xcon)⊕ η(xcon) (2.20)

where x∗ is the best input for the calibration parameters, ρ is an unknown regression

parameter, and η(xcon) is the discrepancy between the real world, y(·), and the model,

f(·), at control parameters xcon. ⊕ indicates the addition of independent terms, i.e. the

discrepancy is independent of the best parameter setting, and of the model f(x).

Since it is not possible to observe the real-world system exactly, a statistical model linking
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the observations with the true value of the system y(·) is required:

zi = z(xicon) = y(xicon)⊕ ei (2.21)

where ei is the error when observing the system at xicon. Combining (2.20) and (2.21)

gives the following calibration model:

zi = ρf(x∗,xicon)⊕ η(xicon)⊕ ei (2.22)

Modelling assumptions are required for the unknown quantities in this equation. The

observation error for each i is assumed to be independent of the value of the computer

model and discrepancy, and to have a Normal distribution with a common variance:

ei ∼ N(0, σ2e)

Gaussian processes are chosen as the prior models for both f(·) and η(·):

f(·, ·) ∼ N(m1(·, ·), σ21C1[(·, ·), (·, ·)]) (2.23)

η(·) ∼ N(m2(·), σ22C2(·, ·)) (2.24)

where the mean functions are modelled using unknown coefficients β1 and β2 of functions

of parameters h1(·) and h2(·) as in Section 2.3.1, and the correlation functions are defined

by hyperparameters φ. Prior distributions are also selected for these parameters:

π(β1,β2) ∝ 1

π(x∗,β,ψ) ∝ π(x∗)π(ψ)

with prior information about x∗ assumed to be independent of the other hyperparameters,

ψ = (ρ, σ2e,φ).

Similarly as for emulation in Section 2.3, the prior models are updated by conditioning on

the available data to find a posterior distribution (Kennedy and O’Hagan, 2001b). In this

case, the data is the vector of observations z and an ensemble F = (f(x1), . . . , f(xn))T of

n runs of f(·), at parameter settings D1 = {xi = (xical,x
i
con)}ni=1. These are combined into

a single data vector d = (FT , zT )T of length n+N (when the computer model output is
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a scalar). Conditioning on the data and using the above priors, the posterior distribution

for the unknown parameters can be written as:

π(x∗,β,ψ|d) ∝ π(x∗,β,ψ)π(d|x∗,β,ψ)

∝ π(x∗)π(ψ)N(md(x
∗),Vd(x

∗))

∝ π(x∗)π(ψ)|Vd(x
∗)|−

1
2 exp[−1

2
(d−md(x

∗))TVd(x
∗)−1(d−md(x

∗))]

using that d has a Normal distribution given x∗, β and Vd(x
∗), with mean md(x

∗) and

variance Vd(x
∗), where

md(x
∗) = H(x∗)β, H(x∗) =

 H1(D1) 0

ρH1(D2(x
∗)) H2(D2)


H1(·) is the design matrix for the Gaussian process model for f(·), H2(·) is the design

matrix for η(·), and D2(x
∗) is the design concatenating the control parameters for each

observation i with x∗. Additionally:

Vd(x
∗) =

 V1(D1) ρC̃1(D1,D2(x
∗))T

ρC̃1(D1,D2(x
∗)) σ2eIN + ρ2V1(D2(x

∗)) + V2(D2)


where the i, jth entry of the various required matrices are defined as:

V1(D1)ij = C1(xi,xj)

V1(D2(x
∗))ij = C1((x

∗,xicon), (x∗,xjcon))

V2(D2) = C2(x
i
con,x

j
con)

C̃1(D1,D2(x
∗)) = C1(xi, (x

∗,xjcon))

By integrating out β, and by estimating ψ, a posterior distribution for x∗, conditioned on

the data and hyperparameters, can be written as

π(x∗|ψ,d) ∝ π(x∗)|Vd(x
∗)|−

1
2 |W(x∗)|

1
2 exp[−1

2
(d− m̂d(x

∗))TVd(x
∗)−1(d− m̂d(x

∗))]

(2.25)

where

W(x∗) = (H(x∗)TVd(x
∗)−1H(x∗))−1

m̂d(x
∗) = H(x∗)β̂
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To determine this posterior distribution, MCMC sampling is required. Prior to this, the

correlation length parameters for the Gaussian process for f(·) are estimated, using the

ensemble F. The remaining hyperparameters (namely, those for the Gaussian process of

the discrepancy term, the regression parameter ρ, and the variance for the observation

error) are found via the MCMC.

The posterior distribution for the observations at control parameters xcon given x∗ is also

calculated, and is a Gaussian process with posterior mean and variance analogous to a

multivariate extension of the posteriors in (2.9) and (2.10):

E[z(xcon)|x∗,ψ,d] = h(x∗,xcon)T β̂ + t(x∗,xcon)TVd(x
∗)−1(d− m̂d(x

∗))

Cov[y(xcon), y(x′con)|x∗,ψ,d] = ρ2C1((x
∗,xcon), (x∗,x′con)) + C2(xcon,x

′
con)

− t(x∗,xcon)TVd(x
∗)−1t(x∗,x′con)

+ (h(x∗,xcon)−H(x∗)TVd(x
∗)−1t(x∗,xcon))TW(x∗)

× (h(x∗,x′con)−H(x∗)TVd(x
∗)−1t(x∗,x′con))

(2.26)

for

h(x∗,xcon) = (ρh1(x
∗,xcon),h2(xcon))T

t(x∗,xcon) = (ρV1((x
∗,xcon),D1), ρ

2V1((x
∗,xcon),D2(x

∗)) + V2(xcon,D2))
T

This distribution can be used to make inferences about the value of the system.

This framework is a flexible way to make inferences about x∗ for a computer model given

observations, as all of the priors may be changed depending on the problem. As long as the

likelihood for d can be written analytically, the posterior can be derived, and then sampled

from numerically. The case with univariate output has been outlined above. This can be

adapted for models with multivariate output so that observations of multiple different

outputs can be calibrated to at the same time. The l multiple outputs can be combined

into the data vector d, so that this now has (n+N)l entries, with the corresponding means

and variances in the posterior distributions updated so that the emulator predictions relate

to the correct outputs.

The calibration method from this paper has been applied to computer models for a wide

variety of systems, including in the study of the effects of radiation (McFarland et al.,
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2007), sending shock waves through materials (Williams et al., 2006), the energy efficiency

of buildings (Heo et al., 2011), to a general circulation model (Guillas et al., 2009), and to

a flood inundation model (Hall et al., 2011). In the latter four of these, the simplification

of setting ρ = 1 is applied.

The methodology from Kennedy and O’Hagan (2001a) is adjusted slightly for a specific

example by Higdon et al. (2004). Here, the model linking the real system with the com-

puter model has ρ = 1, as the simpler additive model is judged to be suitable for their

example. This reduces the number of uncertain parameters in the model, and the amount

of prior distributions that need to be specified. This also reduces the problem of identifi-

ability: the discrepancy parameters, observation error variance and ρ are all determined

at the same time using MCMC, and the separate contributions from each of these can be

difficult to identify.

Furthermore, the data vector d is transformed to have mean zero and variance one, so

that the parametrisation in the prior for f(·) can be simplified, with the prior mean set as

either zero or a constant. The discrepancy η(·) is treated similarly, with the prior mean

set at zero. The prior correlation function for both f(·) and η(·) is chosen to have a power

exponential form, with priors also set for the correlation lengths.

Rougier (2007) discusses calibration in the context of climate models. In this setting,

there is only one available set of historical observations of the climate, hence there is only

one possible setting of xcon. Therefore, the dependence on control parameters, and the

existence of multiple observations zi, can be removed from (2.22), to give the following

calibration model:

z = f(x∗)⊕ η ⊕ e (2.27)

The observations z may still be a vector, for example of different aspects of the climate at

different spatial and temporal points, but it no longer contains observations of the same

system at different control parameters. The following distributions are assumed:

η ∼ N(0,Ση) (2.28)

e ∼ N(0,Σe) (2.29)

These variances are a single value in the 1-dimensional case, and a covariance matrix
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across the different outputs in the higher-dimensional case. Rougier (2007) does not use

emulators, so that f(·) is the climate model output here.

In Sexton et al. (2011), calibration is performed simultaneously for multiple independent

responses, given observational data. The observations are projected onto six eigenvectors

(Section 2.4.1), and the coefficients for z on these vectors are calibrated to. This uses

the multivariate version of the Kennedy and O’Hagan (2001a) method, where there is one

observation of the real world (as in Rougier (2007)), but six different coefficients (derived

from high-dimensional observation vector z) to be calibrated to. Therefore, the data

vector d contains the projection of the ensemble onto these six basis vectors, followed by

the observation coefficient vector.

2.5.1. Forecasting

Forecasting can be performed following calibration, as in Rougier (2007). The true system

y is divided into past climate yh and future climate yf , the quantity that forecasting

is desired for, and therefore the model output can also be divided into past (simulated)

climate fh(·) and future (simulated) climate ff (·). Using the model for calibration in

(2.27), a probability distribution over possible future climates yf is calculated via

π(yf |z) =

∫
π(yf |x∗, z)π(x∗|z)dx∗

where π(x∗|z) is the posterior of x∗ given the data, as in (2.25) for the emulation case,

and, in Rougier (2007):

π(x∗|z) = π(z)−1π(x∗)|Σe + Ση|−
1
2 exp[−1

2
(z− f(x∗))T (Σe + Ση)−1(z− f(x∗))]

and yf has a prior distribution with some mean mf and variance Σf . If the computer

model can be run exactly, as in Rougier (2007), then the posterior π(yf |x∗, z) has updated

mean and variance

mf |z(·) = ff (·) + Σfh
η (Σhh

η + Σe)−1(z− fh(·))

Σf |z = Σff
η −Σfh

η (Σhh
η + Σe)−1Σhf

η
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where Σfh
η refers to selecting the rows of the discrepancy variance relating to the future

climate, and the columns relating to the historical climate, Σhh
η selects the rows and

columns relating to the historical climate, and Σff
η selects the rows and columns relating

to the future climate.

More commonly, an emulator will be required to represent the computer model, and the

posterior π(yf |x∗, z) instead has mean and covariance as in (2.26).

2.6. Calibration in higher dimensions

The calibration methodology of Kennedy and O’Hagan (2001a) allows for a number of

outputs to be calibrated simultaneously. However, as the number of outputs increases,

it may become too computationally intensive to perform all necessary steps, such as the

inversion of the variance matrix Vd(x
∗), which has dimension ((n + N)l) × ((n + N)l)

if there are l different outputs. Instead, multivariate calibration approaches have been

developed, extending the univariate methodology.

Bhat et al. (2010) considers the problem of calibrating a computer model that has multiple

spatial fields as the output, using several of these fields simultaneously. If there are

k different output fields being used for calibration, each with observations zi and model

output given over a spatial field of size l, then the combined observational vector is written

as z = (zT1 , . . . , z
T
k )T . The computer model output for each field is also combined into a

single vector: if each of the k output fields has computer model output

Fi = (fi(x1)
T , . . . , fi(xn)T )T

then the full model output vector can be written

Fs = (F1,1,F2,1, . . . ,Fk,1, . . . ,F1,nl, . . . ,Fk,nl)
T

where Fi,j denotes the jth entry of Fi, and Fs is a vector of length knl.

The extension from the previous calibration methodology is that this structure allows for

spatial dependence in the output space, and correlations between the different output

fields, to be accounted for via a statistical model. A Gaussian process emulator is fitted
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to the data:

f(·)|β,x,φ ∼ N(ms(x),Σs)

where the mean function is a combination of the mean vectors for each output field indi-

vidually:

ms(x) = (m1(x)T , . . . ,mk(x)T )T

and the covariance function is written as a combination of a term for the nugget ν, a term

for the correlation across the spatial grid and parameter space C(·, ·), and a term for the

relationships between the k output fields T (κ, ρ):

Σs = ν + C(·, ·)⊗ T (κ, ρ)

where the correlation function C is defined across X × S and is separable.

The same model for linking the model output with the observations as in (2.27) is then

used:

z = f(x∗)⊕ η ⊕ e

Here, f(·) is the simulator output for each of the spatial fields simultaneously, i.e. all

observations are combined into a single vector. The observation error e is given a Normal

distribution:

e ∼ N(0,Σe)

where Σe is a diagonal matrix with k parameters ψi to be estimated, referring to the

observation error variance for field i. This assumes that the observation error variance

across an individual output field is constant. The discrepancy is modelled separately for

each of the output fields, with an independent zero mean Gaussian process fitted for each:

ηi ∼ N(0,Σηi
)

where again there are hyperparameters to be estimated.

Given this statistical model for the output (equation (2.27)), and the emulators fitted to the

ensemble, the posterior distribution for x∗ is found similarly to the earlier cases via MCMC.

This distribution is dependent on the observation error parameters, the parameters for the

discrepancy Gaussian process, and the emulator correlation length parameters, if these are
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not estimated and fixed via maximum likelihood.

Bhat et al. (2012) adds an extra step at the emulation stage. When there are two different

output fields, with output F1 and F2, the modelling is done hierarchically instead of

jointly. A Gaussian process model is fitted for F2, then for F1|F2. This is done instead

of the previous approach to allow more inter-dependence between output fields, and to

allow different spatial correlation patterns for fields, a more realistic assumption to make.

Hierarchical emulation has been performed in other contexts to link computer models

rather than output fields (Oughton and Craig, 2016).

However, using this technique may be problematic when the dimension of the spatial field

or number of ensemble members is large. In either of these situations, the ability to

emulate the model output as in Bhat et al. (2010) decreases due to the inversion of the

variance matrix Σs, with dimension knl × knl, required every time the emulator is run

at a new parameter setting. In this paper, the illustrative example has an ensemble with

n = 10 members, giving output at l = 13 spatial locations, for k = 3 different outputs, so

that this matrix is 390×390. However, situations where the number of spatial locations is

in the hundreds or thousands are commonplace, and alternative methods are required for

calibrating in this context, using some of the multivariate emulation techniques discussed

in Section 2.4.1.

Wilkinson (2010) fits emulators to multivariate output using the basis approach outlined

in Section 2.4.1, leading to the posterior for the output on the original field, given the

ensemble F and other parameters, as in (2.19). This distribution is then combined with

the prior on x∗ to give the calibration distribution

π(x∗|z,F) ∝ π(f(x∗)|F,x∗)π(x∗)

which is sampled from using MCMC to give posterior probabilities for x∗.

In Chang et al. (2014b), a methodology for emulating and calibrating larger spatial fields is

discussed. Their example involves an ensemble of 250 runs of f(·), giving output at 61,051

locations, hence the previously discussed calibration methods of Kennedy and O’Hagan

(2001a) and Bhat et al. (2010) are not suitable. Emulation of this data set is carried

out by projecting the output onto a principal component basis as in equation (2.16), and
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building independent Gaussian process emulators for each of the first q < n basis vectors

(equation (2.18), with the addition of a nugget term). The observations z are modelled as

z = Γqc(x∗)⊕ η ⊕ e

with e ∼ N(0, σ2I l), and the discrepancy η modelled using a kernel convolution represen-

tation (Higdon, 1998). For some kernel basis K with dimension l × κ, where κ < l, the

discrepancy is written as

η = Kξ, ξ ∼ N(0, ψKIκ)

i.e. in this model, the discrepancy does not need to be specified over the original field, or

on the subspace defined by Γ, and ψK is a variance parameter.

To reduce the computational cost, this model is reformulated on the (q + κ)-dimensional

space:

(ΓTKΓK)−1ΓTKz =

c(x∗)

ξ

+ (ΓTKΓK)−1ΓTKe

where ΓK = (Γq,K). Then, the distribution for the projection of the observations can be

written as

(ΓTKΓK)−1ΓTKz ∼ N

(E(c(·))

0

 ,

Var(c(·)) 0

0 ψKIκ

+ σ2(ΓTKΓK)−1
)

where E(c(·)) is a vector of the individual emulator means, and Var(c(·)) is a diagonal

matrix containing the corresponding emulator variances. Prior distributions for the model

parameters are selected, with inverse gamma priors for σ2 and ψK , and the posterior

distribution for x∗ is found using MCMC. The explicit prior choices are detailed in the

supplementary information for Chang et al. (2014a), where the method is applied to an

ice sheet model.

Whether this method is suitable for calibrating high-dimensional model output depends

on the basis used for emulation of the ensemble, Γq. When sampling from the posterior

distribution, values for both the input parameters and the discrepancy parameters are

obtained. If the basis is not suitable for representing the observations z, for example if it

induces biases in the field Γqc(x∗), then this will be accounted for by the discrepancy term,

with these parameters and x∗ jointly tuned. However, if the basis used for projection is
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poor in some sense, then these would only be the best input parameters given this dis-

crepancy, and the computer model may in fact have a superior x∗, with ‘less’ discrepancy.

Minimising discrepancy is preferred as this is a statistical model, in comparison with the

complicated computer model code containing physical equations, so if forecasts are to be

made, it is desired that the discrepancy has as little effect as possible. For more discussion

about what constitutes a suitable basis, see Section 2.6.1 and Chapter 4.

Chang et al. (2016) also follow this method for calibration, instead finding a lower-

dimensional representation using logistic PCA as the spatial model output is binary.

Determining the discrepancy in this manner (using a separate basis) may only be necessary

when there is reason to believe that it should be written in this way. Otherwise, defining

the discrepancy over the original spatial field, or on the basis Γq, may be acceptable, and

will simplify the calibration.

2.6.1. Choice of Γq

In general, the basis used for projecting the ensemble onto a low-dimensional space may

contain biases. For expensive computer models, the ensemble is likely to be small (< 100),

exploring an extremely limited region of X . It is possible that all of the ensemble runs

contain output that differs in a possibly systematic way from the observed field z, and

hence a basis calculated from the ensemble using SVD is likely to also contain these biases.

Any linear combinations of these basis vectors then may also lead to reconstructed fields

that contain these same biases.

However, it may not be accurate to then conclude that this implies that these biases are

a structural error in f(·); rather, it may only suggest that given the current ensemble and

choice of basis, it is not possible to find fields similar to z. The chosen basis restricts

emulated outputs to a subspace of the full output space if n < l, and there is no guarantee

that this subspace should include z.

If the basis choice implies that z cannot be found for any choice of x, this may lead to

problems in calibration: if there is a setting of the parameters x∗ that leads to f(x∗) =

z (possibly up to observation error), the basis choice may prevent this x∗ from being

identified.
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For more in-depth discussion on basis selection, see Chapter 4.

2.7. History matching

History matching is another technique in the uncertainty quantification literature that can

be used for searching for appropriate input values for f(·). Instead of explicitly calculating

a distribution for the best input setting for the model, history matching rules out regions

of parameter space that are unlikely to give output similar to historical observations of the

physical system (Craig et al., 1996, Vernon et al., 2010, Edwards et al., 2011, Gladstone

et al., 2012, Williamson et al., 2013, McNeall et al., 2013, Williamson et al., 2015, Vernon

et al., 2016, Rodrigues et al., 2016). History matching can be used to explore what f(·) is

unable to do, by removing the parts of X that lead to model output that is inconsistent

with the observational data under a given uncertainty description.

Unlike calibration, history matching does not require the specification of full probability

distributions for all terms involved, with a Bayes linear philosophy applied instead so that

only prior means and variances are needed (Craig et al., 1996).

The statistical model used to link f(·) with the real system is the same as in the version

of calibration with only one historical set of observations to match to, as in (2.27):

zi = fi(x
∗)⊕ ηi ⊕ ei

where each term has a subscript i as it is possible to simultaneously history match using

multiple model outputs. Prior means and variances are required for each of the uncertain

quantities involved in this equation.

In order to rule out regions of the input parameter space X that are unlikely to lead

to model output consistent with the observations zi, under the given error specification,

the ‘implausibility’ can be calculated (Craig et al., 1996, Vernon et al., 2010, Williamson

et al., 2013), giving a measure of how far away the output of the model at x is from the

observations:

Ii(x) =
|zi − E[fi(x)]|√

Var[zi − E[fi(x)]]
(2.30)
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where, given the statistical model in (2.27):

Var[zi − E[fi(x
∗)]] = Var[zi − yi + yi − E[fi(x

∗)]]

= Var[ei + yi − fi(x∗) + fi(x
∗)− E[fi(x

∗)]]

= Var[ei + ηi + fi(x
∗)− E[fi(x

∗)]]

= Var[ei] + Var[ηi] + Var[fi(x
∗)− E[fi(x

∗)]]

= Var[fi(x
∗)] + Var[ei] + Var[ηi]

(2.31)

Therefore, in order to perform history matching for a scalar output of a computer model, all

that is required is an emulator for fi(·), a value for the observations zi, and a specification

of the expectation and variance for the observation error ei and the discrepancy ηi.

The implausibility is a scaled version of the difference between the observations and the

emulator mean at x, scaled by the emulator variance at x, and the other sources of

uncertainty from (2.27), the observation error variance and the discrepancy variance. As

the value of I(x) increases, it is less likely that f(x) is an accurate representation of z

under this model. A low value of I(x) indicates that either f(x) is a good match for z

given the current emulator, or that there is currently too much uncertainty (for example,

from the emulator variance at this point) to be able to confidently rule out x.

Using this definition of the implausibility, the following subset of parameter space can be

defined (Williamson et al., 2013):

XNROY = {x ∈ X |I(x) < a} (2.32)

where a is some selected tolerance to error. In the univariate case, this cut-off is commonly

set as 3, based on Pukelsheim’s Three Sigma Rule (Pukelsheim, 1994), which states that for

a unimodal variable X, the probability that X lies more than 3 standard deviations from

its mean is less than 0.05. In terms of the implausibility, this means that the probability

that a value of x consistent with z gives an implausibility of greater than 3 is less than

5%.

‘NROY’ refers to the ‘Not Ruled Out Yet’ part of parameter space, the space of ‘not

implausible’ points. That is, they have not been definitively ruled out so far, given the

current emulator and tolerances to error, and the set of outputs currently considered. This
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space may contain parameter settings that give model output inconsistent with z: there

may be large uncertainty on emulator predictions in parts of parameter space, and hence

it would not be possible to confidently rule out x here yet.

There may not only be one output of the computer model that is of interest. If it is

assumed that there is no relationship between k different outputs, then emulators can be

built independently for each output. Indeed, even if the outputs are related, if accurate

univariate emulators can be built for the outputs, then this may be preferable to mul-

tivariate emulation. If some assumption can also be made about the observation error

and discrepancy for each of the outputs, then k implausibilities Ii can be calculated for

a single parameter choice x. In order to define an NROY space in this situation, Craig

et al. (1997) introduces the ‘maximum implausibility measure’:

IM (x) = max
i
Ii(x) (2.33)

Similarly, the ‘second maximum implausibility measure’ is given by

I2M (x) = max
i

({Ii(x)}\IM (x)) (2.34)

In general, the ‘jth maximum implausibility measure’ is

IjM (x) = max
i

({Ii(x)}\{IM (x), I2M (x), . . . , I(j−1)M (x)}) (2.35)

The NROY space using this measure is then

XNROY = {x ∈ X |IjM (x) < a} (2.36)

Setting j > 1 gives a more conservative rule for removing regions of space: if the maximum

is simply used, then there is the danger that important regions of X will be ruled out.

Even with accurate emulators, it is expected that 5% of the model outputs would rule out

a parameter setting that is perfectly consistent with z. Allowing some of the outputs to

have an implausibility greater than the chosen cut-off reduces the risk of this possibility.
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2.7.1. Refocussing

History matching can be done in several ‘waves’, as in Vernon et al. (2010). At the first

wave, an ensemble is designed to cover the whole input space X , and an emulator is

constructed based on these runs of the computer model. History matching is then carried

out as above. Assuming that NROY space is non-empty, a new ensemble of runs can be

designed in this NROY space, and a second wave of history matching can be performed

after building an emulator using these new runs. This method is called ‘refocussing’.

Subsequent waves all rely on an ensemble of points in the current NROY space, and an

emulator being built for the outputs of the model that are being matched on.

Formally, refocussing proceeds as follows. First, a sample of n1 points is taken from the

complete parameter space X , and f(·) is run at these points, giving an initial ensemble

F(1):

F(1) = (f(x1,1), . . . , f(x1,n1))T

Using this computer model output, an emulator f (1)(x) is constructed, valid on X . Given

the expectation and variance from this emulator for a parameter choice x, and observations

z, the implausibility I(1)(x) can be calculated, and an NROY space is defined as (assuming

the standard choice of a = 3):

X (1) = {x ∈ X | I(1)(x) < 3}

For the second wave of history matching, sampling is now carried out only within the

existing NROY space, X (1), with a new ensemble defined as:

F(2) = (f(x2,1), . . . , f(x2,n2))T

Similarly as for the previous wave, an emulator f (2)(x) using F(2) is built. Any runs from

F(1) that are in X (1) may be incorporated into this emulator, for example as a validation

data set. The emulator f (2)(x) is valid only in X (1). Again, this emulator can be used to

define a new NROY space:

X (2) = {x ∈ X (1) | I(2)(x) < 3}
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In general, at wave m, a sample of size nm is drawn from X (m−1) to create an ensemble

F(m) = (f(xm,1), . . . , f(xm,nm))T

of model runs in the current NROY space. From this, an emulator f (m)(x) is built, valid

in X (m−1), with which I(m)(x) is calculated. Using this, the wave m NROY space is:

X (m) = {x ∈ X (m−1) | I(m)(x) < 3}

A benefit of this method is that as later waves are reached, the density of points that

the computer model has been run at is greater in the reduced space than in the original

space. The emulator built at this wave only needs to be accurate over the current NROY

space, and hence should be a better proxy for f(·) than the wave 1 emulator. As waves

proceed and the size of NROY space decreases, the quality of the emulator will continue to

improve, and the variance shrink. After reducing the size of parameter space and having

an accurate emulator, calibration may also be used to find a more accurate probability

distribution for x∗ than a calibration performed over X . This would then lead to better

results if forecasting is the intention (see Chapter 5 for an application of this).

A further benefit of performing waves in this manner is that initially, some model outputs

may be hard to emulate accurately, potentially due to extremely non-physical behaviour

observed in regions of space. By first constraining X using outputs that can be emulated,

it may become more straight-forward to emulate other outputs of interest. This is also an

argument in favour of history matching over calibration. Calibration is always performed

over the complete input space, hence emulators are required for all outputs that are being

calibrated to.

Another way that history matching differs from calibration is that in calibration, the

result is always a probability distribution over the input space. Therefore, even if f(·)

is an extremely poor model for the system y, calibration will give a distribution for x∗,

potentially with a peak of density somewhere in the input space. If f(·) cannot represent

the system, then this result is meaningless, and the calibration distribution is unfit to be

used in any further applications, e.g. forecasting.

In the scenario described here, history matching would rule out the entire parameter
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space, which intuitively makes sense if the computer model is not representative of the

true system. Finding an empty NROY space suggests that there are no parameter settings

that give output ‘close-enough’ to z, under the current specification of the discrepancy.

Ruling out all of X in this manner may suggest structural errors are present in the model,

and suggests that the specification of the discrepancy variance may need to be re-visited.

This may lead to decreased implausibilities, and potentially result in less space being ruled

out.

2.7.2. Multivariate history matching

The univariate definition of history matching can be generalised so that vectors of obser-

vations (whether this is a time series, observations over a spatial field, or observations of

multiple different attributes of a model) can be matched to. Craig et al. (1997) give the

multivariate definition of the implausibility as

I(x) = (z− E[f(x)])T (Var(z− E[f(x)]))−1(z− E[f(x)]) (2.37)

The same statistical model linking the real system with the computer model (equation

(2.27)) is still used for the multivariate case, with the same definitions for the observation

error and discrepancy as before:

z = f(x∗)⊕ η ⊕ e

so that

Var(z− E[f(x)]) = Var[f(x∗)] + Var[e] + Var[η]

This is the same as for the univariate case in (2.31), with the exception that each of

the variances are now l × l matrices rather than scalars, where l is the dimension of

the observations, z. Specifying the error and discrepancy variances can now be a more

challenging task, because covariances between the outputs may need to be taken into

account to achieve the greatest accuracy.

The observations being matched to are now of a higher dimension, hence the cut-off used

to define NROY space changes. Vernon and Goldstein (2009) and Vernon et al. (2010)

use the 99.5% value of a chi-squared distribution, with the number of degrees of freedom
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equal to the dimension of the observations, l:

XNROY = {x ∈ X |I(x) < χ2
l,0.995}

The justification for this comes from Goldstein and Wooff (2007). The multivariate im-

plausibility in (2.37) is analogous to the definition of the discrepancy of an observed vector

in Bayes linear methods:

Dis(d) = (d− E(D))TVar(D)−1(d− E(D))

where d is the observed value of D, an l-dimensional quantity with prior expectation

E(D) and prior variance Var(D). Assuming that the data has a multivariate Normal

distribution implies that the discrepancy (and hence the multivariate implausibility) can

be approximated by a chi-squared distribution with l degrees of freedom.

History matching can be used for spatial or other high-dimensional problems in a number

of ways, in combination with the various types of emulators described previously. If a

summary of the output is used to match to observations, for example the mean global

temperature, then emulators can be built for this statistic, and the univariate version of

the implausibility used to find NROY space. Vernon et al. (2010) fit multivariate emulators

to multiple outputs and then history match across these outputs using the multivariate

implausibility, accounting for correlations between outputs.

For high-dimensional problems, the basis projection method for emulation is commonly

used, and history matching using emulators for basis coefficients will be the focus later

(Chapters 4 and 5). After building emulators for the coefficients, there are three potential

ways to proceed with history matching.

Firstly, the univariate implausibility can be calculated for each set of coefficients, and space

ruled out using the maximum implausibility measure in (2.36), after the observations, and

error and discrepancy variances are projected onto the same basis. More formally, the

implausibility for the coefficients on basis vector i is calculated as

Ii(x) =
|ci(z)− E(ci(x))|√

Var(ci(z)− E(ci(x)))
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where c(z) is defined similarly to the projection of f(x) in (2.17):

c(z) = (ΓTΓ)−1ΓT (z− µ)

so that ci(z) is the coefficient for the projection of z onto the ith column of Γ. The

variance term on the denominator can again be written in terms of the observation error

and discrepancy:

Var[ci(z)− E[ci(x
∗)]] = Var[ci(z)− ci(y) + ci(y)− E[ci(x

∗)]]

= Var[ci(e) + ci(y)− ci(x∗) + ci(x
∗)− E[ci(x

∗)]]

= Var[ci(e) + ci(η) + ci(x
∗)− E[ci(x

∗)]]

= Var[ci(e)] + Var[ci(η)] + Var[ci(x
∗)− E[ci(x

∗)]]

= Var[ci(x
∗)] + Var[ci(e)] + Var[ci(η)]

The first term in this sum is the variance from the emulator for the coefficients for basis

vector i. The variance for the projection of the error and discrepancy variances is calculated

as follows (assuming that these quantities are specified over the original field):

Var[c(e)] = Var[(ΓTΓ)−1ΓTe]

= (ΓTΓ)−1ΓTVar[e]Γ(ΓTΓ)−T

This is an n × n matrix. For univariately history matching the coefficients on each basis

vector, the variance Var[ci(e)] would be set as the i, ith entry of Var[c(e)], ignoring any

correlations. In the case of orthonormal basis vectors, this is the same as

Var[ci(e)] = Var[c(e)]ii = γTi Var[e]γi

Another option is to calculate the multivariate implausibility for all of the emulated basis

vectors, by stacking the expectation from each emulator into a vector, and setting the

variance as a diagonal matrix of the individual emulator variances (as in Higdon et al.

(2008a)), as the emulators are assumed to be independent:

E[c(x)] = (E[c1(x)], . . . ,E[cn(x)])T

Var[c(x)] = diag(Var(c1(x)), . . . ,Var(cn(x)))
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The multivariate implausibility in (2.37) then becomes

I(x) = (c(z)− E[c(x)])T (Var(c(x)) + Var(c(e)) + Var(c(η)))−1(c(z)− E[c(x)]) (2.38)

This has the advantage that covariances in the (projections of the) error and discrepancy

variance matrices are included, as well as only requiring an inversion of an n×n matrix for

every x (or, more likely, a q× q matrix as the basis will be truncated after q < n vectors).

The final option is analogous to the multivariate calibration in Wilkinson (2010) (equation

(2.19)), where the expectations and variances for the emulators on the reduced space are

projected back to the original space. The drawback of this method is that it requires an

inversion of the l × l variance matrix every time the implausibility is evaluated at a new

parameter setting x, and for a reasonable number of parameters, millions of evaluations

can be required to build an adequate picture of NROY space. Therefore, for large spatial

fields, history matching (or calibrating) after projecting back to the l-dimensional field

may not be practical.

2.7.3. Discrepancy

In both calibration and history matching, it is important to have an accurate represen-

tation of the discrepancy between the computer model and the real-world system. As an

example, in univariate history matching, simply decreasing the discrepancy variance could

lead to a change from the whole space being classified as NROY, to considering all of X

to be implausible.

The importance of the discrepancy is illustrated by Brynjarsdóttir and O’Hagan (2014).

In this paper, the authors find that ignoring discrepancy can lead to incorrect inferences

about the true parameter values when applying Bayesian calibration in a problem. This

can lead to biased predictions if the posterior distribution is then used for forecasting.

Therefore, including an accurate discrepancy is critical, and how this should be modelled

is an important question.

Kennedy and O’Hagan (2001a) assign a Gaussian process prior to the discrepancy term

(equation (2.23)), specifying a mean m2(·), and covariance σ22C2(·, ·). This adds extra hy-

perparameters that must be determined. These hyperparameters are estimated and given
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a fixed value here, while they are treated as uncertain by Higdon et al. (2004). Given that

the ensemble is the only data available, it is involved in identifying the hyperparameters

for both the emulator of f(·) and of η(·).

Kennedy and O’Hagan (2001a) use the ensemble of model runs to estimate the hyperpa-

rameters for the model for f(·). Given these fixed values, the values for the discrepancy

hyperparameters are then estimated using z. Therefore, if the prior beliefs about the dis-

crepancy are weak, then the posterior will rely heavily on the ensemble, and the difference

between this and z. If there is something in the model output that appears to be structural

error, and hence should be accounted for by the discrepancy term, is it possible to be sure

that this is not truly a structural error, and instead f(·) has not yet been observed in the

correct parts of X ? This method will potentially overestimate the discrepancy, dependent

on the ensemble.

Chang et al. (2016) use an alternative method for setting the discrepancy. However, it

also makes use of the limited ensemble runs. The example here is an ice sheet model

with binary output. For an individual grid box i, a non-zero contribution is given to the

discrepancy term if the proportion of ensemble runs where the output is different from

the observations is greater than a chosen threshold (here, 0.5), so that common ensemble

deviations away from the parameters are highlighted.

More specifically, the discrepancy is represented by a single basis vector γη of length l,

with ith entry ηi defined as

ηi =


log(1+ri1−ri ) if |ri| > c

0 otherwise

for a chosen threshold c, where

ri =
1

n

n∑
j=1

sgn(fi(xj)− zi)I(fi(xj) 6= zi)

An issue with this method may be that if the ensemble contains biases away from the

observations, then not only is this ensemble used to select a basis to be used for emulation,

but also for defining the discrepancy, ‘double-counting’ the errors. In this example, it is

possible that for output i, only zeros have been observed in the small number of model
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runs n, whereas the observation at this location is equal to 1. This method would specify

a non-zero discrepancy for this location.

Not observing a certain output in the ensemble does not necessarily imply that this is a

structural error and should be treated as discrepancy. A situation may exist where f(·) has

not yet been run at a suitable parameter setting, but such a setting does exist. Using this

method will assume that it does not, as any deviations in the ensemble will automatically

be passed into the discrepancy term, which may make it impossible to find the true x∗.

2.8. Tuning climate models

Aside from calibration and history matching, other methods for tuning climate models,

from outside of the uncertainty quantification literature, are also used. Hourdin et al.

(2016) provides an overview of current practices in the climate model tuning community.

Another common approach is to define a cost function that relates the climate model

output to observations, and to minimise this (Bellprat et al., 2012, Zou et al., 2014, Zhang

et al., 2015), either by fitting a simple, fast-to-evaluate model to the chosen cost function,

or by iteratively selecting a new parameter setting and then re-running the climate model

at this input.

Bellprat et al. (2012) objectively tune a regional climate model by fitting a second order

polynomial metamodel (Simpson et al., 2001) to a ‘performance score’ used to relate the

model output to the observations. The fitted model measures the change in a particular

output value when the input parameter vector is varied away from a default setting xdef .

The metamodel has the following form:

fi(xp) = fi(xdef ) + xTp β0 + xTp βxp

where xp = x− xdef is the difference between a new parameter setting x and the default

setting, β0 is a linear term, and β contains coefficients for the quadratic and interaction

terms for the parameters. fi is a single output from the regional climate model, i.e. a

separate metamodel is fitted for every region, monthly average, and each of the three

output variables being used to optimise the parameters.
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Using this set of metamodels, the ‘performance score’ (PS) is used to measure how well

the model output fits the observations:

PS = exp(−0.5PI2)

PI =
〈 fi(x)− zi
σo + σiv + ei

〉

where 〈·〉 denotes averaging over each individual model output value. The denominator

contains sources of uncertainty: σo, the interannual variability, σiv, the internal variability,

and ei, the observation error for output i.

Despite the large number of individual metamodels that need to be fitted, as it is simply

a quadratic regression, it is quick to evaluate predictions. A Latin hypercube (Morris and

Mitchell, 1995) sample is taken over X , and the regions where PS is maximised can be

identified.

Other functions can be chosen for optimisation, some based on the spatial standard de-

viation and correlations between output variables. Zou et al. (2014) and Zhang et al.

(2015) select a cost function to optimise and a starting value for the parameters, and then

use an optimisation technique to select new parameter settings one at a time, seeking

to move towards the best regions of X according to the cost function. This relies on it

being computationally possible to perform a new run of the computer model when the

new parameter setting has been selected, which may not always be the case. Furthermore,

in Zhang et al. (2015) each climate model run takes around 6 hours, so that optimisation

in this sequential manner is a lengthy process.

These methods do not explicitly incorporate any knowledge about the discrepancy of the

model, or any spatial patterns in the output fields. They rely on the fact that the cost

functions used will vary smoothly as the parameters vary.

Compared to the uncertainty quantification techniques for tuning a climate model, there

are various advantages and disadvantages. The simplicity of fitting a meta-model rather

than a Gaussian process may be an attractive option. However, although making predic-

tions with a Gaussian process emulator requires more computational time than a single

regression, this benefit is negated by the fact that an individual regression model is re-

quired for every single timepoint, grid box and model output. The multivariate approaches
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in the UQ literature provide flexible ways of modelling this type of output, incorporating

spatial and temporal correlations, as well as correlations across the input space. Further-

more, uncertainty bounds being provided, and then accounted for in calibration or history

matching, give increased robustness to any conclusions.

2.8.1. Data assimilation

Data assimilation is another popular method for constraining the parameters of a climate

model using observational data (Annan et al., 2005). Prior distributions are selected for

the input parameters x∗, and these are then updated over time using runs of the computer

model, and the observations z.

Annan et al. (2005) apply data assimilation (following the method of Keppenne (2000))

to the ocean component of a climate model, with output given over a 36× 36 grid. Data

assimilation uses the Kalman filter equations (Kalman, 1960), used to update the model

over time. The equation used for updating the model output and parameter settings is

xa = xf + K(z−Hxf )

for

K = Var(xf )HT (HVar(xf )HT + Var(e))−1

The uncertainty on this update is given by the covariance matrix

Var(xa) = (I −KH)Var(xf )

xf = (f(xi)
T ,xi)

T is a vector consisting of the model output at xi, with these input

parameters added at the end. xa is then an adjusted version of these, updated by using

the Kalman term K. H is a matrix that relates the model output with the observations.

An inversion of an l× l matrix is required at every time step. Therefore, for computational

efficiency, the output field in this example is divided into 54 regions, and the output and

parameters are updated simultaneously for each.

Applications of this and similar data assimilation methods are commonly used (Aksoy

et al., 2006, Schirber et al., 2013, Ruiz et al., 2013, Juan Jose et al., 2013, Li et al.,
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2016). Other cost functions can be minimised, but generally the model output and model

parameters are combined into one vector, and then xf is updated iteratively over time

using the observations, possibly averaging results spatially at each step when the output

has a high dimension.

A drawback of this method of tuning a climate model is that it allows the parameter values

to vary over time. Whilst it may be true that there are different ‘best’ parameter values for

different time periods, this does not allow projections to be made: if the final distribution

for x only matches the last part of the observed data, why should this parameter setting

necessarily be accurate in the future? (Williamson et al., 2015)

Another potential issue is that, when there is a large amount of data, for example when

there are observations over a grid for the whole world as in global climate models, the

output field must be split into regions. In each of these, the new parameter vector is

updated locally at a time point, and these are then smoothed, to give one global set of

parameters, before the updating at the next time point occurs. Optimising separately

over regions risks an averaged parameter vector that is not a fit for the observational

data anywhere if very different vectors are required to match the observations in different

regions. Additionally, there may be regions of model output nothing like the observations

that parameter values are being estimated for.

The UQ literature has the benefit that methods have been developed to search for settings

of the parameters that are consistent with the observations, up to the model discrepancy

as well as observation error, where high dimensionality can be overcome, for example by

using the basis projection methods prior to calibration or history matching. Additionally,

these methods do not necessarily require new runs of the computer model, instead relying

on an initial ensemble of runs. In data assimilation, the model needs to be run at new

parameter settings at each step, a large computational cost for complex models.

In this thesis, we will explore the use of uncertainty quantification techniques for tuning

expensive computer models with high-dimensional spatial output.
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3.1. Introduction

The main results of this chapter have appeared in Salter and Williamson (2016).

When designing and then analysing the results of a computer experiment, there are a

number of decisions that a statistician may be faced with:

1. At which parameter settings should the computer model f(·) be run to create the

ensemble F?

2. What type of emulators should be built? Namely, is a regression sufficient, or should

a correlated residual term be fitted?

3. If the goal is to find optimal parameter settings, how should this be achieved?

Question 1 may not be one that the statistician is able to dictate the answer to; especially

in the case of complex computer models such as climate models, an ensemble that has

already been run on a supercomputer for some other purpose may be provided. However,

given an ensemble F, there will always be a decision to be made about how to emulate

the given data, and whether to use calibration, history matching, or some other tuning

method, in order to find answers about where the model should be run so that it gives

output similar to the observations.

If it is possible for the statistician to have a say in the design of the computer experiment,

they must also decide how best to allocate these runs. For example, if n runs of the

model can be performed, should these all be spent on a space-filling design over the full

parameter space, or should the resources be split so that an initial space-filling design can
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later be supplemented with more points in important regions of parameter space (which

are unlikely to be known a priori)?

In this chapter, it is assumed that the model can be run at the desired settings efficiently,

so that a comparison between performing a single wave and multiple waves can be carried

out, while having the ability to test the accuracy of the results. History matching lends

itself to being used over multiple waves iteratively (refocussing, as described in Section

2.7.1), therefore this will be the main focus of this study, although calibration is also

considered alongside this.

Section 3.2 discusses the motivations for comparing regression and Gaussian process em-

ulators, and why it can be attractive to use simpler emulators in some circumstances.

Section 3.3 outlines the experiment to be performed on several toy examples, and Sec-

tion 3.4 gives the results of this. Section 3.5 discusses an unexpected result found in the

study. Finally, Section 3.6 compares the performance of these emulation techniques on a

geological model.

3.2. Regression vs Gaussian process emulators

Although Gaussian processes are well-studied and used in the statistics literature (Hig-

don et al., 2008a,b, Vernon et al., 2010, Lee et al., 2013, McNeall et al., 2013, Vernon

et al., 2016), in applications, particularly in climate science, regression-only emulators

are often used (Rougier et al., 2009, Sexton et al., 2011, Holden et al., 2013, Williamson

et al., 2013, 2015). Reasons given for this include the simplicity in fitting regressions and

explaining these models to non-statisticians, the speed to evaluate predictions with a re-

gression emulator, and that the correlated residual term makes a negligible difference in

high-dimensional input space, in terms of reducing uncertainties around the sparse design

points. In climate science in particular, it is argued that regression emulators can be used

to represent the signal in the model output well enough, so that the (uncorrelated) residual

can be interpreted as representing the internal variability of the model.
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3.2.1. Tractability

As the ensemble size n increases, and as the number of waves increases, performing the

number of emulator evaluations required to give a picture of NROY space increases signif-

icantly, and becomes increasingly intractable, due to the inversions of covariance matrices

required. On a standard desktop with 4 cores, it takes 1 second to evaluate the output of

a regression emulator for a sample of 1 million points, if n = 200. For a Gaussian process

emulator for the same data, this process (if performed in parallel) takes 90 seconds. Simi-

larly, if n = 400, the regression emulator requires 2 seconds, compared to 188 seconds for

the Gaussian process.

If there is only one emulator required, then this difference in the computational time is

perhaps trivial. However, in climate applications it could be problematic. For example,

Lee et al. (2013) build 8192 emulators, one for each individual grid box for the output

of a global aerosol model. If 1 million parameter choices are to be evaluated for each

emulator, so that the full output field for each parameter setting can be calculated, then

this calculation will take 8192 seconds (2 hours 15 minutes) if each emulator is a regression.

If Gaussian process emulators are used for every grid box, 8 and a half days are needed;

a faster computer or faster emulator is clearly required here so that predictions can be

made in a reasonable time frame.

Even when only one output is being emulated, computational problems can still arise

when there are multiple waves. Andrianakis et al. (2015) perform nine waves of history

matching, and find an NROY space that is 1011 times smaller than the original parameter

space. Therefore, in order to sample from the resulting NROY space, many millions of

emulator evaluations may be required: to check whether a parameter choice is in NROY

space, the emulator at each wave may need to be evaluated (although an efficient ordering

of the waves could be chosen, based on which are most important for determining whether

a point is ruled out or not, to reduce the number of evaluations required).

These examples highlight the difficulties with a Gaussian process emulator, and hence the

attractiveness of the quick-to-evaluate alternative of regression. For problems with large

n, Gramacy et al. (2015) fit Gaussian processes locally to reduce the computational time

required by calibration. However, in their problem, n = 26,458, whereas our ensembles

are generally small compared to this, and hence the benefits of this local fitting may not
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be realised.

3.2.2. Sparse sampling of the input space

Another argument against using Gaussian process emulators is that in applications, the

input space typically has a high dimension. Therefore, if the ensemble size n is small, the

points in X are too spread out for a correlated residual term to have any effect on the

emulator, because the correlations between points are essentially zero. Using a Gaussian

process emulator will reduce the uncertainty around the design points, but when the

sample is sparse, an important question is whether this can affect the calibration or history

matching enough to negate the additional expertise and time needed to build the emulator,

as well as the computational issue described in the previous section.

To illustrate the potential impact of fitting a Gaussian process emulator instead of a

regression emulator when there is a high-dimensional input space, a toy function f1(·)

(defined in Appendix A) with 10 input parameters is considered. 200 design points are

selected, and f1(·) is run at each of these to give an ensemble F, using which two emulators

are built: one using only regression, and one with an added correlated residual term.

Figure 3.1 shows the prediction from each of these emulators, with the associated 99%

uncertainty bounds, along a line in 10-dimensional space defined between design points

x1 and x2. This plot demonstrates that the Gaussian process emulator is a better ap-

proximation of f1(·) in this part of parameter space. As well as providing a better mean

prediction, the uncertainty on this prediction is also smaller for the Gaussian process: the

regression emulator has constant error bounds everywhere along this line, whereas for the

Gaussian process, the fitted values of the correlation lengths δ have reduced the uncer-

tainty everywhere on this line. However, the uncertainty does not shrink to zero at the

design points, due to the presence of a nugget (and this term appears to be large for this

Gaussian process emulator).

The solid black line in this plot represents an assumed observed or ‘true’ value for the

function. In this example, z = 0. The dotted lines around this value represent observation

error. Although the true function is never within the margin of error for the observation

in this region of X , when history matching is carried out it may not be possible to rule
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Figure 3.1. How the prediction and 99% uncertainty bounds change for a regression emulator
(green) and a Gaussian process emulator (red) for a line between two design points x1, x2 in 10-
dimensional space, with this line given by λx2 + (1− λ)x1. The blue line shows the toy function.
The observation is taken to be 0, observed with an observation error given by the dotted black
lines. The nugget for the Gaussian process emulator is relatively large in this example.

out much or any of the parameter choices along this line, due to the uncertainty on the

emulator predictions. Using the definition of the implausibility of a parameter setting x

(Craig et al., 1996) from (2.30), i.e.

I(x) =
|z − E[f(x)]|√

Var[z − E[f(x)]]
(3.1)

we evaluate I(x) along this line for each of the two emulators. Figure 3.2 shows this

implausibility.

From this plot, assuming a cutoff of a = 3 to define NROY space, i.e.

XNROY = {x ∈ X |I(x) < 3}

it is clear that no space can be ruled out using the regression emulator. This was evident

from Figure 3.1, because the uncertainty bounds for the regression emulator’s prediction

included the observation and observation error within them. However, for the Gaussian

process emulator, it is possible to rule out space for λ > 0.52, as the implausibility increases

above 3 after this point: it is possible to confidently rule out this part of space based on

the uncertainty on the emulator’s prediction, and (correctly) say that this part of space

leads to model output that is not consistent with z = 0 and the error on this observation.

This demonstrates that the Gaussian process emulator is superior to the regression em-
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Figure 3.2. The implausibility I(x) for the above two emulators. With 3 chosen as the threshold
for ruling out points, the regression emulator cannot rule out anything in this part of space, while
the Gaussian process emulator can for λ > 0.52.

ulator, but only along this line through 10-dimensional space, of which infinitely many

could be considered. This is also dependent on fitting suitable correlation lengths, and

here the smoothness of the function allows the uncertainty to be reduced. However, it

does motivate the comparison of these two emulator types across the full space: will the

percentage of space that can be ruled out be significantly different when the Gaussian

process emulator is used instead of regression?

3.3. Simulation study design

The goal is to investigate whether it is important to use a Gaussian process emulator

rather than a regression emulator when the number of design points in high-dimensional

space is small. Alongside this goal, the tractability issue of the multiple wave scenario will

also be considered. Specifically, whether or not it is acceptable to initially use a regression,

followed by a Gaussian process at a later wave.

Therefore, to compare regression and Gaussian process emulators in this context of multi-

wave history matching, we perform the following experiment for a given function or com-

puter model f(·):

1. An initial sample (x1, . . . ,xn) of size n is taken from parameter space X , using a

Latin hypercube maximin design (Morris and Mitchell, 1995).
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Figure 3.3. Flow chart showing the emulators built for a comparison between the regression-only
case and the Gaussian process case. GP1 denotes that a Gaussian process is used from wave 1
onwards.

2. The ensemble F = (f(x1), . . . , f(xn))T is found by evaluating f(·) at each design

point.

3. The ensemble is divided into a training and validation set, with a regression and

Gaussian process emulator fitted to the training data. Validation checks are carried

out before continuing.

