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Abstract

This thesis focuses on two key aspects of light-matter interactions: absorption and

spatial dispersion, both of which are described on a macroscopic scale by the electromag-

netic susceptibility.

The first part of this thesis contains an investigation into the microscopic origin of

absorption in dielectric models, providing a detailed calculation for a long-held assump-

tion of the Hopfield model that has formed the basis of many key works on the subject.

While previous work has either focused on the quantum regime or used phenomenological

methods which lack a clear relationship to the underlying physics, the microscopic model

and calculations presented here are purely classical in nature, matching Hopfields initial

proposal. A discrete model of a dielectric is developed, containing nonlinear interaction

terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found

to act as a pseudo-reservoir, leading to broadband absorption of electromagnetic radia-

tion that naturally emerges from the model, without the need to add damping terms to the

dynamics. The effective linear susceptibility is calculated using a perturbative iteration

method and is found to match the form of a model that is widely used for real dielectrics.

The second half of the thesis presents a series of modifications to the Halevi-Fuchs

susceptibility model, which is used to calculate the electromagnetic reflection and trans-

mission coefficients of a spatially-dispersive half-infinite medium. The initial model,

valid only for an idealized single-resonance scalar susceptibility with a specific wave

vector dependence, is extended to include many more of the susceptibility features found

in real materials, including unequal transverse and longitudinal components, multiple res-

onances, anisotropy and alternate wave vector dependences. In each case, the effect of

the boundary is characterized by a set of phenomenological reflection coefficients for the

polarization waves in the medium, with specific values corresponding to various addi-

tional boundary conditions for Maxwell’s equations. The exact expressions derived for

the electromagnetic reflection and transmission coefficients can be used in the calculation

of a range of physical phenomena near the boundary of the medium. This thesis consid-

ers the spectral energy density of thermal and zero-point radiation outside the medium,

with the key result that the inclusion of spatial dispersion naturally removes an unphysical

divergence associated with the use of a spatially local susceptibility model.
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(middle) and ẑ (bottom) using the Agarwal et al. ABC. The vertical line

indicates the position of ~ωT . Contains the results for the incident angles

θi = 20◦ (red), 30◦ (orange), 40◦ (yellow), 50◦ (green), 60◦ (cyan), 70◦

(blue) and 80◦ (pruple). The effects of linear splitting are the strongest in
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Chapter 1

Introduction

The physics behind light-matter interactions are incredibly rich and diverse, with count-

less interactions and mechanisms at the microscopic level. However, at the macroscopic

level this vast range of behaviour is encapsulated by the comparatively straightforward

dielectric functions [1]. In particular, a simple model for the susceptibility can accurately

describe the response of a material to an electromagnetic field without reference to the

complex underlying physics. This thesis focuses on two important components of the

electromagnetic susceptibility.

The first part provides a detailed calculation for a long-held assumption regarding the

microscopic origin of absorption in dielectric models [2] that has formed the basis of a

key piece of work on the subject [3]. Doing so provides a much-needed link between a

successful, but unrealistic, phenomenological model and the microscopic behaviour of a

real material.

The second part focuses on the effect of spatial dispersion near a planar boundary.

While spatial dispersion is often overlooked when compared to temporal dispersion, there

are many cases where it is essential to accurately describe the behaviour of a system.

An existing derivation for reflection and transmission valid only for a simple, idealized

medium [4] is extended to account for many more of the features that are present in

real-world materials. The inclusion of spatial dispersion in this calculation has wider im-

plications for a range of other physical quantities, including the spectral energy density of

thermal and zero-point radiation [5], which is discussed in depth for a variety of materials.
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1.1. Absorption

1.1 Absorption

Temporal nonlocality, characterized by the frequency dependence of the dielectric func-

tions, is central in describing the electromagnetic response of macroscopic materials. Ab-

sorption is a key feature of this and is characterized by the imaginary part of the sus-

ceptibility. Due to the Kramers-Kronig relations [6,7] (a result of the causal nature of the

electromagnetic response) absorption is therefore always present, but most important near

resonant frequencies of the medium. A simple textbook derivation [1] that treats electrons

in a sparse medium as damped harmonic oscillators leads to a susceptibility model that

can provide an excellent fit for real materials and belies the complexity of the underlying

microscopic physics. However, such an approach becomes difficult to justify [2] when

one requires the absorption (or damping) to emerge from the model directly. Instead, it is

typically added “by hand” at some point during calculations.

In 1958 Hopfield studied the effective description of light-matter interactions by a sus-

ceptibility [2]. He found that a simple model with linear coupling to the electromagnetic

field absorbed light only at specific frequencies. He argued this was a result of the linear

interaction terms, which lead to coupling between single modes of the medium and light.

In terms of second-order perturbation theory [8], there was an insufficient density of final

states for real transitions to occur between the excitations of the electromagnetic field and

the medium. Instead, energy simply oscillated back and forth between the two.

To provide the coupling between a single mode and a continuum of modes required for

real transitions, Hopfield suggested nonlinear interactions [2]. Each mode of the medium

that interacted with light would also be nonlinearly coupled to the modes that were not

directly coupled to the electromagnetic field. In his specific model, he proposed a polar-

ization field nonlinearly coupled to lattice vibrations, where the energy absorbed from the

electromagnetic field would be stored.

Hopfield subsequently assumed that such a model would be sufficient to provide

broadband absorption, but gave no supporting calculations in his paper. Other authors

continued his work, with the approaches broadly split into two groups. The first followed

Hopfields approach in a quantum setting [9–13]. While this has been successful, a full

quantum analysis remains challenging and part of the appeal of Hopfield’s proposal is that

it can be carried out classically.

The second took a phenomenological approach to introducing coupling to a continuum

of modes. In 1992, Huttner and Barnett [3] modified Hopfield’s model by linearly cou-

pling a polarization field to a reservoir - a field of harmonic oscillators of every frequency.
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1.2. Spatial dispersion

Each mode of the polarization field was coupled to a continuum of reservoir modes, de-

fined by the frequency of the oscillator. Absorption was found to emerge from the model

without sacrificing the relative simplicity of linear coupling. This paper has proved hugely

influential and has subsequently been improved upon to include more dielectric features

such as inhomogeneity [14, 15], anisotropy [16] and magnetic response [17–20]. Some

authors have taken this a step further by removing the polarization field entirely, after

noting that only the reservoir was required for absorption [21, 22]. Each of the electro-

magnetic modes were directly coupled to a continuum, with the resulting susceptibility

expressed in terms of the interaction function.

The continuum reservoir has proved an invaluable tool not just in macroscopic elec-

tromagnetism, but in other systems with dissipation or absorption, by providing a way to

incorporate such behaviour directly in the model, without the need to add it “by hand”.

A prominent example of this is writing a time-independent Lagrangian for the damped

harmonic oscillator [23], where previous attempts [24] had either failed or imposed strict

conditions on the model that were unlikely to be satisfied by real materials.

Despite its success, the reservoir remains an abstract mathematical tool that is simply

added to a model in order to account for the absorbed energy without a clear relationship

to the underlying microscopic model and physics of the system. The first half of this the-

sis [25] returns to the proposal made by Hopfield [2], to verify his claim that an intuitive

classical model leads to a susceptibility with broadband absorption that can be described

by a simple resonance model. In doing so, the microscopic physics that allow the phe-

nomenological reservoir to provide such an accurate description of the electromagnetic

response of a medium are clarified.

1.2 Spatial dispersion

The electromagnetic response of a medium is nonlocal both in space and time. Known

as spatial dispersion, spatial non-locality is characterized by the wave vector dependence

of the dielectric functions [26, 27]. While the circumstances where temporal dispersion

can be ignored are limited, spatial dispersion is often overlooked. Nevertheless there are

circumstances where spatially nonlocal behaviour is required for an accurate description

of the system, such as metallic nanoparticles and metamaterials [28–32].

One of the key differences between local and nonlocal media is the existence of addi-

tional solutions to the dispersion relation - waves with the same frequency, but different
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1.2. Spatial dispersion

wave vectors [27]. The resulting complications introduced to the calculation of elec-

tromagnetic reflection and transmission coefficients are well-known. While an incident

monochromatic wave results in a single transmitted wave in a local medium, the presence

of spatial dispersion can lead to several transmitted waves that satisfy the dispersion re-

lation in a nonlocal medium [27]. The information provided by the Maxwell boundary

conditions that gives the Fresnel coefficients in the local case [1] is insufficient to solve

for the unknown amplitudes of the transmitted waves.

The need for extra information was historically resolved with the introduction of ad-

ditional boundary conditions (ABCs) on the polarization field of the media [33–56]. The

first of these was proposed by Pekar [53–56], based upon microscopic considerations of

a system of Frenkel (tight-binding) excitons [57, 58], and specified that that polarization

field must vanish at the boundary. While the Pekar ABC remains the most popular choice

due to its simplicity, subsequent authors [33–52] have proposed alternative ABCs under

certain assumptions that suit different types of material.

In 1984, Halevi and Fuchs collected all of these approaches into a single, generalized

ABC model and derived the corresponding electromagnetic reflection coefficients [4].

While uniting the work of previous authors into a single formalism had many advantages,

it was somewhat limited in its application to real materials. The model is valid only for

single, isolated resonances in a scalar susceptibility with a specific wave vector depen-

dence. While systems such as this do occur, it represents a small fraction of those found

in nature [59, 60].

The second half of this thesis starts by extending the Halevi and Fuchs generalized

ABC model to include many more of the features found in real materials [61,62], includ-

ing tensor susceptibilities [26], multiple or degenerate resonances [63] and alternative

wave vector dependences [64–66]. While some of these cases have been individually

studied by previous authors [67–73], they were typically for a specific ABC, and have

greatly different formalisms that make direct comparisons challenging. The derivation

presented in this thesis can include all of the above behaviour in a single model.

The inclusion of spatial dispersion in the derivation of the electromagnetic reflection

and transmission coefficients has far-reaching consequences on other phenomena near

the surface of a nonlocal medium. The modifications to the Green function of the elec-

tromagnetic field have significant effects on many calculations, including spontaneous

emission [22,74–77], radiative heat transfer [78,79], Casimir forces [22,80] and the spec-

tral energy density of thermal and zero-point radiation [5]. The final part of this thesis
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focuses on the last of these, where it is known that a local model of the medium leads

to an unphysical divergence near the boundary. This is caused by evanescent electro-

magnetic waves with arbitrarily large wave vectors parallel to the surface of the medium.

While this problem has previously been resolved by introducing an artificial wave vector

cut-off to calculations [81, 82], the inclusion of spatial dispersion will be shown to natu-

rally remove the unphysical divergence from the spectral energy density at the boundary

of a half-infinite medium [61, 62].

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 contains the background theory required

for the remaining chapters. The first part describes the various properties of the elec-

tric susceptibility. The second part describes the various historic approaches to solve the

challenge of absorption or dispersive behaviour emerging directly from a model. The

third part focuses on the calculation of electromagnetic reflection and transmission coeffi-

cients, describing both the problems caused by the inclusion of spatial dispersion and the

corresponding solutions in the form of additional boundary conditions (ABCs).

In chapter 3 the calculation behind a long-held assumption made by Hopfield is per-

formed, showing that nonlinear interactions lead to a complex susceptibility in a simple

classical model. The frequency and wave vector dependence of a simple one-dimensional

model are calculated and compared to the widely-used Lorentz susceptibility model.

Chapter 4 sets the groundwork for subsequent chapters by verifying certain unsup-

ported assumptions made in the derivation of both a specific ABC and the Halevi-Fuchs

generalized ABC model. Chapters 5-7 extend the Halevi-Fuchs model to include many

more of the features found in real materials. Chapter 5 considers the often overlooked ten-

sor form of the susceptibility in an isotropic, nonlocal medium and chapter 6 replaces the

single-resonance susceptibility used by Halevi and Fuchs with a multi-resonance model.

Finally, chapter 7 considers uniaxial crystals, modifying the Halevi-Fuchs model to in-

clude both anisotropy and an alternate wave vector dependence. In each case, the sub-

sequent effects on the spectral energy density are discussed, noting the differences to the

result of both the local model and the original Halevi-Fuchs model.
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Chapter 2

Background Theory

The central theme of this thesis is the electric susceptibility, which describes the macro-

scopic response of a material to an applied electromagnetic field. Section 2.1 discusses the

various properties of the susceptibility, starting with the nonlocal behaviour in both space

and time. The behaviour of light in a medium is described first for the susceptibility in

general, before considering the specific case of the Lorentz model, which is widely used

to describe a medium in terms of damped harmonic oscillators. The chapter then moves

on to discuss the two key features of the susceptibility that are studied in this thesis.

Section 2.2 focuses on absorption in dielectrics, which is characterized by the imagi-

nary part of the susceptibility. The origin of this term is discussed and a simple model [2]

is used to demonstrate the difficulty in absorption naturally emerging from a model. The

various phenomenological solutions to this problem are discussed, including the contin-

uum reservoir [3], highlighting the point that they are abstract mathematical tools without

a clear connection to the microscopic behaviour of the material.

Section 2.3 considers the effect of spatial dispersion in the susceptibility of a half-

infinite medium, discussing the difficulties that nonlocal behaviour introduces to the cal-

culation of electromagnetic reflection and transmission coefficients. The various historic

solutions to these problems are described, culminating in a generalized model for a half-

infinite, spatially dispersive medium [4]. The limitations of the model are highlighted

and the potential improvements are identified. Finally, the inclusion of spatial dispersion

in the calculation of the electromagnetic reflection coefficients has a knock-on effect on

a range of other physical phenomena. The specific case of the electromagnetic energy

density is discussed, where a local model leads to a well-known unphysical divergence at

the boundary of the medium [5].
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2.1. The electric susceptibility

2.1 The electric susceptibility

At the microscopic scale, an external electromagnetic field exerts a force on the electrons

and nuclei of atoms in a material. Providing an exact solution for a large system of

interacting charges and currents is impossible due to the sheer number and complexity

of the equations involved. Despite this, the interaction between light and matter at the

macroscopic level is encapsulated by the comparatively simple dielectric functions.

The focus of this thesis is the electric susceptibility, which describes the relation be-

tween an applied electric field E and the induced polarization field P of a medium. It

must be stressed that in this context, both of these quantities are macroscopic averages [1].

For example, P (r, t) is the average value of the various atomic and molecular dipole mo-

ments in a region that is large in comparison to the atomic or lattice dimensions surround-

ing r at time t. For this reason, the macroscopic dielectric functions are not valid down

to atomic scales.

2.1.1 Temporal nonlocality

The response of a medium to an applied field is not instantaneous. For any given point in

a medium, the induced polarization field at any time depends on the history of the electric

field. This relationship is therefore nonlocal in time and described by [1] :

Pi(r, t) = ε0

∫ t

−∞
dt′

∑
j=x,y,z

χij(r, t− t′)Ej(r, t′), (2.1)

where ε0 is the permittivity of free space and the electric susceptibility χij is, in general,

a tensor of rank two. It is convenient to perform a Fourier transformation on Eq. (2.1)

using (1):

Pi(r, ω) = ε0

∑
j

χij(r, ω)Ej(r, ω). (2.2)

The dependence of the susceptibility on the frequency ω is known as temporal dispersion,

or just simply dispersion.

Almost all crystals are anisotropic at the microscopic level. If χij is symmetric, the

correct choice of co-ordinates can bring the susceptibility to diagonal form [26] , with a

component for each principal direction in the crystal. Those with three (biaxial crystals)

or two (uniaxial crystals) unique χij components must be described by a tensor suscepti-

bility. Cubic crystals, with three identical components of the diagonalized susceptibility,

are no different from isotropic bodies and can be described by the scalar susceptibility.
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2.1. The electric susceptibility

2.1.2 Spatial nonlocality

The assumption made so far, that P only depends on E at the same point in space, is

not always valid. In general, it also depends on the field in the surrounding region [26].

The material response to an electromagnetic field is therefore nonlocal in both time and

space. Subsequent references to local or non-local will therefore refer to spatial locality

or nonlocality.

Rudkadze and Silin [27] provide an excellent overview of electrodynamics in nonlocal

media and several of their key points are repeated here. With the inclusion of spatial

nonlocality, the induced polarization now takes the form:

Pi(r, t) = ε0

∫ t

−∞
dt′
∫
d3r′

∑
j

χij(r, r
′, t− t′)Ej(r′, t′). (2.3)

In a homogeneous, isotropic medium the susceptibility depends only on the difference

|r−r′|. In this case, a Fourier transformation of (2.3) can be made both in space and time

using (1) and (2) to give:

Pi(k, ω) = ε0

∑
j

χij(k, ω)Ej(k, ω). (2.4)

The dependence of the susceptibility on the wave vector k is known as spatial dispersion.

With the inclusion of spatial dispersion, the electric susceptibility can be described by

a tensor, even in an isotropic medium, as a distinctive direction is generated by the wave

vector k. In a homogeneous, isotropic, non-gyroscopic (i.e. it has a centre of symmetry)

medium [26]:

χij(k, ω) = δijχ⊥(k, ω) +
kikj
k2

[
χ‖(k, ω)− χ⊥(k, ω)

]
, (2.5)

where χ⊥ and χ‖ are the transverse and longitudinal susceptibilities, which apply to the

components of the fieldE perpendicular and parallel to k respectively. This general form

has frequently been overlooked in the past, with many authors simply setting χ⊥ = χ‖ to

return to a scalar susceptibility.

The importance of spatial dispersion in the dielectric depends on the medium in ques-

tion. In conducting media, the motion of free charge carriers may lead to nonlocal be-

haviour at large distances. If the length scales |r − r′| where χij is nonzero are large in

comparison to the wavelength of light in the medium, spatial dispersion will affect the

behaviour of the macroscopic fields [26].
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In contrast, the nonlocal susceptibility in most dielectrics rapidly decreases for dis-

tances |r− r′| that are large in comparison to the lattice dimensions. Because the macro-

scopic fields are averaged over volume elements much larger than atomic scales, the local

susceptibility can often provide an adequate approximation of the system [26]. As a

result, spatial dispersion is often overlooked in calculations in favour of temporal disper-

sion. However, there are some circumstances where nonlocal behaviour must be included

for accurate results. The second half of this thesis looks at one such case – the calcula-

tion of the electromagnetic reflection and transmission coefficients at planar boundaries.

The small changes to the susceptibility are shown to have large consequences, leading to

drastically different behaviour compared to the local model.

2.1.3 Properties of the electric susceptibility

The electric susceptibility is subject to a number of constraints [1]. AsP (r, t) andE(r, t)

are both real vector fields, χij(r, t) must also be real. This imposes certain symmetry

conditions on the complex Fourier transformation of the susceptibility in (2.4):

χ∗ij(k, ω) = χij(−k,−ω). (2.6)

Futhermore, if the system exhibits time-reversal symmetry then

χij(k, ω) = χji(−k, ω). (2.7)

The tensor susceptibility in (2.5) satisfies both of these conditions. In each of the limits

ω → ∞ and k → ∞, the susceptibility must tend to zero, as the field varies either too

rapidly or at scales too small for the medium to respond. In the k → 0 limit, the tensor

susceptibility (2.5) should tend to χ(ω)δij , which does not depend on the direction of k.

This implies that:

χ⊥(0, ω) = χ‖(0, ω) = χ(ω), (2.8)

which will be important when defining expressions for χ⊥/‖.

The casual nature of (2.3) means that χij(k, ω) is analytic in the upper half ω plane.

The real and imaginary components of the susceptibility are therefore connected by the

Kramers-Kronig relations [6, 7] for every value of k:

Re
[
χ⊥/‖(k, ω)

]
=

2

π

∫ ω

0

dω′
ω′ Im

[
χ⊥/‖(k, ω

′)
]

ω′2 − ω2
,

Im
[
χ⊥/‖(k, ω)

]
=− 2ω

π

∫ ω

0

dω′
Re
[
χ⊥/‖(k, ω

′)
]

ω′2 − ω2
. (2.9)
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2.1. The electric susceptibility

A key consequence of this is that Im [χ(k, ω)], which describes the absorption of light

by the medium, is present at all frequencies inside a medium. While this component

may be considered small enough to ignore in some regimes, it is most important near the

resonant frequencies of a material. The physical origin of this imaginary term, and how

it emerges from the choice of dielectric model, is the focus of the first half of this thesis

and is discussed in greater depth in section 2.2.

A similar function, the magnetic susceptibility, describes the relationship between an

applied magnetic field H and the induced magnetization of a medium M . While this

thesis only deals with non-magnetic materials, the inclusion of spatial dispersion leads

an interesting relationship between the dielectric functions. As the electric and magnetic

fields are directly related by Maxwell’s equations, there is some ambiguity between the

electric and magnetic susceptibilities. Indeed, it has been shown [27] that the two tensor

susceptibilities cannot be independent and that the expression in (2.4) is also completely

equivalent to a scalar electric and magnetic susceptibility. In the absence of spatial dis-

persion, the local nature of the P response toE imposes the separation of the electric and

magnetic susceptibilities, but this is not unique in general. It is therefore convenient to set

M and the magnetic susceptibility to zero to simplify calculations.

2.1.4 The electromagnetic wave equation

In a medium, the macroscopic fields E andH must obey Maxwell’s equations [1] :

∇ ·D =ρf , ∇ ·B =0,

∇×E =− ∂tB, ∇×H =Jf + ∂tD. (2.10)

Throughout this thesis, the free charge ρf and free current Jf densities are taken to equal

zero. The displacement field D is defined in terms of the electric field E and the polar-

ization field P of the medium:

D(r, t) =ε0E(r, t) + P (r, t). (2.11)

A similar expression relates H to the magnetic induction B and the induced magneti-

zation of the medium M . As previously stated, this work only considers non-magnetic

media where the magnetic susceptibility is set to zero. As a result:

H(r, t) =
1

µ0

B(r, t), (2.12)
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2.1. The electric susceptibility

where µ0 is the permeability of free space and µ0ε0 = 1/c2.

A wave equation can be derived by combining Maxwell’s equations. This must be

obeyed by the electromagnetic field at every point in space and plays a central role

throughout each subsequent chapter. After a Fourier transform in time using (1), it can be

expressed in terms of E and P :

∇×∇×E(r, ω)− ω2

c2
E(r, ω) =

ω2

c2

1

ε0

P (r, ω). (2.13)

As described in section 2.1.1 and 2.1.2, P can be expressed in terms of the electric field,

leaving an equation solely in terms of E. After another Fourier transform in r, the wave

equation in an unbounded, homogeneous medium is

k × k ×E(k, ω) +
(ω
c

)2 [
1 + χ(k, ω)

]
E(k, ω) = 0 (2.14)

in the linear regime. Nonlinear susceptibility terms would lead to higher powers of E.

The wave equation (2.14) has solutions for E when the frequency and wave vector

satisfy the dispersion relation. For an arbitrary tensor susceptibility, one must solve the

equation [27] ∣∣k2δij − kikj − (ω/c)2 [δij + χij(k, ω)]
∣∣ = 0, (2.15)

where the vector identity

k × k ×E(k, ω) = k [k ·E(k, ω)]− k2E(k, ω) (2.16)

has been used. However, for the general form of the nonlocal susceptibility in (2.5) de-

scribing a homogeneous, isotropic, non-gyroscopic medium, (2.16) reduces to two sim-

pler equations. The first is for transverse waves with k ·E = 0, which must satisfy:

k2
0 [1 + χ⊥(k, ω)] = k2, (2.17)

where k0 = ω/c. The electric and magnetic fields of transverse waves are perpendicular

to both each other and the wave vector, as shown in Fig. 2.1. In a local medium there

is only one solution (k = k0

√
1 + χ(ω)) to the dispersion relation for a given ω. In a

nonlocal medium, the k dependence of χ leads to the possibility of additional solutions

to (2.17). The presence of multiple waves inside a medium with the same frequency but

different k is key result of spatial dispersion.
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Figure 2.1: Comparison between transverse and longitudinal waves in an

isotropic medium. The longitudinal wave has no magnetic field.

The second dispersion relation is for longitudinal waves, with k×E = 0. These must

satisfy:

1 + χ‖(k, ω) = 0. (2.18)

As the electric field is parallel to the wave vector, Maxwell’s equations mean that these

waves have no associated magnetic field. These waves are less well-known in comparison

to their transverse counterparts and are sometimes overlooked in calculations. In a local

medium, longitudinal waves have zero group velocity and therefore do not carry energy.

It is only when spatial dispersion is included that the frequency depends on k and energy

propagates through the medium.

As with (2.17), there is a possibility for multiple solutions to the longitudinal disper-

sion relation (2.18). The presence of these additional transverse and longitudinal waves

leads to difficulties in the calculations of physical phenomena. These problems, and their

various historic solutions, form the basis of the second half of this thesis and are discussed

in greater depth in section 2.3.
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2.1.5 The Lorentz model

Everything up to this point has been in terms of a generic linear susceptibility. This sec-

tion considers the specific case of the Lorentz model, which is widely used to describe the

electromagnetic response of dielectrics. The fitting and optimisation of Lorentz model

parameters to experimental data is an ongoing area of research, with continuous improve-

ments being made to provide a closer fit to observations [83, 84]. Given its widespread

usage, the benefits of improving calculations involving the Lorentz model are readily ap-

parent.

The Lorentz model was derived by treating the electrons in a dielectric as damped

oscillators that are harmonically bound to their parent nuclei. When subject to an applied

electric field, the resulting displacement between electrons and nuclei leads to an electric

dipole moment for each atom. Collectively, these correspond to the macroscopic polar-

ization field, from which an electric susceptibility for the medium can be found. While

the derivation is valid only for rarefied material, the resulting expression has proven to

be equally applicable to dense materials such as crystals [85]. This treatment of a di-

electric as a lattice of electric dipoles that respond to an applied electromagnetic field is

widespread [2] and will be used throughout this thesis.

The general expression for the local Lorentz model is given by:

χ(ω) = χ0 +
M∑
m=1

ω2
pm

ω2
Tm − ω2 − iγmω

, (2.19)

where ωT is the resonant frequency of a transition in the medium, γ quantifies the absorp-

tion (or damping) and ωp describes the strength of the resonance. The term χ0 collects

the contributions from other resonances not explicitly included in the model, and acts as a

background susceptibility. While a more complete model would dispense with this term

by including additional resonance terms, it is often sufficient to treat it as a constant. In

general, the expression in (2.19) can also be used to describe the response of free electrons

in a metal. Setting the resonant frequency, which corresponds to the binding force of the

electrons, equal to zero gives the Drude model of the susceptibility.

The Lorentz model is analytic in the upper half-plane of complex ω and therefore

obeys the Kramers-Kronig relations in section 2.1.3. Figure 2.2 compares the real and

imaginary components of the susceptibility as a function of frequency. While the imag-

inary component is present for all ω, it is most important in the vicinity of the resonant

frequency.
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2.1. The electric susceptibility

Figure 2.2: Comparison between the real (blue) and imaginary (red) parts of

a single resonance in the Lorentz model of ZnSe. Model parameters used are

χ0 = 8.1, ~ωT = 2.8eV, ~ωp = 0.208eV and ~γ = 2.8× 10−5eV.

Figure 2.3 shows the dispersion relations for transverse electric waves that satisfy

(2.17) in a medium described by a local single-resonance Lorentz model. In the absence

of damping, each resonance leads to an ω gap in the dispersion relation. While the lower

branch approaches the resonant frequency ωT as k → ∞, the upper branch minima are

given by ωL, which are the solutions of (2.17) at k = 0 in the absence of damping. In a

single-resonance susceptibility this is defined as:

ω2
L = ω2

T +
ω2
p

1 + χ0

. (2.20)

It is often ωL that is measured in experiments [60], with ωp calculated using (2.20). In the

presence of damping, k is complex-valued for all real ω, with the largest differences in

behaviour found in the bandgap region between ωT and ωL.
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Figure 2.3: Solutions (not to scale) of the transverse wave dispersion rela-

tion (2.17) (red solid lines) for purely real ω using a single-resonance Lorentz

model (2.19) with (centre, right) and without (left) the damping term γ. Note

that k solutions are complex when γ is present. The minimum value of the

upper branch in the undamped case at k = 0 is denoted ωL and defined in

(2.20). Dashed lines indicate the solutions to k2 = (ω/c)2(1 + χ0) (i.e. E in

the medium without the resonance) and ω = ωT .

In general, the parameters of the Lorentz model are also wave vector dependent. The

k-dependence of ωp does not introduce any significant differences to the local model

and the k-dependence of γ is typically small enough to be ignored [86] . However, the

presence of spatial dispersion in ωT (k) has several far-reaching consequences. These are

the focus of the second half of this thesis and are discussed in greater depth in section 2.3.

2.1.6 Excitons

Each resonance in the Lorentz model is associated with a transition in the medium with

frequency ωT (k). The nature of the k-dependence is determined by the physical param-

eters of the material and the type of transition. While this thesis focuses on excitonic

transitions, the calculations presented in subsequent chapters are not specific to them and

could be applied to other excitations, such as phonons.

When light is incident on a semiconductor or insulator, it can excite an electron in

the valence band to the conduction band. An exciton is a bound state between an excited

electron and a positively charged hole left behind in the valence band. First introduced in

39



2.1. The electric susceptibility

the tight-binding limit by Frenkel in 1931 [57, 58], and later in the weak-binding limit by

Wannier in 1937 [87], excitons are typically the lowest-energy excited states of insulating

media and often have energies in the visible spectrum of light. A full description of

excitons in crystals is beyond the scope of this thesis. Instead, the key results that will

be used in subsequent chapters are presented here. For detailed derivations the reader is

referred to the wealth of literature on the subject, in particular the work of Kane [59] and

the review of Hönerlage et al. [60].

The exciton dispersion relations are determined by the structure, symmetries and de-

generacies of the valence and conduction bands of a crystal [60]. When combined, these

can lead to a large number of interacting exciton bands, each with their own resonance in

the Lorentz model. In an ideal case of an isotropic medium with simple parabolic valence

and conduction bands, the dispersion relation of an exciton band is:

~ωT (k) = ~ωT +
~2k2

2mex

, (2.21)

wheremex = mel+mho is the mass of the exciton andmel/ho are electron and hole masses,

respectively. Real materials exhibit more complex behaviour than this idealized case. If

the valence band maximum is degenerate and there is a difference in hole masses, there

are “heavy” and “light” excitons, with masses mh and ml [59]. While the definition of

the exciton mass is slightly modified, the overall form of the dispersion relations remains

the same as (2.21) and are degenerate at k = 0:

~ω(h)
T (k) = ~ωT +

~2k2

2mh

, ~ω(l)
T (k) = ~ωT +

~2k2

2ml

. (2.22)

Anisotropy can lead to exciton dispersion relations with additional k terms compared

to (2.21). Uniaxial crystals, such as zincblende and wurtzite, are a notable example of this

behaviour [64–66, 71–73]. The symmetry of these systems can lead to two exciton bands

with a linear k term that are degenerate at k = 0:

~ω(±)
T (k) = ~ωT +

~2k2
⊥

2m⊥
+

~2k2
‖

2m‖
± ζk⊥. (2.23)

The inversion symmetry of the system is preserved with the inclusion of both + and −
bands. Due to the anisotropy of the crystal, a distinction must be made between the wave

vector components that are parallel or perpendicular to the crystal axis c, denoted with

the ⊥ / ‖ subscript.
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In each case, ωT (k) can be used to find an expression for the susceptibility. The

simplest case is that of the isolated exciton band of the form (2.21). Upon substitution

into the Lorentz model, only the k2 term in the denominator is retained, giving:

χ(k, ω) = χ0 +
ω2
p

(ω2
T +Dk2)− ω2 − iγω

, (2.24)

where the contributions from the other exciton band resonances have been collected into

χ0. The higher order k terms in the denominator are omitted as they are considered to be

small in comparison. By comparing (2.24) and (2.21) it can be seen that D = ~ωT/mex.

The examples presented here are but a small selection from the wide range of be-

haviour found in exciton dispersion relations. It is therefore apparent that a generalized

approach to calculations involving excitons is preferable, rather than treating every indi-

vidual case separately.
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2.2 Absorption in dielectrics

The widely used Lorentz susceptibility model (2.19) in section 2.1 was based on a sim-

ple argument treating a dielectric as a collection of polarizable particles described by a

damped harmonic oscillator. It has been used extensively to successfully describe the

electromagnetic response of a wide range of materials [85]. However, it becomes difficult

to justify such a treatment with a more realistic model of a dielectric. The root of these

problems lies in the damping term γ (responsible for broadband absorption) naturally

emerging from the model. It is well known that dissipative behaviour leads to difficulties

in general when writing a Lagrangian for such a system [2]. As a result, the damping term

is usually added “by hand” at a point during calculations.

2.2.1 The Hopfield model

This problem can be traced back to a 1958 paper by Hopfield [2], in which he studied the

relationship between a microscopic model of a polarizable medium interacting with the

electromagnetic field and the effective description of such a system by a susceptibility.

Hopfield’s microscopic model consisted of non-interacting excitons in a medium linearly

coupled to the photons of the electromagnetic field. This was compared to a classical

model of a dielectric, represented by an oscillating polarization density P linearly cou-

pled to the electromagnetic field. By quantizing the Lagrangians of the two systems and

comparing the resulting equations of motion, it was shown that the microscopic system

could be represented by an electromagnetic field linearly coupled to a quantized set of

classical polarization fields, with one for each exciton band that interacted with radiation.

Hopfield noticed a key problem with both of these models. For the sake of simplicity,

only the classical model is presented here. The Lagrangian density of the system is split

into three parts:

L =
1

2

[
ε0 (∂tA+ ∇ϕ)2 − 1

µ0

(∇×A)2

]
+

1

2ε0β

[
(∂tP )2 − ω2

0P
2
]

+ [ϕ(∇ · P ) +A · ∂tP ] , (2.25)

where the first line describes the electromagnetic field in terms of the vector (A) and

scalar (ϕ) potential , the second contains the polarization field and the final line contains

the linear coupling term between the two. Using the definitions E = −∇ϕ − ∂tA and
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2.2. Absorption in dielectrics

B = ∇ × A [1], the Euler-Lagrange equations of motion for (2.25) were found to be

equivalent to Maxwell’s equations in (2.10) and the additional relation:

∂2
tP (r, t) + ω2

0P (r, t) = ε0βE(r, t). (2.26)

After a Fourier transform in time, (2.26) can be rearranged to the form:

P (r, ω) = GP (r, ω)E(r, ω) = ε0
β

ω2
0 − (ω + i0+)2

E(r, ω), (2.27)

where Gp is the Green function of the polarization field and 0+ is an infinitesimally small

term used to account for the causal response of the system, shifting the pole into the lower

half plane of complex ω to satisfy the Kramers-Kronig relations. By comparing (2.27) to

the definition in (2.2), it can be seen that the electric susceptibility is directly analogous

to the Green function of the polarization field, describing the propagation of the field in

time. This treatment of the susceptibility as a Green function can be taken a step farther by

considering (2.24). Here, χ(k, ω) can be thought of as the Green function of the exciton,

describing its propagation through the crystal in both space and time. This concept will

be touched upon again in 2.3.4 and used throughout this thesis.

The electromagnetic response of the Hopfield model was therefore described by the

Lorentz susceptibility, but with the key omission of the damping term γ. By using the

identity:

1

ω2
0 − (ω + i0+)2

= P
1

ω2
0 − ω2

+
iπ

2ω
[δ(ω − ω0)− δ(ω + ω0)] , (2.28)

where P denotes the principle-valued part, it could be seen that absorption was only

present in the medium at the resonant frequency ω0. This is in direct contrast to the

broadband absorption found in real materials. Even the inclusion of an exciton-exciton

interaction term to the Lagrangian of the corresponding microscopic model did not solve

this problem.

Hopfield stated that the solution to this issue lay in the modes of the crystal that were

not directly coupled to light and had been omitted in his original model. This idea had

previously been proposed by other authors (see [88] for example), but Hopfield identified

the type of coupling as the critical component responsible for broadband absorption. The

linear interaction term in (2.25) leads to coupling between single modes of the EM field

and the medium due to wave vector conservation. This could be seen by performing

a spatial Fourier transform on (2.27), and seeing that P is coupled to E only for same

(k, ω) mode. In terms of second order perturbation theory, the photon→ exciton process
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2.2. Absorption in dielectrics

did not have a density of final states at energies other than ~ω0. As a result, no real

transitions occurred and energy simply oscillated back and forth between the field and the

medium. Broadband absorption therefore requires a process with an energy continuum of

final states, allowing real transitions for a range of frequencies.

There have been various approaches to including this behaviour into a dielectric model.

Hopfield proposed many-body interactions as a solution to this problem [2]. These pro-

vided a way to transfer energy between modes with different k while conserving the total

wave vector of the system. Furthermore, each process had an energy continuum of final

states, giving the possibility of real transitions if the energy of the initial state overlapped

this continuum. Energy was therefore not absorbed by states directly coupled to the elec-

tromagnetic field, but in the indirectly coupled crystal states. Hopfield suggested a range

of processes, highlighting the exciton→ exciton′ + phonon process in particular, which

he claimed would lead to an effective damping term to (2.27) when included in his model.

However, Hopfield states this result without providing any supporting calculations, in-

stead relying on a heuristic argument.

The inclusion of nonlinear interactions was recently considered in a paper that ex-

tended the Hopfield model to inhomogeneous media [89]. However, thier work focused

on the resulting nonlinear susceptibilty terms rather than the effect on the linear suscepti-

bility. Other authors have followed Hopfield’s suggestion in the quantum regime [9–13],

with excitons nonlinearly coupled to lattice phonons. While this interaction was found

to provide an effective damping term to the equations of motion, a full analysis in the

quantum setting is very challenging. Part of the appeal of Hopfield’s proposal is that it

can be carried out classically, much like the textbook derivations [1] of the macroscopic

Maxwell equations.

2.2.2 The phenomenological reservoir

An alternative solution to the problem of absorption has been to include coupling to a

continuum in a phenomenological manner. An example of this is the reservoir - a collec-

tion of harmonic oscillators of various frequencies representing the additional modes of a

medium into which the electromagnetic energy can dissipate. One of the more attractive

features of this approach is that linear coupling can be used between the reservoir and

the rest of the medium, which is comparatively simpler than the nonlinear coupling in

Hopfield’s proposal.

An early example of the reservoir can be seen in a paper by Fano [90]. He started
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2.2. Absorption in dielectrics

with a similar system to the Hopfield model, consisting of of harmonic oscillators with

resonant frequency ωn linearly coupled to a field. After encountering the same problem of

absorption, his solution was to couple each oscillator to an infinite number of additional

oscillators with ω2
nν = ω2

n + νδ, where ν runs from −∞ to∞. After approximating the

discrete spectrum of the reservoir as a continuum, Fano recovered a susceptibility similar

to the Lorentz model with a nonzero damping term γ and broadband absorption.

Despite the obvious differences to his proposal, Hopfield used this as a justification

for the introduction of a damping term via many-body interactions. Subsequent work

on discrete reservoirs [24] has shown that recovering the widely used damped harmonic

oscillator behaviour often requires a set of extremely contrived set of assumptions about

the reservoir. A set of restrictions must be placed on both the spacing of the reservoir

oscillator frequencies and the interaction strength with the rest of the model. In his paper,

Tatarskiı̌ highlighted the case where the ratio of each reservoir frequency must be a ratio-

nal number, and the coupling strength must lie on a Lorentzian resonant curve based on

the corresponding frequency.

