
SCHMIDT GAMES AND MARKOV PARTITIONS

JIMMY TSENG

Abstract. Let T be a C2-expanding self-map of a compact, connected, C∞, Riemannian
manifold M . We correct a minor gap in the proof of a theorem from the literature: the set of
points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows
us to strengthen the theorem. Combining the correction with Schmidt games, we generalize
the theorem in dimension one: given a point x0 ∈ M , the set of points whose forward orbit
closures miss x0 is a winning set. Finally, our key lemma, the No Matching lemma, may be of
independent interest in the theory of symbolic dynamics or the theory of Markov partitions.

1. Introduction

Let T : M → M be a C2-expanding self-map of a compact1, connected, C∞, Riemannian
manifold M with volume measure σ. In this note, we study the set of points whose forward
orbits are nondense. Since there is an ergodic T -invariant probability measure equivalent to
σ, this set has zero volume [7]. It is, however, large in terms of Hausdorff dimension, as M.
Urbański has shown [11]:

Theorem 1.1. Let T be as above. If V is a nonempty open subset of M , then the Hausdorff
dimension of the set of all points contained in V whose forward orbits under T are nondense
in M equals dim M .

Besides this theorem, there are a number of other related results in [11] such as the analog
theorem for certain Anosov diffeomorphisms. The proofs of these various results are elegant,
but they all contain a (essentially the same) minor gap. There are two corrections of this gap
for Theorem 1.1. The first one, by the current author, will be discussed in detail and proved
in Section 4 below. Its proof will also yield a stronger theorem (Theorem 1.3 below). The
second one, by Mariusz Urbański, the original author of the theorem, will be briefly mentioned
in the same section. Corrections for the other results should be very similar to these two.

The other chief concern of this note is a result of S. G. Dani showing that the sets of points
with nondense forward orbits are winning for certain systems. Being winning is stronger than
having full Hausdorff dimension. We will define and discuss winning sets in Subsection 5.1.
Dani’s theorem is, explicitly, the following [3] (see Subsection 5.1 for the definition of 1/2-
winning):

Theorem 1.2. Let f be a semisimple, surjective linear endomorphism of the torus Tn :=
Rn/Zn where n ≥ 1. The set of points whose forward orbit closures miss the identity element
0 in Tn is 1/2-winning.

Our Theorem 1.4 below will generalize (in part) Dani’s result in dimension one.

1One can also study non-compact manifolds; see [2], [6], and [5].
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Finally, we note that there are some interesting results where one considers points whose
orbits (eventually) avoid certain uncountable sets [4].

1.1. Statement of Results. We give a correction for the proof of Theorem 1.1 and note
that our proof allows us to show the following stronger theorem:

Theorem 1.3. Let T be as above. Given x1, · · · , xp ∈ M, the set of points whose forward
orbit closures miss x1, · · · , xp has full Hausdorff dimension (i.e. = dim M).

This theorem will be proved in Section 4.

Remark. A similar result, proved using a line of reasoning different from that in [11] or this
note, can be found in [1]. The proof in [1] uses higher dimensional nets and Kolmogorov’s
consistency theorem from probability theory, while the proofs in [11] and this note are based
on elementary properties of Markov partitions. See Section 6 for a discussion of Theorem 1.3
and the result in [1].

The key lemma used to correct the proof of Theorem 1.1 and to prove Theorem 1.3 is
Lemma 3.1 (the No Matching lemma) below. It is also the key lemma used to prove our
other main result (being α-winning, which is stronger than having full Hausdorff dimension,
is defined in Subsection 5.1):

Theorem 1.4. Let M be the circle S1 := R/Z and T be as above. Given a point x0 ∈ M , the
set of points whose forward orbit closures miss x0 is α-winning for some 0 < α ≤ 1/2.

This theorem will be proved in Subsection 5.2 . Using the properties of Schmidt games (see
Subsection 5.1 for details on these games), we obtain

Corollary 1.5. Let T be any finite set of C2-expanding self-maps of S1 and A ⊂ S1 be any
countable set. Then the set of points whose forward orbit closures under any map in T that
miss A is α-winning for some 0 < α ≤ 1/2.

Remark. Hence, we have generalized in dimension one Theorems 1.1 and 1.3 (and also the
aforementioned result in [1]) and (in part) Theorem 1.2. See Theorem 5.3 and Corollary 5.7
below for more precise statements of Theorem 1.4 and Corollary 1.5 respectively.

2. Background on Markov partitions and symbolic dynamics

In this section, we summarize the basic facts about and setup the relevant notation for
Markov partitions and symbolic dynamics. These facts and this notation will help us prove
our two main results.

2.1. The Basics of Markov Partitions. Part of this subsection will follow the development
in [11]. Let M and σ be as above. If A ⊂ M , let us denote its topological closure in M by
A. Recall that a C1-map f : M → M is expanding if (perhaps after a smooth change of
Riemannian metric) there exists a real number λ > 1 such that

‖Dxf(v)‖ ≥ λ‖v‖
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for all x ∈ M and for all v in the tangent space of M at x [7]. A Markov partition for T
is a finite collection R := {R1, · · · , Rs} of nonempty subsets of M such that

M = R1 ∪ · · · ∪Rs (2.1)

Rj = IntRj for every j = 1, · · · , s (2.2)

IntRi ∩ IntRj = ∅ for all 1 ≤ i 6= j ≤ s (2.3)

σ(Rj\IntRj) = 0 for all j = 1, · · · , s (2.4)

For every j ∈ {1, · · · , s}, T (Rj) is a union of elements of R. (2.5)

The diameter of a Markov partition is the maximum diameter over all its elements. Be-
cause T is expanding, T is injective on any set B ⊂ M if diam(B) is smaller than a constant
δT > 0. A Markov partition with small diameter is a Markov partition whose diameter
< δT . All Markov partitions in this note have small diameters (such Markov partitions always
exist; see [7] and [9]).

Let A be the transition matrix associated to R (see [11] for a reference). The Markov
partition R encodes the dynamics of T in the usual way, namely via a semi-conjugacy from
the subshift of finite type given by A. Since we intricately manipulate elements of the subshift
(and even parts of elements, as we shall see), we need more notation. We refer to the set
{1, · · · , s} as an alphabet (or, in particular, the alphabet for R) and its elements as letters.2

A string is a bi-infinite, infinite, or finite sequence of the letters of the given alphabet. Thus,
every element of a string has at most one predecessor and at most one successor. Given a
string with an element i that has no successor, a concatenation or appending (on the
right) is a new string identical to the given string except that a successor is chosen from the
given alphabet for this element i. (Note that, depending on context, a repeated concatenation
may be referred to simply as a concatenation.) Given any string α, define the length of α,
l(α), to be the number of elements in α. A string is finite if it is a finite sequence. A finite
string is reducible if it is of the form a · · · a where a = α0 · · ·αr is a string of length r + 1. A
finite string is irreducible if it is not reducible.