4. By taking each of the validated emulators in turn, the size of NROY space is esti-

mated by successively sampling 10,000 points from X , continuing until 1,000 points

are not ruled out according to the implausibility.

5. Steps 1-4 are repeated until four waves of history matching have been completed, for

each path in Figure 3.3, with new ensembles created by sampling from the current

NROY space.

Figure 3.3 shows the complete experiment that is carried out for an individual function f(·).

There is an alternative multi-wave comparison generated at each wave between regression

and Gaussian process emulators, as the result of taking an experiment that has thus far

had only regression emulators, and adding a Gaussian process for the current NROY space.

This allows a direct comparison to be made between regressions and Gaussian processes

at every wave. We assume that once a Gaussian process emulator has been used, this type

of emulator is always used thereafter, so that the NROY spaces defined using Gaussian

process emulators then have new Gaussian process emulators fitted in them at subsequent

waves.
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For greater clarity: at wave 1, we fit a regression emulator and a Gaussian process emu-

lator using the same ensemble. Each of these emulators defines a different NROY space.

Therefore, at wave 2, there are two new ensembles generated: F
(2)
reg and F

(2)
GP , sampled

from the regression emulator’s NROY space and the Gaussian process emulator’s NROY

space respectively. Using F
(2)
reg, we fit new regression and Gaussian process emulators,

comparable as they are fitted using the same design. Additionally, we fit a new Gaussian

process emulator using F
(2)
GP .

Therefore, at wave m, there are m + 1 emulators fitted, defining m + 1 different NROY

spaces: one regression emulator, valid in an NROY space defined by only regression emula-

tors, and m Gaussian processes, defined in NROY spaces where Gaussian processes started

to be used from each of waves 1, . . . ,m. Overall, there is one multi-wave history match

carried out using only regression emulators, and this is compared to history matching

when Gaussian processes start to be used at different waves.

This experiment allows for a regression emulator to be compared to a Gaussian process

at every wave, and will also illustrate the combined benefits or otherwise of always using

a Gaussian process. It may also allow conclusions to be drawn regarding whether it is

sensible to initially use regression emulators, followed by Gaussian process emulators at

later waves, when the density of design points has increased.

Since the uncertainty decreases around design points, we expect that more space will

be ruled out when a Gaussian process is used, although how much more is the question

that this study intends to answer. Intuitively, one would expect that the more waves

a Gaussian process is used at, the smaller the resulting NROY space will be after four

waves: using a Gaussian process at every wave should lead to the smallest NROY space,

followed by starting to use a Gaussian process from wave 2, with the ‘always regression’

case ending with the largest NROY space after wave 4. However, the literature argues

that the differences in the results are negligible (Rougier et al., 2009, Williamson et al.,

2013).
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3.3.1. Toy examples

We apply the above methodology for comparing emulator types, as well as single and

multi-wave experiments, to four toy examples, designed to exhibit features and problems

regularly encountered when calibrating or history matching climate models. These toy

functions are defined in Appendix A.1. Each of the input parameters for these functions

has been defined or scaled so that it takes values in [−1, 1].

Function 1 (f1(·), equation (A.1)) represents a smooth 10-dimensional unknown function,

that should be well approximated by a fitted polynomial surface, so that both the regres-

sion and Gaussian process emulators ought to perform well due to the smoothness of the

output. Function 2 (f2(·), (A.2)) is a more complex 10-dimensional function containing

periodic functions, that should favour the added flexibility that the Gaussian process em-

ulator provides. Function 3 (f3(·), (A.3)) has been defined to have more input dimensions

(20), so that whether or not local variability around sparse points in higher-dimensional

space affects history matching can be studied. This is also a typical situation in climate

applications: this input space has the same dimension as the NEMO ocean model in

Williamson et al. (2016).

Each of these three functions also contains a random term: each time the function is

evaluated, a sample is drawn from a zero-mean Normal distribution with specified variance

to add noise to the function output. This ensures that if the function is run more than

once at the same input x, the output will not necessarily be the same. This noise has been

added to correspond to the internal variability of climate models.

The final function that we investigate is the borehole function, a standard test function

(Worley, 1987, Morris et al., 1993), given in (A.4) as f4(·).

Table 3.1 gives some additional information for each of the toy examples. The range of

possible output values for the function are given, along with the output that is assumed

to be the observed value of the function, z. In each case, this value is observed up to some

error Var[e], and the variance of the random noise is also noted. The ensemble size n used

for each function is given, where f3(·) has a higher value for n due to the larger input

space for this function.
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Function Range z Var[e] Var[η] n NROY size

f1 [-42, 59] 15 10−5 0.052 200 0.17%

f2 [-3, 12.5] 9 10−3 0.152 200 0.24%

f3 [-145, 136] 50 10−2 0.52 400 0.28%

f4 [0, 300] 100 10−3 0 200 0.11%

Table 3.1. Information about the toy functions for history matching. Range denotes the spread
of possible outputs for the function, and NROY size denotes the theoretical size of NROY space,
given this error structure.

‘NROY size’ denotes the percentage of X (equivalently, the volume of space) that cannot

be ruled out given this setting for the observations and these variances, if the function is

known perfectly, i.e. an emulator is not required, and the function is simply evaluated

so that there is no code uncertainty. To estimate this volume, a large (100,000 or more)

Latin hypercube sample is taken from X , and the percentage of the points that are not

ruled out is calculated. This is theoretically the true NROY space that multi-wave history

matching will eventually be able to find. These have all been designed to be small regions

of parameter space, as is typically encountered in environmental applications.

3.3.2. Modelling choices

Within this experimental framework, there are a number of choices to be made to ensure

a consistent and fair comparison.

We use a Bayesian regression approach (Gelman et al., 2014), as this accounts for the

uncertainty in the regression coefficients β, for which the true values are unknown. The

regression emulator will be fitted using a stepwise approach, with a random noise variable

included as one of the predictors. The noise variable is a random sample from a zero-mean

Normal distribution, with a specified variance. Once the noise variable is selected by the

stepwise algorithm, no further terms are added. The maximum number of predictors

allowed in the model is a tenth of the sample size (which may be a too conservative

choice, restricting the flexibility of the linear model that can be fitted), with powers of

individual parameters and interactions between several parameters allowed, if the required

lower order terms are also included. For the Gaussian processes, the mean function will

be used to explain as much of the response as possible (Vernon et al., 2010), and this will

be fitted using the same technique. Where the regression and Gaussian process emulators

are directly comparable, i.e. the sample being used to fit each of them is the same, then
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the mean function for the Gaussian process will simply be the regression.

For the Gaussian process emulators, we follow the prior choice and subsequent posterior

analysis of Haylock and O’Hagan (1996), given by equations (2.6), (2.9), (2.10) and (2.11).

This matches with the Bayesian regression technique of accounting for the uncertainty on

the mean function coefficients.

The correlation function used in all of the emulators fitted in this study is the Gaussian

correlation function, with the nugget expressed as a percentage of the residual variability

that is unexplained by correlations between parameters:

C(x, x′) = νIx=x′ + (1− ν)exp

{
−
∑
i

(xi − x′i
δi

)2}

where Ix=x′ is 1 if x = x′, and 0 otherwise. The nugget term is included here due to the

random noise in the toy functions, hence the emulators should not interpolate the data.

Not all of the input parameters for the toy examples have much effect on the output.

Therefore, the correlated residual term is only fitted for those variables deemed to be

‘active’ (Craig et al., 2001). These active variables can change over the waves: initially,

some variables may be responsible for large-scale variation in the output, before other

variables are more important once the size of NROY space decreases and F highlights

more local variability. The active variables for a given Gaussian process emulator are

chosen by selecting the variables that were at some point included during the selection of

the mean function (i.e. for a variable to be considered active, it need not be in the final

mean function, but it must have been deemed to have at least some effect on the output,

prior to the number of predictors being reduced to meet the maximum criteria). This

likely benefits the Gaussian process emulators compared to the regressions, as they are

potentially fitted to more of the variables.

We perform history matching using the univariate definition of the implausibility (3.1),

because only functions with a scalar output are considered in this study. The cutoff in the

definition of NROY space will be set at 3, as this is the commonly-used setting based on

Pukelsheim’s Three Sigma Rule (Pukelsheim, 1994).
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3.3.3. Parameter estimation

Rather than treating the emulator in a fully Bayesian way, we estimate the parameters

of the correlation function for the Gaussian process, and fix their values at this estimate,

as in Kennedy and O’Hagan (2001a). This is because it is assumed that the uncertainty

due to estimation of these parameters is small or negligible compared to other sources of

uncertainty, and because of the large number of emulators required in this study, needing

to sample values for these parameters every time the emulator is evaluated will add to the

computation time substantially.

Estimating the correlation parameters using maximum likelihood did not always give sat-

isfactory results, so a different automatic approach based on cross-validation is used here,

to ensure that all of the emulators validate well.

First, we choose an initial setting for the values of δ and the nugget ν. This can be done

using a heuristic such as the one outlined by Vernon et al. (2010), where the initial values

for the correlation lengths are based on the order of each term in the regression model.

At later waves, when there has been a Gaussian process emulator fitted previously, the

starting values are the parameter values from the previous wave. An emulator is fitted for

a choice of δ and ν to the training data, and this choice is validated by checking the fit

of the emulator to the training data, as well as checking whether this emulator leads to

adequate predictions for the design points in the validation set.

More specifically, we validate the fit of the emulator on the training set by performing

leave-one-out cross-validation for this data. That is, each point xi in the training set is

left out in turn, and the emulator is re-fitted without this point, and then used to predict

f(xi). To ensure that the emulator fits, the average standard error on these predictions is

minimised, with the condition that roughly 95% of the true values lie within these error

bars. Fitting the correlation lengths based on leave-one-out diagnostics is common (e.g.

the DiceKriging R package (Roustant et al., 2012), Williamson et al. (2012)).

Alongside this cross-validation check, the emulator is used to predict the output at each of

the points in the validation set, and again it is required that around 95% of the predictions

are within 95% error bars.
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Minimising the average cross-validation standard error, while simultaneously requiring

that there are not too many or too few predictions outside of the uncertainty bounds, for

both the training data and the validation data, leads to an emulator that fits the training

data well, but also avoids the problem of overfitting. Furthermore, it can be confidently

used for prediction.

Using these validation checks, we search for the values of the correlation function param-

eters using the following algorithm:

1. Select initial values for δ, ν.

2. Set i = 1.

3. Change the value of δi by 0.1.

4. Fit an emulator using the current values of the parameters.

5. Calculate the mean cross-validation standard error as above, and count the number

of predictions outside 95% error bars for a) cross-validation of the training data,

denoted by ε1, and b) prediction of the validation data, ε2.

6. If this mean is lower than the previous best, and ε1 and ε2 are both acceptable,

return to step 3, and continue to perturb δi. Else, set i = i + 1, and return to step

3.

7. When i = pa + 1, where pa is the number of active variables, instead vary the value

of ν by 0.0005, and proceed as for the δis.

8. Set the final parameter values as those that have the smallest mean cross-validation

standard error, while also passing both of the validation checks.

9. Re-fit the emulator with these parameter values, including both the training and

validation data sets.

0.1 has been chosen as the amount that parameters are varied by at each step as, from

experience of fitting these types of emulators, it was found that this achieves a reasonable

compromise between the ability to find good choices of the parameters and the amount of

time required to fit emulators for every different parameter choice.

91



3. Multi-wave emulation and calibration

This method may not lead to parameter settings that are strictly optimal, due to the

fact that each individual parameter is varied in turn, but it does allow values that are

consistent with the sample data to be found, and that give an emulator with predictive

ability. Furthermore, it does so automatically in short enough of a time frame so that the

large number of emulators required for this study can be built.

An alternative to varying parameters one by one would be to use simulated annealing or

a similar optimiser in place of this step, with the goal still to minimise the mean standard

error while the validation checks are satisfied. To find strictly optimal values using this

may take more computing time, hence the above algorithm is used for this study, as it has

the desirable combination of finding acceptable parameters while not taking an excessively

long time to do so.

In later chapters, we fit correlation parameters using simulated annealing, rather than the

approach outlined here.

3.3.4. Validating emulators

Figure 3.4 gives an example of the validation plots that are generated when checking the

fit of an emulator. The left panels show cross-validation plots for the training data, and

the right panels show the predictions for the points in the validation set. The emulator

predictions have 99% error bars, and the true function values are coloured green should

they lie within these bars, and red otherwise (Williamson et al., 2015).

3.3.5. Sampling from NROY space

After wave 1, the new ensemble of size n is created by sampling from the current NROY

space. This is done by creating Latin hypercube samples and evaluating the current

emulators at these points to determine which are in NROY space. Sampling is continued

until n runs in NROY space have been found. The aim here is that the selected runs

will be spread out over NROY space, although there is no guarantee that different Latin

hypercube samples will be spaced appropriately. However, this automatic approach should

be sufficient for this experiment. If the problem was to history match one function over

multiple waves, then more time could be allocated to creating the new ensemble.
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Figure 3.4. Leave-one-out cross validation plots (left) and prediction for the validation set (right),
for the Gaussian process emulators for function 1, after wave 1 (top) and wave 4 (bottom). The
black points indicate the prediction given by the emulator, with 95% error bars. The green and red
points are the actual function values, coloured green if they lie within the 99% error bars around
the prediction. Emulators are deemed to validate well if there are not too many or too few of the
true values outside of these error bars.

It is likely that not all of the ensemble from the previous wave will have been ruled out.

Therefore, after wave 1, the training set is the new ensemble (size n), with the emulator

then validated using the runs from the previous wave that have not yet been ruled out.

3.4. Multi-wave history matching results

We now perform the experiment described in Section 3.3 for each of the toy functions

in turn. The values for the observation, z, and the observation error variance used to

calculate the implausibility are as given in Table 3.1. For example, for f1(·), the true

output of the function that parameter settings are required for is assumed to be z = 15.

The error on the measurement of this observation is taken to have variance 10−5. The noise

that is added every time the function is evaluated is sampled from a Normal distribution

with variance 0.052. The ensemble size sampled at each wave is n = 200 (the number of

parameters multiplied by 20 here). Finally, if instead of building emulators, we evaluate

f1(·) instead, the size of the NROY space that fits with the above observations and error

specification is 0.17% of the original space (for the same design, this size may vary slightly

due to the internal variability, however we find this difference to be negligible). Therefore,

this should be a lower bound on the size of the NROY space it is possible to find when
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Figure 3.5. Top left function 1, top right function 2, bottom left function 3, bottom right borehole
function. This picture shows the sizes of NROY space at each wave when history matching each
of the toy functions with regression emulators, and when a Gaussian process emulator starts to be
used at different waves.

emulators are used. If smaller spaces than this are found, then this suggests that the

emulators are not accurate.

The information for each of the other functions can be read from the table in a similar

manner. The magnitude of Var[e] has been varied slightly, as has the noise variance.

However, these have been kept relatively small so that the true NROY space is a low

percentage of X , in order to represent real problems where it is difficult to find accurate

parameter settings.

3.4.1. Size of NROY space

The resulting sizes (volumes) of the NROY spaces when we history match each of the

four functions, for the various combinations of regression and Gaussian process emulators,

are shown in Figure 3.5. The green line represents when a regression emulator is always

used, and a blue line represents always using a Gaussian process. A new line is added at

each wave to represent the new Gaussian process emulator starting from the regression

NROY space at the previous wave. Some of the percentages associated with these plots

are provided in Table 3.2.

For each function, it is clear that using Gaussian process emulators provides a large im-
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Function Regression Gaussian process

f1 7.410% 2.525%

f2 1.326% 0.387%

f3 3.913% 1.596%

f4 1.308% 0.258%

Table 3.2. The size of NROY space (as a percentage of the original space) after wave 4, when only
regression emulators have been used, and when a Gaussian process has always been used.

provement over only using regression emulators, in the majority of cases. At wave 1 for

each function (i.e. the emulators are being fitted in the full high-dimensional parameter

space), using a Gaussian process emulator rules out much more space than the regression,

fitted using the same ensemble. Often in applications only a single wave will be possible,

so this suggests that even in the full parameter space with a relatively sparse sample, a

Gaussian process should be preferred. For example, for function 1, the regression emulator

at wave 1 gives an NROY space that is 21.4% of X . By instead fitting a Gaussian process,

10% more space can be ruled out, resulting in an NROY space consisting of 11.1% of X .

This is an important result, as it was expected that a polynomial surface would do well

here; even for this type of function, using a Gaussian process is beneficial.

The results at wave 1 for the other functions give a similar story: for function 2, the NROY

spaces have size 5.6% for the regression compared to 1.6% for the Gaussian process. For

function 3, with the larger input space believed to not be as conducive to using Gaussian

processes, the more complicated emulator reduced NROY space to 2.9% compared to 9.4%

for the regression, suggesting that a Gaussian process emulator should be used even when

there are 20 input parameters. For the borehole function (f4(·)), the wave 1 regression

resulted in an NROY space that is 5.7% of X , compared to 0.9% for the Gaussian process.

Table 3.2 shows the sizes of NROY space after wave 4 for each function, for the cases

when only a regression is used, and for when only Gaussian processes are used. Similarly

as for after one wave, the Gaussian process emulators have ruled out more space, and have

managed to find spaces relatively close to the true NROY spaces. For example, after four

waves of Gaussian process emulators for f2(·), the NROY space is 0.39% of X , compared

to the true NROY space of 0.24%. Using only regressions in this case results in an NROY

space that is still more than five times larger than the true space after four waves. For

the borehole function, a similar improvement is observed: the wave 4 Gaussian process

NROY space is slightly more than twice the size of the true space, whereas the wave 4

regression NROY space is more than 10 times larger than the true space.
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While in these examples it is possible to efficiently evaluate predictions for four Gaussian

process emulators, and find runs that are in NROY space, as discussed in Section 3.2.1,

this may not always be computationally manageable. However, the results in Figure 3.5

show that favourable results can still be achieved if a regression is initially used. For these

examples, it has not always been possible to find an NROY space that is extremely close

to the ‘always Gaussian process’ case after four waves if a regression has been used at

wave 1. For example, for functions 2 and 3, there is a clear separation between the blue

line and any of the other NROY spaces at wave 4 (although for these, using a Gaussian

process from wave 2 or 3 onwards still gives a reasonable improvement over only using

regressions).

For function 1 and the borehole function, however, there is evidence of convergence between

the blue, red and black lines at wave 4. That is, after four waves of history matching,

the resulting size of NROY space is similar, regardless of whether the correlated residual

term has been fitted at wave 1 or 2. This is an extremely beneficial property, as it allows

computational savings to be made. Although this convergence has not been observed after

four waves for each of the functions, the NROY space defined by using regressions for two

or three waves, followed by Gaussian processes thereafter, is still substantially smaller than

for the ‘always regression’ case. Therefore, if computing time is an issue, using regression

emulators for the first couple of waves, then fitting Gaussian process emulators for the

later waves, may be a reasonable compromise, in terms of minimising computation time

while finding a reasonable NROY space.

In this setting, the regression is essentially used to capture global variation in the function

output. Having removed parameter settings based on this, a Gaussian process emulator

is then fitted in order to model the local variability in the (possibly small) NROY space.

Intuitively, this makes sense: being able to focus an ensemble in a smaller NROY space

increases the accuracy of the Gaussian process emulator due to the greater density of

points. Therefore, the shrinking of the variance around the design points that the Gaussian

process causes will have a more profound effect than in the full space.
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3.4.2. Highlighting unusual results

In Figure 3.5, there is a discrepancy between the results and our expectation of what the

results should be. Namely, using a Gaussian process emulator more often does not always

result in a smaller NROY space.

For function 1, using a regression at wave 1 followed by a Gaussian process at wave 2 results

in a smaller wave 2 NROY space than when a Gaussian process is used at both waves,

although this difference is reasonably small so may be simply sampling error. Starting to

use a Gaussian process emulator at wave 4 does not have as large an effect as might have

been expected in this example, compared to the impact adding a Gaussian process had at

the previous waves. However, more space is ruled out than by the regression emulator.

The results for function 3 also exhibit some unexpected behaviour. When a Gaussian

process starts to be used from wave 2 onwards (red line), little improvement is made over

the regression at wave 2. Then, at wave 3, only an additional 0.15% of X is ruled out,

before a larger improvement is found after wave 4. There is a similar levelling off, followed

by more space being ruled out, in the always Gaussian process case.

For the borehole function, fitting a Gaussian process emulator at wave 2, having also fitted

one at wave 1, fails to rule out any extra space. Similarly, the red line (Gaussian process

from wave 2 onwards) is flat between waves 2 and 3, before a later improvement. Adding

a Gaussian process at wave 4 after three waves of regression emulators also has no effect,

and neither does the regression emulator at this wave.

For function 3 and the borehole function, not being able to rule out more space in certain

circumstances cannot be because all points in the current NROY space are deemed close

enough to the observation: the sizes of these NROY spaces are not equal or close to the

true NROY percentage. Furthermore, improvements have been made after the size of

NROY space seemingly converged in the experiment. This premature convergence is a

problem, because in applications the true NROY space is unlikely to be known, therefore

results such as the lack of improvement made by the Gaussian process emulator at wave

2 for the borehole function may lead to the incorrect conclusion that space cannot be

reduced any further (although if the average emulator variance is larger than the other

variances, then we can conclude that it should be possible to remove more space). These
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unexpected results are explored further in Section 3.5.

3.4.3. Composition of NROY space

Simply ruling out more space may not be desirable if the emulators are incorrectly ruling

out points that are in fact close to the observations, or are leaving regions of space that

give output far from the observations. Therefore, we also consider the composition of the

various NROY spaces from the above experiments.

To do this, we sample from the NROY spaces as defined above. The true output of the

function is calculated for each sampled point x, and a weighted density of the function

output is calculated, with e−I(x) used as the weight. This weighting is used as it ensures

that as the implausibility decreases (i.e. it is more likely that this point leads to output

consistent with z), the weight attributed to this point increases. If the emulators above

have resulted in low implausibilities for points that in fact give output far from z, this will

be reflected by greater weight being assigned to this output in the weighted density, and

the density will be skewed away from z, leading to the conclusion that the emulators are

not suitable.

Another reason for using this weighting is that this is analogous to Bayesian calibration. If

a uniform prior is assumed for the best input x∗, and using the Normality assumptions of

Kennedy and O’Hagan (2001a), then the likelihood of z is e−I(x) in NROY space. Assign-

ing zero likelihood to points that have been ruled out at previous waves, the re-weighted

sample is then a sample from the posterior distribution π(x∗|z,F(1),F(2),F(3),F(4)).

The weighted densities for some of the NROY spaces for the toy functions are shown in

Figure 3.6. The left-hand panels give these densities for the wave 1 NROY spaces defined

by the regression emulator and the Gaussian process emulator, for each function in turn.

The right-hand panels give the equivalent wave 4 NROY spaces, for the always regression

and always Gaussian process cases. In every case, using a Gaussian process emulator has

reduced the parameter uncertainty: the spread of outputs in the resulting NROY space

has decreased compared to when regressions are used. Using a Gaussian process emulator

has allowed more extreme values, far from z (indicated by the red line), to be ruled out

for each of the four toy functions, whether only one or four waves have been carried out.
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Figure 3.6. The weighted densities for the function output at points in NROY space after wave
1 (left) and wave 4 (right) for each of the four functions, for the ‘always Gaussian process’ case
(blue) and the regression emulators (green). The observation for each function is given by the red
line.

Performing more waves of history matching should lead to a reduction in the spread of

outputs in NROY space, as the emulators should be improving at each wave, and this is

shown to be the case here. However, a more interesting result from these densities is that

for each function except f1(·), there is less parameter uncertainty after one wave when

a Gaussian process is used, compared to when four waves have been performed using

regression emulators. This provides a further reason for preferring Gaussian processes,

even if only one wave of calibration or history matching is possible.

To more formally quantify this difference in the spread of outputs for each emulator, we

consider the variance. For example, for function 1, after wave 1, the variance of outputs

in NROY space is 43.45 for the regression emulator, compared to 26.98 for the Gaussian

process. After four waves of history matching, the regression approach has reduced this

variance to 11.19. However, using Gaussian processes results in a variance of 2.38. This

reduction is observed for each of the other functions, although the weighted densities in

Figure 3.6 are perhaps a better illustration of the changes.

In addition to being superior at ruling out extreme values, using Gaussian process emula-

tors results in another desirable property: in every plot in Figure 3.6, there is more weight

99



3. Multi-wave emulation and calibration

around the true observation in the Gaussian process NROY space, whether after one or

four waves. For function 1, after the first wave, the weighted density for the regression

is skewed away from z. The density for the Gaussian process has a similar shape, but

is much closer to z, although the peak of this density is slightly less than z. After four

waves, the density for the regression is almost centred on z. The Gaussian process NROY

space, however, assigns far more weight around the observation. For this function, it is

clear that using a Gaussian process is superior, as the density assigns more weight to z,

and contains fewer extreme values, at waves 1 and 4.

We expected that the regression emulators would perform best for function 1. Given that

the Gaussian process emulators have been found to be superior in this case, it is not

surprising that similar conclusions are reached for each of the other toy functions. For

function 2, both densities exhibit some bias away from z for each wave. However, the

Gaussian process NROY space is much closer to z for each wave, and performing more

waves moves the peak of the density closer to z, so that the wave 4 Gaussian process

NROY space assigns a large weight to z (although this value does not receive the greatest

weight).

For the 20-dimensional function, f3(·), the wave 1 regression density is fairly smooth,

containing a wide range of values, with the mode of the distribution reasonably far from

z. The Gaussian process improves this, with more weight around z at both wave 1 and

wave 4 (although there is a slight skew in both cases).

For the borehole function, the difference between the two emulator types is most pro-

nounced. After the first wave, the majority of the density for the Gaussian process NROY

space is around the observation, with the peak of this distribution at z. The regression

emulator leads to a much smoother density, with similar weights assigned for a far greater

range of outputs. By wave 4, the regression NROY space has more weight at z (although

this is still less than the wave 1 Gaussian process has), but the Gaussian process NROY

space has a more concentrated peak at z than before, with the majority of the density

falling within 0.25 of z.

In general, by fitting a Gaussian process emulator at the first wave, it has not only been

possible to remove extreme outputs more efficiently, but more weight has been assigned

to the regions of parameter space that in fact lead to output that is closer to the true
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output. If this were a real application, both of these would have an effect on inferences

made about the real system: if new samples were required in the existing NROY space,

if the space of possible outputs is smaller, and more focussed around z, then it is more

likely that runs of the computer model that are similar to z can be found. This in turn

leads to more accurate emulation of the model behaviour in this important region of X .

3.5. Sensitivity to sample design

In the previous section, whilst fitting a Gaussian process generally leads to a smaller NROY

space, and one with superior properties to that defined by regression-only emulators,

Figure 3.5 also highlighted some unexpected results, involving premature convergence of

the size of NROY space, as highlighted in Section 3.4.2. This is not only an issue for

Gaussian process emulators, as this is also observed in some of the regression-only cases.

We focus on the experiment for the borehole function here. One of the problems observed

for this experiment is that when a Gaussian process is used from wave 2 onwards, there

is little difference between the wave 2 and wave 3 NROY spaces, before an improvement

is made at wave 4, showing that the levelling off after wave 2 does not imply that it is no

longer possible to rule out any further parts of parameter space. Related to this, using a

regression for two waves, followed by a Gaussian process at wave 3, resulted in a smaller

NROY space than one regression followed by two Gaussian processes. Furthermore, having

used regressions for three waves, neither emulator ruled out any more space at wave 4.

There are a number of possible reasons for no additional space being ruled out, given that

it is clear that the true NROY space has not yet been identified, so that more space could

theoretically be ruled out using history matching. The mean function that is selected for

the regression or Gaussian process emulator, and hence the estimates of these coefficients,

may not be a good fit. Although each emulator has passed validation checks, there may

be a lot of uncertainty on some of these emulators, resulting in the majority of predictions

lying within 95% uncertainty bounds, but in reality it not being possible to rule out any

parameter settings because the uncertainty bounds also include z. This may be difficult

to fix, as the mean function is selected using a stepwise regression approach, and choosing

which linear terms and interactions to include by hand is not possible for large numbers
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of parameters. Additionally, because the true functions are known, it would be possible

to simply select the interactions that are in the function definitions, but this would not

give an experiment that is representative of applications.

Another potential reason could be due to the fitting of the correlation length and nugget

parameters, in the case of Gaussian process emulators. As before, although certain settings

of these may validate well, they may have large uncertainty associated with predictions.

Selecting these parameters differently may result in superior emulators.

The emulator that is fitted is also dependent on the ensemble that it is fitted with. The

choice of the ensemble directly affects the subsequent choices of the mean function and

correlation function parameters, and there may be situations where the ensemble does not

allow a suitable, representative emulator to be fitted, whether regression or a Gaussian

process is used. Whilst it is generally assumed that the model output can be represented

by a polynomial surface or a Gaussian process, only having a sparse sample of X available

may lead to a different emulator than if the available ensemble size is much larger. For

example, there may be a region of X that has different behaviour from the rest of space,

or where a certain input parameter is active (and inactive elsewhere), and hence having a

point in this region is important if an accurate emulator for all of X is to be built. If this

region is small, then not every Latin hypercube sample of X will contain a point in this

region, and emulation may not be accurate there.

3.5.1. Refitting emulators

In order to improve the results of history matching for the borehole function, we now refit

the emulators that gave little or no improvement to the size of NROY space, with a focus

on the wave 3 Gaussian process, for the case where a regression is used only at wave 1.

First, using the current ensemble from this experiment, we refit the correlation lengths and

nugget, by applying the algorithm in Section 3.3.3 multiple times from different starting

points. Using these refitted emulators, we perform history matching again, and compare

the size of NROY space to that previously defined. However, by simply re-estimating

the correlation parameters, no extra input parameter settings can be ruled out. Ignoring

the algorithm and attempting to fit the parameters using other methods, for example
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maximum likelihood, or by tuning these by hand, was also unable to offer any improvement

on the originally fitted emulator.

To investigate the problem, we take additional samples from the current NROY space,

giving a range of ensembles, from which new emulators are fitted, and a new history

match is carried out, giving a range of sizes of potential NROY spaces. Some of these new

emulators do allow a smaller NROY space to be found at wave 3, suggesting that it may

be the original ensemble that is the problem. The ‘best’ emulator (i.e. the one that leads

to the smallest NROY space), with newly estimated mean function, correlation lengths

and nugget, is fitted to the ensemble from the original experiment.

Fitting this new emulator, and using this for history matching, leads to a smaller NROY

space than originally found, and one that is similar in size to the NROY space found

using the ‘best’ emulator. This suggests that the problem is in fitting the emulator: it

is important to be able to select the correct mean function and correlation parameters,

although this was not possible with the original ensemble, and these could only be identified

using a completely different sample. Since with a poor mean function, it was not possible

to find correlation lengths that resulted in a smaller NROY space, this suggests that if the

mean function is chosen well, then reasonable correlation lengths can also be found: if the

mean function is a good fit, then there is less variability to be explained by the residual,

and it is generally more straight-forward to fit a Gaussian process.

Given that it has now been shown that it is possible to find a smaller NROY space

using the original ensemble, we now consider an alternative method for fitting the mean

function based on this ensemble. In the automatic approach for fitting emulators in this

experiment, the mean function was selected using a stepwise approach with a noise variable

added, to guard against overfitting. However, there is a possibility that this variable

could be correlated with other input variables, leading to premature selection of the noise

variable, and hence termination of the process. Using different samples from the Normal

distribution, different mean functions can be fitted, for the same data.

To account for this potential problem, we take 10 separate samples of the noise, and fit a

new mean function for each. The best mean function from these is then selected, in the

sense that the most variation in the ensemble is explained. However, all of these resulted

in poor fits, with the same inadequate mean functions selected commonly. The best fitting
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Figure 3.7. The progression of the sizes of NROY space for the borehole function. The dotted
lines indicate the original NROY spaces found, as in Figure 3.5, with the solid lines showing
improvements achieved through either fitting a new mean function (in the case of GP2 (red line)),
or by taking a new sample in the existing NROY space.

mean function from this sample contained only seven predictor terms, with only three of

the eight input parameters highlighted as active, leading to an emulator with high variance

and little ability to rule out parameter settings.

By taking further samples of the noise, and fitting new mean functions for the same

ensemble, we eventually select a better mean function, although the majority of new mean

functions we found gave poor fits. This better function contains more of the borehole

function parameters, and is similar to the one selected by using a different ensemble.

Fitting new correlation parameters for the Gaussian process with this mean function, the

new emulator leads to a wave 3 NROY space that is 0.36% of X , compared to 0.84% in the

original experiment. This is much more in line with what would be expected, and is very

similar to the NROY space found at wave 4 in the original experiment: by refitting the

emulator, it has been possible to achieve the same results after three waves that originally

required four.

Figure 3.7 shows the original results for the borehole function, with this new emulator

added. However, it has not been possible to fix the other unexpected results highlighted

previously by fitting alternative mean functions to the original ensembles. For the wave 2

emulator for the ‘always Gaussian process’ case, and for when a regression is used for the

first three waves, re-sampling the noise variable and fitting new mean functions did not

offer any improvement over the original emulators. By taking a new sample in the current

NROY space, and fitting new emulators using this ensemble, both of these results can in

fact be improved, and these are also shown in Figure 3.7. The results here are now more
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in line with the other functions.

For the always Gaussian process case, instead of there being little change between waves 1

and 2, a better emulator allows a reduction in the size of NROY space to be made at wave

2. Now, the size of NROY space after two waves is similar to the size after four waves in the

original experiment, therefore allowing computational savings if an accurate emulator can

be fitted. Similarly, for the wave 3 regression NROY space, the new regression is unable

to rule out much more space, but the Gaussian process emulator is far more accurate, and

converges to a similar-sized space as for the other experiments, reinforcing the conclusion

that originally fitting regressions is acceptable.

These results demonstrate that selection of the mean function is important, and that it

is sometimes possible to improve this by taking multiple samples of the noise variable,

and fitting different mean functions based on this. The automatic method used in the

experiment above can be simply adjusted to allow multiple mean functions to be fitted,

and the best of these can be used to fit the final emulator. This fixes some of the unusual

results.

However, fitting the mean function well is completely dependent on the ensemble available,

as no other prior information is assumed, given that the toy functions are treated as

unknown. Therefore, the problem becomes one of sample design: when a different sample

is selected from NROY space, and used to create the ensemble, it is possible to fit a superior

mean function, and hence emulator, which appears to be more accurate across the whole

NROY space. In this experiment, it is possible to simply discard the original ensemble

and take a new sample from NROY space as the toy functions can be run instantaneously.

This is not possible when model runs are expensive, hence the sample design problem is

an important one.

3.6. Application to an environmental model

Having established these ideas using toy examples, we now verify whether they hold when

an actual physical model is used for history matching.

The IC fault model is a cross-sectional model of a reservoir, with three unknown parame-
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ters: h, the fault throw; kg, the good-quality sand permeability; and kh, the poor-quality

sand permeability (Tavassoli et al., 2004, 2005). This model is known to be difficult to

calibrate accurately, hence investigating whether history matching is suitable, alongside

performing the same experiment as for the toy functions, is an interesting question. This

also provides a good example of the types of environmental models that history matching

is used for, as there are multiple outputs for each parameter choice: the model returns a

monthly time series for 36 months of the oil production rate o, the water injection rate w,

and the water cut (or production) rate c.

Parameter space having only 3 dimensions, and the output being deterministic (no internal

variability) does not correspond as well with typical climate applications. However, the

IC fault model is used for this study because it is a calibration problem that has been

solved by ‘brute force’, with a database of 159,661 runs at different parameter choices.

Therefore, it is now a test bed for efficient methods, as the solution space has interesting

features.

Using this model, and the large database of known runs, removes the need to run a

time-consuming model, which would be prohibitively expensive to implement for the same

experiment performed for the toy examples. Instead, samples from this database can be

drawn to create ensembles. Given that there are a large number of model runs, emulation

and history matching would be more accurate if more of these runs were used. However,

in typical applications, there will not be access to a database of runs such as this, therefore

small samples are taken here. The methodology of Gramacy et al. (2015), where Gaussian

process emulators are fitted locally to a large ensemble of model runs, may in reality lead

to a more accurate calibration exercise, if this were the only goal here.

The observations that we will match to are given in Figure 3.8. The water injection and oil

production values remain relatively constant over the 36 months, with some fluctuations,

and a drop-off in the oil production from month 27 onwards. Around the same time as

this, the water production rate begins to increase from zero.

106



3. Multi-wave emulation and calibration

Figure 3.8. The observations for the IC fault model.

3.6.1. Summary statistics

Given that the model output here is multivariate, in the form of three separate time series,

it would be possible to emulate the entire series using one of the multivariate emulation

techniques from Section 2.4. However, in order for a comparison to be made with the

results obtained for the toy examples (Section 3.4), we define summary statistics of the

output, and emulate these instead of the full output. There are strong correlations between

certain outputs, so that history matching using a limited number of these may give similar

results to using all of the outputs.

It would be possible to, for example, average across each of the time series and build

emulators for this summary. However, this ignores any trends, and runs in NROY space

may not appear similar to the observations when plotted. Therefore, we select the following

three summary statistics:

• o24, the oil production rate in month 24.

• o36, the oil production rate in month 36.

• w36, the water injection rate in month 36.

The first two of these are designed to capture the decline in the oil production rate over the

final 12 months of the observations. w36 is included so that runs with the correct magnitude

of the water injection rate after 36 months can be found. The water production rate is

ignored in this experiment. In the ensemble of model runs, the time where the increase
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from zero starts varies. Hence, this time may be difficult to emulate using standard

emulation techniques, and the results here may not be directly comparable to the toy

example conclusions.

The observed values for these statistics are given by the following vector:

z = (563.6, 387.5, 917.2)T

In order to history match, the variance of the observation error is also required. Neither

this nor the discrepancy variance are known, and hence they are combined in this problem.

This combined variance is set equal to 1 for each output.

Previously, we were only matching to one observation, therefore using the univariate def-

inition of the implausibility, and ruling out points where this implausibility was less than

3, was possible. Here, because we build independent emulators for each of the three statis-

tics, there will be three implausibility values for every x. Therefore, the second maximum

implausibility measure (Craig et al., 1997) is used to define NROY space:

I2M (x) = max
i

({Ii(x)}\IM (x))

where

IM (x) = max
i
Ii(x)

with parameter settings not ruled out if I2M (x) < 3.

3.6.2. Sampling from the database

The other change that is required from the toy example experiment is that it is not possible

to run the IC fault model at any parameter setting. However, using the database of 159,661

runs, ensembles can be created, with the ensemble size n set equal to 60.

To create the ensemble used to fit the wave 1 emulators, we divide parameter space along

each dimension into 60 sections of equal length, so that X is divided into 603 cubes.

Then, similarly to Latin hypercube sampling, we select 60 of these regions, so that when

projected onto each individual dimension, each of the 60 sections contains exactly one

point. For each of the 60 selected regions in 3-dimensional space, a run is sampled from
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Figure 3.9. The parameter settings for the runs in the database that are in NROY space according
to the three chosen statistics.

the database. This gives an original sample that is a Latin hypercube, using the constraint

that only certain parameter settings are available.

At later waves, to create new ensembles, we draw samples from the database of runs,

and evaluate the relevant emulators at each point to determine whether that run is in

the current NROY space. If it lies in NROY space, then this run is added to the new

ensemble.

3.6.3. True NROY space

Since there is a large database of model runs, using the observations and variance to

be used in history matching, we calculate the implausibility for each of the runs in the

database, with no emulator variance. This can be used to identify whether the model

can actually reproduce the observations, and the size of the true NROY space can be

estimated.

The runs that are in NROY space for the chosen statistics, using the second maximum

implausibility measure and a cutoff equal to 3, are shown in Figure 3.9. From this picture,

it is clear that the true NROY space is split into two disjoint regions of X . For each

pairwise parameter plot, there is a separation between two groups of possible optimal

values. This property of the true NROY space may make it challenging to find the exact

space with the standard emulation techniques used in this study, although this may not

be a problem until after several waves have been performed and space has already been

constrained substantially. This true NROY space consists of 0.14% of X .
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Figure 3.10. The progression of the size of NROY space when history matching the IC fault model
with only regression emulators, and when starting to use a Gaussian process emulator at different
waves.

3.6.4. History matching results

Similarly as for the toy functions, we now perform a four wave history matching experiment

for the IC fault model, with the required adjustments in the method as described above.

The results of this experiment are shown in Figure 3.10.

The main conclusion from these results is the same as before: the Gaussian process cases

all outperform the regression-only case, generally by a large percentage. When a regression

emulator is used at every wave, the resulting NROY space is still large, with 61% of X in

this space. At the other extreme, when a Gaussian process emulator is always used, an

NROY space containing 11.5% of the original parameter space is found. The other three

cases give results between these two NROY spaces. Using a regression for the first three

waves followed by a Gaussian process leads to an NROY space with 26% of X , while using

a regression for two waves followed by two waves of Gaussian process emulators results in

33% of X not being ruled out.

However, the same problem observed previously is shown again here: for the case where a

Gaussian process is used from wave 2 onwards, it has not been possible to rule out much

additional space after wave 2. After 2 waves of history matching here, NROY space is 62%

of X , while after 4 waves it is still 58%. This suggests the importance of the sample design

once again. Despite this problem, the resulting NROY space after 4 waves is still smaller

than that when regression emulators are always used. As well as for the reasons discussed

previously, the sensitivity to sampling for this model may be due to the disjoint nature

of the true NROY space, perhaps leading to a difficulty in building accurate emulators,
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Figure 3.11. A parameter plot showing the true NROY space (green) and points classified as being
in NROY space after 4 waves when regression emulators are used at each wave.

Figure 3.12. A parameter plot showing the true NROY space (green) and points classified as being
in NROY space after 4 waves when Gaussian process emulators are used at each wave.

unless points in certain informative regions of space are observed.

As before, the size of the resulting NROY space is not the only important result. Pairwise

plots of the parameters for points in the wave 4 NROY space where only regression emula-

tors have been used are shown in Figure 3.11, with the equivalent plot for when Gaussian

process emulators are always used in Figure 3.12. The runs in the true NROY space are

overlaid in green for each of these.

For the regression emulators, only 39% of parameter space has been ruled out after four

waves, and this is highlighted by the pairwise parameter plot, with few regions of space

where there are no runs. The majority of runs that have been ruled out are on the edges

of parameter space. For example, when kg is high (greater than 0.5) and h is less than

0.6, all runs have been ruled out. The sections of space where the true NROY runs are

located have not been ruled out, however it has not been possible to rule out any of the

space between the two disjoint regions of the true NROY space. If there was no access to

the large database of runs, and conclusions were to be made from only the four waves of

history matching using regression emulators, it would not be possible to infer much about

the true shape of NROY space.
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Figure 3.13. The output for four runs in NROY space, when a Gaussian process emulator is always
used, with the solid lines giving the model output for a particular parameter choice, and the dotted
lines showing the observations. Red is the water injection rate, black is the oil production rate,
and blue is the water cut.

Figure 3.12 illustrates how Gaussian process emulation has improved the final NROY

space. Although the separation between the two regions of the true NROY space has not

completely been identified, a lot more of the structure of this space can be seen in the

pairwise plots. For example, there is a clear relationship between kg and kp, with a linear

section of space linking the two true NROY regions. For the other plots, the true runs lie

towards the edge of this wave 4 NROY space, with some runs lying in between. As for

the regression case, all of the true NROY runs lie in this NROY space.

Comparing these two cases shows that always using a Gaussian process emulator has ruled

out significantly more space than the regression-only history matching, and has done so

as accurately. The true structure of NROY space has also started to be highlighted by

the Gaussian process NROY space, whereas using regressions has been unable to rule out

much space.

Some of the runs in the wave 4 NROY space defined by always using a Gaussian process

are shown in Figure 3.13, selected by random sampling from this NROY space. The first

run (top left) matches the water injection rate well for the whole 36 months, although

the oil production rate stays relatively constant over the last year, a departure from

the observations, where this rate decreases. This run is however in the current NROY

space because of the decision to conservatively rule out runs with the second maximum

implausibility measure, so that o36 does not necessarily need to match the observed value.

This run also does not have a good match for the water production rate, as it only begins

to increase from zero around month 35.
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The second sampled run (top right) is a far superior match for z, and despite the fact

that the water production rate was not explicitly involved in history matching, this run

is close to z for each time series. The third run (bottom left) slightly underestimates the

water injection rate, but does capture the decrease in oil production adequately, and has a

similar magnitude to the observed increase in water production, albeit a couple of months

too late. Finally, the fourth run looks similar to the first, with the difference that the

water production never increases above zero.

3.6.5. Calibration

As for the toy functions (Section 3.4.3), we calibrate based on the NROY spaces defined

by the regression and Gaussian process emulators after waves 1 and 4, assigning a uniform

prior in NROY space for x∗. Figure 3.14 shows the densities for each of the outputs that

have been history matched to, with the vertical red lines indicating the observed value of

each. These were calculated by sampling 1000 points from the database for each NROY

space.

For o24, the density for the wave 1 NROY space, defined by either the regression or

Gaussian process emulator, is centred at the true value of this output. The Gaussian

process emulator assigns more density to this true value. After four waves of history

matching, always using regression emulators has not offered a large improvement; the

density here is similar to the wave 1 Gaussian process density. Using Gaussian process

emulators for four waves has narrowed the density, with a larger peak at the true value.

The results for w36 (bottom plots) are similar, with the wave 1 densities centred at the

observed value, with a higher peak for the Gaussian process NROY space. After wave 4,

the regression has improved, but the Gaussian process NROY space is again far superior,

with more extreme values removed, and more density assigned to the truth.

For o36, the results are less conclusive. There is not a large improvement between waves,

and it is not clear that the Gaussian process is superior. A potential cause of this is

that NROY space has been defined using the second maximum implausibility measure, so

that o36 is allowed to be inaccurate if the other two outputs match the observations. For

example, half of the 1000 runs in NROY space used for the wave 4 Gaussian process plot
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Figure 3.14. The weighted densities for the function output at points in NROY space after wave
1 (left) and wave 4 (right) for the output statistics, o24, o36 and w36, for the ‘always Gaussian
process’ case (blue) and the regression emulators (green). The observation for each of the outputs
is given by the red line.

have implausibilities greater than 3 for o36, so that these would be ruled out if we only

matched for this output. These runs have less density assigned to them, however. This

result may be highlighting that, generally, accurate values for o24 and w36 can be found,

but doing so has an adverse effect on o36. A further wave could focus on ruling out runs

based on o36 only.

Overall, the conclusions made from these densities are similar to those found from the toy

functions: the Gaussian process emulator outperforms the regression emulators, and in

fact the wave 1 calibration given by the Gaussian process emulator is similar or superior

to the calibration given by the regression emulators after four waves of history matching.

Performing additional waves results in a greater accuracy of calibration, particularly for

Gaussian process emulators.

3.7. Discussion

In this chapter, the statistical emulation techniques of regression and Gaussian processes

have been compared for multi-wave history matching. Using two 10-dimensional toy func-

tions, a 20-dimensional function, and the standard test problem, the borehole function,

various combinations of emulators have been used to history match the functions. The
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same experiment was then performed for an environmental model, with the caveat that

there were only three input parameters, resulting in a substantially smaller input space

than for the earlier examples.

The results above suggest that it is beneficial to fit a Gaussian process emulator when

history matching, either for a single wave or multi-wave experiment. When performing a

single wave, we found that using a Gaussian process offers a significant improvement over a

regression emulator, both in terms of the size and the composition of the resulting NROY

space. In every example, a smaller NROY space was found using a Gaussian process

emulator, and sampling these NROY spaces showed that more density was distributed

around the observation than for the NROY spaces defined by regressions. This remained

the case after multiple waves of history matching were performed, with a single wave

of Gaussian process history matching commonly outperforming four waves of regression

emulators.

Finding a smaller, and more accurate, NROY space, will have a substantial impact on

any inference made about the real system that the model represents. Performing a single

wave has always been the practice in Bayesian calibration-only analyses (Kennedy and

O’Hagan, 2001a, Rougier, 2007, Higdon et al., 2008b, Sexton et al., 2011), so using a

Gaussian process in these applications (as advocated by Kennedy and O’Hagan (2001a))

rather than regression (e.g. in Sexton et al. (2011)) should allow the calibration to be

improved.

The results in this chapter also suggest that history matching should be performed over

multiple waves, where resources allow this. How to allocate resources is an interesting

question: if, for example, a total of n runs of the model can be obtained, how best to

allocate these accordingly across waves is not obvious. Here it has been assumed that a

fixed number of new runs can be sampled at every wave, but this may not be the most

efficient way to rule out space.

In many applications, particularly in climate, regression-only emulators are used (Rougier

et al., 2009, Sexton et al., 2011, Holden et al., 2013, Williamson et al., 2013), with the

expectation that fitting a Gaussian process will make little difference to the calibration

or history matching to be performed, due to the huge parameter spaces and small sample

sizes. However, the results in this chapter suggest that even in this setting, the cumula-
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tive effect of the variance shrinkage around these sparse points can be enough to have a

significant, and lasting, effect on the analysis. Over multiple waves, using a Gaussian pro-

cess often resulted in a large improvement over the case where only regressions were used,

and in some of the examples, performing more waves of regression did not overcome the

difference made by fitting Gaussian processes at the first couple of waves. However, due

to the longer computational times associated with Gaussian process emulators, and the

large number of emulators or waves that can be required (Section 3.2.1), there is perhaps

some trade-off to be found between the two emulator types (Andrianakis et al., 2017).

When it is possible to carry out history matching in multiple waves, it may be acceptable

to fit a regression emulator at wave 1. This allows space to be ruled out based on global

behaviour initially, before fitting a Gaussian process at later waves allows local behaviour

to be modelled more accurately. This methodology is shown to be a reasonable approach by

the above experiments, as some convergence is observed between the size and composition

of NROY spaces when regression emulators are used for a couple of waves, and when

Gaussian processes are always used. This would allow computational time to be saved

thanks to fewer Gaussian process evaluations being required to determine whether millions

of points in X are in NROY space. This would also reduce the time required to fit the

emulator initially, as no correlation parameters would need to be estimated, which can be

difficult and time-consuming.

For the IC fault model, additional outputs were added so that the experiment more accu-

rately reflected a typical history matching exercise in this field. In general, the experiment

performed for this model agreed with the conclusion from the toy experiment: if multiple

waves are to be performed, then using a regression initially followed by Gaussian pro-

cesses later on is acceptable. Both the toy experiment and IC fault experiment suggest

that fitting emulators, and hence the sample design in NROY space, is important.

It may be expected that adding a correlated residual term can make up for a poor choice

of mean function, and indeed, this is part of the reason that many papers advocate the use

of a constant mean for the Gaussian process (Sacks et al., 1989b, Chen et al., 2016). The

fact that this was not found to be the case in numerous applications of the method should

be troubling. A possible reason for this may be that the assumption of a weakly stationary

process being a good approximation for the functions was not valid, and different emulator

types should be used (although the emulators all passed the standard validation tests, and
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the majority of results were as expected).