The discrete reservoir is therefore of questionable use as a representation of the physics

in a real medium. Its role as a purely phenomenological description of absorption is fur-

ther reinforced by the wide range of materials that can accurately described by the Lorentz

model. It is unlikely that the highly specific reservoir conditions can be simultaneously

satisfied by such a broad range of materials.

In 1992, Huttner and Barnett [3] used a continuous reservoir coupled to the Hopfield

model, as shown in Fig. 2.4. Each mode of the polarization field was linearly coupled to

a continuum of reservoir modes of every frequency, which in turn provided the required

density of final states for absorption. The corresponding susceptibility expression was

given in terms of the frequency dependent coupling function between the polarization

field and the reservoir. While there were also restrictions on this coupling function, they

were not as strict as those of the discrete reservoir. This model has been subsequently

improved to incorporate features such as inhomogeneity [14, 15], spatial dispersion [16]

and magnetic response [17–20].

The continuum reservoir has proven to be a powerful tool in incorporating dissipative

behaviour in a Lagrangian, while retaining the relative simplicity of linear coupling in

calculations. It has been used to give a Lagrangian formalism of the Maxwell equations

for an arbitrary susceptibility, even when directly coupled to the electromagnetic field,

removing the need for the polarization field [21, 22] . More generally, it has been applied
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Figure 2.4: Comparison between the Hopfield model (left), with the proposed

addition of nonlinear coupling between the harmonic polarization field and lat-

tice vibrations, and the Huttner and Barnett model (right) with linear coupling

to a continuum reservoir. In both cases the polarization field acts an intermedi-

ate step in the absorption process. The continuum of modes indirectly coupled

to the electromagnetic field are responsible for the absorption of light.

to the damped harmonic oscillator [23] which formed the basis of the original Lorentz

model derivation.

Despite the success of the reservoir, it is a phenomenological solution to the problem

of absorption and remains an abstract mathematical tool without a detailed connection to

the microscopic physics of a dielectric. The first aim of this thesis is to return to Hopfield’s

proposal and verify his claim that many-body interactions are responsible for absorption

and lead to a damping term in the susceptibility. While this has been done before in the

quantum setting, this calculation in chapter 3 is purely classical and demonstrates that

quantum mechanical behaviour is not required for broadband absorption [25]. In doing

so, the relationship between the widely used reservoir and the underlying microscopic

model and physics of a real medium is clarified, showing that lattice vibrations can act as

a “pseudo-reservoir” for the medium.
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2.3. Reflection and transmission at planar boundaries

2.3 Reflection and transmission at planar boundaries

This section considers the behaviour of light at a planar interface between a vacuum and

a medium, where the inclusion of spatial dispersion leads to several difficulties in the

calculation of the electromagnetic reflection and transmission coefficients. These prob-

lems have historically been overcome through the use of additional boundary conditions

(ABCs) on the polarization field at the boundary. Of particular interest is a generalized

ABC model [4] that combines the work of several previous authors into a single formal-

ism. The results and limitations of this model are outlined and potential improvements

are identified to encompass many more of the features found in real materials. Finally,

the applications of such a model beyond the calculation of electromagnetic reflection and

transmission coefficients are described, highlighting the energy density of both the zero-

point and thermal radiation of the electromagnetic field.

2.3.1 The local medium interface

To understand the difficulties caused by spatial dispersion at the vacuum/nonlocal medium

interface, one must first consider the local medium. Figure 2.5 displays a schematic of a

system where monochromatic light in one medium is incident on a planar interface with

a second medium. The light is reflected back into the first medium and transmitted into

the second. While the incident medium is taken to be a vacuum, subsequent derivations

are also valid for a local medium with some slight changes.

The choice of co-ordinate system is made to simplify calculations. The plane of in-

cidence is aligned with the xz-plane and the plane of the surface is aligned with the

xy-plane. The wave vector of light is given by

k = Kx̂+ 0ŷ + qẑ, (2.29)

where only the ẑ component differs between waves.

The electric field must satisfy the wave equation (2.13) at all points in space. There are

two transverse wave solutions for a given ω and K in the z < 0 vacuum, corresponding

to the incident (E0) and reflected wave (Er):

q0 =
√
k2

0 −K2

qr = −
√
k2

0 −K2 (2.30)
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Figure 2.5: Schematic of reflection at the planar interface of a local medium.

The coordinate system is chosen such that the xz-plane coincides with the

plane of incidence and ky = 0. The z < 0 vacuum half-space contains the

incident wave E0 and the reflected wave Er, with the corresponding wave

vectors k0 and kr. The z > 0 local medium contains the single transmitted

wave E(1) with wave vector k1.

Similarly, there are two transverse wave solutions in the z > 0 local medium described

by χ(ω). The Im[q] < 0 result is discarded as it diverges as z → ∞, leaving a single

transmitted wave (E(1)) with

q1 =
√
k2

0[1 + χ(ω)]−K2, Im[q1] > 0. (2.31)

The overall electric field is given by:

E =

{(
E0e

iq0z +Ere
iqrz
)
eiKxe−iωt z < 0,(

E(1)eiq1z
)
eiKxe−iωt z > 0,

(2.32)

and the corresponding magnetic field is calculated using Maxwell’s equations in (2.10).

The relationships between the various wave amplitudes are described by the reflection

and transmission coefficients:

r =
Er
E0

, t(1) =
E(1)

E0

. (2.33)

These are found using the Maxwell boundary conditions [1], which impose the continuity

of transverse (x̂, ŷ) components of E and H and normal (ẑ) components of D and B

at the boundary. To simplify calculations, the electric field is split into two parts. The
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2.3. Reflection and transmission at planar boundaries

s-polarization contains components that are perpendicular to the plane of incidence (Ey),

while the p-polarization contains those that lie in the plane of incidence (Ex, Ez). These

are also known as TM (transverse magnetic) and TE (transverse electric) polarizations.

Each of these cases requires slightly different considerations in calculations.

The reflection coefficient for each polarization is expressed in terms of the surface

impedance of the two media [44]:

rs =
Zs(0

−)− Zs(0+)

Zs(0−) + Zs(0+)
(2.34)

rp =
Zp(0

−)− Zp(0+)

Zp(0−) + Zp(0+)
(2.35)

where 0± indicates the position either side of the z = 0 boundary. The surface impedances

Zs and Zp are given by [44]:

Zs = −Ey
Hx

=− 1

µ0

Ey
Bx

=
k0

µ0

iEy
∂zEy

, (2.36)

Zp =
Ex
Hy

=
1

µ0

Ex
By

=
k0

µ0

iEx
∂zEx − ∂xEz

, (2.37)

whereB has been expressed in terms ofE using the Maxwell equations (2.10) for a non-

magnetic material. The results for the system in Fig. 2.5 are found by substituting (2.32)

into (2.37) and (2.36). For the transverse waves in the z < 0 vacuum, these simplify to:

Zs(0
−) =

k0

µ0q0

=
k0

µ0

√
k2

0 −K2
, (2.38)

Zp(0
−) =

k0q0

µ0(q2
0 +K2)

=

√
k2

0 −K2

µ0k0

. (2.39)

Similarly, the single transverse wave in the z > 0 local medium gives:

Zs(0
+) =

k0

µ0q1

=
k0

µ0

√
k2

0[1 + χ(ω)]−K2
, (2.40)

Zp(0
+) =

k0q1

µ0(q2
1 +K2)

=

√
k2

0[1 + χ(ω)]−K2

µ0k0[1 + χ(ω)]
. (2.41)

Substituting (2.38-2.41) into (2.34-2.35) gives the familiar Fresnel coefficients [1]:

rs =

√
k2

0[1 + χ(ω)]−K2 −
√
k2

0 −K2√
k2

0[1 + χ(ω)]−K2 +
√
k2

0 −K2
, (2.42)

rp =
[1 + χ(ω)]

√
k2

0 −K2 −
√
k2

0[1 + χ(ω)]−K2

[1 + χ(ω)]
√
k2

0 −K2 +
√
k2

0[1 + χ(ω)]−K2
. (2.43)

49



2.3. Reflection and transmission at planar boundaries

Finally, by equating the transverse components of E at the boundary, the transmission

coefficients can be derived for the s-polarization:

E0 − Er = E(1)
y

ts = 1− rs (2.44)

and p-polarization:

E0x − Erx = E(1)
x

t(1)
p = (1− rp)

q0

√
q2

1 +K2

k0q1

(2.45)

The problem of reflection and transmission at the vacuum/local medium interface can

therefore be completely solved using only Maxwell’s boundary conditions.

2.3.2 The nonlocal medium interface

Replacing the local medium occupying the z > 0 half-space with a nonlocal medium

introduces difficulties to the derivation of the reflection and transmission coefficients.

As described in chapter 2.1.4, spatial dispersion can lead to additional solutions of the

electromagnetic dispersion relation for the bulk medium. In this section, the k-dependent

susceptibility in (2.24) is used as an example to highlight the problems in the calculation.

For the purposes of this calculation, the one-resonance Lorentz model is rewritten as:

χ(K, 0, q) = χ0 +
ω2
p/D

q2 − Γ2
, (2.46)

where

−Γ2 =
ω2
T − ω2 − iγω

D
+K2. (2.47)

For this bulk medium there are two Im[q] > 0 solutions of the transverse dispersion

relation: [
(1 + χ0) k2

0 −K2 − q2
] [

Γ2 − q2
]

= k2
0ω

2
p/D, (2.48)

for waves with E ⊥ k and one solution of the longitudinal dispersion relation:

[
Γ2 − q2

]
=

ω2
p/D

(1 + χ0)
, (2.49)
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Figure 2.6: Schematic of reflection at the planar interface of a nonlocal

medium. The coordinate system is chosen such that the xz-plane coincides

with the plane of incidence and ky = 0. The z < 0 vacuum half-space con-

tains the incident wave E0 and the reflected wave Er, with the corresponding

wave vectors k0 and kr. The z > 0 nonlocal medium contains two transverse

waves E(1) and E(2) and one longitudinal wave E(3), with the corresponding

wave vectors k1, k2 and k3.

for waves withE ‖ k, giving a total of three waves. AsEy = 0 for all longitudinal waves,

they do not contribute to s-polarization calculations.

In the half-infinite nonlocal medium, it is assumed that there are also three waves in

the z > 0 region:

E =

{ (
E0e

iq0z +Ere
iqrz
)
eiKxe−iωt z < 0,(

E(1)eiq1z +E(2)eiq2z +E(3)eiq3z
)
eiKxe−iωt z > 0,

(2.50)

whereE(1) andE(2) are transverse andE(3) is longitudinal. A schematic of the system is

shown in Fig. 2.6. The presence of the boundary breaks the translational invariance of the

system. The susceptibility is therefore spatially dependent, and while one would expect

some authors to also consider the qn values to be spatially dependent, only approaching

the solutions of (2.48) and (2.49) in the z → ∞ limit, most [33–56] considered them

equal to the bulk result at all points within the medium. The correct choice of ansatz for

the electric field is discussed in depth in chapter 4, but each case shares the same weakness

in calculating the reflection coefficient.
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If (2.50) is substituted into (2.36) or (2.37), the surface impedances of the nonlocal

medium are found:

Zs =
k0

µ0

E
(1)
y + E

(2)
y

q1E
(1)
y + q2E

(2)
y

=
k0

µ0

1 +
E

(2)
y

E
(1)
y

q1 + q2
E

(2)
y

E
(1)
y

, (2.51)

Zp =
k0

µ0

E
(1)
x + E

(2)
x + E

(3)
x

q2
1+K2

q1k0
E

(1)
x +

q2
2+K2

q2k0
E

(2)
x

=
k0

µ0

1 + E
(2)
x

E
(1)
x

+ E
(3)
x

E
(1)
x

q2
1+K2

q1k0
+

q2
2+K2

q2k0

E
(2)
x

E
(1)
x

, (2.52)

where E(n)
z has been rewritten in terms of E(n)

x using simple trigonometry. Note that E(3)

does not appear in (2.51), as it has no s-polarization component, or in the denominator of

(2.52) as longitudinal waves do not have an associated magnetic field.

Unlike the local medium derivation, the field amplitudes in (2.51) and (2.52) do not

cancel each other out, leaving a set of unknown field amplitude ratios. The Maxwell

boundary conditions are therefore insufficient to calculate the reflection coefficients of a

nonlocal medium. Extra information is required about the behaviour of the field inside

the medium at the boundary.

2.3.3 Additional boundary conditions

The need for extra information was historically resolved with the introduction of addi-

tional boundary conditions (ABCs) on the behaviour of P , the polarization field asso-

ciated with the resonance in the susceptibility. The exact nature of the ABC is usually

determined based on the type of nonlocal medium being studied. Typically, each of these

can be expressed in the general form [4]

αiPi(0+) + βi∂zPi(0+) = 0, (2.53)

where αi and βi may be frequency dependent.

The first and perhaps the most straightforward ABC was derived by Pekar [53–56]

in 1958. In his model, the resonance in the susceptibility of the form (2.46) was due to

Frenkel (tight-binding) excitons, typically found in molecular crystals. Considering only

nearest-neighbour interactions and the symmetry of the system lead him to the conclusion

that P = 0 at the boundary, corresponding to βi = 0 in (2.53).

However, in his paper [55] Pekar mistakenly derived the conditions just outside, rather

than inside, the boundary of the nonlocal medium. The details of this calculation and the
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correct result for this system are presented in section 4.1. Despite this, the Pekar ABC

can be used as an approximation to simplify calculations and remains the most commonly

used ABC. Subsequent authors have presented many alternate ABCs, each derived under

a set of assumptions that suit different types of material.

Some were derived starting from microscopic considerations of the system. Ting et

al. [43] considered Wannier-Mott (weak binding) excitons, typically found in semicon-

ductors, as the origin of the susceptibility resonance, finding ∂zP(0+) = 0. This corre-

sponded to αi = 0 in (2.53) and is the second-most popular choice af ABC. Fuchs and

Kliewer [44–47] considered the specular reflection of electrons on the interior surface

of a metal by imaging the nonlocal medium to fill the z < 0 half-space and imposing

symmetry conditions on the fields. This lead to alternate expressions for polarization

wave components parallel (Px,Py) and normal (Pz) to the planar surface, in particular

∂zPx,y(0+) = 0 and Pz(0+) = 0.

Other ABCs were found by starting with a desired behaviour and working backwards

to find the ABC required for it to occur. Rimbey and Mahan [48–52] imposed the condi-

tion that only transverse waves were present inside the nonlocal medium. Using a similar

approach to Fuchs and Kliewer they found that Px,y(0+) = 0 and ∂zPz(0+) = 0 led to

the complete absence of longitudinal waves. Agarwal et al. [33–42] derived their ABC

under the assumption that any changes to the bulk susceptibility caused by the presence

of the boundary were negligible, and could be ignored when considering bulk effects such

as reflection and refraction.

Some authors have rejected the notion of ABCs entirely. In 1998 Henneberger [91]

wrote a paper in which he described ABCs as a “historical mistake” and proposed an

alternate approach. In it, the bulk expressions for the waves in the vacuum and the bulk

medium are matched at the boundary provided that the region where surface effects are

present is smaller than the wavelength. Excitations generated by the incident wave in

the sub-surface layer of negligible width are then treated as the source of the transmitted

waves. This paper was somewhat controversial [92, 93], but more importantly it was

shown to be completely equivalent to the Ting et al. ABC. The ABC method has remained

the dominant approach to solving the problem of reflection at the boundary of nonlocal

media.
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2.3.4 The generalized ABC model

Several of the authors proposing the various ABCs noted that they were equivalent to in-

troducing an extra component to the susceptibility of the half-infinite nonlocal medium.

An additional phenomenological scattering term in χ could be used to describe the be-

haviour of the medium at the boundary and was specific to each ABC. In 1984, Halevi

and Fuchs [4] used this approach for the generalized ABC in (2.53) and developed a

model applicable to the single-resonance scalar susceptibility in (2.46). This collected the

work of all of the previous authors into a single, easy-to-use formalism to calculate the

electromagnetic reflection coefficients.

Halevi and Fuchs defined the half-infinite susceptibility χ′ in terms of the bulk ex-

pression. The presence of the boundary breaks the translational symmetry of the system.

As a result, the susceptibility of the half-infinite medium is spatially-dependent. After a

Fourier transform in the xy-plane, their expression took the form:

χ′i(K, 0, z, z
′) =

{
χ(K, 0, z − z′) + Uiχ(K, 0, z + z′) if z, z′ > 0,

0 otherwise.
(2.54)

This could be understood by considering the susceptibility in terms of a Green function

for P , as described in section 2.2.1. The first part of (2.54) was the translation-invariant

bulk response of the medium that described the propagation of a polarization wave from

z′ to z. The second term described a polarization wave traveling from z′ to the boundary

of the medium, before reflecting and continuing to z, as shown in Fig. 2.7. The Ui values

phenomenologically described the reflection of the excitations by the surface. As pre-

viously mentioned, the behaviour of the polarization waves could differ for components

transverse (x̂, ŷ) and normal (ẑ) to the surface, hence the dependence on i ∈ {x, y, z}. In

general the Ui values are complex and dependent on K and ω, with |Ui| = 1 indicating

perfect reflection.

The question of which ABC is “correct” for a given material is an open one. Either an

ABC is chosen simply to get the best fit to experimental data, or it is chosen by comparing

the assumptions made in the derivations to the type of medium in question. For a more

detailed discussion regarding the comparison between expertimental and theoretical data,

the reader is referred to the work of Halevi and Hernandez-Cocoletzi [94]. In their paper,

they note that such comparisons often favour the Pekar ABC, as demonstrated in Fig. 2.8

for the model (2.54) in the scalar U case.
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Figure 2.7: Schematic displaying the response at z due to an applied field at z′

described by the nonlocal susceptibility (2.54) used by Halevi and Fuchs. The

bulk response (blue) is spatially-independent and describes the direct propaga-

tion of the excitation in the medium. The spatially dependent surface response

(red) contains the phenomenological term Ui describing the reflection of the

excitation on the boundary.

Figure 2.8: Normal incidence reflectivity as a function of frequency for the

A1 exciton of CdS comparing experimental data (points) to theoretical results

(sold lines) using various scalar values ofU in (2.54). The Pekar ABC provides

the closest fit to experimental results [94]. Note that this is different to the

exciton studied in chapter 7.
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On its own, the susceptibility in (2.54) was insufficient to solve the wave equation

(2.13). The other critical assumption made by Halevi and Fuchs was in their choice

of ansatz for the electric field in the medium. The expression in (2.50) was used with

spatially-independent values of qn that satisfied the electromagnetic field dispersion re-

lation in the infinite medium. While this is a safe assumption in the z → ∞ limit, the

susceptibility in the region of interest near the boundary is significantly different to that

of the bulk medium.

Halevi and Fuchs gave no justification for the use of this ansatz and provided no ar-

gument that it was appropriate for the susceptibility in (2.54). This is quite a significant

oversight on their part. If the values of qn were spatially-dependent, the ∂z acting on the

electric field in (2.36) and (2.37) would lead to additional terms in the surface impedance,

leading to a different final expression for the reflection coefficient. In addition, the field

amplitude ratios derived by Halevi and Fuchs are given in terms of the wave vector com-

ponents at the boundary, leading to further differences with the bulk qn result.

In section 4.2, the choice of ansatz used by Halevi and Fuchs is tested by calculating

the Green function for the electric field in the nonlocal medium. This is done using an

iterative method that makes no assumptions about the form of the electric field. It will

be shown that the susceptibility (2.54) does lead to the E expression used by Halevi and

Fuchs and that the ansatz can safely be used.

With the choice of ansatz made, the rest of the Halevi and Fuchs derivation was

straightforward. The details of the calculation are presented in chapter 5, but the key

results are repeated here. The nonlocal susceptibility (2.54) and the ansatz for the electric

field were substituted into (2.3) for P and the integrals were evaluated. By comparing the

terms on each side of the wave equation (2.13), Halevi and Fuchs found that it could only

hold for all points inside the medium if:
3∑

n=1

(
1

qn − Γ
+

Ui
qn + Γ

)
E

(n)
i =0, i = x, y, z. (2.55)

These equations provided the extra information required to calculate the electromagnetic

reflection coefficients for the Halevi-Fuchs model. Converting E(n)
z to E(n)

x as in (2.52)

gave two relations between the three E(n)
x components in the p-polarization and one rela-

tion between the two E(n)
y components of the s-polarization. This was sufficient to derive

the field amplitude ratios used in the surface impedances (2.51-2.52) and the subsequent

reflection coefficients (2.34-2.35). Furthermore, by re-arranging (2.55) to:

iΓ(1− Ui)Pi(0+) + (1 + Ui)∂zPi(0+) = 0, (2.56)
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2.3. Reflection and transmission at planar boundaries

Halevi and Fuchs were able to draw a link between their phenomenological reflection

coefficients Ui and the generalized form of the ABC in (2.53). Table 2.1 contains the five

previously mentioned ABCs that will be used for comparisons throughout the rest of this

thesis in terms of both Pi and Ui.

Table 2.1: List of ABCs

Parallel components Normal components

ABC Px,y Ux,y Pz Uz

Agarwal et al. [33–42] iΓPx,y + ∂zPx,y = 0 0 iΓPz + ∂zPz = 0 0

Ting et al. [43] ∂zPx,y = 0 -1 ∂zPz = 0 -1

Fuchs-Kliewer [44–47] ∂zPx,y = 0 -1 Pz = 0 1

Rimbey-Mahan [48–52] Px,y = 0 1 ∂zPz = 0 -1

Pekar [53–56] Px,y = 0 1 Pz = 0 1

The Halevi and Fuchs model allowed for comparisons between ABCs using a single

formalism. Figure 2.9 shows typical plots for the reflection coefficients for an example

medium as a function of frequency for a fixed incident angle. Many of the features of

rs(ω) and rp(ω) were the same as the local medium with D = 0. The nonlocal effects

were largely determined by Ux,y, with Ux,y = −1 (Pekar and Rimbey-Mahan) giving the

greatest difference to the local results, followed by Ux,y = 0 (Agarwal et al.) and Ux,y = 1

( Fuchs-Kliewer and Ting et al.). The reflection minima also shifted to lower frequencies,

with Ux,y = −1 again giving the greatest change compared to the local model. In contrast,

the value of Uz only affected the frequency region near ωL, with the largest difference near

the reflection minimum.

The Halevi and Fuchs model has been used as the basis for more complex nonlo-

cal models. In 1982, Halevi and Hernández-Cocoletzi [94] studied the effect of a small

exciton-free surface layer. A region of fixed widthL at the surface of the nonlocal medium

was designated a “dead layer” and was described by a local susceptibility, effectively cre-

ating a double interface system. The vacuum/local medium interface was solved with

Maxwell’s boundary conditions and the local/nonlocal medium interface was solved with

the generalized ABC of the Halevi model, leading to an L-dependent reflection coeffi-

cient for the entire system. Instead of adding extra components to the nonlocal model in

this manner, this thesis seeks to improve the scope of the basic Halevi-Fuchs model by

increasing the range of bulk susceptibility functions it can be applied to.
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2.3. Reflection and transmission at planar boundaries

Figure 2.9: Reflection coefficients rs (top) and rp (bottom) as a function of

ω for an example medium with the nonlocal susceptibility in (2.54) at an in-

cident angle of 45◦. Vertical lines indicate ωT (solid) and ωL (dashed) val-

ues. Includes Agarwal et al. (Red), Ting et al. (Brown), Fuchs-Kliewer

(Green), Rimbey-Mahan (Blue) and Pekar (Purple) ABCs compared to the lo-

cal D = 0 result (Black). Model parameters used are χ0 = 8.1, ~ωT = 2.8eV,

~ωp = 0.208eV, ~γ = 2.8× 10−5eV and D = 6.17× 10−6c2.

2.3.5 Additional work

While the Halevi-Fuchs model is valid for isolated scalar resonances in the susceptibility

of the form (2.46), this represents a small fraction of the wide range of behaviour found in

real materials. Several of the previously discussed ABCs have been taken and successfully

applied to nonlocal media beyond these limitations.

Some of the various ABC authors had considered a tensor susceptibility as part of their

derivations [48, 95]. As described in section 2.1.2, a distinctive direction is generated by

the wave vector k when spatial dispersion is present. Even in an isotropic medium there

may be a difference in the susceptibility for transverse and longitudinal waves. While the

inequality between χ⊥ and χ‖ was included in their derivations, the authors did not in-
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2.3. Reflection and transmission at planar boundaries

vestigate the effect this had on the electromagnetic reflection coefficients. This behaviour

was also not carried over to the generalized ABC model and the effect the choice of ABC

has on such a system remained to be investigated.

As discussed in section 2.1.6, a nonlocal medium can contain a large number of exci-

tations in the medium, each with their own resonance in the susceptibility [59, 60]. Other

authors have studied multi-resonance systems [67–73], but limited themselves to a max-

imum of two exciton bands. Despite the small number of resonances, a wide variety of

exciton dispersion behaviour has been studied. The simplest examples contained two non-

interacting parabolic bands of the form (2.21), but others dealt with degenerate exciton

bands. Of particular interest is the work of Sell et al. [70] that dealt with the heavy/light

exciton bands described by (2.22) with the Pekar ABC. These authors argued that such a

system could be approximated using a single effective exciton band. This was done by

simply taking the average energy of the heavy and light exciton for a given k, giving

Deff =
Dh +Dl

2
(2.57)

and reducing the problem to the previously solved single exciton band. This can also be

thought of in terms of the susceptibility, where combining the two resonances to a single

fraction gives:

ω2
p

ω2
0 +Dhk2 − ω2 − iγω

+
ω2
p

ω2
0 +Dlk2 − ω2 − iγω

=

2ω2
p(ω

2
0 +Deffk

2 − ω2 − iγω)

(ω2
0 +Deffk2 − ω2 − iγω)2 − 1

2
(D2

h +D2
l )k

4
, (2.58)

which is approximately equivalent to a single Deff resonance with ω2
p → 2ω2

p and an

additional k4 term. While Sell et al. noted that this approximation underestimated the

amplitude of the features in rs(ω) and rp(ω), they were only interested in making semi-

quantitative comparisons and not a detailed fit between theoretical and experimental re-

sults.

Not all features in the exciton band structure can be reduced to the simple k depen-

dence in (2.24). In 1964, Mahan and Hopfield [71] applied the Pekar ABC to a more

complex case by studying degenerate exciton bands with linear k terms, as in (2.23). This

behaviour can be found in crystals with certain symmetry groups, including the uniaxial

crystals zincblende and wurtzite [59]. The presence of anisotropy in the medium due to

the crystal axis inevitably led to a tensor susceptibility that was not only dependant on the

orientation of the field but also the wave vector. However, Mahan and Hopfield only con-

sidered a single orientation of the crystal axis, aligned normal to the plane of incidence.
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2.3. Reflection and transmission at planar boundaries

This reduced the susceptibility to a scalar in each of the s- and p-polarization equations.

The effect the choice of ABC and, more importantly, the orientation of the crystal axis

has on the reflection coefficients had not been studied in detail and remained an open

problem.

There is therefore a wide range of behaviour that is not covered by the Halevi and

Fuchs model and has previously only been considered for specific ABCs. This provides

the motivation for the second half of this thesis, in which the Halevi and Fuchs generalized

ABC model is extended to include many more of the features found in real materials

[61, 62]. The first part deals with incorporating the tensor nature of the susceptibility

in (2.5) that is an inherent result of the wave vector dependence [61]. For the sake of

simplicity, this is done for the isolated resonance. However, this will be equally applicable

to the second part, where Halevi and Fuchs model is extended to multiple resonances [62].

This enables not only the study of closely spaced resonances in the susceptibility, but also

degenerate resonances such as those found in the heavy/light exciton model. Finally, the

restriction to k dependence of the form in (2.24) is lifted and the specific case of linear k

terms in uniaxial crystals is studied [62].

2.3.6 Applications

The inclusion of spatial dispersion in the calculation of the electromagnetic reflection

coefficients has significant knock-on effects on a range of other physical phenomena.

The presence of a planar boundary modifies the Green tensor of the electric field. The

Sipe representation [96] allows the Green tensor to be split into s- and p-polarization

components. After a Fourier transform in the xy-plane, the Green tensor for two points in

the half-space outside the medium can be written as:

GEE
ij (K, 0, z, z′, ω) =

1

2q0

(
ŝiŝj + p̂

sgn(z′−z)
i p̂

sgn(z′−z)
j

)
eiq0|z

′−z|

+
1

2q0

(
ŝirsŝj + p̂+

i rpp̂
−
j

)
eiq0(z′+z)

+
i

2k2
0

δizδjzδ(z
′ − z), (2.59)

where ŝ = ŷ picks out the s-polarization components and p̂± = (Kẑ∓q0x̂)/k0 picks out

the p-polarization components ofE. In a similar manner to (2.54), the first part describes

the direct propagation of light from z′ to z, while the second position-dependent part

describes waves reflecting on the surface of the medium.
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2.3. Reflection and transmission at planar boundaries

The inclusion of spatial dispersion in the calculation of the electromagnetic reflection

coefficients rs and rp therefore has wider implications for a large number of phenomena

near the surface of the nonlocal medium that are based on the Green tensor. One example

is radiative heat transfer between two semi-infinite parallel plates separated by a finite

distance d. The radiative heat transfer was found to obey a 1/d2 law for distances below

a few hundred nanometers if local models were used to describe the two media. By

including spatial dispersion, the Halevi and Fuchs model has been shown [78] to remove

the divergence from the system, instead approaching a finite value as d→ 0.

The neglect of spatial non-locality is also known to be responsible for several diver-

gences in Casimir theory. The classic Lifshitz formula [97] for the Casimir force does

not include spatial dispersion. At small separations and distances from material bound-

aries some components of the Casimir stress-energy tensor are dominated by the diverg-

ing integration over evanescent fields with arbitrarily large lateral wave vectors. A similar

problem exists for curved boundaries, where the Casimir stress tensor perpendicular to the

boundary leads to an infinite self-force for the simple example of the dielectric ball [98]

or conducting shell [99]. Unlike the planar boundary, the Halevi and Fuchs model is inap-

plicable to such a system as it would require a completely different ansatz for the electric

field inside either object. In each of these cases, the divergences are not simply due to the

zero-point fields but are also present for purely thermal radiation [5].

The final part of this thesis investigates the effect of spatial dispersion on the energy

density of thermal and zero-point radiation near the planar boundary of a half-infinite

medium. The thermal energy density near metal surfaces has recently been probed using

near-field microscopy [100] and the zero-point spectral energy density can be probed by

measuring spontaneous emission rates close to a boundary [74–77]. It is well known that

the use of a local model to describe the medium leads to an unphysical divergence in the

energy density outside the boundary [5, 81, 101].

The average value of the energy density at a distance |z| from the planar boundary is

given by [5]:

〈U〉 =
ε0

2
〈|E (r, t)|2〉+

µ0

2
〈|B (r, t)|2〉 =

∫ ∞
0

dω utot (z, ω) . (2.60)

The divergence is known to occur at the level of the spectral energy density utot(z, ω), the

energy density per unit frequency. Although the zero-point energy will diverge if it is not

regularized, the spectral energy density of zero-point radiation should be finite without

regularization [22].
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The expression for utot can be calculated from the Green tensor of the electromagnetic

fields by using the fluctuation-dissipation theorem [5]. The random thermal motion of

charges, such as electrons or ions, in a material will generate small, fluctuating currents

which radiate an electromagnetic field of their own. The fluctuation-dissipation theorem

describes the statistical properties of these fluctuations and the radiated field. In thermal

equilibrium, a relationship between the cross-correlation tensor and the Green tensor of

the system at temperature T can be found [5]:

〈Ei(r, t+ ∆t)Ej(r
′, t)〉 = Re

{∫ ∞
0

dω

2π
eiω∆t4ωµ0Θ(ω, T ) Im

[
GEE
ij (r, r′, ω)

]}
,

(2.61)

where

Θ(ω, T ) = ~ω
(

1

2
+

1

e~ω/kBT − 1

)
(2.62)

is the mean energy of a harmonic oscillator in thermal equilibrium. The first term of

(2.62) gives rise to the electromagnetic zero-point energy.

Equation (2.61) and the Green tensor (2.59) can be used to calculate utot by setting

r = r′, i = j and ∆t = 0 and substituting into (2.60). Assuming that the nonlocal

medium is in thermal equilibrium with its surroundings and the system is rotationally

invariant around the z axis, the spectral energy density can be written in terms of the

previously calculated reflection coefficients [102]:

utot(z, ω) =
u0

k0

∫ k0

0

KdK√
k2

0 −K2

{
1 +

K2

2k2
0

Re
[
(rs + rp)e

2i
√
k2

0−K2|z|
]}

+
u0

2k3
0

∫ ∞
k0

K3dK√
K2 − k2

0

{
Im[rs + rp]e

−2
√
K2−k2

0 |z|
}
. (2.63)

The term u0 is the spectral energy density in the absence of the material, given by

u0 =
Θ(ω, T )ω2

π2c3
. (2.64)

The integration over wave vector has been split into two parts. The first integral in (2.63)

is the contribution from propagating waves with real q in the vacuum and contains both the

incident and reflected electromagnetic waves. The second integral is the contribution from

evanescent reflected waves with imaginary q. It is important to note that the result in (2.63)

is for an ideal planar interface. It does not include surface roughness and quantum effects
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such as “electron spill-out” that are not directly encoded in the susceptibility, which may

affect the results in the |z| → 0 limit.

While the exponential in the first term is complex and oscillates over the range of the

integral, the exponential in the second term is real and decays as K → ∞. The rate

of decay is determined by the distance from the planar surface |z|. For this reason, the

propagating wave contribution dominates the result for utot in the far field. It is only in the

near field very close to the boundary, where |z| is smaller than the wavelength of light and

the second exponential decays slowly, that the evanescent term significantly contributes

to the result.

It is in this region near the boundary that the divergence of the local medium is found.

If spatial dispersion is ignored, then as K → ∞ the Fresnel reflection coefficients (2.42)

and (2.43) approach the constant values:

lim
K→∞

rs =0, (2.65)

lim
K→∞

rp =
χ(ω)

2 + χ(ω)
. (2.66)

The leading contribution to the evanescent wave integral therefore comes from the very

large K values, where the function in (2.63) is proportional to K2. In the z → 0 limit, the

exponential in the second integral decays slowly enough that this term becomes dominant,

giving the approximate result [5]:

utot(z, ω) ≈ u0

2k3
0

{
Im[χ(ω)]

|2 + χ(ω)|2
1

4|z|3

}
. (2.67)

This contribution can be seen to dominate the result at small |z| for an example local

medium in Fig. 2.10. Due to the Kramers-Kronig relations between the real and imagi-

nary components of the susceptibility, Im[χ(ω)] is always present and therefore utot will

contain an unphysical divergence at the boundary.

One can also consider the spectrum of utot(ω) at a fixed distance from the boundary.

This is shown in Fig. 2.11 for a range of |z| values. At large distances, the result is approx-

imately constant for all frequencies, but below 100nm, the evanescent wave contributions

begin to appear. The main feature of the result is a large peak in utot(ω) at ωL due to the

evanescent p-polarization that becomes significantly larger and broader as |z| decreases.

A much smaller peak due to the evanescent s-polarization is found at ωT , however this is

masked by the p-polarization peak as |z| → 0.
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Figure 2.10: Spectral energy density utot (black line) as a function of distance

|z| from the boundary at the fixed frequency ωT . Results include the propa-

gating wave s and p-polarization contribution (red) and the evanescent wave s-

(cyan) and p-polarization (blue) contributions. The evanescent p-polarization

wave contribution diverges as 1/|z|3 as z → 0. Model parameters used are

χ0 = 8.1, ~ωT = 2.8eV, ~ωp = 0.207eV and ~γ = 2.8× 10−5eV.

It has been argued that the divergent result in (2.67) is due to the assumption that the

spatially local macroscopic susceptibility is valid down to the smallest scales, where the

microscopic structure of the medium becomes apparent. Some authors have attempted

to resolve this by either introducing a sharp cut-off to the K integral [81] or smoothing

the spatial delta function δ3(r − r′) of the local susceptibility to a Gaussian [82] with a

length scale based on either the lattice period or some finite correlation length. While this

does remove the divergence in utot, it is a rather unsatisfactory approach. Much like the

problem of absorption described in section 2.2, it must be added to the calculation “by

hand” rather than simply emerging from the model.

Previous work [82] based on a different model as shown that the inclusion of spa-

tial dispersion in the susceptibility can remove the 1/z3 divergence in utot outside the

medium. The Linhard susceptibility, which is based on a semi-classical description of the

electron gas, is applicable to the conduction electrons in a metal when the mean free path

is longer than the Fermi wavelength. While successful, the susceptibility due to the core

electrons still lead to an unphysical divergence unless their nonlocal behaviour is taken
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Figure 2.11: Spectral energy density utot(ω) at a range of fixed distances

|z| from the boundary. Examples include |z| = 10−6.5m (red), 10−7m (or-

ange), 10−7.5m (yellow), 10−8m (green), 10−8.5m (cyan) and 10−9m (blue).

Vertical lines indicate ωT (solid) and ωL (dashed) values. The evanescent p-

polarization contribution is responsible for the peak at ωL that grows in mag-

nitude closer to the boundary. Model parameters are the same as Fig. 2.10.

into consideration.

The final part of this thesis applies both Halevi and Fuchs’ original generalized ABC

model and the extensions described in section 2.3.5 to the calculation of the spectral

energy density. In each case the unphysical 1/|z|3 divergence is removed and the differ-

ences caused by the choice of ABC are investigated and found to be significant even for

distances |z| much larger than the lattice spacing [61, 62].
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Chapter 3

Absorption in Dielectrics

In 1958 Hopfield [2] proposed many-body interactions, described by nonlinear coupling,

as a solution to the lack of broadband absorption found in linear dielectric models. While

such a calculation has been performed in the quantum regime [9–13], a full analysis re-

mains challenging. Instead, the use of a phenomenological reservoir has become widespread

[3, 14–22], despite the unclear link between this mathematical tool and the microscopic

physics and interactions of a real medium.

This chapter verifies Hopfield’s claim with a purely classical calculation, demonstrat-

ing that quantum mechanical behaviour is not required for broadband absorption [25]. The

model used is a discrete version of the Hopfield model presented in section 2.2.1, with

an additional degree of freedom in the form of lattice vibrations. While this new model

is one-dimensional, chosen to simplify calculations, the work presented throughout this

chapter is also applicable to 3D crystals, under certain assumptions.

In section 3.1, a basic 1D dipole model of a dielectric with linear coupling is described

and the corresponding equations of motion are derived. The assumptions required for

application to a 3D lattice are outlined and the corresponding susceptibility is found. This

model is modified in section 3.2 with the inclusion of nonlinear interactions between the

dipoles and the new displacement degree of freedom. A method to extract an effective

linear susceptibility from this new model using an iteration process is discussed in section

3.3. In section 3.4, a diagrammatic approach to the iteration method is described and

applied to the linear model. This method is subsequently applied to the nonlinear model

in section 3.5. A numerical calculation of the leading-order terms in the perturbation

theory is performed in section 3.6, giving an effective linear susceptibility that can be

accurately described by the Lorentz model, confirming Hopfield’s proposal. The wave
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vector dependence of these results are also investigated, highlighting the role of higher-

order terms in the perturbation series.

