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Shallow water models are often adopted as an intermediate step in the development of
atmosphere and ocean models, though they are usually tested only with fluid depths
relevant to barotropic fluids. Here we investigate numerical instabilities emerging in
shallow water models considering small fluid depths, which are relevant for baroclinic
fluids. Different numerical instabilities of similar nature are investigated. The first one is
due to the adoption of the vector invariant form of the momentum equations, related to
what is known as the Hollingsworth instability. We provide examples of this instability
with finite volume and finite element schemes used in modern quasi-uniform spherical
grid based models. The second is related to an energy conserving form of discretization
of the Coriolis term in finite difference schemes on latitude-longitude global models.
Simple test cases with shallow fluid depths are proposed as a means of capturing and
predicting stability issues that can appear in three-dimensional models using only two-
dimensional shallow-water codes.
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Numerical instabilities of spherical shallow water models 2

1. Introduction13

In the development of an ocean or atmosphere model it is important to establish that the numerical methods used are stable. In practice,14

a mathematical stability analysis might not be tractable, for example if the geometry, grid structure, or background state are not simple15

enough; in that case stability can only be determined by empirical tests. It may also be the case that a mathematical analysis is not done16

because a particular type of instability was not anticipated. It is highly desirable to be able to identify any instability of some candidate17

numerical method before investing the effort to develop a three-dimensional model. Shallow water models are often adopted as an18

intermediate step in the development of atmosphere and ocean models and can be useful in testing the stability of numerical methods.19

However, standard numerical test cases (e.g. Williamson et al. 1992; Galewsky et al. 2004; Shamir and Paldor 2016) are usually run20

with fluid depths of thousands of metres, relevant to barotropic fluids. In this paper we point out the usefulness of spherical shallow21

water models run with very shallow fluid depths, mimicking the internal modes of three-dimensional models, for testing the stability22

of numerical methods.23

Hollingsworth et al. (1983) discovered that an implementation of a well known energy and enstrophy conserving scheme, originally24

due to Sadourny, when used in a hydrostatic primitive equation model (Burridge and Haseler 1977), was prone to near-grid-scale25

instabilities, with severe consequences for high resolution forecasts. This kind of instability is intrinsically related to the use of the26

vector invariant form of the momentum equations (e.g. Vallis 2006), which expresses the advection of momentum as27

v · ∇v = ∇K + ζk× v, (1)

where v = (u, v) defines the horizontal velocities, K = ‖v‖2/2 is the kinetic energy, ζ = k · ∇ × v is the relative vorticity and k is28

a unit vector pointing normal to the horizontal surface. Expanding the differential expressions, and looking at the equations for each29

velocity component separately, one notices that on the left hand side of the above relations there are no derivatives of v in the u equation,30

and no derivatives of u in the v equation. In contrast, we see that these derivatives exist in each of the two terms on the right hand sides,31

respectively, but they cancel out. The cancellation is a general feature of this formulation of the equation, and exists independently of32

the particular choice of coordinate system.33

In numerical schemes, this cancellation is not always exact, and this may lead to stability issues. This is what happens with the34

original energy and enstrophy conserving scheme of Sadourny (Burridge and Haseler 1977), hereafter referred to as the ‘een’ scheme.35

Hollingsworth et al. (1983) proposed a modification of the scheme to ensure cancellation at a discrete level of the linearized equations,36

avoiding the instability while preserving its conservation properties. Similarly, the energy and enstrophy conserving scheme of Arakawa37

and Lamb (1981), hereafter referred to as ‘AL’ scheme, was also shown to be prone to such instabilities, and again a modification was38

proposed to avoid it.39

There has been a renewed interest in these instabilities, as the vector-invariant form of the momentum equations have recently40

been adopted in many novel atmospheric and ocean models on quasi-uniform spherical grids (e.g. Tomita et al. 2008; Wan et al.41