Let h ≤ t be integers. A (h, t)-string α is a string αhαh+1 · · ·αt with the given indices,
and a substring of α is a string αi · · ·αj where h ≤ i ≤ j ≤ t. Also, given h ≤ i ≤ j ≤ t, the
(i, j)-substring of α is the string αi · · ·αj . An (i, j)-string γ is a (extrinsic) substring of α
if there exists a (k, k + j − i)-substring of α such that αk = γi, αk+1 = γi+1, · · · , αk+j−i = γj .
For convenience, (0, t)-strings will also be called t-strings. Given n ≤ N , a n-string β
is equivalent to a N -string α (or a N -string α is equivalent to a n-string β) if α0 =
β0, · · · , αn = βn.

Finally, a valid string is a string given by the transition matrix A as follows: for every
element i of the string with a successor j, Ai,j = 1. For n ∈ N ∪ {0}, let Σ(n) denote the set
of valid n-strings. For α ∈ Σ(n), define

Rα := Rα0 ∩ T−1(Rα1) ∩ · · · ∩ T−n(Rαn).

2In this note, we assume that all alphabets have at least two letters.
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Thus, for all n ∈ N ∪ {0}, Rα 6= ∅ and has the following properties (see [11] and [7]):

∪α∈Σ(n) Rα = M (2.6)

Rα = IntRα (2.7)

IntRα ∩ IntRβ = ∅ for every distinct pair α, β ∈ Σ(n) (2.8)

T (Rα) = Rα1···αn (2.9)

T−1(Rα) = ∪{i|Ai,α0
=1}Riα (2.10)

Rα = ∪{i|Aαn,i=1}Rαi (2.11)

σ(Rα\IntRα) = 0 (2.12)

diam(Rα) < δT λ−n. (2.13)

In the next subsection, we will discuss further properties at length.

2.1.1. The Bounded Distortion Property and Boundary Points. Let J(T )(x) = |det DxT |
denote the Jacobian of T at the point x. An important property of Markov partitions is the
bounded distortion property ([11] and see [7] for a proof):

Theorem 2.1. There exists a constant C ≥ 1 such that
J(Tn)(y)
J(Tn)(x)

≤ C

for all n ≥ 1, α ∈ Σ(n), and x, y ∈ Rα.

Bounded distortion has two further refinements that are important to us. A little more
notation is needed before we can state these. Define

G(n) := {Rα | α ∈ Σ(n)};
call G(n) the nth generation of R. Hence, G(0) = R. If γ is a valid string, let Gγ denote
the generation that Rγ belongs to. Also, denote the set of boundary points of all
elements of all generations of R by ∂(R) (or ∂, if the context implies the Markov partition).
And, let us refer to the points in the full volume set M\∂ as interior points.

For later use, we will need to further distinguish subsets of ∂. Let ∂n denote the set of
all boundary points of all elements of G(n). Clearly, a chain of inclusions ∂0 ⊂ ∂1 ⊂ · · ·
exists. A point in ∂0 has weight 0. For n ≥ 1, a point in ∂n\∂n−1 has weight n.

Moreover, given γ ∈ Σ(n), let us define, for later use, the following sets of valid concatena-
tions of γ:

Σγ(q) := {δ ∈ Σ(n + q) | δ is equivalent to γ}.
Returning to the notation for the refinements of bounded distortion, let us define a lower

constant of bounded distortion

ε(q) := min
δ∈Σ(q)

σ(Rδ)
σ(Rδ0)

> 0

and an upper constant of bounded distortion

1 ≥ E(q) := max
δ∈Σ(q)

σ(Rδ)
σ(Rδ0)

> 0.



SCHMIDT GAMES AND MARKOV PARTITIONS 5

It is clear that both E(q) and ε(q) are weakly monotonically decreasing functions of q, both
of which tend to 0 as q tends to ∞. Finally, let Rmin ∈ R be an element with smallest σ, let
Rmax ∈ R be an element with largest σ, and define

r =
σ(Rmin)
σ(Rmax)

.

Our first refinement of bounded distortion (Theorem 2.1) is the following (note that C is
from the theorem):

Lemma 2.2. For every element Rα ∈ G(N) and every element Rαβ ∈ G(N + n),

ε(n)
C

≤
σ(Rαβ)
σ(Rα)

≤ CE(n).

Our second refinement of bounded distortion is the following (again, C is from the theorem):

Lemma 2.3. Let N ∈ N and η be a valid finite string of length at least 2. Let Rηα be an
element of G(N) (contained in Rη) of largest σ; let Rηβ be an element of G(N) of smallest
σ. Then

σ(Rηβ)
σ(Rηα)

≥ r

C
.

The proofs of these two refinements follow, essentially, a similar calculation in [11] and are
omitted.

Another useful property (again, easy to see and whose proof is omitted) is

Lemma 2.4. The following hold (for Markov partitions with small diameter):

T (∂) ⊂ ∂ and T−1(∂) ⊂ ∂.

2.1.2. Representations. Let Σ(∞) denote the set of valid infinite strings α0α1 · · · indexed by
N ∪ {0}. If α ∈ Σ(∞), then Rα is a unique point in M . Conversely, if x ∈ M , then there
exists an α ∈ Σ(∞) such that x = Rα. A representation of x ∈ M is an element α ∈ Σ(∞)
for which x = Rα. A representation may not be unique.

Let us, henceforth, denote the (0, Q)-substring of a γ ∈ Σ(∞) by γ(Q). The following two
facts about representations are easy to see and their proofs are omitted:

Lemma 2.5. A point x ∈ M has non-unique representations ⇐⇒ x ∈ ∂. The set of points
with non-unique representations is σ-null.

Lemma 2.6. Let x ∈ M be a point with representations γ1, · · · , γr. Then, for every Q ∈
N ∪ {0}, there exists an open neighborhood U of x such that U ⊂ ∪r

t=1IntRγt(Q) ∪ ∂.

2.1.3. Two Facts about Preimages. Finally, we have two basic facts about missing preimages.
These are easy to see and their proofs are omitted.

Lemma 2.7. Let E be a set of points whose forward orbits miss an open set U . Then E is
also a set of points whose forward orbits miss the open set T−n(U) for any n ∈ N.