By taking more time to fit the emulators, some of the unexpected results relating to a

premature convergence in the size of NROY space are improved. However, it appears

possible to have an ensemble where it is not possible to fit a good emulator, while this can

be overcome if an alternative ensemble is sampled. This suggests that a good sample design

is crucial, as this directly affects the accuracy of the emulator that can be fitted. When

new ensembles were sampled, it was often much more straight-forward to fit an accurate

emulator, and the first mean function selected using the stepwise approach would allow

accurate correlation lengths to be estimated, and result in a reduction in the size of NROY

space.

It is not clear what constitutes a better sample design in this case. In this experiment,

NROY spaces were sampled from by successively taking Latin hypercube samples until

enough NROY runs were found. The aim of this was to ensure a reasonable coverage of the

NROY space, however the fact that repeating this procedure can lead to extremely different

emulators and results suggests that simply spreading out the available design points is not

enough. It may be that there are (possibly small) regions of the current NROY space

where it is more important to have design points, perhaps because the output varies more

in that region. Therefore, samples where this region was highlighted allowed more space

to be ruled out, compared to ensembles that missed this part of space, because emulation

was more accurate there. We provide a different method for designing an ensemble in

NROY space in Section 5.6.1.

The location of these important regions of space may be difficult to detect without any prior

knowledge. It may simply be enough to change the design methodology, for example after

wave 1 by placing more points where there is larger uncertainty in the current emulator.

However, although the wave 1 emulators in the toy function experiment all performed

well, there is no reason why a general wave 1 space-filling sample guarantees the ability to

fit the correct mean function. This is troubling, as often there will be no prior knowledge

as to which regions of high-dimensional space the small number of design points should

be placed in, so a space-filling design is generally preferred.

It is not inconceivable that sometimes it will not be possible to improve perceived anoma-

lous results, regardless of the sample, perhaps due to the limited number of runs in high-
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dimensional space, and this may be a problem for both regression and Gaussian process

emulators. However, it is hoped that this will very rarely be the case, and that when a

single computer model is being history matched, and only one emulator needs to be fitted,

more time can be allocated to ensuring an informative ensemble design, and careful fitting

of the emulator.

Poor emulator performance may also be observed if the NROY space that the emulator

is built to be accurate in is not connected. In general, it may be extremely challenging

to identify that the true space consists of multiple separate regions of space, due to the

high-dimensional nature of the space, and may lead to one poor emulator being fitted

(e.g. because high leverage points were used when fitting the mean function), whereas a

separate emulator for each disjoint part of NROY space may be more appropriate.

This has perhaps caused an issue with the IC fault model. For this model, it is known

that the true space where the model is consistent with the observations is disjoint. In

order to perform a more accurate history matching that may be able to rule out more

space, fitting separate emulators for the two different parts of parameter space may be

necessary. Careful consideration of the design in this complicated NROY space would be

required. For example, how these two sets should be defined needs to be considered: in

the final Gaussian process NROY space in Figure 3.12, parts of the space between the

two disjoint sets have not been ruled out. Even given the knowledge that the resulting

space will be disjoint, it is not clear over which subregions of NROY space the emulators

should be defined. For points between the two disjoint NROY spaces for the IC fault

model, should classification be simply done using Euclidean distance, or using a more

complicated measure, e.g. by placing points in the most important parts of NROY space,

and identifying which parts result in similar model behaviour, by some metric.

Another way to improve the IC fault model history matching would be to emulate and

match using more of the outputs, or to emulate the entire time series using any multivariate

emulation approach. This should improve the match between the observations and runs

in the final NROY space, as rather than runs only needing to be within the tolerance to

error at (at least two of) three outputs, this would be required everywhere. However, due

to the correlations between outputs, the runs in NROY space match the observed time

series reasonably well, except for the water cut. If a further wave was to be performed,

emulating a statistic of this time series, such as output at month 36, or where non-zero
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values start to be observed, would allow more space to be removed.

Additionally, at later waves the emulators are more representative of the computer model,

as there are more points in a smaller space. Therefore, rather than using the more con-

servative second maximum implausibility measure, runs could simply be discarded if any

of the individual implausibilities are greater than 3.

3.8. Conclusion

The comparison of regression and Gaussian process emulators in the context of multi-wave

history matching in this chapter suggests that, in general, Gaussian process emulators

should be favoured over regressions, regardless of the dimensionality of the input space,

and that history matching should be an iterative process. The only exception is if there

are either a large number of outputs being emulated, or several waves to be performed.

In this case, it is acceptable to fit regression emulators initially if the computational

burden is too great. For single wave experiments, as is usually the case in Bayesian

calibration, a Gaussian process emulator should be used. The examples considered here

were all relatively smooth, and of moderate dimension, so that these conclusions may not

be completely general.

It is more common, especially in the case of climate models, that the model output is

high-dimensional, for example a spatial field over the globe. While this output can be

compressed using summary statistics, as for the IC fault model here, and univariate his-

tory matching can be performed, as the dimensionality of the output field increases it

may be more informative to use the entire field to inform the history matching, allowing

correlations between outputs to be accounted for. By selecting only some outputs of the

model, history matching will find an NROY space based on the observations for these

outputs, but offers no guarantee that the other outputs will return acceptable values.

Higher-dimensional emulation and history matching will be explored in Chapter 4.
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4. Looking the wrong way: the problem

with the SVD basis

4.1. Introduction

There are a number of different methodologies that have been applied for the emulation

and calibration of computer models with large spatial output, as discussed in Section 2.4.

As the size, l, of the spatial output increases, the most computationally feasible option is to

project this output onto a basis, usually derived from an ensemble of computer model runs

(Higdon et al., 2008a, Wilkinson, 2010, Bayarri et al., 2007). This significantly reduces the

dimensionality of the problem, and results in more straight-forward and efficient emulation.

The most commonly used basis in applications is the basis derived from the singular value

decomposition of the ensemble, henceforth described as the ‘SVD basis’ (Higdon et al.,

2008a). The ensemble is projected onto a truncated version of this basis, with emulators

built for the coefficients, either univariately or multivariately, with history matching or

calibration performed either on these coefficients, or on reconstructions of the original field

(Foley et al., 2016, Chang et al., 2017) (see Section 2.4.1 for more details).

When the size of the ensemble, n, is small, relative to the dimension of the spatial field,

l, the SVD basis is not of full rank. This is very common, particularly for climate models

(e.g. Sexton et al. (2011) uses an SVD basis for 280 ensemble members and 175,000

outputs). Therefore, it is not possible to represent a general spatial field with this basis,

and reconstructions using coefficients on this basis are restricted to an n-dimensional (or

n − 1, if the ensemble mean has been removed) surface in l-dimensional space. When

calibrating or history matching, it is important that reconstructions that are ‘similar’ to

the observations z are found if they exist. However, as we will show, when the basis is
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purely ensemble-derived (as the SVD basis is), we may never find good reconstructions,

regardless of whether they exist over the spatial field, as we are restricted to the (at most)

n-dimensional subspace.

This chapter investigates the properties of the SVD basis method for calibration. In it,

we highlight a serious deficiency with the method that, as far as we are aware, has not

appeared in the literature on high-dimensional calibration in uncertainty quantification.

Section 4.2 introduces an idealised spatial example that will be used for illustrative pur-

poses. Section 4.3 discusses the issues that using the SVD basis for projection may cause,

and Section 4.4 investigates whether these perceived issues are evident when calibrating

and history matching the spatial toy function. Section 4.5 introduces two climate models

to show that the highlighted problems are seen in important applications. Section 4.6 pro-

poses an alternative method for selecting a basis for this problem, and Section 4.7 applies

this method, identifying benefits and drawbacks of our approach.

4.2. A spatial toy example

In order to illustrate and investigate the benefits and drawbacks of the SVD basis method,

we design an idealised example, which we will hereafter refer to as the ‘toy example’. There

are several important features that this function requires so that it is useful for providing

insight into current practices in the literature.

The main reason for using a toy function is that it is quick to evaluate for any setting

of the parameters, but also that the dimensionality of the output is not so great that

this causes computational difficulties. When calculating the multivariate implausibility

for a parameter setting x in history matching (Craig et al., 1997), or the likelihood for

x in calibration (Wilkinson, 2010), an inversion of an l × l variance matrix is required.

This varies with x, so that to evaluate the implausibility or likelihood as often as required

in calibration or history matching, thousands or millions of matrix inversions may be

required. To allow for this, the toy example developed here will have 100 outputs, arranged

in a 10× 10 field when displayed, and treated as a 100-dimensional vector in calculations.

To study the quality of the SVD basis when patterns similar to the observations are not
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available from the ensemble, the majority of function evaluations from a Latin hypercube

sample of parameter space should lead to model output that is dissimilar to the obser-

vations. Therefore, the region of parameter space that contains output similar to the

observations should be small, so that it is unlikely that an initial ensemble of model runs

will capture the required signal in the output.

We use a ‘perfect model’ approach, so that the experiment is one where it is known that

an x∗ exists with f(x∗) that matches the observations, up to observation error. The

question then becomes one of whether or not this x∗ can be found using the SVD basis

and calibration or history matching.

Given all of these requirements, we design a toy function f(x), with six input parameters

x1, . . . , x6 that each take on values in [−1, 1]. The function is defined using a set of

orthogonal basis vectors (ϕ1,ϕ2, . . . ,ϕ8) specified over a 10 × 10 grid, shown by Figure

A.1. Combinations of these basis vectors are summed to give an output field f(x), given by

(A.5). The most important of these basis vectors are ϕ1 and ϕ2, as they have been defined

to represent the main signal for the ‘true pattern’ found in the observations, and the ‘biased

pattern’ found in the majority of the ensemble. To represent internal variability, every

time the function is run, 100 samples are taken from a zero mean Normal distribution,

and added to the deterministic portion of the output to give f(x).

The least important parameter is perhaps x1, as it does not provide any contribution to

either ϕ1 or ϕ2. x2, and to a lesser extent x3, affect ϕ2, with values towards the boundaries

of the interval [−1, 1] providing a larger effect. x4 gives the value of the Normal density

with mean 0.2 and variance 0.12, so that x4 would need to be close to 0.2 to have a large

impact on ϕ1. x5 and x6 in combination are also important for driving the pattern in ϕ1.

The value of x∗ is chosen as

x∗ = (0.7, 0.01, 0.01, 0.25, 0.8,−0.9)

However, because for real-world systems the observations are only accurate up to some

observation error, a value from the distribution of this error, N(0,Σe) is sampled, and

added to the model output at x∗ to give the observed field, z. Here, Σe is defined

using the Gaussian correlation function, with the input parameters treated as the spatial
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Figure 4.1. The observations, z, for the toy function (left), and the mean of the ensemble F.

coordinates of the 10 × 10 grid, si = (ai, bi). The correlation length for each dimension

is set equal to 1, the nugget parameter set at 0, and the common variance multiplier set

equal to 1, so that the i, jth entry of Σe is

Σij
e = exp{−(ai − aj)2 − (bi − bj)2} (4.1)

The observations, z, are shown in the left panel of Figure 4.1. A key feature of this spatial

field is that the largest output values appear on the diagonal going from the bottom left to

the top right (for simplicity, this diagonal pattern will be described as the ‘main diagonal’

in future). In the other corners of the output are the smallest output values, with values

less than zero towards these corners. Between these two distinct features there are no

clear patterns. The location of the largest output values will be of most interest.

A Latin hypercube sample of size 60 is taken from the 6-dimensional parameter space X ,

giving an ensemble F = (f(x1), . . . , f(x60)) with dimension 100× 60. The gridded model

output is converted into a vector by ‘stacking’ the columns: the first column of the output

matrix is entered into the 100-dimensional vector first, followed by the second column, and

so on until the 100-dimensional vector contains all of the gridded output. The right panel

of Figure 4.1 shows the mean output field of this ensemble (and this is representative of the

individual model runs). Here, the largest values are no longer on the main diagonal, and

instead lie one grid box above the main diagonal. Essentially, the most common output of

the model is this biased version of z, with the strongest signal shifted away from the main

diagonal, and increased in intensity. This successfully sets up a problem with the desired

qualities.
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The output of the toy function could be thought of in a climate context. For example,

the strong signal in the spatial field could be the Gulf Stream, with this observed in the

incorrect location in the model output. The problem is then to identify whether or not

the model can fix this observed bias.

4.3. The SVD basis

Given an ensemble F = (f(x1), . . . , f(xn)), an (l × n)-dimensional matrix containing the

vectorised spatial fields in the n columns, define the ensemble mean µ as a vector of length

l, with ith entry

µi =
1

n

n∑
j=1

fi(xj)

where fi(x) is the ith output of the model at x. In all that follows, the ensemble mean

will first be removed from the model output, to remove common patterns that explain a

large percentage of the ensemble variability. The centred ensemble is defined as

Fµ = (f(x1)− µ, . . . , f(xn)− µ) (4.2)

The SVD (or principal component) basis is found by calculating the singular value decom-

position of the centred ensemble (Golub and Reinsch, 1970):

FT
µ = UΣVT (4.3)

The SVD basis is defined as the first n−1 columns of V, and is denoted Γ = (γ1, . . . ,γn−1).

The first q columns of this basis are referred to as Γq, and this basis is named the ‘truncated

basis’. The discarded basis vectors are denoted by Γ−q.

To project a spatial field f(x) with l outputs onto a basis Γ with n−1 vectors, we calculate

c(x) = (ΓTΓ)−1ΓT (f(x)− µ) (4.4)

This reduces the dimensionality of the output at x from l to n − 1: instead of having l

outputs associated with x, there are now n− 1 coefficients for each x.

The coefficients can be used to ‘reconstruct’ or ‘back-project’ to the original l-dimensional
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output space, giving a reconstruction r(x) of f(x):

r(x) = Γc(x) + µ

= Γ(ΓTΓ)−1ΓT (f(x)− µ) + µ

(4.5)

This may not be identical to the original field: the basis is not full rank because n < l,

and hence any general l-dimensional vector may not be represented exactly using Γ. If

however x ∈ (x1, . . . ,xn), those inputs used in the ensemble F, then the reconstruction is

exact. Jolliffe (2002) shows that this is the case generally when principal components of

data are taken, and this holds in the computer experiment application.

In the case of the SVD basis, ΓTΓ is the identity matrix, and the expressions in (4.4) and

(4.5) can be simplified to remove the matrix inversion.

Combining the methodology of Higdon et al. (2008a) for emulating spatial fields using an

orthogonal basis, with the univariate Gaussian process emulator methodology of Haylock

and O’Hagan (1996), we build emulators for the coefficients of the first q SVD basis vectors:

ci(x) ∼ GP(mi(x), σ2iCi(x,x)) (4.6)

where mi(·) and Ci(·, ·) are chosen mean and correlation functions, which may be different

for i = 1, . . . , q. Only the first q basis vectors have emulators built for the coefficients

because projection onto these vectors explains the majority of ensemble variability (gen-

erally, 90% or 95% is deemed to be sufficient). The later basis vectors are difficult to

emulate due to explaining a small percentage of variability, so are not included directly

at the emulation stage. In this chapter, the uncertainty due to ignoring these vectors is

incorporated into the variance of the emulated reconstruction, as in Wilkinson (2010),

giving the following posterior distribution for the emulator for f(x):

f(x)|F,σ2,φ ∼ N(Γqm
∗∗(x),ΓqC

∗∗(x,x)ΓTq + Γ−qΣ
∗ΓT−q) (4.7)
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where

m∗∗(x) = (m∗∗1 (x), . . . ,m∗∗q (x))T

C∗∗(x,x) = diag(σ21C
∗∗
1 (x,x), . . . , σ2qC

∗∗
q (x,x))

σ2 = (σ21, . . . , σ
2
q )

Σ∗ = diag(Σq+1,q+1, . . . ,Σn−1,n−1)

m∗∗i (x) and C∗∗i (x,x) are the posterior mean and variance from the Haylock and O’Hagan

(1996) univariate emulators (equations (2.9) and (2.10)) for the coefficients on basis vector

i, and Σq+i,q+i is the eigenvalue for the (q + i)th basis vector, given by Σ in (4.3).

Therefore, given emulators for the ensemble coefficients on the first q basis vectors, equa-

tion (4.7) gives a probability distribution for the field. This distribution can be used for

calibration, or an expectation and variance can be extracted for history matching the

spatial field.

4.3.1. For the toy example

Using the toy example defined in Section 4.2, and the previously described ensemble F with

n = 60 members, we calculate the SVD basis. First, the ensemble mean is subtracted from

each individual model run, before this centred output is decomposed via singular value

decomposition, giving 100× 59 basis Γ.

The first 8 SVD basis vectors are shown in Figure 4.2. Between them, these 8 vectors

explain over 99.9% of the variability in the ensemble. Even after the ensemble mean has

been subtracted, the basis vector that explains the most variability in the centred ensemble

highlights the off-diagonal pattern, with a strong signal here and little difference from zero

elsewhere. This basis vector explains 64% of the variability in the centred ensemble, and

is generally similar to ϕ2 from the definition of f(·).

The second SVD basis vector mainly captures the pattern from ϕ4, and explains 16% of

the variability across the ensemble. The third SVD basis vector mostly corresponds with

ϕ3, explaining 11% of variability. These first three SVD basis vectors explain 91% of the

ensemble variability between them, and adding in the fourth SVD vector (with a similar
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Figure 4.2. The first 8 SVD basis vectors of the centred ensemble.

pattern to ϕ8) increases the total percentage explained to 96.6%. The basis would be

truncated here in applications, because the vast majority of ensemble variability (> 95%)

has been captured with these four basis vectors. The remaining basis vectors individually

explain very small proportions of the ensemble variability, and hence do not contain much

signal when the ensemble is projected onto them. This may be a problem if these basis

coefficients need to be emulated.

However, these next SVD basis vectors are shown here in Figure 4.2 for illustrative pur-

poses. The sixth SVD basis vector looks extremely similar to z, highlighting the main

diagonal as well as having negative values in the corners. Although this basis vector only

explains 1% of the ensemble variability, it is perhaps important to include this in any

analysis because of the desirable pattern it exhibits.

It is slightly fortunate, and due to the construction of the toy function using orthogonal

vectors, that this pattern, similar to the chosen observations, is clearly visible in the SVD

basis. In most applications, this pattern, if it is represented by the ensemble variability

at all, will not (or is unlikely to) appear in this manner. For example, if there were more

orthogonal directions in the function definition, then this pattern, if present, would likely

be more hidden. It may be a low-eigenvalue basis vector, and if n was higher, this may

never be checked, or, even worse, it may be disguised as a linear combination of several

different eigenvectors, and be impossible to identify by eye.

Even if we observe that an important vector, in terms of being similar to z, is found later
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in the SVD basis, simply extending the truncated basis to include this will not usually be

a suitable fix. It is likely that this basis vector explains < 1% of the variability in Fµ,

and hence building emulators for the coefficients will likely lead to predictions with a large

amount of uncertainty for all x, so that they are not informative.

To illustrate this problem, we fit an emulator to the coefficients on the sixth SVD basis

vector for our toy function. The cross-validation plot for this emulator is shown in Figure

4.3. There is a large uncertainty on all predictions, relative to the spread of coefficients.

The majority of the ensemble members give projections close to zero, due to the lack of

ensemble signal explained by projection onto this basis vector, with a couple of extreme

values. Due to these outlying values, the emulator that has been fitted gives predictions

away from zero for some of the ensemble members with coefficients similar to zero. Fur-

thermore, the emulator has failed to predict the two most extreme ensemble coefficients.

Given that the projection of the observations onto this basis vector gives a coefficient of

51, it is clear that this emulator is not of practical use, as it will not be able to give this

as a prediction, even with uncertainty included.

For this reason, it is realistic to truncate the SVD basis after 95% of ensemble variability

has been explained, as this would normally occur in applications. Throughout this thesis,

we assume that a large proportion of variance explained is a reasonable proxy for ease

of emulation. This truncated SVD basis is hereafter referred to as Γ4. Truncating the

basis in this manner allows a comparison to be made between bases with and without the

pattern similar to z in them. If the basis does not contain this pattern, how does this

affect the calibration or history matching, and can accurate conclusions be made, given

that the true value of x∗ is known?

4.3.2. Reconstructing z

In calibration or history matching, the goal is to find parameter settings that are either

consistent, or not inconsistent in the case of history matching, with z. For spatial problems,

general output fields cannot be found using the projection and reconstruction method, as

the rank of the basis is (n− 1) << l. Even if the number of ensemble members is greater

than the number of outputs, because the basis is truncated so that emulators can be built,

the basis used for emulation and then calibration is not of full rank. Therefore, the choice
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Figure 4.3. The leave-one-out cross-validation plot for the emulator for the coefficients given by
projecting onto the sixth vector of the SVD basis, with the error bars representing 99% uncertainty
bounds.

of basis constrains the original l-dimensional output space so that only a subspace of it

can be found using reconstructions with this basis.

This perhaps identifies a fundamental problem with the SVD basis. Since it is only defined

using the ensemble, it relies on the fact that ensemble members and the observations are

similar enough, i.e. they contain the same main modes of variability, so that the SVD basis

is an acceptable representation of the model output, both seen and unseen. Any ensemble

member can be represented perfectly using the SVD basis by definition, and because the

model is representing a physical system, it is hoped that the physics of the model are

adequate for reproducing the observed values of the system, to within some tolerance to

error. If z is similar to runs in F, the SVD basis may be adequate for reconstructing z.

In most applications, only a vanishingly small region of parameter space has been explored

with the ensemble, and it may not be representative of, or be able to capture, all important

or feasible model behaviours, especially if l is large. When the model represents a complex

physical system, there are likely to be differences between z and F in certain regions of the

output. Due to the limited number of directions that can be defined using the ensemble,

these differences will not be accounted for by the SVD basis. If a certain pattern or bias

is found in every member of the ensemble, this bias will be contained in the SVD basis,

and hence also in any reconstructions of model output given by this basis. However, this

does not necessarily imply that this bias is a structural error, as it may be that the correct

part of parameter space has not yet been explored.
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To illustrate the above scenario, consider an extreme example where every member of

the ensemble is a multiple of the off-diagonal basis vector, ϕ2. Then, there is only one

orthogonal direction of variability in the ensemble, and the SVD basis for this ensemble will

consist of a normalised ϕ2, denoted ϕ̃2, followed by some arbitrary patterns orthogonal to

this. 100% of the ensemble variability would be explained by the first SVD basis vector,

and each ensemble member could be represented perfectly just using this vector. However,

this basis vector can clearly not represent any other variability allowed by the true model

f(·). A general field with non-zeros away from the off-diagonal projected onto the first

SVD basis vector would give a coefficient c. When used for reconstruction, the resulting

field would be cϕ̃2, with any patterns away from the off-diagonal lost.

Signal in a general l-dimensional vector may be lost when projected onto q or n basis

vectors, for q < n << l. If the ensemble, and hence the SVD basis, does not contain

patterns similar to z, this signal may be lost through projection and reconstruction: for

any given coefficients, reconstructions of fields given by the SVD basis may contain any

strong signals that are present in the ensemble.

We now illustrate this using f(·). The ensemble, and hence the truncated SVD basis

Γ4, contains a strong signal on the off-diagonal, whereas when calibrating, we are more

interested in fields where the strongest signal is observed on the main diagonal, as for z.

If z is projected onto this basis, and is then mapped back to the original l-dimensional

output space, the resulting field is given by

r(z) = Γ4(Γ
T
4 Γ4)

−1ΓT4 (z− µ) + µ

The left panel of Figure 4.4 shows this field, and we see that it is completely different from

z. Projecting onto Γ4, and then reconstructing using these coefficients, has removed the

strong signal on the main diagonal, and given a field that is relatively constant everywhere.

Note that there are no emulators involved here: the exact coefficients found when z is

projected onto Γ4 have been used for this reconstruction. Therefore, once emulators are

added, even if these emulators are perfect representations of the coefficients on each basis

vector, with no uncertainty on the emulator predictions, a field resembling z cannot be

found.
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Figure 4.4. The reconstruction of z after it has been projected onto the first four SVD basis vectors
Γ4, and the full SVD basis Γ.

If, instead, z is projected onto the full SVD basis Γ, the reconstructed field is extremely

similar to z, as shown in the right panel of Figure 4.4. The reconstruction using this basis

has captured the important patterns of z, and although the individual grid box values are

not exactly the same as for z, this is due to the noise in the ensemble.

Rather than this being an argument for using the full SVD basis in place of the truncated

version in general, the excellent reconstruction of z with the full basis in our example is due

to including the sixth SVD vector, i.e. the one with a pattern similar to z. Once this vector

is included in the basis, the reconstruction of the observations improves dramatically. That

is, this is a property of the construction of the toy function and ensemble, instead of a

general property of an SVD basis. Even if the answer were as simple as using the full SVD

basis, emulation becomes a problem due to lack of signal on lower-order basis vectors (as

demonstrated in Figure 4.3).

The property of being unable to reconstruct z with Γ4 suggests that if the desire is to find

parameter settings that reproduce z, the truncated SVD basis is not suitable: even before

emulators are involved, it is impossible to produce output fields similar to z. The basis

choice has restricted the space of possible reconstructions to a 4-dimensional subspace in

100-dimensional space, that does not contain the important patterns of z.

The implication that this has on a potential calibration or history matching exercise is

problematic. Despite the fact that the true x∗ is known for the toy example, being unable

to find fields in the output space that are similar to z, or even contain the main diagonal

signal from z, is likely to lead to all of parameter space being ruled out when history
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matching. When all of parameter space is ruled out, if the emulators are accurate (which

is likely to be the case for the first four SVD basis vectors), then the conclusion is that

the computer model does not have parameter settings that lead to z, under the current

tolerance to error, and any biases may be deemed structural errors. This would be an

incorrect conclusion for this example, given that x∗ exists.

Bayesian calibration by definition must return a probability distribution over the input

parameters, regardless of the suitability of the computer model for representing z. In the

situation that the difference between z and emulated outputs is large (given the various

uncertainties required), calibration will return a spike of density somewhere in X . There is

no guarantee that this will correspond to x∗, leading to a likely-incorrect region of param-

eter space being highlighted, rendering the calibration distribution useless if forecasting is

the intended goal.

Both calibration and history matching may be unable to overcome a poor basis, and ruling

out all of parameter space or highlighting the wrong region of X may not imply that x∗

does not exist. Instead, the basis, and hence emulator, may not be allowing a search in the

correct directions of the output space. This will be explored further with the toy example

in Section 4.4.

4.3.3. Quantifying the reconstruction error

Although in our example it is clear that Γ4 poorly reconstructs z, the difference between

z and reconstructions of z using a basis needs to be quantified. For a general basis

B = (b1, . . . ,bq) with q vectors, which need not be orthogonal, we define this difference

as the ‘reconstruction error’:

RW(B, z) = ‖z−B(BTB)−1BT z‖W (4.8)

where

‖z− r(z)‖W = (z− r(z))TW−1(z− r(z)) (4.9)

(see Section 5.7 for a refined version of (4.8)). It is desired that ‖z− r(z)‖W is less than

ε, for some chosen tolerance to error ε > 0 and an l× l weight matrix W. Rather than z,

this will instead generally be the centred version, z−µ, because the basis will be defined
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using the centred ensemble. We will continue to refer to z, as it will be clear from context

whether this has been centred by the ensemble mean.

The choice of the weight matrix should be problem dependent. If all outputs are to be

treated equally, for example if there is no prior knowledge about the structure of any

errors, then W may be set equal to the l× l identity matrix I l. Then, if the expression in

(4.8) is divided by l, averaging the reconstruction error across the l grid boxes, this is the

mean squared error for the difference between z and its reconstruction. By introducing

this division by l, (4.8) can be described as the ‘weighted mean squared error’, given a

weight matrix W. The tolerance to error ε may then be set based on this. If the output

field is temperature, for example, then ε could be set equal to 1, i.e. it is desired that

reconstructions are within, on average, 1◦C of z.

If the reason for emulation is to calibrate or history match f(·), then a natural alternative

choice for W is the sum of the observation error and discrepancy variances, as in the

definition of implausibility. If history matching is to be performed, then these quantities

should already be available, and can therefore be used to assess the quality of the basis

prior to emulation. This would allow for any known structural errors to be accounted

for in the reconstruction: if it is known that accurate values cannot be found for some

grid boxes when f(·) is run, then differences between z and the reconstruction for these

outputs should not be weighted as highly as outputs for which accuracy may be possible.

Similarly, if there are known observation errors, and these vary across the outputs rather

than being constant, then including these errors in W may be sensible.

By setting W = Σe +Ση, equations (4.8) and (4.9) have a similar form as the multivariate

implausibility:

I(x) = (z− E[f(x)])T (Var(f(x)) + Σe + Ση)−1(z− E[f(x)]) (4.10)

Rather than the emulator expectation, equation (4.8) contains the reconstruction of z

with the basis B. Since this is an exact calculation with no emulation involved, there is

no associated variance term for this, and hence the matrix to be inverted is W. Instead of

comparing the expected difference between the observations and the output at parameter

setting x, (4.8) replaces the latter with the reconstructed field. This is analogous to the

implausibility because it is also comparing z to another output field, and therefore the
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history matching bound for NROY space can be used to select ε.

For multivariate history matching, the bound T for ruling out parameter settings is gener-

ally based on a chi-squared distribution with l degrees of freedom (Vernon and Goldstein

(2009), see Section 2.7.2):

T = χ2
l,0.995 (4.11)

If the multivariate implausibility at x, as given by (4.10), is greater than the 99.5% value

of this chi-squared distribution, then x is unlikely to give output close to z, with respect

to Σe and Ση. This can be extended to say that if the reconstruction of z with basis

B gives an implausibility greater than this value, then this run would be ruled out when

history matching is performed: even with perfect emulation, the basis representation of z

would be ruled out because it is too dissimilar to z.

Therefore, with perfect emulators, all of space would be ruled out using this basis. This

would likely lead to the conclusion that there is structural error in f(·), and it is not

possible to find parameters that give z. However, the choice of basis has guaranteed

that this would be the conclusion, independently of the quality of the model. If it is not

possible to accurately represent the observations with the basis, then this will always be

the conclusion (unless there is large enough emulator uncertainty causing less space to be

ruled out), regardless of whether x∗ does exist.

This issue can be illustrated with the spatial toy function. Setting the weight as the

identity matrix, so that each grid box is treated equally, the value of the reconstruction

error can be calculated for each truncated basis derived from the SVD basis: Γ1, . . . ,Γ59,

where Γq denotes the first q vectors of Γ. These are shown by the red lines in Figure 4.5,

where the reconstruction error in equation (4.8) is scaled by l = 100 (i.e. this is the mean

squared error in this case). If the bound is set as the 99.5% quantile of the chi-squared

distribution with 100 degrees of freedom, T , and this is divided by 100, this can also be

plotted and compared to the reconstruction error. This is added as a horizontal dotted line.

Whether it is possible to find reconstructions of z using Γ, up to this tolerance of error,

can then be identified visually: where the red line is below the bound, reconstructions of

z would not be ruled out if history matching was performed using this basis, with W as

the variance.

The blue line in Figure 4.5 shows the percentage of ensemble variability explained by
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Figure 4.5. A plot showing how the reconstruction error, scaled by the field size l = 100 (red), and
percentage of ensemble variability explained (blue) change as the SVD basis is increased in size,
for W = I l (left) and W = 4I l. The horizontal dotted line gives ε = T/100. The vertical dotted
line shows how many basis vectors are required to explain at least 95% of ensemble variability.

projection onto the first k vectors of Γ, V(Γk,Fµ). In the case of the SVD basis, this is

defined as

V(Γk,Fµ) =

∑k
i=1 Σ2

ii∑n
i=1 Σ2

ii

(4.12)

i.e. the squares of the first k eigenvalues are summed over, and divided by the total sum

of squares. A more general definition for the percentage of variance explained by a basis

will be given in Section 4.6.4.

The type of plot in Figure 4.5 will be referred to in future as a VarMSE plot, and the

reconstruction error will always be scaled by the number of dimensions, l.

From this plot, as suggested by comparing reconstructions of z, the first six SVD vectors

are required to achieve an adequate reconstruction of z. When only the first four are

used (Γ4) so that 95% of the ensemble variability is accounted for, as shown by the

vertical dotted line, the reconstruction error is substantially larger than the bound, and

the observations would be ruled out. In reality, history matching will not be performed

using the identity matrix to represent the observation error and discrepancy variances.

However, if these are defined as a scalar multiplied by the identity matrix, the (left) y-axis

is simply divided by this scalar. This is demonstrated by the right plot in Figure 4.5,

where a constant combined error and discrepancy variance equal to 4I l is assumed. In
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this case, this does not change the conclusion that at least the first six SVD basis vectors

are required.

These types of plots can offer a simple diagnostic check for whether a basis is suitable.

Although only the identity and constant variances have been used in Figure 4.5, it high-

lights the types of conclusions that may be made. In this example, the SVD basis clearly

contains the important patterns that allow accurate representations of z, however they

would not be included in a standard application of the SVD methodology for emulation

due to explaining low percentages of the ensemble variability.

This setup allows the potential flaws of the SVD basis as discussed earlier to be studied. It

is known that this toy example has settings of the parameters that lead to output close (up

to the assumed errors) to the observations, but that the dominant signal in the ensemble,

and indeed in the majority of X , is biased away from this. Naively, by looking at the

ensemble of runs, it may be tempting to conclude that the model is not able to find the

observations, and this perceived model inadequacy may be incorporated immediately into

the discrepancy term.

If the error and discrepancy variances are known in a problem, then the reconstruction

error never going below the bound T suggests one of two things: either the specification

of the discrepancy is incorrect, as the model can never get as close to z as desired, or

the ensemble does not yet contain directions that allow this to be properly assessed. This

advocates a multi-wave approach to exploring the output space.

4.4. Calibrating the toy function

The previous section suggests that Γ4 may not be useful for calibrating or history matching

f(·). In order to perform either, a specification for the discrepancy variance Ση is required,

in addition to the earlier described variance for the observation uncertainty Σe (4.1).

Given both Σe and Ση, the SVD basis’s suitability for reconstructing the observations

can be properly assessed via the VarMSE plot. By setting W = Σe + Ση so that the

reconstruction error is analogous to the multivariate implausibility, if

RW(Γ4, z) > T
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then the representation of z on this basis would be ruled out by history matching, i.e. the

basis is inadequate for searching for z.

4.4.1. Specifying the discrepancy variance

Although it is known that the toy function can reproduce the observations z, at least up

to the observation error Σe, a non-zero discrepancy variance may still be included when

history matching or calibration is performed.

Adding a discrepancy variance allows for the importance of regions of the output field

to be accounted for. For example, it may be considered most important to achieve the

correct magnitude for the output on the main diagonal of the field. If this is correct, one

may not be as interested in the patterns elsewhere. A discrepancy can be constructed to

reflect this desire, resulting in a true NROY space with less tolerance to error on the main

diagonal than elsewhere.

Rather than introducing additional parameters to be estimated (as in Kennedy and O’Hagan

(2001a)), the discrepancy will instead be given fixed values for this problem. This has the

benefit of not introducing potential identifiability problems due to the estimation of pa-

rameters for the emulator and discrepancy components of the overall model using the same

ensemble (see Section 2.7.3 for more discussion of discrepancy).

The discrepancy in our example could be specified using the random noise representing

internal variability. However, this will not usually be known, and here it is assumed to

be small compared to Σe. Therefore, the discrepancy here will be used to represent the

importance of certain patterns in the output.

The discrepancy for the toy function is modelled as a zero mean l-dimensional Gaussian

process:

η ∼ N(0,Ση)

For the discrepancy variance matrix, variances vi for the discrepancies for each grid box

are defined. Combining these with a spatial correlation function gives the (i, j)th entry of

the variance matrix as

Σij
η = vivjC(si, sj)
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where C(·, ·) is a correlation function that gives the correlation between locations si and

sj . Therefore, the parameters that need to be defined to complete the specification are

v1, . . . , vl and the correlation length parameters of C(·, ·).

For this example, the most important aspect of the output is the signal on the main

diagonal, and spatial fields where this is accurate, but perhaps aren’t exactly correct

elsewhere, should not be ruled out. Let the indices for the grid boxes on the diagonal be

contained in the set S. Then the discrepancy variances vi are specified via

vi =


w1 if i ∈ S

w2 otherwise

w1 is set equal to 0.1, and w2 to 1, so that the discrepancy allows the output to be ‘more

wrong’ outside of S. The specification of the discrepancy is completed by using the squared

exponential as the correlation function, with the correlation length parameters both set

equal to 1, as in the definition of Σe.

This method for defining the discrepancy could be extended to k sets of indices, if there

were a reason to further divide the grid boxes. For the toy function, a separate multiplier

could have been included for the patterns in the corners of the observations. However,

these are not deemed to be as important, and hence are treated in the same fashion as

the other grid boxes that are away from the main diagonal, and grouped with them.

With this discrepancy, the reconstruction error for each truncated SVD basis, RW(Γq, z),

can be calculated using W = Σe + Ση, giving the VarMSE plot in Figure 4.6. The

reconstruction error now corresponds directly to the implausibility due to the choice of

W. This makes little difference to the previously observed plots (Figure 4.5), and again

the first 6 SVD basis vectors are required for the reconstruction error to be below the

history matching tolerance to error, T .

This check on the suitability of a basis has never, as far as we’re aware, been performed

in the calibration or history matching literature. The standard practice is to truncate the

basis once a chosen threshold of ensemble variability is passed, or when basis coefficients

become difficult to emulate. Whether or not this gives a basis that represents z is not

considered.
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Figure 4.6. A plot showing how the reconstruction error (red) and percentage of ensemble vari-
ability explained (blue) change as the SVD basis is increased in size, for W = Σe + Ση, with the
dotted lines defined as in Figure 4.5. As before, the left y-axis is scaled by l = 100.

4.4.2. True NROY space

Using the error and discrepancy variances, the theoretical ‘true’ NROY space can be iden-

tified. Since the toy function is quick to evaluate, the spatial output for any parameters

x can easily be evaluated. Using this, the ‘true’ implausibility of this field can be calcu-

lated, with no emulator uncertainty involved, to estimate the percentage of X that leads

to output close to z, given Σe and Ση.

Figure 4.7 gives a representation of this true NROY space, both as pairwise densities and

points. The densities are plotted by calculating the proportion of each pairwise combina-

tion of parameters that is not ruled out, when averaged across all the other parameters

(an ‘optical depth plot’ (Vernon et al., 2010)). The orientation of the axes for the lower

left plots has been changed to allow easier comparison between the two halves. The green

point in each pairwise plot shows x∗, with the true NROY space in a region around this

point.

Across the whole parameter space X , the true NROY space consists of around 0.01% of

parameter settings (note that without the added discrepancy term, the true NROY space

is roughly 20% of this already small space). The locations of these points are shown here,

and appear to be in a connected subspace of X . From this, it is fairly clear that the value

of x1 is not particularly important. However, finding the correct settings of each of the

other parameters is crucial.
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Figure 4.7. A picture showing the true NROY space for the spatial toy function. The density
plots on the bottom left half show the proportion of space that is in the true NROY space for each
pairwise combination of the parameters, averaged over the remaining parameters. The plots on the
top right show the corresponding points in the true NROY space. The axes have been switched
for the plots in the lower half (i.e. the higher parameter is always on the x-axis) so that these
correspond to the top half. The green point corresponds to x∗.

When calibration is performed for this function, the result should be that (the most likely)

x∗ is one of the runs in this true space. This is also the space that multi-wave history

matching should be able to find, although the number of waves required may be high due

to the small size of this space.

4.4.3. Calibration

We perform history matching and calibration using the truncated SVD basis Γ4. The

reconstructions of the previous section have suggested that it is not possible to find the

observations with this basis. However, this may change when emulator uncertainty is

included. Given that calibration always returns a probability distribution over the input

parameters, it is possible that there will be non-zero posterior density at x∗ if this run is

one of the closest representations of z with the chosen basis. Whether this is the case is

investigated.

We apply the spatial calibration methodology of Wilkinson (2010) here. The ensemble

runs are projected onto the basis, and Gaussian process emulators are constructed for the

coefficients on the first four basis vectors (4.6), using the method from Section 3.3.3, with
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simulated annealing in place of the previous step-by-step approach (see Appendix B.3 for

validation plots for these emulators). The posterior distribution is given by mapping the

emulator expectations and variances back to the original field of size l, with the discarded

basis vectors accounted for in the variance (4.7).

Using this definition, the calibration distribution for the inputs is found via

π(x∗|z,F) ∝ π(f(x∗)|F,x∗)π(x∗)

There is assumed to be no prior information about the input parameters, therefore π(x∗)

is taken to be a uniform distribution on [−1, 1] for each input dimension.

We use MCMC to sample from this posterior distribution. A Metropolis-Hastings algo-

rithm is used in this instance (Metropolis et al., 1953, Hastings, 1970). At each step,

a sample is drawn from the proposal distribution for x∗, and the likelihood of f(x∗) is

calculated. This new parameter draw is then either accepted or rejected based on the

Metropolis acceptance ratio. For this example, the initial value for the chain was set as

x∗, so that it is possible for the MCMC to return this result.

The proposal distribution q(x′|x) is given a Normal distribution, so that it is symmetric:

q(x′|x) ∼ N(x,Ψ)

so that the proposed value x′ is sampled from a Normal distribution, with mean equal to

the current value x, and a specified variance matrix Ψ.

The acceptance probability is set as

α = min{1, r(x,x′)}

for

r(x,x′) =
q(x|x′)l(x′)
q(x′|x)l(x)

where l(·) is the likelihood:

l(x) ∝ π(x∗)|V(x)|−
1
2 exp{−1

2
(z− E(f(x)))T (V(x))−1(z− E(f(x)))}
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for

V(x) = Var(f(x)) + Σe + Ση

with a uniform prior assumed for π(x∗), and E(f(x)) and Var(f(x)) given by equation

(4.7). To determine whether the proposed value is accepted, a value p is sampled from

the uniform distribution U(0, 1), resulting in

xnew = x′ if p < α

xnew = x else

The chains are run multiple times with different choices of the proposal variance Ψ, result-

ing in similar converged chains each time. The posterior distributions for each parameter

also exhibit the same general results with any choice of thinning. Figure 4.8 shows the

posterior distributions with every 100th sample of the chains included. The converged

MCMC chains for this calibration are given in Figure C.1.

In Figure 4.8, the values of x∗ have been added as vertical red lines so that a comparison

can be made between the calibration results and what a perfect calibration would hope

to return. Here, it is clear that the calibration has not been accurate. From the earlier

plot of the true NROY space, x1 was the least constrained parameter, with comparatively

narrow ranges required to return the best runs for each of the other parameters. In this

posterior, x1 has been restricted, and the peak of this distribution is reasonably close to

the true value of x1, denoted by x∗1. Similarly, x2 is close. However, there is little posterior

density assigned to x∗2, with a sharp peak of density slightly above this value. This may

not necessarily be a problem by itself, given that the runs in the true NROY space can

take on this value, so that while this may not give exactly the observations, it may still

be suggesting a run that is within the tolerance to error of z.

For x3, there is a clear deviance from x∗. Rather than being centred around x∗3 = 0, all of

the posterior density is at the lower end of the potential values. x4 is possibly the most

important parameter for z as it controls the strength of the signal on the main diagonal.

The mode of the posterior for this parameter does lie around x∗4, but there remains a wide

range of possible values: the calibration has been unable to give much insight about this

important parameter. The posteriors for x5 and x6 both contain a spike. For x5, this is

very close to the true value, but for x6, calibration has led to overestimation of this input.
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Figure 4.8. The posterior distributions for each of the parameters, when calibration is performed
using the SVD basis Γ4. The red vertical lines indicate the true value of x∗.

Taking the posterior distributions individually suggests that calibration has not managed

to find the best, or possibly even good, settings of x. There is a possibility that when

taken jointly, samples of parameters from these distributions may result in output fields

that are at least similar to the observations, even if they do not exactly reproduce them.

We draw samples from these posterior distributions, and run the toy function at these

sampled values.

The output at 16 samples from the posterior are given in Figure 4.9. Every sample contains

the biased version of the observations, with the largest values lying on the off-diagonal.

Some of these runs do have slightly higher values on the main diagonal than the ensemble

mean (Figure 4.1), with some light blue values observed here. However, it has not generally

been possible to improve upon the runs that were used for the selection of the basis.

This shows that if the basis is chosen purely using the ensemble, and does not contain

patterns that are similar to the observed field, then the results of a calibration may be

incorrect, and the posterior may not identify regions of parameter space that give output

similar to the observations, even in scenarios where these settings are known to exist. The

biases from the ensemble, and hence the inability to reconstruct z using Γ4, have carried

through to the calibration and remain evident in the results.

This is a problematic result, as it leads to the incorrect conclusion that a parameter setting

x∗ does not exist so that f(x∗) is equal to z, up to observation error. This suggests that

there is a discrepancy between the model and the observations, and the conclusion of this
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Figure 4.9. f(x) at 16 samples of x from the calibration posterior distribution, using the SVD
basis Γ4 for projection and emulation.

exercise would be that there is structural error in the model. If forecasting was the goal,

then the discrepancy term may be changed to reflect this. In applications, the computer

model will represent something physical, based on known equations of physical processes.

The discrepancy, on the other hand, is a statistical model. If forecasting is performed using

a large discrepancy to account for a perceived structural error that has been identified,

then rather than using the physical component of the model to forecast, the statistical

discrepancy will dominate the forecast. In scenarios such as for the toy function, where

the perceived structural error does not in fact exist, the physical equations of the model

would play less of a role in predicting future output than they could, potentially reducing

the meaningfulness of and confidence in forecasts.

4.4.4. History matching on the field

Instead of calibrating, due to the clear failure of this method using the chosen basis, we

perform history matching using the same ensemble, definitions of the observation error

and discrepancy variances, basis, and emulators for the coefficients.

To ensure a fair comparison with calibration, history matching is carried out using the

multivariate implausibility in (4.10), with the emulator predictions and variances mapped

back to the original 100-dimensional output as in (4.7). The uncertainty from the discarded
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basis vectors is therefore accounted for here as well. The implausibility for each point x

is then calculated from this expectation and variance. An inversion of a 100× 100 matrix

is required to calculate the implausibility for each x, a small enough dimension that it is

computationally possible to evaluate the implausibility at millions of points quickly. The

bound used to define NROY space is the 99.5% value of the chi-squared distribution with

100 degrees of freedom (Vernon et al., 2010). This is equal to 140.2.

Calculating the implausibility for Latin hypercube samples of X , it is found that there

are no parameter settings with implausibilities below 140.2, and hence all of parameter

space is ruled out. The implausibilities range from 172 to 1464, so that all of parameter

space is ruled out even if the 99.99% value of the chi-squared distribution is used to define

NROY space. The runs that were earlier found to lie in the true NROY space have

implausibilities between 174 and 207. When emulator uncertainty is added, it is expected

that the implausibility decreases because the output is not known as accurately. The

opposite has happened for these runs due to the poor reconstructions with the SVD basis

Γ4.

Similar to the calibration in the previous section, this result implies that under this speci-

fication of the discrepancy and observation error, there are no parameter settings that give

fields similar to the observations, and that there may be structural error in the computer

model. Again, the conclusion of the chosen tuning method is incorrect.

The wrong conclusions are reached by both calibration and history matching due to the

choice of basis. The ensemble containing biases away from the observations, and hence

the SVD basis vectors required to explain at least 95% of the ensemble showing these

biases also, resulting in poor reconstructions of z, is the cause of this. Despite the fact

that Figure 4.6 suggests that including the sixth basis vector may rectify this problem,

this basis vector only explains 1% of the ensemble variability, and it is not possible to

fit an emulator with much or any predictive ability to these coefficients. An alternative

approach to basis selection may be required to accurately solve this calibration problem,

and will be explored in Section 4.6.

146



4. Looking the wrong way: the problem with the SVD basis

4.5. Climate models

In this section, two climate models are introduced, that each give spatial output over a

large field. The same problem of being unable to reconstruct the observed field using the

SVD basis is illustrated here, implying that these results have implications for important

applications.

4.5.1. ORCA2

ORCA2 (Rodgers et al., 2003, Madec, 2008) is the version of the ORCA model, a configu-

ration of the NEMO ocean model, with output over a grid over the global oceans with 2◦

resolution. NEMO is the ocean model used in the majority of the world’s climate mod-

els, and ORCA is the configuration used by the UK climate model, UKESM, at different

resolutions. Other countries using NEMO include France, Germany, Canada, USA, and

many more. We consider 21 input parameters of the model, controlling various aspects

of physical processes (see Williamson et al. (2016) for additional details). 20 of these are

scaled so that they take on values in the interval [−1, 1], with the final parameter being a

switch parameter, constrained to be equal to either 2 or 3.

Williamson (2015) designed an ensemble with 400 members for ORCA2 using a 25-

extended 16 point Latin hypercube, and this ensemble is used here. The model output is

given over a 360 × 180 grid on the entire globe, with values given for ocean temperature

and salinity for 31 levels of the ocean. A large percentage of the 64,800 grid boxes are over

land, and hence do not return values for these ocean outputs, and therefore the dimen-

sionality of the output is l = 39, 547. This output is given as a time series, with values

at monthly intervals for each grid box for 180 years. The model output over the last 10

years is averaged, so that this becomes a spatial problem rather than a spatio-temporal

one. The focus here is on the ocean temperature at the highest level, i.e. the sea sur-

face temperature (SST). The observational data for the SST is given by the EN3 dataset

(Ingleby and Huddleston, 2007).

Figure 4.10 shows the SST anomaly between the mean of the ORCA2 ensemble, and the

EN3 observations. In the anomaly field there is a dipole in the North Atlantic Ocean,

at the location of the Gulf Stream, with a band of strong positive bias alongside one of
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Figure 4.10. The anomaly between the ensemble mean and the SST observations, in ◦C.

negative bias. This appears to indicate that in the model output, the Gulf Stream is in

the wrong location. This situation mirrors the toy function, with a biased version of the

observations being more prevalent than the truth for sampled values from parameter space,

although whether the model can in fact remove this bias or whether this is a structural

error is unknown.

Other large biases between the ensemble and the observations are found in the Pacific

Ocean near to the coast of Japan, with a warm bias in the model here. The Southern Ocean

also contains large anomalies, with strong cold biases near New Zealand and Argentina.

The anomalies between the ensemble and observations are as large as 6.5◦C.

As with the toy function, the mean of the ensemble is subtracted from each individual

ensemble member so that common trends are removed. The singular value decomposition

of this centred ensemble is calculated, giving the SVD basis (Figure 4.11). The first

basis vector explains 54% of the variability in the (centred) ensemble, and highlights the

anomaly pattern observed in the Gulf Stream. In fact, patterns in the North Atlantic are

observed in the majority of the leading basis vectors. The other major patterns from the

average anomaly (Figure 4.10) can be observed in one of the first nine basis vectors.