2013; Ringler et al. 2013; Skamarock et al. 2012; Gassmann 2013). As a consequence, novel high resolution ocean and atmosphere42

models are presenting instabilities of a similar nature (e.g. Skamarock et al. 2012; Gassmann 2013). A problematic point is that such43

instabilities are only being detected once the full 3D model is implemented, as no trace of instability is usually detected in shallow44

water prototypes.45

Bell et al. (2017), hereafter referred to as BPT, examined the instability for the two well known energy and enstrophy conserving46

schemes, the ‘een’ and ‘AL’ schemes, for the vector invariant hydrostatic Boussinesq equations. As found by Hollingsworth et al.47

(1983), the schemes were shown to be linearly unstable for height coordinate models. Also, BPT showed that it is possible to detect48

such instabilities on shallow water versions of the schemes, as long as the model adopts a small equivalent depth, that is, the shallow49

water layer is very thin. This allows easy testing of novel and existing schemes for unstable linear modes of similar nature to the50

original instability detected by Hollingsworth et al. (1983). All the analysis of BPT was performed for planar quadrilateral grids, but it51

suggests a way of testing for the instability on more general discrete domains, such as the quasi-uniform spherical ones.52

Shallow water models considering small equivalent depths are directly related to reduced gravity layer models (e.g. Vallis 2006).53

Reducing the inertia-gravity wave speed increases the importance of the nonlinear terms, such as advection terms in the shallow water54

equations, and so exacerbates the effect of any numerical errors in those terms. Gassmann (2011) shows an experiment that mimics55

the case of relatively small equivalent depths occurring in atmospheric models using a planar triangular-hexagonal grid shallow water56

model. The results allow interpretation, within a simpler 2D shallow water framework, of how a checker-board divergence mode is57

expected to interfere in a 3D model. Similarly, Peixoto (2016) uses a shallow water experiment with reduced depth to illustrate and58

foresee inaccuracies that might appear due to the finite volume discretizations of the nonlinear terms on quasi-uniform spherical grids.59

The main goal of this paper is to discuss possible numerical instabilities that may arise in shallow water spherical models when60

small equivalent depths are adopted. Two different kinds of instabilities that appear in linear analysis for the equations linearized about61

a non-resting basic state with small depth are analysed. One of the instabilities is the one arising from the use of the vector invariant62

form of the momentum equations, which is of similar nature to that of Hollingsworth et al. (1983) and is what motivated this study.63

The other instability occurs in a latitude-longitude C-staggered semi-Lagrangian semi-implicit finite differences model, as used, for64

example, in the Unified Model of the UK MetOffice, also known as ENDGame (Wood et al. 2014). The scheme used in ENDGame is65

based on the discretization proposed in Zerroukat et al. (2009), where the Coriolis term discretization, brought forward from Thuburn66

and Staniforth (2004), was inspired by the work of Arakawa and Lamb (1981). Therefore, the two cases analysed are more intimately67

related than it would seem at first, as will be discussed in what follows.68

A key concept used in this paper is that the stability analysis of three-dimensional models may be done by separating the linear69

modes into horizontal and vertical parts, and these are connected by equivalent depths. A discussion of the equivalent depths emerging in70

typical three-dimensional sets of equations is presented in Section 2; followed by a discussion of how different vertical coordinates may71

be interpreted either using depth-weighted or non-depth-weighted vorticity terms in shallow water systems. Based on these discussions,72

we can thereafter limit our attention only to shallow water equations, but with conclusions that can be interpreted for three-dimensional73

models.74
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Numerical instabilities of spherical shallow water models 3

In Section 3 we discuss the influence of the Coriolis force in the Hollingsworth instability, showing that the instability exists even75

in models without Coriolis terms. Section 4 presents the common framework of tests and methods that will be used to investigate76

several different spherical shallow water models. Section 5 examines the Hollingsworth instability in quasi-uniform spherical grids,77

such as cubed and icosahedral spheres, for finite volume and finite element schemes. Section 6 analyses the instabilities detected for78

ENDGame, starting from an analytical examination of the linear modes on a plane, followed by numerical experiments on the sphere.79