Lemma 2.8. Let E be a set of points whose forward orbit closures miss a point y. Then E is
also a set of points whose forward orbit closures miss T−n(y) for any n ∈ N.
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2.1.4. A Lower Bound for Hausdorff Dimension. In this subsection, we follow a simplified
version of the development in [11]. Let K ⊂ M be compact. For k ∈ N, let Ek denote a
finite collection of compact subsets of K with positive volume. (Recall that volume measure
is denoted by σ.) We require the following to hold:

The union of the elements of E1 is K. (2.14)

For distinct F,G ∈ Ek, σ(F ∩G) = 0. (2.15)

Every element F ∈ Ek+1 is contained in an element G ∈ Ek. (2.16)

Let us define the following notation:
• Let ∪Ek denote the union of all elements of Ek.
• Let E := ∩∞k=1 ∪ Ek.
• Define, for every F ∈ Ek,

density(Ek+1, F ) :=
σ(∪Ek+1 ∩ F )

σ(F )
.

• Let ∆k := inf{density(Ek+1, F ) | F ∈ Ek}.
• Let dk := sup{diam(F ) | F ∈ Ek}.

We further require the following to hold:

∆k > 0 (2.17)

dk < 1 (2.18)

lim
k→∞

dk = 0. (2.19)

Following [5], let us call {Ek}k∈N a strongly tree-like collection. Let HD(·) denote
Hausdorff dimension. The following lemma for this strongly tree-like collection is proved
in [11] by adapting a proof from [8] (both proofs are based on Frostman’s lemma):

Lemma 2.9. It holds that

HD(E) ≥ dim M − lim sup
k→∞

∑k
j=1 log ∆j

log dk
.

Remark. The upper index of summation is k (not k − 1 as in [11]). See [5], but note that
what is referred to as the “j-th stage density” must be > 0. For a more general version of
this lemma, see [5] or [11]. For a version involving higher dimensional nets, see [1].

2.2. The Basics of Strings. Let us continue our discussion of the basic facts of strings from
Subsection 2.1.

2.2.1. Partial String Matches. Let n ≤ N , and let γ be a n-string and α, a N -string. A
match of γ with α is an (i, i+n)-substring of α given by αi = γ0, αi+1 = γ1, · · · , αi+n = γn.
Whenever γ is a substring of α, there is at least one such match. A partial match of γ
with α is an (i,N)-substring of α given by αi = γ0, αi+1 = γ1, · · · , αN = γm where m < n.
Consequently, i > N − n. Call i the head (of the partial match).

Note that if two partial matches of γ with α have heads i < j, then a “right shift and
crop” of the one with the smaller head will produce the one with the larger head. This is just
pattern matching.
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2.2.2. Valid Strings and Matching. Let us now specialize to valid strings (defined in Subsec-
tion 2.1) for a Markov partition with small diameter R := {R1, · · · , Rs}.

By (2.5) and (2.11), there exists a letter for which concatenation on the right of any valid
finite string produces a valid finite string. But, there exist Markov partitions such that, for
some letter i, only one letter j produces a valid 1-string when concatenated on the right; such
i is called a degenerate letter. A letter that is not degenerate is nondegenerate. A block
of a string is a substring composed of exactly one nondegenerate letter, which is found at
the largest index. Note that given the initial letter in a block, the only valid concatenation
on the right of the initial letter is the one that produces the rest of the block. By (2.13),
there exists an integer B, called the maximal block length, such that for every B-string
α, σ(Rα0) > σ(Rα). A general block of a string is a substring composed of exactly one
nondegenerate letter. A reverse block of a string is a substring composed of exactly one
nondegenerate letter, which is found at the smallest index. A double general block of a
string is a substring composed of a block followed by a reverse block. (Hence, a double general
block has exactly two nondegenerate letters; they are adjacent.)

The following lemma and corollary are easy to see and their proofs are omitted:

Lemma 2.10. In a string composed of only degenerate letters, each letter is distinct.

Corollary 2.11. The maximal block length of the Markov partition {R1, · · · , Rs} is at most
s. The maximal length of any general block is at most 2s − 1; any double general block, at
most 2s.

3. The No Matching Lemma

We are now ready to prove the key lemma used in our two main results. This lemma
may be of independent interest in the theory of symbolic dynamics or the theory of Markov
partitions.

Lemma 3.1 (No Matching). Let N ≥ n ≥ 8s − 4. Let γ be any n-string such that γn−1 is
nondegenerate except those of the following kind:

γ = a0 · · · am

where
a0 = · · · = am−1

are general blocks and either

am is a general block not equivalent to a0a0 (3.1)

or
am is a double general block not equivalent to a0a0. (3.2)

And let α be a N -string such that no match of γ with α exists. Then there exists a choice of
substrings b0 and b1 of length at most s such that for any letters β0, β1, · · ·βk, no match of γ
with the N + n-string αb0b1β0 · · ·βk exists.

Remark. It is possible for both (3.1) and (3.2) to hold for the same string γ.

Remark. If no match of γ with αb0b1β0 · · ·βk exists, then no match of γ with αb0b1β0 · · ·βk′

for any 0 ≤ k′ ≤ k exists.
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Proof. By Corollary 2.11, all n-strings contain at least four general blocks. Note that for the
exceptional n-strings, we obtain m ≥ 3 by Corollary 2.11.

There are three cases:

Case 1: No partial matches of γ with α exist.

Choose any letters for b0b1β0 · · ·βk that make αb0b1β0 · · ·βk a valid string.

Case 2: There exists exactly one partial match of γ with α.

Hence, there exists exactly one choice of letter for the initial letter of b0 (namely a choice
for b0

0) which would produce a match of γ with αb0b1β0 · · ·βk.
If αN is nondegenerate, let b0

0 not be this letter. Since no other partial matches of γ with
α exists, we are free to take any letters for the remainder as long as they form a valid string.

If αN is degenerate, then αNb0 must contain the block starting with αN . Also, because γn−1

is nondegenerate, γ must contain this block (not just partially contain it). By the definition
of block, we have a choice of letter to concatenate on the right of the block. Choose the letter
that is different from what is in γ. Hence, we have made a choice for b0, and again we are
free to take any letters for the remainder as long as they form a valid string.

Case 3: There are at least two partial matches of γ with α.

Let i be the smallest head and j be the second smallest head. Let γi correspond to the
partial match with i as head; γj , with j as head.