3.1 The linear model

This chapter starts by considering a simple microscopic model with linear coupling be-

tween a scalar field and an infinite lattice of electric dipoles, in what is essentially a 1D,

discrete version of the Hopfield model [2] in section 2.2.1. While this model will prove

inadequate in providing broadband absorption, it will subsequently be used as a basis for

a nonlinear model. A schematic of the microscopic linear (ML) model is shown in Fig.

3.1. Each “atom” is located at the position zn = na, where a is the lattice spacing and n

labels each particle. The corresponding electric dipole pn is linearly coupled to the scalar

field A, which represents a projection of the electromagnetic vector potential. This treat-

ment of a medium as a lattice of dipoles is applicable to solid dielectrics with a regular

crystal structure. However, just like the Lorentz model, systems outside the restrictions

of the initial derivation will show features that are similar to this model.

𝑎

𝑝𝑛−1 𝑝𝑛 𝑝𝑛+1 𝑝𝑛+2𝐴

𝑘

Figure 3.1: Schematic of the 1D microscopic linear (ML) model, consisting

of an infinite lattice of finite sized “atoms” with an electric dipole moment pn
linearly coupled to the field A.

While the model was chosen with microscopic physics in mind, it is possible to con-

struct a system of dielectric spheres on a macroscopic scale. Metamaterials based on

arrays of dielectric nanoparticles are an example of this [103, 104] and are actively be-

ing investigated as a low-loss alternative to metallic systems [105–107]. However, the

discrete model in Fig. 3.1 does not consider the internal structure and physics of each par-

ticle in the system. It therefore fails to capture several important aspects of the medium,

such as using the size of nanoparticles to control a magnetic response [105]. In addition,
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the coupling between dipoles in the macroscopic case is usually investigated for altering

the already present broadband response of the material [106, 107], rather than inducing

lattice vibrations that act as the origin of the response in the microscopic case.

Although the ML model is one-dimensional, the resulting equations of motion are

equivalent to those of a 3D model consisting of a cubic lattice of electric dipoles pn and

the electromagnetic vector potentialA under the following conditions:

• The vector potential A and all electric dipoles pn are aligned with one of the prin-

cipal axes (e.g. x̂).

• All wave vectors k are aligned with a principal axis perpendicular toA and pn (e.g.

ẑ).

• The electromagnetic scalar potential φ is set to zero.

In other words, the 1D ML model is applicable to transverse electromagnetic waves prop-

agating along one of the principal axes of a cubic crystal. The differences between this

scenario and the 1D model are minor, but will be highlighted throughout the following

derivation.

The Lagrangian of the linear model in Fig. 3.1 consists of three parts:

LA =
1

2

∫ ∞
−∞

dz
{

[∂tA(z, t)]2 − c2 [∂zA(z, t)]2
}
, (3.1)

Lp =
1

2a

∞∑
n=−∞

{
[∂tpn(t)]2 − ω2

0 [pn(t)]2 +
1

2
τ 2

1 [pnpn−1 + pnpn+1]

}
, (3.2)

LpA = −β
∞∑

n=−∞

∫ ∞
−∞

dz {α(z − na)pn(t) [∂tA(z, t)]} , (3.3)

where A and pn have been rescaled to reduce notation throughout the chapter. The first

two terms LA and Lp are the respective “free” Lagrangians of the field and the dipoles

and describe their behaviour in the absence of LpA, which contains the linear coupling

between the two.

The lattice of dipoles in (3.2) are described as simple harmonic oscillators with the

resonant frequency ω0. The pn values are coupled to each other via τ1, which arises from

the r−3 dipole-dipole interaction [1]:

Vnm = V0
pnpm

|zn − zm|3
=

V0

a3|n−m|3
pnpm =

1

2a
τ 2
n−mpnpm, (3.4)

68



3.1. The linear model

As the interaction strength rapidly decays with distance, only the nearest-neighbour term

τ 2
1 =

V0

a2
(3.5)

is retained in (3.2). In a 3D model, there would also be coupling between nearest neigh-

bours in the x̂ and ŷ directions.

One feature not present in the Hopfield model is the term α(z− na) in the interaction

Lagrangian LpA (3.3). This is used to account for the finite size of the particles in the

model and is taken to be the normalized Gaussian function

α(z) =
1

z0(2π)1/2
e
− z2

2z2
0 (3.6)

throughout this chapter, with the convenient feature that (3.6) becomes the Dirac delta

function δ(z) in the z0 → 0 limit.

The first step in calculating an effective susceptibility for the ML model is to perform

a spatial Fourier transformation on (3.1)-(3.3) using (3) for the continuous field and (4) for

the discrete dipoles. This leads to an important distinction between the wave vector range

for A (which runs over all values) and p (which is limited to the first Brillouin zone). The

resulting expressions are:

LA =
1

2

(
1

2π

)∫ ∞
−∞

dk
{

[∂tA(k, t)] [∂tA(−k, t)]− c2k2 [A(k, t)] [A(−k, t)]
}
, (3.7)

Lp =
1

2

(
1

2π

)∫ π/a

−π/a
dq
{

[∂tp(q, t)] [∂tp(−q, t)]− ω2
0(q) [p(q, t)] [p(−q, t)]

}
, (3.8)

LpA = −β
(

1

2π

)∫ ∞
−∞

dk

∫ π/a

−π/a
dq

{
α(−k)p(q, t) [∂tA(k, t)]

∞∑
j=−∞

δ
(
k + q + j 2π

a

)}
,

(3.9)

where the resonant frequency of the dipoles in Lp is now wave vector-dependent:

ω2
0(q) = ω2

0 + τ 2
1 cos(qa). (3.10)

The inclusion of mth-nearest neighbour coupling terms would lead to additional terms

of τ 2
m cos(qam) in (3.10). Due to the decrease in coupling strenght with distance, these

terms will not have a significant effect on results. While the 3D model would contain

additional terms in (3.10) due to coupling between dipoles in the x̂ and ŷ directions,
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3.1. The linear model

these would amount to a simple shift of ω0 under the assumption that all wave vectors

are aligned with ẑ. The Dirac delta function in (3.9) contains terms where the wave

vector q is displaced by an integer number j of reciprocal lattice vectors. The j 6= 0

terms describe Umklapp processes [108], where momentum is transferred to the centre

of mass of the crystal. While the large mass of the infinite crystal means there is no

accompanying energy transfer, Umklapp processes will still play an important role in

subsequent calculations.

After an additional Fourier transform in time using (1), the equations of motion for

the ML model are:[
c2k2 − ω2

]
A(k, ω) = −iωβα(k)

∫ π/a

−π/a
dq

{
p(q, ω)

∞∑
j=−∞

δ(q + j 2π
a
− k)

}
, (3.11)

[
ω2

0(q)− ω2
]
p(q, ω) = iωβ

∞∑
j′=−∞

α∗(q + j′ 2π
a

)A(q + j′ 2π
a
, ω), (3.12)

where the symmetry property α(−k) = α∗(k) has been used. The integral in (3.11)

picks out the specific value of j that translates k back into the first Brillouin zone, while

(3.12) retains all values of j′. It is important to note that while Umklapp processes in

(3.12) couple each (q, ω) dipole mode to a number of modes of the A field, these modes

are discrete and all have the same frequency. Even with the inclusion of these terms,

the system lacks the coupling to a continuum required by Hopfield [2] for broadband

absorption.

Equation (3.12) can be solved to give

p(q, ω) = ph(q, ω) + iωβGp(q, ω)
∞∑

j′=−∞

α∗(q + j′ 2π
a

)A(q + j′ 2π
a
, ω), (3.13)

where ph is the homogeneous solution of p satisfying the equation of motion in the ab-

sence of the A field: [
ω2

0(q)− ω2
]
ph(q, ω) = 0 (3.14)

and Gp is the retarded Green function which takes the same form as (2.27) in the Hopfield

model:

Gp(q, ω) =
1

ω2
0(q)− (ω + i0+)2

=P
1

ω2
0(q)− ω2

+
iπ

2ω
[δ(ω − ω0(q))− δ(ω + ω0(q))] . (3.15)
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3.1. The linear model

The poles at ω2 = ω2
0(q) in Gp have again been shifted into the lower half-plane of

complex ω to preserve causality and satisfy the Kramers-Kronig relations. The resulting

expression can be split into a real principal-valued term, denoted by P, and two imaginary

Dirac delta functions.

Equation (3.13) is then substituted into (3.11) to give an equation solely in terms of

the field A and the homogeneous solutions ph:

[
c2k2 − ω2

]
A(k, ω) =ω2β2Gp(k, ω)α(k)

∞∑
j=−∞

α∗(k + j 2π
a

)A(k + j 2π
a
, ω)

− iωβα(k)

∫ π/a

−π/a
dq

{
ph(q, ω)

∞∑
j′=−∞

δ(q + j′ 2π
a
− k)

}
. (3.16)

If Umklapp processes are ignored by only considering the j = 0 term in (3.16), a trans-

verse wave equation can be recovered:{
k2 − ω2

c2
[1 + χ(k, ω)]

}
A(k, ω) =

− iωβα(k)

∫ π/a

−π/a
dq

{
ph(q, ω)

∞∑
j′=−∞

δ(q + j′ 2π
a
− k)

}
,

(3.17)

which is the equivalent of the Maxwell electromagnetic wave equation (2.14) for the ML

model, with A taking the role of the electric field and the effective susceptibility of the

system given by:

χ(k, ω) = |α(k)|2β2Gp(k, ω) =
|α(k)|2β2

ω2
0(k)− (ω + i0+)2

. (3.18)

As previously discussed in section 2.2.1 for the Hopfield model, the Green function Gp

is directly related to the susceptibility. While ω0(k) in (3.10) is periodic in k due to the

discrete nature of the system, the α(k) term ensures that χ → 0 as k → ∞ for any non

Dirac-delta spatial coupling term, satisfying the conditions in section 2.1.3. It can be seen

that the ML model suffers from the same issues as the Hopfield model in section 2.2, as

separating (3.18) into real and imaginary components using (3.15) gives absorption only

at the resonant frequency ω0(k) for a given wave vector k. The ML model, which contains

only linear coupling, therefore lacks the broadband absorption found in real materials.

This problem is not alleviated through the inclusion of Umklapp processes. While this

does introduces coupling between a single mode and a discrete set of modes, similar to
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3.2. The nonlinear model

the various discrete reservoir models [3], they are all of the same frequency. Hopfield’s

required energy continuum [2], described in section 2.2.1, is not present in the ML model

and broadband absorption is absent even when Umklapp processes are included. This

behaviour is explicitly calculated later in section 3.4.1.

3.2 The nonlinear model

The previous section has shown that the simple ML model of a dielectric lacks the broad-

band absorption found in real materials. This leads to the aim of this chapter — to verify

Hopfield’s claim [2] that the inclusion of many-body interactions via nonlinear coupling

leads to a susceptibility that is similar to the Lorentz model (2.19) with a non-zero damp-

ing term γ.

𝑢𝑛−1 𝑢𝑛 𝑢𝑛+1 𝑢𝑛+2
𝑎

𝑝𝑛−1 𝑝𝑛 𝑝𝑛+1 𝑝𝑛+2𝐴

𝑘

Figure 3.2: Schematic of the 1D microscopic nonlinear (MN) model. The

electric dipoles pn are linearly coupled to the field A and nonlinearly coupled

to the particle displacements un. Both the dipoles and the displacements are

coupled to their nearest neighbours, represented by the blue springs.

To test his proposal, an additional degree of freedom not directly coupled to the field

A is added to the ML model. Each particle now has two associated variables - the dipole

moment pn and the physical displacement of the particle from the equilibrium position

zn = na, denoted by un. This can be thought of as adding the acoustic modes of vibration

to the model. A schematic of the new microscopic nonlinear (MN) model is shown in Fig.

3.2. For the 1D MN model to apply to the 3D lattice, the second condition in section 3.1

must be modified to:

• All wave vectors k and displacements un are aligned with the same principal axis

perpendicular toA and pn (e.g. ẑ).
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3.2. The nonlinear model

Two additional terms are added to the Lagrangian as a result of these changes. The Lu
term is the “free” Lagrangian of the u displacements in the MN model and takes a similar

form to Lp in (3.19):

Lu =
1

2
M

∞∑
n=−∞

{
[∂tun(t)]2 − ν2

0 [un(t)]2 − 1

2
κ2

1 [un(t)− un−1(t)]2
}
, (3.19)

where κ2
1 is the nearest-neighbour coupling strength and M is the mass of the particle.

This expression contains several parts, the first of which is the usual kinetic energy term

for a particle with mass M . The second part contains a harmonic confining potential

with resonant frequency ν0 that anchors the particle to the lattice site. While this term is

not strictly required and ν0 can be set to equal zero, its inclusion does not significantly

affect the overall results and a small nonzero value of ν0 can simplify later numerical

calculations. The final term contains the coupling between nearest-neighbours, shown in

Fig. 3.2 and modelled in the usual way [86,108] by connecting particles with springs of a

rest length a.

As in the case of Lp in (3.19), the 3D model would also contain nearest-neighbour

coupling terms with particles separated in the x̂ and ŷ directions. However, the extension

of the spring would no longer be given by a simple difference in u values. For example,

the spring extension for particles separated in the x̂ direction is given by:√
a2 + (un − un−1)2 − a, (3.20)

under the assumption that all displacements are in the ẑ direction. A small u expansion

can be made for (3.20), but the leading term will be of the order u4. The corresponding

nonlinear Lagrangian term would need to be considered separately to the linear terms in

(3.19).

The nonlinear interaction term between the dipole moments and the displacements

naturally emerges from the r−3 dipole-dipole interaction previously used in (3.4):

Vn,n+m = V0
pnpn+m

|(zn + un)− (zn+m + un+m)|3
=

V0

|ma|3
1

|1 + un−un+m

ma
|3
pnpn+m. (3.21)

A small u expansion can be performed on this expression to give a series of Lagrangian

terms with increasing powers of u. Retaining only nearest-neighbour interactions, the

zeroth-order term has already been included in (3.2) and the first-order term gives the

nonlinear Lagrangian:

Lppu = −6V0

a4

∞∑
n=−∞

{
pn(t)pn−1(t)[un(t)− un−1(t)]

}
. (3.22)
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3.2. The nonlinear model

Once again, the 3D model will also contain nearest-neighbour coupling terms with parti-

cles separated in the x̂ and ŷ directions. However, for reasons similar to (3.20), these do

not modify (3.22) as the leading order terms of the Lagrangian in the small u expansion

contain ppuu nonlinear interactions.

The process of calculating the effective susceptibility of the nonlinear model starts

once again with a spatial Fourier transformation, with (3.19) and (3.22) taking the form:

Lu =
1

2
Ma

(
1

2π

)∫ π/a

−π/a
dq
{

[∂tu(q, t)] [∂tu(−q, t)]− ν2
0(q) [u(q, t)] [u(−q, t)]

}
,

(3.23)

Lppu =
3iV0

πa2

(
1

2π

)∫ π/a

−π/a
dq1

∫ π/a

−π/a
dq2

∫ π/a

−π/a
dq3

{
[sin(q1a) + sin(q2a)]

×p(q1, t)p(q2, t)u(q3, t)δ(q1 + q2 + q3)
}
, (3.24)

where the u resonant frequency in (3.23) is now wave vector dependent.

ν2
0(q) = ν2

0 + κ2
1 − κ2

1 cos(qa). (3.25)

A visual representation of (3.25) is shown in Fig. 3.3. Umklapp processes are also present

in (3.24), but are omitted for notational brevity as the integrals will pick out a specific

scattering process to ensure all wave vectors lie within the first Brillouin zone.

Figure 3.3: Wave vector dependence of the u resonant frequency ν0(q) in

(3.25), which covers the frequency range ν0 →
√
ν2

0 + 2κ2
1.
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3.2. The nonlinear model

After using (1) to perform a Fourier transform in time and evaluating the Dirac delta

functions, the equations of motion become:

A(k, ω) = Ah(k, ω) +GA(k, ω) [−iωβα(k)]

∫ π/a

−π/a
dq

{
p(q, ω)

∞∑
j=−∞

δ(q + j 2π
a
− k)

}
,

(3.26)

p(q, ω) =ph(q, ω) +Gp(q, ω)
∞∑

j′=−∞

[
iωβα∗(q + j′ 2π

a
)
]
A(q + j′ 2π

a
, ω)

+Gp(q, ω)

∫ π/a

−π/a
dq1

∫ ∞
−∞

dω1 [σf1(q, q1)] [u(q1, ω1)p(q − q1, ω − ω1)] ,

(3.27)

u(q, ω) =uh(q, ω)

+
1

Ma
Gu(q, ω)

∫ π/a

−π/a
dq1

∫ ∞
−∞

dω1 [σf2(q, q1)] [p(q1, ω1)p(q − q1, ω − ω1)] ,

(3.28)

where the nonlinear coupling constant σ is given by:

σ =
3V0

2π2a2
(3.29)

and the coupling functions are given by:

f1(q, q1) =2i {sin[(q − q1)a]− sin[qa]} ,

f2(q, q1) =i {sin[(q − q1)a]− sin[q1a]} . (3.30)

The homogeneous solutions and Green functions are given by[
(ck)2 − ω2

]
Ah(q, ω) =0, GA(k, ω) =

1

(ck)2 − (ω + i0+)2
, (3.31)[

ν2
0(q)− ω2

]
uh(q, ω) =0, Gu(q, ω) =

1

ν2
0(q)− (ω + i0+)2

, (3.32)

while equations (3.14) and (3.15) for ph and Gp remain the same.

The introduction of nonlinear coupling has lead to a form of “pesudo-reservoir” in the

equations of motion, with each mode of p(q, ω) in (3.27) now coupled to a continuum

of modes. However, attempting to repeat the previous section and rearranging equations

(3.26)-(3.28) to a wave equation solely in terms ofA and homogeneous solutions presents

several challenges as the nonlinear coupling makes it difficult to express p in a closed

form. Instead, a perturbative solution to the equations of motion is sought.
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3.3. The perturbative solution

3.3 The perturbative solution

This section presents a method for extracting an effective linear susceptibility from the

MN model by deriving a wave equation for A similar to (3.17). This is done by treating

the nonlinear interaction as a perturbation to the initial ML model in section 3.1 and taking

the coupling coefficient σ in (3.29) to be small. The process to find a perturbative solution

is performed in stages, with the initial aim of finding an equation solely in terms of A and

homogeneous solutions, similar (3.17) in the ML model.

The first step is to consider the equation for the displacement u, as it is not directly

coupled to the field A. While the expression for u in (3.28) can be immediately substi-

tuted into the p equation in (3.27), this is not always the case. For example, the small u

expansion of the dipole-dipole interaction (3.21) used in section 3.2 could be continued

to the next term in the series. The resulting ppuu interaction would lead to a ppu term on

the right-hand side (RHS) of (3.28) that must be dealt with before it can be substituted in

to the equation for p.

𝑝[𝑝ℎ, 𝑢ℎ, 𝐴, O(𝜎
𝑛+1)]

𝑢[𝑢ℎ, 𝑝, O(𝜎
𝑛+1)]

Electric dipole

𝑝[𝑝ℎ , 𝑢ℎ, 𝐴, 𝑝]

𝑝[𝑝ℎ, 𝐴, 𝑝, 𝑢]

Iterate 𝑢
𝑛 times

Displacement

𝑢[𝑢ℎ, 𝑝, 𝑢]

Iterate 𝑝
𝑛 times

A[𝐴ℎ, 𝑝ℎ, 𝑢ℎ, 𝐴]

Field

A[𝐴ℎ, 𝑝]

Discard 𝜎𝑛+1 terms

Discard 𝜎𝑛+1 terms

Figure 3.4: Schematic of the first iteration process used to derive an equation

for the MN model solely in terms of the field A and homogeneous solutions.

An iteration process is performed by taking the solution to the u equation of motion,

which depends on the homogeneous solution uh, p and yet more u terms, and substituting

it in the place of every RHS u term. While there are still RHS terms of u after this

iteration, they will have gained an additional power of the nonlinear coupling constant σ.

This process of substituting for RHS u terms is repeated to give a solution that is a power

series in σ. After n iterations, all RHS terms up to the nth power of σ contain only p

and the homogeneous solution uh. The remaining RHS terms of u are only found with a
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3.3. The perturbative solution

coefficient of σn+1 or higher. Removing these terms leaves an expression for u in terms

of p and uh that is accurate up to order σn that can be substituted into (3.27). A visual

representation of this process is shown in Fig. 3.4.

This process is repeated with the new p equation of motion, which is given in terms

of the homogeneous solutions uh and ph, the field A and the RHS p terms that must be

iterated. After n iterations, where the entire expression for p has been substituted into the

RHS p terms, all terms up to σn contain only the field A and the homogeneous solutions,

while those containing p have a coefficient of σn+1 or higher. Once again, the σn+1 terms

are discarded and the expression is substituted into the A equation of motion, giving:[
(ck)2 − ω2

]
A(k, ω) = H + ω2 |βα(k)|2Gp(k, ω)A(k, ω) + ZL[A] + ZNL[A], (3.33)

where the various RHS terms have been split into groups. The first term H contains only

homogeneous solutions (uh and ph) and will subsequently be omitted from calculations,

as it will not contribute to the calculation of the linear susceptibility upon rearranging

(3.33) as a wave equation. The second terms is the linear A term that was already present

in the ML model. This will give the leading-order term in the perturbation series of the

effective linear susceptibility of the MN model. The remaining terms of A are contained

within integrals over ω and k and are collected into ZL and ZNL, which are linear and

nonlinear functionals of A respectively.

The nonlinear terms of A contained in ZNL can be used to find an effective nonlinear

susceptibility for the MN model. This could subsequently be used to analyse the re-

emission of frequency-converted A waves by the dielectric. However, the focus of this

derivation is the introduction of broadband absorption to the linear susceptibility. As the

leading-order term of ZNL contains more powers of σ than the leading-order linearA term

(the second term in (3.33) from the ML model) and is dependent upon higher powers of

A, ZNL can be considered negligible for weak fields and as such is omitted from the rest

of this derivation.

After removing H and ZNL , the only remaining RHS components in (3.33) are the

term from the linear model and the linear functional ZL[A]. A different iteration process

is required to extract an effective susceptibility from this expression. Each of the RHS A

terms in (3.33) are split into two groups: those that are in the same mode as the initial wave

(k, ω) and those in a different mode (k′ 6= k, ω′ 6= ω). However, the (k, ω) terms are a set

of measure zero in the integration
∫
dk′
∫
dω′ over all modes in ZL. This is a direct result

of the continuous nature of the wave vector in the Fourier transform of an infinite discrete

system. The current infinite model must instead be considered as an approximation of a
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3.3. The perturbative solution

large, but finite, chain of N atoms. In this more realistic case, the possible wave vectors

are a closely spaced set of N values. The integrals over continuous q in the equations of

motion become a sum over discrete modes, where it is perfectly acceptable to consider a

single term of the sum. For the purposes of the iteration process, it is therefore necessary

to treat the integration over modes as a sum over discrete values. This is similar to some

calculations in quantum optics, where the discretization of modes can be used to simplify

certain calculations, such as the treatment of thermal radiation [109].

Iterate modes 
(𝑘′ ≠ 𝑘,𝜔′ ≠ 𝜔)

Iterate modes 
(𝑘′ ≠ 𝑘,𝜔′ ≠ 𝜔)

Repeat
process 
𝑛 times

𝐴(𝑘′, 𝜔′)

𝐴(𝑘′, 𝜔′)

𝐴(𝑘, 𝜔)

𝐴(𝑘, 𝜔)

𝐴(𝑘, 𝜔)

𝜔2|𝛽𝛼(𝑘)|2𝐺𝑝
′ 𝑘, 𝜔 𝐴 𝑘, 𝜔

𝑐𝑘 2 − 𝜔2 𝐴 𝑘,𝜔 = 𝜔2|𝛽𝛼(𝑘)|2𝐺𝑝 𝑘, 𝜔 𝐴 𝑘,𝜔 + 𝑍𝐿[𝐴]

𝐴(𝑘′, 𝜔′)

…

Figure 3.5: Schematic of the second iteration process used to derive a wave

equation for the field A. Terms in the initial (k, ω) mode are collected together

and those that are not are iterated. The process is ideally repeated until only

terms in the initial mode remain, but in practice is terminated after a finite

number of steps.

Figure 3.5 describes the second iteration process used to rearrange (3.33) to the form

of a wave equation similar to (3.17) of the ML model. At the start of each step, each of

the RHS terms of A in the mode (k, ω) of the initial wave are moved to the LHS of the

equation and grouped with the existing terms. The equation is then iterated by substituting

the new expression into the remaining RHS terms of A in the modes (k′ 6= k, ω′ 6= ω).

The RHS terms of A that have returned to the initial mode (k, ω) are once again moved

to the LHS and the process is repeated. Each step in the iteration can be thought of as a

scattering process, with the overall aim of extracting the waves that scatter back into their

initial mode.

The process is terminated after n iterations, at which point all terms up to the order σn

contain only A terms that have returned to the initial mode and terms of order σn+1 and

higher contain those that have not. The higher order terms are once again discarded and
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(3.33) now takes the form of a 1D wave equation, similar to (3.17) in the ML model, that

is accurate up to the order σn:{
(ck)2 − ω2

[
1 + |βα(k)|2G′p(k, ω)

]}
A(k, ω) = 0, (3.34)

where the RHS homogeneous solutions have been omitted and G′p is identified as the

effective Green function of p in the MN model:

G′p(k, ω) = Gp(k, ω) +O [σ] . (3.35)

Just as the susceptibility (3.18) was extracted from the wave equation (3.17) in the case

of the ML model in section 3.1, the effective linear susceptibility of the MN model can

be extracted from the wave equation (3.34) in terms of the modified Green function:

χeff(k, ω) = β2|α(k)|2G′p(k, ω). (3.36)

All that remains is to calculate the O[σ] terms in (3.35) resulting from the iteration of the

linear A terms in (k′ 6= k, ω′ 6= ω) modes due to the nonlinear interaction term. However,

even in this simplified 1D model, the iteration procedure rapidly becomes notationally

cumbersome. In the next section, a graphical solution to this problem is proposed.

3.4 Nonlinear equations and diagrams

To simplify the vast amount of notation produced using the methods of the previous sec-

tion, the iteration process is instead expressed through diagrams. While this is hardly a

new concept, with Feynman diagrams extensively used in quantum field theory (QFT)

[110], it is not typically used outside of a quantum setting. A set of Feynman rules can

also be found when solving classical field equations perturbatively [111]. These rules are

similar to those of QFT, but with the key difference that Wick contraction cannot be used

to close loops and remove pairs of fields. Only tree diagrams are therefore permitted.

Returning to the equations of motion in (3.26)-(3.28), it can be seen that upon iterating

a field, it is replaced with either a homogeneous solution (which terminates the iteration

process) or the associated Green function accompanied by a coupling term and another

field (or fields) that can be iterated further. For example, in (3.28) u is replaced by uh plus

the Green function Gu multiplied by the coupling term σf2 and an integral over a pp term

that can be iterated further.
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After every step in the iteration process, each field is represented by a line: A, p and

u are wavy, straight and dashed respectively. Green functions for the free fields, which

precede additional fields that can be iterated are drawn as full lines, while homogeneous

solutions, which cannot be further iterated, are represented by terminated lines. Examples

of these are given in Fig. 3.6.

�GA(k, ω)
�

Gp(q, ω)
�

Gu(q, ω)

�Ah(k, ω) �ph(q, ω) �uh(q, ω)

Figure 3.6: Diagram representation of Green functions and homogeneous so-

lutions in the iteration process.

The diagrams are read from left to right and contain these lines joined together in a

limited number of ways, determined by the type of coupling in the Lagrangian. Figure

3.7 displays all possible vertices for the current MN model. The linear coupling term

in LpA gives a two-line vertex, while the nonlinear coupling in Lppu gives a three-line

vertex. Each vertex in a diagram has an associated coupling function from the equations

of motion. Both wave vector and frequency must be conserved at each vertex, although

Umklapp processes mean this is only true up to multiples of the reciprocal lattice vector.

Each undetermined q and ω in the nonlinear vertices must be integrated over all possible

values.

In summary:

• Intermediate lines give the corresponding Green function of the free field.

• Terminated lines give the corresponding homogeneous solution.

• Vertices give the corresponding coupling function determined by the Lagrangian.

• Frequency is conserved at each vertex.

• Wave vector is conserved at each vertex, up to multiples of the reciprocal lattice

vector for a discrete system.

• An integral is performed over each unknown q and ω.

• Only tree diagrams are permitted.
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�

[
−iωβα(q + j 2πa )

]A(q + 2π
a j, ω) p(q, ω)

�

[
iωβα∗(q + j 2πa )

]p(q, ω) A(q + 2π
a j, ω)

�p(q, ω)

u(q1, ωq1)

p(q − q1, ω − ωq1)

[σf1(q, q1)] �u(q, ω)

p(q1, ωq1)

p(q − q1, ω − ωq1)

1
Ma [σf2(q, q1)]

Figure 3.7: The allowed vertices and the corresponding coupling factors for

the nonlinear model.

This diagrammatic representation gives an intuitive way of calculating the total Green

function in a coupled system by summing over all diagrams that start and end with a field

in the same mode. In the absence of coupling, only the “bare” Green function satisfies this

condition, but with the addition of vertices due to Lagrangian interactions new diagrams

can be found that contribute to the new Green function. This is somewhat similar to the

calculation of self-energy in QFT [110].

3.4.1 Applications to the linear model

To demonstrate the capabilities of this diagrammatic approach, the ML model of section

3.1 is considered. In calculating the modified Green function of p dressed withA, denoted

Gd
p, an infinite series of diagrams beginning and ending with p in the same mode can be

found:

�Gdp(q, ω) = �Gp(q, ω) +�Gp(q, ω)

GA(q + j 2πa , ω)

Gp(q, ω)

+�Gp(q, ω)

GA(q + j 2πa , ω)

Gp(q, ω)

GA(q + j′ 2πa , ω)

Gp(q, ω) + . . .

= �Gp(q, ω) +�Gp(q, ω)

GA(q + j 2πa , ω)

Gdp(q, ω) , (3.37)
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3.4. Nonlinear equations and diagrams

where the infinite sum has been simplified using the Dyson equation [110]. While the

wave vector of the p field is limited to the first Brillouin zone, the intermediateA fields are

under no such restriction. As a result, Umklapp processes have been included explicitly

in these diagrams.

Using the rules previously described, the diagrams in (3.37) can be evaluated to give

the equation:

Gd
p(q, ω) = Gp(q, ω)

+Gp(q, ω)

{
∞∑

j=−∞

[
iωβα∗(q + 2π

a
j)
]
GA(q + 2π

a
j, ω)

[
−iωβα(q + 2π

a
j)
]}

Gp(q, ω)

+Gp(q, ω)

{
∞∑

j=−∞

[
iωβα∗(q + 2π

a
j)
]
GA(q + 2π

a
j, ω)

[
−iωβα(q + 2π

a
j)
]}2

G2
p(q, ω)

+ . . . . (3.38)

This infinite sum can simplified in a similar manner to the diagrams in (3.37) using the

Dyson equation to give:

Gd
p(q, ω) = Gp(q, ω)

+Gp(q, ω)

{
∞∑

j=−∞

[
iωβα∗(q + 2π

a
j)
]
GA(q + 2π

a
j, ω)

[
−iωβα(q + 2π

a
j)
]}

Gd
p(q, ω).

(3.39)

The modified Green function Gd
p can be found by dividing (3.39) by GpG

d
p to give:

[
Gd
p(q, ω)

]−1
= [Gp(q, ω)]−1 −

{
ω2β2

∞∑
j=−∞

∣∣α(q + 2π
a
j)
∣∣2GA(q + 2π

a
j, ω)

}
. (3.40)

It can be seen that with the exception of the Dirac delta terms from the expansion of GA,

the sum over reciprocal lattice vectors does not contain any imaginary components. In the

α(z) = δ(z) limit, the identity [112]

π cot (πx) =
1

x
+ 2x

∞∑
j=1

1

x2 − j2
(3.41)

can be used to evaluate (3.40) exactly to give

Gd
p(q, ω) =

1

ω2
0(q)− ω2 − β2

2

(
ωa
c

)
sin(ωa/c)

cos(ωa/c)−cos(qa)

, (3.42)

where the (ω + i0+) pole prescription has been omitted for notational brevity.
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3.5. The effective susceptibility

Figure 3.8: The dispersion relation for the modes of p dressed with A in the

ML model (red lines), found by equating the denominator of the dressed Green

function Gdp to zero, compared to the “bare” dispersion relations of p (dashed

black line) and A (dotted black lines) folded back into the first Brillouin zone

by reciprocal lattice vector scattering.

The dispersion relation for p dressed with A is found by satisfying the equation:[
Gd
p(q, ω)

]−1
= 0 (3.43)

and is shown in Fig. 3.8. The Umklapp processes have the effect of folding the “bare”

dispersion relation of A back into the first Brillouin zone, with each j term in (3.40)

adding an additional branch. While the Dirac delta function approximation of α(z) is

accurate for small k, and therefore small ω in Fig. 3.8, it may not hold at larger frequencies

corresponding to the j 6= 0 branches of the dispersion relation.

3.5 The effective susceptibility

From a diagrammatic point of view, deriving the effective linear susceptibility χeff of the

MN model is equivalent to calculating the expression for the effective Green function G′p,

represented by a straight double line, in the following diagram:

�GA(q, ω)

G′p(q, ω)

GA(q, ω)
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3.5. The effective susceptibility

The Green functionG′p is the “free” Green function for p dressed by nonlinear interactions

with the lattice vibrations, and represents a sum over the intermediate steps of all diagrams

that start and end withA in the same mode, with certain exceptions. The first are diagrams

containing intermediate A terms in the initial mode (q, ω), as these can be reduced to

multiple copies of the above diagram. The second are diagrams where A appears in

multiple “branches” of the various tree diagrams. These can be traced back to the ZNL

term in (3.33) that was previously dropped from calculations, as it instead contributed to

the nonlinear susceptibility of the MN model. Note that the wave vector q of the initial

and final field A is taken to lie within the first Brillouin zone as the primary focus are

fields with λ� a that vary over macroscopic scales.

To calculate G′p, a summation is performed over all diagrams that start and end with p

in the (q, ω) mode, with the exception of those with intermediate terms of A(q, ω) for the

reason described above. Each of the tree diagrams contributing to G′p will have a “main”

branch that starts and ends with Gp(q, ω) and a number of “side” branches that terminate

in homogeneous solutions. The infinite series of diagrams can be collected according to

the number of intermediate p steps in the “main” branch of the tree diagram that are in the

initial (q, ω) mode:

�G
′
p(q, ω) = �Gp(q, ω) +�Gp(q, ω)

F (q, ω)
Gp(q, ω)

+�Gp(q, ω)
F (q, ω)

Gp(q, ω)
F (q, ω)

Gp(q, ω) + . . .

= �Gp(q, ω) +�Gp(q, ω)
F (q, ω)

G′p(q, ω) (3.44)

where the Dyson equation [110] has once again been used to simplify the infinite series.

The term F (q, ω) represents a sum over all possible intermediate steps for processes that

start and end with p(q, ω), but do not contain terms of A(q, ω) (for the reasons described

previously) and p(q, ω) (as the diagram would belong to another term in this series). This

entire process can be thought of as the classical counterpart to the calculation of particle

self-energy in QFT [110], with the F term playing the role of the one-particle-irreducible

diagram.
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3.5. The effective susceptibility

The derivation of the corresponding expression for G′p is similar to that of Gd
p in sec-

tion 3.4.1. The diagram rules in section 3.4 are first used to find the expression for the

sum in (3.44):

G′p(q, ω) =Gp(q, ω) +Gp(q, ω) [F (q, ω)]Gp(q, ω)

+Gp(q, ω) [F (q, ω)]Gp(q, ω) [F (q, ω)]Gp(q, ω) + . . .

=Gp(q, ω) +Gp(q, ω) [F (q, ω)]G′p(q, ω), (3.45)

which has also been shortened using the Dyson equation. This equation is then divided

by GpG
′
p to give: [

G′p(q, ω)
]−1

= [Gp(q, ω)]−1 − F (q, ω). (3.46)

The modified Green function of p in the MN model is therefore expressed in terms of the

“free” Green function Gp and the (in general) complex function F . This expression can

be substituted into (3.36) to find the effective linear susceptibility for the MN model:

χeff(q, ω) =
β2|α(q)|2

{ω2
0(q)− Re [F (q, ω)]} − ω2 − i Im [F (q, ω)]

, (3.47)

where the real and imaginary parts of F have been separated. By comparing (3.47) to the

Lorentz model in (2.19), it can be seen that Re[F ] acts to rescale the resonant frequency

of the ML model and, more importantly, Im[F ] acts as an effective damping term γω,

which is required for broadband absorption.

All that remains is to calculate the expression for F (q, ω). When considering the

diagrams in (3.44) that start and end with Gp, it is important to remember that in the

iteration process described in section 3.3, only the wave vector and frequency of the initial

mode are known. Nonlinear interactions lead to an integration over q and ω of the final

mode. The terms that contribute to the effective linear susceptibility are found by picking

out just a single term from these integrals, a process that is justified by treating the infinite

chain MN model as the limit of a large, but finite medium.

This process must be repeated in the calculation of F (q, ω) from the diagrams that

start and end with Gp. In each case, the expression for the diagrams must be derived for

the general case when all q and ω beside the initial mode are left unspecified. Once this

is calculated, the contribution to F and the resulting effective linear susceptibility χeff are

found by picking out the term in the final integral that returns the p to the initial mode

(q, ω).
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3.5. The effective susceptibility

The various terms in F (q, ω) can be grouped according to the number of nonlinear

coupling coefficients to give a power series in σ:

F (q, ω) = σ2F2(q, ω) + σ3F3(q, ω) + σ4F4(q, ω) + . . . , (3.48)

with each term Fn representing a sum over all diagrams containing n nonlinear vertices.

Note that there is no F1 term, as the nonlinear coupling function f1 is zero in this case.

As it would be impossible to calculate every Fn expression, the next sections focus on the

first few terms in the series.

3.5.1 Leading-order F terms

To calculate the expression for F2, the leading-order term in the F power series, diagrams

that start and end with Gp and contain two nonlinear vertices must be considered. These

are shown in Fig. 3.9 for the general case where only the initial mode of p is specified.

The Green function Gd
p of p dressed with A, defined in (3.40), has been used to sum over

all possible diagrams where the intermediate p field has coupled to A and back again.

For each diagram, the contribution to F2 is found by using the rules in section 3.4 to

find the expression in the general case, before picking out the specific term in the final

integral that returns p to the initial mode. By specifying that (q − q1 − q2, ω − ωq1 −
ωq2) = (q, ω), the expression for each diagram reduces to Gp(q, ω)F2p(q, ω)Gp(q, ω) and

Gp(q, ω)F2u(q, ω)Gp(q, ω), which are labeled according to the type of intermediate field

in the diagram.