2. From 3D models to 2D analyses80

2.1. Equivalent depths in 3D models81

A relatively good approximation to ocean dynamics is to consider the hydrostatic, incompressible, adiabatic, Boussinesq equations. The82

linearized Boussinesq equations enjoy separable solutions (Gill 1982; Vallis 2006), and the important terms connecting the vertical and83

horizontal modes are the equivalent depths, which are eigenvalues of the vertical mode problem. These are named equivalent depths84

because they give rise to shallow water systems with such mean fluid depth. Bell et al. (2017) analyse the Boussinesq equations85

considering a constant Coriolis parameter plane and two vertical coordinate systems: height and isopycnal. The numerical vertical86

modes are investigated for a Lorenz and a Charney-Phillips staggering, respectively for height and isopycnal coordinates, and estimates87

of equivalent depths for real application parameters are discussed. On a Charney-Phillips grid, considering 100 vertical layers, typical88

ocean parameters can result in equivalent depths of less than a metre. The Lorenz grid has equivalent depths inversely proportional to89

the square of the number of modes, so when many vertical levels (e.g. 100) are used, this may result in equivalent depths smaller than90

millimetres.91

Many weather and climate models adopt the primitive equations for modelling the atmospheric dynamics (Lauritzen et al. 2011;92

Holton and Hakim 2012). Similar vertical versus horizontal separation is also possible for the linearized primitive equations, and93

again the key connecting parameters are the equivalent depths (Tribbia and Temam 2011). Terasaki and Tanaka (2007) investigated the94

equivalent depths occurring in the primitive equations. For a fully spectral analysis and standard atmospheric parameters, considering95

22 vertical spectral modes, the minimum equivalent depth calculated was about 8m. Also, Kasahara and Puri (1981) perform a full96

analysis of the 3D modes and calculate the equivalent depths emerging for this kind of equation set for a sigma coordinate model. An97

example for a model discretized vertically with finite differences with 9 sigma levels shows that the smallest equivalent depth is 3m.98

The smaller equivalent depth estimated in Kasahara and Puri (1981), even with only 9 levels, is due to use of a vertical finite differences99

scheme, whereas Terasaki and Tanaka (2007) consider a spectral vertical analysis.100

High resolution global atmospheric models often adopt the full, non-hydrostatic, compressible Euler equations. Under the shallow101

atmosphere approximation, the linear compressible Euler equations have normal mode solutions that separate into a product of a vertical102

structure function and a horizontal structure function; however, in contrast to the hydrostatic case, the vertical structure equation103

involves the mode frequency (Daley 1988). Consequently, the horizontal structure equation no longer has a single equivalent depth104

independent of the mode frequency. Nevertheless, for gravity modes with large vertical wavenumber, which are the most problematic105

modes for the instabilities of interest here, non-hydrostatic effects are rather weak. Therefore, analysis based on the hydrostatic106

assumption, particularly the smallest equivalent depths, should give a useful indication of model behaviour in the non-hydrostatic107

case too.108

To summarise, in realistic atmosphere and ocean models the equivalent depth of higher internal modes is expected to be small, only109

a few metres or smaller, and can be much smaller depending on the vertical coordinate and grid adopted.110

2.2. Form of the vorticity term, and relation to vertical coordinate systems111

For the vector invariant form of the shallow water equations there are two distinct ways of writing the vorticity term:112

(f + ζ)k× v and qk× ηv, (2)

where f is the Coriolis parameter, η is the fluid depth, and q = (f + ζ)/η is the potential vorticity. We will refer to these as the non-113

depth-weighted form and depth-weighted form, respectively. For the continuous equations the two forms are equivalent, but this is no114

longer the case after discretization. The depth-weighted form is attractive because it facilitates the design of numerical schemes that115

conserve potential-vorticity-related quantities such as potential enstrophy (Arakawa and Lamb 1981; Ringler et al. 2010). Importantly,116

the presence or absence of depth weighting can affect the stability of the scheme (BPT, also see below).117