Now γi is the concatenation of the same substring of length j− i ≥ 1. Denote the substring
by c = γ0 · · · γj−i−1. Then,

γi = c · · · cγ0 · · · γr

where 0 ≤ r ≤ j− i− 1. (Note that γi may contain only one substring c.) For an nonnegative
integer t, let 0 ≤ t̄ < j− i denote the representative of t mod j− i. By Lemma 2.10, c contains
at least one nondegenerate letter. (Moreover, i and j imply that c is irreducible.) There are
two cases:

Case 3A: The substring c is a general block.

If γr is the one nondegenerate letter in c, then choose b0 to be a 0-string and b0
0 6= γr+1.

Now, if b0
0 is nondegenerate, we have that γib0 = c · · · cc̃ where c̃ is a double general block.

Otherwise, if b0
0 is degenerate, we have that γib0 = c · · · cc̃ where c̃ is a general block.

Otherwise, γr is degenerate, and thus the choices of b0 are fixed until after we reach the
next nondegenerate letter, b0

q . Because γn−1 is nondegenerate, γib0
0 · · · b0

q is a substring of γ.
Moreover, γrb

0
0 · · · b0

q must appear together in γi because of the repeating substring. Hence,
it is a substring of cc. If q + 1 = l(c), then γr = b0

q , a contradiction. Hence, q + 1 < l(c), and
we can choose b0

q+1 to be different from the letter that follows the substring γrb
0
0 · · · b0

q in cc.
Now, if b0

q+1 is nondegenerate, we have that γib0 = c · · · cc̃ where c̃ is a double general block.
Otherwise, if b0

q+1 is degenerate, we have that γib0 = c · · · cc̃ where c̃ is a general block.
Hence, only γi may possibly be completed to a match of γ with αb0b1β0 · · ·βk. If γib0 is

not equivalent to γ, we are done.
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Thus, let γib0 be equivalent to γ. There are two cases. If γib0 = cc̃, then there is another
nondegenerate letter after γib0 in γ because γ contains at least four general blocks. Otherwise,
γib0 = c · · · cc̃ where c̃ is either a general or double general block not equivalent to cc (as
constructed above). Thus, there is at least another nondegenerate letter after the substring c̃
in γ because we exclude strings of the form (3.1) and (3.2).

Let c̃t be the last letter of c̃ (i.e. c̃t = b0
q+1). If c̃t is nondegenerate, choose b1 to be a

0-string where b1
0 is a different letter than what follows γib0 in γ. If c̃t is degenerate, then the

substring c̃tb
1
0 · · · b1

p up to the next nondegenerate letter (i.e. b1
p) in γ is determined. (Since

γn−1 is nondegenerate, b1
p comes before γn.) Since this is a block, we have a choice of letters

for b1
p+1; pick it so that it is different from that in γ. Hence, γi cannot produce a match either.

We may now pick any letters for the remainder as long as they produce a valid string.

Case 3B: The substring c is not a general block.

Hence, c contains at least two nondegenerate letters (not necessarily distinct). Also, j− i ≥
2.

If γr is a nondegenerate letter in c, then choose b0 to be a 0-string and b0
0 6= γl(γi). Otherwise,

the choices of b0 are fixed until after we reach the next nondegenerate letter, b0
q . Because γn−1

is nondegenerate, γib0
0 · · · b0

q is a substring of γ. Pick b0
q+1 to be different from the letter that

follows γib0
0 · · · b0

q in γ. Hence, γib0 cannot complete to a match.
Because of the repeating substrings, we know the j− i adjacent letters, namely a substring

of cc, that are needed for γj or any partial match with larger head to produce a match of γ
with αb0b1β0 · · ·βk. (Note that every letter of c appears in such a substring.)

Let k be any head greater than or equal to j. Assume γkb0 can be completed to γ.
Now if γr is nondegenerate, then b0 = γr+1, a 0-string. And one of the letters γr+1, · · · , γr+j−i−1

is also nondegenerate. If b0 is nondegenerate, choose b1
0 to be different from γr+2. Otherwise,

b0 is degenerate, and thus the block beginning with b0 must be at most l(c) − 1 in length.
There are at least two ways to concatenate a letter to the end of this block. Pick, for b1, one
that is different from the one in γ.

Otherwise, γr is degenerate. Assume that b0
q+1 is nondegenerate. Hence, the q +1-string b0

has length strictly less than l(c) since otherwise b0
q+1 = γr, a contradiction. Thus, for γkb0 to

complete to γ, we know, by the length, exactly the letter that is required to be concatenated
on the right. Let b1 be a 0-string such that b1

0 is not this letter. Otherwise, b0
q+1 is degenerate,

and b0 has exactly one nondegenerate letter, namely b0
q . Choose the beginning of b1 to be

the rest of the block starting with b0
q+1. Let b1

h be the nondegenerate letter at the end of this
block. If q + 2 + h + 1 = l(c), then b0b1

0 · · · b1
h are all the letters in c, and therefore b1

h = γr, a
contradiction. Thus, for γkb0b1

0 · · · b1
h to complete to γ, we know, by the length, exactly the

letter that is required to be concatenated on the right. Let b1
h+1 not be this letter. We may

now pick any letters for the remainder as long as they produce a valid string.
The proof of the lemma is complete. �

4. The Proof of Theorem 1.3

In this section, we prove Theorem 1.3. This proof, which follows the proof scheme in [11],
is also the author’s correction of the proof of Theorem 1.1. Choose a Markov partition with
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small diameter R := {R1, · · · , Rs}. It is easy to see that the number of representations of
every point is less than or equal to some natural number P0. For a point x ∈ M , define the
adjacency set of x in generation N :

ΦN (x) = {R ∈ G(N) | R 3 x}.
Now, recall that A denotes the topological closure of a subset A ⊂ M . Also, for x ∈ M ,

O+
T (x) denotes the forward orbit of x under the self-map T , and, for α ∈ Σ(∞), α(n) denotes

α0 · · ·αn. Finally, we have the following caveat:

Remark. In this section, if we let T act on a representation, we are implicitly using the
aforementioned semi-conjugacy, as this action denotes left shift.

Recall the statement of Theorem 1.3. By Lemma 2.8, if any two of the x1, · · · , xp have
forward orbits that intersect, we may replace both of these points with a point in the inter-
section of their forward orbits and still prove the theorem. Repeat. Hence, without loss of
generality, we may assume that x1, · · · , xp have pairwise disjoint forward orbits.

Let γ̄1, · · · , γ̄P be all possible representations of x1, · · · , xp (all representations of the same
point are included in this list). Hence, P ≤ pP0. Also, there exists a least generation ñ such
that |G(ñ)| > P and δT λ−ñ < 1.