The diagram in Fig. 3.9 with intermediate p terms is first considered. In the case where

only the initial mode is specified, the diagrams rules in section 3.4 give the corresponding

function:

Gp(q, ω)

{∫ π/a

−π/a
dq1

∫ ∞
−∞

dω1 [σf1(q, q1)]uh (q1, ω1)Gd
p(q − q1, ω − ω1)

×
∫ π/a

−π/a
dq2

∫ ∞
−∞

dω2 [σf1(q − q1, q2)]uh (q2, ω2)Gp(q − q1 − q2, ω − ω1 − ω2)

}
,

(3.49)

where the integration runs over all possible final modes. This expression contains the ho-

mogeneous solution uh, which must satisfy the equation in (3.32) and is usually expressed

using delta functions in frequency:

uh(q, ω) = U(q)δ [ω − ν0(q)] + U∗(−q)δ [ω + ν0(q)] . (3.50)
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3.5. The effective susceptibility

�
Gp(q, ω)

Gp(q − q1 − q2, ω − ωq1 − ωq2)

Gdp(q − q1, ω − ωq1)

uh(q2, ωq2)

uh(q1, ωq1)

�
Gp(q, ω)

Gp(q − q1 − q2, ω − ωq1 − ωq2)

Gu(q − q1, ω − ωq1)

ph(q2, ωq2)

ph(q1, ωq1)

Figure 3.9: All diagrams starting and ending with Gp and containing two

nonlinear vertices. The dressed Green function Gdp in (3.42) is used due to

the linear coupling term. After only considering diagrams that return to the

initial mode by specifying that (q − q1 − q2, ω − ωq1 − ωq2) = (q, ω), the

expression for each diagram reduces to Gp(q, ω)F2p(q, ω)Gp(q, ω) (top) and

Gp(q, ω)F2u(q, ω)Gp(q, ω) (bottom).

The complex conjugate term is to ensure uh satisfies the required symmetry conditions.

The product of homogeneous solutions in (3.49) can therefore be expanded to four terms:

uh(q1, ω1)uh(q2, ω2) = U(q1)U∗(−q2)δ [ω1 − ν0(q1)] δ [ω2 + ν0(q2)]

+U∗(−q1)U(q2)δ [ω1 + ν0(q1)] δ [ω2 − ν0(q2)]

+U(q1)U(q2)δ [ω1 − ν0(q1)] δ [ω2 − ν0(q2)]

+U∗(−q1)U∗(−q2)δ [ω1 + ν0(q1)] δ [ω2 + ν0(q2)] . (3.51)

However, the contribution to F is extracted from (3.49) only when the final mode of the

corresponding diagram in Fig. 3.9 is equal to the initial mode (q, ω). This requirement

imposes the conditions q1 + q2 = 0 and ω1 + ω2 = 0, which can only be satisfied by the

first two terms in (3.51) because ν0(q) > 0, as defined in (3.25). The latter two terms are

therefore omitted in subsequent calculations as they will not contribute to F2p.
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3.5. The effective susceptibility

A functional form of U(q) must also be specified to evaluate the integral in (3.49)

and the thermal state is a natural choice for the homogeneous solution. The average

amplitude of a harmonic oscillator in thermal equilibrium is inversely proportional to the

frequency [113], giving:

U(q) = U0

[
ν0(0)

ν0(q)

]
. (3.52)

Equation (3.52) and the first two terms of (3.51) are substituted into (3.49) to give:

Gp(q, ω)

∫ π/a

−π/a
dq1

∫ π/a

−π/a
dq2

[
σ2f1(q, q1)f1(q − q1, q2)

]
|U0|2

[
ν2

0(0)

ν0(q1)ν0(q2)

]
×
[

Gd
p(q − q1, ω − ν0(q1))Gp(k − q1 − q2, ω − ν0(q1) + ν0(q2))

+Gd
p(q − q1, ω + ν0(q1))Gp(q − q1 − q2, ω + ν0(q1)− ν0(q2))

]
,

(3.53)

which still describes the diagram in Fig. 3.9 that ends in an arbitrary mode. The contri-

bution to F (q, ω) is found by extracting the specific terms in the integrals of (3.53) that

ensure the final mode is equal to the initial mode. As discussed previously in section 3.3,

this is performed by treating the q integral of the infinite chain as a limit of the qn sum of

the finite chain, where it is perfectly acceptable to consider only a single wave vector.

The specific term q2 = −q1 is extracted from the second integral of (3.53) and the

entire expression can be reduced to the form:

Gp(q, ω)

{
σ2F2p(q, ω)

}
Gp(q, ω), (3.54)

where

F2p(q, ω) =

∫ π/a

−π/a
dq1 a|f1(q, q1)|2

∣∣∣∣U0

a

∣∣∣∣2 [ν0(0)

ν(q1)

]2

×
[
Gd
p(q − q1, ω − ν0(q1)) +Gd

p(q − q1, ω + ν0(q1))

]
(3.55)

and the additional factor of 1/a is to account for the switch between the continuous inte-

gral and the discrete sum. It is important to note that this choice of q2 leads to complex

conjugate pairs of both the homogeneous solution U(q) and the nonlinear coupling func-

tion f1. The resulting factors of |U0|2 and |f1(q, q1)|2 in (3.55) ensure that the integral

over the intermediate modes gives a constructively adding quantity, which is not always

the case for the higher-order terms of F .
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Figure 3.10: Graphical representation (not to scale) of the q1 integration in

(3.55) used to calculate F2p. Starting from an initial mode (qin = 0, ωin = ω0),

denoted by the blue dot, the integration is performed over the intermediate

modes (qin − q1, ωin ± ν0(q1)) (blue lines). Intersections with the dispersion

relation of the intermediate step (red line) in the diagram indicate the presence

of a pole in the integrand, which lead to an imaginary component of F2p.

Figure 3.10 shows a graphical representation of the q1 integral in (3.55) for the ex-

ample initial mode (q = 0, ω = ω0). The blue lines indicate the q1 integration over the

intermediate modes (q − q1, ω − ν0(q1)) and (q − q1, ω + ν0(q1)), while the red lines in-

dicate the modes where the denominator of the Green function Gd
p is equal to zero. It can

be seen that the integrand in (3.55) can contain one or more of poles of the intermediate

Gd
p terms, which present several challenges when evaluating the integral.

The (ω + i0+) pole prescription of Gd
p makes it preferable to perform an integration

over frequency and the relationship between q1 and ω1 imposed by the homogeneous

solutions in (3.50) provides the obvious choice for the a new integration variable using

(3.25):

ν1 = ν0(q1) =
√
ν2

0 + κ2
1 − κ2

1 cos(q1a). (3.56)

Using the standard rules for integration by substitution, the q1 integral over the range

−π/a→ π/a becomes a ν1 integral over the range ν0 →
√
ν2

0 + 2κ2
1, demonstrated here
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for the arbitrary functional Φ:∫ π/a

−π/a
dq1Φ[q1, ν0(q1)] =

∫ √ν2
0+2κ2

1

ν0

dν1ρ(ν1)

{
Φ[Q(ν1), ν1] + Φ[−Q(ν1), ν1]

}
, (3.57)

where:

1

ρ(ν1)
=

∣∣∣∣dν1

dq1

∣∣∣∣ (3.58)

and

Q(ν1) = arcos

(
1 +

ν2
0 − ν2

1

κ2
1

)
, (3.59)

which is the inverse of (3.56) with the properties Q(ν1) = Q(−ν1) and Q(ν1) > 0. After

changing the integration variable in to ν1 and changing the sign of ν1 in the second Green

function, F2p takes the form:

F2p(q, ω) =

∫
ν

dν1

∣∣∣∣U0

a

∣∣∣∣2(ν0

ν1

)2
a

ρ(ν1)
×
[
|f1(q,Q(ν1))|2Gd

p(q −Q(ν1), ω − ν1)

+|f1(q,−Q(ν1))|2Gd
p(q +Q(ν1), ω − ν1)

]
.

(3.60)

where the integral
∫
ν

is over the two ranges −
√
ν2

0 + 2κ2
1 → −ν0 and ν0 →

√
ν2

0 + 2κ2
1,

representing the upper and lower branches in Fig. 3.10 respectively.

The integrand of (3.60) contains a number of poles of Gd
p, labeled ν(n)

pole, which are

found when[
Gd
p(q −Q(ν1), ω − ν1)

]−1
= 0 or

[
Gd
p(q +Q(ν1), ω − ν1)

]−1
= 0. (3.61)

The (ω + i0+) pole prescription in Gd
p conveniently splits the calculation into two parts:

a real principal-value integral and an imaginary component associated with the poles of

Gd
p. While the real part of F2p, which acts to rescale the resonant frequency of χeff in

(3.47), must be calculated numerically, the imaginary part can be found analytically using

the residue theorem [114].

The pole prescription shifts the pole of Gd
p in (3.60) into the upper-half complex plane

of ν1. By performing an integral over a semi-circle with radius r centred on each of the

poles ν1 = ν
(n)
pole in the lower-half complex plane and taking the limit r → 0, an expression
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3.5. The effective susceptibility

for the imaginary part of F2p can be found [114] :

Im[F2p(q, ω)] =

π
∑
n

Res

[ ∣∣∣∣U0

a

∣∣∣∣2(ν0

ν1

)2
a

ρ(ν1)
|f1(q,Q(ν1))|2Gd

p(q −Q(ν1), ω − ν1), ν
(n)
pole

]
+ π

∑
n

Res

[ ∣∣∣∣U0

a

∣∣∣∣2(ν0

ν1

)2
a

ρ(ν1)
|f1(q,−Q(ν1))|2Gd

p(q +Q(ν1), ω − ν1), ν
(n)
pole

]
,

(3.62)

where Res[f(z), z0] denotes the residue of f(z) at z = z0. For the simple poles in (3.62),

the following definition is used [114]:

Res

[
a(z)

b(z)
, z0

]
=
a(z0)

b′(z0)
. (3.63)

The Im[F2p] result can then be used, along with the Kramers-Kronig relations in (2.9), to

check the numerical calculation of Re[F2p].

The presence of an imaginary component in the terms of F confirms Hopfield’s pro-

posal that nonlinear interactions, specifically between electric dipoles and lattice vibra-

tions, can lead to an effective damping term in the susceptibility. While the mode of the

p field directly coupled to light did not satisfy the dispersion relation [Gp]
−1 = 0, the

indirectly coupled modes of u and p dressed with A did satisfy their respective disper-

sion relations [Gu]
−1 = 0 and [Gd

p]
−1 = 0 and thus acted as the absorbing states of the

medium. Once again, comparisons can be made to the calculation of self-energy [110] in

QFT, where imaginary components of the propagator are found when the virtual particles

lie “on-shell” and satisfy their respective dispersion relations.

A similar expression to (3.60) exists for the other diagram in Fig. 3.9, denoted F2u, but

there are significant differences in the result. The intermediate step in F2p is p dressed with

A and the corresponding dispersion relation in (3.43) runs over almost all frequencies, as

seen in Fig. 3.8. As a result of this, poles are almost always present in the integrand

(3.60) and F2p has an imaginary component for most frequencies of the initial mode.

In contrast, the intermediate step in the F2u is the “bare” field u. The corresponding

dispersion relation ν2
0(q) − ω2 = 0 runs over the significantly smaller frequency range

−
√
ν2

0 + 2κ2 → −ν0 and ν0 →
√
ν2

0 + 2κ2, as seen in Fig. 3.3. The first few leading

order F terms with an intermediate u step will therefore not contain poles in the integral

for a large range of initial frequencies. For example, F2u has no imaginary component

near ω0 for the model parameters used later in this chapter. The F2u term is subsequently

ignored in calculations, leaving the F2p term the sole contribution to F2.
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3.5.2 Higher-order F terms

The higher-order terms of F can be calculated in a similar manner to F2p, but additional

considerations must be made when extracting the expressions from diagrams that end in

an arbitrary mode. In the two-vertex cases in Fig. 3.9, the calculation of F terms requires

the final mode (q − q1 − q2, ω − ω1 − ω2) to equal the initial mode (q, ω). This imposes

the conditions q2 = −q1 and ω2 = −ω1. The second nonlinear interaction is therefore

exactly the opposite of the first one. The resulting expressions for F2 contains complex

conjugate pairs of both coupling functions and homogeneous solutions. The higher order

terms of F are under no such restriction, and as such the corresponding expressions for a

diagram can contain a mixture of homogeneous solutions and coupling functions of dif-

ferent frequencies and wave vectors. Upon integration, these can interfere destructively.

As a result, only diagrams with complex conjugate pairs that interfere constructively are

retained, as these will be the dominant contributions to F .

As none of the diagrams with an odd number of nonlinear vertices can satisfy the

conditions for complex conjugate pairs, the next contribution to F belongs to the F4

group. While there are a number of diagrams within this group, only the diagram in

Fig. 3.11 is considered as the intermediate steps of p dressed with the A field are the same

as in the diagram for F2p. As previously stated, the corresponding dispersion relation in

(3.43) runs over almost all frequencies, ensuring the presence of poles (and the resulting

imaginary residue terms) in the integrand, which is not the case for all F4 diagrams

The corresponding F expression for Fig. 3.11, denoted F4p, is found by choosing the

specific homogeneous solutions

uh(q1, ω1) = uh(−q4,−ω4), uh(q2, ω2) = uh(−q3,−ω3), (3.64)

to give complex conjugate pairs in the resulting integral. Under these conditions, the

expression for this diagram reduces to Gp(q, ω)F4p(q, ω)Gp(q, ω) and the central part of

the diagram is the same as the one used to calculate F2p in Fig. 3.9. The final expression

for F4p can therefore be expressed in terms of the previously calculated F2p:

F4p(q, ω) =∫
ν

dν

∣∣∣∣U0

a

∣∣∣∣2 (νmin

ν

)2 a

ρ(ν)

{
|f1(q,Q(ν))|2

[
Gd
p(q −Q(ν), ω − ν)

]2
F2p(q−Q(ν), ω−ν)

+ |f1(q,−Q(ν))|2
[
Gd
p(q +Q(ν), ω − ν)

]2
F2p(q +Q(ν), ω − ν)

}
, (3.65)
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�
Gp(q, ω)

Gp(q −
∑4
i=1 qi, ω −

∑4
i=1 ωqi)

uh(q1, ωq1)

F4p

uh(q4, ωq4)uh(q3, ωq3)

uh(q2, ωq2)

Figure 3.11: Diagram starting and ending withGp and containing four nonlin-

ear vertices, which gives a contribution to F4, which we denote F4p based on

the intermediate steps. After only considering diagrams that return to the initial

mode, the expression for this diagram reduces to Gp(q, ω)F4p(q, ω)Gp(q, ω)

The additional restrictions on higher order F terms to give complex conju-

gate pairs of homogeneous solutions and vertex coupling functions reduce the

middle portion to the F2p diagram in Fig. 3.9.

where the poles in the intermediate Gd
p terms are dealt with in the same manner as those

in the F2p calculations.

When calculating the imaginary components of F4p, it is important to note that if the

middle step in the iteration process in Fig. 3.11 satisfies the dispersion relation [Gd
p]
−1 =

0, the relatively small frequency range of the homogeneous solutions uh mean the denom-

inator of the other Green functions in (3.65) will also be close to zero. Because of this, the

magnitude of the resulting term σ4F4p may be comparable to the lower-order terms in the

F power series (3.48), even with the additional powers of the small nonlinear coupling

coefficient σ.

3.6 Numerical calculations

The frequency and wave vector dependence of the F terms, and the resulting effective

susceptibility, in section 3.5 are not readily apparent from an inspection of (3.60) and

(3.65). This section presents the results of a numerical calculation for F2p and χeff using

the model parameters in Table 3.1. These have been rescaled to dimensionless variables,

taking inspiration from the Gd
p expression in (3.42) to rescale frequencies by a/c, where

a = 3Å is a typical dielectric lattice constant and c is the speed of light.
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The resonant frequency ω0a/c = 0.003 corresponds to a photon energy of 1.975eV

(477.44THz), which lies in the visible region. The values of τ1 (3.5) and σ (3.29) are

related to each other, as both given in terms of V0, which dictates the strength of the

r−3 dipole-dipole in (3.21). The value of τ1a/c = 0.0001 was chosen so that ω0(q)

remained approximately constant over the first Brillouin zone, simplifying the numeric

calculations. The corresponding value of σ and the amplitude U0 of the homogeneous

solution (3.52) ensure that F2p is the dominant term in σnFn series (3.48) for small q and

perturbation theory is valid. The confining potential strength ν0 and the nearest-neighbour

coupling strength κ1 in the particle displacement Lagrangian (3.23) lead to an expression

for ν0(q) in (3.25) that runs over a typical frequency range for lattice vibrations in a solid

of approximately 1.6 → 10THz [115]. Finally, the z0 → 0 limit of α(z) was taken,

reducing the expression in (3.6) to a Dirac delta function. This allowed the sum over

reciprocal lattice constants in the expression for Gd
p (3.40) to be evaluated exactly to the

result in (3.42). The general formulas presented in section 3.5 are not specific to these

values and can be used for any medium, under the condition that perturbation theory must

be valid.

Table 3.1: List of model parameters, rescaled to dimensionless quantities

Parameter Value

a 3Å

ω0a/c 0.003

τ1a/c 0.0001

ν0a/c 0.00001

κ1a/c 0.000049

βa/c 0.0012

σa2/c2 7.6× 10−10

U0/a 0.04

The model parameters in Table 3.1 are not intended to represent a specific medium

and are partly chosen to ensure that F2p is the dominant term in F for small q. The choice

of β, which is the coupling coefficient of the linear interaction between p and A in (3.3),

is especially important due to the role it plays in the Green function of p dressed with A

given in (3.42). The dispersion relation of intermediate step in the F2p process in Fig. 3.9

is given by [Gd
p]
−1 = 0 and is shown in Fig. 3.8. The size of the frequency gap in the
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dispersion relation near ω0 is determined by the value of β. If β and the band gap are too

large, the F2p integral over intermediate modes in (3.60) will not include any poles of the

intermediateGd
p Green functions for initial frequencies near ω0. As a result, the imaginary

terms of F2p in (3.62) will not be present. Conversely, if β is too small, the integral will

contain poles from both the upper and lower branches of the dispersion relation in Fig.

3.8. In this case, the imaginary residues in (3.62) can act to cancel each other out. In both

of these scenarios, one of the higher-order terms in the σnFn series (3.48), such as F4p in

(3.65), will become the dominant term of F . The value of β was therefore chosen to lie

in the intermediate range, where Im[F2p(q, ω)] dominates the F result for small values of

the initial wave vector q.

3.6.1 Frequency dependence

The frequency dependence of F (q, ω) and the resulting χeff were considered by setting

the initial wave vector q = 0. Figure 3.12 shows the real and imaginary components of

F2p for a frequency range centred around ω0a/c = 0.003, which were found to satisfy

the Kramers-Kronig relations. The dominant features in the results are the large peaks in

Im[F2p(q, ω)] above and below ω0. These occur when the F2p integration (3.60) contains

poles of the intermediate Green function Gd
p that lie of the “flat” part of the lower branch

dispersion relation, as seen in Fig. 3.8. The shape of the peaks is determined by the cou-

pling function f1(q, q1) in (3.30) and the specific form of the homogeneous solutions U(q)

in (3.52). The value of Im[F2p] in the intermediate region is smaller, but nonzero, pro-

viding the sought after damping term in the effective susceptibility (3.47) at the resonant

frequency.

With a nonzero imaginary component of F , the imaginary part of the effective sus-

ceptibility in (3.47) can be written as:

Im[χeff(q, ω)] =
|α(q)|2β2 Im [F (q, ω)]

{ω2
0(q)− Re [F (q, ω)]− ω2}2

+ {Im [F (q, ω)]}2
, (3.66)

in contrast to the Dirac-delta function (3.15) of the ML model in section 3.1. The resonant

peak in (3.66) now occurs when ω2 = ω2
0(q)− Re [F (q, ω)], but the small value of σ and

the shape of Re [F2p(q, ω)] in Fig. 3.12 mean that the difference to resonant frequency

is negligible. The peaks of Im [F2p] in Fig. 3.12 will also give features in the imaginary

susceptibility above and below ω0. However, these will be several orders of magnitude

smaller than the Im[χeff ] resonant peak as the previously mentioned resonance condition

will not be satisfied.
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Figure 3.12: Im[F2p] (red) and Re[F2p] (blue) rescaled to dimensionless vari-

ables in the frequency region near ω0 = 0.003 for q = 0. Note that the

imaginary part of F2p is small, but nonzero at ω0. The real and imaginary parts

are related by the Kramers-Kronig relations.

Figure 3.13: The frequency dependence of Im [χeff ] in (3.66) (blue line) using

the leading-order term F2p when q = 0. The resonant frequency of the sus-

ceptibility is effectively unchanged by Re [F2p]. The calculated susceptibility

is extremely well fitted by the Lorentz model (red dashed line) in (2.19).

Figure 3.13 shows the frequency dependence of the imaginary part of the effective

linear susceptibility in (3.66) at q = 0, using only the F2p component of the F power

series in (3.48). A peak in Im [χeff ] is found at the resonant frequency ω = ω0(0), which

has remained effectively unchanged by the presence of Re[F2p] in the denominator of
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(3.66). Most importantly, the resonant peak in Fig. 3.13 now displays the broadband

absorption that has been the goal of this chapter, verifying the original proposal made by

Hopfield. In addition to this, the complex effective linear susceptibility χeff can also be

described almost exactly by the Lorentz model:

χ(ω) =
ω2
p

ω2
T − ω2 − iγω

, Im[χ(ω)] =
ω2
pγω

(ω2
T − ω2)2 + (γω)2

, (3.67)

once again matching the predictions made by Hopfield in his original paper. The imagi-

nary part of (3.67) is shown in Fig.3.13 for the model parameters ωT = ω0(0) ≈ 477THz,

ωp ≈ β ≈ 190THz and γ ≈ 33Hz, which provide an almost-perfect fit to Im [χeff ].

This result is in stark contrast to the phenomenological reservoir [23], where a specific

and highly artificial frequency-dependent coupling function must be used to recover the

Lorentz model. The agreement between the resonant peak in Fig. 3.13 and the Lorentz

model in (3.67) was found without any special considerations to the form of nonlinear

coupling, which was found to emerge naturally from the r−3 dipole-dipole interaction.

The excellent fit to the Lorentz model is likely due to the shape of F2p in Fig. 3.12.

By comparing (3.66) to (3.67), it can be seen that Im [F2p] is the equivalent term to γω

in the Lorentz model. The imaginary part of F2p does not vary rapidly over the central

frequency range between the two peaks in Fig. 3.12 and so Im [F2p] in (3.66) can therefore

be treated as a constant over the narrow frequency range of the resonant peak in Fig. 3.13.

The same argument can also be applied to the corresponding term of γω in the Lorentz

model (3.67), which does not vary significantly over the small range of the resonant peak

in Fig. 3.13. The excellent agreement between χeff and the Lorentz model is therefore

due to the fact that the damping term of each model can be treated as a constant over the

width of the resonant peak. Wider peaks in the susceptibility will require the value of F

to increase with frequency to match the γω term of the Lorentz model, which is already

found in Fig. 3.13.

While the resulting values for the susceptibility are clearly unrealistic, with the maxi-

mum value of 2.4×1012 for Im[χeff ] in Fig. 3.13 being several orders of magnitude larger

than the values found in a real dielectric [85], the aim of this chapter was simply to verify

Hopfield’s proposal that nonlinear interactions would lead to broadband absorption and

a damping term in the susceptibility. The extreme size and sharpness of the imaginary

susceptibility peak is due to the small value of σ and the use of perturbation theory to find

F . A larger σ would mean that a higher-order term in the F power series would dominate

the final expression, which would require calculating the expressions for more advanced
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diagrams with a larger number of nonlinear interactions. Achieving realistic results for F

would likely require the consideration of significantly more diagrams than described here,

in addition to many of the other nonlinear interaction terms that were previously omitted.

Examples include the higher-order expansions of the r−3 dipole-dipole coupling in (3.21)

or non-parabolic terms in the confining potential of the Lagrangian Lu (3.19). Such a cal-

culation is far beyond the scope of this thesis and would require significant computational

power.

3.6.2 Wave vector dependence

Information on the spatial dispersion of materials is somewhat limited in comparison to

temporal dispersion. Typically, this is restricted to the q-dependent resonant frequency in

the Lorentz model, as described in section 2.1.5. This section investigates the wave vector

dependence of Im [F (q, ω)], which corresponds to the damping term γω in the Lorentz

model. Although this has been measured in some cases [116], this behaviour is generally

overlooked [86].

Figure 3.14 compares imaginary parts of the leading-order term [F2p] in (3.60) and the

higher-order term [F4p] in (3.65) as a function of q. These values determine the effective

damping of the resonance in the effective susceptibility (3.66) and are given for the initial

frequency ω0(q), as the shift in the resonant frequency due to Re[F ] was found to be

negligible. It can be seen that Im[F2p] increases with q at first, before approaching zero as

q approaches the edge of the Brillouin zone. Using the model parameters in table 3.1, the

imaginary components of F2p for initial frequencies near ω0 are a result of the q1 integral

overlapping the lower branch of the Gd
p dispersion relation. For small initial q, as seen

in Fig. 3.10, the residue terms have similar values due to the symmetry of the system.

The sum over residues in (3.62) is therefore constructive and F2p is the dominant term in

the F sum. However, as the initial wave vector moves outside the “light cone” described

by ω = ck, the residue in the same half of the Brillouin zone as qin changes sign and

begins to cancel out the other residue. The underlying reasons behind this behaviour are

quite complex. Thanks to the definition in (3.63), the residue can roughly be thought of

in terms of the gradient of the dispersion relation at the intersection with the integration

path, which is the location of the pole. When q is outside of the light cone, as seen in Fig.

3.15, the gradients of the function at the two intersections are roughly equal and opposite.

The corresponding residues therefore also act to cancel each other out.

In cases such as this, where cancellations cause a leading-order term in the F sum to
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Figure 3.14: Imaginary components of σ2F2p (blue) and σ4F4p (green)

rescaled to a dimensionless quantity. The overall sum (red) is dominated by

the leading-order term F2p near q = 0. At larger q, the residues in F2p can-

cel each other out and the higher-order term F4p dominates the result. The

residues of this term also begin to cancel as q → π/a and a full q dependence

would require calculating many more higher-order F terms.

approach zero, one of the higher-order terms will instead dominate the result. This can be

seen in Fig. 3.14, where F4p gives the largest contribution to the F sum for intermediate

q values. As previously described in section 3.5.2, if the denominators of the additional

Gd
p Green functions in (3.65) are close to zero, the magnitude of σ4F4p can be comparable

to that of the lower-order term despite the extra factors of the small nonlinear coupling

coefficient σ. However, as q increases the various imaginary residue terms in F4p begin to

cancel in a similar manner to those of F2p. Such behaviour is to be expected, as F4p (3.65)

is expressed in terms of F2p. As the higher-order term also approaches zero as qa→ π, it

is presumed that one of the even higher-order terms of F will dominate the result.

In the very small q range, where F2p dominates the result, the value of the fitted

Lorentz model damping term γ can be described by a power series in q:

γ(q) = γ0 + γ2(qa)2 + γ4(qa)4 + . . . , (3.68)

where the symmetry of the system restricts this series to even powers only. The expansion

up to q2 provides a good fit to the calculated susceptibility up to qa = 0.1. This matches
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Figure 3.15: Graphical representation (not to scale) of the q1 integration in

(3.55) used to calculateF2p for an initial mode with large q, denoted by the blue

dot. The integration is performed over the intermediate modes (q − q1, ω ±
ν0(q1)) (blue lines) which contain poles of the intermediate Green function

Gdp when this intersects the dispersion relation [Gdp]
−1 = 0 (red lines), The

imaginary residue terms associated with these poles can cancel each other out,

causing a higher-order term to dominate the result for F (qin, ω).

another model proposed by Hopfield and Thomas [86] , which was made under different

considerations to the current MN model. The full q dependence of F as q → π/a would

require the calculation of many higher-order Fn terms, which lies beyond the scope of

this thesis.

3.7 Chapter summary

This chapter has verified the proposal made by Hopfield made in his 1958 paper [2] —

that the introduction of nonlinear interactions will solve the lack of broadband absorption

in the susceptibility of linear dielectric models, instead giving a susceptibility described

by the Lorentz model with a nonzero damping term. While previous work on this subject

has been in the quantum regime [9–13], where a complete treatment of the system is

incredibly challenging, the derivation in this chapter was performed classically [25].
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The nonlinear microscopic dielectric model used consisted of a chain of particles, with

a displacement from the lattice sites and an electric dipole that was linearly coupled to a

field representing a projection of the electromagnetic vector potential. While the model

was one-dimensional, the results could be applied to a three-dimensional cubic lattice

under certain restrictions. The nonlinear coupling was found to naturally emerge from

the r−3 dipole-dipole interaction, with the particle displacements acting as a “pseudo-

reservoir” and providing the coupling to a continuum of modes required by Hopfield [2].

The resulting nonlinear equations of motion for the model were solved by treating the

nonlinear interaction term as a small perturbations of the system. The expressions were

rearranged using an iteration process to a find an expression in the form of a wave equa-

tion, from which an effective linear susceptibility could be extracted. This notationally

cumbersome process was performed using a diagrammatic method, similar to the calcu-

lation of self-energy in quantum filed theory using Feynman diagrams. The calculation of

the effective linear susceptibility amounted to the summation over all diagrams that start

and end with the dipole field in the same mode.

Exact expressions were derived for one of the leading-order and one of the higher-

order terms contributing to the effective linear susceptibility χeff . Imaginary components

were found when the intermediate fields in the iteration process satisfied their correspond-

ing dispersion relations.

Numerical calculations of these terms were preformed to investigate the frequency

and wave vector dependence of the susceptibility. While the resulting values for the ef-

fective linear susceptibility were unrealistically large in comparison to real dielectrics (a

limitation of perturbation theory), χeff was found to have the broadband absorption pre-

dicted by Hopfield. In addition to this, the results were found to be an excellent fit to the

Lorentz model of susceptibility without the need for a specific frequency-dependent cou-

pling, which is the case for the phenomenological reservoir. The wave vector dependence

was found to be more complex, with the various imaginary contributions in the lower-

order terms of the perturbation series cancelling each other out as q increased, leaving

a higher-order term to dominate the result. At small q, the damping term γ of the fitted

Lorentz model was found to obey an even power series in q, agreeing with a proposal

made by Hopfield and Thomas under a different set of considerations [86], while the full

q dependence would require the calculation of a large number of higher-order terms.
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Chapter 4

Assumptions in ABC models

The second half of this thesis extends the Halevi and Fuchs [4] model of a half-infinite

nonlocal medium to include many more of the features found in real materials [61, 62].

Before these improvements are made, this chapter takes a closer look at the derivations

behind a specific ABC [55] and the generalized ABC model [4]. In both cases, certain

assumptions are made during the derivation that initially appear to be straightforward and

trivial, but actually require careful consideration upon closer inspection. The aim of this

chapter is to fill the gaps in these derivations and asses the validity of the assumptions

made in each case.

Section 4.1 takes a second look at the derivation of the Pekar ABC [55], focusing

on the choice of the medium boundary position that is made in the transition from the

microscopic to macroscopic regime. Taking inspiration from the previous chapter, an

iteration process is used to independently check Pekar’s calculation before making several

improvements to his work.

Section 4.2 considers the choice of ansatz made by Halevi and Fuchs [4] for the elec-

tric field in a half-infinite nonlocal medium. Their paper assumes the field is described by

a sum of plane waves, with wave vectors that satisfy the dispersion relation of the infinite

medium. While this is a safe assumption to make far from the boundary, the derivation

of the reflection and transmission coefficients in section 2.3 depends on the behaviour of

the field at the boundary, where the susceptibility of the half-infinite nonlocal medium

is significantly different to the infinite case. Despite the fact that the behaviour of the

field is critical to their final result, Halevi and Fuchs gave no justification for the use of

this ansatz and provided no argument that it was appropriate for the susceptibility of the

half-infinite medium. Once again, an iteration procedure is used to independently derive
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an expression for the electric field without making any assumptions other than the form

of the nonlocal susceptibility and the shape of the boundary.

4.1 The Pekar ABC

In section 2.3.2, it was shown that the Maxwell boundary conditions were insufficient to

calculate the reflection and transmission coefficients of a nonlocal medium. The addi-

tional information was provided in the form of Additional Boundary Conditions (ABCs)

on the behaviour of the polarization field just inside the planar boundary of the half-

infinite medium. A wide variety of ABCs were proposed [33–56], each derived under

different assumptions specific to the type of material considered. The first, and perhaps

the simplest, of these was derived by Pekar [53–56], which states that the polarization

field must vanish at the boundary of the nonlocal medium.

The Pekar ABC [55] was derived from a microscopic model of discrete atoms in a

crystal at positions n = n1a1 + n2a2 + n3a3, where ai were the lattice vectors. To

consider the case of Frenkel (tight-binding) excitons [57, 58] in the medium, nearest-

neighbour coupling was added between each of the atoms in the lattice. After considering

a slab bounded by the planes n3 = 1 and n3 = N , where N is an arbitrarily large integer,

Pekar used various symmetry arguments to show that the polarization field P must vanish

at the n3 = 0 origin.

At this point in his derivation, Pekar states that the n3 = 1 plane is, in a macroscopic

sense, a plane through the n3 = 0 origin of co-ordinates and thus P = 0 at the boundary

of the medium. However, from a microscopic perspective, Pekar had derived a condition

for z = 0− just outside the boundary of the medium, rather than z = 0+ just inside

the boundary, which was required for the calculation of reflection and transmission in

spatially dispersive media as described in section 2.3.

This section takes an independent approach to find the ABC for this system, and inves-

tigates the impact, if any, the discrepancy in the boundary position has on the result. This

is done by calculating the expression for the microscopic susceptibility of a half-infinite

chain of atoms with nearest-neighbour coupling. By comparing to the generalized ABC

model used by Halevi and Fuchs [4]:

χ′i(z, z
′) = χ(z − z′) + Uiχ(z + z′), (4.1)

an expression for Ui and the corresponding ABC is found. This is first performed for a

system with nearest-neighbour coupling similar to Pekar’s, before being extended to the
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more general case of jth-nearest-neighbour coupling with interaction strengths that decay

with distance.

4.1.1 Nearest-neighbour coupling

To derive the susceptibility of the half-infinite medium in a form similar to the one used by

Halevi and Fuchs in (4.1), the infinite case must first be considered. The model chosen is a

simplified one-dimensional version of Pekar’s model [55] and consists of a chain of atoms

with radius r0 located at zn = na, where n = −∞→∞ and a is the lattice spacing. Note

that this includes the possible case where r0 > a/2, which leads to an overlap between

neighbouring atoms. Each atom has an electric dipole pn that is linearly coupled both to

the electric field E at the lattice site and the dipole of the nearest-neighbour atoms.

The equation of motion for each dipole in the infinite model is assumed to take the

simplified form:

pn(ω) = g(ω)E(zn, ω) + h(ω) [pn+1(ω) + pn−1(ω)] (4.2)

where g(ω) and h(ω) are arbitrary functions. Frequency dependence will be subsequently

omitted for notational brevity as it plays no role in the subsequent derivation. The first

term describes the linear coupling to the electric field, while the second contains the

nearest-neighbour interactions. Rearranging (4.2) to give p solely in terms of E is usually

done by performing a spatial Fourier transformation. Instead, an iteration process is per-

formed by substituting the entire expression for pn in (4.2) into each of the right-had side

(RHS) terms of pn. The first few steps of this process are displayed below:

pn =gE(zn) + h [pn+1 + pn−1]

=gE(zn) + gh [E(zn+1) + E(zn−1)] + h2 [pn+2 + 2pn + pn−2]

=gE(zn) + gh [E(zn+1) + E(zn−1)] + gh2 [E(zn+2) + 2E(zn) + E(zn−2)] +O[h3].

(4.3)

The resulting expression for pn is a sum over E(zm), with each coefficient expressed

as a power series in h. As the model is for an infinite medium is invariant under transfor-

mations of the lattice constant, the coefficients only depend on the difference |n−m|:

pn =
∑
m

Λ|n−m|E(zm), (4.4)
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where some examples of Λn are given by:

Λ0 = g
(
1 + 2h2 + 6h4 + 20h6 + 70h8 + . . .

)
,

Λ1 = g
(
h+ 3h3 + 10h5 + 34h7 + 126h9 . . .

)
,

Λ2 = g
(
h2 + 4h4 + 15h6 + 56h8 + . . .

)
,

Λ5 = g
(
h5 + 7h7 + 36h9 + . . .

)
. (4.5)

Note that the leading-order term in Λn is always ghn. By comparing to the definition of

the nonlocal susceptibility in (2.3), Λ|n−m| can be seen as the equivalent of χ(zn − zm)

for this infinite discrete model.

The half-infinite model is then considered, with n now running from 0 → ∞. The

equations of motion for pn remain the same as (4.2), with the exception of the p0 equation,

where the p−1 term is removed as this dipole no longer exists in the half-infinite medium.

The iteration process used in (4.3) for infinite medium is repeated to once again find an

expression for pn:

pn =
∑
m

Λ′n,mE(zm), (4.6)

where Λ′n,m no longer depends on |n−m|. Upon closer inspection, each term of Λ′n,m can

be expressed in terms of the infinite medium coefficient Λn using

Λ′n,m = Λ|n−m| − Λn+m+2. (4.7)

An example of this is Λ′2,1, which can be rewritten in terms of the coefficients in (4.5):

Λ′2,1 =g
(
h+ 3h3 + 9h5 + 28h7 + 90h9 + . . .

)
=g
(
h+ 3h3 + 10h5 + 34h7 + 126h9 . . .

)
− g

(
h5 + 7h7 + 36h9 + . . .

)
=Λ1 − Λ5. (4.8)

The first term in (4.7) is translation invariant and gives the non-local bulk response,

while the second term depends on the distance of n and m from the boundary and de-

scribes reflection on the surface. This way of expressing the behaviour of the half-infinite

medium in terms of the infinite bulk response is very similar to the model used by Halevi

and Fuchs [4] in (4.1). However, the reflected component appears to be traveling past the

boundary to a “phantom” dipole p−1, located at z = −a before reflecting with an am-

plitude coefficient of −1. This is illustrated in Fig. 4.1. The location of this “phantom”

dipole coincides with the n3 = 0 origin of Pekar’s model [55], which was subsequently
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New boundary
Pekar

boundary

a
r0

−Λ𝑛+𝑚+2 Λ 𝑛−𝑚

Λ𝑛,𝑚
′

𝑛 𝑚0 1 …

Figure 4.1: Diagram comparing the components of Λ′n,m in (4.7) for a 1D

chain of atoms with radius r0 and lattice spacing a between the centers. The

bulk response (blue) Λ|n−m|is identical to that of the infinite medium, while

the Λn+m+2 term describes the reflection of p at the “phantom” dipole p−1.