In order to explain greater than 90% of the ensemble variability, the first 10 vectors of the

SVD basis are required. To explain 95%, a further 10 are needed, and as these next 10

combined only explain an extra 5%, emulation may be difficult, and hence emulators would

only be built for the first 10 SVD basis vectors in an application. To assess the suitability

of this basis truncation, the observations are projected onto this basis, and then these
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Figure 4.11. The first nine basis vectors of the SVD basis for the centred ORCA ensemble.

coefficients are used to reconstruct the original field. The anomaly of this reconstruction

is shown in Figure 4.12.

This reconstruction consists of similar patterns to the anomaly for the ensemble mean,

with slightly weaker biases in some places. For example, there is less of a warm bias in

the Gulf Stream, and some of the warm biases previously observed in the Southern Ocean

are not present. This reinforces the fact that as only the ensemble informs the choice of

the SVD basis, patterns observed in the ensemble are still present in the representation of

z (or any other general field) on this basis.

To produce the VarMSE plot, we need to specify W. In lieu of knowledge about the true

observation error or discrepancy variances, each grid box will be weighted equally. As

regions coloured white (anomalies of between -1◦C and 1◦C) in the plots are generally

deemed to be ‘close enough’ to the truth by the modellers (‘white is alright’), we set this

range of ±1◦C as equal to 3 standard deviations, so that the majority of grid boxes will

have an error less than this if a field is not ruled out. Therefore, the identity matrix is

multiplied by 1
9 (the variance that gives a range of 2◦C as 3 standard deviations) to give

the weight matrix (equivalently, this can be thought of as Σe here).

The VarMSE plot in Figure 4.12 shows the reconstruction error for z when using the SVD

basis, with this specification of the error variance. It shows that the reconstruction error

never falls below T , even when all 400 basis vectors are used. Adding more basis vectors

149



4. Looking the wrong way: the problem with the SVD basis

Figure 4.12. The anomaly between the reconstruction of the SST observations and the observations,
using the first 10 SVD basis vectors for projection and back-projection. The right panel shows the
VarMSE plot with W = 1

9I l (solid line) and W = I l (dotted line).

improves reconstructions greatly, so that the truncated SVD basis theoretically performs

worse than the full one, but regardless of where the basis is truncated, the representation

of z on this basis would be ruled out. Although the true observation error and discrepancy

variances are likely to be more complicated, with non-zero covariances, the magnitude of

the error used here is reasonable, and clearly suggests that this basis is not suitable.

If instead we choose to set 1◦C as 1 standard deviation, we have W = Σe = I l. This

is shown by the dotted line in Figure 4.12, and suggests that the truncated SVD basis

is suitable. However, this may be allowing too much error, as the reconstruction of z

contains large anomalies, particularly in the North Atlantic, so perhaps should be ruled

out.

Specifying a discrepancy term for this spatial field is important, but challenging. History

matching of this spatial field is beyond the scope of this section, so a discrepancy will not

be defined properly. Instead, this climate model is intended to serve as an illustration

that reconstructions of z contain similar biases to runs in the ensemble, but also that

these biases may decrease slightly as more of the SVD basis vectors are included. This

suggests that there may be important patterns contained in low-eigenvalue basis vectors,

or in combinations of many of these. Due to the lack of ensemble signal for these vectors,

they are not practically useful for calibration or history matching because emulation is

required.
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4.5.2. CCCMA model

The CCCMA model, CanAM4, is an Atmospheric General Circulation Model (AGCM)

(von Salzen et al., 2013). This differs from ORCA2 in that it simulates atmospheric

processes, rather than the oceanic processes of an OGCM. CanAM4 is a part of the

CMIP5 project (Taylor et al., 2012). von Salzen et al. (2013) describe the parametrisations

of atmospheric physical processes employed by this model. The input parameter space X

for the model has 13 dimensions, and these are scaled to have inputs in [−1, 1]. There are

several different outputs, including precipitation (PR), sea level pressure (PSL), the net

downward radiative flux at the top of the atmosphere (RTMT or TOA), the total vertical

cloud overlap percentage (CLTO), air temperature (TA), the outgoing longwave radiation

(RLUT), and the total sky albedo (ALBS). The output is given over a 128 × 64 grid of

longitude-latitude locations for most of the outputs, with this grid given for 37 vertical

pressure levels for certain outputs, e.g. TA. The output is given as monthly averages. To

avoid the need to account for seasonal differences, the output for June, July and August

(JJA) for the final 5 years is averaged, and considered to be the model output here.

Figures 4.13, 4.14 and 4.15 show the anomaly fields for the standard parameter choice

of the model, for CLTO, RTMT and TA. The observational data for CLTO and RTMT

are from CERES (Wielicki et al., 1996), and are given over the longitude-latitude grid.

For TA, the ERA-Interim reanalysis data is treated as the observations (Dee et al., 2011).

To produce an anomaly plot for TA, the longitudinal values are averaged, and pressure

is plotted against latitude. In each of these plots, the areas coloured white are generally

considered to be acceptable, with darker red and blue regions further away from the truth.

Red indicates that the model output is greater than the observations (i.e. a warm bias

in the model for temperature fields). Each of these outputs shows that there are large

anomalies between the standard run of the model and the observations.

For the total cloud overlap, there are large positive biases in the North Atlantic Ocean,

the northern Pacific, and near to Australia. Negative biases are more prevalent over the

land masses, particularly over the Americas and Asia. The top of atmosphere balance has

large positive anomalies over eastern Asia and the western Pacific, as well as regions of

positive bias along the western coasts of North and South America. There is also positive

bias along the eastern coast of North America and in the Gulf of Mexico. The largest
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Figure 4.13. The total cloud overlap percentage (CLTO) anomaly for the standard run of CanAM4.

Figure 4.14. The top of atmosphere (TOA) balance anomaly for the standard run of CanAM4, in
W/M2.

Figure 4.15. The vertical air temperature anomaly for the standard run of CanAM4, in Kelvin.
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regions with strong negative biases lie close to the Equator, in the Pacific, South America

and eastern Africa.

The anomaly for TA shows a clearer pattern. There are strong warm biases at high

latitudes in both hemispheres, although this bias is much larger and spread across more

pressure levels in the Southern Hemisphere. This warm bias is found at high altitudes.

Lower in the atmosphere, there are some cold biases, again towards the poles. Around

the Equator, the model is generally closest to the observations: there is a small warm bias

around 100hPa, with nothing else until a large cold bias at 1hPa.

These types of biases are also observed for the other output fields of this model, and for

most global climate models. By not accurately representing the present-day observations,

projections made using these models may not necessarily be meaningful, hence careful

tuning, with the aim of reducing model biases across all output fields simultaneously,

of the input parameters is required, and is an active area of research amongst climate

modellers (Hourdin et al., 2016).

4.5.3. Reconstructing the CanAM4 observations

As with the toy function, we calculate the SVD basis for each of the output fields of

CanAM4. For certain outputs, including RTMT and TA, there are 62 ensemble members,

from a wave 1 space-filling design of X . For CLTO, there are additional runs from another

wave of runs, so that there are a total of 119 model runs for this output. Using the

truncated SVD basis, the reconstruction of the observations for each of these fields can be

found, to demonstrate that the inability of accurately reconstructing the observations is

not solely a feature of the chosen toy function.

It is possible to study the VarMSE plot for each of the reconstructions. At this stage, there

are not known observation errors or discrepancies for any of the output fields. Therefore,

the only available choice for W is a multiple of the identity matrix, so that the error in

each grid box is weighted equally. The multiple is set in the same way as for ORCA2,

with the cases where the white coloured areas are treated as 1 standard deviation and

3 standard deviations both considered. For both CLTO and RTMT, errors of ±5 are

deemed acceptable, and hence for each of these, W = Σe = 25
9 I l (3 standard deviations)

153



4. Looking the wrong way: the problem with the SVD basis

and W = Σe = 25I l (1 standard deviation) to reflect this. For TA, anomalies of ±2◦C are

coloured white, and hence we set W = Σe = 4
9I l (3 standard deviations) and W = Σe =

4I l (1 standard deviation). Given these specifications for the error, and assuming a zero

discrepancy due to a lack of knowledge about this term, the VarMSE plots again show

whether the SVD basis will be suitable for searching for z. They also identify whether

there is a large reduction in the error between the truncated basis and the full basis,

showing whether there are important patterns contained within the lower-eigenvalue basis

vectors.

The anomalies for the reconstructions of the observations for TA, CLTO and RTMT are

shown in the left half of Figures 4.16, 4.17 and 4.18 respectively. On the right are the

associated VarMSE plots for the SVD basis with W = Σe, for both the 3 standard

deviation case (solid lines) and the 1 standard deviation case (dotted lines).

For the reconstruction of the TA observations (Figure 4.16), the truncated basis consists of

the first 7 SVD basis vectors, explaining 95% of the ensemble variability. The remainder of

the SVD basis offers an improvement in the reconstruction error, as seen by the VarMSE

plot. For W = 4
9I l, the reconstruction with the full SVD basis is ruled out. When the

larger specification of the error variance is used, the truncated SVD basis still rules out z.

However, by including more basis vectors, the line representing the reconstruction error

goes below the history matching bound, and the reconstruction of z would not be ruled

out. This is not particularly useful, as 35 basis vectors are required, and it is not practical

to emulate the coefficients for all of these vectors. However, under this error variance

specification, it demonstrates that the SVD basis does contain patterns that allow us to

not rule out z, albeit in low-eigenvalue basis vectors.

In the reconstruction with the truncated basis (Figure 4.16), the same warm bias observed

in the southern hemisphere for the standard model run is seen here. The general patterns

here are similar, with a decrease in altitude for the location of one region of warm bias at

the Equator. The warm bias at the North Pole is less extreme here than for the standard

run, but there are large biases when this basis is used for projection.

For CLTO, the first 11 SVD basis vectors are required to explain at least 90% of the

ensemble variability. To explain 95% here, 31 basis vectors would be needed, therefore

the basis is truncated after 11. This ensures that emulation is not overly time consuming,
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Figure 4.16. The anomaly between the reconstruction of the TA observations and the observations
themselves, when the first 7 SVD basis vectors are used for projection, and the VarMSE plot for
this field with W = 4

9I l (solid line) and W = 4I l (dotted line).

and also reflects the difficulty in emulating the coefficients for basis vectors explaining low

percentages of the ensemble. Regardless of where the truncation occurs, z is ruled out, for

either choice of W, although the VarMSE plot shows that it is possible to improve recon-

structions by including later SVD basis vectors. The reconstruction of the observations

with the first 11 basis vectors has some features that are superior to the standard run,

with a decreased positive bias in the North Atlantic Ocean. However, this is compensated

for by larger biases around the Equator, and over Australia, and the reconstruction is

generally completely different from the observations themselves.

For RTMT (Figure 4.18), the anomaly field for the reconstruction is generally better than

that for the standard model run, with the positive biases in the western Pacific reduced

substantially. There are also improvements over the standard run observed in the Southern

Ocean. Despite these improvements, there is a large difference between the reconstruction

and the observations. For this output field, the first 11 SVD basis vectors were used for the

reconstruction. This basis explains 90% of the ensemble, with the truncation occurring

at this level again because 23 basis vectors are required to explain 95%. The VarMSE

plot shows that after the truncation, there is a slight improvement made by adding more

basis vectors, but that z would still be ruled out by the full SVD basis, again for either

specification of W.
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Figure 4.17. The anomaly between the reconstruction of the CLTO observations and the obser-
vations themselves, when the first 11 SVD basis vectors are used for projection, and the VarMSE
plot for this field with W = 25

9 I l (solid line) and W = 25I l (dotted line).

Figure 4.18. The anomaly between the reconstruction of the RTMT observations and the obser-
vations themselves, when the first 11 SVD basis vectors are used for projection, and the VarMSE
plot for this field with W = 25

9 I l (solid line) and W = 25I l (dotted line).

For each of the outputs considered here, the above plots have shown the inability to

reconstruct z using the truncated SVD basis, despite this basis capturing the majority of

the ensemble variability. This demonstrates that the inability to accurately reconstruct

the observations is not only an issue for toy functions, and the same problems can be

expected to arise in history matching and calibration for climate models. Ideally, these

exercises would be carried out for this model, given some appropriate specification of the
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variances. However, it would not be possible to verify the accuracy of results without

running the model again. Due to the extremely limited ability to run new ensembles, and

the expense of this, it would not be prudent to run the model when it is expected that

the results will not be improvements on the current ensemble, and given the conclusions

made from calibrating the toy function with the SVD basis, this is exactly what would

be expected here. Once an alternative method for selecting a suitable basis has been

described, history matching for CanAM4 will be revisited (see Section 6.3).

The inability to reconstruct the observations using the SVD basis, and the effect this has

on the outcome of calibration or history matching, motivates answering the question of

how the choice of basis can be improved to overcome the problems outlined here.

4.6. Constructing a physical basis

For the toy example, it is fortunate that the clearly important pattern is observed as one

of the low-eigenvalue SVD basis vectors, so that it is easy to observe that adding this

basis vector improves reconstructions of z dramatically. This is due to the construction

of the example rather than a feature of the SVD basis, and is unlikely to be the case in

applications. This pattern may be hidden as a linear combination of several low-eigenvalue

basis vectors, and hence be impossible to identify from the basis by eye, or may not appear

in the SVD basis in any form.

Therefore, rather than solely considering the SVD basis, and hence the ensemble data, for

projection, basis vectors may instead be selected differently. The computer model is likely

to represent a physical system, hence there may be important physical patterns that are

known, and it may be useful to include these in any basis. The problem of basis selection

then becomes one of expert elicitation. Alternatively, given that z is already known, this

vector could be chosen as one of the basis vectors.

Using only a set of chosen patterns as the basis may lead to a basis that is not representative

of the variability in the ensemble. Even if it is known that the ensemble is very different

from the observations, as has been demonstrated with the toy function, it is important

to incorporate the ensemble information into the basis: maintaining ensemble signal is

required so that when the basis is projected onto, informative emulators can be built for
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the coefficients.

Therefore, given a set of chosen patterns Bp = (b1, . . . ,bp), the basis may need to be

‘completed’, so that enough of the ensemble can be explained. This is done here by

defining the ‘ensemble residual’ and the ‘residual basis’.

4.6.1. The residual basis

To define the ensemble residual Fε for a given basis Bp, the ensemble is projected onto

the basis, and then back-projected to the original field:

Fε = Fµ −Bp(B
T
p Bp)

−1BT
p Fµ (4.13)

This gives the residual for each ensemble member in the respective columns of Fε, and

represents the variability that is not explained by the chosen basis Bp. Using the ensemble

residual, this remaining variability may be accounted for with the right singular vectors

from the SVD of this residual. The basis from this calculation is defined as the ‘residual

basis’, denoted Bε. The dimension of this basis is l×(n−1), and it has orthogonal columns

by construction. However, the final p columns explain none of the variation in the residual

ensemble (if the chosen basis vectors lie in the subspace defined by the ensemble), and

hence have eigenvalues equal to zero, so that these basis vectors can be discarded, leaving

the first (n− 1− p) vectors of the residual SVD basis.

Combining the residual basis with the defined patterns gives a basis with n− 1 vectors, if

the final p non-informative basis vectors from Bε are removed:

B = (Bp, [Bε]n−1−p)

Defining the basis using this method satisfies two important goals of basis selection: all of

the ensemble variability is explained, and patterns that are considered to be important,

whether physically or otherwise, are included. If the initial patterns have been selected

carefully, then this basis should offer an improvement over the SVD basis in terms of the

ability to reconstruct the observations.

For emulation, this basis is then truncated in the usual manner, with the first q basis
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vectors of B selected, giving the basis Bq where V(Bq,Fµ) > vtot, where vtot is the

proportion of ensemble variability to be explained (often vtot = 0.95). Unless the user-

defined basis vectors contain patterns similar to the ensemble, this truncated basis will

consist of all of the defined patterns, with the first few residual basis vectors added so that

enough variability is explained.

4.6.2. Orthogonality of the basis

By construction, the basis selected through performing SVD on the residual ensemble,

Bε, is orthogonal. Regardless of the orthogonality of the selected vectors in Bp, it can be

shown that the residual basis is orthogonal to Bp.

Result. The residual basis Bε is orthogonal to Bp = (b1, . . . , bp).

Proof. First, we show that the columns of the residual ensemble are each orthogonal to

the columns of Bp:

BT
p Fε = BT

p (Fµ −Bp(B
T
p Bp)

−1BT
p Fµ)

= BT
p Fµ − (BT

p Bp)(B
T
p Bp)

−1BT
p Fµ

= BT
p Fµ −BT

p Fµ

= 0

The result is a p×n zero matrix, so that each of the vectors of Bp are orthogonal with the

vectors of Fε. Using this result, and the definition of the singular value decomposition of

Fε, we show that the residual basis, Bε, is orthogonal to the chosen basis, Bp:

FT
ε = UΣVT

=⇒ FT
ε = UΣBT

ε

where U is an orthonormal n×n matrix, Σ is a diagonal n×n matrix, and V = Bε is an

l × n matrix with orthonormal columns, so that BT
ε Bε = In. Taking the transpose and
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multiplying on the right by U gives

=⇒ Fε = BεΣ
TUT

=⇒ FεU = BεΣ
TUTU

=⇒ BT
p FεU = BT

p BεΣ
T

where the orthonormality of U has been used, and the equation has been multiplied on

the left by BT
p . From above, BT

p Fε = 0, and hence

=⇒ BT
p BεΣ

T = 0

Bε has dimension l× n, and Σ has dimension n× n, due to the dimension of the residual

ensemble. However, the final (p+ 1) eigenvalues contained on the diagonal of Σ are zero

(due to the degrees of freedom removed by the ensemble mean and the p chosen patterns),

and hence only the first (n−p−1) columns of Bε are of interest, as no ensemble variability is

explained by the final (p+1) columns. Discarding columns associated with zero eigenvalues

(as the basis would always be truncated before zero-eigenvalue vectors are included), and

using that Σ is diagonal, the final step is

=⇒ BT
p Bε = 0

and hence the vectors of the residual basis are orthogonal to the chosen basis vectors, as

expected.

This is an attractive feature of defining the residual basis using this method. The first

few basis vectors from the residual basis can be combined with the selected patterns so

that enough of the variability in the ensemble is explained, giving a truncated orthogonal

basis dependent on some important patterns and the ensemble. With careful selection of

Bp, this should be an improvement over the SVD basis, derived only from the ensemble.

Hereafter, the residual basis Bε is defined as the first (n− p− 1) vectors from the singular

value decomposition of the residual ensemble, Fε (given in (4.13)).
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4.6.3. Imposing orthogonality on a basis

It may not be desirable that the chosen basis vectors are orthogonal with each other if

they are based on physical, real-life patterns, for interpretability. Orthogonality may be

imposed on a general set of basis vectors using the Gram-Schmidt process (Björck, 1967).

Orthogonality is a desirable property for a basis, as if the basis is non-orthogonal, the

coefficients for fields may vary dependent on the number of basis vectors used to calculate

them. For an orthogonal basis, the coefficients for the projection of a field onto a basis

remain fixed for each basis vector, regardless of whether Bq or Bn was used to calculate

it.

Given a set of vectors b1, . . . ,bq, an orthogonal basis is calculated as follows:

v1 = b1

v2 = b2 −
〈v1,b2〉
〈v1,v1〉

v1

...

vk = bk −
k−1∑
j=1

〈vj ,bk〉
〈vj ,vj〉

vj

(4.14)

where the inner product 〈·, ·〉 is defined as

〈a,b〉 = aTb (4.15)

These vectors are then normalised to give an orthonormal basis, Γ = (γ1, . . . ,γq), where

γk =
vk√
〈vk,vk〉

As it has already been shown that there is always orthogonality between the initial basis

vectors and the residual basis, this operation need only be performed on the initial selected

basis. Gram-Schmidt can be computationally expensive in high dimensions if there are a

large number of vectors to be orthogonalised. There are unlikely to be many chosen basis

vectors in this setting, as we only have a limited number of degrees of freedom (ensemble

members n), and also because eliciting even a small number of important patterns may

be difficult, especially when the output dimension is large. Therefore, this operation is

reasonably fast.
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The above recursive formula may be rewritten using matrices (Björck, 1994):

B = ΓR

where B contains the vectors b1, . . . ,bq, Γ is the l × q basis containing the normalised,

orthogonal vectors γ1, . . . ,γq, and R is a q × q upper-triangular matrix relating the two

bases. This shows that the jth new basis vector is a linear combination of the first j basis

vectors of the original basis.

Although the projections of a general l-dimensional vector f(·) will change due to the

imposed orthogonality, the reconstructions of the vector are identical, regardless of whether

the first k vectors of the original basis, B, or the first k vectors of the orthogonal basis,

Γ, are used. This is shown here for k = q, but is true for any k < q, with bases Bk, Γk

and upper-triangular matrix Rkk, where kk denotes taking the upper k× k section of the

matrix.

Using ΓTΓ = Ik because Γ consists of orthonormal columns by construction, the recon-

struction of f(·) with the original basis B is

B(BTB)−1BT f(x) = ΓR((ΓR)TΓR)−1(ΓR)T f(x)

= ΓR(RTΓTΓR)−1RTΓT f(x)

= ΓR(RTR)−1RTΓT f(x)

Then, using that R is invertible and the identity (CD)−1 = D−1C−1 for square matrices

C and D,

= ΓRR−1R−TRTΓT f(x)

= ΓΓT f(x)

= Γ(ΓTΓ)−1ΓT f(x)

(4.16)

i.e. the reconstruction using the new basis Γ. This can alternatively be proved by showing

that both bases span the same k-dimensional subspace, and using that a basis allows a

general field to be written as a unique linear combination of the basis vectors (Kuttler,

2012).

Given that the reconstructions are the same, we also have equality for the reconstruction
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errors: for q = 1, . . . , (n− 1),

RW(Bq, z) = RW(Γq, z)

Therefore, the reconstruction and reconstruction error of z, or of any general field, are the

same, regardless of whether the original basis, or the orthogonalised version is used. This

means that orthogonalisation occurs without having any effect on the quality of recon-

structions, and Gram-Schmidt can hence be applied as a tool to allow for the convenience

of fixed coefficients for use in emulation.

4.6.4. Proportion of ensemble variability explained

If we use a basis with a set of chosen patterns included, there is no longer a matrix

of eigenvalues directly associated with the basis vectors. However, the formulation of

the proportion of variance explained using the eigenvalues (in (4.12)) is equivalent by

definition to the sum of squares explained by the basis, divided by the total sum of

squares. Therefore, the proportion of ensemble variability explained by a basis Bq can be

written as

V(Bq,F) =

∑l
i=1

∑n
j=1[Bq(B

T
q Bq)

−1BT
q F]2ij∑l

i=1

∑n
j=1 F2

ij

(4.17)

The numerator gives the reconstruction of the ensemble using the basis Bq, and then

squares every individual element of this l × n matrix, and sums these squares. The de-

nominator squares every entry of F and sums these.

We similarly define the variance explained by projection onto a single basis vector bk

(k ≤ q) as

Vk(Bq,F) =

∑l
i=1

∑n
j=1[bk(b

T
k bk)

−1bTkF]2ij∑l
i=1

∑n
j=1 F2

ij

(4.18)

When B is orthogonal, we have

V(Bq,F) =

q∑
k=1

Vk(Bq,F)

To show this, we ignore the common denominator, and prove that the matrix Bq(B
T
q Bq)

−1BT
q F

can be written in terms of the columns of F. Using that B is orthogonal, we can immedi-
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ately simplify this expression:

Bq(B
T
q Bq)

−1BT
q F = BqB

T
q F

and by writing B in terms of its columns bk, the jth column of this matrix is

[BqB
T
q F]·j =

q∑
k=1

bkb
T
k f(xj)

That is, it can be decomposed into a sum of terms dependent on the individual basis

vectors b1, . . . ,bq (Jolliffe, 2002). Squaring and summing the elements of this jth column

gives

(

q∑
k=1

bkb
T
k f(xj))

T (

q∑
m=1

bmbTmf(xj)) =

q∑
k=1

f(xj)
Tbkb

T
k f(xj)

because when k 6= m,

(bkb
T
k f(xj))

T (bmbTmf(xj)) = f(xj)
Tbkb

T
k bmbTmf(xj)

= 0

by the orthogonality of the columns of B. By rewriting the numerator of (4.18), this is

the same as in the definition of Vk(Bq,F) if the columns of F are summed over:

n∑
j=1

(

q∑
k=1

f(xj)
Tbkb

T
k f(xj)) =

n∑
j=1

(

q∑
k=1

(bkb
T
k f(xj))

T (bkb
T
k f(xj))

=

q∑
k=1

(

l∑
i=1

n∑
j=1

[bkb
T
kF]2ij)

This does not hold when B is not orthogonal, and hence defining the variance explained

by a single basis vector requires an extra step. If Γ is the orthogonal basis obtained by

performing Gram-Schmidt on non-orthogonal B, then, for any q = 1, . . . , (n− 1):

V(Bq,F) = V(Γq,F) =

q∑
k=1

Vk(Γq,F)

because the reconstruction with Bq is the same as the reconstruction with Γq by (4.16).

However, the reconstruction with an individual basis vector (other than the first) is not

necessarily the same due to the interaction between the non-orthogonal basis vectors, and

the variance in F can no longer be written as a sum dependent on each basis vector
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individually.

4.7. Applications of the physical basis

To attempt to improve the calibration of the toy function, we now apply our methodology

for defining a basis using a set of selected patterns and the residual basis. The same

ensemble and definitions of the observation error and discrepancy variances as for the

application with the SVD basis are used in this section.

Given the knowledge that is available about the toy function, natural choices for Bp would

be the observations themselves, or ϕ1, the basis function most similar to z. This is also

extremely similar to the sixth basis vector of the SVD basis, which has already been found

to greatly reduce the reconstruction error when it is included in the basis. Both of these

basis vectors contain the pattern on the main diagonal, so that reconstructions of z will

be greatly improved compared to the SVD basis Γ4. There is however no guarantee that

there is enough signal on either of these basis vectors, so that informative emulators can

be constructed, and indeed it is the case that emulation on ϕ1 is difficult, so that the

observations will be selected as the physical pattern here.

Setting the observations as a basis vector raises the question of whether this constitutes

‘double counting’: because the aim is to find z using the basis, it is perhaps not reasonable

to include z exactly in the basis. There are very few directions included in the basis,

compared to the dimension of the output, and therefore fields that may not in reality look

similar to z may be forced to appear more similar to z due to the limited flexibility in

this emulation method, and the incorrect regions of X may be highlighted. Therefore,

a pattern that contains certain desirable aspects of z, while not being exactly z, would

generally be preferred.

This requires elicitation, and even for the toy function, this is challenging. Various com-

binations of the main patterns in the output have been set as Bp, with little success

in choosing a pattern that has both accurate reconstructions of z and emulatable coeffi-

cients. Without any judgement about what a better, emulatable, pattern might be, the

observations are used here to illustrate the method.
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4.7.1. Using the observations in the physical basis

The chosen pattern Bp in this section is the (centred, normalised version of the) observa-

tions:

Bp =
z− µ√

〈(z− µ), (z− µ)〉

using the inner product as defined in (4.15).

To project z onto this basis, the ensemble mean µ is first subtracted, and the difference

z − µ is projected onto Bp. Mapping this coefficient back to the original field gives an

exact reconstruction:

r(z) = Bp(B
T
p Bp)

−1BT
p (z− µ) + µ

=
z− µ√

〈(z− µ), (z− µ)〉
(z− µ)T√

〈(z− µ), (z− µ)〉
(z− µ) + µ

= z− µ+ µ

= z

due to the fact that BT
p Bp is the identity matrix.

While this single basis vector itself can reconstruct z perfectly, it only explains 28% of

the ensemble variability, i.e. V1(Bp,Fµ) = 0.28. Therefore, the ensemble residual and the

residual basis are calculated. The first four basis vectors in the residual basis need to be

combined with Bp so that V(Bq,Fµ) > 0.95, where B = (Bp,Bε). The pattern Bp, along

with the first three residual basis vectors, are given in Figure 4.19, along with the VarMSE

plot for this basis.

The centred and normalised version of the observations, Bp, highlights the difference be-

tween the main diagonal and the biased ensemble, with entries with opposite signs in these

locations. The leading basis vector of the residual basis shows a similar pattern, although

the signs here are the same, with differing magnitudes. The VarMSE plot shows what has

already been proved to be true: the chosen physical basis gives zero reconstruction error

for z when used for projection and reconstruction.

Theoretically, this basis should be suitable for calibration and history matching, as it is

able to give reconstructions exactly like the observations. Whether or not it is practical is

dependent on the quality of emulators that can be built for the coefficients on these basis
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Figure 4.19. The first four basis vectors when a basis is constructed using z as the first basis vector,
and the associated VarMSE plot.

vectors: if accurate emulators cannot be built, then it is likely that the same result as

earlier will be found (i.e. no parameter settings exist that give output similar to z). The

first basis vector, Bp, in the selected basis has V1(Bp,Fµ) = 0.28, and hence the coefficients

on this basis should be emulatable, as there is enough ensemble signal in this direction.

A potential problem may lie in the fact that while the spread of ensemble coefficients

on Bp is from -51 to 33, the projection of z has a coefficient of 69 on this vector. The

emulators may be accurate for the observed regions of parameter space, but may struggle

for predictive ability towards the true NROY space, either giving large uncertainties or

underestimating the coefficients here. The latter of these will lead to emulated fields that

are not consistent with z, but due to poor emulation, rather than the inability of the basis

to find z, as was the case with Γ4 previously.

It is important to note that if emulators are not involved, and history matching is per-

formed theoretically, with the implausibility calculated from the exact known coefficients

found by running the toy function, then the resulting space is extremely similar to the

true NROY space. We fit Gaussian process emulators to the coefficients on the first five

basis vectors in the usual manner. The emulator for each basis vector passes all validation

checks, fitting the ensemble well and predicting left-out runs accurately (Appendix B.3).

Using the emulators for the first five basis vectors leads to an NROY space consisting of

41% of the original parameter space, and containing all of the runs that lie in the true

NROY space. This is a far superior result to that with the SVD basis, with the best

parameter settings correctly not ruled out. This NROY space is far from the size of the

true NROY space, suggesting that there is too much emulator uncertainty on predictions.
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This may be due to the fact that there is not enough signal in the direction of z, so that

while emulated fields that show some signal in this direction can be found, the magnitude

of the pattern in z cannot be reproduced by the emulators. The emulators do, however,

include enough uncertainty so that the true coefficients in this direction are not ruled out.

This can be illustrated by considering the emulated field at x∗, shown in Figure 4.20. The

signal on the off-diagonal is predicted to be too strong. There is some evidence of the

desired pattern here, with the corner pattern faintly observed, although these values are

too high. The values on the main diagonal are predicted to be too low.

There is uncertainty on this prediction, however, and assuming that this uncertainty is

Normally distributed around the mean prediction, samples can be drawn from this distri-

bution. This does not lead to runs that look exactly like z, but does contain fields with

distinctive main diagonals. Compared to the samples from the calibration distribution for

x∗ using the SVD basis Γ4, this is at least an improvement, as the main diagonal could

not be found in any form within this distribution.

This example suggests that while theoretically this basis works, and emulators can be

built as the selected pattern explains enough variability, there is not enough signal in the

direction of z to be able to reproduce the desired output field well. However, the fact that

the coefficient in this direction is being emulated, and included within the uncertainty,

allows runs that may have more signal in this direction to be not ruled out.

Cutting down X to this NROY space, keeping runs that may have stronger signal in the

direction of z, and hence will be more similar to z, strongly advocates a second wave of

history matching. Sampling from this NROY space should allow runs that contain more

signal in the correct direction to be included in the wave 2 ensemble. This would then

have the effect that there should be more signal from the main diagonal, so that when the

ensemble is projected onto this basis, there should be coefficients closer to the coefficient

for x∗, allowing more accurate emulators to be built. Refocussed history matching and

calibration for the toy function will be carried out in Section 5.6, after a superior method

for selecting the basis has been developed.
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Figure 4.20. The predicted field at x∗, using emulators for the first five basis vectors of the physical
basis with the centred and scaled version of z as the initial pattern.

4.7.2. Selecting a basis for CanAM4

In addition to the problem of double counting, a further problem of setting z as a basis

vector is found using the CanAM4 model.

Setting z as a pattern in the basis, and then using the residual basis to explain the re-

maining variability, may be attractive as this information is already available and because

this guarantees accurate reconstructions with the basis. This is not practical if the obser-

vations are substantially different from the ensemble, as they are in the situation where

an alternative basis choice is required. It therefore follows that it is unlikely that there

is much ensemble signal to be projected onto z as a basis vector, rendering emulation

challenging or meaningless.

To illustrate this, consider setting the observations for TA as a basis vector. Normalising

this vector so that the mean coefficient is zero, and projecting z onto the basis gives a

coefficient of 150.2, which gives a perfect reconstruction of z if this basis vector is used for

reconstruction. This basis vector explains 3.2% of the ensemble variability by itself, and

in this case it is possible to build emulators for the coefficient. However, projecting the

ensemble onto the normalised observation vector gives coefficients ranging from -37 to 21.

Finding the true coefficient for z is unlikely to be possible due to the large extrapolation

required away from the spread in the ensemble. Hence, although in theory the observations

can be reconstructed using this basis vector, it is not possible to actually observe the

required coefficients. In this scenario, it is not clear whether this implies that it is not
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possible to find a coefficient of 150 for any x, or whether there is simply not enough signal

in this direction to be able to answer this question.

This suggests that while this basis choice is perfect in terms of reconstructing z, it is not

useful for making inferences about x∗. Alternative, automatic methods for selecting a

basis may be required, to avoid basis elicitation.

4.8. Discussion

In this chapter, a spatial toy function was introduced, and used to illustrate the potential

flaws of using the SVD basis for emulation, calibration and history matching. The SVD

basis is an attractive choice, given that it extracts the main modes of variability in the

ensemble, and returns an orthogonal basis. Typically, only a small number of vectors

are required to explain the majority of the variability, allowing the basis to be truncated,

simplifying emulation.

For the defined toy function, it is known that it is possible to find output fields that are

close to z, so that a best parameter choice x∗ does exist. However, when performing

calibration and history matching using the first four SVD basis vectors, so that over 95%

of the variability in the ensemble F is explained, the results suggest either that there is no

x∗, or highlight an incorrect x∗. This suggests that it is possible for this conclusion to be

misguided in applications, if the literature default basis has been used for projection and

reconstruction.

The fatal flaw for the truncated SVD basis in the case of the toy function was that when z

was projected onto this basis, and then these exact coefficients were used to reconstruct the

spatial field, the result appeared to look nothing like z. The choice of basis had removed

the distinctive signal from the main diagonal in z, and guaranteed that fields similar to z

could not be reconstructed, even if emulation was perfect (no uncertainty).

The inability to produce accurate reconstructions of z was explored and quantified further

in Section 4.3.3, via VarMSE plots and the reconstruction error, RW(Γ, z) (4.8). These

quantified the difference between the true z and the reconstructions with a given basis,

and showed that even in the case of perfect emulators, the reconstruction of z would be
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ruled out if the first four vectors of the SVD basis were used for history matching.

Performing calibration and history matching using this basis gave results consistent with

the expectations. Calibration was not able to highlight the correct region of parameter

space containing runs similar to z, and instead the majority of samples from the posterior

gave model output similar to runs in the ensemble, with a strong signal on the off-diagonal.

This is unsurprising, given that this is the main pattern that the basis contained. Ob-

serving results such as these would likely lead to the incorrect conclusion that there is no

x∗.

History matching with this basis ruled out all of parameter space, suggesting that no

parameter settings give output consistent with z. Again, this is an incorrect conclusion,

as it was showed that regions of parameter space exist where output similar to z is observed.

Neither calibration or history matching was able to overcome the poor basis choice in this

example, and suggests that even with excellent emulators, flawed conclusions can be made

using the default literature choice (Higdon et al., 2008a, Sexton et al., 2011, Chang et al.,

2014a).

For the toy example, this problem could be somewhat mitigated by including the sixth SVD

vector, as the reconstruction once this vector was added was found to be within the history

matching tolerance to error. However, simply adding more SVD basis vectors is not a

general solution to the reconstruction problem. In this example, due to the construction of

the toy function with orthogonal basis vectors, there are not many directions of variability

in the function output, and so the SVD basis perhaps inevitably highlighted the main

diagonal in a vector. This is unlikely to be the case in a general example, and in fact

the climate model examples show that while adding in more SVD basis vectors improves

reconstructions to some extent, perfect reconstructions are not found. The lack of signal

from the ensemble on the sixth SVD basis vector, with only 1% of ensemble variability

explained by it, is an argument against including more SVD basis vectors, and we showed

that emulation of the coefficients on this basis vector is poor. In the climate examples,

important patterns may be in lower-order basis vectors, explaining even less ensemble

variability, and may be ‘hidden’ in linear combinations of many vectors.

Therefore, rather than adding in extra vectors from the SVD basis, a method for defining a

basis given a chosen pattern or set of patterns was developed. Given one or more patterns,
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the ‘residual basis’ can be calculated, giving a full orthogonal basis that combines the

patterns that are perceived to be important, whether for physical or other reasons, but

also that explains the variability in the ensemble. Using this, it is hoped that a basis can

be engineered that allows ‘good’ reconstructions of z, in the sense that the reconstructed

field would not be ruled out in the perfect emulator case, while each basis vector also

contains enough ensemble signal so that emulators can be built. Fixing a pattern in the

basis that gives good reconstructions, but cannot be emulated at all, is not of any use

practically.

For the toy example, the centred observations are a good choice for the initial, selected

basis. This pattern explains enough ensemble variability so that emulators can be built,

and the coefficient of the observations on this basis vector is not ‘too far’ from the spread

of ensemble coefficients, so that it is possible for the emulator to at least contain this true

coefficient in prediction intervals. It may be possible to build an accurate emulator for

the ensemble coefficients, but if these are all far away from the z coefficient, then accurate

reconstructions may not be possible with the emulators, giving a different problem from

before: the basis choice now allows accurate reconstructions, but the emulator does not

as there is not enough signal in the direction of z.

In this case, setting the centred observations as the initial basis vector, and combining

this with the first few vectors of the residual basis, achieves both of these goals: accurate

reconstructions of z, and emulatable coefficients on each basis vector. Using this basis

for history matching does not cut down space enough so that it only contains parameter

settings that lead to output similar to z, but is able to remove over half of parameter

space. This is a substantial improvement over the example with the truncated SVD basis,

with all runs that lie in the true NROY space contained within the NROY space found

with this new basis.

The fact that a lot of parameter space that leads to output dissimilar to z has not been

ruled out suggests that there is not enough signal in the correct direction to perfectly

emulate the coefficients. The emulators for a couple of the coefficients have a great deal

of uncertainty on predictions, causing fewer runs to be ruled out than if the coefficients in

these directions could be emulated more accurately. Although the key pattern has been

included in the basis to guarantee accurate reconstructions theoretically, emulation relies

entirely on the ensemble.
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This is a clear advocate for a multi-wave or refocussed approach to history matching

and calibration. At this wave, some runs that clearly have no signal in the direction

of z have been removed. It is hoped that if a second wave were to be performed, the

ensemble sampled from the current NROY space will contain more signal relating to the

main diagonal pattern, so that less uncertain emulators can be built for the important

directions, and space can be further constrained.

Setting z, or the centred observations, as the initial basis vector, was successful for the toy

example, but is not likely to be a generally viable method in applications, as demonstrated

by the CanAM4 example. For the TA field, the basis vector z explained a much smaller

percentage of ensemble variability than for the toy example, and the spread of ensemble

coefficients was far enough away from the coefficient for z that emulators were unable to

include this coefficient in 99% prediction intervals. Therefore, although this choice of basis

leads to perfect reconstructions, the poor emulation leads to fields that would be ruled

out, giving the same result as if a poor basis was used. The issue of how this might be

double counting was also discussed.

This suggests that in general, setting Bp = z does not solve the problem of basis selection,

and perhaps should not be allowed regardless. Eliciting other potentially important pat-

terns that could be set as Bp is challenging in the case of high-dimensional climate model

output, and may not be possible. Therefore, rather than selecting a pattern based on a

physical argument, an automatic approach for selecting a basis that allows a) accurate

reconstructions of z and b) accurate emulators for the coefficients, would be a superior

method, and will be the focus of Chapter 5.

4.9. Conclusion

Even in a perfect model scenario, where the emulators predict the model output with

no uncertainty, if the observations do not lie in the subspace of possible reconstructed

fields, then any calibration exercise is doomed to fail before it begins. In this chapter,

we provided a method for quantifying the reconstruction error of the observations for

a given basis, and also developed a method for combining chosen important patterns

with ensemble variability, to provide a basis that should be more suited to representing
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z than the truncated SVD basis. We showed that defining a basis in this manner has

desirable properties, such as orthogonality, and that imposing orthogonality on a set of

non-orthogonal patterns does not affect the reconstruction error.

Before emulators are built using a basis, the reconstruction of z should be assessed. If

this does not lie within the desired tolerance to error on the VarMSE plot, then this basis

choice is not suitable, given the current discrepancy. If it does fall below the line, then

the basis can be used for emulation and calibration. This is a simple check that can be

performed to mitigate against some incorrect conclusions.

The SVD basis generally provides emulatable coefficients, because it is based on the en-

semble. Setting a chosen pattern such as the observations in the basis guarantees accurate

reconstructions, theoretically. To avoid difficult elicitation of patterns in high-dimensional

space, an automatic procedure for selecting a basis is preferred. Finding a basis that min-

imises the reconstruction error while using signal from the ensemble to ensure emulatable

coefficients is explored in the next chapter by considering rotations of the SVD basis.
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5.1. Introduction

In this chapter, we extend the basis selection ideas from the previous chapter to a new

automatic method for finding a suitable basis.

Previously, eliciting a set of patterns Bp = (b1, . . . ,bp) to be used in the initial basis,

possibly based on physical knowledge, was required to overcome the issue with the SVD

basis. This was then combined with the ‘residual basis’ (Section 4.6.1) to give a basis

explaining all of the ensemble variability, while reducing (in comparison to the SVD basis)

the reconstruction error for the truncated basis. Selecting patterns may not be suitable for

high-dimensional output, especially if there is no prior knowledge about which patterns

are important. Even if selecting important patterns is possible, these patterns may contain

little signal from the ensemble, and hence building emulators will not be possible, so that

the time taken to elicit a pattern would have been wasted.

Setting the observations as a basis vector satisfies the goal of being able to accurately

reconstruct the observations using the basis, but often fails at the emulation stage. There

are also questions regarding double-counting. Regardless, if it is possible to emulate the

coefficients given by projection onto the observations, it is likely that the SVD basis will

already contain this signal, and a better basis choice may not be required. A suitable

basis for a calibration exercise is one that combines the two goals of representing the

observations (through minimising the reconstruction error), while explaining enough of

the variability in the ensemble for emulating each truncated basis vector coefficient.

We develop an automatic approach based on rotating the SVD basis, in order to minimise

the reconstruction error for the observations on this basis, while selecting basis vectors
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that can be emulated using the signal in the ensemble by blending important patterns

from the observations with ensemble signal. In general, this could be applied to any given

basis, but the focus here is on the SVD (principal component) basis.

Section 5.2 introduces general high-dimensional rotations, and discusses how the SVD

basis might be rotated. Section 5.3 outlines key properties of an optimisation criteria, and

Section 5.4 defines the final iterative algorithm. Sections 5.5 and 5.6 apply this method to

the toy function from the previous chapter. Section 5.7 improves the method for situations

where the weight matrix is known, and Section 5.8 continues the iterative history matching

of the toy example using this extension.

5.2. Basis rotation

There are a number of existing methods for rotating a principal component or SVD basis

Γ of dimension l×n (or l× (n−1) if the ensemble mean has been removed, with n used in

this section for convenience), as described by Richman (1986) and Jolliffe (2002). These

methods can be divided into orthogonal and non-orthogonal (or ‘oblique’) rotations, and

aim to rotate the SVD basis for reasons such as simplicity, or physical interpretability. In

general, this rotation is given by

ΓΛ

where Λ is an n× n rotation matrix (Jolliffe, 2002).

The rotation matrix can be defined using many different criteria, and the choice of how to

define Λ is problem dependent. Varimax is a commonly-used orthogonal rotation criteria,

that maximises the variance of the coefficients for the ensemble members (Kaiser, 1958),

which can be written as (Abdi, 2003)

n∑
i=1

n∑
j=1

(ci(xj)
2 − c̄(x)2)2

where ci(xj) is the projection of f(xj) onto the ith basis vector, and c̄(x)2 is the mean of

the squared coefficients. The rationale behind this rotation is that it is easier to interpret

the effects that each basis vector has on each ensemble member if the ensemble member is

represented by a small number of large coefficients, with zeros for the other basis vectors.
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Other orthogonal rotation methods use similar criteria, such as quartimax rotation, which

seeks to explain each ensemble member with as few basis vectors as possible (Neuhaus

and Wrigley, 1954), and equamax, which combines varimax and quartimax (Kaiser, 1974).

None of these are suitable for the purposes of reconstructing the observations, as they all

involve a criteria based solely on explaining the variability in the ensemble.

Instead of requiring an orthogonal rotation, Procrustes target rotation allows any general

rotation (Hurley and Cattell, 1962). Given a ‘target’ basis B, the following equation is

solved for Λ:

B = ΓΛ + ε

where the trace of εT ε is minimised, giving

Λ = (ΓTΓ)−1ΓTB

This method is only suitable when the target basis B is known. This is similar to the

problem outlined in the previous chapter, as z is essentially the target. However, in this

setting, this would only give a single basis vector to represent z if this was set as the

target. Furthermore, even if there were a true underlying basis based on physical effects,

this would not necessarily be useful in the application of emulation and calibration, as it

is also important for the rotated basis to contain signal from the ensemble.

None of the above rotation methods are suitable for the goal of rotation here, namely to be

able to select a basis that minimises the reconstruction error for z, while retaining signal

from the ensemble. We develop a novel criteria.
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5.2.1. Rotation in n dimensions

In n dimensions, an n×n rotation matrix Λab is defined as (Murnaghan, 1962, Duffin and

Barrett, 1994):

Λab(θ) = [λij ] =



λii = 1, i 6= a, i 6= b

λaa = cos(θ)

λbb = cos(θ)

λab = −sin(θ)

λba = sin(θ)

λij = 0, otherwise

(5.1)

where Λab defines a rotation around the plane defined by coordinate axes xa and xb by

angle θ. That is, all other dimensions remain fixed, with only directions xa and xb being

rotated.

To achieve a general rotation in n dimensions, rotation matrices around any pair of co-

ordinate axes can be defined in this manner. These individual rotation matrices are then

multiplied together to give a general rotation matrix. Murnaghan (1962) shows that any

n-dimensional rotation matrix Λ can be found by multiplying n(n−1)
2 rotation matrices

as defined in (5.1), where a and b take on each possible combination of the dimensions

1, . . . , n, to give a rotation matrix Λ:

Λ =

n−1∏
a=1

n∏
b=a+1

Λab

The above formulation can be adapted to give a rotation around any simplex defined with

coordinates, rather than just the coordinate axes, as in Aguilera and Pérez-Aguila (2004).

Here, an algorithm is given for rotation around a simplex, leading to a rotation by angle θ

around an (n− 2)-dimensional subspace. Any number of these rotation matrices can then

be composed to give a new rotation matrix as before.

Therefore, it is possible to rotate a basis by defining a set of angles and pairs of coordinate

axes. Given the (l×n)-dimensional SVD basis Γ, there are two potential ways to proceed

with rotation: by multiplying Γ on the left with a rotation matrix, or on the right. Each

of these rotations results in a new matrix with the same dimension as Γ.
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In the case of rotating Γ by multiplying on the left by Λ, this rotation matrix needs to have

dimension l × l so that ΛΓ still consists of n vectors of length l, for n ensemble members

and l-dimensional model output. By defining Λ as an l × l matrix, the coordinate axes

a, b from above are the different grid boxes in the l-dimensional output. To define this

matrix, up to l(l−1)
2 angles are required to give the rotation for each pair of grid boxes.

Given that l is often large for computer model output, and that the angles that define

the rotation are unlikely to have known values, their values must be optimised, based

on a chosen criteria for giving the ‘best’ basis. This results in an extremely challenging

optimisation problem: for the CanAM4 output over the longitude-latitude grid in Section

4.5.2, l = 8192, so that if a rotation matrix were to be defined for a basis Γ for this model

output using this method, 33,550,336 angles would need to be given, assuming that there

is no prior knowledge about which dimensions should be rotated around.

If instead Λ is defined as an n× n matrix, the rotated basis ΓΛ has dimension l× n, but

instead of the number of angles increasing with the size of the output, it is dependent on

the number of ensemble members. This is generally small for computer models with large

output, and for the n = 62 ensemble members of CanAM4, 1891 angles are needed to give

a rotation matrix. While this is still a large number of quantities to be specified, it is

orders of magnitude more reasonable than needing to know over 33 million.

Not only is multiplying by a rotation matrix on the right more computationally attractive,

the interpretation of this rotation is clearer. Let the i, jth entry of Λ be written as λij ,

and the i, jth entry of Γ be written as γij , where Γ = (γ1, . . . ,γn) contains n basis vectors

as its columns. Then, multiplying on the left with a rotation matrix gives a new matrix

with

(ΛΓ)ij =
l∑

k=1

λikγkj

Therefore, the first vector in the rotated basis is


∑l

k=1 λ1kγk1
...∑l

k=1 λlkγk1


i.e. the new first vector only depends on the first vector of the original basis Γ, but

requires the entirety of Λ. The entries of the first vector of Γ are being re-weighted, and

179



5. Optimal rotation of a basis

re-distributed over the l-dimensional vector, dependent on Λ. However, this does not

make sense. For example, in the ensemble there may be grid boxes that have only zeros

in them. Therefore, the basis vectors in Γ will contain zeros for these grid boxes, but

rotation in this manner would allow non-zero entries.

If rotation is instead carried out through multiplication on the right, a general entry of

the new matrix is given by

(ΓΛ)ij =

n∑
k=1

λkjγik (5.2)

so that the first vector in the rotated matrix is
∑n

k=1 λk1γ1k
...∑n

k=1 λk1γlk

 (5.3)

Now, the jth vector of the rotated basis depends on only the jth column of Λ. Furthermore,

rather than re-weighting across the first basis vector, this rotation treats each grid box

separately, so that the new value for grid box i only depends on the values for grid box i

in the original basis. Essentially, instead of rotating around each grid box, this rotation

is carried out using the original basis vectors as the coordinate axes.

This is similar to how SVD works, with this being a rotation into a direction that explains

variability the best. Rotating the SVD vectors by multiplying by Λ will give new vectors

that are no longer optimal in the sense that the most ensemble variability is explained,

but may allow a basis to be found that has other important properties, such as the ability

to reconstruct z.