Let us collect these representations thus:

{γ̄1},∪3s
t=0{T t(γ̄2)}, · · · ,∪3s

t=0{T t(γ̄P )}.
From each collection, pick exactly one element; call this element γ̃j . Because of the pairwise
disjoint orbits, the chosen elements are distinct representations. Hence, there exists Ñ ∈ N
such that for all n ≥ Ñ , γ̃1(n− 2s), · · · , γ̃P (n− 2s) are distinct. Repeat over all such possible
combinations, and take the largest Ñ .

If T t(γ̄j) = a · · · for some general block a, set Qj,t = 8s − 4. Otherwise, after the first
general block a, there exists a general block b of least last index J ≥ 1 such that a 6= b
(i.e. a is not equivalent to b), and set Qj,t = max(J + 2s, 8s − 4). Set Q = max{Qj,t | j =
1, · · · , P and t = 0, · · · , 3s}.

Let
q0 = max(Ñ , 2sP + 1, Q, ñ).

By Lemma 2.10, there exists a sequence of integers {qi} greater than or equal to q0 such that
γ̄1

qi−1 is nondegenerate. Let us now fix a q ∈ {qi} and set

γ1 := γ̄1
0 · · · γ̄1

q .

Thus, Lemma 3.1 applies to every such γ1.
For each 2 ≤ j ≤ P , there exists, by Lemma 2.10, a least Kj ∈ {0, · · · , s − 1} such that

(TKj (γ̄j))q−1 is nondegenerate. Set

γj := (TKj (γ̄j))0 · · · (TKj (γ̄j))q.

Note that Lemma 3.1 can individually apply to each γj .
Define

Ek := Ek(q) := {Rα | α ∈ Σ(kq) and Tn(Rα) ∩ ∪P
j=1IntRγj = ∅

for every n = 0, 1, · · · , (k − 1)q}.
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Hence, Rα ∈ Ek if and only if all of the γ1, · · · , γP are not substrings of α.
As in [11], we wish to show that {Ek} is strongly tree-like so that we can apply Lemma 2.9.

Let
K := ∪E1

and
E(q) := ∩∞k=1 ∪ Ek.

We are now ready to show the following proposition:

Proposition 4.1.

HD(E(q)) ≥ dim M +
log ε(2spP0)

C

q log λ

for all q ∈ {qi}.

Proof. As in [11], we note that
dk < δT λ−qk

by (2.13). Verifying (2.15), (2.16), (2.18), and (2.19) is routine and can be found in [11].
We, however, must correct the estimate of ∆k.3 (With this estimate, we will also verify

(2.17).) Let Rα ∈ Ek. Thus, no match of any of the γj ’s exists with α. If, for a γj , there
are no partial matches, then any valid concatenation (of the correct length) of α will produce
an element of Ek+1. For the remaining γj ’s, there are partial matches, and we will apply
Lemma 3.1 serially. Each of these remaining γj ’s has a partial match with smallest head.
Pick one of these γj ’s (needs not be unique) with the least smallest head h; call it γ. Let γ′

be one of the γj ’s except for γ, and denote the smallest head of γ′ by h′. Thus h ≤ h′.
Let b0 and b1 be chosen as in Lemma 3.1 applied to γ. Then there is no match of γ with

αb0b1β0 · · ·βk′ where β0, · · · , βk′ are any letters that make αb0b1β0 · · ·βk′ ∈ Σ((k + 1)q).

Sublemma 4.2. There is no match of γ′ with αb0b1.

Proof. Assume not. Let us denote α = α0 · · ·αN . Since l(b0b1) ≤ 2s, all but at most the last
2s letters of γ′ are in the partial match with head h′. Consequently, all but at most the last
2s letters of γ are, likewise, in the partial match with head h. It is easy to see that

N + 2s− h′ ≥ q,

3The minor gap from [11] lies at this step. It is easy to see that the original proof will not work (for example)
for the multiplication by 2 map on the circle S1 := R/Z with Markov partition given by the dyadic partition

D = {R1, · · · , R2s} where Ri = [
i − 1

2s
,

i

2s
]

and with transition matrix

A :=

„
B
B

«
where B :=

0BBBBB@
1 1 0 0 · · · 0 0
0 0 1 1 0 0 · · · 0 0
0 0 0 0 1 1 0 0 · · · 0 0

...
0 0 · · · 0 0 1 1

1CCCCCA .

Also, note that Urbański (the author of Theorem 1.1) has given a second correction using his original proof
scheme and the Baire category theorem on certain orbits under powers of the map under consideration (via
personal communication).
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and therefore
h′ − h ≤ 2s

since h ≥ N − q. Now, by construction, T h′−h(γ) and γ′ disagree on at least the last 2s + 1
letters, a contradiction as both are partial matches with α. �

Remove γ from consideration. Now pick, among the remaining, one with the least small-
est head (again, needs not be unique), and repeat applying Lemma 3.1 with α replaced by
αb0b1 until no more γj ’s remain (possible since q > 2sP ). Therefore, after serially applying
Lemma 3.1, we obtain

Rαb0b1···b2P−1b2P β0···βk′
∈ Ek+1

where β0, · · ·βk′ are any allowed letters. Thus, Rαb0b1···b2P−1b2P is a union of elements of Ek+1.
By Lemma 2.2 and the monotonicity of ε(·) (recall the definition of ε(·) from Subsec-

tion 2.1.1),

ε(2sP ) ≤ C
σ(Rαb0b1···b2P−1b2P )

σ(Rα)
.

Consequently, σ(∪Ek+1 ∩Rα) ≥ ε(2sP )
C σ(Rα). Thus,

density(Ek+1, Rα) ≥ ε(2sP )
C

.

Hence, ∑k
j=1 log ∆j

log dk
≤

k log ε(2sP )
C

log δT − qk log λ
.

Applying Lemma 2.9, we obtain

HD(E(q)) ≥ dim M +
log ε(2sP )

C

q log λ
≥ dim M +

log ε(2spP0)
C

q log λ

for all q ∈ {qi}. �

Lemma 4.3. The set E(q) is also a set of points whose forward orbits miss neighborhoods of
x1, · · · , xp.