The vertical lines indicate the choice of z = 0 boundary for Pekar (dashed),

which actually lies outside the medium, and the modified position used in this

chapter (solid).

used as the boundary of the medium. It can be seen that the p wave acts as if it has

reflected at a point outside the medium.

The next step is to take this result to the macroscopic limit so a comparison can be

made to the form (4.1) used by Halevi and Fuchs. An important part of this is defining

where the z = 0 boundary lies, as this determines the position where the ABCs are appli-

cable. The microscopic location of this plane therefore has an effect on the macroscopic

reflection and transmission coefficients, as they are entirely dependent on the behaviour

of the electric field at the position z = 0+ just inside the boundary.

Pekar defined the z = 0 surface a distance of one lattice constant a from the position

of the dipole at the end of the chain. This is the location of the “phantom” dipole p−1 that

the second term in (4.7) appears to reflect on. Assuming χ(z) is the macroscopic limit of

Λn, the discrete expression in (4.7) becomes:

χ′(z, z′) = χ(z − z′)− χ(z + z′), (4.9)

which agrees with the value Ui = −1 used by Halevi and Fuchs for the Pekar ABC. In

reality, this position can lie outside the medium. Figure 4.1 demonstrates this for the case

when r0 < a.

To ensure the resulting ABCs can be applied to the calculation of the surface impedance,

a new z = 0 position inside the medium must be defined. Figure 4.1 presents the case
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4.1. The Pekar ABC

where the edge of the n = 0 atom has been chosen as the new boundary. The macroscopic

susceptibility for this case is given by:

χ′(z, z′) = χ(z − z′)− χ(z + z′ + L). (4.10)

where L = 2(a− r0). The expression in (4.10) can potentially be rearranged to the form

in (4.1). Using the same bulk susceptibility as Halevi and Fuchs [4]:

χ(q) ∝ 1

q2 − Γ2
, −Γ2 =

ω2
T − ω2 − iγω

D
+K2, (4.11)

which corresponds to the real-space expression:

χ(z) ∝ eiΓ|z|, (4.12)

the expression in (4.10) can be rewritten as:

χ′(z, z′) = χ(z − z′) + Uχ(z + z′), U = −eiΓL, (4.13)

where Im[Γ] > 0 ensures the |U | < 1 condition made by Halevi and Fuchs is satisfied.

The apparent shift of the reflection plane in Fig. 4.1 can instead be thought of as a phase

factor in the reflection coefficient. While similar behaviour is also found in the Goos-

Hänchen effect (specifically the second-order Focal Shift) [117], the origin of this effect

is different as it relies upon the angular spectrum of a finite-sized beam at non-normal

incidence.

Unlike the values of U previously obtained from ABC’s in Table 2.1, the expression

in (4.13) is complex and dependent on both ω and K. In most cases, |ΓL| � 1 near

the resonant frequency, leading to a result that is almost identical to the Pekar value of

U = −1. However, far from the resonance, or when the wavelength of the polarization

field becomes comparable to L, the result in (4.13) may be significantly different to that

of Pekar. This may prove to be important in the calculation of spectral energy, where the

integral in (2.63) runs over all values of K.

It must be noted that the same result can be found by following Pekar’s derivation, but

instead focusing on P at z = a− r0. Using the susceptibility in (4.11) and the relation in

(2.53), the subsequent equation for P leads to:

αi
βi

=
−Γ

tan[Γ(a− r0)]
, → Ui = −eiΓ2(a−r0), (4.14)

which matches the result in (4.13). However, the iterative method has several advantages

as it can be applied to models with next-nearest-neighbour coupling or greater.
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4.1.2 jth-nearest-neighbour coupling

The iterative method in 4.1.1 is far more general than Pekar’s derivation and can be ap-

plied to models with jth-nearest-neighbour interactions with the corresponding coupling

strengths hj . While the nonlocal Λ′n,m can once again be split into a bulk and reflection

term, as in (4.7), the latter of these will no longer be an exact match to a Λn term of

the infinite medium. Instead, it will correspond to p propagating a non-integer number

of lattice constants. The exact distance the reflected component travels must be found

by substituting numeric values for the hj coefficients and interpolating between the Λn

values of the infinite medium.

As an example, a model with next-nearest-neighbour coupling is considered. The

simplified equation of motion for pn in this system is given by:

pn = gE(zn, ω) + h1 [pn+1(ω) + pn−1(ω)] + h2 [pn+2(ω) + pn−2(ω)] , (4.15)

where h1 and h2 are the relative coupling strengths. The process is the same as in section

4.1.1, with the infinite medium first considered. The entire expression for pn in (4.15) is

substituted into each of the RHS pn terms repeatedly to give an expression of the form

(4.4). The Λn coefficients are expressed as a power series of both h1 and h2.

The half-infinite medium containing the dipoles n = 0 to∞ is then considered. The

equations of motion remain the same as (4.15), but with the removal of the p−1 and p−2

terms from the p0 and p1 equations. The same iteration is then performed for the half-

infinite medium to find the coefficients Λ′n,m. The Λn result for the infinite medium can

be used to split each of the coefficients into two parts:

Λ′n,m = Λ|n−m| − ΛR
n,m (4.16)

where ΛR contains all terms not included in the bulk response Λ|n−m| . Unlike the previous

section, ΛR does not correspond to one of the Λn terms of the infinite medium. However,

by substituting numeric values for h1 and h2, ΛR
n,m can be compared to the values of Λn

to find the effective distance travelled by the reflected term.

A comparison between ΛR
n′,m′ and the values of Λn is shown in Fig. 4.2 for the specific

case of ΛR
n′=6,m′=8. The interaction between the electric dipoles in the model is assumed

to obey a 1/rN power law, where r is the distance between the dipoles, similar to that

of the dipole-dipole potential (3.4) used in chapter 3. Figure 4.2 compares the results for

severalN values, using the coupling strengths h1 = 0.1 and h2 = h1/2
N . It must be noted

that the iteration process described in this section is in no way specific to these values, or

the r-dependence of the coupling strengths.
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4.1. The Pekar ABC

Figure 4.2: Diagram comparing values of the bulk expression Λn/g for a sys-

tem with next-nearest-neighbour coupling, with h1 = 0.1 and h2 determined

by an 1/rN power law. Includes N = 1 (blue), N = 2 (green), N = 3 (yel-

low), N = 4 (orange) and N = 5 (red). Horizontal lines indicate the value

of ΛRn′,m′ in each case for the example values n′ = 6,m′ = 8. With the in-

troduction of next-nearest neighbour coupling, the reflection term corresponds

to a distance travelled that is very slightly larger than the n′ + m′ + 2 lattice

constants of the nearest-neighbour model.

The values of Λn shown as points in Fig. 4.2 describe the p wave traveling a distance

na in the infinite medium. These values are interpolated to give the dashed lines, which

represent the p wave traveling a non-integer number of lattice constants. The horizontal

lines indicate the value of ΛR
n′=6,m′=8 for each N and the intersection with the dashed

lines can be used to calculate the effective distance travelled by the reflected p wave in the

next-nearest-neighbour model.

It can be seen that the presence of next-nearest-neighbour coupling increases the ef-

fective distance travelled by the reflected p wave in comparison to the n′ +m′ + 2 lattice

constants of the nearest-neighbour model in section 4.1.1. This new distance depends on

the values ofN , approaching n′+m′+2.5 for the slowly decaying 1/r potential. Potentials

that decay rapidly, such as the M = 5 case, return to the result of the nearest-neighbour

coupling model as h2 becomes negligibly small. These new distances are largely inde-
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Figure 4.3: Diagram comparing values of the bulk expression Λn/g for a

system with jth-nearest-neighbour coupling, with h1 = 0.1 and other terms

determined by an 1/r3 power law. Includes j = 1 (red), j = 2 (orange), j = 3

(yellow), j = 4 (green), j = 5 (blue) and j = 6 (purple). Horizontal lines

indicate the value of ΛRn′,m′ in each case for the example values n′ = 6,m′ =

8. The greater the number of coupling terms, the larger the effective distance

travelled by the reflected term, exceeding n′+m′+3 for 6th-nearest-neighbour

coupling.

pendent of the value of h1 and the specific choice of n′ and m′, provided they are not too

close to the end of the chain.

The inclusion of additional jth-nearest-neighbour coupling terms also affects the ef-

fective distance travelled by the reflected p wave. Figure 4.3 compares the values of Λn

and ΛR
n′=6,m′=8 in models with jth-nearest-neighbour interactions. The coupling strength

h1 = 0.1 is used once again, and higher-order terms of hj are taken to obey a 1/r3 power

law. The inclusion of additional coupling terms can be seen to have a much stronger ef-

fect on the the effective distance travelled by the reflected p wave compared to the effect

of N in Fig. 4.2. The distance is found to increase with every additional coupling term,

exceeding n′ + m′ + 3 lattice constants for 6th-nearest-neighbour coupling. Once again,

these results are largely independent of the value of h1 and the specific choice of n′ and

m′, provided they are not too close to the end of the chain.
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In each of these cases, the coefficients of the half-infinite medium can now be written

as

Λ′n,m = Λ|n−m| − Λn+m+leff
, (4.17)

where the second term describes the reflected p wave traveling the non-integer number of

lattice constants n + m + leff . After taking the macroscopic limit of (4.17) to the form in

(4.10), the expression for L is now given by

L = leff − 2r0. (4.18)

Increasing the number of nearest-neighbour coupling terms and decreasing the decay of

the coupling strengths both cause leff to increase, further changing the corresponding value

of U in (4.13) from the −1 value used by Pekar. However, the Pekar ABC will act as a

good approximation to this result in the |ΓL| � 1 regime.

4.1.3 Conclusions

This section provided an alternate derivation of the Pekar ABC and investigated the effect

of coupling strength and jth-nearest-neighbour coupling between dipoles. At the micro-

scopic scale, the reflected polarization waves act as if they reflect on a point outside the

medium, which is equivalent to the additional phase term in the result Ui = −exp(iΓL).

In the macroscopic limit, the Pekar ABC Ui = −1 provides a good approximation for

the model, although this will fail to hold when Γ becomes large either far from the res-

onance or for wavelengths that are comparable to the lattice spacing. The validity of the

expression used by Halevi and Fuchs [4] in (4.13) is questionable in the latter case, as it

is expressed in terms of the macroscopic susceptibility which by definition describes the

electromagnetic response of a medium over scales much larger than the lattice spacing.

The Pekar ABC Ui = −1 is therefore a safe approximation to use for systems with tight

binding.

4.2 The Halevi-Fuchs ansatz

In 1985, Halevi and Fuchs introduced a generalized ABC model for the half-infinite non-

local medium [4], collecting the various ABCs that were previously derived [33–56] into

a single, easy-to-use formalism. Their work is described in greater detail in section 2.3.4,
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4.2. The Halevi-Fuchs ansatz

but the key points are repeated here. The susceptibility χ′ of the half-infinite medium used

in their paper was expressed in terms of the infinite medium susceptibility χ:

χ′i(x− x′, y − y′, z, z′) =


χ(x− x′, y − y′, z − z′)

+ Uiχ(x− x′, y − y′, z + z′) if z, z′ > 0,

0 otherwise.

(4.19)

where the z = 0 plane has been taken as the boundary of the medium. The (z −
z′)-dependent term described the usual bulk response of the medium and the (z + z′)-

dependent term described the polarization waves reflecting on the interior surface of the

dielectric. The ABC information was contained within the reflection coefficients Ui of the

polarization waves.

Halevi and Fuchs found the specific form of the nonlocal susceptibility in (4.19) in-

sufficient to solve the wave equation:

∇×∇×E(r)− k2
0E(r)− k2

0

∫ ∞
−∞

d3r′χ(r, r′)E(r′) = 0 (4.20)

where k0 = ω/c. The other critical assumption made by Halevi and Fuchs was the ex-

pression for the monochromatic electric field inside the half-infinite nonlocal medium:

E(r, t) =

(
N∑
n=1

E(n)eiqnz

)
eiKxe−iωt z > 0, (4.21)

where the N wave vectors kn = Kx̂ + 0ŷ + qnẑ are the Im[qn] > 0 solutions of the

infinite-medium dispersion relation (2.15). It is important to note that Halevi and Fuchs

were not alone in their choice of ansatz for the electric field, as this expression was also

used in several of the papers deriving the individual ABCs.

The ansatz in (4.21) is a safe assumption for a medium described by the susceptibility

(4.19) in the z, z′ →∞ limit, as the (z+ z′) term in χ′ becomes negligible in comparison

to the (z − z′) bulk response of the medium due to the exponential dependence in (4.12).

However, the electromagnetic reflection and transmission coefficients described in section

2.3 depend on the behaviour of the field in the z → 0 limit. In the region near the

boundary, there are significant differences in the wave equation (4.20) between the infinite

and half-infinite medium. This is true even in the Ui = 0 case, as the integration over z′ is

limited to the z > 0 half-space for the half-infinite medium. Halevi and Fuchs provided

no justification for the use of the ansatz (4.21) in this critical region.

This aim of this section is to perform an independent check for the validity of the

electric field ansatz used by Halevi and Fuchs, specifically in the region near the boundary.
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4.2. The Halevi-Fuchs ansatz

A calculation of the electric field in the half-infinite medium is made using an iteration

process. No assumptions about the system are made other than the expression for χ′ and

the shape of the boundary.
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4.2.1 Calculating the electric field

This section starts by returning to the electric field wave equation in a nonlocal medium:

∇×∇×E(r)− k2
0E(r)− k2

0

∫
d3r′χ(r, r′)E(r′) = S(r), (4.22)

where S is an arbitrary source term. The susceptibility of the half-infinite medium in

(4.22) is treated as a perturbation and an iteration process is used to find E inside the

medium in terms of a source S outside the medium.

The Halevi and Fuchs [4] susceptibility model in (4.1) is used to describe the nonlocal

medium occupying the z > 0 half-space, with some minor changes. The first is the

choice of Ui. While the derivation can be performed for general Ui values, this chapter

uses the Ui = 0 Agarwal ABC [33–42]. This choice is made simply to reduce the amount

of notation and the overall findings of this chapter are not specific to these values. The

second change replaces the scalar bulk susceptibility used by Halevi and Fuchs with the

general expression for a homogeneous, isotropic, non-gyroscopic medium:

χij(k, ω) = δijχ⊥(k, ω) +
kikj
k2

[
χ‖(k, ω)− χ⊥(k, ω)

]
, (4.23)

which makes it easier to distinguish between transverse and longitudinal components of

E inside the medium. The χ‖ = χ⊥ limit can subsequently be taken to compare the

results to the scalar χ basis of the Halevi-Fuchs model.

The setup is the same as described in section 2.3, with the xz-plane aligned with the

plane of incidence and the wave vectors given by:

k = Kx̂+ 0ŷ + qẑ, (4.24)

where only the ẑ component can vary. Under these conditions, only the χxx, χyy, χzz,

χxz and χzx terms of (4.23) are nonzero. Upon making a Fourier transformation in x

and y, the wave equation (4.22) reduces to a single equation for Ey corresponding to the

s-polarization:

[
−∂2

z − q2
0

]
Ey(z) =Sy(z) + k2

0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χyy(z, z1)Ey(z1) (4.25)
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and a pair of coupled equations for Ex and Ez corresponding to the p-polarization:[
−∂2

z − k2
0

]
Ex(z) =Sx(z) + k2

0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxx(z − z1)Ex(z1)

− iK∂zEz(z) + k2
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxz(z − z1)Ez(z1), (4.26)

[
−q2

0

]
Ez(z) =Sz(z) + k2

0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)Ez(z1)

− iK∂zEx(z) + k2
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzx(z − z1)Ex(z1). (4.27)

In each case q2
0 = k2

0−K2 and the boundary of the medium is described by the Heaviside

step function Θ(z). The pair of equations (4.26) and (4.27) are first considered, as the

p-polarization contains both transverse and longitudinal waves, unlike the s-polarization

described by (4.25). The integrals make it difficult to find expressions for Ex and Ez in

a closed form. Instead, the susceptibility χij is treated as a perturbation of the vacuum

wave equation and an iteration process is used to remove the RHS terms of both Ex and

Ez.

The process starts with the RHS term of Ez in (4.27). The equation is divided by −q2
0

and the entire expression for Ez is substituted into the RHS Ez term to give:

Ez(z) =− 1

q2
0

Sz(z)

+
iK

q2
0

∂zEx(z)

− k2
0

q2
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzx(z − z1)Ex(z1)

+
k2

0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)Sz(z1)

− iKk2
0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)∂z1Ex(z1)

+
k4

0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzx(z1 − z2)Ex(z2)

+
k4

0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzz(z1 − z2)Ez(z2).

(4.28)

The Sz(z1) term is subsequently discarded, as the source lies in the z < 0 half-space

outside the medium. This expression is once again substituted into the remaining RHS

Ez term in (4.28) and the process is repeated n times, after which the remaining RHS Ez
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terms are discarded. The remaining expression for Ez is accurate up to the order (χ⊥/‖)
n

and contains only terms of Sz and Ex. To second order, Ez is given by:

Ez(z) = − 1

q2
0

Sz(z) +
iK

q2
0

∂zEx(z)

− q2
0k

2
0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzx(z − z1)Ex(z1)

− iKk2
0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)∂z1Ex(z1)

+
q2

0k
4
0

q6
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzx(z1 − z2)Ex(z2)

+
iKk4

0

q6
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzz(z1 − z2)∂z1Ex(z2).

(4.29)

The expression for Ez in (4.29) is substituted into (4.26) to give an equation solely in

terms of Ex, Sx and Sz. After some slight rearranging, (4.26) becomes:[
−∂2

z − q2
0

]
Ex(z) = SS(z)

+
q4

0

q2
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxx(z − z1)Ex(z1)

+
iKq2

0

q2
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxz(z − z1)∂z1Ex(z1)

+
iKq2

0

q2
0

∫ ∞
−∞

dz1∂zΘ(z)Θ(z1)χzx(z − z1)Ex(z1)

− K2

q2
0

∫ ∞
−∞

dz1∂zΘ(z)Θ(z1)χzz(z − z1)∂z1Ex(z1)

− q4
0k

2
0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzx(z1 − z2)Ex(z2)

− iKq2
0k

2
0

q4
0

∫ ∞
−∞

dz1Θ(z)Θ(z1)χxz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzz(z1 − z2)∂z2Ex(z2)

− iKq2
0k

2
0

q4
0

∫ ∞
−∞

dz1∂zΘ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzx(z1 − z2)Ex(z2)

+
K2k2

0

q4
0

∫ ∞
−∞

dz1∂zΘ(z)Θ(z1)χzz(z − z1)

∫ ∞
−∞

dz2Θ(z1)Θ(z2)χzz(z1 − z2)∂z2Ex(z2),

(4.30)

where the source terms have been collected to SS(z) =
[
q2
0

k2
0
Sx(z) + iK

k2
0
∂zSz(z)

]
. Equa-
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tion (4.30) can be rewritten using the Green function

g(z, z′) =
i

2q0

e−iq0|z−z
′| (4.31)

that satisfies: [
−∂2

z − q2
0

]
g(z, z′) = δ(z − z′) (4.32)

to give an expression of the form:

Ex(z) =

∫ ∞
−∞

dz′
i

2q0

e−iq0|z−z
′|

[
SS(z′)

+
q4

0

q2
0

∫ ∞
−∞

dz1Θ(z′)Θ(z1)χxx(z
′ − z1)Ex(z1) + . . .

]
.

(4.33)

The entire expression in (4.33) is substituted into each of the RHS Ex terms and the pro-

cess is repeated n times, after which the remainingEx terms are discarded. An expression

forEx is left that is accurate up to the order (χ⊥/‖)
n and solely in terms of the source com-

ponents Sx and Sz. Under the condition that Ex lies in the z > 0 half-space inside the

medium and S lies outside the medium in the z < 0 half-space, (4.33) takes the form:

Ex(z) = Tx(z)

[
i

2q0

∫ ∞
−∞

dz′e−iq0z
′
SS(z′)

]
(4.34)

where Tx(z) is a series of integrals containing increasing powers of χ⊥ and χ‖ describing

the field in the medium.

The exact form of the susceptibility must be specified to evaluate the integrals in

Tx(z). The single-resonance model from the Halevi and Fuchs model [4] is used for the

transverse and longitudinal susceptibilities:

χ⊥/‖ =
α

ω2
T +D⊥/‖(q2 +K2)− ω2 − iγω

=
α/D⊥/‖
q2 − Γ2

⊥/‖
. (4.35)

which reduces (4.23) to the scalar χ model in the D⊥ = D‖ limit. The expression in

(4.35) leads to three distinct sets of terms in Tx(z):

Tx(z) = Lx(z)eiq0z +Mx(z)eiΓ⊥z +Nx(z)eiΓ‖z, (4.36)

where Lx, Mx and Nx are power series in (iz) and the susceptibility magnitude α. The

use of the tensor susceptibility in (4.23) with Γ⊥ 6= Γ‖ allows the terms of M and N to be

distinguished from one another.
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A similar result can be found for the z-component by substituting (4.34) into the

previously calculated expression forEz in terms of Sx andEx shown in (4.29). After once

again evaluating the various zn-integrals, the expression for Ez inside the half-infinite

nonlocal medium is given by

Ez(z) = Tz(z)

[
i

2q0

∫ ∞
−∞

dz′e−iq0z
′
SS(z′)

]
(4.37)

and

Tz(z) = Lz(z)eiq0z +Mz(z)eiΓ⊥z +Nz(z)eiΓ‖z, (4.38)

whereLz,Mz andNz are also power series in (iz) and the susceptibility magnitude α. The

terms in Li, Mi and Ni can be collected into various groups according to these powers.

For example, the expression for Lj can be split into La,bj terms, where a and b denote the

powers of α and (iz) respectively:

Lj(z) =
( {

[L0,0
j ]
}

+
{

[L1,0
j ] + (iz)[L1,1

j ]
}
α

+
{

[L2,0
j ] + (iz)[L2,1

j ] + (iz)2[L2,2
j ]
}
α2

2
+ . . .

)
eiq0z, j = x, z. (4.39)

To compare with the ansatz used by Halevi and Fuchs, the iteration process was performed

up to the order α2. Expressions for the various terms in (4.38) will not be included in this

chapter as they are extremely long and would not provide any additional insight.

4.2.2 Comparisons to the Halevi-Fuchs ansatz

If the ansatz in (4.21) used by Halevi and Fuchs is correct, then the expressions in (4.36)

and (4.38) must correspond to the general expression for three plane waves in the medium:

Ej(z) =
[
t
(1)
j (α)eiq1(α)z + t

(2)
j (α)eiq2(α)z + t

(3)
j (α)eiq3(α)z

]
E0, (4.40)

where E0t
(n)
j are the amplitude of the wave components. The wave vectors q1(α) and

q2(α) are the Im[q] > 0 solutions to the transverse E dispersion relation:

α/D2
⊥ =

(
q2 − q2

0

) (
q2 − Γ2

⊥
)
, (4.41)

and q3(α) is the Im[q] > 0 solution to the longitudinal E dispersion relation:

−α/D2
‖ =

(
q2 − Γ2

‖
)
. (4.42)
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4.2. The Halevi-Fuchs ansatz

A small α expansion can be made to rewrite each term in (4.40) as a power series:

t
(n)
j (α) = [t

(n)
j (0)] + [t

(n)′
j (0)]α + [t

(n)′′
j (0)]α

2

2
+ . . . ,

qn(α) = [qn(0)] + [q′n(0)]α + [q′′n(0)]α
2

2
+ . . . , (4.43)

where q1(0) = q0, q2(0) = Γ⊥ and q3(0) = Γ‖ and the various terms of t(n)
j are currently

unknown. The expressions in (4.43) are used to give an overall expansion for (4.40) as a

power series in both α and (iz):

t
(n)
j (α)eiqn(α)z

=
( {

[t
(n)
j (0)]

}
+
{

[t
(n)′
j (0)] + (iz)[t

(n)
j (0)q′n(0)]

}
α

+
{

[t
(n)′′
j (0)] + (iz)[t

(n)
j (0)q′′n(0) + 2t

(n)′
j (0)q′n(0)] + (iz)2[t

(n)
j (0)q′2n (0)]

}
α2

2

+ . . .
)
eiqn(0)z. (4.44)

The validity of the Halevi and Fuchs ansatz can be checked by comparing (4.44) to the

expressions for Lj , Mj and Nj in (4.34) and (4.37), which were found using the itera-

tion process in section 4.2.1. Comparing the exponential terms indicates Lj , Mj and Nj

correspond to the n = 1, 2 and 3 waves respectively.

As an example, the Lj power series in (4.39) and the expression in (4.44) are com-

pared for n = 1. The structure of the two power series are identical, which allows each

La,bj expression to be matched to the various terms in (4.43); L(0,0)
j is matched to t(1)

j (0),

L
(1,1)
j is matched to t(1)

j (0)q′1(0) and so on. The results of this comparison are all consis-

tent with the known terms of the q1(α) expansion in (4.43), supporting the choice of the

Halevi and Fuchs ansatz. For example, L(1,1)
j /L

(0,0)
j , which corresponds to the fraction

t
(1)
j (0)q′1(0)/t

(1)
j (0), gives the correct result for q′1(0).

Comparisons between the Lj , Mj and Nj power series and (4.44) allowed the various

terms in the small α expansion of the previously unknown t(n)
j to be found. Additional

support for the Halevi and Fuchs ansatz was found using the definitions of transverse

(k ·E = 0) and longitudinal (k×E = 0) waves given in section 2.1.4. It was found that:K0
qn

 ·
t

(n)
x

0

t
(n)
z

E0e
iqnz = 0, n = 1, 2, (4.45)
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4.2. The Halevi-Fuchs ansatz

for all orders in α, confirming that n = 1, 2 are p-polarized transverse waves andK0
qn

×
t

(n)
x

0

t
(n)
z

E0e
iqnz = 0, n = 3, (4.46)

similarly confirming n = 3 is a p-polarized longitudinal wave.

Further evidence for the validity of this perturbative method can be found in compar-

isons to the transmission coefficients later derived in chapter 5. The expressions for t(n)
j

in (4.43) can be combined to find the transmission coefficients for the waves in (4.40). In

the case of the p-polarization:

|E(n)| =
√
E

(n)2
x + E

(n)2
z =

√
t
(n)2
x + t

(n)2
z E0 = t(n)

p E0. (4.47)

The resulting power series in α for t(n)
p (up to α2) were found to be an exact match to the

small α expansions of the p-polarization transmission coefficients derived in section 5.4.2

for the tensor susceptibility.

Similar results were found for the s-polarization by applying an iteration process to

the Ey equation of motion in (4.25). A power series of the form (4.38) was found, but

with the absence of the Ny term, as the s-polarization cannot contain longitudinal waves.

4.2.3 Conclusions

The matching forms of the Lj , Mj and Nj power series in (4.34) and (4.37) and the

expansion of the ansatz in (4.44), and the transverse/longitudinal behaviour shown in

(4.45)-(4.46) all support the use of the Halevi and Fuchs ansatz for the field throughout

the half-infinite medium. Further support for the ansatz can be found by comparing trans-

mission coefficients for the iteration method in this section to the modified Halevi and

Fuchs method derived in chapter 5. The ansatz containing solutions to the infinite disper-

sion relations used by Halevi and Fuchs is therefore suitable to describe the electric field

in a half-infinite nonlocal medium.
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4.3. Chapter summary

4.3 Chapter summary

This chapter took a closer look at some of the assumptions in the derivations of a spe-

cific ABC [55] and the generalized ABC model [4]. In the case of the Pekar ABC [55],

derived from microscopic medium with nearest-neighbour interactions, it was shown that

his assumption regarding the macroscopic position of the boundary meant his conditions

were for a position just outside, rather than inside, the half-infinite medium. An iterative

method was used to independently derive the microscopic susceptibility for his nonlo-

cal model, before extending the results to include jth-nearest neighbour interactions of

varying strength. By taking the macroscopic limit of these results, a new frequency and

wave-vector dependent function was found for Ui in the generalized ABC model suscep-

tibility. The Pekar ABC was found to be a reasonable approximation near the resonant

frequency for fields with wavelengths much larger than the lattice spacing.

The second half of the chapter looked at the choice of ansatz made by Halevi and

Fuchs [4] for the electric field in a half-infinite nonlocal medium. While the use of wave

vectors that satisfy the infinite medium dispersion relations is certainly valid far from

the boundary, the calculation of the electromagnetic reflection coefficients requires the

electric field behaviour just inside the boundary, where the susceptibility is significantly

different to that of the infinite medium. Halevi and Fuchs provided no reasoning or argu-

ment for the validity of the ansatz in this critical region. An iteration process was applied

to the nonlocal wave equation to independently derive an expression for the electric field

inside the medium with no assumptions other than the form of the susceptibility and the

shape of the boundary. The results were found to be in perfect agreement to the Halevi

and Fuchs ansatz throughout the entire half-infinite medium, including the critical region

just inside the boundary.
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Chapter 5

Extending the Halevi-Fuchs model
I. The single-resonance susceptibility

In 1984, Halevi and Fuchs developed a generalized ABC model [4] for a half-infinite

nonlocal medium occupying the z > 0 half-space, described by:

χ′i(x− x′, y − y′, z, z′) =


χ(x− x′, y − y′, z − z′)

+ Uiχ(x− x′, y − y′, z + z′) if z, z′ > 0,

0 otherwise.

(5.1)

where χ is the bulk susceptibility of the infinite medium and Ui are the phenomenological

reflection coefficients of polarization waves at the interior boundary of the medium. Each

of the previously derived ABCs [33–56]. corresponded to a specific set of Ui values, as

shown in Table 2.1. However, the Halevi-Fuchs model was limited to materials described

by a specific scalar susceptibility χ containing a single resonance with a k2 dependence in

the denominator. This represents a very limited range of the nonlocal behaviour outlined

in chapter 2.1. Chapters 5-7 describe several improvements to the Halevi-Fuchs model

that incorporate many more of the features found in real materials, starting with the single-

resonance susceptibility [61].

The inclusion of spatial dispersion (k-dependence) means that the wave vector gen-

erates a distinct direction, even in an isotropic medium. As a result, the susceptibility in

a homogeneous, isotropic, non-gyroscopic (i.e. it has a centre of symmetry) medium is

given by a tensor, with the general form [26]:

χij(k, ω) =

{
δijχ⊥(k, ω) +

kikj
k2

[
χ‖(k, ω)− χ⊥(k, ω)

]}
, (5.2)
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where χ⊥ and χ‖ are the transverse and longitudinal susceptibilities, which apply to the

components of the fieldE perpendicular and parallel to k respectively. The susceptibility

reduces to the scalar form δijχ⊥ used by Halevi and Fuchs in the χ⊥ = χ‖ case.

While the tensor nature of the susceptibility is generally overlooked, several of the

original ABC authors did consider this behaviour. Rimbey and Mahan [48–52] used the

expression (5.2) in their calculations, but their specific ABC led to the absence of longitu-

dinal waves in the medium. Garcia-Moliner and Flores [95] also included this behaviour

in their attempt at a generalized ABC model, similar to that of Halevi and Fuchs in (5.1).

However, this model was limited to a scalar U describing the reflection of polarization

waves at the interior boundary and the resulting electromagnetic reflection coefficients

were given in integral form.

The aim of this chapter is to modify the single-resonance bulk susceptibility used in

the Halevi-Fuchs model (5.1) to the tensor form in (5.2) and derive the corresponding

electromagnetic reflection and transmission coefficients [61]. These results are then ap-

plied to the calculation of electromagnetic thermal and zero-point energy density outside

the planar boundary of a medium, in an attempt to remove the unphysical divergence

described in section 2.3.6 that is encountered in the case of a local medium [5, 81, 101].

The infinite medium is first considered in section 5.1, where the specific form of the

susceptibility and the resulting dispersion relations are discussed. Section 5.2 consid-

ers the half-infinite medium and modifies the model in (5.1) to the case of the tensor

susceptibility, before applying the derivation used by Halevi and Fuchs to find a set of

equations relating the various waves inside the nonlocal medium. Section 5.3 derives

general expressions for the electromagnetic reflection and transmission coefficients in the

p-polarization, before presenting numeric results for the specific case of ZnSe in section

5.4 for a range of ABCs. Note that the s-polarization is not included as the derivation is

identical to that of the Halevi-Fuchs model. The difference in χ⊥ and χ‖ is found to have

a negligible effect on the reflection coefficient of propagating waves, except for the re-

flection minima in the frequency region near ωL, where the longitudinal transmitted wave

plays a greater role in reflection calculations. The effect is also found to be similarly

small for the transverse wave transmission coefficients, but can be significantly larger for

the longitudinal wave depending on the choice of ABC. Finally, in section 5.5 the derived

expressions for the electromagnetic reflection coefficients are used in the calculation of

the spectral energy density near the boundary of a nonlocal medium. The inclusion of

spatial dispersion is found to remove the unphysical divergence found at the boundary of
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5.1. The infinite medium

a local medium [5, 81, 101] caused by evanescent waves with arbitrarily large transverse

wave vectors. The difference between χ⊥ and χ‖ is also found to have a significant ef-

fect on the result, in contrast to the electromagnetic reflection coefficient for propagating

waves in section 5.4.

5.1 The infinite medium

This chapter starts by considering the infinite nonlocal medium described by the tensor

susceptibility in (5.2). The transverse and longitudinal bulk susceptibilities are chosen

to contain a single resonance of the form used by Halevi and Fuchs, corresponding to

excitonic transitions in the medium. The dispersion relation of the exciton band in the

isotropic medium is taken as [86] :

~ωT⊥/‖(k) = ~ωT +
~2k2

2m⊥/‖
, ω2

T⊥/‖(k) ≈ ω2
T +D⊥/‖k

2, D⊥/‖ =
~ωT
m⊥/‖

, (5.3)

where m⊥/‖ is the mass of the exciton in the directions perpendicular or parallel to k.

Equation (5.3) is substituted into the Lorentz model (2.19) to give the single-resonance

susceptibility:

χ⊥/‖(k, ω) = χ0 +
ω2
p(

ω2
T +D⊥/‖k2

)
− ω2 − iγω

, (5.4)

where ωT is the resonant frequency, γ quantifies the absorption (or damping) and ωp

describes the strength of the resonance. The term χ0 contains contributions from the

other resonances not explicitly described in (5.4) and acts as a background susceptibility.

The tensor expression in (5.2) therefore reduces to the scalar susceptibility used by Halevi

and Fuchs in the D⊥ = D‖ limit.

In the infinite nonlocal medium, the polarization field P is given by:

Pi(r, ω) = ε0

∑
j

∫
d3r′χij(r − r′, ω)Ej(r

′, ω), (5.5)

which can be rewritten using the spatial Fourier transformation (2) to give:

Pi(k, ω) = ε0

∑
j

χij(k, ω)Ej(k, ω). (5.6)
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5.1. The infinite medium

The exact relationship for the infinite medium can be found by substituting (5.2) and (5.4)

into (5.6) to give:

Pi(k, ω) = ε0χ0Ei(k, ω) + ε0

∑
j

{
δij

[
ω2
p

(ω2
T +D⊥k2)− ω2 − iγω

]

+
kikj
k2

[
ω2
p(

ω2
T +D‖k2

)
− ω2 − iγω

−
ω2
p

(ω2
T +D⊥k2)− ω2 − iγω

]}
Ej(k, ω).

(5.7)

This expression can be inverted to find the equation of motion for P in a form similar to

the one used by Hopfield in section 2.2.1. In the absence of χ0, which represents the other

resonances in the medium, this is given by:

ε0ω
2
pEi(k, ω) =

[
(ω2

T +D⊥k
2)− ω2 − iγω

]
Pi(k, ω) +

∑
j

[
(D‖ −D⊥)kikj

]
Pj(k, ω).

(5.8)

Equation (5.8) is identical to that of the medium described by the scalar susceptibility,

with the exception of the final term that depends on the difference between the nonlocal

parameters D⊥ and D‖. These coefficients are defined to have the relationship:

D‖ = (1 + ∆)D⊥, (5.9)

so that the tensor susceptibility (5.2) returns to the scalar expression δijχ⊥ in the ∆ → 0

limit.

The electric fieldE and the polarization fieldP in (5.5) must satisfy the wave equation

∇×∇×E(r, ω)− ω2

c2
E(r, ω) =

ω2

c2

1

ε0

P (r, ω) (5.10)

at all points in space [1]. After performing a spatial Fourier transformation using (2) and

substituting the expression for P in (5.7), the wave equation in (5.10) has solutions when

the frequency and wave vector satisfy the dispersion relation

ω2

c2

[
1 + χ0 +

ω2
p

(ω2
T +D⊥k2)− ω2 − iγω

]
= k2 (5.11)

for transverse waves with E · k = 0 and[
1 + χ0 +

ω2
p(

ω2
T +D‖k2

)
− ω2 − iγω

]
= 0 (5.12)
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5.2. The half-infinite medium

for longitudinal waves with E × k = 0. With the field dependence exp(ikzz), solutions

to (5.11) and (5.12) are restricted to those with Im[kz] > 0. This is to avoid waves that

grow exponentially in the z > 0 half-space. The two solutions of (5.11) and the single

solution to (5.12) that satisfy this condition are subsequently used in the ansatz for the

electric field in the half-infinite medium, in the same manner as Halevi and Fuchs [4].

5.2 The half-infinite medium

The rest of this chapter considers the half-infinite nonlocal medium occupying the z > 0

half-space. The following derivation is based on the Halevi-Fuchs scalar single-resonance

model in (5.1), with some changes to account for the tensor nature of the susceptibility. In

section 2.3.2, it was shown that the main problem in the calculation of the electromagnetic

reflection and transmission coefficients was insufficient information regarding the relative

amplitudes of the multiple waves in the nonlocal medium. This section will derive a set

of equations that act as the ABCs for the half-infinite nonlocal medium that provide the

required relationships between the field amplitudes.

Before starting, several notes must be made regarding the half-infinite medium and the

assumptions made in this calculation. First, the following work is based on macroscopic

electromagnetism. Quantum-mechanical features, such as “electron spill-out”, that are

not directly encoded in the bulk susceptibility are not included in the derivation. The

results of this chapter will therefore not be accurate for distances below a few nanometres

from the planar boundary of the half-infinite medium. However, it has been found that

some quantum features of the boundary can be included through a spatially-dispersive

term in the susceptibility [9].

The derivation also assumes that the surface of the nonlocal medium is perfectly

smooth. While boundary roughness has previously been studied in the case of the lo-

cal medium [118, 119], and could potentially be incorporated in a similar manner, this

lies beyond the scope of this thesis. Boundary layers containing slits [120] or other non-

trivial structures [121] are similarly not covered by this derivation, as this would require

additional considerations of the field inside the interface layer.

Finally, this derivation is not applicable to materials such as thin films or nanospheres

due to the more complex behaviour of the polarization waves in such a system, such

as multiple reflections from closely-spaced boundaries. However, an exception can be

made for spatially-dispersive metamaterials when the wavelength is such that an effective
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5.2. The half-infinite medium

description can be used for the susceptibility.