Therefore, only rotation via multiplying the basis on the right will be considered. The

large saving in terms of the number of angles that are required to define this matrix,

combined with the more logical interpretation of the rotation and the fact that it only

rotates the SVD basis vectors, make this the preferred method for further exploration.
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5.3. Optimising for Λ

As introduced in Chapter 4, a natural way of quantifying the suitability of a basis Γq for

representing z is by using the reconstruction error, RW(Γq, z), for a chosen weight matrix

W (equation (4.8)). The parallel between this norm and the multivariate implausibility

was shown for W = Σe +Ση, and hence with this choice of weight matrix, the reconstruc-

tion error can be used to identify whether the projection of z would be ruled out, even if

the coefficients were known exactly. Therefore, requiring that

RW((ΓΛ)q, z) < T = χ2
l,0.995

for the chi-squared history matching bound T from (4.11), is a key feature for the first q

vectors of the rotated basis ΓΛ. If this is not satisfied, x∗ : f(x∗) = z would be ruled out

using this basis.

Having basis vectors that accurately reconstruct z is not by itself practically useful if

emulators cannot be built for the coefficients given by the projection of the ensemble onto

the basis. A second criteria for (ΓΛ)q is therefore

Vj((ΓΛ)q,Fµ) > vj , j = 1, . . . , q

for proportions (v1, . . . , vq), so that enough signal is found on each of the vectors of the

truncated basis. This is problem dependent, but from experience, setting 0.1 for the first

few basis vectors gives the best results. If n is larger, this value would likely need to be

lower. The first few vectors of the rotated basis are likely to reduce the reconstruction

error the most (i.e. they will involve patterns that are informative for z), so that if we are

to rule out runs that are dissimilar from z, we want emulators that have predictive ability,

and a low uncertainty, in comparison to the spread of possible outputs. Using a lower

value than 0.1 can result in large, constant uncertainties across X , not allowing emulators

with predictive power to be built, or not allowing any runs to be ruled out based on this

basis vector, and hence we would be unable to achieve the goal of ruling out poor model

runs. The truncation after q basis vectors can be set in the normal manner, requiring the

majority (vtot) of the ensemble variability to be explained by projection onto the basis:

V((ΓΛ)q,Fµ) > vtot
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(see Section 4.6.4 for the definitions of V(·, ·) and Vj(·, ·)). If a basis can be found satisfying

each of these constraints, this basis should be suitable for use in emulation and calibration.

Even when the ensemble size n is relatively small, the problem of optimising for the angles

of the rotation matrix is challenging. For example, with the 62 ensemble members for

the RTMT and TA fields of CanAM4, 62×61
2 = 1891 angles must be defined to find Λ.

However, simplifications to the problem can be made to overcome this computational issue.

5.3.1. Invariance of RW(B, ·) to rotation

It can be shown that the reconstruction error using the full basis of size n is invariant to

rotation. Rotations are linear operators: applying a rotation does not affect the subspace

represented by B (Rudin, 1976). We prove in our context that if we define the new basis

by multiplication on the right, it is not possible for the reconstruction error to be less than

the reconstruction error for the full original basis.

Result. For a basis B, which need not be orthogonal, a general n× n rotation matrix Λ,

a weight matrix W, and a vector of output f(x), we have:

RW(BΛ, f(x)) = RW(B, f(x))

Proof. The reconstruction error for the rotated basis can be written as

RW(BΛ, f(x)) = ‖f(x)−BΛ((BΛ)TBΛ)−1(BΛ)T f(x)‖W

= ‖f(x)−BΛ(ΛTBTBΛ)−1ΛTBT f(x)‖W

By the definition of rotation matrices, Λ is invertible, with ΛT = Λ−1. Furthermore,

ΛTBTB is a square matrix, and is invertible (BTB is non-singular as B is a basis, so

none of the columns are linear combinations of each other, i.e. B has rank n), so that the
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identity (CD)−1 = D−1C−1 for C,D both n× n invertible matrices can be applied:

= ‖f(x)−BΛΛ−1(ΛTBTB)−1ΛTBT f(x)‖W

= ‖f(x)−B(BTB)−1(ΛT )−1ΛTBT f(x)‖W

= ‖f(x)−B(BTB)−1BT f(x)‖W

= RW(B, f(x))

where the same identity has been applied a second time, with C = ΛT and D = BTB, to

give the result.

The reconstructed field with the full rotated basis is the same as the reconstruction with

the original basis, regardless of the rotation that has been applied. By taking linear

combinations of the original basis, only basis vectors that define the same n-dimensional

subspace can be found using this method.

This at first appears to be a negative, as it shows that this method cannot find a lower

reconstruction error than the full SVD basis gives. However, if any general subspace of

l-dimensional space was a potential basis, i.e. the multiplication was performed on the left

instead, then not only would the optimisation problem be much more difficult, with many

more parameters, but also directions of space where there is little or no signal from the

ensemble could be explored. Here, the rotation restricts the new basis to the n-dimensional

subspace defined by SVD: the subspace where ensemble signal is found.

Therefore, although a basis that reduces the reconstruction error more, or gets ‘closer’ to

z, than the full SVD basis Γ cannot be found, in practice the majority of these SVD basis

vectors are discarded. Rotating the basis allows important directions, if any, from these

discarded, low-eigenvalue basis vectors to be combined in such a way that they are included

in the first few new basis vectors. Combining the important directions with patterns that

contain more signal allows emulators to be built, and hence gives a trade-off between

emulatability and minimising the reconstruction error. This will improve reconstructions

compared to the truncated SVD basis.
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5.3.2. Rotation as re-weighting

From the equations showing the new basis vectors in terms of the original basis vectors

(equations (5.2) and (5.3)) we identify a potential simplification in defining a rotation

matrix.

The form of (5.2) shows that in order to define the first column j = 1 of the new matrix, i.e.

the first new basis vector, only the first column of Λ is used, and applied to the entire SVD

basis Γ. More generally, in order to define the jth vector of the new basis, n parameters or

weights are required, as given by the jth column of Λ, and these n parameters are applied

to the entire original basis Γ. This can be demonstrated using (5.2) and (5.3), where M·j

denotes the jth column of a matrix M:

(ΓΛ)·j =


∑n

k=1 λkjγ1k
...∑n

k=1 λkjγlk



= λ1j


γ11
...

γl1

+ . . .+ λnj


γ1n

...

γln


= λ1jγ1 + . . .+ λnjγn

(5.4)

Each column in the rotated basis ΓΛ is a linear combination of the columns of Γ.

Instead of defining Λ strictly as a rotation matrix as in (5.1), the problem may be treated

as one of selecting appropriate values to be contained within Λ, rather than setting angles

for every combination of basis vectors. This does not immediately appear to be a simpli-

fication. In fact, this would require the n2 entries of Λ to all be set individually, whereas

if Λ is defined strictly as a rotation matrix, then ‘only’ n(n−1)
2 angles are required.

However, consider that when a basis is used in applications with the goal of building emu-

lators for the coefficients, as in Chapter 4, the basis is truncated, and only the coefficients

on the first q basis vectors are emulated, with q selected so that this basis explains a large

percentage of ensemble variability. The form of each vector in the rotated basis, as written

in (5.4), shows that to find q new vectors, only the first q columns of Λ are required; the

remaining columns do not contribute. Let the first q columns of Λ be denoted by Λq, and
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referred to as the ‘truncated rotation matrix’.

As we are only interested in the truncated rotation matrix for emulation, and consider the

entries of Λq as sets of multiples for the columns of Γ, rather than requiring angles, then

only nq parameters need to be estimated. As q is generally taken to be much smaller than

n, this will usually be fewer than the n(n−1)
2 for the full rotation matrix.

However, if we define Λq using general multiples, is this a valid method for defining a new

basis, and indeed is it a rotation of the original basis? If the full rotation matrix method

is used, and the initial basis is orthonormal, as the SVD basis is, then the rotated basis is

also orthonormal. If multiples are optimised instead, there is no guarantee of this. In fact,

if no restrictions are placed upon the multiples, then it is unlikely that the new vectors

will be orthogonal. Orthogonality can however be imposed after selecting general values

for Λq through the application of Gram-Schmidt (Section 4.6.3). This does not affect the

resulting reconstructions of the output, as shown in (4.16).

5.3.3. Combining Gram-Schmidt and re-weighted basis vectors

By definition, a rotation matrix Λ does not affect the inner product of two vectors, so

that if the original matrix B is orthonormal, then Γ = BΛ also is. If instead we apply a

general multiplication to the original basis, and then perform Gram-Schmidt to give a new

orthonormal basis, we show that this is equivalent to specifying a full rotation matrix, for

the case when the original basis is orthogonal.

The requirement that the original B contains orthonormal columns is not restrictive here,

as if this is not true, Gram-Schmidt can be applied to the non-orthogonal basis as a first

step, without affecting reconstructions with the basis (4.16).

Result. Let B = (b1, . . . , bn) be an orthonormal basis, and let M be an n × n matrix

containing entries mij that will be used to multiply B on the right, giving a re-weighting

of the columns of B. We assume that the columns of M are not linearly dependent, as

otherwise Gram-Schmidt cannot be applied. Then R is an upper-triangular matrix given

by Gram-Schmidt (with entries rij), so that Γ, given by

Γ = BMR
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is also an orthonormal basis. Regardless of the choice of entries for M (given that the

columns are not linearly dependent), MR gives a rotation of the original matrix B. That

is,

(MR)T = (MR)−1

i.e. MR is orthogonal, and hence has determinant equal to ±1, and is a rotation matrix.

Proof. First, we write a general column of Γ = (γ1, . . . ,γn) in terms of B,M and R:

γj =
n∑
p=1

n∑
k=1

bkmkprpj

=

j∑
p=1

n∑
k=1

bkmkprpj

(5.5)

using that R is upper-triangular, so that rpj = 0 if p > j. From the properties of

orthonormal matrices, we have that

γTi γj = bTi bj =


1 if i = j

0 otherwise

Using (5.5), we can write

γTi γj = (
i∑

p=1

n∑
k=1

bkmkprpi)
T (

j∑
q=1

n∑
s=1

bsmsqrqj)

By the orthonormality of the columns of B, the only non-zero elements of this sum occur

when s = k, allowing a simplification to

γTi γj = (

i∑
p=1

n∑
k=1

bkmkprpi)
T (

j∑
q=1

bkmkqrqj)

=
i∑

p=1

n∑
k=1

j∑
q=1

mkprpimkqrqjb
T
k bk

=
n∑
k=1

i∑
p=1

mkprpi

j∑
q=1

mkqrqj

(5.6)

By writing Λ = MR, and again using that R is upper triangular, a general element λij is

λij =

j∑
a=1

miaraj
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Hence we can write the columns of Γ in terms of the columns of Λ, and (5.6) becomes

γTi γj =
n∑
k=1

(λki)(λkj)

= λTi λj

where λi is the ith column of Λ. Using the orthonormality of Γ, we have

λTi λj =


1 if i = j

0 otherwise

and Λ = MR is orthogonal, and has determinant equal to ±1, and is a rotation matrix,

regardless of the values of M. (Strictly, if the determinant is -1, then there is also a

reflection, and the rotation is called ‘improper’. This distinction is not important in our

context).

If the columns of M are linearly dependent, then the columns of BM are also linearly

dependent, and Gram-Schmidt cannot be applied. This constraint would need to be set

when the values of M are being found.

We now generalise the result that MR is a rotation matrix to show that we only need to

define nq values to find a rotation. Let

M = (m1, . . . ,mq, eq+1, . . . , en)

where (m1, . . . ,mq) are chosen vectors of multiples for the columns of B, for example

chosen to minimise the reconstruction error for the new basis, and ek is the vector with

kth entry 1, and zeros elsewhere. Then, the previous result shows that by applying Gram-

Schmidt to BM, giving the Gram-Schmidt matrix R, gives a new orthogonal basis Γ =

BMR, and hence MR is a rotation matrix.

By the result that the application of Gram-Schmidt does not affect reconstructions, be-

cause the new kth basis vector is a linear combination of the first k basis vectors of the

non-orthogonal BM (by equation (4.16)), to find a truncated rotation matrix Λq, we only

need to define nq values for M, and perform Gram-Schmidt. This is an extremely useful

result, as it shows that to find a rotation of our original basis B, instead of needing to
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define n(n−1)
2 angles, we can set q = 1 and optimise for n values that minimise RW(·, z),

subject to constraints on the variability explained, V(·,Fµ). By combining this with the

residual basis, we can iteratively select basis vectors.

5.4. The iterative optimal rotation algorithm

Using the invariance result (Section 5.3.1) and the fact that a rotation matrix can be

defined by combining a set of values and Gram-Schmidt, we now present an iterative

process for selecting an optimal basis for searching for z.

Given an orthogonal basis B with dimension l × (n − 1) (as we generally remove the

ensemble mean initially), a positive definite l× l weight matrix W, a vector v containing

values for the minimum proportion of the ensemble variability to be explained by a single

basis vector, the total proportion of ensemble variability to be explained by the basis vtot,

and a bound T (usually that implied by history matching, T = X 2
0.995,l), we find an optimal

basis for performing calibration or history matching as follows:

1. If RW(B, z) > T , stop and revisit the specification of W. Else set k = 1.

2. Let Γ∗k = (γ∗1, . . . ,γ
∗
k−1,Bλk) and set

λ∗k = argminλk
‖z− Γ∗k(Γ

∗T
k Γ∗k)

−1Γ∗Tk z‖W

with the constraint that Bλ∗k explains at least vk of the ensemble variability:

Vk(Γ∗k,Fµ) ≥ vk

3. If k > 1, perform Gram-Schmidt so that Bλ∗k is orthogonal to each of the previ-

ously selected vectors. Denote this new orthogonal vector as γ∗k, and the current

basis as Γ∗k = (γ∗1, . . . ,γ
∗
k). The reconstruction error RW(Γ∗k, z) is invariant to the

application of Gram-Schmidt, as we showed in Section 4.6.3.

4. Calculate the ensemble residual Fε using the current basis Γ∗k:

Fε = Fµ − Γ∗k(Γ
∗T
k Γ∗k)

−1Γ∗Tk Fµ
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Calculate the SVD of Fε to give the residual basis Bε

FT
ε = UΣVT

Bε = Vn−1−k

for U, Σ and V as in (2.15), and for Vn−1−k denoting the first (n− 1− k) columns

of V. This gives an orthogonal rank (n− 1) basis (by Section 4.6.2)

Γ∗ = (Γ∗k,Bε)

5. Define q ≥ k as the minimum value satisfying

V(Γ∗q ,Fµ) ≥ vtot

where Γ∗q is the first q columns of Γ∗. If

RW(Γ∗q , z) < T

then stop, and return Γ∗q as the truncated basis. Else, set k = k + 1, and return to

step 2 to select a new vector.

To optimise for λk, we use simulated annealing (Yang Xiang et al., 2013).

5.4.1. Discussion of the algorithm

Prior to applying the algorithm and rotating B, a few choices need to be made. As

suggested in the previous chapter, a natural choice for W is

W = Σe + Ση

giving the direct parallel to history matching and the chi-squared bound T , making this

tolerance to error a sensible check. The total amount of variability to be explained, vtot,

will generally be set equal to 0.95, although for ensembles exhibiting large variability

between members, this may require a large number of basis vectors, making emulation

more time-consuming. In a problem of this nature, this value could be decreased.
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Setting the vector of proportions, v, is again problem dependent, but from experience,

setting at least the first few values as 0.1 produces satisfactory results. This helps to ensure

emulation is possible for the vectors that are likely to be minimising the reconstruction

error the most, as these are selected first.

The initial check RW(B, z) > T comes from the fact that RW(B, z) = RW(BΛ, z) for

any rotation matrix Λ, as proved in Section 5.3.1. It is therefore known a priori whether

a rotation of this form will exist such that

RW((BΛ)q, z) < T

under the current specification of the weight W. If this does not hold, then z will be ruled

out, regardless of the rotation applied.

Terminating the algorithm at this step has a few possible implications. Firstly, the spec-

ification of the variances Σe and Ση, or any other matrix used as the weight, may need

revisiting. Given the current ensemble, and these variances, the observations cannot be

found. This may suggest that more model runs are required: given those that are avail-

able, nothing close enough to the observations has been found, and hence the SVD basis

does not contain important patterns.

This suggests a way that the discrepancy could be defined for a problem. Increasing the

discrepancy variance will reduce the reconstruction error for a given basis, and the initial

criteria may then be satisfied. This need not be a permanent change in the specification

of Ση, but could be used as a means of obtaining a basis that won’t rule out z, so that

a search can be performed in this direction of the output space. Ruling out all of space

may not be useful, especially if the ensemble is small and more runs can be obtained. The

idea of increasing the discrepancy and hence the weight W so that the reconstruction of

the observations does fall below T will be developed further in Section 6.3.2.

An iterative approach has been adopted for selecting the rotation, due to the fact that a

full rotation is implied by combining a vector of (n− 1) values with Gram-Schmidt. This

has reduced the optimisation from one of selecting (n− 1)2 values or (n−1)(n−2)
2 angles, to

one where (n− 1) values are optimised for at each iteration.

At each iteration, a full (rank (n − 1)) basis is calculated at step 4 given the k chosen
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basis vectors, by combining these with the residual basis from Section 4.6.1. This gives

a basis that explains all of the ensemble variability, with the residual basis orthogonal to

the basis vectors that have previously been selected (see Section 4.6.2). Combining the

optimised basis vectors with the residual basis essentially completes the rotation matrix

so that it has dimension (n − 1) × (n − 1), via an extremely efficient calculation, in a

manner that orders the remaining basis vectors by variance explained. This is a rotation

because the new basis explains 100% of the variability in Fµ with (n − 1) vectors (by

the construction of the residual basis) as in B, so that the new basis represents the same

(n− 1)-dimensional subspace as B.

This full basis is then truncated after q basis vectors in step 5, so that at least vtot of

ensemble variability has been explained. Using this truncated basis, the reconstruction

error is calculated, and if this is now less than T , then the algorithm terminates, as a

suitable basis has been found. In practice, it has often been found that one iteration is

sufficient, with the first basis vector rotated in such a way that combining it with the

residual basis is far superior to the original basis B, so that only (n− 1) values need to be

optimised overall, a much more straight-forward and efficient optimisation problem than

that requiring (n− 1)2 or (n−1)(n−2)
2 values to be optimised.

If the current truncated basis does not satisfy RW(Γ∗q , z) < T , a new basis vector Bλk

is selected, given any basis vectors from previous steps of the rotation, so that the com-

bination of the previously selected vectors and this new one minimises the reconstruction

error, subject to satisfying the variability constraint. Utilising an iterative method sim-

plifies the application of the variability constraint, with only Vk(Γk,Fµ) ≥ vk needing to

be evaluated and satisfied for a fixed k, rather than for all k = 1, . . . , q simultaneously.

If there are a large number of ensemble members, and hence basis vectors, there are

more values, (n − 1), to be optimised at each iteration. If the optimisation becomes too

computationally intensive, then rather than considering the full SVD basis, the SVD basis

vectors that have the largest individual effect on reducing the reconstruction error could

be solely considered. This would reduce the number of values to be optimised, and should

not affect the ability to identify an optimal basis too greatly, as the reconstruction error

would still be reduced, and then the residual basis ensures that enough overall variability

is explained by the final truncated basis.
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5.4.2. Increasing efficiency

Increased computational efficiency can be achieved via a slight modification of the algo-

rithm. This has the effect of removing the Gram-Schmidt step completely, and reducing

the number of values or parameters to be optimised at each iteration from (n − 1) to

(n − k). Instead of directly rotating the original basis B at iteration k > 1, multiples of

the vectors of the residual basis Bε from iteration k − 1 can be considered.

Due to the fact that the residual basis, combined with the previously selected patterns,

gives a rank (n − 1) basis, and hence defines the same subspace as B, the residual basis

can be written as

Bε = BΛε

for an (n− 1)× (n− k) matrix Λε, which can be written as

Λε = (BTB)−1BTBε = BTBε

Exploiting this formulation of the residual basis as dependent on the original basis, the

optimisation at the following iteration can be performed for a vector λk with (n − k)

entries:

Bελk = BΛελk

Defining λ̃k := Λελk then gives a vector of length (n− 1) that gives a linear combination

of the original basis B. Applying a rotation to the residual basis still gives a rotation of

B, with fewer values to be optimised for, simplifying the optimisation problem.

The second simplification that the change to the residual basis allows is the removal of

the Gram-Schmidt step. By definition, the vector selected by rotating the residual basis is

orthogonal to the previously selected vectors. Recall from Section 4.6.2 that the residual

basis is orthogonal to each of the basis vectors used to calculate the ensemble basis, i.e.

Γ∗Tk−1Bε = 0

Hence the first k− 1 vectors are orthogonal to the rotation of the residual basis at step k:

Γ∗Tk−1(Bελk) = (Γ∗Tk−1Bε)λk = 0
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The residual basis automatically constrains any chosen vectors to be orthogonal to those

basis vectors previously selected (shown in Section 4.6.2). The new basis vector still needs

to be normalised so that it has length 1, but the Gram-Schmidt step is now redundant.

These additions lead to the following updated algorithm:

1. If RW(B, z) > T , stop and revisit the specification of W. Else set k = 1.

2. Let Γ∗k = (γ∗1, . . . ,γ
∗
k−1,Bλk) and set

λ∗k = argminλk
‖z− Γ∗k(Γ

∗T
k Γ∗k)

−1Γ∗Tk z‖W

with the constraint that Bλ∗k explains at least vk of the ensemble variability:

Vk(Γ∗k,Fµ) ≥ vk

Define the new normalised vector as

γ∗k =
Bλ∗k
‖Bλ∗k‖

and set Γ∗k = (γ∗1, . . . ,γ
∗
k−1,γ

∗
k).

3. Calculate the ensemble residual Fε using the current basis Γ∗k:

Fε = Fµ − Γ∗k(Γ
∗T
k Γ∗k)

−1Γ∗Tk Fµ

Calculate the SVD of Fε to give the residual basis Bε

FT
ε = UΣVT

Bε = Vn−1−k

for U, Σ and V as in (2.15), and for Vn−1−k denoting the first (n− 1− k) columns

of V. This gives an orthogonal rank (n− 1) basis (by Section 4.6.2)

Γ∗ = (Γ∗k,Bε)
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4. Define q ≥ k as the minimum value satisfying

V(Γ∗q ,Fµ) ≥ vtot

where Γ∗q is the first q columns of Γ∗. If

RW(Γ∗q , z) < T

then stop, and return Γ∗q as the truncated basis. Else, set k = k + 1 and B = Bε,

and return to step 2 to select a new vector.

5.5. Basis rotation for the toy function

A first wave of calibration and history matching for the toy function was carried out in

Section 4.4, using the SVD basis. The conclusion of this application was that the wrong

region of parameter space was highlighted (by calibration), with samples from the posterior

distribution for x∗ not resembling the observed field z. History matching ruled out all of

parameter space. History matching was improved by selecting a pattern in Section 4.7.

Instead of selecting a pattern, we now find an optimal rotation by applying the method

from Section 5.4.2 to this problem.

As discussed above, there are a number of choices to be made when applying this method.

Firstly, the basis that will be rotated will be the SVD basis, Γ, of the toy function ensemble.

The full rank 60 basis will be considered in the optimisation stage, as optimising for 60

parameters at each step is not prohibitively time-consuming. The reconstruction error

will be minimised with respect to the weight matrix W = Σe + Ση, so that the direct

comparison with history matching is suitable. The minimum proportion of variability to

be explained by the initial basis vector is set as v1 = 0.4, with all other entries of v set

equal to 0.1.

Given these choices, we find a new basis Γ∗ = ΓΛ by applying the algorithm, the first four

vectors of which are shown in Figure 5.1. To find a basis that has RW(Γ∗q , z) < T , only

one iteration of the algorithm was required: the basis vector given by the rotation of Γ at

the first iteration is by itself sufficient to give a reconstruction error below the threshold
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Figure 5.1. The first four basis vectors for the basis selected by rotating the SVD basis, alongside
the VarMSE plot for this basis (solid lines) and the SVD basis (dotted lines), with W = Σe + Ση.
The dotted horizontal line represents the history matching bound, and the solid horizontal line
represents the reconstruction error given when the full SVD basis is used. The dotted vertical line
shows the truncation for the rotated basis.

T . The new full basis was then given by combining this first vector with its residual basis.

The first five basis vectors of this new basis are required in order to explain more than

95% of the ensemble variability. It is not surprising that an extra basis vector is needed

compared to the SVD basis: the proportion explained by the first basis vector, V1(Γ∗,Fµ),

has been reduced by forcing it to contain more patterns similar to z, which does not

explain much of Fµ. This new first basis vector explains 40.01% of the variability in Fµ.

In repeated applications of this algorithm, we have found that this percentage will often

be a small amount above the set threshold: if the projection onto this basis vector explains

more of the variability in Fµ, then it is likely to be worse at representing z.

The VarMSE plot in Figure 5.1 shows that only the first basis vector is required for

the reconstruction error, RW(Γ∗, z), to be below the history matching bound. Prior to

rotation, this was not the case for the first basis vector, or even the truncated SVD basis

(shown by the dotted red line). Adding the second vector improves this further, and takes

the error towards its theoretical minimum for the SVD basis, RW(Γ, z). This, combined

with the fact that projection onto these first basis vectors explains a reasonable amount

of the variability in the ensemble, suggests that this basis is suitable for calibration and

history matching, and it should be possible to build informative emulators for the ensemble

coefficients on these vectors.

We fit Gaussian process emulators for these coefficients as described in Section 4.3. Cross-
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validation plots are shown in Appendix B.3, suggesting that our emulators are suitable

for predicting the coefficients at input parameters x.

5.5.1. Calibration with the rotated basis

We use the emulators built for the coefficients of the optimally rotated SVD basis to

perform Bayesian calibration for the toy model. We use the same method as in Section

4.4, with the emulator expectation and variance mapped back to the original l-dimensional

space, following the method of Wilkinson (2010). Sampling from the posterior distribution

is performed using the same Metropolis-Hastings algorithm as described in Section 4.4.3,

with the initial value for the chain again set at the true input setting, x∗.

Figure 5.2 shows the posterior distributions for each of the input parameters for the rotated

basis with solid lines, with the posteriors given by the SVD basis represented by dotted

lines. As in the previous calibration, we apply a thinning, with every 100th value taken,

although the results are the same with a different choice of thinning. Traceplots for the

MCMC chains are shown in Appendix C.

The posterior for x1 shows a clear bias away from the true parameter value, given by the

red line. However, this parameter is not particularly important, as it has no impact on

the main diagonal or the off-diagonal pattern. Therefore, while having differences between

the sampled values and the true value for this parameter is not ideal, because it does not

affect the parts of the output that are of interest, it may have no further impact. When

calibrating using the SVD basis, the posterior for x1 contained a peak closer to the true

value.

For x2, the parameter that is the main driver of the strength of the off-diagonal, the

posterior is close to the true value, with the majority of the density slightly above 0. This

is similar to the result given by the SVD basis, although the rotated basis has done better:

the mean value in this posterior is 0.039, compared to 0.054 for the SVD posterior. This

will have the effect of reducing the strength of the off-diagonal, as required.

An accurate value for x3 has not been found here, although again this is an improvement

over the SVD calibration. This is another parameter that affects the off-diagonal strength,

so it is important that its value is correct. All of the posterior density lies away from the
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Figure 5.2. The posterior distributions for each of the parameters, when calibration is performed
using the first five vectors of the rotated basis (solid lines), with the dotted lines showing the
posteriors from when the SVD basis was used, as in Figure 4.8. The red vertical lines indicate the
true value of x∗.

true value, with the mean of this distribution at x3 = −0.699. For the SVD posterior, this

mean was equal to -0.909, so that while the posterior for the rotated basis is clearly not

correct, it is at least suggesting a more accurate value than the SVD calibration was able

to.

The key parameter for controlling the strength of the main diagonal is x4, and so identi-

fying the correct setting of this parameter is critically important if fields resembling the

observations are to be found. The SVD calibration was not able to constrain this pa-

rameter particularly well, with the posterior density spread across the whole range of x4.

Although the peak of this density contained x∗4, this maximum was uniformly spread from

around 0 to 0.5. The calibration with the rotated basis has much more strongly restricted

this parameter. The mean of this posterior is at 0.147, although there is a small amount

of density at the true value of 0.25.

Although the SVD calibration assigned more posterior density to x∗4, this may not be a

better result, as it also assigns density to any value of this parameter. The rotated basis

calibration misses the true value, but restricts the posterior to a value that is at least

close to the true value. Which of these is preferable will be studied by sampling from the

posterior distributions later.
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The final two parameters are linked together in the function definition by the ratio

r =
x5

1.3 + x6

Therefore, parameter values that are not strictly equal to x∗5 and x∗6 can lead to output

the same as the observations (up to the observation error). Using these true parameter

values, this ratio is equal to 2. Rather than comparing the posteriors for these parameters

to x∗5 and x∗6, considering the above ratio will be more informative.

The posteriors for each of these parameters when the rotated basis is used both show

narrow peaks, with x5 = 0.627 and x6 = −0.995, both of which are away from x∗. Calcu-

lating the above ratio gives 2.055. The SVD posteriors for these parameters also exhibited

narrow peaks, with x5 = 0.812 close to being correct, and x6 = −0.731. Combining these

values into the above ratio gives 1.427. Figure 5.3 shows the posterior distribution for this

ratio, with the rotated basis assigning density closer to the truth than the SVD basis did

previously (as shown by the dotted line). Although the SVD posterior perhaps appears

better at first, with the density for x5 in the correct place, when combined with x6 it is

clear that the rotated version of calibration has outperformed SVD here.

From the individual posterior distributions, it appears that the rotated basis has given

more accurate results. This can be further illustrated by sampling from these distributions,

and running the toy function at these sampled values, as in Figure 4.9 for the SVD basis.

These sampled fields all contained a strong signal on the off-diagonal, with the patterns

from z not displayed. Samples from the posterior distribution found with the rotated basis

are shown in Figure 5.4.

These runs are all closer to the observations than those sampled from the SVD posterior.

The key patterns from the observations, namely large positive values on the main diagonal,

and negative values in the corners, are found in each of these sampled fields, a significant

improvement over the SVD case. In the majority of these runs, the values on the main

diagonal are larger than those on the off-diagonal, for at least some sections of the diagonal.

The main problem with these samples is that the values on the off-diagonal are too strong;

the main diagonal should be much more distinctive.

Although these samples do not perfectly reproduce fields that are similar to z, this is a
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Figure 5.3. The posterior distribution for r, for the rotated basis (solid line) and the SVD basis
(dotted line).

much better result than for the SVD basis. In that case, there was no suggestion that

it was possible to find runs with a stronger main diagonal, whereas here it is clear that

the values on the main diagonal can be affected by the input parameters. This result

suggests that an extra wave of calibration should be performed: with little signal in the

direction of the observations, it has been possible to identify runs containing some signal

in this direction, by incorporating this faint signal into the basis via the rotation. The

rotated basis satisfied the requirement that enough signal was contained in the first few

basis vectors so that the coefficients were emulatable. If a new sample were to be taken,

and runs similar to those in Figure 5.4 were to be used in the ensemble, then there will be

more signal in the direction of z in the ensemble, and so a more suitable basis for searching

in this direction may be found. It should be possible to build more accurate emulators for

basis vectors in the direction of z, and may be possible to find x∗, and other runs where

there are larger values on the main diagonal, and lower values on the off-diagonal.

In order to perform a second wave of calibration, we first carry out history matching for

wave 1 using the current basis, to define an NROY space from which a new ensemble will

be sampled.

5.5.2. History matching

When the SVD basis was used for history matching in Section 4.4.4, the entire parameter

space X was ruled out. This result was unsurprising, given that the samples from the
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Figure 5.4. f(x) at 16 samples of x from the calibration posterior distribution, using the rotated
basis for projection and emulation.

calibration posterior were all dissimilar from z. Given the improved calibration results

with the rotated basis, history matching may result in a non-empty NROY space here. It

is clearly important that this NROY space contains x∗ and the other parameter settings

from the true NROY space.

The same method for history matching the field is used as previously (Section 4.4.4): the

emulator means and variances for the coefficients are mapped back to the original field,

and the implausibilities are calculated over the field, with the same chi-squared value,

T , used to rule points out. Using the rotated basis and its emulators to calculate the

implausibilities, a non-empty NROY space is now found: 31.49% of parameter space is

classified as not ruled out. This does not necessarily mean that this basis has improved

upon using the SVD basis for history matching, as it is possible that parameter settings

that lead to runs consistent with z have been ruled out incorrectly. However, as the toy

function is quick to run at any parameter setting, this can be assessed by calculating the

implausibility for parameter choices in the true NROY space. All of these choices are

found to lie in NROY space, and hence the rotated basis has improved history matching.

The composition of this NROY space is illustrated in Figure 5.5, with proportions of runs

not ruled out shown for each pair of parameters, averaged over the other four parameters

(with the axes reversed for the true NROY space plots as before). This shows that the

parameter that has been most strongly been constrained is x2, with extremely high and
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Figure 5.5. Density plot for the wave 1 NROY space defined using the rotated basis (upper right),
and the true NROY space (lower left), for each pair of parameters. The remaining parameters
are averaged over for each plot, and the proportion in NROY space for each pair is plotted. The
axes are reversed for the lower left plots to allow a comparison with the top half. The green point
corresponds to x∗.

low values both completely removed. This is a good result: the larger the absolute value

of this parameter, the higher the values on the off-diagonal. Ruling out the extreme values

of x2 immediately restricts the magnitude of this pattern, and suggests that if an ensemble

were to be sampled from this NROY space, then it is unlikely that runs containing high

values on the off-diagonal, and little pattern elsewhere (as in the majority of the wave 1

ensemble) would be selected.

From these pairwise plots, there are no other parameter choices that have been completely

ruled out. However, the presence of red colours rather than blue shows that space has

been cut down, although not in a way that is immediately identifiable in two dimensions.

5.6. Combining history matching and calibration

In the previous section, a substantial improvement over calibrating or history matching

using the SVD basis has been achieved using our rotation method to select an optimal

basis. However, the rotation basis has not given perfect results yet: there is still a lot of

parameter space leading to biased fields that has not been ruled out, and the true x∗ has

not yet been identified.
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This is not surprising. In the initial ensemble, there was little signal in the direction

of z, and the rotated basis had to account for this by selecting patterns that could be

emulated, while explaining some variability in the direction of z, but perhaps not all of

it. However, by defining an NROY space using the basis containing some signal from z,

if a new ensemble were to be sampled from this space, then it is likely that there will be

more signal in the desired direction than in the original ensemble. This assumes that the

emulators for this direction were accurate, but the emulatability constraint should have

helped to ensure this.

Therefore, a new ensemble is selected, and further waves of history matching and calibra-

tion are performed.

5.6.1. Ensemble design

In this example, the new ensemble is designed to have 60 members, for consistency with

the ensemble for the first wave. The new design points are selected from the NROY space

defined using the wave 1 rotated basis and emulators.

We present the following method for multi-wave design. Due to the efficiency with which

the implausibility can be calculated for a parameter setting x, we first take a large sample

S (10,000 members here) of points in NROY space. From these points, we select the 60

ensemble members as follows:

1. Let m be the minimum implausibility given by points in S:

m = min
x∈S
I(x)

2. Divide S into i groups of width ω = T−m
i based on the value of I(x), so that group

k is given by

sk = {x ∈ S|m+ (k − 1)ω ≤ I(x) < m+ kω}

where T is the bound used to define XNROY .

3. Sample j points from each of the i groups sk, so that ij = n is the ensemble size.
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As the size of S tends to infinity, S = XNROY , so that m is the minimum implausibility

for any x.

Designing the ensemble in this way is similar to taking a Latin hypercube in implausibility

space, rather than across the input space as is commonly done. For example, we could

divide the implausibility space into i = n groups, and, from each of these n intervals,

sample j = 1 value of x, so that each implausibility interval is represented, as for Latin

hypercubes.

Sampling in this manner, rather than searching for a design that is space-filling for the

current NROY space, ensures that some runs with the lowest implausibilities are included.

If a purely space-filling design were used, it would be possible that all of these runs would

have implausibilities close to the bound used to define NROY space. There are likely to

be fewer runs in the interval containing the lowest implausibilities, so that these runs may

not be selected if space-filling was the sole requirement. Including some runs with lower

implausibilities is sensible as these are the runs that are currently deemed to be most likely

to give output consistent with the observations. This will hopefully lead to an ensemble

that is more informative for x∗.

By sampling using the implausibilities, there is no guarantee that a representative sample,

in terms of the input parameters, of the current NROY space is selected: it is possible

that the majority of points would be clustered in one region of the space. To ensure this

is not the case, having selected n points by sampling from the implausibility intervals, we

calculate the minimum distance between each point and another point in the design. This

is compared to the spread of these distances if n runs are instead chosen at random from

NROY space. If the minimum distances from the implausibility design are similar or larger

than randomly-selected samples, we deem this design to be an acceptable representation

of NROY space.

For the wave 2 design, 60 design points are selected by dividing the implausibility into

i = 10 equal intervals, and sampling j = 6 points at random from the points that have

implausibility in each of these intervals. The minimum implausibility in the 10,000 samples

from NROY space is 53.9, and the maximum is 140.2. The resulting ensemble contains a

spread of these implausibilities, whilst also spacing points out in the wave 1 NROY space.
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The wave 2 ensemble is defined as:

F(2) = (f(x
(2)
1 ), . . . , f(x

(2)
60 )) such that I(1)(x(2)

i ) < χ2
0.995,100 for i = 1, . . . , 60

where x
(j)
i denotes the ith design point at wave j.

5.6.2. Wave 2

Using this new ensemble, we can perform basis rotation, emulation, history matching,

and calibration for wave 2. Prior to this, we check whether any points from the wave

1 ensemble lie in NROY space. Given that these are known runs of the model, these

should also be included in the wave 2 analysis, to improve emulation. These wave 1 points

can be used as validation points to assess the wave 2 emulators, before being added to

the emulator if validation checks are satisfied. The emulators built at this wave are only

defined to be valid in NROY space, hence the ruled out runs from the previous wave are

not included.

Let the validation set at wave k be given by

F(k)
v = {f(x) ∈ F = (F(1), . . . ,F(k−1))|I(i)(x) < Ti, i = 1, . . . , k − 1}

i.e. runs that have been observed in any previous ensemble, and have not been ruled out

at any previous waves, where Ti is the threshold used to define NROY space at wave i.

For the current wave 2 example, none of the runs from the wave 1 ensemble are in NROY

space, hence there are 60 points used in the modelling at this wave. We divide these 60

runs into a training and validation set randomly for fitting emulators.

We now follow the same methodology as at wave 1. We calculate the SVD basis for

the centred ensemble of model runs, and again apply the optimal rotation algorithm to

ensure that the observations would not be ruled out when history matching is performed.

The rotated basis found at this wave is shown in Figure 5.6, alongside a VarMSE plot

displaying the reconstruction error for the SVD and rotated bases. The first five vectors

of the rotated basis explain greater than 95% of the variability in F
(2)
µ , so that the rotated

basis is truncated after these vectors. Comparing this basis to the wave 1 rotated basis

in Figure 5.1, we observe that the patterns included in the basis are extremely similar:
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Figure 5.6. The first four basis vectors for the wave 2 rotated basis. The VarMSE plot, with
W = Σe + Ση, shows both the SVD basis (dotted red and blue lines) and the rotated basis (solid
lines).

there are some differences between the two selected bases, and the vectors are ordered

differently, but the general patterns are the same.

Given that there are a limited number of ‘true’ directions built into the toy function,

finding a similar basis is expected. Furthermore, the rotation aims to optimise the basis

for representing z, and hence the same patterns are likely to be important for this, and

included in the rotated basis, should they be present in the ensemble.

The VarMSE plot in Figure 5.6 shows that with the SVD basis, the reconstruction error

is below the dotted line representing the history matching bound when the first five basis

vectors are included. Unlike at wave 1, the basis vector that has the greatest impact

on reducing the error is included in the truncated SVD basis, as the first five vectors are

required in order to explain more than 95% of the ensemble variability. Therefore, it could

be questioned why a rotation has been applied in this case. The argument for performing

this is that with the SVD basis, the majority of the improvement in reconstructing z is

given by the third SVD vector. This vector explains around 12% of the variability in the

wave 2 ensemble, however building an emulator for the coefficients on this basis vector

leads to large uncertainties for all x. As this is the only vector in the SVD basis that is

important for representing z, having informative emulators for this basis vector is critical,

as otherwise it may not be possible to rule out any additional space, or perform an accurate

calibration.

We find a rotation so that the important signal from the third SVD basis vector can be
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combined into other basis vectors. The third basis vector of the rotated basis still causes

a large reduction in the reconstruction error (solid line in Figure 5.6), but it is not as large

as for the SVD basis, and now some of this signal is included in the first basis vector. Each

of these explains more variability (the first basis vector explains 33%, the third 18%), so

that emulation is more informative, and hence this basis should be more suited to ruling

out runs not consistent with z. We fit Gaussian process emulators to the coefficients for

each of the first five basis vectors, with validation checks performed (Appendix B.3).

Given the rotated basis and the emulators for the coefficients, we perform a second wave

of history matching. Starting from the wave 1 NROY space consisting of 31.49% of the

full parameter space X , 90.28% of this NROY space is ruled out here. Hence, after two

waves of history matching, NROY space has been reduced to 3.06% of X . A density plot

of this NROY space is shown in Figure 5.7.

Previously, only x2 had clearly been constrained. Now, large pairwise sections of parameter

space have been completely ruled out. The interaction between x2 and x3, as observed in

the true NROY space, is clear in the wave 2 NROY space. The main difference between

the current NROY space and the true NROY space is in the values of x4 allowed. In the

wave 2 NROY space, a large range of x4 values are still possible, whereas a narrow range

around x4 = 0.25 is all that in fact leads to output consistent with z. As this parameter

is one of the main drivers of the main diagonal, the fact that in this NROY space a large

range of values are possible suggests that if calibration is performed here, runs sampled

from this posterior may still not be completely consistent with z.

The composition of this NROY space suggests that further waves are necessary. Although

space has been reduced significantly, x4 has not yet been restricted enough. This may

be because this parameter has not had much effect on the first two ensembles. Now that

parameter space has been reduced, and the other parameters strongly constrained, it may

be possible to more accurately identify the effect of this parameter (x4 may now become

a more active variable).
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Figure 5.7. Density plot for the wave 2 NROY space defined using the rotated basis (upper right),
and the true NROY space (lower left), for each pair of parameters.

5.6.3. Wave 2 calibration

We also perform Bayesian calibration using the wave 2 basis and emulators, to check

whether the posterior distribution is now more accurate than after the first wave. We

apply the same method as at wave 1, with the prior for x∗ changed to reflect the constraint

that zero probability should be assigned to parameter settings outside of the wave 1 NROY

space:

π(x∗) ∝


1 if x∗ ∈ XNROY

0 otherwise

The traceplots from the MCMC are shown in Figure C.3.

Figure 5.8 shows the posterior densities for each parameter, compared to the true param-

eter setting x∗ (given by the red lines). Each parameter has the majority of posterior

density over a small range of input values, whereas previously x1 at least had a wide range

of values with non-zero posterior density. x1 and x2 both have posterior density concen-

trated around x∗. This is particularly important in the case of x2, as this parameter is

most important for controlling the strength of the off-diagonal. x3 is slightly underesti-

mated by the posterior at this wave. However, this is substantially closer than for the

wave 1 calibration.
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Figure 5.8. The posterior distributions for x1, . . . , x5 and the ratio r, when calibration is performed
using the wave 2 rotated basis and emulators.

The peak for x4 is close to the true value of 0.25, although slightly underestimates this.

Again, this is an improvement over the wave 1 calibration, with the posterior density now

moved closer to the truth. The densities for x5 and x6 are away from their true values,

however as discussed previously, the ratio r = x5
1.3+x6

being equal to 2 is more important.

The peak for the posterior density of r is located at 1.3, with no density at 2. Although

the calibration has improved for each of the other parameters, this is not an improvement

on the wave 1 calibration, where this ratio was distributed around 2.06 when the rotated

basis was used.

Sampling from the posterior distribution as before and running the toy function at these

sampled parameter values gives output shown by Figure 5.9. This is a clear improvement

over the wave 1 calibration with the rotated basis (Figure 5.4), where there were large

values on the off-diagonal in each sampled field. Here, the key patterns from z have been

identified (i.e. the main diagonal and the corners), with fairly constant values elsewhere.

The most important change from the previous wave is that it has now been possible to

identify runs where the values on the off-diagonal have been reduced. These fields are not

perfect matches for z. The values on the main diagonal are on average 3 less than the

truth, due to the underestimation of the x5, x6 ratio, r. Similarly, the values in the two

corner patterns are around 3 too high in the sampled fields.

In summary, although it has been possible to find more accurate fields, it has not been

possible to find fields with values as extreme as in z on the main diagonal, or in the

corners. This is perhaps not a surprising result, as runs exhibiting these values have not
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Figure 5.9. f(x) at 16 samples of x from the wave 2 calibration posterior distribution.

been included in either ensemble, as they are produced by an extremely small region of X .

However, rotating the basis to include the important patterns from z has again successfully

highlighted runs in the correct direction.

This again clearly demonstrates the importance of performing multiple waves of history

matching and calibration. The wave 2 ensemble has allowed runs in the direction of z to

be found, but if a further ensemble were to be sampled from the new, wave 2 NROY space,

it may now be possible to choose runs that contain more signal similar to z, for example

with stronger main diagonals. The wave 2 calibration is a huge improvement over wave 1,

but the results are not yet as accurate as they could be.

Before continuing with this example, we must further develop our methodology. At the

first two waves, the differences between the ensemble runs and the observations were

generally large compared to the values of Σe and Ση. Now that we have identified a

small subset of parameter space containing the true NROY space, better runs and hence

superior reconstructions of z are now possible, and more local patterns can be identified.

Subtle changes in the observation error and discrepancy variances can now have larger

effects on RW(Γ, z).
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5.7. Weighted projection

By the definition of SVD, the projection onto the SVD basis is the projection that min-

imises the reconstruction error of the ensemble, with respect to the norm ‖·‖2, with every

dimension of the output weighted equally. If W ∝ I l, then RW(·, ·) is the same as ‖·‖2.

However, if W is a general positive definite matrix, then an adjustment in the method

of projection is required to achieve optimal reconstructions with respect to the weighted

norm.

5.7.1. Non-increasing reconstruction error

It can be shown that for a general basis B, the reconstruction error RW(Bk, z) is non-

increasing as k increases.

First, define the reconstruction error of the ensemble F = (f(x1), . . . , f(xn)) as

RW(B,F) =
n∑
j=1

RW(B, f(xj))

The Eckart-Young theorem states that the best rank q approximation, in terms of min-

imising the reconstruction error RW(Bq,A) in the norm

‖A‖2 =
∑
ij

A2
ij

for a matrix A, is given by the first q vectors of the SVD basis calculated from A (Eckart

and Young, 1936). In our setting, this norm is equivalent to setting W as a multiple of the

identity matrix, so that each output is treated equally. Therefore, in the case of B = Γq,

where Γq is the first q columns of the SVD basis for the ensemble FT , and if each output

dimension is treated equally (W ∝ I l), it is not possible to find a basis of rank q that

better represents FT , and hence RW(Bq,F) is minimised by taking Bq = Γq. It follows

from this that the usual SVD projection gives the optimal projection of a general field

f(x) onto the basis Bq for any q, with respect to minimising the reconstruction error for

W ∝ I l.

However, if a different norm is used in the reconstruction error, e.g. the norm given by any
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weight matrix that is not a multiple of the identity matrix, then the coefficients given by

the usual projection do not give optimal reconstructions with respect to W. A different

projection is required to minimise the reconstruction error in ‖·‖W, as now grid boxes may

not be weighted equally, and there may be correlations between outputs. Improvements

in the reconstruction error for some regions of the output space may be weighted more

heavily, and increasing q may lead to an increase in RW(Γq, z) when using the usual

projection method. A reconstruction error that fluctuates as additional basis vectors are

included is not useful, as when considering the VarMSE plot, it may lead to conclusions

that a basis explaining, say, 80% of the ensemble is superior to one explaining 95% (in

terms of best representing z).

For example, it may be the case that the reconstruction in only one grid box is deemed to

be important. To do this, W could be defined as a diagonal matrix as follows:

Wij =


0.001 if i = j = 1

1000 if i = j 6= 1

0 otherwise

(5.7)

When W is inverted, as in RW(·, ·), these values are inverted, so that in the weight

norm, the error in the first dimension is weighted heavily through multiplication by 1000,

with all others values given extremely low weights. Essentially, the reconstruction error

is dominated by errors in the reconstruction of the first grid box, with patterns elsewhere

unimportant.

For the normal SVD projection method, the projection is such that when the next or-

thogonal basis vector is added, the squared error across the entire reconstructed field is

minimised. However, it is possible for the reconstruction of an individual grid box to have

an increased error, despite an extra basis vector being included. This is because there may

be a coefficient that generally improves the reconstruction across the whole output space

by more, trading-off a decrease in accuracy in some parts of the reconstruction for greater

general accuracy.

In the constructed scenario above, it is possible that the first grid box does not improve

every time a new basis vector is added. Since this is the only grid box of interest according

to the defined weight W, a small decrease in accuracy for this grid box results in a
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Figure 5.10. The VarMSE plot for the toy function using the SVD basis for the wave 1 ensemble,
with the alternative specification for W, with the right plot zooming in on the later basis vectors.

large increase in the weighted error here, and as improvements in any other grid box are

comparatively meaningless, the value of the weighted norm could increase significantly,

despite the basis now having a higher rank.

This is illustrated by the spatial toy function. Instead of using W = Σe + Ση as before,

which contains values with a similar magnitude on the diagonal, this could be changed to

the version of W with 0.001 as the first diagonal entry, followed with 1000s as every other

diagonal value (equation (5.7)), meaning that it is desired that the value in the first grid

box must be accurate, with little interest in values elsewhere. Setting this as the weight

for the reconstruction error produces the VarMSE plot in Figure 5.10, with the left plot

showing the full plot, and the right plot zooming in to show the behaviour for later basis

vectors.

This exhibits the described problems. The reconstruction error after one basis vector has

been used for projection is not the maximum error, and the error in this norm increases

when the next few basis vectors are added, before a large drop after six basis vectors (as

in the standard norm for the SVD basis). Looking more closely at the later basis vectors

shows again that the error fluctuates as more basis vectors are added.

This is not a desirable property if the goal is to minimise the reconstruction error. The

result here suggests that using only one SVD basis vector is superior to using five in order

to achieve more accurate reconstructions, when this ought not to be the case. Fluctuations

in the reconstruction error may lead to odd decisions regarding truncation. For example,

the SVD basis explaining 80% of the ensemble may reconstruct z better than the SVD
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basis explaining 90% of the ensemble, so therefore the former would be preferred by an

optimisation, ignoring the fact that discarded basis vectors increase the uncertainty in

reconstructed fields.

As the basis size increases, it would be preferable for the reconstruction error to not

increase, for optimisation purposes. To achieve this for a general W, we develop an

alternative projection.