Proof. For interior points in {x1, · · · , xp}, apply Lemma 2.7.
Let x ∈ {x1, · · · , xp} be a boundary point. It is easy to see that there exists an open set

U 3 x such that U ⊂ ∪Φq+s(x). We claim that all the points in E(q) have forward orbits
which miss the open set U . Assume not. Then there exist a y ∈ E(q), which corresponds to
an α ∈ Σ(∞), and n such that Tn(y) ∈ U . Let k ∈ N be chosen so that kq ≥ n+q+s. Hence,
Tn(Rα(kq))∩U 6= ∅. Thus, Tn(Rα(kq)) ⊂ Rβ for some β ∈ Φq+s(x). Now β is equivalent to one
of the representations of x; say it is γ̄j . Thus, Tn+Kj (Rα(kq)) ⊂ TKj (Rβ) ⊂ TKj (Rγ̄j(q+Kj)) =
Rγj , a contradiction. �

We can now prove the theorem:

Proof of Theorem 1.3. Applying Proposition 4.1 and Lemma 4.3 and setting qi →∞, we have
shown our desired result: for any points x1, · · · , xp ∈ M ,

FT (x1, · · · , xp) := {x ∈ M | {x1, · · · , xp} ∩ O+
T (x) = ∅}

has full Hausdorff dimension (i.e. = dim M). �
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Remark. If one simply wishes to correct the proof of Theorem 1.1, one can significantly
simplify the above proof by considering missing only one point, an interior point.

In the next section, we will see how the author’s correction leads to a generalization in
dimension one.

5. A Generalization

In this section, we prove in dimension one a generalization of Theorems 1.1 and 1.3 (and also
the aforementioned result in [1]) and, in part, a generalization of Theorem 1.2. In particular,
we prove Theorem 1.4 (or, more precisely, Theorem 5.3 below). An immediate corollary is
also obtained. We begin by introducing Schmidt games.

5.1. The Basic Facts of Schmidt Games. W. Schmidt introduced the games which now
bear his name in [10]. Given a 0 < κ < 1 and a ball U of M with radius r, let us denote, as
in [10], Uκ to be the set of all balls U ′ ⊂ U with radius equal to κr.

Let 0 < α < 1 and 0 < β < 1. Let S be a subset of a complete metric space M . In an
(α, β)-game, two players, Black and White, alternate choosing nested closed balls B1 ⊃ W1 ⊃
B2 ⊃ W2 · · · on M such that Wn ∈ Bα

n and Bn ∈ W β
n−1. The second player, White, wins if

the intersection of these balls lies in S. A set S is called (α, β)-winning if White can always
win for the given α and β. A set S is called α-winning if White can always win for the given
α and any β. A set S is called winning if it is α-winning for some α. Schmidt games have
four important properties for us [10]:

Property (SG1). The sets in Rn which are α-winning have full Hausdorff dimension.

Property (SG2). Countable intersections of α-winning sets are again α-winning.

Property (SG3). If a set is α-winning, then it is also α′-winning for all 0 < α′ ≤ α.

Property (SG4). Let 0 < α ≤ 1/2. If a set in a Banach space of positive dimension is
α-winning, then the set with a countable number of points removed is also α-winning.

5.2. The Proof of the Generalization in Dimension One. We will, in this subsection,
specialize to the one-dimensional case: consider the system (S1, σ, T ) where S1 := R/Z, σ is
the probability Haar measure on S1, and

T : S1 → S1

is a C2-expanding map.
It is clear from Krzyżewski and Szlenk’s construction of a Markov partition with small

diameter ([7], proof of Lemma 4) that

Lemma 5.1. For any C2-expanding map T : S1 → S1, there exists a Markov partition with
small diameter for which every element of every generation is path-connected.

Endow S1 with the usual metric, and let d(A) denote the diameter of a set A. Using
Lemma 5.1, we obtain a Markov partition with small diameter R := {R1, · · · , Rs}, which we
fix. Since the elements of each generation are intervals, we may use d and σ interchangeably
on these elements.

Recall the definition of ε(·) from Subsection 2.1.1.
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Lemma 5.2. Let R := {R1, · · · , Rs} be a Markov partition with small diameter for which every
element of every generation is path-connected. For any closed interval B such that

d(B) < min{d(R1), · · · , d(Rs)},

there exists N ∈ N for which an element Rη ∈ G(N − 1) can be chosen to satisfy

2d(Rη) ≥ d(B) ≥ ε(1)
C

d(Rη). (5.1)

Moreover, an element of G(N) lies in both B and Rη and at least half of the interval B lies
in Rη. Finally, if any element of any generation Rα ⊃ B, then Rα ⊃ Rη.

Remark. Although more than one value of N may make (5.1) true, we always agree to take
the value of N as in the proof below. Hence, for each B there exists a unique N , namely
G(N) is the least generation in which an element of that generation lies completely in B.

Proof. Case 1: B ∩ ∂0 6= ∅.

By length, B contains exactly one point y of weight 0. Thus, we have closed intervals B+

and B− such that
B = B+ ∪B−

where
{y} = B+ ∩B−.

Let d(B+) ≥ d(B−). (Note that B− could possibly be just {y}.)
Now there exists a least N ∈ N such that (∂N\{y}) ∩ B+ 6= ∅. Hence, there exists Rη ∈

G(N − 1) such that B+ ⊂ Rη. Thus,

d(B) ≤ 2d(Rη).

Let z ∈ (∂N\{y}) ∩ B+ be closest to y. Then the interval between y and z in B+ is an
element of G(N). Denote it by Rηi. Hence, by Lemma 2.2,

ε(1)
C

d(Rη) ≤ d(B).

Case 2: B ∩ ∂0 = ∅.

Thus, there exists a least N ∈ N such that ∂N ∩B 6= ∅.

Case 2A: |∂N ∩B| ≥ 2.

Thus, there exists Rη ∈ G(N − 1) such that B ⊂ Rη. Moreover, there exists an element
Rηi such that Rηi ⊂ B. As in Case 1, we obtain (5.1).

Case 2B: |∂N ∩B| = 1.

Let y be the point of weight N in B. Repeat the proof of Case 1 with this y. �

Also, recall that we denote the (0, Q)-substring of a γ ∈ Σ(∞) by γ(Q). Finally, note that
C is from Theorem 2.1. Our generalization is
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Theorem 5.3. Let x0 ∈ S1. Then

FT (x0) := {x ∈ S1 | x0 /∈ O+
T (x)}

is an ε(7s+2)
2C -winning set. (If R has no degenerate letters, we may replace ε(7s+2) with ε(5).)

Proof. Let M := S1 and F := FT (x0). Let γ ∈ Σ(∞) be a representation of x0.
Let n := ε(7s+2)

2C and 0 < m < 1. We show that F is (n, m)-winning. Black starts, choosing
B1. Now there is a least J ∈ N such that for any choice of BJ ,

d(BJ) < min
ξ∈Σ(1)

(d(Rξ)).