The model set-up and choice of co-ordinates shown in Fig. 5.1 are identical to those

used by Halevi and Fuchs and described in section 2.3. The z < 0 vacuum half-space

contains the incident (E0) and reflected (Er) monochromatic plane waves with wave

vectors k0 and kr respectively (k0 = kr = ω/c). The z > 0 nonlocal medium half-space

contains two transverse plane waves (E(1), E(2)) and a single longitudinal wave (E(3))

with wave vectors kn. The xz-plane is chosen to coincide with the plane of incidence,

fixing the wave vector components knx = K and kny = 0. Only the component knz = qn

can vary between the different waves.

DielectricVacuum

k1

k0

kr

z

x

z=0

θi

k3

k2

Figure 5.1: Schematic of reflection at the planar interface of a nonlocal

medium. The coordinate system is chosen such that the xz-plane coincides

with the plane of incidence and ky = 0. The z < 0 vacuum half-space con-

tains the incident wave E0 and the reflected wave Er, with the corresponding

wave vectors k0 and kr. The z > 0 nonlocal medium contains two transverse

waves (E(1), E(2)) and one longitudinal wave (E(3)), with the corresponding

wave vectors kn .

The presence of the boundary at z = 0 means the polarization field P in the nonlocal

medium now depends on a position-dependent susceptibility, denoted χ′. Instead of (5.5),

the expression for P takes the form:

Pi(r) = ε0

∑
j

∫
d3r′χ′ij(r, r

′)Ej(r
′), (5.13)

where ω dependence has been omitted to reduce notation. Following the Halevi-Fuchs

model in (5.1), the susceptibility of the half-infinite medium in (5.13) is expressed in
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5.2. The half-infinite medium

terms of the bulk susceptibility (5.2):

χ′ij(x− x′, y− y′, z, z′) =


χij(x− x′, y − y′, z − z′)

+ Uijχij(x− x′, y − y′, z + z′) if z, z′ > 0,

0 otherwise,

(5.14)

where both χij and Uij are now rank-2 tensors. The first term in (5.14) is the nonlocal bulk

response describing the direct propagation of the polarization wave between two points.

The second term describes a polarization wave traveling from z′ to the boundary of the

medium, before reflecting and continuing to z, as shown in Fig. 2.7 of section 2.3.4.

The expression for the susceptibility of the half-infinite medium in (5.14) can be sub-

stituted into theP definition in (5.13). After a spatial Fourier transformation is performed

in the xy-plane using (3), the polarization field is given by:

Pi(K, 0, z) =ε0χ0Ei(K, 0, z)

+
ε0

2π

∫ ∞
0

dz′
∫ ∞
−∞

dq
∑
j

[
eiq(z−z

′) + Uije
iq(z+z′)

]
χij(K, 0, q)Ej(K, 0, z

′).

(5.15)

The expressions for the bulk susceptibilities in (5.4) that appear in (5.15) can each be

rewritten in terms of q:

χ⊥/‖(K, 0, q, ω) = χ0 +
ω2
p/D⊥/‖

q2 − Γ⊥/‖(K)
, (5.16)

where

−Γ2
⊥/‖(K) =

ω2
T − γ2 − iγω

D⊥/‖
+K2. (5.17)

The kx = K and ky = 0 dependences will subsequently omitted as they are the same in

all arguments.

At this point in the derivation, an ansatz for the electric field must be introduced to

evaluate the integrals in (5.15). Halevi and Fuchs used a sum of monochromatic plane

waves with wave vectors that satisfied the dispersion relations of the infinite medium.

While they provided no supporting arguments for this particular ansatz, the derivation in

section 4.2 has shown that this was a suitable choice for the electric field at all points inside

the medium. The same expression is used for the single-resonance tensor susceptibility

model:

E(z) =


E0e

iq0z +Ere
−iq0z z < 0,

3∑
n=1

E(n)eiqnz z > 0,
(5.18)
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5.2. The half-infinite medium

where the z < 0 half-space contains the incident (E0) and reflected (Er) waves, with the

corresponding wave vector

q0 =
√
k2

0 −K2. (5.19)

The z > 0 half-space contains the transverse waves E(1) and E(2) and the longitudinal

wave E(3). The corresponding wave vectors q1 and q2 are the Im[q] > 0 solutions to the

transverse dispersion relation (5.11), rewritten as:

k2
0

ω2
p

D2
⊥

=
[
q2 − k2

0(1 + χ0) +K2
] [
q2 − Γ2

⊥
]
, (5.20)

and q3 is the Im[q] > 0 solution to the longitudinal dispersion relation (5.12), rewritten

as:

−
ω2
p

(1 + χ0)D2
‖

=
(
q2 − Γ2

‖
)
. (5.21)

Substituting the ansatz (5.18) for E(z′) into (5.15) allows the z′ integral to be evalu-

ated, leaving:

Pi(z) =ε0χ0Ei(z) + ε0
i

2π

∫ ∞
−∞

dq
∑
j

3∑
n=1

eiqz
[

1

qn − q
+

Uij
qn + q

]
χij(q)E

(n)
j . (5.22)

The q integral in (5.22) is evaluated by performing a contour integration in the upper half-

plane [114] of complex q, enclosing the poles at q = qn in the square brackets and the

poles at q = Γ⊥/‖ and q = iK in the susceptibility χij . The residue associated with the

pole q = iK is equal to zero, leaving a final expression for the polarization field in the

half-infinite nonlocal medium that contains three distinct parts:

Pi(z) =
∑
j

3∑
n=1

ε0χij(qn)E
(n)
j eiqnz +

∑
j

3∑
n=1

ε0φ
(n)
ij E

(n)
j eiΓ⊥z +

∑
j

3∑
n=1

ε0ψ
(n)
ij E

(n)
j eiΓ‖z,

(5.23)

where χij is the susceptibility of the infinite medium. The electric field coefficients in the

last two terms are given by:

φ
(n)
ij = −qn(1 + Uij) + Γ⊥(1− Uij)

2Γ⊥

[
δij −

k
(⊥)
i k

(⊥)
j

Γ2
⊥ +K2

]
χ⊥(q) (5.24)
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5.3. The p-polarization

and:

ψ
(n)
ij = −

qn(1 + Uij) + Γ‖(1− Uij)
2Γ‖

[
k

(‖)
i k

(‖)
j

Γ2
‖ +K2

]
χ‖(q), (5.25)

where k(⊥/‖) = (K, 0,Γ⊥/‖).

The electric field given by the ansatz (5.18) and the polarization field in (5.23) must

satisfy the electromagnetic wave equation (5.10) at all points inside the medium. A simple

inspection reveals that all LHS terms are proportional to the exponential exp(iqnz). If the

wave equation is to hold for all values of z, the RHS sums proportional to exp(iΓ⊥/‖z) in

(5.23) must each equal zero:

∑
j

3∑
n=1

φ
(n)
ij E

(n)
j = 0,

∑
j

3∑
n=1

ψ
(n)
ij E

(n)
j = 0. (5.26)

This set of equations act as the ABCs for this model and can be used to calculate the field

amplitude ratios of the waves in the nonlocal medium. The next section uses the sums

in (5.26) to derive exact expressions for the electromagnetic reflection and transmission

coefficients of the single-resonance tensor susceptibility model.

5.3 The p-polarization

It is at this point in the calculation that the electric field is split into two parts, which each

require slightly different considerations in the calculation of the electromagnetic reflection

and transmission coefficients. The s-polarization contains the components of the electric

field that are perpendicular to the plane of incidence, which corresponds to Ey in the

current model. It can be seen in (5.2) that the current choice of co-ordinate system, with

ky = 0, means χyy = χ⊥ is the only nonzero component of the susceptibility for the s-

polarization. As a result, the derivation of the electromagnetic reflection and transmission

coefficients is identical to that of the Halevi-Fuchs model and will not be repeated here.

This section focuses on the p-polarization, which contains the components of the electric

field Ex and Ez that lie in the plane of incidence. In this case there are four relevant

nonzero components of the tensor susceptibility (5.2), compared to two in the Halevi-

Fuchs model in (5.1).

130



5.3. The p-polarization

5.3.1 The surface impedance

Halevi and Fuchs used an expression for the electromagnetic reflection coefficient in

terms of the surface impedance of the vacuum and the nonlocal medium [4]. In the p-

polarization the surface impedance Zp is given by [44]:

Zp =
Ex
Hy

=
1

µ0

Ex
By

, (5.27)

where the nonmagnetic nature of both the vacuum and the nonlocal medium (H = µ0B)

has been used. Inside the nonlocal medium, the field component By of the ansatz (5.18)

can be rewritten using the Maxwell equation [1] k0B = k ×E:

By(z) =
3∑

n=1

1

k0

[
qnE

(n)
x −KE(n)

z

]
eiqnz. (5.28)

Simple geometry can be used to rewrite Ez in terms of Ex:

E(n)
z = η(n)E(n)

x , (5.29)

where η(n) = −K/qn for transverse waves and η(n) = qn/K for longitudinal waves. The

magnetic field in (5.27) can subsequently be expressed solely in terms of Ex components:

By(z) =
3∑

n=1

τ (n)E(n)
x eiqnz τ (n) =


q2
n +K2

qnk0

, transverse waves,

0, longitudinal waves.
(5.30)

The surface impedance (5.27) of the nonlocal medium can therefore be expressed in terms

of the field amplitude ratios:

Zp(0
+) =

1

µ0

∑3
n=1E

(n)
x∑3

n=1 τ
(n)E

(n)
x

=
k0

µ0

1 + E
(2)
x

E
(1)
x

+ E
(3)
x

E
(1)
x

q2
1+K2

q1
+

q2
2+K2

q2

E
(2)
x

E
(1)
x

. (5.31)

Note that E(3)
x does not appear in the denominator of (5.31) as longitudinal waves do not

have an associated magnetic field, as described in section 2.1.4. This behaviour can also

be seen in (5.30), where τ (n) = 0.

5.3.2 Field amplitude ratios

The field amplitude ratios of the transmitted waves in the nonlocal medium are required to

proceed with the calculation of the electromagnetic reflection coefficient. The relationship
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in (5.29) was used to rewrite each of the relevant effective ABC equations in (5.26) solely

in terms of Ex. For example:

∑
j

3∑
n=1

φ
(n)
ij E

(n)
j =

3∑
n=1

[
φ

(n)
ix E

(n)
x + φ

(n)
iz E

(n)
z

]
=

3∑
n=1

[
φ

(n)
ix + η(n)φ

(n)
iz

]
E(n)
x = 0,

(5.32)

where i = x or z. In each case, the E(n)
x coefficients are grouped together to the new

variables an and bn:

3∑
n=1

[
φ(n)
xx + η(n)φ(n)

xz

]
E(n)
x =

3∑
n=1

anE
(n)
x = 0, (5.33)

3∑
n=1

[
φ(n)
zx + η(n)φ(n)

zz

]
E(n)
x =

3∑
n=1

bnE
(n)
x = 0. (5.34)

Similar expressions were found by rearranging the ψ equations in (5.26) to give the vari-

ables cn and dn:

3∑
n=1

[
ψ(n)
xx + η(n)ψ(n)

xz

]
E(n)
x =

3∑
n=1

cnE
(n)
x = 0, (5.35)

3∑
n=1

[
ψ(n)
zx + η(n)ψ(n)

zz

]
E(n)
x =

3∑
n=1

dnE
(n)
x = 0. (5.36)

It can be seen that the current model has four equations that must be satisfied by the three

wave amplitudes, in contrast to the two equations of the Halevi-Fuchs derivation.

Any two of the equations (5.33-5.36) can be combined to find the required expressions

for the field amplitude coefficients:

E
(2)
x

E
(1)
x

=
(3, 1)µν
(2, 3)µν

,
E

(3)
x

E
(1)
x

=
(1, 2)µν
(2, 3)µν

, µ 6= ν, (5.37)

where µ, ν ∈ {a, b, c, d} and

(i, j)µν = µiνj − µjνi. (5.38)

The field amplitude ratios in (5.37) must give the same value for any combination of µ

and ν (µ 6= ν). This imposes the conditions Uxx = Uzx and Uxz = Uzz, which reduce

bn and dn to (−k/Γ⊥)an and (Γ‖/k)cn respectively. The set of four equations in (5.33-

5.36) similarly reduce to two unique equations relating the field amplitudes of the three
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transmitted waves. These conditions on Uij lead to obvious comparisons to the values

of Ui used by Halevi and Fuchs. Subsequent calculations for specific ABCs will assume

Uxx = Uzx and Uxz = Uzz in the current model correspond to the values of Ux and Uz in

Table 2.1.

The field amplitude ratios (5.37) can be substituted into (5.31) to give a final expres-

sion for the surface impedance of the nonlocal medium:

Zp(0
+) =

k0

µ0

(2, 3)ac + (3, 1)ac + (1, 2)ac
q2
1+K2

q1
(2, 3)ac +

q2
2+K2

q2
(3, 1)ac

. (5.39)

The subscripts µ = a and ν = c will subsequently be omitted for notational simplicity.

The full expression for (5.39) is a function of the three wave vectors qn. In the simplest

case of Uij = 0, the surface impedance is given by:

Zp = −k0

µ0

{
Γ⊥ −

[K4+K2(q2
1+q1q2+q2

2)+(q1+q2)q1q2q3]−
(Γ‖−Γ⊥)(K2+q2

3)

(Γ2
⊥+K2)+(Γ‖−Γ⊥)(Γ⊥+q3)

[q1q2(q1+q2)]

[K2(q1+q2−q3)+q1q2q3]+
(Γ‖−Γ⊥)(K2+q2

3)

(Γ2
⊥+K2)+(Γ‖−Γ⊥)(Γ⊥+q3)

[K2−q1q2]

}−1

.

(5.40)

In the general case where Uxx = Uzx and Uxz = Uzz, setting D⊥ = D‖ (and therefore

Γ⊥ = Γ‖ and χij = δijχ⊥) reduces (5.39) to the Halevi-Fuchs model result for the scalar

bulk susceptibility with Ux = Uxx and Uz = Uzz. The results presented in this chapter are

therefore consistent with those of the Halevi-Fuchs model.

5.3.3 Electromagnetic reflection and transmission coefficients

The p-polarization reflection coefficient rp can be written in terms of the surface impedance

[44]:

rp =
Er
E0

=
Zp(0

−)− Zp(0+)

Zp(0−) + Zp(0+)
, (5.41)

where the nonlocal medium surface impedance (5.39) and the vacuum surface impedance

[44]

Zp(0
−) =

q0

µ0k0

(5.42)

can be used to find an exact expression for rp.

The transmission coefficients for each of the three waves in the nonlocal medium are

found by imposing Maxwell boundary conditions, specifically the continuity of transverse
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5.3. The p-polarization

E components, at the z = 0 planar boundary. In the current choice of co-ordinate system

in Fig. 5.1, this means equating the Ex components in the ansatz (5.18):

E0x + Erx = E(1)
x + E(2)

x + E(3)
x . (5.43)

Simple geometry and the definition of the reflection coefficient in (5.41) can be used to

rewrite (5.43) in terms of the previously calculated amplitude coefficients:

E0

[
q0

k0

(1− rp)
]

= E(1)
x

[
1 +

E
(2)
x

E
(1)
x

+
E

(3)
x

E
(1)
x

]
= E(1)

x

[
(2, 3) + (3, 1) + (1, 2)

(2, 3)

]
, (5.44)

with similar expressions for E(2)
x and E(3)

x . Equation (5.29) can be used to rewrite the

x-component of the field in terms of the total amplitude:

E(n) =

√
E

(n)2
x + E

(n)2
z =

√
1 + η(n)2E(n)

x , (5.45)

which leads to the final expressions for the transmission coefficients of the three waves:

t(1)
p =

E(1)

E0

=(2, 3)

√
q2

1 +K2

q1

{
q0

k0

[1− rp]
[(2, 3) + (3, 1) + (1, 2)]

}
,

t(2)
p =

E(2)

E0

=(3, 1)

√
q2

2 +K2

q2

{
q0

k0

[1− rp]
[(2, 3) + (3, 1) + (1, 2)]

}
,

t(3)
p =

E(3)

E0

=(1, 2)

√
q2

3 +K2

K

{
q0

k0

[1− rp]
[(2, 3) + (3, 1) + (1, 2)]

}
. (5.46)

Note that the last set of brackets is identical for each expression in (5.46).

It has previously been mentioned in section 2.3.3 that the choice of Ux = −1 and

Uz = 1 in the Rimbey-Mahan ABC leads to the absence of the longitudinal wave in the

nonlocal medium [48–52]. This behaviour can be seen in (5.46), where these specific

choices for Uxx and Uzz lead to the result (1, 2) = 0 and E(3) = 0. It is interesting to

consider the possibility of the opposing case, where the choice of Uij leads to the absence

of transverse waves in the nonlocal medium. This would have significant consequences

for the surface impedance, as the remaining longitudinal wave in the medium does not

have an associated magnetic field. The definition in (5.27) would lead to Zp = ∞ and

perfect reflection with rp = −1.

The absence of transverse waves in the nonlocal medium would require (2, 3) =

(3, 1) = 0 and (1, 2) 6= 0 in (5.46). The definition (5.38) leads to the condition a3 =

c3 = 0, which can only be satisfied by the following conditions in the general Uxx =
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Uzx, Uxz = Uzz case:

Uxx = 1 +
2q3(Γ2

‖ +K2)

(Γ⊥Γ‖ +K2)(Γ‖ − q3)
,

Uzz = −1 +
2Γ⊥(Γ2

‖ +K2)

(Γ⊥Γ‖ +K2)(Γ‖ − q3)
. (5.47)

In the ∆ = 0 case, which corresponds to the Halevi-Fuchs model, the conditions for

perfect reflection in (5.47) reduce to:

Uzz = Uxx =
Γ⊥ + q3

Γ⊥ − q3

=
1 +

√
1 + 1

1+χ0

ω2
p

ω2
T +D⊥K2−ω2−iγω

1−
√

1 + 1
1+χ0

ω2
p

ω2
T +D⊥K2−ω2−iγω

, (5.48)

where the q3 definition in (5.21) has been used. It can be seen that the square root in (5.48)

does not vanish for any real values of K and ω. The resulting value of |Uxx| > 1 conflicts

with the definition of Uij as a phenomenological reflection coefficient for the polariza-

tion waves inside the medium. The nonlocal medium therefore must contain transverse

transmitted waves.
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5.4 Results

The exact expressions for rp and t(n)
p in section 5.3.3 are dependent on both Γ⊥/‖ and

the wave vectors qn. The ω and K dependence of the electromagnetic reflection and

transmission coefficients and their differences to the Halevi-Fuchs results are not readily

apparent from a simple inspection of (5.41) and (5.46). This section presents numeric

results for Zinc Selenide (ZnSe) [122], the same medium used by Halevi and Fuchs [4],

and investigates the effects caused by the inequality between D⊥ and D‖.

Table 5.1: List of ZnSe model parameters [4, 122]

ZnSe

χ0 8.1

~ωT (eV) 2.80

~ωp (eV) 2.07

~γ (meV) 0.028

D⊥c
2 (×10−6) 5.49

~ωL (eV) 2.80085

The model parameters of the nonlocal medium ZnSe are shown in Table 5.1. The value

of ωL, which is the solution of the dispersion relation (5.11) with k = 0 and γ = 0, is

calculated using (2.20). The transverse nonlocal parameter D⊥ takes the same value used

in the Halevi-Fuchs paper. The corresponding longitudinal parameterD‖ = (1+∆)D⊥ is

unknown. Results are instead presented over the range of ∆ values −0.5 to 0.5. Table 5.2

contains the values of Uij for a range of ABCs. In each case, the Uxx = Uzx, Uxz = Uzz

condition in section 5.3.3 were used to convert the values used by Halevi and Fuchs to the

tensor susceptibility.

Table 5.2: List of ABC parameters for the single-resonance tensor χ′ij in (5.14)

ABC Uxx, Uzx, Uyy Uxz, Uzz

Agarwal et al. [33–42] 0 0

Ting et al. [43] 1 1

Fuchs-Kliewer [44–47] 1 -1

Rimbey-Mahan [48–52] -1 1

Pekar [53–56] -1 -1
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5.4.1 The p-polarization reflection coefficient

The reflection coeffcient of ZnSe is first considered as a function of the incident angle θi
in Fig. 5.1. Figure 5.2 shows the absolute value of rp at the resonant frequency ωT for

the Agarawal et al., Ting et al., Fuchs-Kliewer, Rimbey-Mahan and Pekar ABCs using

the corresponding Uij values in Table 5.2. The behaviour of rp is mostly determined by

the value of Uxx, with Uxx = −1 of the Rimbey-Mahan and Pekar ABCs displaying the

greatest differences to the local model with D⊥ = D‖ = 0. This is followed by Uxx = 0

of the Agarwal et al. ABC and finally Uxx = 1 of the Ting et al. and Fuchs-Kliewer ABC.

The values of Uzz and ∆ have a much smaller effect, leading to minor differences near

the reflection minima.

Figure 5.2: Absolute value of rp as a function of incident angle θi in Fig.

5.1 for ZnSe at ω = ωT . Results are shown for Agarwal et al. (red), Ting et

al. (brown), Fuchs-Kliewer (green), Rimbey-Mahan (blue), and Pekar (purple)

ABCs in addition to the local model with spatial dispersion removed (D⊥ =

D‖ = 0) (black). Includes the ∆ = 0 results of the Halevi-Fuchs model (solid

line) compared to ∆ = 0.5 (dashed) and ∆ = −0.5 (dotted), which are found

to differ slightly at the reflection minima.
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Figure 5.3 performs the same comparisons for rp as a function of ω with the fixed

incident angle θi = 45◦. A peak in |rp| is found between the values of ωT and ωL,

indicated by solid and dashed vertical lines, respectively. The size of the peak and the

overall behaviour of rp is once again mostly determined by the value of Uxx, with Uxx = 1

giving the largest peak that is closest to the local medium result. The values of Uzz and

∆ were found to play a more significant role in the frequency range above ωL containing

the reflection minima.

Figure 5.3: Absolute value of rp as a function of ω for ZnSe at a fixed incident

angle θi = 45◦. Vertical lines indicate ωT (solid line) and ωL (dashed line)

values. Results are shown for Agarwal et al. (red), Ting et al. (brown), Fuchs-

Kliewer (green), Rimbey-Mahan (blue), and Pekar (purple) ABCs in addition

to the local model with spatial dispersion removed (D⊥ = D‖ = 0) (black).

Includes the ∆ = 0 results of the Halevi-Fuchs model (solid line) compared to

∆ = 0.5 (dashed) and ∆ = 0.5 (dotted).

Figure 5.4 shows a closer comparison between the various ABCs in the frequency

range near the reflection minima for a range of incident angles between θi = 15◦ and 75◦.

At very small θi, rp is determined almost entirely by the value of Uxx. This is because the

Ez components of the both the incident and transmitted transverse waves are small near

normal incidence. The effect of Uzz increases with θi and K, providing a split between

the ABCs with the same Uxx. This behaviour was noted in Halevi and Fuchs’ paper [4].
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Figure 5.4: Absolute value of rp as a function of ω for ZnSe near the reflection

minima for the incident angle θi = 15◦ (top), 30◦, 45◦, 60◦ and 75◦ (bottom).

Plot styles follow the conventions in Fig. 5.3.
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The parameter ∆, describing the difference between the nonlocal parameters D⊥ and

D‖ in (5.9), also has the largest effect on rp in the frequency range near the reflection

minima. The greatest differences were found in the Pekar and Fuchs-Kleiwer ABCs,

followed closely by the Agarwal ABC. The Ting ABC, which was the closest result to that

of the local model, was largely unaffected by the value of ∆, with only minor differences

found in the θi = 30◦ result. The result for the Rimbey-Mahan ABC remained unchanged

by ∆, as the values of Uij lead to the complete absence of the longitudinal wave in the

medium. The value of D‖ and ∆ therefore had no effect on rp in this case.

5.4.2 The p-polarization transmission coefficients

Figure 5.5 compares the absolute values of the transmission coefficients t(n)
p at the reso-

nant frequency ωT as a function of the incident angle θi. The behaviour of t(1)
p and t(2)

p for

the transverse waves is similar to that of rp in Fig. 5.2. In these cases the result is mostly

determined by the value of Uxx, while Uzz only leads to minor differences between the

ABCs. The parameter ∆ has a negligible effect on t(1)
p result, which corresponds to the

transverse wave that is present even in the local medium with D⊥ = D‖ = 0, but has

a slightly larger effect on t(2)
p for the wave introduced by the nonlocal behaviour of the

susceptibility.

The transmission coefficient t(3)
p of the longitudinal wave displays significantly dif-

ferent behaviour to its transverse counterparts. The main difference is the lack of the

n = 3 wave at normal incidence. This is because the incident transverse wave E0 lacks

a ẑ component in this case to excite the longitudinal wave inside the nonlocal medium.

The effect Uij and ∆ have on behaviour of t(3)
p is also different. The result is no longer

mostly determined by the value of Uxx, and ∆ can have a greater effect compared to the

transverse waves. This can be seen for the Pekar ABC in Fig. 5.5, which is very differ-

ent to the Rimbey-Mahan ABC with the same Uxx value and varies greatly over the ∆

range −0.5 to 0.5. This behaviour is strongly dependent on both the model parameters

and the frequency. For example, in Fig. 5.5, the Agarwal et al. and Ting et al. ABCs

lead to similar results for t(3)
p , but this is not true in general. The exception to this is the

Rimbey-Mahan ABC, as the choice of Uij leads to (1, 2) = 0 in (5.46) and the absence of

the longitudinal wave in the medium.
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Figure 5.5: Absolute value of t(n)
p as a function of incident angle θi for ZnSe

at ω = ωT . Plot styles follow the conventions in Fig. 5.2. The parameter ∆

has a minor effect on the n = 1, 2 transverse waves, but has a significant effect

on the n = 3 longitudinal wave in the Pekar ABC. Note the absence of the

longitudinal wave in the Rimbey-Mahan ABC.
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5.5 Spectral energy density

This section takes the expression derived for rp in the section 5.3 and applies it to the

problem of the electromagnetic energy density of zero-point and thermal radiation near

planar boundaries. The zero-point component can be probed by measuring spontaneous

emission rates close to a boundary [74–77] and the thermal energy density has previously

been measured for a metal using near-field microscopy [100]. Section 2.3.5 described

the unphysical divergences in the energy density of the electromagnetic field encountered

near the planar boundary of a local half-infinite medium. These divergences occurred at

the level of the spectral energy density utot defined in (2.60) and could be traced back to

the integral (2.63), repeated here [102]:

utot(z, ω) =
u0

k0

∫ k0

0

KdK√
k2

0 −K2

{
1 +

K2

2k2
0

Re
[
(rs + rp)e

2i
√
k2

0−K2|z|
]}

+
u0

2k3
0

∫ ∞
k0

K3dK√
K2 − k2

0

{
Im[rs + rp]e

−2
√
K2−k2

0 |z|
}
, (5.49)

where u0 is the spectral energy density in the absence of the material, given by (2.64).

The first integral in (5.49) is the contribution from propagating waves with real kz in the

vacuum. The unphysical divergence is a result of the second integral over evanescent

waves with imaginary kz. Unlike rs, the imaginary component of rp does not vanish in

the K →∞ limit in the absence of spatial dispersion. In the z → 0 limit, the exponential

decays slowly enough that this term becomes dominant, leading to the approximate result

[5]:

utot(z, ω) ≈ u0

2k3
0

{
Im[χ(ω)]

|2 + χ(ω)|2
1

4|z|3

}
. (5.50)

This section will show that this unphysical divergence is naturally removed with the

inclusion of spatial dispersion in the resonance of the susceptibility (5.4). This is in con-

trast to previous attempts by other authors that introduce a sharp [81] or smooth [82]

cut-off to the K integral by hand based on parameters such as the lattice spacing or coher-

ence length. It must be noted that a complex background susceptibility χ0 will still lead

to a divergence in utot. However, it has already been noted in section 2.1.5 that this is

the contribution from other resonances in the medium. A full treatment of such a system

must therefore contain multiple spatially-dispersive resonances in the susceptibility for an

accurate result. Multi-resonance susceptibilities are covered in greater detail in chapter

6. Thankfully, this does not apply to the current system as the value of χ0 in Table 5.1 is

purely real.
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5.5.1 The p-polarization

The p-polarization contribution to utot is first considered, using the expression for rp de-

rived in section 5.3. The result of the second integral in (5.49) depends greatly on the

frequency ω. Figure 5.6 shows the behaviour of Im[rp] for evanescent waves at frequen-

cies both smaller (ω = 0.999ωT ) and larger (ω = 1.01ωT ) than the resonant frequency for

each of the ABCs in Table 5.2. At very smallK, the reflection coefficient closely matches

the local medium result. At very large K, spatial dispersion causes Im[rp] to fall off as

1/K4. This behaviour ensures that the integral over evanescent waves in (5.49) converges

to a finite result, even in the z → 0 limit.

Figure 5.6: Logarithmic plot of Im[rp] used in the utot integration as a func-

tion of K for evanescent waves at ω = 0.999ωT (top left) and ω = 1.01ωT

(all others). Results are proportional to 1/K4 in the K → ∞ limit, compared

to the constant value of the local model. Plot styles follow the conventions in

Fig. 5.2.
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The behaviour for intermediate K differs significantly between the ω < ωT and ω >

ωT regimes. For frequencies larger than ωT , there are a series of peaks in Im[rp] followed

by sharp drops. These occur at the values of K where the wave vectors qn used in the

ansatz (5.18) change from mostly real values (indicating propagating waves) to mostly

Figure 5.7: Comparison between Im[rp] using the Agarwal ABC (top) and the

wave vectors qn used in the electric field ansatz (5.18) (bottom) as functions

of K when ω = 1.01ωT . The real (blue, purple) and imaginary (red, orange)

components of the transverse wave vectors (q1, q2) do not depend on the value

of ∆, as it does not appear in the dispersion relation (5.20). In contrast, the

real (green) and imaginary (brown) components of the longitudinal wave vec-

tor (q3) strongly depend on ∆, with results given for ∆ = 0 (solid line), 0.5

(dashed line) and −0.5 (dotted line). In each case, the peaks in Im[rp] coin-

cide with the values of K where the dominant component of qn changes from

Re[qn] (propagating wave) to Im[qn] (evanescent wave).
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imaginary values (evanescent waves). This behaviour can be seen in Fig. 5.7, which

compares Im[rp] with the Agarwal ABC to the real and imaginary components of qn as

a function of K. The position of these peaks can be estimated by calculating the values

of K when Re[Γ2
⊥/‖] = 0. The exceptions to this behaviour are the Rimbey-Mahan

ABC, which does not display the corresponding peak for the longitudinal wave q3, and

the Fuchs-Kleiwer ABC, which does not display the corresponding peak for the transverse

wave q2. The peaks in Im[rp] associated with q2 and q3 are not observed in the ω < ωT

regime, as these wave vectors are mostly imaginary for all values of K. Instead, the result

simply obeys the same 1/K4 behaviour found in the K →∞ limit.

The longitudinal wave vector q3, and the location of the corresponding peak in Im[rp],

depends on the longitudinal nonlocal parameterD‖ in (5.21). The value of ∆ can therefore

have a significant effect on rp for waves with K > k0, especially in the ω > ωT regime.

This strongly contrasts with the results for waves with K < k0 in section 5.4.1, where ∆

had only a minor effect on rp. The Rimbey-Mahan ABC is once again an exception to

this rule, as the choice of Uij values leads to the absence of the longitudinal wave and the

peak in Im[rp] corresponding to q3. In the ∆ = 0 case, the changeover values of K for

q2 and q3 are close enough that the corresponding peaks of Im[rp] in Fig. 5.6 overlap and

appear as a single peak.

5.5.2 The s-polarization

It has already been noted in section 5.3 that χyy = χ⊥ is the only nonzero component

of the tensor susceptibility (5.2) in the s-polarization. The expression for the reflection

coefficient is therefore identical to the one derived by Halevi and Fuchs [4]:

rs =
Er
E0

=
Zs(0

−)− Zs(0+)

Zs(0−) + Zs(0+)
, (5.51)

where

Zs(0
−) =

k0

µ0q0

(5.52)

is the vacuum surface impedance and

Zs(0
+) =

(1 + Uyy)k0(q1q2 + Γ2
⊥) + (1− Uyy)k0Γ⊥(q1 + q2)

(1 + Uyy)q1q2(q1 + q2) + (1− Uyy)Γ⊥(q2
1 + q1q2 + q2

2 − Γ2
⊥)

(5.53)

is the surface impedance of the nonlocal medium.
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5.5. Spectral energy density

Figure 5.8 shows the K dependence of Im[rs] for evanescent waves at ω = 1.01ωT .

Unlike the p-polarization in Fig. 5.6, the local medium result decays to zero in the large

K limit, obeying a 1/K4 power law. The nonlocal medium results display many of the

features found in Fig. 5.6 for the p-polarization. The reflection coefficient closely matches

the local medium result at very smallK and obeys a 1/K6 power law in theK →∞ limit.

Peaks in Im[rs] are once again found at the points when the dominant component of q1

and q2 changes from Re[qn] to Im[qn], although these are typically smaller than those in

the p-polarization.

Figure 5.8: Logarithmic plot of Im[rs] used in the utot integration as a func-

tion of K for evanescent waves at ω = 1.01ωT . Plot styles follow the con-

ventions in Fig. 5.2. Peaks occur when the dominant component of q1 and q2

changes from Re[qn] (propagating wave) to Im[qn] (evanescent waves). Re-

sults are proportional to 1/K4 for the local model (black line) and 1/K6 for

the nonlocal model in the K →∞ limit.

5.5.3 Results

This section presents the numerical results for the spectral energy density outside ZnSe

using the expression (5.49) and the derived electromagnetic reflection coefficients. The

z-dependence of utot(z, ω) is first considered in both the ω < ωT and ω > ωT regimes.

Figures 5.9 and 5.10 display the results for utot(z) at the frequencies ω = 0.999ωT and
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5.5. Spectral energy density

ω = 1.01ωT , respectively. In the large |z| limit, the results closely match those of the

local medium. However, below 20nm for 0.999ωT and 8nm for 1.01ωT , the result for

the nonlocal medium begins to differ from the local result. These distances coincide the

wavelength of the polarization waves in the medium, approximately given by

D⊥

(
2π

|z|

)2

=
∣∣ω2

T − ω2 − iγω
∣∣ . (5.54)

Furthermore, the value of utot begins to saturate to a finite value below 1nm, removing

the unphysical 1/|z|3 divergence of the local result. This distance can also be traced back

to the physical parameters of the model, and is given by:

D⊥

(
2π

|z|

)2

= ω2
T , (5.55)

below which the nonlocal term dominates the expression for the resonant frequency ω2
T (k)

in (5.3). This also marks the changeover point for the corresponding susceptibility:

ω2
p

ω2
T (k)− ω2 − iγω

(5.56)

when it goes from ω2
T (k) ≈ ω2

T in the long wavelength limit, describing bulk oscillations

of the polarization field, to ω2
T (k) ≈ Dk2 in the short wavelength limit, describing wave-

like behaviour of the polarization field.

At the smaller frequency ω = 0.999ωT , Im[rp] decays rapidly with a 1/K4 depen-

dence. The second integral in (5.49) is therefore dominated by the small K contribution

from Fig. 5.6, where the choice of ABC has very little effect on Im[rp]. The resulting

spectral energy density in Fig. 5.9 is found to approach a finite value in the |z| → 0 limit,

removing the unphysical 1/|z|3 divergence of the local model, and displays very little dif-

ference between the various ABCs. The effect of ∆ is also negligible, as this only affects

the large-K values of Im[rp] in the ω < ωT regime.

The utot result for the larger frequency ω = 1.01ωT in Fig. 5.10 also approaches a

finite value in the |z| → 0 limit. However, in this case the second integral in (5.49) is

dominated by the peaks in Im[rp] shown in Fig. 5.6. The choice of ABC and ∆ determine

both the size and shape of these peaks and therefore have a significantly larger effect on

utot compared to Fig. 5.10. In the ∆ = 0 limit, the Ting et al. and Pekar ABC give

the largest and smallest values, respectively, while the Agarwal et al., Fuchs-Kleiwer and

Rimbey-Mahan results are almost identical. The Fuchs-Kleiwer ABC is most affected by

the value of ∆, as it determines the location of the sole Im[rp] peak in Fig. 5.6, followed by
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5.5. Spectral energy density

Figure 5.9: Rescaled spectral energy density utot as a function of distance z

from the planar boundary of the nonlocal medium ZnSe at ω = 0.999ωT . The

inclusion of spatial dispersion has removed the unphysical 1/|z|3 divergence

of the local model result (black line). Plot styles follow the conventions in Fig.

5.2.

Figure 5.10: Rescaled spectral energy density utot as a function of distance z

from the planar boundary of the nonlocal medium ZnSe at ω = 1.01ωT . Plot

styles follow the conventions in Fig. 5.2.
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Ting et al., Agarwal et al. and finally Pekar. The Rimbey-Mahan ABC remains unchanged

by ∆ due to the absence of the longitudinal wave in the medium.

Figure 5.11: Rescaled spectral energy density utot as a function of ω at a

distance of 3nm (top) and 10nm (bottom) from the planar boundary of the

nonlocal medium ZnSe. Note the difference in scale between the two cases.

Plot styles follow the conventions in Fig. 5.2, with vertical lines indicating the

values ωT (solid) and ωL (dashed).

Figure 5.11 shows the frequency dependence of utot at a distance of 3nm and 10nm

from the planar surface of ZnSe. The results display the same basic features as the local

model in Fig. 2.11 of section 2.3.6. The first is a small peak in utot at ωT , which is due

to the s-polarization contribution to the evanescent wave integral in (5.49). The peak
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5.5. Spectral energy density

height is mostly determined by the value of Uyy, as χyy is the only non-zero susceptibility

component for the s-polarization. The peak is unaffected by ∆ for the same reasons, as

χ‖ does not apply to the s-polarization.

This second feature in the utot(ω) result is a significantly larger peak at ωL, which is

due to the p-polarization contribution to the evanescent wave integral in (5.49). This peak

increases in both height and width as the surface is approached, in a manner similar to

the local result in Fig. 2.11. This can act to mask the smaller peak at ωT , as seen Fig.

5.11 for the Rimbey-Mahan and Pekar ABCs at both 3nm and 10nm from the surface.

The Uij dependence is similar to that found in Fig. 5.10, with the Ting et al. ABC giving

the largest peak in the ∆ = 0 limit, followed by the Agarwal et al., Fuchs-Kleiwer and

Rimbey-Mahan ABCs, which give similar results, and lastly the Pekar ABC.

The most striking feature of the peak in utot at ωL is the dependence on ∆. In the case

of the Fuchs-Kleiwer ABC, the utot result varies by a nearly a factor of 3 over the range

∆ = −0.5 to 0.5, even at a distance of 10nm from the surface. This is followed by the

Ting et al., Agarwal et al. and finally the Pekar ABC. These strongly contrast with the rp
results in Fig. 5.3 and 5.4, where ∆ has a negligible effect, except for a frequency region

near ωL that is significantly smaller than the peak widths in Fig. 5.11.