5.7.2. Weighted projection

Let B = (b1, . . . ,bn) be a general basis, which need not be orthogonal, with dimension

l×n, and W be an l×l positive definite matrix. Then, the reconstruction r = (r1, . . . , rl)
T

of f = (f1, . . . , fl)
T has reconstruction error

‖f− r‖W = (f− r)TW−1(f− r)

in the W norm, where the reconstruction is given by unknown coefficients c = (c1, . . . , cn)T

such that

r =

n∑
k=1

bkck = Bc

The problem is to find c such that the reconstruction error is minimised for a general

vector in l-dimensional space, with respect to the W norm. Similarly as for deriving least

squares estimates, the expression to be minimised is differentiated and set equal to zero.

First, expand the expression for the weighted reconstruction error in terms of c:

(f− r)TW−1(f− r) = (f−Bc)TW−1(f−Bc)

= (fT − cTBT )W−1(f−Bc)

= fTW−1f− cTBTW−1f− fTW−1Bc + cTBTW−1Bc

Next, we differentiate this expression with respect to c, using the following results for

differentiating a scalar by a vector x, for a symmetric matrix A:

∂

∂x
xTy =

∂

∂x
yTx = yT

∂

∂x
xTAx = 2xTA
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Applying these to the previous expression, and using that W is positive definite, and hence

symmetric, so that W−1 is also positive definite and symmetric:

∂

∂c
‖f− r‖W = 0− (BTW−1f)T − fTW−1B + 2cTBTW−1B

= −fTW−1B− fTW−1B + cTBTW−1B + cTBTW−1B

= −2fTW−1B + 2cTBTW−1B

Setting this equal to zero, and solving for c gives:

0 = −2fTW−1B + 2ĉTBTW−1B

=⇒ ĉTBTW−1B = fTW−1B

=⇒ BTW−1Bĉ = BTW−1f

=⇒ ĉ = (BTW−1B)−1BTW−1f

If the weight is the identity matrix, this expression simplifies to give the usual projection

equation:

ĉ = (BTI−1l B)−1BTI−1l f = (BTB)−1BT f

For a given weight, this definition of the coefficients on the basis gives a superior projec-

tion to the standard SVD projection, and therefore should be used when attempting to

minimise the reconstruction error of a basis when grid boxes are not equally weighted.

This projection should have been used for the first two waves of our toy example, as W

was not proportional to the identity matrix. As this projection is optimal for a given basis,

the reconstruction error will not increase as orthogonal basis vectors are added.

As an alternative to this, it is possible to weight the ensemble rather than using a different

projection. Weighting the ensemble prior to performing SVD then allows the standard

projection method and norm to be used in the subsequent basis selection process (see

generalised SVD/PCA, an overview of which is given in Jolliffe (2002)). This may be a

suitable approach to take if a weight matrix is known and fixed. Then, SVD need only be

performed once with this weighted ensemble.

A benefit of applying the weighting via the projection is that an SVD need only be calcu-

lated once. Performing SVD may be time-consuming for high l and n. If W is not known,

then various projections with different values for this can be considered without the need

for performing SVD multiple times.
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5.8. Refocussing continued: wave 3

We now perform a further wave of history matching and calibration. We continue to use

W = Σe +Ση as at the previous waves, but as we are now interested in smaller deviances

between the observations and its reconstructions, this weight has a greater effect. Hence,

we use the weighted projection to calculate the basis coefficients.

We sample a new ensemble F(3) from the NROY space defined at wave 2, using the

sampling method that was introduced in Section 5.6.1, with the new ensemble containing

a range of wave 2 implausibilities. None of the wave 2 ensemble runs lie in the current

NROY space. The SVD basis is calculated for the centred version of F(3), and is shown

in Figure 5.11. The first vector in this basis, explaining 87% of the variability in the wave

3 ensemble, contains the key patterns from the observations. This is expected, given that

history matching has been ruling out runs dissimilar to this, intending to leave a space

containing runs consistent with z.

The difference that the alternative projection makes to RW(·, ·) is also shown in Figure

5.11, with the standard projection given by the dotted lines. The error for the standard

projection fluctuates slightly as more orthogonal basis vectors are added, whereas the

weighted projection consistently decreases (or at least, does not increase), as it should.

The fluctuations in the error are not as great as in the example from Figure 5.10 as the

values in Σe and Ση do not vary as greatly. The error with the weighted projection is

always less than the error with the standard projection for the same basis (as the weighted

projection is optimal for this weight).

The reconstruction error, with either projection used, is below the history matching bound

for the first three SVD basis vectors (those required to explain more than 95% of the new

ensemble). The NROY space that has been sampled from to design the wave 3 ensemble

has been restricted substantially, so that runs in the ensemble are more similar to the

observations than previously, hence it is not surprising that the SVD basis is now suitable

to be used for projection, and no rotation is required here. A rotation could be performed,

as there is a potential improvement to be made because the minimum with the full SVD

basis is lower than the error with the first three. In this case, emulation is straight-forward

on the SVD basis, so we do not apply the rotation algorithm, and instead use the truncated
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Figure 5.11. The first four basis vectors for the wave 3 SVD basis. The VarMSE plot, with
W = Σe + Ση, shows the error when the weighted projection is used (solid red line) and the
standard projection (dotted red line), with the same W.

SVD basis at this wave. We build emulators for the (weighted) coefficients for the first

three basis vectors, with diagnostics shown in Appendix B.3.

5.8.1. History matching

Performing history matching using the wave 3 emulators, 66.7% of the existing NROY

space is not ruled out at this wave, leaving 2.04% of X in NROY space after three waves.

Figure 5.12 shows this NROY space, with a different scale used than previously so that it

is easier to identify which regions of space still contain runs that are not ruled out.

The main difference between the true NROY space and the wave 3 NROY space is that

x4, x5 and x6 have not yet been constrained enough, in relation to the x2 and x3 values.

The former three parameters are those that have most effect on the main diagonal, so

that these have generally been harder to restrict as the amount of signal from these was

limited initially. A further wave of history matching is likely to rule out some of the more

incorrect values of these parameters, as now the effect that they have should be more

apparent.

5.8.2. Bayesian calibration

We carry out Bayesian calibration using the wave 3 emulators, with zero prior probability

assigned to parameter settings outside of the wave 2 NROY space.

216



5. Optimal rotation of a basis

Figure 5.12. Density plot for the wave 3 NROY space defined using the SVD basis (upper right),
and the true NROY space (lower left), for each pair of parameters.

The posterior distributions for the input parameters are given in Figure 5.13. The main

change from the wave 2 posteriors is that x1 no longer has a narrow peak of posterior

density, with the density now spread across the entire range of this parameter. This is as

expected, because the true NROY space contains points for all x1. The posterior density

for x2 is again concentrated around its true value, and x3 is slightly underestimated, as at

wave 2.

For x4, the peak of density is slightly further away from the true value than at the previous

wave. However, this parameter affects the main diagonal in combination with x5 and x6,

and the posteriors for these two parameters are an improvement: the ratio r has density

at 2, and all of the density is closer to 2 than at the previous wave.

Sampling from the posterior gives output fields as shown by Figure 5.14. From this, it

is clear that the calibration has been more accurate than at the previous wave. Now,

the values on the main diagonal are the correct strength for several of the sampled runs,

whereas previously this pattern was too weak. Furthermore, the values in the corners are

much closer to those in z. Not all of the runs from this sample are close matches to z,

with some of the runs still exhibiting too low values on the main diagonal, but overall,

performing an extra wave of history matching prior to Bayesian calibration has improved

the results.
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Figure 5.13. The posterior distributions for x1, . . . , x5 and r, when calibration is performed using
the wave 3 SVD basis and emulators.

Figure 5.14. f(x) at 16 samples of x from the wave 3 calibration posterior distribution.

5.9. Discussion

In this chapter, we introduced an automatic procedure for selecting a basis to be used for

projecting spatial fields onto, expanding on the ideas and methods introduced in Chapter

4. We developed an optimisation criteria, based on the reconstruction error RW(·, z),

applying rotations to an existing basis. Here, the basis that was rotated was always the

SVD basis, however there is no reason why this method could not be applied to a general

basis.

The basis rotations considered here are all performed by multiplying a basis on the right by
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a rotation matrix. This restricts the resulting rotated basis to lie in the same n-dimensional

subspace of l-dimensional space as the original basis, rather than the complete flexibility

that would be allowed by rotation on the left. However, rotation as performed above is

preferred as it not only reduces the number of parameters that must be determined, but

also retains the ability to explain the variability in the ensemble. While minimising the

reconstruction error for the observations with the rotated basis, being able to explain the

ensemble is important so that emulators may be built for the basis coefficients.

The optimisation criteria introduced in Section 5.3 provide a trade-off of these two com-

peting goals, with a minimum percentage of ensemble variability set for each basis vector.

We showed that the full SVD basis Γ gives the minimum reconstruction error that it is

possible to achieve with a rotation of this basis, RW(Γ, z). Therefore, this can be used

as an initial check for whether rotation is able to overcome any problems with the SVD

basis, in terms of representing the observations. If the reconstruction error is large, but

decreases little or not at all after the basis is truncated, then a rotation defined as above

will not be able to improve the basis choice. However, if the error does decrease for the

full SVD basis, then by applying the rotation algorithm, it is possible to incorporate the

important parts of low-eigenvalue basis vectors into the truncated basis that can be used

for emulation.

The final algorithm introduced in Section 5.4 provides a further dimension reduction in

terms of the number of parameters that must be optimised. We showed that defining

general multiples for basis vectors, instead of angles, results in a rotation matrix when

combined with Gram-Schmidt. Exploiting the fact that the rotated basis contains linear

combinations of the original basis vectors, these vectors may instead be selected iteratively,

until enough ensemble variability is explained, and the reconstruction error minimised

adequately - for example, so that this is ‘close’ to the minimum found with the full SVD

basis. This greatly reduces the complexity of the optimisation problem, and by combining

this with the residual basis methodology from Section 4.6.1, it finds a basis that is suitable

for searching in the direction of z, while explaining the ensemble.

This method is a clear improvement over the basis selection procedure of the previous

chapter, as there is no longer any reliance on eliciting a physically important pattern,

and no direct inclusion of the observations in the basis is required. Instead, the rotation

exploits the signal that is contained within the ensemble, and rearranges it in a manner
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more suited to the problem at hand. The only choices that are required in order to apply

the algorithm are the weight, W, to be used (and here, this has always been the sum

of the observation error and discrepancy variances, to retain the comparison with history

matching), and the minimum percentage of variability for each basis vector. Several

rotations may be required, with differing minimums, until a suitable one that can be used

for emulation and calibration is found. However, due to the dimension reduction achieved

by treating rotation as linear combinations of the original basis vectors, and by performing

the rotation iteratively, this is not a great expense: for the 60 member ensembles used in

this chapter, setting a maximum time of 100 seconds usually provided a suitable solution

for a given variance threshold.

This highlights a useful aspect of this method: the number of rotation parameters to be

optimised scales with the ensemble size n, rather than the size of the spatial field. In

problems with expensive computer models, n may not be much larger than the 60 in this

example, and hence the difficulty of the optimisation may not increase by much. The

larger computational burden for higher-dimensional problems is likely to lie in calculating

the inverse (or Cholesky decomposition) of the l × l matrix W, although this is a one-off

cost.

Later in the chapter, it was noted that the reconstruction error for a given weight matrix

W does not always decrease as the number of basis vectors increases, when the standard

SVD projection method is used. This is due to the norm used in the calculation of the

SVD basis, so that projections are optimal if each output is weighted equally. However,

in the case where there is known observation error, discrepancy, or any other weighting to

represent the importance of certain regions of the output field, this projection does not give

optimal projections with respect to this non-constant weight. We derived an alternative

projection (Section 5.7) so that this is consistent with the norm used to calculate the

reconstruction error, and hence this error always decreases as orthogonal basis vectors are

added.

If the observation error and discrepancy variances are unknown in a problem, and it is

not possible to elicit any beliefs regarding the relative importance of different regions of

output space, then setting the weight proportional to the identity is reasonable. Then,

the reconstruction error is simply the mean squared error, and the standard projection

can be used. For example, it may be known that the discrepancy of an output is, say, 2◦C
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in every grid box, with no known correlations. Therefore, the weight can be set to reflect

this knowledge, but as every grid box is still treated equally, the usual SVD projection is

still optimal, and the reconstruction error is divided by the multiple of the identity.

A possible drawback of the rotation method is that the rotation is restricted to the subspace

defined by the ensemble through the SVD basis. Therefore, if reconstructions of z are poor,

even with the full SVD basis, this method will not be able to fix the basis choice. However,

the rotated basis will give reconstructions as close as possible to z, while allowing emulators

to be built as the ensemble signal is incorporated into the basis.

This feature lends itself to an iterative, refocussed approach to calibration, as demonstrated

through the toy example. At the first wave, there was some signal in the direction of z, and

the rotated basis reflected this by achieving reconstructions of z that would not be ruled

out in the ‘perfect’ history matching case (i.e. no emulators involved, simply projection

and reconstruction of the field). Although the posterior distribution obtained through

Bayesian calibration with the rotated basis gave more accurate runs than when the SVD

basis was used, the true best parameter setting was not found.

By sampling from NROY space, and performing a second and third wave of history match-

ing and Bayesian calibration, runs consistent with z were identified by the posterior dis-

tribution. The rotated basis enabled runs with little or no signal in the direction of z to

be removed by history matching, so that the wave 2 and 3 ensembles contained more runs

with signal on the main diagonal. This enabled more accurate emulators to be built for

this important direction, so that parameter settings consistent with z could be found. By

wave 3, the SVD basis itself was suitable for history matching, as it was defined using

ensemble members more similar to z than at previous waves. The results of the wave

3 calibration were a significant improvement over the wave 1 results, demonstrating the

power of reducing space with history matching prior to Bayesian calibration. This gives

a greater chance of being able to emulate the patterns of interest - but only if the basis

allows for the correct directions to be searched in initially.
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5.10. Conclusion

In this chapter, we developed an algorithm for finding a calibration-optimal basis, via a

rotation of the SVD basis, demonstrating the improvements this achieved over the SVD

basis in calibration and history matching.

Where possible, performing multiple waves of history matching prior to Bayesian calibra-

tion should be preferred, allowing regions of space clearly inconsistent with the observa-

tions to be removed, so that new runs can be evaluated in low implausibility regions of

parameter space. By rotating the SVD basis, this procedure is improved as the goal of

finding z is built into the basis selection, rather than allowing the ensemble to completely

control the process.

Rotating the basis with respect to being able to represent the observations with the first

few basis vectors, by using the information from the SVD basis, is straight-forward to

apply, requiring few choices by the user. It is easy to check whether a rotation is required,

and hence this should always be carried out prior to a calibration exercise for a spatial

field.

This method has proved successful on the 100-dimensional toy function, but of greater

importance is emulating and calibrating computer models with higher-dimensional output.

In the following chapter, this method is applied to the climate model CanAM4, to show

the scalability of this method, and of calibration methods generally.
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6.1. Introduction

Tuning a climate model is an important and challenging problem. As well as large out-

put fields, for which the issue of high-dimensionality must be overcome, there are often

multiple different outputs that need to be considered jointly. History matching can be

applied to this type of tuning problem to determine parameter settings not inconsistent

with the observations, similarly as in the previous chapters, although extensions may be

required due to the inversions of large variance matrices that must be calculated to give

the multivariate implausibility.

In this chapter, we discuss methods for history matching large spatial fields, with the goal

of performing history matching for the 8192-dimensional output fields of CanAM4, and

designing a new ensemble to be run on CanAM4. As in Chapters 4 and 5, we emulate the

output fields via projection onto a low-dimensional basis, and hence selecting a suitable

basis prior to emulation is once again important.

To select a basis for this problem, we apply the iterative rotation method of Chapter

5, with the reconstruction error of the observations, RW((ΓΛ)q, z), minimised subject

to constraints on the variability. Iteratively selecting new basis vectors gave accurate

calibration and history matching results for the 100-dimensional toy function. Being able

to apply this method for larger fields, as commonly found for climate models, is important,

and hence we apply this method to three of the output fields of CanAM4. The number

of rotation parameters that must be optimised to find a new basis is similar as for the

toy function in Chapter 5 due to the small ensemble size n for CanAM4, although larger

matrices will be involved in every calculation. The number of degrees of freedom in this

problem, n, is much smaller than the dimension of the output, l, so that it may be difficult
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to represent the observations, z, accurately using linear combinations of the SVD basis.

Section 6.2 discusses how to approach history matching for large output fields, and provides

a method for linking the implausibility on the field with the implausibility on the coef-

ficients, giving a more conservative bound for ruling out runs based on the coefficients.

Section 6.3 applies the basis rotation and coefficient history matching methodology to

CanAM4, with a method for specifying the discrepancy given in Section 6.3.2, and a new

ensemble based on NROY space designed in Section 6.3.5. Section 6.4 analyses this new

wave, discussing where improvements have been made, and performing a second wave of

emulation and history matching for CanAM4, with a new spatial discrepancy developed

in Section 6.4.3.

6.2. High-dimensional calibration

In order to history match or calibrate CanAM4, the methods applied in Chapter 4 and 5

require extensions. Projecting onto a rotated basis, building emulators for the coefficients,

and using reconstructed fields to history match or calibrate was shown to give accurate

results for the 100-dimensional toy example, and hence the question to answer is whether

these scale up for output more than 80 times as large, given appropriate extensions.

The Bayesian calibration method used (Wilkinson, 2010) requires the inversion of an l× l

variance matrix, Σ(x) = Var(f(x)) + Σe + Ση, every time the likelihood is calculated,

where l is the dimension of the output field. Σ(x) varies as the input parameters x vary,

as the emulator variance is unlikely to be constant for all x, and therefore performing

MCMC on the posterior distribution is an extremely time-consuming process. Therefore,

when applied to climate models, Bayesian calibration has generally been carried out on

the basis vector coefficients, as in Sexton et al. (2011).

For history matching, scalar summaries of the output have generally been matched to,

rather than the entire output field (Williamson et al., 2015). The multivariate implau-

sibility of Craig et al. (1997) was applied in the previous two chapters, analogously to

the calibration method of Wilkinson (2010). As for calibration, this is not as practical

in high dimensions: for every x, to calculate its implausibility, Σ(x) must be inverted.

As history matching requires thousands or millions of these evaluations, this may be too

224



6. Iterative history matching of CanAM4

time-consuming for CanAM4. Calculating the Cholesky decomposition of an 8192× 8192

variance matrix, as required to calculate the implausibility or likelihood for a single pa-

rameter setting x for the majority of outputs of CanAM4, takes 78 seconds on a desktop

computer. To evaluate this for even 10,000 different parameter settings would take more

than 200 hours, and generally, more of these inversions are needed.

Performing history matching for the climate model using the same method as for the

toy example is clearly not feasible, particularly in an interactive tuning session, so that

modellers do not have to wait over a minute for the fast statistical approximation of the

model output.

Instead of history matching using the reconstructed versions of the fields, an implausibility

can be calculated using the coefficients, as in (2.38):

Ic(x) = (c(z)− E[c(x)])T (Var[c(x)] + Var[c(e)] + Var[c(η)])−1(c(z)− E[c(x)]) (6.1)

with a c subscript indicating that this implausibility is for the coefficients. This is a similar

measure as that used in Bayesian calibration by Chang et al. (2014b), however we will

discuss its deficiencies in this chapter. The projection of z onto the basis, c(z), is given by

c(z) = (ΓTΓ)−1ΓT z

The emulator expectations and variances for the first q basis vectors are arranged so that

E[c(x)] = (E[c1(x)], . . . ,E[cq(x)])T

Var[c(x)] = diag(Var(c1(x)), . . . ,Var(cq(x)))

The projections of the observation error and discrepancy variances Var(c(e)) and Var(c(η))

are given by

Var[c(e)] = (ΓTΓ)−1ΓTΣeΓ(ΓTΓ)−T

By only requiring a q×q matrix to be inverted to calculate the implausibility at x, history

matching a large spatial field becomes tractable. The NROY space using this implausibility

is then defined as

XNROY = {x ∈ X |Ic(x) < χ2
q,0.995}

where q is the number of basis vectors for which emulators have been built, and hence is
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the number of coefficients being matched to.

For clarity, the multivariate implausibility that has been applied for the emulator recon-

structions of fields in Chapters 4 and 5 will be denoted If (x) hereafter, and termed the

‘field implausibility’, while Ic(x) as in (6.1) will be referred to as the ‘coefficient implau-

sibility’.

6.2.1. Coefficient implausibilities for the toy function

Due to the speed with which both the coefficient and field implausibilities can be evaluated

for the spatial toy function of the previous two chapters, prior to history matching the

climate model using the coefficient implausibility, we first use Ic(x) to history match the

toy function, and compare the results to those found with the field implausibility.

A point that should be addressed here is that the true NROY space has been defined

with respect to the field implausibility being calculated for the true function output, as

it is quick to evaluate for the toy function. A true NROY space could equivalently be

defined using the coefficient implausibility for a given basis. However, given that this

loses information, defining the true NROY space using the field implausibility, and the

true output fields, is more sensible. This compares the true value of the observations to

the function output in each grid box, rather than a small number of summaries for the

observations and model output.

Therefore, having x where

Ic(x) > χ2
q,0.995 for If (x) < χ2

l,0.995

so that the spatial field is within our tolerance to error, but is ruled out using the coeffi-

cients, would be a problematic result.

At wave 1 with the rotated basis, history matching on the field gave an NROY space

consisting of 31.49% of the input space X (Section 5.5.2). By instead calculating the

coefficient implausibility for the same input parameters, an alternative NROY space is

defined, based on the chi-squared bound with q = 5 (as emulators were built for the first

five basis vectors). The result of this history match is a space containing 8.56% of X .
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At first glance, this appears to have performed better, given that it is known that the true

NROY space is around 0.01% of the parameter space. However, the accuracy with which

runs are ruled out is more important than simply removing as much space as possible.

Calculating the coefficient implausibility for runs that are known to lie in the true NROY

space, it is found that 16% of these are ruled out (compared to none being ruled out when

the field implausibility was used). Although the coefficient implausibility has allowed

more space to be ruled out, the cost of this is losing some accuracy, and removing some

parameter settings that are in fact consistent with the observations on the field.

The left plot of Figure 6.1 plots If (x) and Ic(x) for 1000 parameter settings (with an

additional 100 from the true NROY space), for the wave 1 emulators. This plot highlights

that there is a strong positive correlation between the two implausibilities. For the coeffi-

cient implausibility to be useful, this would need to be the case: fields that are generally

similar to z, and hence give a low field implausibility, should also give a low coefficient

implausibility, and not be ruled out if history matching were performed on the coefficients

instead.

The dotted lines in Figure 6.1 give the 0.995 chi-squared bounds for the field and coef-

ficient implausibilities, and illustrate the problem highlighted above: fewer runs are in

NROY space for the coefficient implausibility, with some of the runs that lie in the true

NROY space (coloured green) being greater than the chi-squared bound for the coefficient

implausibility, and hence being incorrectly ruled out.

One simple fix in this case is to use a more conservative bound to rule out runs for the

coefficient implausibility: instead of using the 0.995 value of the chi-squared distribution

with 5 degrees of freedom, a higher quantile could be used. Using the 0.9995 value of this

distribution to define NROY space, 14.11% of the original parameter space is not ruled

out, including 97.1% of the true NROY space, a more satisfactory result. By increasing

the bound further, with the 0.99995 value used, 100% of the true NROY space is kept,

with 18.81% of the whole parameter space not ruled out.

For the wave 1 emulators, by increasing the bound, the accuracy of history matching

using the coefficient implausibility has been improved, and the resulting NROY space

is still smaller than that defined using the field implausibility (31.49%). If using a more

conservative value of the chi-squared distribution to rule out runs is found to work generally
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Figure 6.1. Plots comparing the coefficient implausibility Ic(x) with the field implausibility If (x),
for the wave 1 emulators for the rotated basis (left), and the wave 2 emulators, with the implau-
sibilities evaluated at a sample of 1000 points from X , and 100 points from the true NROY space
(coloured green). The vertical dotted line represents the history matching bound for If (x), and
the horizontal dotted line the bound for Ic(x), each using the 0.995 value of the corresponding
chi-squared distribution.

for the coefficient implausibility, then this could be applied when we history match the

climate model.

To test whether increasing the chi-squared bound is generally applicable, we now consider

history matching with the coefficient implausibility for the wave 2 emulators for the toy

function, compared to the use of the field implausibility in Section 5.6.2. Using the field

implausibility led to an NROY space containing 3.06% of parameter space, with none of

the true NROY space ruled out (Table 6.1). By calculating the coefficient implausibilities

instead, using the standard 0.995 value from the chi-squared distribution with 5 degrees

of freedom, the NROY space only consists of 0.009% of X . Increasing the bound to the

0.99995 value still only keeps 0.1% of all parameter settings.

This appears to have ruled out too much space, and by considering only runs that lie in the

true NROY space, it is found that only 3.62% are in NROY space (using the 0.995 value),

or 28.99% when the 0.99995 value defines whether runs are ruled out. Whilst increasing

the bound to that given by the 0.99995 value succeeded in keeping all of the true NROY

runs at the first wave, at the second wave too much space has been ruled out, with a large

proportion of important parameter values ruled out, despite using the more conservative

bound.

The right hand plot of Figure 6.1 illustrates the problem at wave 2. From this, it is seen

clearly that parameter settings consistent with z are ruled out by Ic(x) and the chi-squared
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Wave If Ic
1 31.49% (100%) 8.56% (84%)

2 3.06% (100%) 0.009% (3.62%)

Table 6.1. The size of the NROY space at waves 1 and 2, when the field and coefficient implausi-
bilities are each used, with the bound set as the 0.995 value of the chi-squared distribution with
the associated number of degrees of freedom. The percentages in brackets indicate how much of
the true NROY space is not ruled out.

bound: all of the green points lie to the left of the bound for If (x), but it is not true

that all, or even the majority of these points, are below the bound for Ic(x), given by the

horizontal dotted line. The two different bounds used to rule out points are not directly

related.

This highlights a problem with using the coefficient implausibility to define NROY space

for spatial problems: what value should be used to rule out parameter settings? From

these two examples, it appears that it is not possible to use the same value from the chi-

squared distribution to set the bound. Rather than using a fixed value, a problem-specific

bound may be more suitable.

6.2.2. Selecting a conservative bound for history matching

The previous section demonstrated that when history matching using the basis coefficients,

selecting the bound to define NROY space is critical, and may not be as straight-forward

as using a quantile of the chi-squared distribution. Setting the wrong value can result in

parameter settings that lead to output consistent with z being ruled out incorrectly, as

shown in Figure 6.1. Using the chi-squared values as the bound, more space was ruled

out than when the field implausibility was used, suggesting that a method for selecting a

more conservative bound is necessary.

If possible, it would be preferable to use the field implausibility to rule out runs, due to the

fact this takes into account every grid box, and the difference between the observations

and emulated fields in each of these. Although it is not possible to calculate this at

thousands or millions of points, it could however be evaluated at a small number of points.

Then, the positive relationship between the two implausibilities could be exploited, to

infer an appropriate bound to be used to rule out parameter settings with the coefficient

implausibility.
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Figure 6.2. The wave 2 implausibilities as in the right hand plot of Figure 6.1, with solid horizontal
lines added to show the range of possible Ic(x) values at If (x) = 140.2.

For example, consider selecting a bound for the wave 2 history matching for the toy

function. Almost the entirety of X is ruled out using the chi-squared bound for Ic(x),

whereas the field implausibility keeps around 3% of space. The chi-squared bound for the

field is 140.2, but from Figure 6.2 (a plot showing the lowest implausibilities from the

right hand plot in Figure 6.1), it is seen that If (x) = 140.2 can correspond to values of

Ic(x) ranging from 45 to 70 (highlighted by the two horizontal solid black lines). Therefore,

selecting a bound for Ic(x) ‘by eye’ using this plot, one might decide that 70 is a reasonable

bound to define the NROY space for the coefficient implausibility.

Returning to history matching at wave 2 using this new bound, it is found that 5.33% of

X is considered NROY space. More importantly, 100% of the true NROY space is now

not ruled out. While this choice of bound rules out less space than the field equivalent, it

is more accurate than the chi-squared bound for the coefficients. Having a more conser-

vative bound to guard against incorrectly ruling out parameter settings leading to output

consistent with z is clearly preferable to ruling out these parameters.

In higher dimensions, it will not generally be feasible to evaluate the field implausibility as

often as in this example: if the coefficient implausibility is to be used in a problem, this is

because it is not computationally efficient to calculate the field implausibility often enough.

Therefore, there will not be as large a sample of the two implausibilities to compare, and

hence there may not be as clear a relationship, or as many coefficient implausibilities

corresponding to the bound for If (x), as in this case. We instead model this relationship.
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6.2.3. Modelling Ic vs If

Based on a small space-filling sample of x values, we define a model to relate the coefficient

implausibility to the field implausibility. Given this model, we predict the bound to be

used for ruling out space with the coefficient implausibility.

This approach is similar in nature to multi-level or hierarchical emulation (Oughton and

Craig, 2016), although the opposite. Only a few evaluations of the more complicated

field implausibility are possible, but using these, history matching with the coefficient

implausibility can be informed, via the link to the field implausibility (rather than using

the coefficient implausibilities to predict the field implausibilities for any x).

From Figure 6.1, it is clear that there is a positive relationship between the two implausi-

bilities. It is also observed that the variance increases with If , so that constant variance

as in linear regression is not a reasonable assumption. We model the relationship using a

set of weights to reflect this non-constant variance, as in weighted least squares. Given a

sample of m pairs of implausibilities I = {If (xi), Ic(xi)}mi=1, we fit the following model:

Ic(xi) = β0 + β1If (xi) + εi, εi ∼ N(0,
σ2ε
wi

)

log(wi) = α0 + α1log(If (xi))

(6.2)

where ψ = (β0, β1, α0, α1, σ
2
ε ) are all unknown parameters, and wi are weights. For the

variance parameter, we set the prior as

π(σ2ε ) ∝ σ−2ε

For the regression coefficients, we know that the coefficient implausibility and field im-

plausibility have a positive relationship, hence we set the prior for β1 to reflect this, e.g.

π(β1) ∼ Gamma(k1, θ1)

or any other distribution that constrains β1 to be positive. For α1, we have the opposite

relationship, with the weight decreasing with If , so that the variance of Ic increases with

If . A Gamma prior is appropriate for the negative of this parameter:

π(−α1) ∼ Gamma(k2, θ2)
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The values for the intercepts of the two models are not constrained to be positive or

negative, so we set Normal priors centred at zero:

π(α0) ∼ N(0, ξ21)

π(β0) ∼ N(0, ξ22)

The posterior distribution for ψ = (β0, β1, α0, α1, σ
2
ε ), given the data, is

π(ψ|Ic, If ) ∝ π(Ic|ψ, If )π(ψ|If )

∝ π(Ic|ψ, If )π(ψ)

where Ic and If are the columns of I corresponding to the coefficient and field implausibil-

ities respectively. Given this distribution, the distribution for Ic when If = T = X 2
l,0.995

can be found:

π(Ic|If = T, I) =

∫
π(Ic,ψ|T, If , Ic)dψ

=

∫
π(Ic|ψ, T, If , Ic)π(ψ|Ic, If )dψ

(6.3)

We find this distribution via MCMC. A conservative bound for ruling out runs using the

coefficient implausibility is then selected by taking the 99.5% value of this distribution, T̃ .

6.2.4. Bound for the toy function

We now apply the model for selecting a bound to be used for history matching using the

coefficient implausibility to the toy function, with the wave 1 rotated basis. We take a

Latin hypercube sample with 50 members from X , and calculate the field and coefficient

implausibilities for each point to give the data I. Figure 6.3 shows this data.

We treat the hyperparameters for the prior distributions as fixed, setting the following

priors for the regression parameters:

π(α0) ∼ N(0, 52)

π(−α1) ∼ Gamma(10, 1)

π(β0) ∼ N(0, 102)

π(β1) ∼ Gamma(10, 1)
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Figure 6.3. Left: The coefficient and field implausibilities for the 50 sampled parameter values,
for the wave 1 rotated basis emulators. The dotted line shows the history matching bound for the
field implausibility. Right: the posterior density for Ic|If = T , with the vertical line indicating
the 99.5% value of this distribution.

This completes the specification of the model in (6.2), and the predictive distribution for

Ic|If = T in (6.3) can be sampled from.

The resulting distribution for the value of the bound for the coefficient implausibility is

given in the right panel of Figure 6.3. The 99.5% value of this distribution is equal to

75.56 (as shown by the vertical line in this plot), and hence this is the bound used to

define NROY space with Ic:

XNROY = {x ∈ X |Ic(x) < T̃ = 75.56}

The size of this NROY space is 42.27% of the original parameter space X . This is a larger

NROY space than the one defined by the field implausibility for the wave 1 rotated basis

in Section 5.5.2, which contained 31.49% of X . However, none of the runs that lie in the

true NROY space have been ruled out, compared to 16% of these when the chi-squared

bound was used for the coefficient implausibility. The modelled bound has given a more

conservative, but more accurate, result, than that given by history matching using the

chi-squared bound for the coefficient implausibility.

The same model is fitted for the wave 2 implausibilities. This time, a smaller sample (20

runs) of the field implausibility is used to fit the model. The values of the implausibilities

at these 20 points are shown in Figure 6.4, again exhibiting a positive linear relationship.

Fitting the model leads to the posterior predictive distribution at T , on the right of Figure

6.4, with the bound given by the 99.5% value of the distribution shown by the vertical
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Figure 6.4. Left: The coefficient and field implausibilities for 20 sampled parameter values, for the
wave 2 rotated basis emulators. The dotted line shows the history matching bound for the field
implausibility. Right: the posterior density for Ic|If = T , with the vertical line indicating the
99.5% value of this distribution.

line. This bound is equal to 79.70. This is higher than the value chosen ‘by eye’ earlier

(70), perhaps due to the smaller sample size being used to fit this model, and the fact that

none of the observed field implausibilities are below the chi-squared bound for the field,

so the model is extrapolating.

Using this bound to history match using the coefficients, over 75% of the wave 1 NROY

space is ruled out, leaving the wave 2 NROY space as 7.51% of the full parameter space.

When history matching using the field implausibility, NROY space had been reduced to

3% of X after two waves. Once again, this bound has resulted in fewer settings of x being

ruled out, but greater accuracy has been achieved, as at wave 1: none of the true NROY

space has been ruled out by this bound.

Our model allows the coefficient implausibility to be related to the more accurate (in

terms of being a better representation of whether a field is ‘close’ to z) field implausibility,

enabling history matching to be performed for large output fields without the need for

vast numbers of high-dimensional matrix inversions. This enables history matching to be

performed for the CanAM4 model.

6.2.5. Efficiently calculating the field implausibility

It is in fact possible to rewrite the field implausibility so that only an inversion of a

q × q matrix is required for each new x (a similar simplification is demonstrated for the
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calibration likelihood in Higdon et al. (2008a)).

The Woodbury formula (Woodbury, 1950, Higham, 2002) states that

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (6.4)

where A is an l × l matrix, C is a q × q matrix, U is an l × q matrix, and V is a q × l

matrix. By setting A = W = Σe + Ση, C = Var[c(x)], U = Γq and V = ΓTq , the matrix

inversion in the field implausibility can be rewritten as

(Var[f(x)] + W)−1 = W−1 −W−1Γq(Var[c(x)]−1 + ΓTq W−1Γq)
−1ΓTq W−1 (6.5)

The observation error and discrepancy variance matrices are fixed, so that the expensive

l × l inversion of their sum only needs to be calculated once. For each new evaluation of

If (x), the only inverses that are required are Var[c(x)]−1 and (Var[c(x)]−1+ΓTq W−1Γq)
−1,

both of which are q × q matrices.

Therefore, the field implausibility can be written as (with W = Σe + Ση for clarity):

If (x) = (z− E[f(x)])T (Var[f(x)] + W)−1(z− E[f(x)])

= (z− ΓqE[c(x)])T (ΓqVar[c(x)]ΓTq + W)−1(z− ΓqE[c(x)])

= (z− ΓqE[c(x)])T (W−1 −W−1Γq(Var[c(x)]−1 + ΓTq W−1Γq)
−1ΓTq W−1)(z− ΓqE[c(x)])

This can also be written in terms of the reconstruction error:

If (x) = RW(Γq, z) + (r(z)− ΓqE[c(x)])TW−1(r(z)− ΓqE[c(x)])−

(z− ΓqE[c(x)])T (W−1Γq(Var[c(x)]−1 + ΓTq W−1Γq)
−1ΓTq W−1)(z− ΓqE[c(x)])

For l = 8192, rather than the 78 seconds it takes to calculate the field implausibility

for a single x, the formulation with only q × q inversions requires just over a second

for each evaluation (given that W−1 has already been calculated). This makes the field

implausibility viable for larger values of l, although for our example, with l = 8192, the

hierarchical model is still likely to be required so that the implausibility at millions of

parameter settings, as needed in history matching, can be found efficiently enough.
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6.3. History matching a climate model

By combining the basis rotation methodology of Chapter 5 and the model relating the

field implausibility with the coefficient implausibility, history matching for CanAM4 is

now more computationally achievable, and can be performed.

There are a number of different output fields that could be used to history match CanAM4.

In order to simplify the problem, a small subset of the outputs will be considered, with

basis rotations applied and NROY spaces defined. The three fields that were shown in

Section 4.5.2 are chosen for history matching: the air temperature (TA), the top of the

atmosphere balance (RTMT), and the cloud overlap (CLTO). TA is given over a 64× 37

latitude-pressure grid, averaged over longitude, whereas RTMT and CLTO are over the

128 × 64 longitude-latitude grid. As in Section 4.5.2, only June, July and August (JJA)

are used, with the average taken over five years of model output, so that the problem is

spatial, rather than spatio-temporal. These three fields are selected as accurate emulators

can be built for them.

The anomaly fields for the standard runs of each of these outputs were given in Figures

4.13, 4.14 and 4.15. The goal of history matching is to identify parameter settings that

are more similar to the observed fields than this model run. It is possible to perform 50

additional runs of CanAM4, the choice of which should be guided by history matching.

6.3.1. Basis rotation and emulation

First, we select the basis that will be used for emulating each of the fields, via the optimal

rotation algorithm in Section 5.4. In order to select the basis, we first must specify W

for each field. As we have no information about the structure of the observation error or

discrepancy variance, each grid box will be treated equally at the rotation step. We set

the observation error as in Section 4.5.3, treating white coloured areas of the anomaly plot

as acceptable. For this application, we use the lower estimate, setting the white coloured

anomalies as equal to 3 standard deviations, i.e.

ΣCLTO
e = ΣRTMT

e =
25

9
I8192

ΣTA
e =

4

9
I2368

(6.6)
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so that we can investigate whether it is possible to find anomaly fields that are coloured

all white. To perform the rotation, we set W = Σe for each field.

Based on the reconstructions and VarMSE plots for the SVD basis for these fields (Figures

4.16, 4.17, and 4.18), the large reconstruction errors suggest that history matching will rule

out z if no discrepancy is specified. This problem will be addressed in Section 6.3.2. For

this application, we ignore the first step from the rotation algorithm (stop if RW(B, z) >

T ), and find an optimal basis, given that the error in each grid box is treated equally,

terminating the algorithm when the new truncated basis has an error suitably close to the

theoretical minimum given by the SVD basis, RW(Γ, z).

CLTO

The SVD basis for CLTO is rotated first. The maximum time for the optimiser to run was

set at 300 seconds for each iteration, as experience has suggested that this is sufficiently

long enough for the optimiser to converge to reasonable results. By performing the rotation

for a variety of different variance thresholds, the final rotation required each of the first

three vectors to explain at least 10% of the ensemble variability:

v1 = v2 = v3 = 0.1

as this gave the best resulting basis, in terms of reducing the reconstruction error while

allowing emulation on each basis vector of the truncated basis. From experience, three or

fewer iterations are often sufficient to find a basis with reconstruction error similar to the

minimum given by the full SVD basis.

The resulting basis is depicted in the VarMSE plot in Figure 6.5, with a comparison to the

SVD basis given by the dotted red line. The first 12 basis vectors of the rotated basis are

needed to explain 90% of the ensemble variability, i.e. V(Γ∗12,Fµ) > 0.9, where Γ∗ = ΓΛ

is the rotated basis. A further 19 explain the next 5% of variability (V(Γ∗31,Fµ) > 0.95)

so the basis is truncated after 12, so that emulation does not become too time-consuming.

This plot shows that the (scaled) reconstruction error for the truncated rotated basis is

RW(Γ∗12, z)/8192 = 42.4, compared to 60.4 for the truncated SVD basis. The full SVD

basis gives reconstructions with an error of 37.5, however in this case it was not possible to
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Figure 6.5. The anomaly between the reconstruction of the CLTO observations and the observa-
tions, with the truncated rotated basis used for projection. The VarMSE plot compares the rotated
basis (solid lines) with the SVD basis (dotted lines), with W = ΣCLTO

e = 25
9 I8192.

incorporate all of this signal into the rotated basis, and still retain emulatability. Despite

this, the rotated basis is a clear improvement over the SVD basis.

The anomaly for the reconstruction of z using the truncated rotated basis is also given in

Figure 6.5. There are large anomalies observed in this plot, shown by the darker colours,

unsurprisingly as the VarMSE plot indicates that z would be ruled out by this basis.

However, regions of this reconstruction exhibit improvements over using the SVD basis

(Figure 4.17). For example, the positive anomaly near to the Equator in the Pacific has

been reduced, as has the anomaly over Australia.

Emulators are built for the first 12 rotated basis vectors, with validation plots provided

in Appendix B.4.

RTMT

For RTMT, we again set v1 = v2 = v3 = 0.1, as this gave the best combination of

minimising RW(Γ∗q , z) and allowing emulation. Figure 6.6 shows that the truncated ro-

tated basis gives a reconstruction error close to that found with the full SVD basis, and

provides an improvement over the truncated SVD basis. For the rotated RTMT basis,

we have V(Γ∗11,Fµ) > 0.9 and V(Γ∗23,Fµ) > 0.95. Therefore, the rotated basis is trun-

cated after q = 11 vectors, to avoid the need to emulate an extra 12 sets of coefficients
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Figure 6.6. The anomaly between the reconstruction of the RTMT observations and the obser-
vations, with the truncated rotated basis used for projection. The VarMSE plot compares the
rotated basis (solid lines) with the SVD basis (dotted lines), with W = ΣRTMT

e = 25
9 I8192.

containing little ensemble signal. The (scaled) reconstruction error with this basis is

RW(Γ∗11, z)/8192 = 51.9, compared to 57.7 for the truncated SVD basis (the full SVD

basis gives 50.6).

Again, without discrepancy properly included, this reconstruction of the observations

would be ruled out, as the history matching bound lies a significant distance below the

basis reconstruction error. The anomaly plot for the reconstruction with the truncated

rotated basis in Figure 6.6 shows why. There are a number of regions with large positive

anomalies, especially over East Asia and the west coast of the Americas. These are re-

duced slightly from when the reconstruction with the truncated SVD basis was considered

(Figure 4.18).

Diagnostics for the 11 rotated basis vector emulators are shown in Appendix B.4.

TA

For TA, the rotation algorithm has perhaps performed the best. With the minimum

variance for the first basis vector set as v1 = 0.35, and by combining this with its residual

basis, we find the basis summarised by the VarMSE plot in Figure 6.7. The reconstruction

error for the rotated basis reaches the minimum given by the full SVD basis (up to two

decimal places) with the inclusion of six basis vectors, whereas the SVD basis slowly
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Figure 6.7. The anomaly between the reconstruction of the TA observations and the observations,
with the truncated rotated basis used for projection. The VarMSE plot compares the rotated basis
(solid lines) with the SVD basis (dotted lines), with with ΣTA

e = 4
9I2368.

converges to this value. The rotated basis requires q = 8 so that V(Γ∗q ,Fµ) > 0.95, and

hence the basis is truncated here, with a (scaled) reconstruction error ofRW(Γ∗8, z)/8192 =

6.6. The truncated SVD basis has an error of 16.9.

Comparing the reconstructed field given by the truncated rotated basis (Figure 6.7) to

that given by the truncated SVD basis (Figure 4.16) highlights this improvement. The

large warm anomaly over the South Pole has been greatly reduced here, while smaller

gains have also been achieved around the Equator. Emulators are fitted to the first eight

rotated basis vectors (Appendix B.4).

6.3.2. Specifying the discrepancy

It has not been possible to obtain a specification for the discrepancy or observation error

variances from the climate modellers. The observation error variance is likely to be small

in comparison to the discrepancy, and in lieu of any prior information about either, Σe

and Ση will be combined in this problem, and referred to hereafter as the discrepancy,

Ση.

The reconstruction errors shown previously suggest that the basis representations are not

capable of finding model runs that replicate reality. However, it is not clear whether this

is due to a structural discrepancy between the model and the real world, or whether this
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can be attributed to exploring a small fraction of the input space, and the ensemble model

runs by chance have not given fields similar to the observations. Moreover, the modellers

are unwilling to rule out certain errors as ‘structural’, preferring to see if their model can

overcome some of its perceived deficiencies via tuning.

If history matching were to be performed without a discrepancy term, it is clear that all

of parameter space would be ruled out (unless emulator variance is large), as even the

true coefficients for z on each rotated basis give reconstructed fields that would be ruled

out. To ensure that the NROY spaces defined have the possibility of being non-empty, a

specification for the discrepancy based on the reconstruction error given by the truncated

rotated basis is used, with the aim that NROY space will contain runs with some signal

in important directions. When a second wave ensemble is designed based on this NROY

space, and run with CanAM4, runs containing more of this signal may then be found.

The discrepancy variance is set as

Ση =
RW(Γ∗q , z)

b
W (6.7)

where Γ∗q = ΓΛq is the truncated rotated basis, and

b = X 2
l,j

where j < 0.995. This takes the value of the reconstruction error for z given by the

truncated rotated basis, using the weight W involved in the rotation algorithm, and

divides it by a value from the chi-squared distribution with l degrees of freedom, and

multiplies W by this constant. Due to the fact that W is a diagonal matrix in this

case, this has the effect of dividing the reconstruction error by this constant, and lowering

the red lines on the VarMSE plots. Setting j = 0.995 forces the reconstruction error to

intersect the horizontal dotted line, representing the history matching bound, where the

basis is truncated (q). By selecting a lower value of this distribution, so that the multiple

of W is higher, we have

RΣη(Γ∗q , z) < T

i.e. the reconstruction of the observations (equivalently, the implausibility for z here) is

not ruled out by the truncated rotated basis, with the discrepancy set as in (6.7).
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Output l RW(Γ∗q , z)/l j b/l Ση

CLTO 8192 42.38 0.68 1.0072 116.86I l
RTMT 8192 51.89 0.95 1.0258 140.52I l

TA 2368 6.60 0.68 1.0134 2.89I l

Table 6.2. A table giving the discrepancy variance for each of the fields, with the values used in
their calculation, with W = Σe from (6.6).

This definition reduces the reconstruction error so that the observations should no longer

be ruled out. A lower value of the chi-squared distribution is used because if j = 0.995, the

observations would be ruled out: NROY space is defined as x with implausibility strictly

less than the bound, so that in a perfect emulation scenario, the implausibility for z would

be ruled out.

If we wished to keep the previously defined observation error variances Σe (from (6.6))

separate, these could be subtracted from the definition of Ση given in (6.7). As we are

assuming the same structure for these two variances in this problem, it does not matter

that they are simplified and treated as a single matrix.

Applying this method to define the discrepancy for the three output fields gives the dis-

crepancies in Table 6.2. For example, the reconstruction error (scaled by the field size

for consistency with the VarMSE plots) for CLTO is RW(Γ∗q , z)/8192 = 42.38. Taking

the 0.68 value of the chi-squared distribution with 8192 degrees of freedom then implies

that the multiplier required for the identity matrix is 116.86. TA is specified over the

pressure-latitude grid, and hence has a lower dimension, as reflected in this table.

Initially, j was set equal to 0.95 for each of the outputs. However, history matching using

this variance (and the bound for the coefficient implausibility that this then implied) ruled

out all of parameter space for CLTO and TA. Therefore, the value of j was reduced to

0.68, and hence the discrepancy variance increased, reducing implausibilities and giving

non-empty NROY spaces for each field individually.

With these discrepancy variances, the VarMSE plots can be revisited, with weight W = Ση

for each field. These are shown for each output in Figure 6.8. For each of these, the

reconstruction error, RW(Γ∗q , z), now lies below the history matching bound, due to the

construction of the discrepancy, and hence the representation of each output’s observations

on the rotated basis will not be ruled out, in theory. Essentially, increasing the discrepancy

variance uniformly for each grid box has the effect of ‘shifting down’ the reconstruction
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Figure 6.8. The VarMSE plots for CLTO, RTMT and TA respectively, with W = Ση.

error, and the minimum given by the full SVD basis, so that it now lies below the bound

for the field implausibility (which remains fixed). Now that the observations would not

be ruled out if the correct coefficients were given by a choice of x, history matching is

possible.

Using this method for defining the discrepancy, it could be argued that the SVD basis may

as well be used, if the discrepancy is going to be arbitrarily increased so that z will not be

ruled out. However, this is only used here due to the lack of any prior knowledge, and some

discrepancy must be set in order to illustrate history matching for CanAM4. Additionally,

as little discrepancy as possible is desired, and as the truncated SVD basis has always been

found to give worse reconstructions than the rotated basis, the discrepancy variance would

be larger if the SVD basis was used. Finally, calibration and history matching were found

to be less accurate when using the SVD basis for the toy function. The rotated basis

allows emulators to be built for more important output directions than the SVD basis, so

that regardless of the value of the discrepancy, the rotated basis ought to have a greater

chance of identifying regions of parameter space exhibiting the most important patterns.

6.3.3. Inferring the coefficient bounds

Using the discrepancy variances set above, and the emulators for the coefficients, we now

calculate implausibilities. It is not possible to calculate the field implausibility as often as

required, because this takes more than a minute for any parameter setting x. Therefore,

prior to history matching, we use the method from Section 6.2.3 to set the bound that
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Figure 6.9. Plots comparing the field implausibility and coefficient implausibility for CLTO, RTMT
and TA, with the discrepancy as specified in Table 6.2. The vertical line indicates the bound used
to history match with the field implausibility, and the horizontal line gives the predicted bound
for the coefficients.

will be used to rule out parameter settings using the coefficient implausibility.

In fact, evaluating the field and coefficient implausibilities for each output for a few points

immediately suggests that there is a perfect linear relationship between the two (Figure

6.9). While there was a strong correlation between the implausibilities for the toy func-

tion, they were not perfectly correlated. The observation error and discrepancy variances

matrices were not diagonal for the toy function, but setting them as multiples of the iden-

tity matrix still does not give a perfect correlation between the two implausibilities. This

is perhaps a function of the size of the field, l, being large in comparison to the number

of basis vectors, q.