(White chooses any allowed sets for W1, · · · ,WJ−1. Black chooses BJ .)
By Lemma 5.2, there exist N0 ≥ 1 and an element Rη ∈ G(N0) that contains at least half

of BJ . Since n ≤ 1/2, choose WJ ⊂ Rη.
Let us now refine the notion of constants of bounded distortion:

εη(q) := min
δ∈Ση(q)

σ(Rδ)
σ(Rη)

> 0

1 ≥ Eη(q) := max
δ∈Ση(q)

σ(Rδ)
σ(Rη)

> 0.

For the given η, Lemma 2.3 implies that εη(q)
Eη(q) ≥ r/C.

Sublemma 5.4. Eη(q) ≥ s−q.

Proof. There are at most sq elements of G(l(η) − 1 + q) which are contained in Rη, i.e.
|Ση(q)| ≤ sq, because there are only s possible letters to append (on the right) to any finite
string.

Let Rα ∈ G(l(η) − 1 + q) be such that Eη(q) = σ(Rα)
σ(Rη) . Then Rα has the largest σ of any

element of G(l(η)− 1 + q) contained in Rη. Because all elements of the same generation have
pairwise disjoint interiors and ∂ is σ-null, sqσ(Rα) ≥

∑
β∈Ση(q) σ(Rβ) = σ(Rη). �

Hence, εη(q) ≥ r
Csq .

Define
Hk = Hk(Q) = {Rα | α ∈ Σ(Q + k) and Tn(Rα) ∩ IntRγ(Q) = ∅

for every n = 0, 1, · · · , k}.
There exists a least P ∈ N such that
(1) P ≥ 4s− 2 and
(2) 4C4δT λ−P

ε(1)ε(2s)ε(7s+2)rd(Rmax) < rε(1)
2C2 .

Also, there exists a least L0 ∈ N such that s−1/L0 ≥ λ−1/2.

Sublemma 5.5. For every q ∈ N, there exists a least p ∈ N such that any allowed choice of
BJ+p is a subset of Rδ for some δ ∈ Ση(q).
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Proof. Recall the definition of B+ from the proof of Lemma 5.2.
Note that, by Lemma 5.2, p ≥ 1. It suffices to show the sublemma for some p; that

a least such p exists is then immediate. Let β be an element of Ση(q) with smallest σ.
Then d(Rβ)

d(Rη) ≥
r

Csq . Thus, there exists a large integer t such that r
Csq d(Rη) > BJ+t. Hence,

|BJ+t ∩ ∂Gβ
| ≤ 1 (i.e. there is at most one boundary point of the proper weight in BJ+t).

Pick WJ+t ⊂ B+
J+t. Hence, let p = t + 1. �

By Sublemma 5.5, there exists a L1 ∈ N such that BJ+L1 is contained in an element of
G(2P ). Let L := max(L0, L1).

By Lemma 5.2, there exists a least N ∈ N for which we can choose an element Rδ ∈ G(N−1)
such that

2d(Rδ) ≥ d(BJ+L) ≥ ε(1)
C

d(Rδ). (5.2)

Also, there exists Rδk ⊂ BJ+L for some letter k. By construction, Rδk ⊂ Rη, and hence
Rδ ⊂ Rη (because the generation that Rδ belongs to is later than or the same as that of Rη).

Also, since BJ+L is contained in an element of G(2P ), and B+
J+L (see the proof of Lemma 5.2

for the meaning of the notation) is contained in an element of G(N − 1), N − 1 ≥ 2P .
Pick an integer Q > N as follows. Choose integers N4 > N3 > N2 > N1 ≥ s + 1 as

follows: γN+N1 is the next nondegenerate letter in γ following γ(N + s), γN+N2 is the next
nondegenerate letter in γ following γ(N + N1), γN+N3 is the next nondegenerate letter in γ
following γ(N + N2), and γN+N4 is the next nondegenerate letter in γ following γ(N + N3).
(By Corollary 2.11, 4 + s ≤ N4 ≤ 5s.) If γ(N + N4 + 1) is of the form a · · · ab for a general
block a and b is either a general block not equivalent to aa or a double general block not
equivalent to aa, then Q = N +N1 +1; otherwise, choose Q = N +N4 +1. Hence, Lemma 3.1
applies to γ(Q).

Now, by (5.2),

(mn)Ld(BJ) ≥ ε(1)
C

d(Rδ) ≥
ε(1)
C

εη(N − 1−N0)d(Rη)

≥ ε(1)
C

εη(N − 1−N0)d(BJ)/2 ≥ ε(1)
2C

εη(Q)d(BJ)

≥ rε(1)
2C2

Eη(Q)d(BJ) ≥ rε(1)
2C2

s−Qd(BJ).

Thus,

m ≥ rε(1)
2C2

λ−Q/2. (5.3)

Since Q−N ≥ s + 1, Rδk splits into at least two elements of G(Q) by Corollary 2.11. One
of these is not Rγ(Q); call this element Rα. (Note that Q ≥ 8s−4.) By Lemma 3.1, there exist
strings b0 and b1, each of length at most s, such that for any valid choice of letters β0, · · · , βk,
where l(b0) + l(b1) + k + 1 ≤ Q, no match of γ(Q) with αb0b1β0 · · ·βk exists. Thus,

d(Rδ) ≥ d(Rαb0b1) ≥
ε(7s + 2)

C
d(Rδ) (5.4)
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by Lemma 2.2. Consequently, by (5.2) and (5.4),

d(Rαb0b1) ≥ nd(BJ+L) ≥ ε(7s + 2)ε(1)
2C2

d(Rαb0b1).

Since White must choose WJ+L ∈ Bn
J+L, White picks WJ+L ⊂ Rαb0b1 . Black now chooses

BJ+L+1 ∈ Wm
J+L; hence,

md(Rα) ≥ d(BJ+L+1) ≥
mε(7s + 2)ε(1)ε(2s)

2C3
d(Rα). (5.5)

By Lemma 5.2 again, there exists N ′ ∈ N for which we can choose an element Rη′ ∈
G(N ′ − 1) such that

2d(Rη′) ≥ d(BJ+L+1) ≥
ε(1)
C

d(Rη′). (5.6)

Also, there exists Rη′k′ ⊂ BJ+L+1 for some letter k′. Now, by construction, Rη′ ⊂ Rαb0b1 .
Hence, N ′ − 1 ≥ Q + l(b0) + l(b1). Define qJ+L+1 = N ′ −Q.