From these results, it is clear that the tensor nature of the susceptibility and the dif-

ference between χ⊥ and χ‖ in a spatially-dispersive medium cannot be overlooked when

considering the spectral energy density of zero point and thermal radiation near the bound-

ary of a nonlocal medium.
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5.6 Chapter summary

This chapter has extended the Halevi-Fuchs generalized ABC model to the general tensor

form of the susceptibility in a homogeneous, isotropic, non-gyroscopic, nonlocal medium,

which contains a separate expression for the transverse and longitudinal components of

the electric field. The original Halevi-Fuchs derivation was modified to find exact expres-

sions for the electromagnetic reflection and transmission coefficients, with minor restric-

tions upon the phenomenological reflection coefficients for the polarization waves in the

half-infinite medium [61].

The difference between the transverse and nonlocal parameters was found to have little

effect on the reflection and transmission coefficients for propagating incident waves com-

pared to the choice of ABC, with the exception of the transmitted longitudinal wave for

certain ABCs. The derived expressions for the reflection coefficients were subsequently

applied to the calculation of the spectral energy density utot of thermal and zero-point

radiation outside the half-infinite medium. The inclusion of spatial dispersion caused the

imaginary part of the reflection coefficients to approach zero for evanescent waves with

arbitrarily large wave vectors parallel to the surface of the medium, instead of the finite

value found when using the local model. This had the knock-on effect of naturally remov-

ing the unphysical 1/|z|3 divergence in utot found close to the boundary of the medium

without the need for an arbitrary wave vector cut-off or other phenomenological changes

to the calculation. In contrast to the results for propagating waves, the difference be-

tween transverse and longitudinal parameters was found to have a significant impact on

the spectral energy density, even at a distance of 10nm from the surface.
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Chapter 6

Extending the Halevi-Fuchs model
II. Multiple parabolic exciton bands

The Halevi-Fuchs generalized ABC model [4] and the improvements made in the pre-

vious chapter [61] both use a susceptibility containing a single resonance that describes

an isolated excitonic transition in the medium. As previously described in section 2.3.5,

this represents a small fraction of the wide range of behaviour found in real materials.

The structure, symmetry and degeneracies of the valence and conduction bands in a crys-

tal [59, 60] all determine the exciton dispersion relations. In real semiconductors, this

leads to a large number of interacting exciton bands in a medium, each with an asso-

ciated resonance in χ. The susceptibility can contain behaviour that is not covered by

the Halevi-Fuchs model, including resonances that are closely-spaced, degenerate [63] or

contain nonlocal terms other than Dk2 used in the previous chapter [64–66].

While the majority of work on the subject of reflection in nonlocal media has fo-

cused on the single-resonance susceptibility, culminating in the Halevi-Fuchs generalized

ABC model, some authors [67–69] have considered the multi-resonance case. However,

this work has been comparatively limited in scope and is typically restricted to the two-

resonance susceptibility and a specific set of ABCs.

Chapters 6 and 7 further extend the Halevi-Fuchs generalized ABC model to nonlocal

susceptibilities containing an arbitrary number of resonances and derive expressions for

the electromagnetic reflection and transmission coefficients [62]. This chapter considers

the case of parabolic exciton bands, with the same k dependence used by the Halevi-Fuchs

model, while the next chapter deals with more complex wave vector dependences. These

results are once again applied to the calculation of the spectral energy density outside the
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6.1. The infinite medium

nonlocal medium.

The assumptions made in the previous chapter also apply to the following derivation.

Quantum-mechanical effects not encoded in the macroscopic susceptibility are omitted

and the boundary is considered to be smooth and free of any features such as slits or

structures. Boundaries are considered to be sufficiently separated, such that multiple re-

flections can be ignored.

The contents of this chapter are arranged in a similar manner to the previous chapter.

Section 6.1 first considers the simple case of multiple isotropic, parabolic exciton bands

in an infinite medium and discusses the resulting dispersion relations for the electric field.

The half-infinite medium is then considered in section 6.2, where the Halevi-Fuchs model

is modified to include multiple resonances. The Halevi-Fuchs derivation is repeated to

find a set of equations relating the amplitude of the various waves inside the nonlocal

medium. These are used in sections 6.3 and 6.4 to derive exact expressions for the elec-

tromagnetic reflection and transmission coefficients in both the p- and s-polarizations.

Numerical results are presented in section 6.5 for two different nonlocal media and the dif-

ferences with the single-resonance model are discussed. Improved parameters are found

for the single band approximation to the heavy/light exciton band model. Finally, sec-

tion 6.6 uses these results to calculate the spectral energy density outside each nonlocal

medium and identifies the key differences to the single resonance results in section 2.3.6.

6.1 The infinite medium

This chapter starts by considering an infinite medium described by a scalar Lorentz model

with M resonances

χ(k, ω) = χ0 +
M∑
m=1

χm(k, ω), χm(k, ω) =
ω2
pm

ω2
Tm(k)− ω2 − iγmω

, (6.1)

where each of the parameters have the same definition as in chapter 5. The exciton bands

have the same parabolic dispersion relations used in the Halevi-Fuchs model:

~ωT (k) = ~ωT +
~2k2

2mex

, ω2
T (k) ≈ ω2

T +Dk2, D =
~ωT
mex

, (6.2)

although it has been shown [59] that the previously used definition of the exciton mass

mex = mel +mho must be modified if there are degenerate exciton bands. While a scalar

susceptibility is used in (6.1), the following derivations are equally applicable to the tensor
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6.2. The half-infinite medium

expression in (5.2) by applying the same modifications described in chapter 5 to each of

the resonances.

The susceptibility in (6.1) leads to the dispersion relation

ω2

c2

[
1 + χ0 +

M∑
m=1

χ(k, ω)

]
= k2 (6.3)

for transverse waves with E · k = 0 and[
1 + χ0 +

M∑
m=1

χ(k, ω)

]
= 0 (6.4)

for longitudinal waves with E × k = 0. After making the restriction to solutions with

Im[kz] > 0, (6.3) and (6.4) lead to M + 1 transverse and M longitudinal waves inside the

nonlocal medium described by (6.1) and (6.2).

6.2 The half-infinite medium

The half-infinite medium shown in Fig. 6.1 is now considered. The z < 0 vacuum half

space contains the incident (E0) and reflected (Er) waves with the corresponding wave

vectors k0 and kr. The z > 0 half space contains M + 1 transverse and M longitudinal

waves (E(n)), for a total of N = 2M + 1, with wave vectors kn that satisfy the dispersion

relations (6.3) and (6.4). The co-ordinate system is identical to the one used both in the

Halevi and Fuchs paper and chapter 5, fixing the wave vector components knx = K and

kny = 0 and only leaving the component knz to vary between waves.

The following derivation is very similar to the one found in chapter 5, with some

slight modifications to account for the multiple resonances in the system. The Halevi-

Fuchs model in (2.54) is once again modified, with the susceptibility of the half-infinite

medium χ′i given by:

χ′i(x− x′, y − y′, z, z′) =



χ0δ(x− x′)δ(y − y′)δ(z − z′)

+
M∑
m

χ′mi(x− x′, y − y′, z, z′) if z, z′ > 0,

0 otherwise,

(6.5)

where each of the M resonances now contain two parts:

χ′mi(x−x′, y−y′, z, z′) = χm(x−x′, y−y′, z−z′)+Umiχm(x−x′, y−y′, z+z′). (6.6)
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DielectricVacuum k1
k2

k3

k0

kr

z

x

z=0

θi

kN

…

Figure 6.1: Schematic of reflection at the planar interface of the nonlocal

medium described by the multi-resonance susceptibility in (6.1) and (6.2).

The coordinate system is chosen such that the xz-plane coincides with the

plane of incidence and ky = 0. The z < 0 vacuum half-space contains the

incident wave E0 and the reflected wave Er, with the corresponding wave

vectors k0 and kr. The z > 0 nonlocal medium contains M + 1 transverse

(E(1), . . . ,E(M+1)) and M longitudinal waves (E(M+2), . . . ,E(2M+1)), for

a total of N = 2M + 1 waves with the corresponding wave vectors kn .

The first term in (6.6) is the bulk response of the nonlocal medium and the second de-

scribes the reflection of polarization waves on the interior boundary of the medium. Each

of the resonances can have independent values of the phenomenological reflection coeffi-

cient Umi, to account for the different behaviour of the various excitations in the medium.

However, results presented later in this chapter assume that values of Umi are the same

for each resonance in the medium.

The expression for the multi-resonance susceptibility in (6.5) and (6.6) can once again

be substituted in to theP definition in (2.3). After a spatial Fourier transformation in time

and the xy-plane, the polarization field is given by:

Pi(K, 0, z) =ε0χ0Ei(K, 0, z)+

ε0

2π

∫ ∞
0

dz′
∫ ∞
−∞

dq
M∑
m=1

[
eiq(z−z

′) + Umie
iq(z+z′)

]
χm(K, 0, q)Ei(K, 0, z

′).

(6.7)

The resonances in the bulk susceptibility (6.1) can once again be rewritten in terms of q:

χm(q) =
ω2
pm/Dm

q2 − Γ2
m

, −Γ2
m =

ω2
Tm − ω2 − iγmω

Dm

+K2, (6.8)
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where the kx = K and ky = 0 dependences have been omitted.

An ansatz for the electric field must be introduced at this point in the derivation:

E(z) =


E0e

iq0z +Ere
−iq0z z < 0,

N∑
n=1

E(n)eiqnz z > 0,
(6.9)

where the z < 0 half-space contains the incident (E0) and reflected (Er) waves, with

the corresponding wave vector q0, defined in (5.19). The z > 0 half-space contains

M + 1 transverse and M longitudinal waves (E(n)), for a total of N = 2M + 1 waves.

The corresponding wave vectors qn are the Im[q] > 0 solutions to the transverse and

longitudinal dispersion relations (6.3) and (6.4).

Substituting the ansatz (6.9) into (6.7) allows the z′ integral to be evaluated, giving:

Pi(z) =χ0Ei(z) +
i

2π

∫ ∞
−∞

dqeiqz
M∑
m=1

N∑
n=1

[
1

qn − q
+

Umi
qn + q

]
χm(q)E

(n)
i , z > 0.

(6.10)

The q integral in (6.10) can once again evaluated [114] by performing a contour integra-

tion in the upper half-plane of complex q, enclosing the poles at q = qn in the square

brackets and q = Γm in χm(q). The resulting expression for the polarization field can be

split into M + 1 distinct sets of terms:

Pi(z) =
N∑
n=1

χ(qn)E
(n)
i eiqnz

−
ω2
p1

2D1Γ1

N∑
n=1

(
1

qn − Γ1

+
U1i

qn + Γ1

)
E

(n)
i eiΓ1z

−
ω2
p2

2D2Γ2

N∑
n=1

(
1

qn − Γ2

+
U2i

qn + Γ2

)
E

(n)
i eiΓ2z

− . . .

−
ω2
pM

2DMΓM

N∑
n=1

(
1

qn − ΓM
+

UMi

qn + ΓM

)
E

(n)
i eiΓMz. (6.11)

For the wave equation (5.10) to be valid for all values of z, each of the right-hand side

sums proportional to exp(iΓmz) in (6.11) must equal zero. This leads to a set of M

equations that relate each of the E(n)
i components:

N∑
n=1

φ
(n)
miE

(n)
i = 0, m = 1, . . . ,M, (6.12)

156



6.3. The p-polarization

where:

φ
(n)
mi =

(
1

qn − Γm
+

Umi
qn + Γm

)
. (6.13)

This set of equations acts as the ABCs for the multi-resonance model in (6.5) and (6.6),

similar to (5.26) for the tensor single-resonance susceptibility in chapter 5.

6.3 The p-polarization

The E field can be decomposed into terms perpendicular (s-polarized) or parallel (p-

polarized) to the xz-plane of incidence. This section considers p-polarized light, with

Ey = 0, Ex 6= 0 and Ez 6= 0.

6.3.1 The surface impedance

The methods used in section 5.3 can be used to rewrite the surface impedance of the

nonlocal medium solely in terms of the transmitted waves’ Ex components. This can be

further rearranged to express Zp(0+) in terms of the field amplitude ratios:

Zp(0
+) =

Ex
Hy

=
1

µ0

∑N
n=1E

(n)
x∑N

n=1 τ
(n)E

(n)
x

=
1

µ0

1 +
∑N

n=2
E

(n)
x

E
(1)
x

τ (1) +
∑N

n=2 τ
(n)E

(n)
x

E
(1)
x

, (6.14)

where τ (n) relates B(n)
y and E(n)

x in (5.30).

6.3.2 Field amplitude ratios

Calculating the surface impedance in (6.14) requires the Ex field amplitude ratios of the

2M + 1 transmitted waves in the p-polarization. These can be calculated using the previ-

ously derived effective ABCs in (6.13). The Ez equation can be rewritten in terms of Ex
using the relationship in (5.29), giving:

N∑
n=1

[
φ(n)
mx

]
E(n)
x = 0,

N∑
n=1

[
η(n)φ(n)

mz

]
E(n)
x = 0, m = 1, . . . ,M, (6.15)

where η(n) = −K/qn for transverse and η(n)qn/K for longitudinal waves. The 2M equa-

tions relating the 2M + 1 waves inside the medium are sufficient information to calculate

the field amplitude ratios and the resulting electromagnetic reflection coefficient. The
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n = 1 term can be moved to the RHS of (6.15) and the entire expression divided by E(1)
x

to give:

N∑
n=2

[
φ(n)
mx

] E(n)
x

E
(1)
x

= −φ(1)
mx,

N∑
n=2

[
η(n)φ(n)

mz

] E(n)
x

E
(1)
x

= −φ(1)
mz, m = 1, . . . ,M,

(6.16)

which can subsequently be expressed in matrix form. In the case of the two-resonance

susceptibility, this is given by:
φ

(2)
1x φ

(3)
1x φ

(4)
1x φ

(5)
1x

φ
(2)
2x φ

(3)
2x φ

(4)
2x φ

(5)
2x

η(2)φ
(2)
1z η(3)φ

(3)
1z η(4)φ

(4)
1z η(5)φ

(5)
1z

η(2)φ
(2)
2z η(3)φ

(3)
2z η(4)φ

(4)
2z η(5)φ

(5)
2z



E

(2)
x /E

(1)
x

E
(3)
x /E

(1)
x

E
(4)
x /E

(1)
x

E
(5)
x /E

(1)
x

 = −


φ

(1)
1x

φ
(1)
2x

η(1)φ
(1)
1z

η(1)φ
(1)
2z

 , (6.17)

where n = 1, 2, 3 are transverse waves and n = 4, 5 are longitudinal waves. The 2M ×
2M matrix in (6.17) can be inverted to find the field amplitude ratios of the system and

the surface impedance of the nonlocal medium in (6.14). The large number of matrix

components made it impractical to derive analytic expressions for the field amplitude

ratios, as in (5.3.2) for the single-resonance susceptibility. Instead, the matrix inversion

was typically performed after the numerical values of η(n) and φ(n)
mi had been calculated.

6.3.3 Electromagnetic reflection and transmission coefficients

The nonlocal medium surface impedance (6.14) and the vacuum surface impedanceZp(0−) =

q0/µ0k0 can be used to calculate the p-polarization reflection coefficient rp using the def-

inition [44] in (5.41). The Maxwell boundary condition requiring the continuity of trans-

verse E components [1] is imposed at the z = 0 boundary, using the Ex components of

the ansatz (6.9):

E0x − Erx = E0

[
qo
k0

(1− rp)
]

=
N∑
n=1

E(n)
x = E(1)

x

N∑
n=1

[
E

(n)
x

E
(1)
x

]
, (6.18)

which has been rewritten in terms of the field amplitude ratios calculated in section 6.3.2.

The transmission coefficients t(n)
p are derived in the same manner as section 5.3.3 by using

the relation in (5.45), to give:

t(n)
p =

E(n)

E0

=

√
q2
n +K2

qn

E
(n)
x

E
(1)
x

 q0

k0

[1− rp][
1 +

∑N
n=2

E
(n)
x

E
(1)
x

]
 , (6.19)
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for transverse waves and:

t(n)
p =

E(n)

E0

=

√
q2
n +K2

K

E
(n)
x

E
(1)
x

 q0

k0

[1− rp][
1 +

∑N
n=2

E
(n)
x

E
(1)
x

]
 . (6.20)

for longitudinal waves. While the final expressions for rp and t(n)
p are quite long, numeri-

cally calculating the results is a straightforward process of finding the qn solutions to the

dispersion relations (6.3) and (6.4) and inverting a 2M × 2M matrix similar to the one in

(6.17).

6.4 The s-polarization

This section considers the simpler case of the s-polarization, which contains the compo-

nents of E perpendicular to the plane of incidence. The current choice of co-ordinates

mean the only nonzero component of s-polarized light is Ey 6= 0, with Ex = 0 and

Ez = 0. All wave vectors must, by definition, lie in the xz-plane of incidence. The

s-polarization therefore lacks the longitudinal waves discussed in the previous section,

leaving M + 1 transverse waves inside the nonlocal medium.

6.4.1 The surface impedance

The Maxwell equations (2.10) can be used to rewrite the surface impedance solely in

terms of the Ey components of the s-polarization, as in equation (2.36). This expression

reduces to Zs(0−) = k0/µ0q0 in the vacuum and

Zs(0
+) =

k0

µ0

∑M+1
n=1 E

(n)
y∑M+1

n=1 qnE
(n)
y

=
k0

µ0

1 +
∑M+1

n=2
E

(n)
y

E
(1)
y

q1 +
∑M+1

n=2 qn
E

(n)
y

E
(1)
y

(6.21)

in the nonlocal medium, whereZs has been rewritten in terms of the field amplitude ratios.

Note that the sum in (6.21) only contains the M + 1 transverse waves.

6.4.2 Field amplitude ratios

The Ey sum in (6.12) can be rewritten in terms of the field amplitude ratios, giving a set

of M expressions of the form:
M+1∑
n=2

[
φ(n)
my

] E(n)
y

E
(1)
y

= −φ(1)
my, m = 1, . . . ,M (6.22)

159



6.4. The s-polarization

that relate the M + 1 transverse waves in the medium for the s-polarization. Once again,

there is sufficient information to calculate the field amplitude ratios by writing (6.22) in

matrix form and inverting the expression. In the two-resonance case, this is given by:(
φ

(2)
1y φ

(3)
1y

φ
(2)
2y φ

(3)
2y

)(
E

(2)
y /E

(1)
y

E
(3)
y /E

(1)
y

)
= −

(
φ

(1)
1y

φ
(1)
2y

)
, (6.23)

which comparatively simpler than the p-polarization expression in (6.17).

6.4.3 Electromagnetic reflection and transmission coefficients

Now that the field amplitude ratios have been found, the surface impedance of the vac-

uum in (5.52) and the nonlocal medium in (6.21) can be used to calculate the reflection

coefficient using the definition [44] in (2.34). The transmission coefficients are once again

derived by imposing the continuity of transverseE components at the z = 0 boundary [1].

As only Ey components are nonzero in the s-polarization, this leads to:

E0 − Er = E0 [1− rs] =
M+1∑
n=1

E(n)
y = E(1)

y

[
1 +

M+1∑
n=2

E
(n)
y

E
(1)
y

]
, (6.24)

which has been rearranged in terms of the reflection coefficient rs and the field amplitude

ratios calculated in section 6.4.2. The final expressions for the electromagnetic transmis-

sion coefficients in the s-polarization are given by:

t(n)
s =

E(n)

E0

=
E

(n)
y

E
(1)
y

 [1− rs][
1 +

∑M+1
n=2

E
(n)
y

E
(1)
y

]
 . (6.25)

This concludes the derivation of the electromagnetic reflection and transmission coef-

ficients for the generalized ABC multi-resonance susceptibility in (6.5) and (6.6).
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6.5 Results

This section, like much of the previous literature on ABCs and multi-resonance suscepti-

bility models [67–69], focuses exclusively on the electromagnetic reflection coefficients

rs and rp derived in sections 6.3 and 6.4. Two example materials are considered, each

with different exciton band behaviour. The first is Zinc Oxide (ZnO), which contains

three simple non-interacting parabolic exciton bands, while the second is Gallium Ar-

senide (GaAs), which contains two parabolic exciton bands that are degenerate at k = 0.

This behaviour is shown in Fig. 6.2 (not to scale) along with the corresponding dispersion

relations for transverse E waves in the absence of damping.

Figure 6.2: Exciton band behaviour (black dashed) compared to the light line

(black dotted) and dispersion relations for transverse E waves in an infinite

medium (solid red) when γm is set to zero. Examples include multiple non-

interacting parabolic bands (left), such as those found in ZnO, and degenerate

parabolic exciton bands with the same ωT but different k2 terms (right), such

as those found in GaAs. The latter are also known as heavy/light exciton bands

[59, 63] .

Model parameters for each of the materials are presented in Table 6.1. The values of

ωp are calculated from the measured values of ωL, which are the solutions to the trans-

verse wave equation (6.3) at k = 0 in the absence of the damping term γ. The nonlocal

parameters D are similarly calculated from the measured exciton masses mex. While the

exciton mass is typically the sum of the electron and hole masses, a different expression

161



6.5. Results

must be used in the degenerate band case [59] .

Table 6.1: List of ZnO [68] and GaAs [70] model parameters, where m labels

the resonances in the susceptibility, me0 is the rest electron mass and c is the

speed of light in the vacuum.

ZnO GaAs

m 1 2 3 1 2

χ0 5.2 5.2 5.2 11.6 11.6

~ωT (eV) 3.3758 3.3810 3.4198 1.514 1.514

~ωL (eV) 3.3776 3.3912 3.4317 1.515 1.515

~γ (meV) 0.7 0.7 0.7 0.05 0.05

mex (me0) 0.87 0.87 0.87 0.183 0.805

~ωp (eV) 0.5334 0.6055 0.5983 0.138 0.138

Dc2 (×10−6) 7.58 7.61 7.69 16.19 3.68

6.5.1 Non-interacting exciton bands

The simpler case of non-interacting exciton bands is first considered. While this type

of system has been considered previously [67–69] in reflection coefficient calculations,

work has typically been limited to a maximum of two resonances and a specific ABC. The

model used in this section for ZnO is a three resonance susceptibility involving the A, B

and C excitons, which are labelled m = 1, 2 and 3 respectively. This is based on the work

by Lagois [67,68], who considered them = 1, 2 and them = 3 resonances separately. As

a result, each frequency region required a different derivation for the reflection coefficient,

in contrast to the single, unified approach detailed in sections 6.3 and 6.4.

Figure 6.3 compares rp(ω) and rs(ω) at a fixed incident angle for the range of ABCs

detailed in Table 6.1. The overall result is similar to that to the local model with Dm = 0,

with the location of the peaks determined by the values of ωTm and ωLm, represented by

solid and dashed vertical lines, respectively. The Ui dependence is similar to that found

in section 5.4.1, with the results mostly determined by the value of Ux and Uy. The Ting

et al. and Fuchs-Kleiwer ABCs with Ux = Uy = 1 display the smallest differences to

the local result, followed by the Agarwal et al. and finally the Rimbey-Mahan and Pekar

ABCs.
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While the frequency region around the m = 3 resonance can be accurately described

by the single-resonance model, due to the very small contributions to χ from the other

resonances in the susceptibility, the same is not true for the m = 1 and 2 resonances.

Large changes in behaviour are found in the frequency region between ωT1 and ωT2, where

the significant overlap of the two resonances in the susceptibility leads to the failure of the

one-resonance model. Unlike the rp minima associated with the m = 2 and 3 resonances,

the minima at ωL1 is not affected by the value of Uz. This behaviour is found at all angles

and is not present in the single-resonance model. Instead, the behaviour of rp and rs in

this frequency range is solely determined by Ux or Uy, with Ux,y = 1 giving the largest

contrast between the minima and maxima.

Figure 6.3: Absolute value of rp (top) and rs (bottom) for the ZnO 3-exciton

model at a fixed incident angle of 50◦. Vertical lines indicate ωTm (solid)

and ωLm (dashed) values. Includes Agarwal et al. (red), Ting et al. (brown),

Fuchs-Kliewer (green), Rimbey-Mahan (blue) and Pekar (purple) ABC’s com-

pared to the result of the local model with Dm = 0 (black).
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6.5.2 Heavy/light exciton bands

Interactions in a medium can lead to the splitting of otherwise degenerate exciton bands.

In the simplest case of a medium with isotropic valence electron bands this leads to two

parabolic exciton bands that are degenerate at k = 0 [59, 63]. These are labelled as

“heavy” and “light” exciton bands, with the corresponding dispersion relations:

~ωTh(k) =~ωT +
~2k2

2mh

, ω2
Th(k) ≈ ω2

T +Dhk
2, Dh =

~ωT
mh

,

~ωT l(k) =~ωT +
~2k2

2ml

, ω2
T l(k) ≈ ω2

T +Dlk
2, Dl =

~ωT
ml

. (6.26)

This sections considers a two-resonance model for GaAs using the heavy/light exciton

bands in (6.26) and the parameters in Table 6.1. Figure 6.4 shows the frequency depen-

dence of rp for a fixed incident angle. The result displays the same basic features as the

single-resonance model. The behaviour is mostly determined by the value of Ux, with Uz
only affecting the frequency region near the reflection minima.

Figure 6.4: Absolute value of rp(ω) for the GaAs heavy/light exciton model

at a fixed incident angle of 50◦. Plot styles follow the conventions in Fig. 6.3.

Previous work [70] on heavy/light exciton bands has suggested that the susceptibility

of the system can be approximated by a one-resonance model with ω2
p multiplied by 2 and
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an effective nonlocal parameter, given by:

Deff =
Dh +Dl

2
. (6.27)

Figure 6.5 compares the rp results of the full two-resonance model to a single-resonance

approximation using the effective parameter in (6.27) for the Agarwal ABC at a range

of incident angles. The effective parameter Deff provides a reasonable approximation for

most values of ω, but underestimates the result over the range of the peak in rp, especially

at the resonant frequency ωT . The discrepancy between the single-band approximation

and the heavy/light exciton band results increases with the difference in Dh and Dl values

and is greatest for ABCs with Ux = −1.

Figure 6.5: Detail of the peak in |rp(ω)| for the GaAs heavy/light exciton

model at a fixed incident angle θi = 20◦ (red), 30◦ (orange), 40◦ (yellow),

50◦ (green), 60◦ (cyan), 70◦ (blue) and 80◦ (purple) using the Agarwal ABC.

Compares the two-resonance model (solid lines) to the single-resonance ap-

proximations using Deff (dotted lines) in (6.27) and the newly proposed D∗

(dashed lines) in (6.29), which provides a better fit all values of ω and θi.

The paper [70] that proposed the effective nonlocal parameter Deff also noted this

discrepancy in results near ωT . However, as the aim of their work was not to provide a de-

tailed fit between experimental and theoretical results, the approximation in in (6.27) was

considered adequate as no qualitatively new features were introduced to the susceptibility.
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An improved single-resonance approximation to the heavy/light exciton model can be

made by re-expressing the nonlocal term in the susceptibility as

Dk2 =
(√

Dk
)2

(6.28)

and instead taking the average value of
√
D, which is the coefficient of k. The new

effective nonlocal parameter D∗ is given by:

√
D∗ =

√
Dh +

√
Dl

2
. (6.29)

Results for the single-resonance approximation in (6.29) are also displayed in Fig. 6.5.

While there are still differences in the result near ωT , the newly proposed effective pa-

rameter D∗ provides a much better fit than Deff to the two-resonance model at every

frequency and incident angle, especially in the frequency region near ωL. This behaviour

is found to hold for all values of Dh/l and Ui and can also be applied to the s-polarization

with a similar degree of success.

6.6 Spectral energy density

This section applies the newly-derived expressions for the electromagnetic reflection co-

efficients to the calculation of the spectral energy density in the presence of multiple

exciton bands. It was previously shown in chapter 5 that the inclusion of spatial disper-

sion removed the unphysical 1/|z|3 divergence near the z = 0 surface of the medium.

The aim of this section is to investigate differences in the behaviour of utot introduced by

the presence of multiple resonances in the susceptibility.

6.6.1 Non-interacting exciton bands

The simpler case of non-interacting exciton bands in ZnO is first considered. Figure 6.6

shows the behaviour of Im[rp] as a function of K for ZnO at ~ω = 3.44eV, compared

to the real and imaginary parts of qn for the seven waves inside the medium. The results

display the same general features as the single-resonance model in section 5.5, with peaks

in Im[rp] occurring at the values ofK where each wave goes from propagating (dominated

by Re[qn]) to evanescent (dominated by Im[qn]) behaviour, followed by a 1/K4 decay to

zero in the K →∞ limit. The exceptions to this are the Fuchs-Kleiwer ABC, which only

displays peaks for longitudinal waves, and the Rimbey-Mahan ABC, which only displays
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peaks for transverse waves. The results for Im[rs], which are not included here, display

similar behaviour, but with the absence of longitudinal waves and their associated peaks

and a 1/K6 decay to zero in the K →∞ limit.

Figure 6.6: Top: Logarithmic plot of Im[rp] as a function of K for the three-

resonance ZnO model at ~ω = 3.44eV. Includes Agarwal et al. (red), Ting et

al. (brown), Fuchs-Kliewer (green), Rimbey-Mahan (blue) and Pekar (purple)

ABC’s. Bottom: Comparison between the real (blue) and imaginary (red) com-

ponents of the seven qn values used in theE ansatz (6.9). The peaks in Im[rp]

roughly coincide with the values of K where qn changes from describing a

transmitted wave (dominated by Re[qn]) to an evanescent wave (dominated by

Im[qn]), similar to Fig. 5.7.
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Figure 6.7 displays utot(ω) at a fixed distance of 8nm from the surface of ZnO. The

results depend strongly on the choice of ABC, with the Ting et al. ABC giving the largest

peaks, followed by Fuchs-Kleiwer, Agarwal et al., Rimbey-Mahan and finally Pekar. This

behaviour agrees with the results for the single-resonance model in section 5.5.3. Separat-

ing the results into s- and p-polarization contributions, as in Fig.6.8 for the Agarwal ABC,

reveals six separate peaks at each of the ωTm and ωLm values. The p-polarization peaks

were found to be much larger than their s-polarization counterparts in the z → 0 limit of

the single-resonance model. However, the utot peak at ωL1 has been suppressed by the

proximity of the m = 2 resonance and is now comparable in size to the s-polarization

peaks.

Figure 6.7: Rescaled spectral energy density utot(ω) at a distance of 8nm

from the planar boundary of the nonlocal medium ZnO described by a three-

resonance susceptibility. Vertical lines indicate ωTm (solid) and ωLm (dashed)

values. The peak at ωT1 is suppressed by the presence of them = 2 resonance.

Plot styles follow the conventions in Fig. 6.3.

The origin of this behaviour can be traced back to Fig. 6.6. Recall that each nonlocal

resonance in the susceptibility (6.1) leads to an additional transverse and longitudinal

wave in the medium. The Im[rp] peak at the largest K value is associated with the waves

introduced by the m = 1 resonance. This peak is very small due to the presence of a

nearby peak in Im[rp] at a smallerK value, which is associated with the waves introduced

by the m = 2 resonance. This leads to an overall suppression of the m = 1 peak in the
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Figure 6.8: Comparison between s- (dashed) and p-polarization (solid) con-

tributions to utot(ω) at a distance of 8nm from the surface of ZnO using the

Agarwal ABC.

p-polarization, and is a feature that cannot be described by the single-resonance model.

This behaviour is less pronounced in the s-polarization, which only contains transverse

waves, and therefore fewer peaks in Im[rs].

6.6.2 Heavy/light exciton bands

The more complex heavy/light exciton model used for GaAs is now considered. The

results for Im[rp] at ~ω = 1.517eV in Fig. 6.9 display the same behaviour discussed

in section 6.6.1 for the non-interacting exciton model, with each peak in Im[rp] cor-

responding to the value of K where each wave goes from propagating (dominated by

Re[qn]) to evanescent (dominated by Im[qn]) behaviour. It is important to note that the

two-resonance model contains more waves, and therefore more peaks in Im[rp], than the

single-resonance approximations discussed in section 6.5.2.

Figure 6.10 displays the results for utot(ω) a distance of 8nm from the planar bound-

ary of the heavy/light exciton model of GaAs. While the results initially appear similar

to those of the single-resonance in section 5.5.3, Fig. 6.11 reveals that neither of the

single-resonance approximations discussed in section 6.5.2 provide an accurate result for

utot(ω). This inaccuracy can be traced back to the behaviour of rs and rp for evanescent
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Figure 6.9: Logarithmic plot of Im[rp] as a function of K for the GaAs

heavy/light exciton model at ~ω = 1.517eV. Plot styles follow the conven-

tions in Fig. 6.3.

waves. While both approximations provide relatively accurate results for the reflection

coefficient in the case of propagating waves, as seen in Fig. 6.5, the value of utot close

to the boundary is dominated by the evanescent wave integral. Here, the key features of

Im[rs] and Im[rp] are the peaks coinciding with the changeover values of the wave vec-

tors qn. The single-resonance model contains fewer waves and therefore fewer peaks in

Im[rs/p] compared to the two-resonance model, leading to the inaccuracies observed in

Fig. 6.11.

It is clear from the results of sections 6.6.1 and 6.6.2 that multiple exciton bands, espe-

cially those that are closely spaced or exhibit degeneracy, cannot be considered separately

when calculating the spectral energy density of thermal and zero-point radiation close to

the surface of a nonlocal medium. Both sets of utot(ω) results in Fig. 6.7 and 6.10 display

behaviour that is not found in the single resonance case described in chapter 5.5.3, such

as the suppression of peaks in ZnO or the failures of the single-resonance approximations

in GaAs.
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Figure 6.10: Rescaled spectral energy density utot(ω) at a distance of 8nm

from the planar boundary of the nonlocal medium GaAs described by a two-

resonance susceptibility. Plot styles follow the conventions in Fig. 6.3.

Figure 6.11: Detail of Fig. 6.10 comparing the heavy/light exciton model

(solid line) and the single-resonance approximations using Deff (dashed line)

and D∗ (dotted line) using the Agarwal ABC. Despite the success of the ap-

proximations in calculating rp for propagating waves in Fig. 6.5, neither pro-

vides an accurate result for utot(ω) near the resonant frequency.
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6.7 Chapter summary

This chapter has extended the Halevi-Fuchs generalized ABC model to susceptibilities

containing multiple resonances, each with the same Dk2 wave vector dependence [62].

An ansatz for the electric field containing a sum of plane waves inside the medium was

used in conjunction with the electromagnetic wave equations to derive a set of equations

relating the amplitude of the various transmitted waves. These equations acted as the

ABCs for the multi-resonance model and allowed exact expressions for the electromag-

netic reflection and transmission coefficients to be derived. In practice, this amounted to

finding solutions of the infinite medium dispersion relations and subsequently inverting a

matrix equation, both of which were simple to perform numerically.

Results for the electromagnetic reflection coefficient were presented for a variety of

models and ABCs and the differences to the single-resonance model in chapter 5 were

discussed. In the particular case of degenerate heavy/light exciton bands, a new effective

model parameter
√
D∗ = (

√
Dh +

√
Dl)/2 was found for the single-band approximation,

providing an improved fit to rs and rp for propagating waves compared to the one currently

used in literature.

The derived expressions for rs and rp were subsequently used to calculate the spectral

energy density of zero-point and thermal radiation outside an isotropic nonlocal medium

with multiple spatially-dispersive resonances in the susceptibility. While the results shared

the same basic features found in the single-resonance case in chapter 5, such as the re-

moval of the 1/|z|3 divergence and peaks in utot(ω) at ωT and ωL, additional behaviour

was found due to the presence of multiple resonances, such as the suppression of ωT peaks

in utot.
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Chapter 7

Extending the Halevi-Fuchs model
III. Uniaxial crystals and linear k terms

The extensions made to the Halevi-Fuchs model in chapters 5 and 6 were both limited to

isotropic media with an exciton band structure that could be reduced to the simple Dk2

term in the denominator of the electromagnetic susceptibility. This chapter further extends

the Halevi-Fuchs generalized ABC model to include two new concepts: anisotropy and

exciton bands with alternate k dependences [62]. Both of these features are found in

crystals with certain symmetry groups [59,60] , including uniaxial crystals [64–66] which

are the focus of this chapter.

Like the multi-resonance model featured in chapter 6, previous authors [71–73] have

calculated the electromagnetic reflection coefficient of a nonlocal media containing these

features, but only for a specific ABC and orientation of the medium. In particular, Mahan

and Hopfield [71] considered the case of Cadmium Sulfide (CdS), a uniaxial medium with

wurtzite crystal structure. The symmetry of this system allows for energy terms that are

linear in wave vector to appear in the valence bands of CdS [60]. This in turn leads to

the splitting of otherwise degenerate exciton bands by a linear ±k term in the dispersion

relations.

This chapter extends the Halevi-Fuchs multi-resonance model described in chapter

6 to the case of uniaxial crystals, incorporating both anisotropy and exciton bands with

a ±k term in the dispersion relation. The electromagnetic reflection and transmission

coefficients are derived for a range of crystal orientations and subsequently used in the

calculation of spectral energy density of thermal and zero-point radiation [62].
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Section 7.1 considers the susceptibility and dispersion relations of the infinite medium,

highlighting the difficulties introduced by anisotropy, such as the tensor susceptibility.

The Halevi-Fuchs multi-resonance model is further modified in section 7.2 for the half-

infinite uniaxial crystal and a set of equations relating the various transmitted wave am-

plitudes are derived. Exact expressions are subsequently derived for the electromagnetic

reflection and transmission coefficients in section 7.3 for a number of different crystal

orientations. Numerical results for the reflection coefficients and the resulting spectral

energy density are presented in section 7.4, highlighting the key differences to the sim-

pler nonlocal models featured in chapters 5 and 6.

7.1 The infinite medium

This chapter starts by considering the infinite uniaxial crystal. In general, the tensor

susceptibility of a crystal can be brought to a diagonal form with the correct choice of co-

ordinate axes [26]. The resulting expression is therefore determined by three independent

functions describing the electromagnetic response in the direction of each axis. In uniaxial

crystals, the functions in the directions parallel and perpendicular to the crystal axis c are

not equal. The tensor susceptibility of uniaxial crystals can therefore be reduced to the

form χij = χiδij when c is aligned with one of the co-ordinate axis, such as:

χ(k, ω) =

χ
⊥(k, ω)

χ⊥(k, ω)

χ‖(k, ω)

 (7.1)

for the c ‖ ẑ case, where the ‖ and ⊥ superscripts denote components parallel and per-

pendicular to the crystal axis c. The exact form of χ⊥ and χ‖ depend on the medium.

The symmetry of uniaxial crystals such as zincblende and wurtzite can lead to linear

k terms in the exciton dispersion relations, which act to split otherwise degenerate bands

[59, 60]:

~ω±(k) = ~ωT +
~2k2

⊥
2mex⊥

+
~2k2

‖

2mex‖
± ζk⊥, (7.2)

where mex⊥ and mex‖ are the exciton masses and k‖ and k⊥ are wave vector components

parallel and perpendicular to c respectively. This behaviour is known as linear splitting

and is shown in Fig. 7.1. Note that both exciton bands are required to preserve the overall

symmetry of the system.
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Figure 7.1: Exciton band behaviour (black dashed) in the presence of linear

splitting compared to the light line (black dotted) and dispersion relations for

transverseE waves in an infinite medium (solid red) when γ is set to zero (not

to scale).