The benefit of the perfect linear relationship for the climate model implausibilities, given

the current specifications of the discrepancy variances, is that the bound for the field im-

plausibility can be used to perfectly infer the bound that should be used for the coefficient

implausibility. The bound for history matching on the field, and the coefficient implau-

sibility bound that this implies, is shown in Figure 6.9, and Table 6.3 gives these new

bounds for history matching with the coefficient implausibilities, compared to those given

by the chi-squared distribution. From this, it is clear that the new bound is much more

conservative, with larger implausibilities not ruled out. This is a benefit: the chi-squared

bounds here would rule out parts of space that would not be ruled out by the field implau-

sibility, and hence may have ruled out runs that are in fact similar to the observations on

the field (as demonstrated for the toy function).
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Output q T New bound

CLTO 12 28.30 274.12

RTMT 11 26.76 121.78

TA 8 21.95 150.62

Table 6.3. A table giving the standard bound that would be used based on the chi-squared
distribution, and the new bound given by the implausibility model.

6.3.4. NROY space

Now that appropriate bounds for the coefficient implausibility have been found for each of

the three fields, we perform history matching using these bounds to define NROY space.

An NROY space can be defined individually for each of CLTO, RTMT and TA. However,

as the aim is to run a new ensemble on CanAM4, it is not useful to spend resources on

parameter settings that lie in some, but not all, of the individual NROY spaces, as it is

expected that the output here will not be consistent with z, or even an improvement on

the current standard output. Therefore, NROY space will be defined as

XNROY = {x ∈ X |Ic,CLTO(x) < 274.12, Ic,RTMT (x) < 121.78, Ic,TA(x) < 150.62}

i.e. to be in NROY space, x must be not implausible for each of CLTO, RTMT and TA.

We take a 500,000 member Latin hypercube sample of the 13-dimensional input parameter

space, and calculate the coefficient implausibility for each x for each output, in order to

estimate the size of NROY space. Taken individually, 45.5% of parameter settings are not

implausible for CLTO, 83.5% are not ruled out for RTMT, and only 2% are not ruled out

for TA. Combining the implausibilities to give XNROY , it is found that 0.9% of X is in

NROY space. A representation of this NROY space is given in Figure C.4.

The amount of space that is ruled out is directly related to the choice of discrepancy, so

these results are somewhat arbitrary. However, the main goal of this calibration exercise

is to highlight regions of input space that give output in the direction of the observations.

The lowest implausibilities have the greatest chance of this, and this NROY space should

therefore contain the runs most likely to give output consistent with z.
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6.3.5. Ensemble design

We now design a 50 member ensemble for CanAM4. The 50 runs should be sampled from

the NROY space defined above, but there are a number of key criteria desired for the

design.

Firstly, the design should be reasonably space-filling across the input parameters of NROY

space. This ensures that an accurate representation of NROY space is obtained, and assists

emulation within NROY space at the next wave. Additionally, the selected runs should

contain a range of implausibilities (while still not being ruled out, as in Section 5.6.1), for

each of the three outputs. For example, parameter settings that minimise (or give one

of the lowest) implausibilities for each of the fields, given that they lie in NROY space,

should be considered.

The emulated fields should highlight improvements over the standard run, or contain

unobserved patterns. As the design is only of 50 runs, and there are only three fields, it is

possible to check by hand what it is expected the model output will look like, according

to the emulators. Runs that are expected to fix various biases from the standard run are

chosen. Related to this criteria, the emulated fields should not be homogeneous: there

should be a variety of expected outputs, if there is variability within NROY space, and

not just 50 runs all fixing one small aspect of the observed anomalies.

First, a larger sample of runs from NROY space is taken, so that parameter settings with

lower implausibilities may be found. Given this sample, the design is constructed via an

iterative process. An initial random sample of 50 runs is taken, and the emulated fields

are calculated. By studying this ensemble of expected outputs, runs that contain patterns

deemed to be important, or at least different to the standard run and original ensemble,

are kept. Given these selected runs, new samples are taken to achieve a sample of size 50

again. New runs are then fixed if they exhibit different patterns to those already fixed, or

represent a currently unsampled region of NROY space, or of implausibility space. This

process continues until 50 satisfactory runs are found, that suitably represent input and

implausibility space, and that are predicted to fix various biases from the standard model

output. A plot showing the parameters for the new design is given in Figure C.5.
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6.4. The new wave

The 50 member design for CanAM4, described in the previous section, is now run on

the CCCMA supercomputer. One of the model runs failed, hence the new ensemble has

n = 49. There are a number of questions that this allows us to answer. Firstly, whether

any of the new runs are superior (according to some metric) to the standard run can be

answered. Which biases might be fixed through altering the parameters alone, and what

effect this has on other regions of the output, are also important questions.

6.4.1. Ensemble summary

To assess the anomalies of the runs in the new ensemble, the root-mean-square error

(RMSE) between the model output and the observations can be calculated. The grid

boxes in the model output correspond to different areas according to their longitude-

latitude location, and this is reflected in this calculation by weighting the differences by

area.

Using this measure, there are runs in the new ensemble that have a lower weighted RMSE

for each of CLTO, RTMT and TA individually. However, there are none that simultane-

ously improve upon the standard run across each of the three fields. Figures 6.10, 6.11

and 6.12 show the runs in the new ensemble that minimise the weighted RMSE for each

of the three fields, alongside the anomalies for the standard run for comparison.

For CLTO, run 039 improves the weighted RMSE the most, and from the comparison

with the standard run, some of these improvements can be identified. Positive biases have

been reduced, particularly near to the Equator in the Pacific and North Atlantic oceans.

The bias around Australia, and the negative bias observed previously in the Indian Ocean,

have been reduced to some extent as well. There are also more white-coloured grid boxes

in the new run, particularly in the Southern Ocean. Over the continents, where there

tends to be negative anomalies, it is less clear whether any improvement has been made

by this run: the patterns are similar, and of a comparable magnitude, as before. Overall,

this run appears to at least be an incremental improvement over the standard run.

In Figure 6.11 (RTMT), the changes between the standard run and the new best run
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Figure 6.10. The CLTO anomaly for the standard run (left), and for run 039 of the new ensemble.

are much more obvious. The large area of red in the western Pacific Ocean has been

mostly removed in run 032, with only small positive biases remaining here. A possible

consequence of reducing the anomaly here is that there is now a larger positive bias to

the north, over Russia. Whether this is preferable is a question for climate scientists, and

may be dependent on what the model is to be used for.

Other changes between the standard run and run 032 include the introduction of a small

positive bias in the Southern Ocean, possibly in response to the negative bias to the north

of this being reduced. The positive bias previously found near to the Caribbean has been

mostly removed, although this may have contributed to an increased anomaly over eastern

Canada. Generally, this run has removed some large biases found in the standard run,

particularly around the Equator, but doing so may have introduced larger biases towards

the poles.

For TA (Figure 6.12), it is not obvious that the new run gives an improvement over the

standard run. The magnitude and shape of the warm bias at the South Pole is extremely

similar, and all of the other patterns are generally the same as for the standard run. In

each of the runs in the new ensemble, the large anomaly at the South Pole has been

observed, giving evidence that this error may be structural.

Overall, large improvements have not been found. However, fixing some biases observed in

the standard run, and observing the impact that this has on other regions of the output,

is useful, and will lead to more accurate emulators, and more accurate history matching,
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Figure 6.11. The RTMT anomaly for the standard run (left), and for run 032 of the new ensemble.

Figure 6.12. The TA anomaly for the standard run (left), and for run 005 of the new ensemble.

when these new runs are used. Previously, the impact of reducing the bias in some regions

was unknown from the ensemble, and hence the wave 1 emulators may have struggled

to suggest the downsides of such potential improvements. By having these new known

correlations included in the basis, modelling should improve. As demonstrated for the

much simpler toy function in Chapter 4, history matching should be an iterative process;

for a model as complicated as CanAM4, finding far superior model runs after only one

wave was perhaps unlikely.
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6.4.2. Rotating in NROY space

Using the new ensemble of runs, we perform a second wave of history matching. The

methodology is mostly similar to that used at wave 1 (Section 6.3), although a couple of

extensions are required.

There is an additional question to be answered prior to rotating the SVD basis, that

was not evident when performing history matching at later waves for the toy function.

In this application, the new ensemble is smaller than the original ensemble. If the SVD

basis was calculated solely using the new ensemble, and rotated, it is possible that the

reconstructions of the observations will be worse than at the initial wave. This is because

the smaller ensemble size further restricts the number of directions that can be defined.

Although the truncation of the basis will lead to a similarly-sized basis that is used in

practice, the rotation is restricted by the SVD basis, and hence may not be as accurate as

at wave 1.

This problem can be illustrated with the ensembles for CanAM4. Figure 6.13 shows

the reconstruction error, RW(·, z), for three different SVD bases for RTMT: the basis

calculated from the wave 1 ensemble only, the basis calculated from the wave 2 ensemble

only, and the basis when all of the wave 1 and wave 2 runs are used. This highlights

the issue described above: the full wave 2 SVD basis gives a larger reconstruction error

than the wave 1 basis, and in fact the reconstruction error for the full wave 2 basis is

greater than the history matching bound. For the full SVD basis at wave 1, the (scaled)

reconstruction error is 1, compared to 1.09 for the full wave 2 SVD basis. Combining the

two ensembles gives an SVD basis with an error of 0.94 (all with W = Ση = 140.52I8192).

There are a few potential reasons for this. One is that the new ensemble is more dissimilar

from the observations than previously, so that patterns resembling z cannot be extracted

from the ensemble. There could be runs in the wave 1 ensemble that, while extremely

inconsistent with the observations, contain some signal in the direction of z, or that allows

a basis vector to be defined in this direction. For example, there could be a wave 1 model

run containing a pattern that appears in one part of the output for z, with the rest of

the output extremely dissimilar to z, so that this run was ruled out. Having this pattern

present in the definition of the basis would be beneficial.
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Figure 6.13. The reconstruction error of the RTMT observations given by the SVD basis, when
only the wave 1 runs are used to define the basis, when only the wave 2 runs are used, and when
all of the known runs are used, with W = Ση = 140.52I8192 in each case. The horizontal dotted
line shows the history matching bound.

Finally, it could be the case that there are not enough degrees of freedom in the SVD basis

for the new ensemble, so that while there is more information relating to z contained in

the new ensemble, in representing the ensemble with only 49 directions, this gets ignored.

This final case is perhaps shown to be the answer by the line in Figure 6.13 relating to

the reconstruction error when the SVD basis is calculated using all of the runs. This line

is similar to that for the wave 1 basis until a basis size of around 18, before this combined

basis shows an improvement. The extra degrees of freedom allowed here are exploited to

give better reconstructions of z.

The basis defined using both ensembles allows a more accurate reconstruction of z to be

found, hence the rotation algorithm should be applied to this. It is generally the case when

history matching that at least some of the runs from the previous wave will have been

ruled out. Due to this, rotating this basis in the standard manner may lead to basis vectors

being selected that do not explain much of the variability in NROY space, the region that

emulation is now performed in. An extension to the optimal rotation algorithm is required

for this case.

If m ensembles F(1), . . . ,F(m) have been generated, let all of the runs of the computer

model be denoted by

F = (F(1), . . . ,F(m))

where F(i) contains ni runs of f(·), with n = n1 + . . . + nm. From (2.15), the SVD basis
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for F is calculated as

FT
µ = UΣVT

with Fµ the centred ensemble as defined in (4.2), leading to the usual definition of the

SVD basis Γ as the first (n− 1) columns of V. Define FNROY as the model runs that lie

in the current NROY space:

FNROY = {(f(x)− µ) ∈ Fµ|x ∈ X (i)
NROY ∀i = 1, . . . ,m− 1}

with FNROY consisting of n̂ model runs. If the m ensembles were generated sequentially,

i.e. the wave k ensemble F(k) was given by sampling from within the wave (k− 1) NROY

space, then FNROY will be all of the runs from the latest ensemble F(m), and possibly

some runs from the previous ensembles.

The optimal rotation proceeds as in Section 5.4, with the variability conditions edited:

1. If RW(B, z) > T , stop and revisit the specification of W. Else set k = 1.

2. Let Γ∗k = (γ∗1, . . . ,γ
∗
k−1,Bλk) and set

λ∗k = argminλk
‖z− Γ∗k(Γ

∗T
k Γ∗k)

−1(Γ∗k)
T z‖W

with the constraint that Bλ∗k explains at least vk of the variability in NROY space:

Vk(Γ∗k,FNROY ) ≥ vk

Define the new normalised vector as

γ∗k =
Bλ∗k
‖Bλ∗k‖

and set Γ∗k = (γ∗1, . . . ,γ
∗
k−1,γ

∗
k)

3. Calculate the ensemble residual Fε for FNROY using the current basis Γ∗k:

Fε = FNROY − Γ∗k(Γ
∗
k)
TFNROY
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Calculate the SVD of Fε to give the residual basis Bε

FT
ε = UΣVT

Bε = Vn̂−1−k

for U, Σ and V as in (2.15), and for Vn̂−1−k denoting the first (n̂− 1− k) columns

of V. This gives an orthogonal rank (n̂− 1) basis (by Section 4.6.2)

Γ∗ = (Γ∗k,Bε)

4. Define q ≥ k as the minimum value satisfying

V(Γ∗q ,FNROY ) ≥ vtot

where Γ∗q is the first q columns of Γ∗. If

RW(Γ∗q , z) < T

then stop, and return Γ∗q as the truncated basis. Else, proceed to step 5.

5. Define F̃ε and B̃ε as the residual ensemble and residual basis for the full ensemble,

Fµ:

F̃ε = Fµ − Γ∗k(Γ
∗
k)
TFµ

F̃
T
ε = ŨΣ̃Ṽ

T

B̃ε = Ṽn−1−k

Set k = k + 1, B = B̃ε, and return to step 2 to select a new vector.

The constraint in step 2 that each selected basis vector explains a minimum proportion of

variability,

Vk(Γ∗k,FNROY ) ≥ vk,

and the selection of q in step 4, so that

V(Γ∗q ,FNROY ) ≥ vtot
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now depend on FNROY , rather than only the current ensemble. We are not interested in

explaining the variability across all of the known model runs, because we only need emu-

lators that are accurate in the current NROY space. Therefore, this change in constraints

ensures that there is enough signal from NROY space so that the coefficients for each of

the leading basis vectors from the rotated basis can be emulated in NROY space, and that

at least vtot of the total variability in NROY space is explained by the new basis.

The new step 5 is required because if the current selected basis vectors, combined with

the leading basis vectors from the residual ensemble (based on FNROY ), do not satisfy

RW(Γ∗q , z) < T , then further iterations must be performed. Hence, the residual ensemble

and residual basis for the ensemble of all known runs, Fµ, are calculated, so that all of the

additional directions can be considered for the next basis vector. Including the ruled out

runs in the initial definition of the basis to be rotated, and thereafter in the definition of the

residual basis that is rotated at each step, gives the rotation algorithm greater flexibility,

as more directions can be considered, and combined to give the minimum reconstruction

error, under the variability constraints.

At step 3, the basis is completed by calculating the residual basis for the NROY ensemble

FNROY , rather than Fµ, to ensure that the new basis explains as much of the variability

in FNROY as possible. Since variability from ruled out runs may have been incorporated

into the first few basis vectors, this rank (n̂ − 1) basis for FNROY (consisting of n̂ runs)

may not explain 100% of the variability in FNROY . However, as the later basis vectors of

Γ∗ will almost always be such that Vk(Γ∗,FNROY ) ≈ 0, the new basis explains the great

majority of FNROY (and regardless, the basis is always truncated prior to needing the last

small proportion of variability). Due to this small amount of information being lost, we

no longer have defined a rotation in NROY space (although we still have a rotation in the

full space), but the new basis still retains all desired properties for emulation and history

matching.

We will apply this new version of our algorithm to find the wave 2 basis for each output

in Section 6.4.4.
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6.4.3. Adding discrepancy for TA

Using the same method as previously to define the discrepancy (i.e. setting Ση as a

multiple of the identity matrix) always resulted in empty NROY spaces for TA at wave 2.

Given that every observed run of the model thus far has exhibited a large warm bias at

the South Pole, and that we rule out all x ∈ X if a constant error across the output grid

is assumed, this is good evidence of there being a structural error in the model.

Using the same discrepancy as specified at wave 1 does not lead to all x being ruled out

at wave 2 for CLTO and RTMT, despite the fact that all model runs contain large biases.

However, for these fields, the errors vary more across the ensemble, and wave 2 was able

to fix several biases, albeit at the expense of introducing other biases. In contrast, the new

ensemble for TA did not fix the South Pole warm bias at all, with the same bias always

observed, and hence we treat it differently. Whilst ruling out all of parameter space is

a result in itself, it suggests that the discrepancy specification may have been incorrect

(likely, due to the simple form we used to allow us to search for the observations). It is

again more useful to have a non-empty NROY space so that parameter settings in the

direction of z may be suggested, for possible future runs.

In the previous two chapters, the parallel between the weight matrix W for the reconstruc-

tion error and the multivariate implausibility was drawn and applied on several occasions.

The discrepancy variance Ση could therefore be thought of as a weight matrix, defined

so that errors in parts of the output space are given less importance. In the case of TA,

as it appears that the South Pole bias may be structural, the discrepancy variance could

be set so that differences between z and reconstructions here are given less importance.

This would have the effect of decreasing implausibilities, so that NROY space may be-

come non-empty, and may allow other biases in the output to be fixed: currently, the

difference between z and reconstructions is dominated by the South Pole bias. Rather

than giving the conclusion that the model cannot reproduce z, it may be more useful for

modellers to learn which aspects of the output can be improved by varying x. Therefore,

the dependence of the reconstruction error on the South Pole bias will be lessened.

Which grid boxes should be given more discrepancy will be derived from the ensemble. Our

idea is similar to the approach of Chang et al. (2016), where the discrepancy is represented

by a vector, constructed by considering the differences between the observations and the
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ensemble members in each grid box. If these differences are above a chosen threshold,

then a non-zero discrepancy is set for that grid box (see Section 2.7.3 for more details).

The discrepancy should represent the difference between the output of the model at its

‘best’ parameter setting and the observations. Therefore, selecting which grid boxes should

have increased discrepancy should not be based on, for example, whether the average

anomaly is greater than a chosen threshold. This could be dominated by large anomalies

for some ensemble members, and may lead to the discrepancy for a box being increased,

even if some ensemble members have a low or zero anomaly for this box. Instead, we order

the ensemble anomalies for each grid box, and set Di equal to the anomaly for grid box i

that exceeds a chosen proportion, p, of anomalies for that grid box:

Di = |zi − fi(xj)| such that
1

n

n∑
k=1

I(|zi − fi(xk)| ≤ |zi − fi(xj)|) = p

where I(·) is the indicator function. Then, more discrepancy will be assigned to grid boxes

if Di is greater than t◦C, where t is a parameter fixed using our judgement. We set the

ith diagonal element of the discrepancy variance matrix Ση as

[Ση]ii =


d if Di > t

1 otherwise

where t is the threshold used to select which grid boxes are most biased, and d >> 1 is

the discrepancy given to these biased grid boxes. This ensures that errors in regions that

have large biases observed in them have more discrepancy associated with them. In the

reconstruction error with W = Ση, and hence the multivariate implausibility for history

matching, errors in these boxes will have less effect on the overall error or implausibility, so

that runs may not be ruled out if they match z elsewhere in the output space, regardless

of large biases being observed for the selected grid boxes.

Using this setting of the discrepancy for TA may allow parameter settings to be identified

that fix other biases in the output, which may also lead to improvements in the South Pole

anomaly. For this problem, we set p = 0.5, and t = 7, and use all of the wave 1 and 2 runs

to calculate Di. We use a large value of p as we know that there are no ensemble members

with anomalies within the tolerance to error for the South Pole, and this combined with

our choice of t successfully identifies the main bias here. The grid boxes selected using
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Figure 6.14. The grid boxes where the discrepancy is increased for TA.

this threshold are shown in Figure 6.14 (note: some boxes have cold biases greater than

7◦C, but these are ignored in this application, as the South Pole anomaly is deemed to

be most important). To complete the discrepancy specification, we set d = 100, as this

was found to be a value for the discrepancy that lessened the effect of anomalies in the

highlighted region enough so that rotation, emulation and history matching would lead

to a non-empty NROY space. Let this discrepancy matrix with d = 100 be denoted by

WTA.

Due to the structure of the discrepancy variance changing, we now revisit the wave 1

NROY space. Based on the wave 2 runs, we are now more confident about the presence

of a structural error, and therefore the wave 1 TA emulators with the wave 1 discrepancy

should not be used to rule out space: our beliefs about the discrepancy have changed

based on observing more data, and it may be more than assumed at wave 1. The wave 1

NROY space is therefore redefined as

X (1)
NROY = {x ∈ X |I(1)c,CLTO(x) < 274.12, I(1)c,RTMT (x) < 121.78} (6.8)

with the superscript (1) indicating that this is the implausibility and NROY space at wave

1. This new definition of the wave 1 NROY space contains 41.41% of the original parameter

space; TA was the field that most strongly constrained this NROY space previously.

Redefining the wave 1 NROY space, having already designed and run a new ensemble,

means that the wave 2 ensemble does not span X (1)
NROY , and instead only represents a

subset of this. To overcome this issue, when fitting new emulators for each field, we will

257



6. Iterative history matching of CanAM4

include runs that were not ruled out according to the implausibility for each individual

field, adding these not ruled out runs to that field’s FNROY . For example, for RTMT,

23 of the wave 1 runs were not ruled out according to the implausibility and bound for

RTMT. Despite each of these runs being ruled out previously when combined with the

CLTO and TA implausibilities, they will be used in the fitting of the wave 2 emulators,

to improve the modelling within the RTMT not implausible space, and to give a more

space-filling representation of the redefined X (1)
NROY . For CLTO, 14 of the wave 1 runs

were not ruled out, and are added to FNROY for CLTO. None of the wave 1 runs for TA

are treated as ruled out due to the structure of the discrepancy changing.

6.4.4. Wave 2 rotation and emulation

Using the new specification of the discrepancy for TA, and the method for selecting a basis

using all of the observed runs of the model (Section 6.4.2), we now apply the rotation

algorithm to find a wave 2 basis for each output field.

When performing the rotation for CLTO and RTMT, the weight will now be the discrep-

ancy variance:

WCLTO = 116.86I8192

WRTMT = 140.52I8192

The rotation for TA is found using WTA, and therefore we use the weighted projection

from Section 5.7 due to the non-constant diagonal of this matrix. A multiple of WTA may

need to be applied so that the reconstruction of z is not ruled out, as in (6.7). This is

because our chosen WTA represents our beliefs about the structure of the discrepancy, not

the magnitude of it, so that this can be adjusted if necessary, based on the reconstruction

with the truncated rotated basis.

The reconstruction errors for the new rotated bases are given in Table 6.4, showing an

improvement over wave 1 for CLTO and RTMT. A superscript of (i) denotes the wave.

The reconstruction of the CLTO observations is now 13.6% better, that for RTMT has

been improved by 8.4%, whilst the reconstruction for TA has not improved if each grid

box is treated equally. To set the multiple required for the discrepancy for TA, the 0.25

value of the chi-squared distribution is used, as this is the highest value that led to a
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Output RΣe((Γ∗q)
(1), z)/l RΣe((Γ∗q)

(2), z)/l Ση Bound

CLTO 42.38 36.60 116.86I l 274.12

RTMT 51.89 47.54 140.52I l 121.78

TA 6.60 6.61 1.62WTA 231.00

Table 6.4. A table showing the reconstruction errors for the truncated rotated basis at waves 1
and 2, and the discrepancy variances and history matching bounds for each field.

non-empty NROY space. The coefficient and field implausibilities for TA are no longer

perfectly correlated, and hence the new bound for TA is found by taking the 99.5% value

of the distribution from (6.3) (shown in Figure C.6).

The VarMSE plots for the rotated basis of each output field, with the discrepancies from

Table 6.4 used as W, are given in Figure 6.15. The truncated rotated basis lies below the

history matching bound for each of the fields. For TA, this is by construction, due to the

new specification of the discrepancy. For CLTO and RTMT, because of the extra degrees

of freedom allowed by the new rotation, we would expect to reduce the reconstruction

error at least as much as at wave 1. For each field, the rotation has given an improvement

over the reconstruction errors given by the SVD bases (indicated by the dotted red lines),

and in each case is close to the minimum bound given by the full SVD basis.

None of the truncated SVD bases are below the history matching bound line, showing the

importance of rotations in this application. When 30 basis vectors are used for projection,

the SVD basis for CLTO and TA would still rule out the observations, although this would

not be the case for RTMT.

CLTO proved the most difficult to find an improved basis for, with the reconstruction error

decreasing gradually, almost in parallel to the SVD basis. The improvement here has come

from incorporating more important patterns into the first basis vector, so that this vector

by itself is more useful. 13% of the variability in the not ruled out ensemble is explained by

the first rotated basis vector (V1(Γ∗,FNROY ) = 0.13), compared to V1(Γ,FNROY ) = 0.17

for the first SVD basis vector. For CLTO, the first 19 basis vectors, with V(Γ∗19,FNROY ) >

0.85, are emulated.

The rotated basis for RTMT only gives a small improvement for the first basis vector,

despite projection onto this vector giving V1(Γ∗,FNROY ) = 0.21, compared to 55% of

FNROY being explained by the first vector of the SVD basis Γ. However, the second rotated

vector immediately reduces the reconstruction error below the history matching bound,
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Figure 6.15. The VarMSE plots for CLTO, RTMT and TA respectively, with W = Ση for each
field. The solid red lines show the reconstruction error for the rotated basis, the dotted lines the
error for the SVD basis.

whilst the SVD basis decreases the reconstruction error much more slowly. Coefficients

for the first 20 basis vectors are emulated (V(Γ∗20,FNROY ) > 0.9).

Similarly, the TA rotated basis gives a reasonable improvement for the first basis vector,

with five basis vectors being enough for the reconstruction error to fall below the history

matching bound. Again, the SVD basis does not decrease as quickly. Only 9 vectors are

required to explain 95% of the ensemble variability for TA, and hence 9 emulators are

built for these coefficients.

To assess how these new basis choices have improved compared to wave 1, the anomaly

between the observations themselves and the reconstruction of the observations using the

truncated rotation basis is given in Figures 6.16, 6.17 and 6.18 for both wave 1 and 2 for

each field. Table 6.4 has already indicated that improvements have been achieved, but

by considering these plots, which particular anomalies have now been removed can be

identified. This may suggest anomalies in the model runs that can now be removed due

to the better basis choice.

Figure 6.16 shows this comparison for CLTO. Several of the regions of strong positive bias,

given by the darker red colours, have been reduced in size by the new basis. In particular,

the positive biases around Australia, in the Pacific Ocean, and in the North Atlantic have

been reduced. There is perhaps slightly more map coloured white in the Southern Ocean

by the new basis reconstruction, as well as in the Northern Pacific. Over Eurasia, there is
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Figure 6.16. The anomaly for the reconstruction of the CLTO observations using the wave 1
truncated rotated basis (left), and the anomaly for the reconstruction with the wave 2 truncated
rotated basis.

less negative bias in places, possibly at the expense of slightly more elsewhere.

For RTMT (Figure 6.17), the positive bias in the Western Pacific has been reduced, as has

the bias over Northern Europe. Elsewhere, a lot of the stronger bias patterns remain for

the new basis, with perhaps slight improvements. There is slightly more white colouring

for the new basis reconstruction, in both the Pacific and Southern Oceans.

Figure 6.18 shows the same comparison for TA. Due to the new specification of the discrep-

ancy at wave 2, it is not surprising that the anomaly in the reconstruction for the South

Pole region is larger than at wave 1. The region given more discrepancy (Figure 6.14)

corresponds to the largest anomalies in this reconstruction. However, ignoring this region,

as errors here have little effect on the implausibility, this definition of the discrepancy has

allowed biases to be reduced in other regions of the output. The cold biases high in the

atmosphere, and at the South Pole, have been reduced at wave 2, as has the warm bias

previously found in the northern hemisphere. By assuming that the South Pole anomaly

is a structural error, it may now be possible to identify input parameters that improve

upon other aspects of the TA output.
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Figure 6.17. The anomaly for the reconstruction of the RTMT observations using the wave 1
truncated rotated basis (left), and the anomaly for the reconstruction with the wave 2 truncated
rotated basis.

Figure 6.18. The anomaly for the reconstruction of the TA observations using the wave 1 truncated
rotated basis (left), and the anomaly for the reconstruction with the wave 2 truncated rotated basis.

6.4.5. Wave 2 history matching

Using our emulators, discrepancies, and the coefficient implausibility bounds, a new NROY

space can be defined. The wave 2 NROY space is defined as parameter settings in the wave

1 NROY space that have wave 2 implausibility less than the bound for each of CLTO,

RTMT and TA:

X (2)
NROY = {x ∈ X (1)

NROY |I
(2)
c,CLTO(x) < 274.12, I(2)c,RTMT (x) < 121.79, I(2)c,TA(x) < 231.00}
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where X (1)
NROY is the redefined wave 1 NROY space (i.e. without TA, given in (6.8)).

Using this, the percentage of parameter space that lies in the wave 2 NROY space can

be calculated by sampling from X (1)
NROY and evaluating the coefficient implausibilities for

each output field. Given these implausibilities, the wave 2 NROY space contains only

0.03% of X . By taking each of the fields individually, 48.90% of X (1)
NROY is not ruled out

by the CLTO implausibility, 49.38% is not ruled out by RTMT, and 0.19% is not ruled

out for TA.

Despite changing the discrepancy structure for TA so that the grid boxes with largest

anomalies are mostly ignored, the majority of space is again ruled out for TA, suggesting

that most of parameter space contains large biases away from the observations. Revisiting

the discrepancy so that more grid boxes are treated as possible structural errors would

reduce the implausibility, and would result in less space being ruled out. However, this

result is only valid given the chosen discrepancies, and hence the bounds used to rule out

runs based on the coefficient implausibility. As the discrepancy is not actually known, the

percentage of space ruled out is not as important as searching this space for parameter

settings where output more consistent with the observations may be found.

6.5. Discussion

In this chapter, we developed our methodology further, tailoring it specifically to suit

the multiple large output fields typically seen in climate model tuning. We applied our

methodology to the Canadian atmosphere model, CanAM4.

History matching a model with thousands of outputs (e.g. 8192 for the CLTO field of

CanAM4) using the field implausibility, as in Chapter 5, is not practical due to the inability

to invert the l × l variance matrix (dependent on x) as often as required. Therefore, we

combined our rotation algorithm with history matching using the coefficient implausibility,

and found that the standard chi-squared bound used to define NROY space was inaccurate.

This standard bound for the coefficients ruled out runs that were deemed to be acceptably

close to the observations on the field, and was generally discovered to be too strict a bound.

The field implausibility is naturally more suitable for finding output similar to z, and

would be used for history matching if computation time was no issue. In order to be able

263



6. Iterative history matching of CanAM4

to use the coefficient implausibility as a conservative proxy for the field implausibility,

we developed a Bayesian hierarchical model linking the coefficient implausibility to the

field implausibility. This was based on the observation that there is a strong positive

relationship between the two implausibilities. This model was then used to infer the

coefficient implausibility associated with the bound for the field implausibility. Using this

new bound to history match the toy function on the coefficients was found to give more

conservative, but accurate, results than the chi-squared bound.

Due to the structure of the priors for our model linking the implausibilities, only a small

number of evaluations of the time-consuming field implausibility are required to update

the model, and hence this can significantly reduce the amount of time taken to perform

history matching. For CanAM4, the two implausibilities are generally perfectly correlated,

and hence inferring the bound is straight-forward and requires very few runs of the field

implausibility. For TA at wave 2, more evaluations of the field implausibility were required,

due to the different nature of Ση.

Having demonstrated the performance of this extension of history matching for high-

dimensional output on the toy function, this was then combined with the basis rotation

methodology from Chapter 5 and used to history match the climate model, CanAM4, as

the dimension of the output is too high to use the field implausibility for all x. By applying

the iterative rotation algorithm, we found rotations that improved upon the SVD basis.

This optimisation problem was not significantly more difficult than for the toy function:

the ensemble size for each of the problems was similar, and hence a similar number of

rotation parameters were optimised at each step. The time required to perform the same

number of evaluations of the reconstruction error for new rotated vectors increased slightly

due to the higher dimensional matrix multiplications, but suitable bases were generally

found with a maximum time allowed of 5 minutes.

This demonstrates that the rotation step is not prohibitively difficult for high-dimensional

output. If more ensemble members were available (increased n), then more rotation pa-

rameters would be optimised at each step; the problem becomes more complicated with

n. If n is too large for the optimiser to converge in a reasonable time, a subset of the n

SVD basis vectors could be selected, and only these be given rotation parameters to find

optimal values for. This subset could be selected by, for example, selecting each of the

first m, where the first m explain the majority of the ensemble variability, combined with
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low-eigenvalue vectors that have the greatest impact in reducing the reconstruction error

when they are added to the basis.

In order to calculate the implausibility, the discrepancy variance must be specified. Due

to no expert judgement regarding the structure of the discrepancy, this was treated as a

constant across output space at wave 1, so that the discrepancy variance was a multiple

of the identity matrix. To ensure that the observations shouldn’t be ruled out, we set this

multiple based on the reconstruction error given by the truncated rotated basis at wave 1.

This method of setting the discrepancy is not meant to be an accurate representation of

the discrepancy. Instead, it aims to ensure that the runs expected to be closest to z will

not be ruled out. If further waves are carried out, the new ensemble may then contain

more signal in the important directions highlighted by the rotated basis.

Based on the emulators for the rotated bases, and the bounds for the coefficient implau-

sibilities for each field given by the Bayesian hierarchical model, we defined the wave 1

NROY space. By sampling from this space, we designed a wave 2 ensemble, which was

then run on CanAM4. Using the wave 2 ensemble, we performed new rotations, using

another extension to the previous methodology.

This extension involved rotating the SVD basis calculated from all available runs of

CanAM4, before requiring that the previous variance constraints held for the runs in

the current NROY space, rather than across all known runs. This addition was necessary

as the wave 2 ensemble only had 49 members, so that a basis defined solely using these

runs had fewer degrees of freedom than that at wave 1, giving higher reconstruction er-

rors than previously, due to the complexity of the problem (l >> n). This issue was not

observed when history matching the toy function, due to the fact that the ensemble size

never decreased between waves, and also because of the relatively low dimension of the

toy function, simplifying emulation and history matching so that clear improvements were

made at each wave.

This extension has the effect of allowing the optimiser to search in more directions, due to

the larger SVD basis. Patterns that may only be contained in ruled out runs can then be

combined with patterns from runs in NROY space, whilst having a larger n allows much

more flexibility: instead of a 62-dimensional subspace of 8192-dimensional space (or 2368

for TA), a 111-dimensional subspace can now be searched. By modifying the variability
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constraint so that only runs in NROY space are considered, emulation is still achievable.

Following the method used at wave 1, a non-empty NROY space could not be found

for TA. This is perhaps unsurprising, given that every ensemble member contains a large

positive anomaly over the South Pole. A different specification of the discrepancy variance

was used to incorporate this belief that there may be a structural error in the model, by

considering Ση as the reconstruction error weight matrix W. The grid boxes with the

largest anomalies between the observations and ensemble were identified, and then the

diagonal values of Ση associated with these boxes were increased. As the inverse of this

matrix is used in the reconstruction error (and implausibility), increasing the discrepancy

for certain regions has the effect of allowing the output to be more incorrect in these

regions, and hence decreasing the implausibility. Improvements in other regions of the

output may then be identified, because runs with large errors in the chosen region may

no longer be ruled out, rather than these other improvements being hidden and ruled out

due to the dominant anomalies.

For large spatial fields, specifying the discrepancy variance is challenging. Our method

allows us to highlight regions of the output where there may be structural errors, and

places less importance on anomalies in these regions. We only divided the grid boxes

into two sets, but this method could be extended to incorporate additional judgements.

Furthermore, we only varied the diagonal entries of the discrepancy. To find a more

accurate specification for Ση, non-diagonal values could be similarly defined.

Ideally, further waves would be performed to better explore the input space, although

this is not necessarily practical due to the long running time of CanAM4. Based on

the wave 2 NROY space, biases that a next wave might expect to remove have been

identified for each output field, and a hypothetical wave 3 would be designed in this latest

NROY space. At this stage, Bayesian calibration is not likely to yield useful results, given

the large anomalies observed, and the unknown specification for the discrepancy. Given

these problems, history matching is currently more appropriate. As for the toy function,

calibration may become more suitable after more waves of history matching.
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6.6. Conclusion

The basis rotation methodology developed in Chapters 4 and 5 has been applied to a

climate model with high-dimensional output, with extensions provided so that this is

computationally possible. We provided a Bayesian hierarchical model to link the coeffi-

cient implausibility with the field implausibility, extended our optimal rotation algorithm

to incorporate all model runs, and started to develop methods for specifying spatial dis-

crepancies. In every application of our method, rotation resulted in a basis superior to

the SVD basis, in terms of reducing the reconstruction error given by the truncated basis.

Some observed biases from the standard model run have been removed, which is of ongoing

interest to the modellers at CCCMA.

This chapter has shown that our method scales to important real world examples, whilst

also providing a reminder that tuning such complex models is a difficult problem, unlikely

to be accurately performed with only two waves (whereas currently, calibration is generally

performed without any history matching step). If it were possible, dividing the available

runs into more waves may have provided better results. It is perhaps unlikely that a

single wave, as is generally the case when Bayesian calibration is used, is enough to give

accurate results, even if rotating the basis allows for searching in the correct directions of

the output space.
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This chapter provides a summary of the main results in this thesis, and a discussion of

directions for future research.

7.1. Summary

In Chapter 3, we compared the use of regression and Gaussian process emulators for

modelling the output of computer models with high-dimensional input spaces and uni-

variate output. Fitting the correlated residual term of the Gaussian process gave a large

improvement over the equivalent regression-only emulators, for each toy function and an

environmental model, the IC fault model. Combining this comparison with multi-wave

history matching experiments, we found that it is often reasonable to initially fit regres-

sions to capture the large-scale variability in the function output, before fitting Gaussian

processes at later waves to accurately model more local variation. The results of Bayesian

calibration were greatly improved both by the use of Gaussian process emulators instead

of regressions, and by performing a few waves of history matching prior to calibrating. We

highlighted the sensitivity of the history matching results to the sample design.

Chapter 4 identified a flaw with the standard literature method for selecting a basis for

large spatial computer model output, the basis derived by taking principal components

of the ensemble, the SVD basis. We showed that if the basis is not able to accurately

represent the observations, then any calibration or history matching exercise will likely

lead to incorrect conclusions, with the wrong basis choice guaranteeing that fields similar to

the observations cannot be found. This problem was evident in the climate model examples

given, as well as for our toy example. We introduced a measure for the ability of a basis to

represent the observations, the reconstruction error. To overcome the deficiencies of the
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SVD basis, we developed a method for combining important patterns, possibly elicited

or based on physical knowledge, with the variability from the ensemble, by defining the

residual basis. This gives an orthogonal basis intended to be suitable for exploring the

desired regions of the output space, while allowing emulation, if the elicited patterns were

defined appropriately.

Chapter 5 extended this basis selection method into an automatic, iterative procedure for

finding an optimal basis, given an ensemble and observations. The algorithm applies a ro-

tation to the SVD basis, iteratively selecting new basis vectors such that the reconstruction

error of the observations given by projection onto this basis is minimised, given constraints

to ensure emulation is possible. Our optimal rotation algorithm is able to identify any

important signal contained in the ensemble, and combine this with other patterns that

explain more ensemble variability, so that this important signal can be emulated. The

Bayesian calibration and history matching results given by the rotated basis were superior

to those given by the SVD basis, with accurate parameter settings identified. As with

the univariate functions, a refocussed approach to history matching, and then an applica-

tion of Bayesian calibration, provided results with greater accuracy, strongly advocating

this approach in calibration problems. We developed a method for designing ensembles

in NROY space, to ensure that the new design included low-implausibility regions of pa-

rameter space. A weighted projection was also defined for applications where the weight

matrix used to calculate the reconstruction error is not a multiple of the identity matrix.

In Chapter 6, we applied the basis rotation algorithm to CanAM4, a climate model with

large spatial output. This required an extension for history matching using the coefficient

implausibility rather than the field implausibility, due to the computational difficulties of

this problem. We developed a Bayesian hierarchical model for predicting the bound for

the coefficient implausibility that corresponds to the bound used to history match on the

field, as the existing chi-squared bound for the coefficients was shown to rule out output

consistent with the observations on the field. We extended our rotation algorithm to

allow more directions to be searched at later waves. As a specification for the discrepancy

variance was not available, we introduced a method for specifying the discrepancy to ensure

that the observations are not ruled out at the first wave, allowing runs to be identified that

contain some signal in the direction of the observations. At the following wave, due to the

identification of a likely structural bias in one of the climate model outputs, a method for
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specifying a more complicated spatial discrepancy was developed, allowing biases in other

regions of the output space to be fixed.

7.2. Future work

There are a number of directions that could be explored in future, to expand upon method-

ology and ideas introduced in this thesis.

Throughout this thesis, it has always been found that the results of Bayesian calibration

are superior when history matching has initially been used to reduce the parameter space,

with new ensembles being run in the current NROY spaces. Where possible, it is clear

that history matching should always be performed prior to Bayesian calibration. However,

a problem for future research may be, if there are n runs of the computer model available,

how should these best be allocated, to achieve the most accurate calibration results? How

these available runs are split between waves is likely to have some effect on the accuracy

of results.

It may be sensible to use a small (relative to the total number of available runs, n) space-

filling design at wave 1, to capture large-scale variability in the model output. Performing

history matching using emulators built for this ensemble would hopefully be able to remove

large regions of parameter space that are inconsistent with the observations, allowing the

remaining runs to be used to create more dense samples at later waves, focussed in the

regions of interest. This would allow more accurate emulation of the parts of space we are

interested in, emulating more local variability, rather than wasting resources at wave 1 so

that the entire space can be accurately emulated. For applications such as CanAM4, it is

not likely that n will be high, and there may not even be an opportunity to divide runs

across waves, due to a limited access to the supercomputer resources required.

We restricted ourselves to orthogonal bases in the applications shown. Allowing non-

orthogonal bases may allow greater flexibility in the possible representations for the ob-

servations. A related improvement could be the inclusion of a correlation between the

emulators for each coefficient: although the basis vectors are orthogonal, the coefficients

have sometimes been found to be correlated. More accurate emulation could be achieved

through the use of a multivariate emulator of the coefficients.
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When selecting an optimal basis using our algorithm, the reconstruction error is a natural

choice for representing the quality of a basis, due to its relationship with the multivariate

implausibility. However, how to define emulatability is a more difficult question. In this

thesis, we have used the proportion of ensemble variability explained by projection onto

a basis vector as a proxy for whether or not we can build an emulator for the coefficients.

For problems where there are a large number of ensemble members, or dominant signals

that are explained by several basis vectors, this may not be as suitable.

A potential extension to the general methodology for finding a basis through rotation

could be for approaching problems where there are multiple observations (z1, . . . , zN ) of

the same field, and how we would history match in such a scenario. All of the applications

in this thesis have been for problems where there is a single observed field z, and hence the

rotation is performed to minimise the reconstruction error for z, with history matching

then ruling out runs inconsistent with the single observed z. If there are instead N fields,

there are a number of options for how to proceed.

The optimal basis for this problem could be selected by minimising a function of the recon-

struction errors for each of the N observed fields, for example the maximum reconstruction

error across the observations, to ensure that all zi are represented adequately. However,

this may not lend itself to history matching: as the observations are unlikely to be in-

dependent, calculating implausibilities for each field separately may not be appropriate.

The multivariate implausibility could be used, but requires the specification of covariances

between the observations.

If the N observed fields can be assumed to be samples from the distribution of the ‘true’

value of the real-world system, y, then it may be possible to derive an implausibility that

allows history matching based on this. For example, it may be possible to use the leading

orthogonal direction(s) from the set of observations in order to history match.

We used a Bayesian hierarchical model to predict the bound that should be used for history

matching using the coefficients, in order to not rule out model output that is consistent

with the observations over the field. When calculating the bound for the CanAM4 fields

at wave 1, we found that there was a perfect linear relationship between the field and

coefficient implausibilities. When the discrepancy structure for TA changed at wave 2,

this was no longer the case (although the implausibilities had a very high correlation).
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However, it is not true that a diagonal specification for the discrepancy always leads to

this. This relationship requires further exploration, with regards to how the structure of

the discrepancy affects the implausibilities, and how the relationship changes as l increases.

If the implausibilities become more correlated for large l, then fitting the hierarchical

model to determine the bound becomes more straight-forward. This would be a beneficial

property, as the model is only ever required for large l, i.e. when always calculating If is

too time consuming.

For the air temperature (TA) output field, at wave 2 we identified a potential structural

bias in the model, and defined the discrepancy variance accordingly, by highlighting the

grid boxes at the South Pole with the largest anomalies. We defined two groups of grid

boxes (those deemed to contain a structural error, and the remaining boxes), setting

discrepancy values so that a rotation that did not rule out all of parameter space could be

identified. There is a danger in specifying the discrepancy variance using the ensemble of

runs, as the ensemble may suggest possible structural errors that are in fact because the

correct region of parameter space has not been explored so far. However, for models with

high-dimensional output, it is perhaps unlikely that this variance can be elicited. This is

our experience with climate models, hence an approach based on the model runs may be

necessary.

There are several possible extensions to our current method for specifying the discrepancy

variance. In our application, we divided the output into two regions, but this could be

extended to divide the output field into more groups, or defining values for grid boxes

individually. The values for each grid box or region could be set based on other metrics,

allowing differing levels of perceived bias to be reflected. It is likely that there should be

correlations between grid boxes specified for Ση. Defining the off-diagonal elements for

the discrepancy variance is more challenging.

The benefit of combining a specification for the structure of the discrepancy variance, with

finding a multiple for this structure based on not wanting to rule out the observations when

using the truncated rotated basis, is that history matching may be used to sequentially

design the discrepancy variance. Our rotation algorithm by design searches for output in

the direction of the observations, up to the discrepancy variance. By updating or varying

the discrepancy variance, we can add patterns, exploring which biases can be fixed. If

we rule out all of parameter space using our current discrepancy specification, when we
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theoretically do not rule out the basis representation of the observations, this may suggest

that there is not yet enough discrepancy included, and should lead to Ση being updated

to incorporate this new belief.

This could be used in combination with an interactive tool that would allow modellers to

give any beliefs about structural errors. Patterns could be highlighted, and given these

patterns, the rotation algorithm applied to select a suitable basis. Given this rotated

basis, the multiple required for this structure of the discrepancy can be calculated (if

RΣη(Γ∗q , z) > T )), so that the representation of z would not be ruled out. Since the basis

changes every time the discrepancy does, new emulators would be required prior to history

matching, so that this would not be a completely automated procedure for specifying the

discrepancy variance. However, given new emulators based on these beliefs about the

discrepancy, history matching can be performed to inform the modellers whether or not

the defined pattern is likely to be a structural error in the model: if all space is ruled out,

it is likely that not enough discrepancy has been specified yet. If there is a non-empty

NROY space, then while too much discrepancy may have been assumed for certain regions,

biases in other regions of the output may have been improved.
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A. Toy function definitions

This appendix gives the definitions of the idealised examples (that we commonly refer to

as toy functions) used to illustrate methodology throughout this thesis.

A.1. 1-dimensional toy functions

The following four functions are those used in the comparison of regression and Gaussian

process emulators in Chapter 3. Ψ(0, σ2) denotes a random draw from a Normal distri-

bution with mean 0 and variance σ2. The parameters for the first three functions take

on values in the interval [−1, 1]. The parameters for the borehole function, as defined in

(A.4), have different ranges, which are scaled to [−1, 1] for emulation.

Function 1 (10 input parameters):

f1(x) = 7(x1 − 1) + 10(x1 + 1)x2(x3 + 0.5)2 + 5x24 + 5exp(x5(x6 + 0.5)) + x27x
3
8 + 0.5x9x10

+ 0.5x7x
2
10 + 2x5x

2
8 + Ψ(0, 0.052)

(A.1)

Function 2 (10 input parameters):

f2(x) = sin(x1x2) + cos(x3)sin(x4)cos(x5 + x6) + sin(x1x7)cos(x7x8)exp(x9 + x3)

+ sin(cos(x10 + x5 + x8))cos(x
2
9x3) + sin(x7) + cos(sin(x5 + x9))

+ exp(sin(x2sin(x10))) + x27cos(x1)cos(x3) + exp(x22) + cos(x1 − x6) + Ψ(0, 0.152)

(A.2)
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Function 3 (20 input parameters):

f3(x) = 5x1(x2(x3 + 0.5)2x4 + 5exp(x3(x6 + 0.5)) + x27x
3
8 + 1.5x9x10) + x25 + 6(x11 + x312)

+ 0.5(x12 − (x13x14)) + x5exp(x15)− 10exp(x16)(x17 + x18 + x219 + x320) + Ψ(0, 0.52)

(A.3)

The borehole function (8 input parameters):

f4(Tu, Hu, Hl, r, rw, L,Kw, Tl) =
2πTu(Hu −Hl)

ln(r/rw)(1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

)
(A.4)

A.2. Spatial toy function

The spatial toy function that was introduced in Chapter 4, giving output over a 10 × 10

field, with 6 input parameters each taking values in [−1, 1], is defined as

f(x) = 3(10x22ϕ2 + 5x23ϕ2 + (x3 + 1.5x1x2)ϕ3 + 2x2ϕ4 + x3x1ϕ5 + (x2x1)ϕ6 + x32ϕ7

+ (x2 + x3)
2ϕ8 + 2) + 1.5πN (x4, 0.2, 0.1

2)ϕ1

x5
1.3 + x6

+ Ψ10×10(0, 0.052)

(A.5)

where πN (x4, 0.2, 0.1
2) denotes the density function of the Normal distribution with mean

0.2 and variance 0.12, and Ψ10×10(0, 0.052) denotes sampling from a Normal distribution

with mean zero and variance 0.052, independently for each box in a 10×10 grid. The basis

vectors used in this definition, (ϕ1, . . . ,ϕ8), are shown in Figure A.1. ϕ1 represents the

pattern that is most similar to the observations z, and ϕ2 represents the biased version of

the observations, most prevalent in sampled ensembles.
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A. Toy function definitions

Figure A.1. The 8 orthogonal basis vectors used in the definition of the spatial toy function, with
ϕ1 the top left plot, ϕ2 to the right of this, etc.
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B. Emulator diagnostics

As described in the procedure followed for fitting emulators, we perform two main diag-

nostic checks when assessing the fit of emulators:

1. Leave-one-out cross-validation on the training data.

2. Predicting the output for runs in the validation data, using the emulator fit to the

training data.

Before emulators could be used for prediction, and hence calibration or history matching,

both of these checks needed to be passed satisfactorily, with the majority of points required

to be within a 95% prediction interval in each case. When an emulator passed both of

these tests, the points in the validation data were added to the final emulator.