Sublemma 5.6. l(b0) + l(b1) < qJ+L+1 ≤ Q.

Proof. Assume that qJ+L+1 ≥ Q + 1. We have

d(Rη′) ≤ E(qJ+L+1 − 1)Cd(Rα) ≤ E(Q)Cd(Rα).

Let Rβ ∈ G(Q) such that E(Q) = d(Rβ)
d(Rβ0

) . Since d(Rβ0) ≥ rd(Rmax) and (2.13) holds, d(Rη′) ≤
δT λ−Q

rd(Rmax)Cd(Rα).
Hence, by (5.5) and (5.6),

m ≤ 4C4δT λ−Q

ε(1)ε(2s)ε(7s + 2)rd(Rmax)

≤ 4C4δT λ−P

ε(1)ε(2s)ε(7s + 2)rd(Rmax)
λ−Q/2 <

rε(1)
2C2

λ−Q/2,

a contradiction of (5.3). �

Consequently, by Lemma 3.1, no match of γ(Q) with any valid string beginning with αb0b1

in Σ(Q + qJ+L+1) exists.
Now, by construction, BJ+L+1 contains an element (i.e. Rη′k′ of G(Q + qJ+L+1)) whose

string begins with αb0b1. Let α′ := η′k′. Thus,

Rα′ ∈ HqJ+L+1 .

By Lemma 3.1, there exist strings b′0 and b′1, each of length at most s, such that for any
valid choice of letters β′0, · · · , β′k, where l(b′0) + l(b′1) + k + 1 ≤ Q, no match of γ(Q) with
α′b′0b′1β′0 · · ·β′k exists. Thus,

d(Rη′) ≥ d(Rα′b′0b′1) ≥
ε(7s + 2)

C
d(Rη′)

by Lemma 2.2.
As before, White chooses WJ+L+1 ⊂ Rα′b′0b′1 . Continue thus by induction.
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Therefore, we obtain

∩∞p=J+L+1Wp ∈ ∩∞p=J+L+1(∪HPp
j=J+L+1 qj

(Q)). (5.7)

The latter set is a set of points whose forward orbits avoid IntRγ(Q).
Denote

Aγ := ∪∞Q=2P+2 ∩∞p=J+L+1 (∪HPp
j=J+L+1 qj

(Q)).

By (5.7), Aγ is (n, m)-winning for all 0 < m < 1.
If γ is the unique representation of x0, then, by Lemma 2.5, x0 ∈ IntRγ(Q) for all Q ∈ N∪{0}.

Hence, Aγ is the set of points whose forward orbits avoid a neighborhood of x0. Thus, we are
done for x0 in this case.

If γ1, · · · , γr0 are representations of x0 for r0 > 1, then A := ∩r0
t=1Aγt is n-winning. The set

of boundary points is the countable union of finite sets and hence countable (for M = S1).
Thus, A\∂ is n-winning.

Let x ∈ A\∂. Then there exist some Q1, · · · , Qr0 such that

O+
T (x) ∩ IntRγt(Qt) = ∅.

Let Q := max(Qt). By Lemma 2.6, there exists an open neighborhood U of x0 such that
U ⊂ ∪r0

t=1IntRγt(Q) ∪ ∂.
If there exists q ≥ 0 such that T q(x) ∈ ∂, then, by Lemma 2.4, x ∈ ∂, a contradiction.

Thus, O+
T (x) ∩ ∂ = ∅. Hence, O+

T (x) ∩ U = ∅. Thus, A\∂ is a set of points whose forward
orbits avoid an open neighborhood of x0. �

We have the following corollary. Let {Tn}N
n=1 be any finite set of C2-expanding self-maps of

S1. For each map, choose, via Lemma 5.1, a Markov partition with small diameter with only
intervals as elements. Let sn be the number of elements of the nth Markov partition. Let εn be
the lower constant of bounded distortion for the nth Markov partition. Let Cn be the constant
(from Theorem 2.1) for the nth Markov partition. Let α = min( ε1(7s1+2)

2C1
, · · · , εN (7sN+2)

2CN
) > 0.

Corollary 5.7. For each n, choose a (at most) countably infinite set {xn
i }∞i=1 ⊂ S1. Then

N⋂
n=1

∞⋂
i=1

FTn(xn
i ) (5.8)

is α-winning.

Question 1. Is FT (x0) α-winning for some α independent of the choice of Markov partition
and of T itself (such as α = 1/2 for example)?

6. Conclusion

In this note, we have presented a way of proving Theorem 1.3 using elementary methods of
Markov partitions. As mentioned, A. G. Abercrombie and R. Nair have another method using
higher dimensional nets and Kolmogorov’s consistency theorem [1]. In addition to our result,
their method also gives a lower bound for the Hausdorff dimension of the set of points whose
forward orbits miss balls (of a radius which one can choose, subject to certain constraints)
around the points x1, · · · , xp. Instead of constructing good strings as we do, they construct a
certain Borel measure on the set of points whose forward orbits miss the desired balls. This
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measure encapsulates the iterations of T and is zero on the strings which come too close to
hitting the balls to be avoided. Thus, they are freed from considering matching.

Our method, on the other hand, is concerned with matching. In particular, the use of the
No Matching lemma requires manipulation and coordination of elements of certain generations
of the Markov partition, which the author only knows how to do when the points being missed
are contained in these elements. If one would like to show a result concerning missing balls
around points, then one must be able to manipulate and coordinate elements adjacent to the
elements which contain the points being missed. This requirement is most clearly seen when
one wishes to miss an interior point, as how close the point is to the boundary of the element
(of the requisite generation of the Markov partition) determines how large a ball around this
point our method allows us to miss. This sort of variation does not seem to allow us to give,
without further modifications to our method, a lower bound like Abercrombie and Nair’s.

However, our elementary method is very geometric since we handle elements of generations
of the Markov partition directly. It is this geometric nature that allows us to generalize, in
dimension one, Theorem 1.3 and Abercrombie and Nair’s result to winning sets. Doing so
has allowed us to obtain a considerable strengthening: the countable intersection property.
With this property, we can generalize to finitely many maps and countably many points,
as precisely stated in Corollary 5.7. (If we can answer Question 1 affirmatively, then we
can generalize to countably many maps.) Can we also generalize to winning sets for higher
dimensional manifolds, and can we prove a similar result for Anosov diffeomorphisms? Only
starting with Subsection 5.2 did we specialize to dimension one. Much of the theory works
for higher dimensions. How much will work and with what modifications?
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