In the corresponding nonlocal susceptibility, equation (7.2) is approximated to [71] :

ω2
±(k) = ω2

T +D⊥k
2
⊥ +D‖k

2
‖ ± ξk⊥, (7.3)

where

D⊥/‖ =
~ωT
mex⊥/‖

, ξ =
2ωT ζ

~
. (7.4)

The susceptibility of the uniaxial crystal therefore contains two resonances:

χ+(k) + χ−(k) =
ω2
p

(ω2
T +D⊥k2

⊥ +D‖k
2
‖ + ξk)− ω2 − iγω

+
ω2
p

(ω2
T +D⊥k2

⊥ +D‖k2
‖ − ξk)− ω2 − iγω

, (7.5)

that can be collected to a single fraction:

χ⊥lin(k) =
2ω2

p(ω
2
T +D⊥k

2
⊥ +D‖k

2
‖ − ω2 − iγω)

(ω2
T +D⊥k2

⊥ +D‖k2
‖ − ω2 − iγω)2 − ξ2k2

⊥
. (7.6)
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Previous work on the subject [71] has found that linear splitting is only present in the

susceptibility for components of the electric field that are perpendicular to the crystal axis

c. WhenE ‖ c, the exciton bands were found to be degenerate with ζ = 0, leading to the

resonance:

χ
‖
lin(k) =

2ω2
p

(ω2
T +D⊥k2

⊥ +D‖k2
‖)− ω2 − iγω

. (7.7)

The expressions for χ⊥lin and χ‖lin in (7.6) and (7.7) are used in the tensor susceptibility

of the uniaxial crystal, denoted χlin, which reduces to a simple vector form such as (7.1)

when c is aligned with a co-ordinate axis.

The differences between the components of the susceptibility can have a significant

effect on the E dispersion relations. In the simplest case, the crystal axis is aligned with

one of the co-ordinate axes and the susceptibility χlin takes a vector form, such as (7.1)

for c ‖ ẑ. Using the co-ordinate system of chapters 5 and 6, with k = (K, 0, q), the

electromagnetic wave equation takes the form:K0
q

×
K0
q

×
ExEy
Ez

+
(ω
c

)2

[1 + χlinx(K, 0, q)]Ex

[1 + χliny(K, 0, q)]Ey

[1 + χlinz(K, 0, q)]Ez

 = 0, (7.8)

where k and ω dependence has been omitted from Ei. Equation (7.8) can be decoupled

into a lone equation for Ey (s-polarization) and pair of coupled equations for Ex and Ez
(p-polarization). The corresponding dispersion relations are therefore strongly dependent

upon the orientation of the crystal axis.

While the choice of co-ordinate system is arbitrary for an infinite medium and can

be selected to simplify calculations, the same is not true in the half-infinite case. The

definition of the z = 0 plane as the boundary of the half-infinite medium and y = 0 as

the plane of incidence in the calculation of the electromagnetic reflection and transmission

coefficients means that the wave equation will not always take the simplified form in (7.8).

Sections 7.1.1-7.1.3 consider various orientations of the crystal axis and the associated

solutions to the electromagnetic wave equation.
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7.1. The infinite medium

7.1.1 The c ‖ ŷ orientation

The simplest case is found when c is aligned with ŷ, perpendicular to the plane of inci-

dence. Table 7.1 displays the various components of χlin for this orientation. This case

had previously been studied by Mahan and Hopfield [71] using the Pekar ABC. Linear

splitting is not present in χliny, which means the reflection and transmission coefficients

for the s-polarization can therefore be calculated using the derivations presented in previ-

ous chapters.

The expressions for χlinx and χlinz are identical and both contain linear splitting. The

dispersion relation can once again be split into

k2
0 [1 + χlinx(q)]−

(
K2 + q2

)
= 0 (7.9)

for transverse waves, and

[1 + χlinx(q)] = 0 (7.10)

for longitudinal waves. The susceptibility χlinx(q) contains two poles with Im[q] > 0,

leading to three Im[q] > 0 solutions for (7.9) and two for (7.10). The p-polarization

therefore contains a total of five waves.

Table 7.1: Components of χlin in the c ‖ ŷ crystal orientation.

c ‖ ŷ

χlinx
2ω2

p[ω2
T +D⊥(K2+q2)−ω2−iγω]

[ω2
T +D⊥(K2+q2)−ω2−iγω]2−ξ2(K2+q2)

χliny
2ω2

p

[ω2
T +D⊥(K2+q2)]−ω2−iγω

χlinz
2ω2

p[ω2
T +D⊥(K2+q2)−ω2−iγω]

[ω2
T +D⊥(K2+q2)−ω2−iγω]2−ξ2(K2+q2)

7.1.2 The c ‖ x̂ and c ‖ ẑ orientations

The electric field dispersion relations take a different form when c lies in the plane of

incidence and is aligned with either x̂ or ẑ. Table 7.2 displays the various components of

χlin for these orientations. The dispersion relation for the s-polarization is given by:

k2
0 [1 + χliny(q)]−

(
K2 + q2

)
= 0. (7.11)
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7.1. The infinite medium

The susceptibility component χliny contains a linear splitting term for both orientations

and gives a total of three Im[q] > 0 solutions, corresponding to three transverse waves in

the s-polarization.

The p-polarization is far more complex. The inequality χlinx 6= χlinz means the dis-

persion relation cannot be split into separate transverse and longitudinal equations. The

dispersion relation instead takes the form:

k2
0 [1 + χlinx(q)] [1 + χlinz(q)]−K2 [1 + χlinx(q)]− q2 [1 + χlinz(q)] = 0, (7.12)

which has a total of four Im[q] > 0 solutions. It is important to note that the four corre-

sponding waves are no longer purely transverse or longitudinal. Care must be taken later

in the derivation when rewriting Ez components in terms of Ex.

Table 7.2: Components of χlin in the c ‖ x̂ and c ‖ ẑ crystal orientations.

c ‖ x̂ c ‖ ẑ

χlinx
2ω2

p

ω2
T +D⊥q2+D‖K2−ω2−iγω

2ω2
p[ω2

T +D⊥K
2+D‖q

2−ω2−iγω]

[ω2
T +D⊥K2+D‖q2−ω2−iγω]2−ξ2K2

χliny
2ω2

p[ω2
T +D⊥q

2+D‖K
2−ω2−iγω]

[ω2
T +D⊥q2+D‖K2−ω2−iγω]2−ξ2q2

2ω2
p[ω2

T +D⊥K
2+D‖q

2−ω2−iγω]

[ω2
T +D⊥K2+D‖q2−ω2−iγω]2−ξ2K2

χlinz
2ω2

p[ω2
T +D⊥q

2+D‖K
2−ω2−iγω]

[ω2
T +D⊥q2+D‖K2−ω2−iγω]2−ξ2q2

2ω2
p

ω2
T +D⊥K2+D‖q2−ω2−iγω

7.1.3 Other c orientations

Section 7.1.1 and 7.1.2 have considered the simplest orientations of the uniaxial crystal,

where c aligned with one of the co-ordinate axis. Each of these cases allow the multi-

resonance derivation in chapter 6 to be used with only minor alterations. When the crystal

axis c is neither perpendicular or parallel to both the z = 0 boundary and the y = 0

plane of incidence, the susceptibility must be expressed as a full tensor, rather than the

simplified vector form χij = χiδij used in (7.8). If the crystal axis lies within the xz-plane

of incidence, but is not aligned with x̂ or ẑ, the χxz and χzx susceptibility components

will be nonzero. In this case, the method used for the tensor susceptibility in chapter 5,

which has the same set of nonzero χij components, could potentially be applied. Other

orientations would lead to coupling between Ey and Ex/z. This would require a different

derivation as the s- and p-polarizations cannot be considered separately in such a case.
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7.2. The half-infinite medium

7.2 The half-infinite medium

The susceptibility of the half-infinite medium is once again defined by rewriting the

Halevi-Fuchs model to give:

χ′i(x− x′, y − y′, z, z′) =


χ0δ(x− x′)δ(y − y′)δ(z − z′)

+ χ′lini(x− x′, y − y′, z, z′) if z, z′ > 0,

0 otherwise,

(7.13)

χ′lini(x−x′, y−y′, z, z′) = χlini(x−x′, y−y′, z−z′)+Umiχlini(x−x′, y−y′, z+z′). (7.14)

While this chapter assumes χlini is an isolated resonance with the background suscepti-

bility χ, additional nonlocal resonances could also be included explicitly in (7.13).

The expressions in (7.13) and (7.14) can be substituted into the P definition in (2.3)

using the relevant expressions for χlini found in Table 7.1 and 7.2. After performing a

Fourier transform in the xy-plane, the ansatz (6.9) is also substituted for the electric field,

using the Im[q] > 0 solutions to the dispersion relations (7.9-7.12) for the given crystal

axis orientation. The polarization field is once again expressed with an integration over q:

Pi(z) =χ0Ei(z) +
i

2π

∫ ∞
−∞

dqeiqz
N∑
n=1

[
1

qn − q
+

Ulini

qn + q

]
χlini(q)E

(n)
i , z > 0, (7.15)

which can be evaluated by performing a contour integration in the upper half-plane of

complex q. The number of poles enclosed by this contour depends on the exact form of

χlini.

If linear splitting is not present (such as χlinx in the c ‖ x̂ case), χlini describes the

simple parabolic exciton bands covered in previous chapters and contains a single Im[q] >

0 pole, denoted Γi. The resulting expression for Pi is identical to (6.11) in the single-

resonance case. This leads to the single equation:

N∑
n=1

(
1

qn − Γi
+

Ulini

qn + Γi

)
E

(n)
i = 0, (7.16)

that must be satisfied for the wave equation to be valid at all z. If linear splitting is present

χlini contains two Im[q] > 0 poles, which are labelled Γ
(+)
i and Γ

(−)
i . Evaluating the q

179



7.3. Electromagnetic reflection coefficients

integral in (7.15) leads to the result:

Pi(z) =
N∑
n=1

χlini(qn)E
(n)
i eiqnz

− F (+)
i

N∑
n=1

(
1

qn − Γ
(+)
i

+
Ulini

qn + Γ
(+)
i

)
E

(n)
i eiΓ

(+)
i z

− F (−)
i

N∑
n=1

(
1

qn − Γ
(−)
i

+
Ulini

qn + Γ
(−)
i

)
E

(n)
i eiΓ

(−)
i z, (7.17)

where F (±)
i is a simple prefactor. The terms not proportional to exp(iqnz) lead to a pair

of equations identical to (7.16), but with different values of Γ:

N∑
n=1

(
1

qn − Γ
(+)
i

+
Ulini

qn + Γ
(+)
i

)
E

(n)
i =0,

N∑
n=1

(
1

qn − Γ
(−)
i

+
Ulini

qn + Γ
(−)
i

)
E

(n)
i =0. (7.18)

It is clear from (7.16) and (7.18) that the inclusion of linear k terms in the susceptibility

does not significantly alter the derivation of the field amplitude ratios presented in section

6.3.2. The main differences are therefore due to the anisotropic nature of the nonlocal

medium, which means that each orientation of the crystal axis requires a different treat-

ment.

7.3 Electromagnetic reflection coefficients

As in the previous sections, the electromagnetic reflection coefficients rs and rp are de-

fined in (2.34) and (2.35) in terms of the surface impedance of the nonlocal medium. The

corresponding definitions for Zs(0+) and Zp(0+) in (2.36) and (2.37) also apply to the

case of the uniaxial crystal. Once again, the field amplitude ratios of the various transmit-

ted waves in the nonlocal medium must be found. This section considers this calculation

for the crystal axis orientations discussed in section 7.1.

7.3.1 The c ‖ ŷ orientation

The c ‖ ŷ case is first considered. This specific orientation of the crystal axis was pre-

viously studied by Mahan and Hopfield [71], and is the simplest of the cases described
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7.3. Electromagnetic reflection coefficients

in section 7.1. The χliny component in Table 7.1 does not contain linear splitting. The

derivation of electromagnetic reflection and transmission coefficients in the s-polarization

is therefore identical to the Halevi-Fuchs model. However, linear splitting is present in

both χlinx and χlinz, which apply to the p-polarization. The dispersion relations (7.9-7.10)

lead to three transverse and two longitudinal waves in the nonlocal medium. Substituting

χlinx and χlinz into the polarization field integral (7.15) also leads to the pair of equations

(7.18) for both Ex and Ez. The Ez equations can be written in terms of Ex using (5.29)

to give a total of four equations relating the amplitude of the five waves in the medium,

which is sufficient to calculate the field amplitude ratiosE(n)
x /E

(1)
x required for the surface

impedance.

7.3.2 The c ‖ x̂ and c ‖ ẑ orientations

The other two orientations present additional challenges. Linear splitting is present in

χliny for both the c ‖ x̂ and c ‖ ẑ orientations in Table 7.2. The s-polarization therefore

contains three transverse waves from the dispersion relation (7.11) and two equations of

the form (7.18) for Ey. There is sufficient information to calculate the field amplitude

ratios E(n)
y /E

(1)
y used in the surface impedance Zs(0+) and the reflection coefficient rs.

The p-polarization is far more complex, as linear splitting is only present in one of the

relevant susceptibility components χlinx and χlinz, as seen in Table 7.2. The dispersion

relation (7.12) leads to four waves inside the medium. The polarization field integral

(7.15) leads to the pair of equations (7.18) when linear splitting is present in χlini and a

the single equation (7.16) when it is absent, for a total of three equations relating the four

wave amplitudes. There is sufficient information to calculate the field amplitude ratios

required for the surface impedance Zp(0+) and the reflection coefficient rp. However,

care must be taken when rewriting the Ez equations in terms of Ex as the waves are no

longer purely transverse or longitudinal. The relationship between the two components

of the field is instead found by looking at the x̂ component of the wave equation (7.8),

which gives:

η(n) =
E

(n)
z

E
(n)
x

= − 1

Kqn

{
k2

0 [1 + χlinx(qn)]− q2
n

}
. (7.19)

The relationship between the magnetic and electric fields must be similarly modified to
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give:

τ (n) =
B

(n)
y

E
(n)
x

=

[
qn −Kη(n)

k0

]
=
k0

qn
[1 + χlinx(qn)] , (7.20)

which is used in the calculation of the surface impedance in (2.37).

In each of the cases in this section, there are N − 1 equations relating the N waves in

each polarization. There is therefore sufficient information to calculate the field amplitude

ratios, followed by the surface impedances and the electromagnetic reflection coefficients.

The electromagnetic transmission coefficients can subsequently be derived in the same

manner as in section 6.3.3 by applying the Maxwell boundary conditions at the surface of

the medium, but these are not covered in this chapter.

7.4 Results

This section presents numerical results for the uniaxial crystal CdS using the model pa-

rameters [60] in Table 7.3. The nonlocal parameters D⊥/‖ and ξ have been calculated

from the measured values of mex⊥/‖ and ζ using the definitions in (7.4).

Table 7.3: List of CdS [60] model parameters, where me0 is the rest electron

mass and c is the speed of light in the vacuum.

CdS

χ0 6.5

~ωT (eV) 2.5674

~ωL (eV) 2.5688

~γ (meV) 0.075

mex⊥ (me0) 1.3

mex‖ (me0) 1.02

ζ (×10−12 eV m) 5.6

~ωp (eV) 0.164

D⊥c
2 (×10−6) 3.86

D‖c
2 (×10−6) 4.93

ξ (×1019ms−2) 6.637

182



7.4. Results

7.4.1 Electromagnetic reflection coefficients

Figure 7.2 presents |rs(ω)| and |rp(ω)| at a fixed incident angle for CdS for a range of

ABCs, using the model parameters in Table 7.3. Figure 7.3 considers only the Agarwal

et al. ABC and instead presents the results near the resonant frequency ωT for a range of

incident angles. Results are compared for the crystal axis c aligned with x̂, ŷ and ẑ.

Figure 7.2: Absolute value of rp (left) and rs (right) for the CdS model at

a fixed incident angle of 60◦ with the crystal axis c aligned with x̂ (top), ŷ

(middle) and ẑ (bottom). Vertical lines indicate ωT (solid) and ωL (dashed)

values. Includes Agarwal et al. (red), Ting et al. (brown), Fuchs-Kliewer

(green), Rimbey-Mahan (blue) and Pekar (purple) ABCs. The effects of linear

splitting are most pronounced in rp for c ‖ ŷ and rs for c ‖ x̂.
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Figure 7.3: Absolute value of rp (left) and rs (right) near the resonant fre-

quency of the anisotropic CdS model with the crystal axis c aligned with x̂

(top), ŷ (middle) and ẑ (bottom) using the Agarwal et al. ABC. The vertical

line indicates the position of ~ωT . Contains the results for the incident an-

gles θi = 20◦ (red), 30◦ (orange), 40◦ (yellow), 50◦ (green), 60◦ (cyan), 70◦

(blue) and 80◦ (pruple). The effects of linear splitting are the strongest in the

rp (c ‖ ŷ) and rs (c ‖ x̂) cases. The effects of linear splitting increase with

θi in the c ‖ ẑ cases, as K is the sole wave vector in the linear splitting term

of the susceptibility, as seen in Table 7.2. The rs result in the c ‖ ŷ case is

identical to that of the Halevi-Fuchs model, as linear splitting is not present in

the corresponding susceptibility component χliny.
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The s-polarization is first considered. As discussed in section 7.3.1, the c ‖ ŷ orienta-

tion result is identical to that of the Halevi-Fuchs model, as linear splitting is not present

in χliny. The c ‖ ẑ orientation displays only minor differences to the ξ = 0 result, with

a small additional peak in |rs| just below the resonant frequency ωT that depends on the

choice of ABC, with Uy = 1 giving the largest peak and Uy = −1 the smallest. The peak

is also dependent on the incident angle and grows as θi (and K), is increased. This is

because the linear splitting term in χliny in Table 7.2 only contains the wave vector K.

The c ‖ x̂ orientation displays the greatest difference to the ξ = 0 result, with an

additional peak in |rs| below ωT that is significantly larger than the one found in the c ‖ ẑ
orientation. While the behaviour of this new peak is determined by the choice of ABC, the

Uy dependence is slightly different to the original peak, with Uy = 0 and Uy = −1 both

giving similar maximum values. The angular dependence is also different to the c ‖ ẑ
case, with the differences to the ξ = 0 result decreasing as θi increases.

The p-polarization results are somewhat similar to those of the s-polarization, with

an additional peak in |rp| just below the resonant frequency ωT . The c ‖ x̂ and c ‖ ẑ
orientations, which both contain linear splitting in only one of the relevant susceptibility

components χlinx and χlinz, display only minor differences to the ξ = 0 result. In the

c ‖ ẑ orientation, the new peak shares the ABC dependence of the original peak, with

Ux = 1 giving the largest result andUz having little effect. Just as in the s-polarization, the

differences to the ξ = 0 result are found to increase with θ (and K), as the linear splitting

terms in the susceptibility contain only the wave vector K. The results are therefore

identical to the ξ = 0 at normal incidence. The c ‖ x̂ orientation shares many of the

features of the c ‖ ẑ case, but is generally much closer to the ξ = 0 result. The main

difference is found in the Ui-dependence, with Ux = −1 giving the largest peak and Uz
also affecting results.

The largest difference to the ξ = 0 result is found in the c ‖ ŷ orientation, where

linear splitting is present in both χlinx and χlinz. As in the ξ = 0 case, the result is mostly

determined by the value of Ux, with Uz only affecting the result near the original reflection

minima at ωL and the new minima just above ωT . However, the Ux dependence is different

for each of the peaks, with Ux = 0 and Ux = −1 giving similar maximum values for the

new peak.

In all cases, the difference between mex⊥ and mex‖ has little effect on the reflection

coefficient for propagating waves compared to the choice of ABC. This agrees with the

results of chapter 5, which considered a tensor susceptibility and found that the difference
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in the nonlocal parameters for transverse and longitudinal waves only gave minor changes

in rp for propagating waves.

7.4.2 Spectral energy density

The final part of this section takes the derived expressions for the electromagnetic re-

flection coefficients and applies them to the calculation of the spectral energy density

of thermal and zero-point radiation using (2.63). Chapter 5 found that the inclusion of

spatial dispersion removed the unphysical 1/|z|3 divergence present in the local model

and chapter 6 highlighted the differences between the single- and multi-resonance sus-

ceptibility models. This chapter considers the anisotropic medium CdS for a specific

orientation of the crystal axis c, aligned perpendicular to the planar boundary in the ẑ

direction. Only this orientation retains the rotational invariance about the z-axis used in

the derivation [102] of (2.63).

As in sections 5.5 and 6.6, the evanescent wave integral dominates the results for utot

close to the boundary of the nonlocal medium. The overall behaviour of Im[rs] and Im[rp]

remains unchanged from the previous sections, with peaks occurring at theK values when

each wave vector qn goes from being dominated by the real part (indicating propagating

waves) to the imaginary part (evanescent waves), before obeying a 1/K6 and 1/K4 power

law in the K →∞ limit, respectively.

Figure 7.4 shows the rescaled spectral energy density at a distance of 8nm from the

planar boundary of CdS for a variety of ABCs. The results display a three-peak structure

that is unlike any of the parabolic exciton band models considered in section 5.5 and 6.6.

While the peaks at the largest and smallest frequency both display the sameUi dependence

found in the previous chapters, the behaviour of the new intermediate peak in utot between

ωT and ωL is far more complex, but appears to be most pronounced when Ux = Uy = 1.

Figure 7.5 compares the s- and p-polarization contributions to the total result for the

Ting et al. ABC, revealing two peaks in utot for each of the polarizations. The large

peak in the p-polarization contribution near ωL is still present and displays the ABC de-

pendence as the parabolic exciton band cases in Fig. 5.11 and 6.10, however a smaller

additional peak is also present just above ωT . The largest difference is found in the s-

polarization contribution. The peak previously found near ωT is now a minimum, with

peaks in utot either side that only depend on the value of Uy. The smaller of the two above

the resonant frequency coincides with the smaller peak in the p-polarization contribution,

leading to the overall three-peak structure in utot shown in Fig. 7.4.
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Figure 7.4: Rescaled spectral energy density utot(ω) at a distance of 8nm

from the planar boundary of CdS with the crystal axis oriented perpendicular to

the planar boundary c ‖ ẑ. Includes Agarwal et al. (red), Ting et al. (brown),

Fuchs-Kliewer (green), Rimbey-Mahan (blue) and Pekar (purple) ABCs.

Figure 7.5: Detail of Fig. 7.4 comparing the total utot(ω) (solid line) to the s-

polarization (dotted line) and p-polarization (dashed line) contributions using

the Ting et al. ABC. Each contribution contains two peaks in utot(ω), leading

to a three-peak structure in the final result.
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The new behaviour found in the CdS utot(ω) results in Fig. 7.4 contrasts strongly with

the reflection coefficients for propagating waves in Fig. 7.2, where rs and rp exhibit only

minor differences to the ξ = 0 results . Comparisons can again be drawn to the tensor

susceptibility model in chapter 5, where the difference in transverse and longitudinal non-

local parameters had little effect on rp in Fig. 5.3, but a significant impact on utot in Fig.

5.11.

Once again, it is clear that many of the features found in real nonlocal materials that

were not covered by the original Halevi-Fuchs model cannot be ignored in the calculation

of the electromagnetic reflection coefficients. This chapter has shown that the introduction

of anisotropy and linear splitting in exciton dispersion relations can lead to significant

changes in the reflection spectra, in the form of additional peaks that strongly depend on

both the choice of ABC and the orientation of the crystal axis. Further differences are

found in the spectral energy density of thermal and zero-point radiation, where each of

the peaks resulting from the original Halevi-Fuchs model have been split in two, giving an

overall three-peak structure that would not be predicted by the simple parabolic exciton

band models of previous chapters.

7.5 Chapter summary

This chapter continued the work of chapters 5 and 6 by extending the Halevi-Fuchs gen-

eralized ABC model to the case of uniaxial crystals, which are both anisotropic and can

contain linear ±k wave vector terms in the susceptibility [62]. The anisotropic nature of

the medium had the greatest impact on the derivation of the electromagnetic reflection co-

efficients. The tensor nature of the susceptibility meant every orientation of the uniaxial

crystal led to a different expression for electromagnetic wave equation. However, the need

to separate the s- and p-polarization components of the electric field in the Halevi-Fuchs

derivation limited the possible orientations of the medium to those where the crystal axis

was aligned with one of the co-ordinate axes. Further considerations were required for the

type of wave in the nonlocal medium, as inequalities between susceptibility components

led to solutions for waves that were neither purely transverse or longitudinal. Despite the

additional complications introduced by the anisotropic susceptibility, it was found that

the derivation of the field amplitude ratios presented in chapter 6 for the multi-resonance

model could be applied to the uniaxial medium without any significant changes other than

the initial calculation of the wave vectors used in the electric field ansatz.
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Numerical results were presented for the uniaxial crystal CdS for a variety of ABCs

and orientations of the crystal axis c. The linear wave vector term ±k in the exciton

dispersion relation was found to introduce an additional peak in the reflection spectrum

near the resonant frequency. The size and shape of this new peak was mostly determined

by the orientation of the crystal axis, with the greatest effects seen in the c ‖ x̂ orientation

for the s-polarization and c ‖ ŷ orientation for the p-polarization. The orientation of c

was also found to affect the dependence on both the incident angle θi and the choice of

ABCs. For example, the changes introduced by linear splitting in the c ‖ ẑ orientation

were found to increase with the incident angle , but not in the c ‖ x̂ orientation.

Finally, the results for rs and rp were applied to the calculation of the spectral en-

ergy density of thermal and zero-point radiation outside the half-infinite uniaxial crystal.

Symmetry requirements limited this calculation to a single orientation of the crystal axis,

perpendicular to the planar boundary. The linear ±k terms on the susceptibility were

found to split the peaks in both the s- and p-polarization contributions to utot, leading to

an overall three-peak structure unlike anything found in the tensor or multi-susceptibility

models of chapters 5 and 6.
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Chapter 8

Conclusions

8.1 Thesis summary

This thesis covered a variety of topics relating to the electromagnetic susceptibility that

could be divided into two main groups. The first was an investigation into the micro-

scopic origin of absorption in dielectrics, providing a detailed calculation for a long-held

assumption that has formed the basis of many key works on the subject. The second was

a series of improvements to a macroscopic model of a half-infinite medium with spatial

dispersion, incorporating many more of the features that are found in real materials.

The work presented in chapter 3 [25] verified a proposal made by Hopfield [2], who

found that a simple model of a dielectric with linear coupling to the electromagnetic field

only absorbed light at the resonant frequencies of the medium and lacked the broadband

absorption found in real materials. In his paper, he argued that the inclusion of nonlin-

ear interactions would solve this problem, but did not provide any calculations to support

his statement. While previous work [9–13] investigating this claim has focused on the

quantum regime, where a full analysis remains challenging, or used phenomenological

methods such as the reservoir [3, 14–22], which lack a clear relationship to the underly-

ing physics, chapter 3 presented a classical calculation for a microscopic medium with

nonlinear interactions that naturally emerged from the r−3 dipole-dipole interaction.

The effective linear susceptibility of an infinite chain of particles, each with an electric

dipole moment and displacement from the lattice sites, was extracted by rearranging the

nonlinear equations of motion to find the electromagnetic wave equation for the system.

This was performed by treating the nonlinear coupling between the particle dipoles and

displacements as a perturbation of the system and using a complex iteration method to
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process higher-order interaction terms. Elements of quantum field theory [110], includ-

ing the Dyson equation and Feynman diagrams, were modified and used to simplify the

notationally cumbersome calculation of the effective linear susceptibility. Exact expres-

sions were derived for one of the leading-order and one of the higher-order terms in the

perturbation series, with imaginary components relating to absorption found when the

intermediate fields in the iteration process satisfied their corresponding dispersion rela-

tions. While the model used was one-dimensional, the results were also applicable to a

three-dimensional cubic lattice under certain restrictions.

Chapter 3 also performed a series of numerical calculations to investigate the fre-

quency and wave vector dependence of the derived effective linear susceptibility. While

the limitations of perturbation theory led to unrealistically large results, the inclusion of

nonlinear interactions not only led to the broadband absorption predicted by Hopfield, but

also provided an excellent fit to the widely used Lorentz model of susceptibility. This

contrasts strongly with the phenomenological approach [3], where a specific frequency-

dependent coupling term is required for the same results, rather than the nonlinear in-

teraction that naturally emerges from the r−3 dipole-dipole interaction. The wave vector

dependence was found to be far more complicated, with the various imaginary contribu-

tions to the lower-order terms cancelling each other out as the wave vector is increased,

leaving a higher-order term to dominate the result. The full wave vector dependence

would therefore require the calculation of a large number of higher-order terms.

The second half of the thesis dealt with a different light-matter interaction on a macro-

scopic scale: the calculation of electromagnetic reflection and transmission coefficients

for a half-infinite nonlocal medium. A key consequence of spatial dispersion is the pres-

ence of multiple waves in the medium [27], which mean the Maxwell boundary condi-

tions are insufficient to solve for the unknown wave amplitudes. Additional information

has historically been provided in terms of additional boundary conditions (ABCs) on the

polarization field of the medium, each derived under a specific set of assumptions re-

garding the behaviour of the medium [33–56]. In 1984, Halevi and Fuchs [4] presented

a generalized ABC model for the susceptibility of a half-infinite nonlocal medium that

incorporated the ABCs derived by previous authors.

The majority of the second half of this thesis extended the Halevi-Fuchs model to

include many more of the features found in real materials [61, 62]. Before this was done,

chapter 4 took a closer look at the derivations behind the widely-used Pekar ABC [55]

and the Halevi-Fuchs generalized ABC model [4]. In both cases, certain assumptions had
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been made that initially appear straightforward, but actually require careful consideration

that was not provided in the original derivations.

In the case of the Pekar ABC [55], based on a microscopic model with nearest-

neighbour coupling, an oversight was made in the choice of boundary position in the

transition between the microscopic and macroscopic regimes. Closer examination re-

vealed that Pekar had derived a condition for the polarization field just outside, rather

than inside, the half-infinite medium. Chapter 4 provided an independent derivation for

the nonlocal susceptibility of Pekar’s half-infinite model with nearest-neighbour coupling.

The resulting expression was similar the Halevi-Fuchs model [4], containing both a bulk

response term and a term describing the polarization waves reflecting on a point outside

the medium, the location of which coincides with the choice of boundary in Pekar’s pa-

per. A new set of complex ABCs were found, that reduced to Pekar’s result under certain

approximations. This model was subsequently extended to include jth-nearest neighbour

coupling determined by a 1/rN power law. Increasing j and decreasing N (to a lesser

extent) were both found to increase the effective distance travelled by the reflected wave,

further changing the result from Pekar ABC. Despite this, the Pekar ABC was still found

to be a good approximation near the resonant frequency, but failed to hold far from the

resonant frequency or for wavelengths comparable to the lattice spacing.

The second half of chapter 4 took a closer look at an assumption made by Halevi and

Fuchs in the derivation of the electromagnetic reflection coefficients for their generalized

ABC model [4]. Halevi and Fuchs found that specifying a specific form of the nonlocal

susceptibility was insufficient to solve the electromagnetic wave equation. An ansatz for

the electric field inside the medium (a sum of plane waves using wave vector solutions of

the infinite medium dispersion relation) was introduced and subsequently used to find a

set of relations for the transmitted wave amplitudes. While this was a safe assumption far

from the boundary, where the effects of the surface are negligible, the calculation of the

electromagnetic reflection and transmission coefficients depends on the field behaviour

at the boundary, where there are significant differences to the bulk medium. Halevi and

Fuchs provided no justification for the choice of ansatz in this critical region.

Chapter 4 performed an independent check for the validity of the Halevi-Fuchs ansatz

inside the half-infinite medium while making no prior assumptions regarding the electric

field. An iteration process was applied to the nonlocal wave equation to derive a series

expression for the electric field that perfectly agreed with the perturbative expansion of the

Halevi-Fuchs ansatz throughout the entire nonlocal medium, including the critical region
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just inside the boundary, justifying their assumption.

With the underlying assumptions behind the Halevi-Fuchs model checked indepen-

dently, chapters 5-7 presented various extensions to the generalized ABC model [61, 62].

The original Halevi-Fuchs derivation considered a single-resonance scalar susceptibility

with a specific k2 wave vector dependence in the denominator, describing the electromag-

netic response of isolated, parabolic exciton bands in isotropic materials. The Halevi-

Fuchs model was therefore limited in applications to real materials, which can display a

significantly broader range of exciton band behaviour determined by the structure, sym-

metry and degeneracies of the valence and conduction bands of a crystal.

Chapter 5 started by replacing the scalar single-resonance susceptibility used as the

basis of the Halevi-Fuchs model with the more general (and often overlooked) tensor

expression for the susceptibility of a homogeneous, isotropic, non-gyroscopic, nonlocal

medium with different nonlocal parameters for transverse and longitudinal field compo-

nents [26]. Exact expressions were derived for the electromagnetic reflection and trans-

mission coefficients [61]. The difference between transverse and longitudinal nonlocal

parameters was found to have little effect on the numerical results for propagating inci-

dent waves, with the exception of the transmitted longitudinal wave for certain ABCs.

Chapter 6 took a different approach to extending the Halevi-Fuchs model by con-

sidering a scalar bulk susceptibility containing multiple resonances, each with the same

basic k2 wave vector dependence in the denominator [62]. The increase in resonances

led to a corresponding increase in the number of waves in the nonlocal medium, and the

Halevi-Fuchs derivation was modified to find exact expressions for the electromagnetic

reflection and transmission coefficients in a system with an arbitrary number of suscepti-

bility resonances. Comparisons to the single-resonance results were made for a number

of systems, noting the differences in ABC dependence in the case of closely spaced res-

onances. An improved single-resonance approximation was found for a medium with

degenerate heavy/light exciton bands, providing a closer fit to the two-resonance system

than the one currently used in the literature [70].

Finally, chapter 7 further extended the multi-resonance model in chapter 6 to incor-

porate two new features: anisotropy and linear splitting k terms in otherwise degenerate

exciton bands [62], both of which are found in uniaxial crystals [59,60,64–66]. The multi-

resonance derivation of the electromagnetic reflection and transmission coefficients was

found to need only minor alterations for such a medium, however the need to separate the

s- and p-polarization components of the electric field imposed certain restrictions upon
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the orientation of the crystal. The tensor nature of the susceptibility had the greatest im-

pact on the results, modifying the electromagnetic wave equation and leading to solutions

for waves that were no longer purely transverse or longitudinal for certain orientations.

The presence of linear k splitting led to completely new behaviour, with an additional

peak in the reflection spectrum depending upon the orientation of the crystal.

The key result of this research was found in the application of the electromagnetic re-

flection and transmission coefficients derived in chapters 5-7 to the calculation of the spec-

tral energy density of thermal and zero-point radiation outside the medium. In each case,

the inclusion of spatial dispersion was found to naturally remove an unphysical diver-

gence at the boundary of the medium, caused by evanescent waves with arbitrarily large

wave vectors parallel to the surface [5, 81, 101]. Numerical calculations of the spectral

energy density revealed additional features in results based upon the model being studied.

In chapter 5, the difference in transverse and longitudinal nonlocal parameters, which lead

to minor differences in reflection coefficients for propagating waves, was found to have

a significant effect on results, even at a distance of 10nm from the surface. While the

results for the multi-resonance model in chapter 6 shared the same basic features as the

single-resonance model, additional behaviour was found only when all resonances were

considered together, such as the suppression of peaks in the spectral energy density and

the failure of the single-resonance approximation. Finally, the linear k term in the uniaxial

crystal studied in chapter 7 lead to a splitting of peaks in the spectral energy density that

was not present in the previous chapters, giving an overall three-peak spectrum.
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8.2 Future work

This section discusses the various possibilities for future research based upon the work

presented in this thesis. The work of chapter 3 is somewhat limited in this regard, as the

iteration process and subsequent derivation was primarily intended as a method to verify

the assumptions made by Hopfield, but there are still a number of potential areas for

further work. The first would be to consider other forms of nonlinear interaction — either

higher order terms in the expansion of the r−3 dipole-dipole interaction or different form

of coupling function. This could also be extended to the calculation of higher order Fn
terms. Another, more intriguing, possibility is to focus on the nonlinear field terms that

were previously discarded in section 3.3 and derive an effective nonlocal susceptibility

for the dipole model. This could subsequently be used to study the re-emission of light

from the medium once the lattice is excited.

The second half of this thesis is a much richer source of future work. The expressions

for the electromagnetic reflection and transmission coefficients derived in chapters 5-7

can be applied to a wide range of further calculations relating to light-matter interactions

near a half-infinite nonlocal medium. This thesis has already considered the specific case

of the spectral energy density, resolving some of the issues present with a local model.

Other potential applications include the radiative heat transfer coefficient [5], the local

density of states [123] and components of the stress-energy tensor [124].

While the extensions in chapters 5-7 have increased the range of behaviour covered by

the Halevi-Fuchs model, there remains additional scope for improvement. In particular,

the multi-resonance derivation in chapter 6 could be extended to arbitrary k-dependences

in the denominator of the susceptibility, in the same manner that chapter 7 modified the

derivation for linear k terms. As long as the polarization field integral over q in (6.10)

contains simple poles and can be evaluated using Cauchy’s residue theorem [114], there

should be sufficient information to derive the electromagnetic reflection and transmis-

sion coefficients, as each additional qn solution to the infinite medium dispersion relation

(2.15) will be accompanied by an equation of the form (6.12) relating the various wave

amplitudes of the transmitted waves. One interesting proposal would be to investigate the

effect of retaining the previously omitted k4 terms in the expression for ω2
T (k) in the sus-

ceptibility (2.24) of the original Halevi-Fuchs model [4]. Such an inclusion would likely

have an effect on the calculation of the spectral energy density utot due to the additional

peaks present in Im[rs/p] for evanescent waves.

195



8.2. Future work

Another potential improvement has already been mentioned in section 5.2. The deriva-

tions presented in this thesis assumes that the surface of the nonlocal medium is perfectly

smooth. Boundary roughness has already been in the case of the local medium [118,119]

and could potentially be incorporated in a similar manner.

Finally, the concepts used for the half-infinite medium both in the original Halevi-

Fuchs derivation and chapters 5-7 could be applied to a curved surface. The particular

cases of the dielectric ball [98] and the conducting sperical shell [99] are of some inter-

est. Previous calculations have found that the use of a local medium leads not only to

unphysical divergences in the energy density at the spherical surfaces, but also in other

components of the stress-energy tensor. Of particular interest is the radial electromagnetic

stress, which gives rise to a force on the surface of the ball. The underlying reason behind

these divergences bears some similarities to the half-infinite medium, as they are caused

by waves with arbitrarily large angular momentum moving along the surface of the ball.

The greatest changes to the derivation will be in the choice of ansatz for the system, which

must be expressed in terms of Bessel functions rather than simple plane waves.
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