Leave-one-out cross-validation plots are provided here for all runs in given ensembles (i.e.

the training and validation data). Each plot gives the emulated values on the x-axis,

with the true function output on the y-axis. The error bars give 99% prediction intervals

around the mean value. The green and red dots indicate the true function values, with

points coloured green if these are within the 99% prediction interval.

B.1. Univariate toy functions

Validation plots for the wave 1 and wave 4 emulators for f1(·) were given in Figure 3.4.

For the remaining functions in Chapter 3, we provide cross-validation plots for the wave 1

and 4 Gaussian process emulators, for the case when a Gaussian process is always fitted.
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B. Emulator diagnostics

Figure B.1. Leave-one-out cross-validation plots for the toy functions with scalar output. Top:
wave 1 and wave 4 Gaussian process emulators for f2(·). Middle: wave 1 and wave 3 Gaussian
processes for f3(·). Bottom: wave 1 and wave 4 Gaussian processes for the borehole function. The
predicted values are plotted on the x-axis, along with error bars. The true values are coloured
green if they lie within the 99% error bars, and red otherwise.

B.2. IC fault model

For history matching the IC fault model in Section 3.6, we fitted four waves of regression

and Gaussian process emulators for three different outputs, for various combinations of

the two emulator types. Figure B.2 provides cross-validation plots for the wave 1 and

wave 4 emulators for each output, from the always Gaussian process case. As expected

given the calibration results, we see that emulation has been more difficult for o36. The

emulators for the other two outputs have clearly improved by the final wave.

B.3. Spatial toy function

For the spatial toy function introduced in Section 4.2, we fitted emulators for the coeffi-

cients on several different bases. In this appendix, we provide cross-validation plots for

the emulators for the SVD basis (from Section 4.4, shown in Figure B.3), the emulators

for when z was used in the physical pattern Bp in Section 4.7 (Figure B.4), and the waves
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B. Emulator diagnostics

Figure B.2. Leave-one-out cross-validation plots for the IC fault model Gaussian process emulators,
at wave 1 (left) and wave 4 (right). The top panel is for o24, the middle is for o36, and the bottom
is for w36.

Figure B.3. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
four SVD basis vectors for the spatial toy function, with error bars showing 99% prediction intervals.

1 (Section 5.5, Figure B.5) and 2 rotated bases (Section 5.6, Figure B.6), and the wave

3 SVD basis (Section 5.8, Figure B.7), as by this wave the ensemble contained enough

important signal so that a rotation was not required.
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B. Emulator diagnostics

Figure B.4. Leave-one-out cross-validation plots for the emulators for the first five basis vectors
when Bp was set as the observations, with the residual basis used to complete the basis.

Figure B.5. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
five of the rotated basis vectors, for the first wave of emulation of the spatial toy function.
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B. Emulator diagnostics

Figure B.6. Leave-one-out cross-validation plots for the emulators for the first five basis vectors of
the wave 2 rotated basis.

Figure B.7. Leave-one-out cross-validation plots for the emulators for the first three basis vectors
of the wave 3 SVD basis (as no rotation was required at this wave).
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B. Emulator diagnostics

B.4. CanAM4 emulators

In this section, due to the large number of basis coefficient emulators required for each of

CLTO, RTMT and TA at each of the two waves, it is not feasible to show diagnostics for

every fitted emulator. We provide cross-validation plots for the first six basis coefficient

emulators for each output field at each wave, as after rotation, these are the most important

basis vectors for representing the observations. Furthermore, as only one iteration of

rotation was often required, the second basis vector onwards is from the residual basis,

and hence the first six basis vectors generally explain a large percentage of the ensemble

variability.

Figure B.8. Leave-one-out cross-validation plots for the emulators for the coefficients given by
projection onto the first six basis vectors of the CLTO rotated basis at wave 1.
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B. Emulator diagnostics

Figure B.9. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
six basis vectors of the RTMT rotated basis at wave 1.

Figure B.10. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
six basis vectors of the TA rotated basis at wave 1.
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B. Emulator diagnostics

Figure B.11. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
six basis vectors of the CLTO rotated basis at wave 2.

Figure B.12. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
six basis vectors of the RTMT rotated basis at wave 2.
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B. Emulator diagnostics

Figure B.13. Leave-one-out cross-validation plots for the emulators for the coefficients on the first
six basis vectors of the TA rotated basis at wave 2.
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C. Miscellaneous plots

C.1. Calibration traceplots

This section contains some of the traceplots produced when performing calibration for the

spatial toy function, demonstrating convergence of the chains.

Figure C.1. The converged MCMC chains for the calibration of the toy function with the SVD
basis Γ4. The initial parameter value for the MCMC was set to x∗.
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C. Miscellaneous plots

Figure C.2. The converged MCMC chains for the calibration of the toy function using the wave 1
rotated basis. The initial parameter value for the MCMC was set to x∗.

Figure C.3. The converged MCMC chains for the calibration of the toy function using the wave 2
rotated basis and emulators. The initial parameter value for the MCMC was set to x∗.
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C. Miscellaneous plots

Figure C.4. Densities for the 13 parameters of CanAM4, for runs in the original wave 1 NROY
space. The final three panels show the spread of coefficient implausibilities for CLTO, RTMT and
TA within this NROY space, scaled so that the maximum implausibility is 3.

C.2. CanAM4 plots

In this section, we provide additional plots relevant to history matching of the CanAM4

model in Chapter 6.

Figure C.4 illustrates the composition of the wave 1 NROY space, as originally defined

in Section 6.3, by showing the densities for each individual input parameter, for a sample

from this NROY space. Figure C.5 shows a pairs plots for the wave 2 design that was

run on CanAM4. Figure C.6 shows the sample of 20 input parameter settings that was

used to fit the Bayesian hierarchical model to determine the coefficient bound for TA at

wave 2, and the posterior density for this bound. Figure C.7 shows the input parameter

densities for the wave 2 NROY space.
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C. Miscellaneous plots

Figure C.5. Pairs plot showing the wave 2 design for CanAM4.

Figure C.6. Left: The coefficient and field implausibilities for 20 sampled parameter values, for
the wave 2 TA rotated basis emulators. The dotted line shows the history matching bound for the
field implausibility. Right: the posterior density for Ic|If = T , with the vertical line indicating
the 99.5% value of this distribution.
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C. Miscellaneous plots

Figure C.7. Densities for the 13 parameters of CanAM4, for runs in the wave 2 NROY space. The
final three panels show the spread of coefficient implausibilities for CLTO, RTMT and TA within
this NROY space, scaled so that the maximum implausibility is 3.
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D. Code for emulation, rotation and

spatial calibration

In this appendix, we present some of the R code used in this thesis, with Section D.4

illustrating the application of some of our methods for calibrating and history matching,

using the spatial toy function.

D.1. Emulation

In this section, we give the code used to fit emulators to scalar outputs, as in Chapter 3

for the toy functions and IC fault model, and in Chapters 4, 5 and 6 for basis coefficients,

for the spatial toy function and CanAM4 output fields.

The function that fits the linear model and Gaussian process components of a scalar

emulator, where ‘EMULATE’ is a function (not provided here) that fits a regression model:

FitEmulatorPars <- function(response, training, validation, cands, canfacs = NULL){

train <- training[, c(cands, canfacs, response)]

val <- validation[,c(cands, canfacs, response)]

regmodel <- EMULATE(response, train, tcands = cands, tcanfacs = canfacs)

whichnoise <- which(names(train)=="Noise")

train <- train[,-whichnoise]

val <- val[,-whichnoise]

active <- regmodel$Names

if (is.null(regmodel$Factors) == FALSE){active <- c(active, regmodel$Factors)}

t <- dim(train)[2]

colnames(train)[t] <- colnames(val)[t] <- "y"

check <- 0

count <- 0

while (check == 0 & count < 2){

bestpars <- matrix(numeric(10*(length(active)+1)), nrow = 10)

maxl <- c(rep(0,10))

for (i in 1:10){
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D. Code for emulation, rotation and spatial calibration

opt <- GenSA(NULL, MaxLikelihood, lower = c(rep(0.1,length(active)),0.001),

upper = c(rep(10,length(active)),0.999), data = train[,c(active, "y")],

regmodel = regmodel$linModel, control=list(max.call=100))

bestpars[i,] <- opt$par

maxl[i] <- opt$value

}

bestl <- which.min(maxl)

opt2 <- GenSA(bestpars[bestl,], CrossValPars, lower =

c(rep(0.1,length(active)),0.001), upper = c(rep(10,length(active)),0.999),

data = train[,c(active, "y")], val = val[,c(active, "y")],

regmodel = regmodel$linModel, control=list(max.call=10))

if (opt2$value > 99998){

check <- 0

count <- count + 1

}

else {check <- 1}

}

if (count == 2){

count2 <- 0

while (opt2$value > 99998 & count2 < 20){

opt2 <- GenSA(NULL, CrossValPars, lower = c(rep(0.1,length(active)),0.001),

upper = c(rep(10,length(active)),0.999), data = train[,c(active, "y")],

val = val[,c(active, "y")], regmodel = regmodel$linModel,

control=list(max.call=10))

if (opt2$value > 99998){

count2 <- count2 + 1

}

}

}

if (opt2$value > 99998){print("Warning: emulator failed cross-validation or

prediction test")}

p <- t - 1

d.op <- opt2$par[1:length(active)]

nu.op <- opt2$par[length(opt2$par)]

temp.em <- em(train[,active],train$y,d.op,nu.op,regmodel$linModel,active=NULL)

cvem <- cv.em(temp.em,dim(train)[1])

par(mfrow=c(1,2), mar=c(4,2,2,2))

cv.plot(cvem)

val.pred(temp.em, val[,active], val$y)

fulldata <- rbind(train, val)

regmodel.full <- lm(update(as.formula(regmodel$linModel), y~.),data=fulldata)

emulator <- em(fulldata[,active],fulldata[,p+1],d.op,nu.op,regmodel.full,

active=NULL)

emulator$x <- fulldata[,1:p]

emulator$y <- fulldata[,p+1]

emulator$valid <- ifelse(opt2$value > 99998, 0, 1)

return(emulator)

}

The function that carries out the cross-validation used in the fitting of the Gaussian process

correlation lengths, as described in Section 3.3.3:
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D. Code for emulation, rotation and spatial calibration

CrossValPars <- function(x, data, val, regmodel, type = "BR"){

d <- x[-length(x)]

nu <- x[length(x)]

p <- length(d)

n <- dim(data)[1]

colnames(data)[p+1] <- colnames(val)[p+1] <- "y"

new.em <- em(data[,1:p],data[,p+1],d,nu,regmodel,type)

new.cv <- cv.em(new.em, K=n)

new.outside95 <- sum(abs(data[,p+1]-new.cv$cvmean) >= qt(0.975,new.cv$df)*

new.cv$cvse)

check1 <- is.valid(new.outside95, n, 0.05)

pred <- pred.em(new.em, val[,1:p])

new.outside95v <- sum((abs(val[,(p+1)]-pred$post.m)>=qt(0.975,new.em$n -

new.em$q)*sqrt(pred$post.cov)))

check2 <- is.valid(new.outside95v, dim(val)[1], 0.05)

output <- mean(new.cv$cvse) + ifelse(check1 == FALSE, 99999, 0) +

ifelse(check2 == FALSE, 99999, 0)

return(c(output, mean(new.cv$cvse), check1, check2))

}

The functions required for these cross-validation checks:

cv.em <- function(em,K){

require(cvTools)

data <- data.frame(em$x[,em$active],em$y)

if (length(em$active) == 1){

colnames(data)[1] <- em$active

}

n <- em$n

d <- em$d

nu <- em$nu

type <- em$type

if (n == K){

basis <- attr(terms(em$regmodel),"term.labels")

if (length(basis)==0) basis = "1"

cv <- mclapply(1:n, function(i) leave.one.out(i,data,d,nu,basis,type))

cv <- mclapply(cv,function(x) do.call(cbind,x))

cv <- do.call(rbind,cv)

cvmean <- cv[,1]

cvse <- cv[,2]

df <- n - length(basis) - 1

return(list(x=em$x,y=em$y,cvmean=cvmean,cvse=cvse,df=df))

}

else {

folds <- cvFolds(n, K, R = 1, type = "random")

basis <- attr(terms(em$regmodel),"term.labels")

if (length(basis)==0) basis = "1"

cvmean <- c(rep(0,n))

cvse <- c(rep(0,n))

for(i in 1:K){

train <- data[folds$subsets[folds$which != i], ]

trainx <- train[,-length(train)]

trainy <- train[,length(train)]
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val <- data[folds$subsets[folds$which == i], ]

valx <- val[,-length(val)]

valy <- val[,length(val)]

mod <- paste("trainy~", paste(basis,collapse="+"))

newlm <- lm(as.formula(mod), data = trainx)

newem <- em(trainx,trainy,d,nu,newlm,type)

pred <- pred.em(newem,valx,valy)

cvmean[folds$subsets[folds$which == i]] <- pred$post.m

cvse[folds$subsets[folds$which == i]] <- sqrt((pred$post.cov))

}

df <- summary(newlm)$df[2]

return(list(x=em$x,y=em$y,cvmean=cvmean,cvse=cvse,folds=folds,df=df))

}

}

leave.one.out <- function(i,data,d,nu,basis,type){

p <- dim(data)[2]

train <- data[-i, ]

trainx <- train[,1:(p-1)]

trainy <- train[,p]

val <- data[i, ]

valx <- val[,1:(p-1)]

valy <- val[,p]

if (p == 2){

trainx <- as.data.frame(trainx)

valx <- as.data.frame(valx)

names(trainx) <- names(valx) <- names(data)[1]

}

mod <- paste("trainy~", paste(basis,collapse="+"))

newlm <- lm(as.formula(mod), data = trainx)

newem <- em(trainx,trainy,d,nu,newlm,type)

pred <- pred.em(newem,valx,valy)

cvmean <- pred$post.m

cvse <- sqrt((pred$post.cov))

return(list(cvmean=cvmean,cvse=cvse))

}

MaxLikelihood <- function(x, data, regmodel, type = "BR"){

d <- x[-length(x)]

nu <- x[length(x)]

p <- length(d)

n <- dim(data)[1]

colnames(data)[p+1] <- "y"

new.em <- em(data[,1:p],data[,p+1],d,nu,regmodel,type)

A <- t(new.em$Q) %*% new.em$Q

logL <- -0.5*determinant(A, logarithm = TRUE)$modulus -0.5*

determinant(crossprod(new.em$h.c, new.em$h.c), logarithm=TRUE)$modulus -

((new.em$n - new.em$q)/2)*log(new.em$sigma2)

output <- -logL

return(output)

}

is.valid <- function(outside, n, tolerance = 0.05, level = 0.05){
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ind <- TRUE

check1 <- 1 - pbinom(outside-1, n, level)

if (check1 < tolerance){ind <- FALSE}

check2 <- pbinom(outside, n, level)

if (check2 < tolerance){ind <- FALSE}

return(ind)

}

Plotting the validation checks:

cv.plot <- function(cvem,level=0.95){

library(sfsmisc)

mean <- cvem$cvmean

se <- cvem$cvse

y <- cvem$y

df <- cvem$df

z <- level + (1-level)/2

upp <- max(c(mean+qt(z,df)*se,y))

low <- min(c(mean-qt(z,df)*se,y))

errbar(mean,mean,mean + qt(z,df)*se, mean - qt(z,df)*se,pch=18,

main = "", xlab = "Predicted", ylab="True", ylim = c(low,upp))

points(mean,y,pch=19,col = ifelse(abs(y-mean)<=qt(z,df)*se,"green","red"))

}

val.pred <- function(model, valdata, valobs, level=0.95){

if (is.null(model$coefficients) == F){

pred <- predict(model,valdata,interval="prediction",level=level)

upp <- max(c(pred[,3],valobs))

low <- min(c(pred[,2],valobs))

errbar(pred[,1],pred[,1],pred[,3],pred[,2],cap = 0.015,pch=20,ylim=c(low,upp),

main="",xlab = "Prediction",ylab="True")

points(pred[,1],valobs,pch=19,col = ifelse(valobs>pred[,3] | valobs<pred[,2],

"red","green"))}

else {

pred <- pred.em(model,valdata)

mean <- pred$post.m

se <- sqrt(pred$post.cov)

z <- level + (1-level)/2

df <- model$n - model$q

upp <- max(c(mean+qt(z,df)*se,valobs))

low <- min(c(mean-qt(z,df)*se,valobs))

errbar(mean,mean,mean + qt(z,df)*se, mean - qt(z,df)*se,pch=18, xlab=

"Prediction",ylab="True", ylim = c(low,upp))

points(mean,valobs,pch=19,col = ifelse(abs(valobs-mean)<=qt(z,df)*se,

"green","red"))

}

}

Fitting emulators to multiple sets of coefficients:

BasisEmulators <- function(tData, NumberOfEms){

lastCand <- which(names(tData)=="Noise")
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n <- dim(tData)[1]

n1 <- 3*ceiling(n/4)

samp <- sample(1:n, n)

lapply(1:NumberOfEms, function(k) FitEmulatorPars(response=

names(tData)[lastCand+k], training=tData[samp[1:n1],], validation=

tData[samp[-(1:n1)],], cands=names(tData)[1:lastCand], canfacs=NULL))

}

The function that fits an emulator, given a set of correlation lengths and nugget parameter:

em <- function(x, y, d, nu, regmodel, type = "BR", active = NULL, ...){

require(MASS)

if (length(d) == 1){

x <- as.data.frame(x)

colnames(x)[1] <- names(d)

}

names(d) <- names(x)

if (is.null(active) == TRUE){ ### active = NULL means that all variables

in x are active

x.ac <- x

active <- names(x)

}

else {

x.ac <- x[,active]

d <- d[active]

}

if (length(active) == 1){

x.ac <- as.data.frame(x.ac)

colnames(x.ac) <- active

}

if (type == "BR"){

if (nu == 1){

pred = predict(regmodel, x.ac)

error = y - pred

H = model.matrix(regmodel, x.ac)

n = dim(x.ac)[1]

q = dim(H)[2]

sigma2 = as.numeric(((n-q-2)^(-1))*(t(error)%*%error))

return(list(x=x,y=y,regmodel=regmodel,nu=nu,error=error,H=H,n=n,q=q,

sigma2=sigma2,type=type,active=active))

}

else {

A = calcA(x.ac,d,nu,...)

data <- as.data.frame(cbind(x.ac,y))

if (is.vector(x) == TRUE){

tempName <- names(summary(regmodel)$aliased)[2]

names(data) <- c(tempName, "y")

}

glsmodel = lm.gls(update.formula(formula(regmodel),y~.),data,W=A,inverse=TRUE)

pred = pred.gls(glsmodel, x.ac)

error = y - pred

Q = chol(A)

H = model.matrix(regmodel, x.ac)
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n = dim(x.ac)[1]

q = dim(H)[2]

x.c = backsolve(Q, error, transpose = TRUE)

h.c = backsolve(Q, H, transpose = TRUE)

comp2 = chol2inv(chol(crossprod(h.c, h.c)))

sigma2 = as.numeric(((n-q-2)^(-1))*crossprod(x.c,x.c))

return(list(x=x,y=y,regmodel=glsmodel,d=d,nu=nu,Q=Q,error=error,H=H,n=n,

q=q,x.c=x.c,h.c=h.c,comp2=comp2,sigma2=sigma2,

type=type,active=active,...))

}

}

else {

stop("Type must be ’LS’ (Least Squares) or ’BR’ (Bayes Regression)")

}

}

pred.gls <- function(glsmodel,data){

tt = terms(glsmodel)

Terms = delete.response(tt)

mm = model.frame(Terms, data, xlev = glsmodel$xlevels)

x0 = model.matrix(Terms, mm, contrasts.arg = glsmodel$contrasts)

prediction = x0 %*% glsmodel$coefficients

return(prediction)

}

Evaluating an emulator at a design of input parameters, returning the expectation and

variance for each point:

pred.em <- function(em, new, newy,...){

require(fields)

x = em$x

n = em$n

regmodel = em$regmodel

nu = em$nu

error = em$error

H = em$H

q = em$q

sigma2 = em$sigma2

type <- em$type

active <- em$active

if (length(active) == 1){

x.ac <- as.data.frame(x[,active])

names(x.ac) <- active

}

else {

x.ac <- x[,active]

}

if (is.null(dim(new)) == T){

new <- new

new.ac <- as.data.frame(new)

colnames(new.ac) <- active

}
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else if ((dim(new)[1]*dim(new)[2]) == 1){

new <- new

new.ac <- as.data.frame(new)

colnames(new.ac) <- active

}

else if ((dim(new)[1]*dim(new)[2]) == dim(new)[2] & length(active) == 1){

new.ac <- as.data.frame(new[,active])

names(new.ac) <- active

}

else {

new = new[,names(x)]

new.ac <- as.data.frame(new[,active])

if (length(active) == 1){

names(new.ac) <- active

}

}

if (type == "BR"){

if (nu == 1){

postm = predict(regmodel,new.ac)

tt = terms(regmodel)

Terms = delete.response(tt)

mm = model.frame(Terms, new.ac, xlev = regmodel$xlevels)

hx = model.matrix(Terms, mm, contrasts.arg = regmodel$contrasts)

postcov = sigma2 * (diag(dim(new.ac)[1]) + (hx)%*%chol2inv(

chol(t(H)%*%H))%*%t(hx))

}

else {

d = em$d

tx = calctx(x.ac,new.ac,d,nu,...)

Q = em$Q

x.c = em$x.c

h.c = em$h.c

comp2 = em$comp2

y.c = backsolve(Q, tx, transpose = TRUE)

mean.adj = crossprod(y.c,x.c)

cov.adj = crossprod(y.c,y.c)

priormean = pred.gls(regmodel, new.ac)

priorcov = calcA(new.ac, d, nu,...)

postm = priormean + mean.adj

postcov = priorcov - cov.adj

tt = terms(regmodel)

Terms = delete.response(tt)

mm = model.frame(Terms, new.ac, xlev = regmodel$xlevels)

hx = model.matrix(Terms, mm, contrasts.arg = regmodel$contrasts)

comp1 = hx - crossprod(y.c, h.c)

postcov = sigma2 * (postcov + comp1 %*% comp2 %*% t(comp1))

}

}

return(list(post.m = postm, post.cov = diag(postcov)))

}

Predicting the output for multiple emulators (e.g. for basis coefficients):
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MultiPred <- function(ems, design){

Expectation <- matrix(0, nrow = dim(design)[1], ncol = length(ems))

Variance <- matrix(0, nrow = dim(design)[1], ncol = length(ems))

s <- dim(design)[1]/10

for (i in 1:s){

EmOutput <- lapply(1:length(ems), function(e) pred.em(ems[[e]],

design[(10*(i-1) + 1):(10*i),]))

for (j in 1:length(ems)){

Expectation[(10*(i-1) + 1):(10*i),j] <- EmOutput[[j]]$post.m

Variance[(10*(i-1) + 1):(10*i),j] <- EmOutput[[j]]$post.cov

}

}

return(list(Expectation=Expectation, Variance=Variance))

}

Calculating the correlation matrices required in Gaussian process emulation:

calctx <- function(x,new,d,nu=0,cov = "gauss", d2 = c(rep(2,length(d)))){

n = dim(x)[1] # number of training points

m = dim(new)[1]

if (is.null(m) == T){

m <- 1

}

p = dim(x)[2] # number of parameters

if (is.null(p) == T){

p <- 1

}

stopifnot(p == length(d))

if (p == 1 & m == 1){

new <- new

}

else {

new = new[,names(x)]

}

if (p == 1){

x <- x

new <- new

}

else {

for (i in 1:p){

x[,i] = as.numeric(as.character(x[,i]))

}

for (i in 1:p){

new[,i] = as.numeric(as.character(new[,i]))

}

}

if (cov == "gauss") {

leng = as.matrix(rdist(scale(x,center=FALSE,scale=d),scale(new,

center=FALSE,scale=d)))

tx = (1 - nu)*exp(-(leng^2))

}

return(tx)

}
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calcA <- function(x,d,nu,cov = "gauss",d2 = c(rep(2,length(d)))){

n = dim(x)[1] # number of training points

p = dim(x)[2] # number of parameters

if (is.null(n) == TRUE){

n <- length(x)

}

if (is.null(p) == TRUE){

p <- 1

}

stopifnot(p == length(d))

if (p == 1){

x <- x

}

else {

for (i in 1:p){

x[,i] = as.numeric(as.character(x[,i]))

}

}

if (cov == "gauss") {

leng = as.matrix(dist(scale(x,center=FALSE,scale=d),method="euclidean",

diag=TRUE,upper=TRUE))

A = nu*diag(n) + (1 - nu)*exp(-(leng^2))

}

return(A)

}

D.2. Basis projection and rotation

In this section, we provide the code for applying the optimal rotation algorithm (Section

5.4).

Projecting spatial data onto a basis:

CalcScores <- function(data, basis){

d <- dim(data)[2]

if (is.null(d) == TRUE){

d <- 1

}

p <- dim(basis)[2]

n <- dim(basis)[1]

if (is.null(p) == TRUE){

p <- 1

}

if (d == 1){

data <- as.vector(data)

}

V <- t(basis) %*% basis

Q <- chol(V)
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y <- backsolve(Q, diag(p), transpose = TRUE)

x <- backsolve(Q, t(basis) %*% data, transpose = TRUE)

scores <- crossprod(y, x)

return(t(scores))

}

Projecting a variance matrix onto an orthogonal basis:

VarProj <- function(mat, basis){

proj <- t(basis) %*% mat %*% basis

return(proj)

}

Reconstructing a field from a set of coefficients on a basis:

Recon <- function(scores, basis){

if (is.null(dim(basis)[2]) == TRUE){

recons <- basis*as.numeric(scores)

}

else {

recons <- basis%*%as.numeric(scores)

}

return(recons)

}

Projecting the observations (or any general field) onto a basis, and reconstructing the field

from this basis representation:

ReconObs <- function(obs, basis){

nb <- is.null(dim(basis))

if(!nb)

basis1 <- basis[,1]

else

basis1 <- basis

obs <- c(obs)

mask <- which(is.na(obs-basis1))

if(length(mask)>0){

recons <- rep(NA, length(obs))

obs <- obs[-mask]

if(nb)

basis <- basis[-mask]

else

basis <- basis[-mask,]

proj <- CalcScores(obs, basis)

recons.partial <- Recon(proj, basis)

recons[-mask] <- recons.partial

}

else{

proj <- CalcScores(obs, basis)

recons <- Recon(proj, basis)

}
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return(recons)

}

Calculating V (B,F), the proportion of ensemble variability that is explained by projection

onto a basis B:

VarExplained <- function(basis, data){

n <- dim(data)[1]

ens.size <- dim(data)[2]

recon <- basis %*% t(CalcScores(data, basis))

explained <- crossprod(c(recon))/crossprod(c(data))

return(explained)

}

Calculating the reconstruction error RW(B, z) given by projection and reconstruction

with a basis:

WeightedMSE <- function(obs, recon, weight=NULL){

A <- c(obs) - recon

mask <- which(is.na(A))

if(length(mask)>0){

A <- A[-mask]

}

if (is.null(weight) == FALSE) {diagmat <- all(weight[lower.tri(weight)] == 0,

weight[upper.tri(weight)] == 0)}

if (is.null(weight) == TRUE){diagmat <- FALSE}

if (diagmat == FALSE){

if (is.null(weight) == TRUE){

wmse <- crossprod(A)/(length(c(obs)) - length(mask))

}

else {

if(length(mask)>0){

warning("Implicit assumption that weight specified on the full field

even though applying a mask to missing obs/ensemble grid boxes")

weight <- weight[-mask,-mask]

}

Q <- chol(weight)

y <- backsolve(Q, A, transpose = TRUE)

wmse <- crossprod(y,y)/(length(c(obs))-length(mask))

}

}

else {

wmse <- crossprod(A/diag(weight), A)/(length(c(obs))-length(mask))

}

return(wmse)

}

Creating a VarMSE plot:

VarMSEplot <- function(DataBasis, obs, weight=NULL, ylim=NULL, min.line=TRUE,

bound=TRUE,...){
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p <- dim(DataBasis$tBasis)[2]

PlotData <- matrix(numeric(p*2), nrow=p)

PlotData[,1] <- errors(DataBasis$tBasis, obs, weight)*DataBasis$scaling^2

for (i in 1:p){

PlotData[i,2] <- VarExplained(DataBasis$tBasis[,1:i], DataBasis$CentredField)

}

plot(1:p, PlotData[,1], type="l", col="red",xlab = expression(k),

ylab=expression(paste("R "[bold(W)], " (", bold(B)[k], ",", bold(z), ")",

" / l")), ylim=ylim, ...)

if(min.line)

abline(h = PlotData[p,1], col="black", lty=1)

if (bound == TRUE){

abline(h = qchisq(0.995, length(obs))/length(obs), lty=2)

}

par(new = TRUE)

plot(1:p, PlotData[,2], type="l", axes=FALSE, xlab=NA, ylab=NA, col="blue",

ylim=c(0,1) ,...)

axis(side = 4)

mtext(side = 4, line = 2.5, expression(paste("V(", bold(B)[k], ",", bold(F), ")")),

las=3)

return(PlotData)

}

errors <- function(basis, obs, weight=NULL){

p <- dim(basis)[2]

err <- numeric(p)

for (i in 1:p){

recon <- ReconObs(obs, basis[,1:i])

err[i] <- WeightedMSE(obs, recon, weight)

}

return(err)

}

Calculating the residual basis for a given set of basis vectors and an ensemble:

ResidBasis <- function(basis.p, data, orthonorm=TRUE){

if (orthonorm == TRUE){

basis.p <- orthonormalization(basis.p,basis=FALSE,norm=TRUE)

}

n <- dim(data)[1]

p <- dim(data)[2]

recons <- matrix(numeric(n*p), nrow=n)

for (i in 1:p){

recons[,i] <- ReconObs(data[,i],basis.p)

}

resids <- data - recons

svd.resid <- svd(t(resids))

new.basis <- cbind(basis.p, svd.resid$v)[,1:p]

return(new.basis)

}

Finding a basis vector by defining linear combinations of the original basis:
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ReconBasis <- function(weights, basis, q){

n <- dim(basis)[1]

p <- dim(basis)[2]

if (q == 1){

new.basis <- as.vector(tensor(basis, weights, 2, 1))

}

else {

dim(weights) <- c(p, q)

new.basis <- tensor(basis, weights, 2, 1)

}

return(new.basis)

}

Finding an optimal rotation for a basis:

RotateIterate <- function(k, DataBasis, obs, weight = NULL, var.threshold = 0.1,

vtot = 0.95, prior = NULL, orthonorm=TRUE, ...){

data <- DataBasis$CentredField

basis <- DataBasis$tBasis

t <- var.threshold

n <- dim(basis)[1]

ens.size <- dim(data)[2]

obs <- c(obs)

minMSE <- WeightedMSE(obs, ReconObs(obs, basis), weight)

if (is.null(prior) == TRUE){

prior <- c(1:dim(basis)[2])

}

mse <- var <- numeric(k)

x <- NULL

new.basis <- NULL

for (i in 1:k){

p <- dim(basis)[2]

opt <- GenSA(c(1, rep(0, p-1)), WeightOptim, lower = rep(-1, p*1),

upper = rep(1, p*1), basis = basis, obs = obs, data = data, weight = weight,

t = t, newvectors = new.basis, ...)

best.patterns <- cbind(new.basis, ReconBasis(opt$par, basis, 1))

basis <- ResidBasis(best.patterns, data, orthonorm = orthonorm)[,1:ens.size]

# forces best.patterns to be orthonormal before doing SVD

x <- c(x, opt$par)

basisvars <- numeric(ens.size)

for (j in 1:ens.size){

basisvars <- VarExplained(basis[,1:j], data)

}

q <- which(basisvars >= vtot)[1]

mse[i] <- WeightedMSE(obs, ReconObs(obs, basis[,1:q]), weight)

var[i] <- VarExplained(basis[,i], data)

new.basis <- cbind(new.basis, basis[,i])

basis <- basis[,-(1:i)]

if (round(mse[i],4) == round(minMSE,4)) break

}

new.basis <- cbind(new.basis, basis)[,1:ens.size]

return(list(tBasis = new.basis, CentredField = DataBasis$CentredField,

EnsembleMean = DataBasis$EnsembleMean, scaling = DataBasis$scaling,
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Months = DataBasis$Months, MSEq = mse, Varianceq = var, Opt = x))

}

WeightOptim <- function(x, basis, obs, data, weight, t = 0.95, newvectors = NULL){

n <- dim(basis)[1]

p <- dim(basis)[2]

new.basis <- as.vector(tensor(basis, x, 2, 1))

if (is.null(newvectors) == FALSE){

new.basis <- cbind(newvectors, new.basis)

}

recon <- ReconObs(obs, new.basis)

y <- WeightedMSE(obs, recon, weight)

if (is.null(newvectors) == TRUE){

v <- VarExplained(new.basis, data)

}

else {

v <- VarExplained(new.basis[,dim(new.basis)[2]], data)

}

if (v < t){y <- 999999999}

return(y)

}

D.3. History matching and Bayesian calibration

In this section, we present the code used for history matching and calibrating spatial

output.

Firstly, a function that takes the basis, observations, and emulator expectations and vari-

ances for the basis coefficients, and history matches either using the field implausibility or

coefficient implausibility:

HistoryMatch <- function(DataBasis, type = "scoresMV", Obs, Expectation,

Variance, Error = NULL, Disc = NULL){

stopifnot(type == "scoresMV" | type == "field")

q <- dim(Expectation)[2]

stopifnot(q == dim(Variance)[2])

basis <- DataBasis$tBasis[,1:q]

l <- dim(basis)[1]

size <- dim(Expectation)[1]

V2 <- DataBasis$tBasis[,-(1:q)]

DeletedScores <- CalcScores(DataBasis$CentredField, V2)

EstVar <- apply(DeletedScores, 2, var)

BasisVar <- V2 %*% diag(EstVar) %*% t(V2)

if (type == "scoresMV"){

impl <- numeric(size)

BasisVar <- VarProj(BasisVar, basis)

bound <- qchisq(0.995, q)
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Obs <- CalcScores(Obs, basis)

if (is.null(Error) == FALSE){

Error <- VarProj(Error, basis)

}

else {

Error <- matrix(numeric(q^2), nrow = q)

}

Error <- Error + BasisVar

if (is.null(Disc) == FALSE){

Disc <- VarProj(Disc, basis)

}

else {

Disc <- matrix(numeric(q^2), nrow = q)

}

impl <- as.numeric(mclapply(1:size, function(i) ImplMVScores(Expectation[i,],

Variance[i,], Obs, Error, Disc)))

nroy <- sum(impl < bound)/size*100

inNROY <- impl < bound

}

if (type == "field"){

impl <- numeric(size)

if (is.null(Error) == TRUE){

Error <- matrix(numeric(l^2), nrow = l)

}

if (is.null(Disc) == TRUE){

Disc <- matrix(numeric(l^2), nrow = l)

}

Error <- Error + BasisVar

impl <- as.numeric(mclapply(1:size, function(i) ImplField(basis,

Expectation[i,], Variance[i,], Obs, Error, Disc)))

bound <- qchisq(0.995, l)

nroy <- sum(impl < bound)/size*100

inNROY <- impl < bound

}

return(list(impl = impl, nroy = nroy, bound = bound, inNROY = inNROY))

}

Calculating the field and coefficient implausibilities:

ImplMVScores <- function(Expectation, Variance, Obs, Error, Disc){

V <- Error + Disc + diag(Variance)

Q <- chol(V)

proj.output <- Expectation

y <- backsolve(Q, as.vector(Obs - proj.output), transpose = TRUE)

impl <- crossprod(y,y)

return(impl)

}

ImplField <- function(Basis, Expectation, Variance, Obs, Error, Disc){

proj.output <- Expectation

recon.output <- Recon(proj.output, Basis)

var.output <- diag(Variance)

recon.var <- Basis %*% var.output %*% t(Basis)
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V <- Error + Disc + recon.var

Q <- chol(V)

y <- backsolve(Q, as.vector(Obs - recon.output), transpose = TRUE)

impl <- crossprod(y,y)

return(impl)

}

Fitting a Bayesian hierarchical model so that a more accurate bound for history matching

on the coefficients can be found, with the prior distribution as used for the spatial toy

function in Section 6.2.4:

CalImplModel <- function(x, ImplData, prior.x = logBoundPrior){

n <- dim(ImplData)[1]

Ic <- ImplData$Ic

If <- ImplData$If

x <- as.data.frame(t(x))

logPrior <- as.numeric(logBoundPrior(x))

if (logPrior == -Inf){

logL <- -Inf

return(logL)

}

else {

w <- numeric(n)

for (i in 1:n){w[i] <- as.numeric(exp(x[1] + x[2]*log(If[i])))}

logC <- 0

for (i in 1:n){

sigmai <- x[5]/w[i]

newlogC <- as.numeric(-0.5*log(2*sigmai*pi) - (1/(2*sigmai))*

(Ic[i] - (x[3] + x[4]*If[i]))^2)

logC <- logC + newlogC

}

logL <- logC + logPrior

if (is.na(logL) == TRUE){logL <- -Inf}

if (logL == +Inf){logL <- -Inf}

return(logL)

}

}

logBoundPrior <- function(x){

if (x[4] <= 0 | x[2] >= 0 | x[5] <= 0 | x[1] < -10 | x[1] > 10 | x[3] > 0 |

x[3] < -50){return(-Inf)}

else {

logb1 <- 9*log(x[4]) - x[4]

loga1 <- 9*log(-x[2]) + x[2]

logb0 <- -(x[3]^2)

loga0 <- -(x[1]^2)

sigma <- log(1/x[5])

total <- logb1 + loga1 + logb0 + loga0 + sigma

return (total)

}

}
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The functions used for Bayesian calibration of spatial output, where the uncertainty from

the basis vectors that are not emulated is included:

Calibrate <- function(Ems, DataBasis, Obs, Error, Disc, Prior.x=logPriorDist, ...){

q <- length(Ems)

V2 <- DataBasis$tBasis[,-(1:q)]

DeletedScores <- CalcScores(DataBasis$CentredField, V2)

EstVar <- apply(DeletedScores, 2, var)

BasisVar <- V2 %*% diag(EstVar) %*% t(V2)

Error <- Error + BasisVar

Posterior <- metrop(CalLikelihood, Ems=ems, Prior.x = Prior.x, DataBasis =

DataBasis, Obs = obs, Error = Error, Disc = Disc, ...)

return(Posterior)

}

CalLikelihood <- function(x, Ems, DataBasis, Obs, Error, Disc, VarNames,

Prior.x=logUnifDist){

x <- as.data.frame(x)

if (dim(x)[1] > dim(x)[2]) x <- as.data.frame(t(x))

colnames(x) <- VarNames

q <- length(Ems)

Basis <- DataBasis$tBasis[,1:q]

logPrior <- Prior.x(x)

EmOutput <- lapply(1:q, function(e) pred.em(Ems[[e]], x))

Expectation <- Variance <- numeric(q)

for (i in 1:q){

Expectation[i] <- EmOutput[[i]]$post.m

Variance[i] <- EmOutput[[i]]$post.cov

}

Expectation <- Recon(Expectation, Basis)

Variance <- Basis %*% diag(Variance) %*% t(Basis)

V <- Error + Disc + Variance

Q <- chol(V)

y <- backsolve(Q, as.vector(Obs - Expectation))

y <- crossprod(y,y)

logL <- as.numeric(-0.5*determinant(V, logarithm=TRUE)$modulus - 0.5*y +

logPrior)

return(logL)

}

logUnifDist <- function(x){

if (any(x < -1) || any(x > 1))

return (-Inf)

else {

return (1)

}

}
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D.4. Example

In this section, we provide code for performing history matching and calibration of our

spatial toy function.

First, we define the function (equation (A.5)):

basis1 <- basis2 <- basis3 <- basis4 <- basis5 <- basis6 <- basis7 <-

basis8 <- matrix(c(rep(0,100)),nrow=10)

for (i in 1:10){basis1[i,i] <- 1}

basis1[10,1] <- basis1[10,2] <- basis1[9,1] <- basis1[1,9] <- basis1[1,10] <-

basis1[2,10] <- -1

basis1[8,1] <- basis1[9,2] <- basis1[10,3] <- basis1[1,8] <- basis1[2,9] <-

basis1[3,10] <- -1

for (i in 1:9){basis2[i,i+1] <- 1}

for (i in 1:8){basis3[1,i] <- 1}

for (i in 1:5){basis3[2,i] <- 1}

for (i in 1:3){basis3[3,i] <- 1}

basis3[9,9] <- basis3[10,10] <- basis3[9,10] <- basis3[10,9] <- basis3[8,9] <-

basis3[8,10] <- basis3[7,2] <- basis3[7,3] <- basis3[7,4] <- basis3[8,2] <-

basis3[8,3] <- basis3[8,4] <- -1

basis3[4,1] <- basis3[5,2] <- basis3[5,3] <- basis3[5,4] <- basis3[6,2] <-

basis3[6,3] <- basis3[6,4] <- 1

for (i in 3:7){basis4[10,i] <- basis4[9,i] <- 1}

basis4[10,3] <- 0

basis4[6,1] <- basis4[6,2] <- basis4[7,1] <- basis4[6,3] <- basis4[1,1] <-

basis4[1,2] <- basis4[2,1] <- -1

basis4[5,2] <- basis4[5,3] <- basis4[2,3] <- basis4[2,4] <- basis4[3,3] <- 1

for (i in 8:10){basis5[4,i] <- basis5[5,i] <- basis5[6,i] <- basis5[7,i] <- 1}

for (i in 6:8){basis5[3,i] <- basis5[2,i] <- basis5[1,i] <- -1}

basis5[4,7] <- basis5[4,6] <- -1

basis5[1,8] <- 0

for (i in 8:9){basis5[i,10] <- -1}

for (i in 6:8){basis6[i,5] <- basis6[i,6] <- 1}

basis6[5,6] <- basis6[5,7] <- basis6[8,5] <- basis6[8,4] <- 1

for (i in 6:7){basis6[i,2] <- basis6[i,3] <- -1}

for (i in 6:8){basis6[10,i] <- -1}

basis6[9,9] <- basis6[9,10] <- basis6[1,4] <- basis6[1,5] <- basis6[8,2] <-

basis6[6,9] <- -1

basis7[2,10] <- basis7[3,10] <- basis7[3,9] <- basis7[3,8] <- basis7[10,8] <-

basis7[9,8] <- basis7[8,8] <- basis7[9,9] <- basis7[7,6] <- basis7[7,9] <-

basis7[5,7] <- basis7[3,2] <- basis7[4,2] <- basis7[1,8] <- basis7[2,8] <-

basis7[2,2] <- basis7[8,3] <- basis7[7,3] <- basis7[10,4] <- basis7[9,4] <-

basis7[8,7] <- 1

basis7[7,5] <- basis7[6,5] <- basis7[6,6] <- basis7[7,4] <- basis7[8,1] <-

basis7[8,2] <- basis7[1,3] <- basis7[1,4] <- basis7[10,6] <- basis7[10,5] <-

basis7[6,9] <- basis7[6,10] <- basis7[1,6] <- basis7[2,6] <- basis7[2,7] <-

basis7[10,9] <- -1

basis8[3,5] <- basis8[3,6] <- basis8[4,5] <- basis8[4,4] <- basis8[5,10] <-

basis8[6,10] <- basis8[1,9] <- basis8[9,7] <- 1

basis8[9,5] <- basis8[8,5] <- basis8[7,5] <- basis8[10,7] <- basis8[7,2] <-

310



D. Code for emulation, rotation and spatial calibration

basis8[5,4] <- basis8[7,1] <- basis8[10,1] <- basis8[7,10] <- basis8[7,7] <-

basis8[5,1] <- basis8[4,3] <- basis8[6,7] <- -1

fn <- function(x){

fx <- 3*(10*x[2]^2*basis2 + 5*x[3]^2*basis2 + (x[3] + 1.5*x[1]*x[2])*basis3 +

2*x[2]*basis4 + x[3]*x[1]*basis5 + (x[2]*x[1])*basis6 + (x[2]^3)*basis7 +

((x[2] + x[3])^2)*basis8 + 2) + 1.5*dnorm(x[4], 0.2, 0.1)*basis1*(x[5]/(1.3+

x[6]))

noise <- matrix(rnorm(100,0,0.05),nrow=10)

fx <- fx + noise

return(fx)

}

We sample an ensemble with n members from the full parameter space X , converting

the ensemble into the form required by our code, and calculating the SVD basis for the

(centred) ensemble:

n <- 60

sample <- as.data.frame(2*maximinLHS(n,6) - 1)

colnames(sample) <- c("x1","x2","x3","x4","x5","x6")

data <- array(c(rep(0,100*n)), dim=c(10,10,n))

for (i in 1:n){

data[,,i] <- fn(as.numeric(sample[i,]))

}

dim(data) <- c(100, n)

f1data <- NULL

f1data$EnsembleMean <- apply(data, 1, mean)

f1data$CentredField <- data - f1data$EnsembleMean

f1data$tBasis <- svd(t(f1data$CentredField))$v

f1data$scaling <- 1

So that we can history match, we define 100× 100 observation error Σe and discrepancy

variance Ση matrices (here we set these as the same matrix):

errvar <- discvar <- calcA(expand.grid(1:10,1:10), d = c(1,1), nu = 0)

We select a parameter value x∗, and evaluate the function at this input, adding a sample

from the observation error variance to give the observations z, which we then centre using

the ensemble mean:

random.e <- matrix(mvrnorm(1, c(rep(0,100)), errvar),nrow=10)

obs <- c(fn(c(0.7,0.01,0.01,0.25,0.8,-0.9)) + random.e)

obs <- obs - f1data$EnsembleMean

To assess the quality of the basis, we consider the VarMSE plot, and also plot the recon-

struction of the observations, when the first four vectors of the SVD basis are used for
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projection:

VarMSEplot(f1data, obs, errvar+discvar)

plot.field <- function(field, dim1, col = rainbow(100,start=0.1,end=0.8), ...){

require(fields)

x <- 1:dim1

y <- 1:dim1

image.plot(x, y, matrix(field, nrow = dim1), col = col, add = FALSE, ...)

}

plot.field(ReconObs(obs, f1data$tBasis[,1:4]), dim1 = 10)

As the truncated SVD basis is unsuitable for representing z, we search for an optimal

rotation of this basis:

f1rot <- RotateIterate(k = 3, f1data, obs, weight = errvar + discvar,

var.threshold = 0.2, vtot = 0.95, prior = NULL, control = list(max.time=60))

As for the SVD basis, we can assess the quality of the rotated basis by looking at the

VarMSE plot, and the reconstruction of the observations when the first five basis vectors

of the rotated basis are used for projection:

VarMSEplot(f1rot, obs, errvar+discvar)

plot.field(ReconObs(obs, f1rot$tBasis[,1:5]), dim1 = 10)

We project the ensemble onto the truncated rotated basis, and build emulators for these

coefficients:

tData <- cbind(sample, runif(length(sample[,1]),-1,1), CalcScores(

f1rot$CentredField, f1rot$tBasis[,1:5]))

colnames(tData) <- c(colnames(sample), "Noise", "C1", "C2", "C3", "C4", "C5")

ems <- BasisEmulators(tData, 5)

Using these emulators (given that they passed the validation checks), we take a large Latin

hypercube sample from parameter space, and evaluate the emulators at each input:

lhcsample <- as.data.frame(2*maximinLHS(100000,6) - 1)

colnames(lhcsample) <- c("x1","x2","x3","x4","x5","x6")

EmOutput <- MultiPred(ems, lhcsample)

Given these predictions, we can history match both using the field implausibility:

f1hmf <- HistoryMatch(DataBasis=f1rot, type="field", Obs=c(obs), Expectation=

EmOutput$Expectation, Variance=EmOutput$Variance, Error=errvar, Disc=discvar)

f1hmf$nroy

nroyspace <- lhcsample[which(f1hmf$impl < f1hmf$bound),]

and coefficient implausibility:
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f1hmc <- HistoryMatch(DataBasis=f1rot, type="scoresMV", Obs=c(obs), Expectation=

EmOutput$Expectation, Variance=EmOutput$Variance, Error=errvar, Disc=discvar)

To estimate a more appropriate bound to rule out parameter settings using the coefficient

implausibility, we fit the following Bayesian model, using a small sample of implausibilities:

lhcI <- as.data.frame(2*maximinLHS(20,6) - 1)

colnames(lhcI) <- colnames(lhcsample)

EmOutputI <- MultiPred(ems, lhcI)

If <- HistoryMatch(DataBasis=f1rot, type="field", Obs=c(obs), Expectation=

EmOutputI$Expectation, Variance=EmOutputI$Variance, Error=errvar, Disc=

discvar)$impl

Ic <- HistoryMatch(DataBasis=f1rot, type="scoresMV", Obs=c(obs), Expectation=

EmOutputI$Expectation, Variance=EmOutputI$Variance, Error=errvar, Disc=

discvar)$impl

tDataI <- as.data.frame(cbind(If, Ic))

MCMCimpl <- metrop(CalImplModel, initial=c(5,-2.5,-25,1,0.1),scale=c(0.1,2,2,

0.5,0.01), nbatch = 10000, ImplData = tDataI, prior.x = logBoundPrior)

The Metropolis-Hastings step requires careful tuning of the scale to ensure convergence.

With this posterior distribution, we can either sample values of the model parameters, or

fix these at a value from the posterior. Here, we take the final values from the chains, and

draw samples for Ic|If = T , the chi-squared bound for 100-dimensional output:

icsamp <- numeric(100000)

xx <- MCMCimpl$final

for (i in 1:100000){

mu <- as.numeric(xx[1] + xx[2]*log(qchisq(0.995,100)))

wi <- exp(mu)

mu2 <- as.numeric(xx[3] + xx[4]*(qchisq(0.995,100)))

sigma <- as.numeric(xx[5]/wi)

icsamp[i] <- rnorm(1, mu2, sd = sqrt(sigma))

}

plot(density(icsamp))

newbound <- quantile(icsamp, probs=c(0.995))

With this new bound, we can revisit history matching with the coefficient implausibility,

and find the size of NROY space:

sum(f1hmc$impl < newbound) / length(f1hmc$impl)

nroyspaceC <- lhcsample[which(f1hmc$impl < f1hmc$bound),]

This should rule out less space than the coefficient implausibility did previously, and this

NROY space is likely to be larger than that found with the field implausibility. However,
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we should avoid ruling out runs consistent with the observations on the field.

We can also perform Bayesian calibration using the rotated basis and its emulators, re-

constructing fields from predicted coefficients:

calw1 <- Calibrate(Ems=ems, DataBasis=f1rot, Obs=obs, Error=errvar, Disc=discvar,

VarNames=colnames(sample), Prior.x=logUnifDist, initial=c(rep(0,6)),

scale=c(rep(0.1,6)), nbatch=10000)
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