A similar distinction arises when the advective form of the momentum equation is used, except that now only the Coriolis term is118

affected. The non-depth-weighted and depth-weighted forms are119

fk× v and
f

η
k× ηv, (3)

respectively.120

When analysing the stability of a three-dimensional numerical method by separation into a vertical structure problem and a shallow121

water problem, it is important to determine which form of the vorticity term is appropriate. The form of the vorticity term in a three122

dimensional model is closely related to the type of vertical coordinate it uses.123

Layer-based vertical coordinates offer the flexibility to choose either a depth-weighted or a non-depth-weighted discretization of the124

vorticity term, and the depth-weighted option is a common choice. By ‘layer-based vertical coordinate’ we mean one that carries some125

quasi-Lagrangian information about the thickness of material layers. Common examples of layer-based coordinates include isentropic,126

isopycnal, and Lagrangian coordinates. Throughout much of the atmosphere diabatic heating is weak and potential temperature θ is127

approximately materially conserved. Thus isentropic surfaces (surfaces of constant θ) are approximately Lagrangian surfaces, and a128

coordinate system with θ as the vertical coordinate provides a quasi-Lagrangian coordinate system that has some attractive features for129
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atmospheric modelling (e.g. Hsu and Arakawa 1990). In an analogous way, potential density is approximately materially conserved130

throughout much of the ocean, providing the basis for an isopycnal vertical coordinate (e.g. Bleck and Boudra 1981). For atmospheric131

modelling a Lagrangian vertical coordinate, in which a set of material surfaces are used to define the vertical coordinate, has also been132

used (e.g. Lin 2004). In practice all such models require some measures to ensure that model layers do not fold over or become too thin.133

Nevertheless, they all carry information about the thickness of quasi-Lagrangian layers and so can use the depth-weighted vorticity or134

Coriolis terms.135

In level-based coordinates, on the other hand, the non-depth-weighted form of the vorticity term is generally used. Level-based136

models adopt a monotonic variable, such as geometric height, to define fixed vertical levels. For the present discussion, pressure-based137

coordinates and mass-based coordinates, including their terrain-following variants, should also be thought of as level-based. Although138

the height of pressure levels or mass levels can vary in time, these variations are relatively small. Level-based coordinate systems do139

not carry direct information on the thickness of material layers. In principle some estimate of material layer depth such as (∂θ/∂z)−1
140

could be calculated in order to use a depth-weighted vorticity term; however, the numerical errors in this estimate would affect small141

vertical scales and would need to be accounted for in any stability analysis.142

In some height-, pressure-, or mass-based atmospheric models the vorticity or Coriolis terms are weighted by density or by a pseudo-143

density proportional to density times model layer thickness (e.g. Skamarock et al. 2012; Wood et al. 2014; Dubos et al. 2015). However,144

local variations in density are relatively small, so this density-weighting does not have the same effect as depth-weighting. Similarly,145

the thickness of model layers does not correspond to the thickness of material layers (Arakawa 2000), so pseudo-density-weighting146

does not have the same effect as depth-weighting. Therefore, models based on such coordinate systems must be interpreted as using147

non-depth-weighted vorticity or Coriolis terms and analysed accordingly.148

3. The role of the Coriolis force in the Hollingsworth instability149

We discussed in the introduction how the Hollingsworth instability is connected to the vector invariant form of the momentum equations150

through the lack of a certain discrete cancellation. The term responsible for the lack of cancellation solely involves momentum151

advection, so it might be expected that the Coriolis term should play no role in the existence of such instability.152

Lazić et al. (1986) observed that real data runs of a 3D finite-difference ECMWF∗ model, which used the original energy- and153

enstrophy-conserving ‘een’ scheme, collapsed after a couple of days, showing accumulation of energy in short waves with the instability154

naturally linked to the Hollingsworth problem. They performed a linear analysis of a planar shallow water version of the model155

discretized with the ‘een’ scheme considering a constant background velocity field and a constant Coriolis parameter. Confirming the156

results from Hollingsworth et al. (1983), the shallow water model was shown to be linearly unstable. Interestingly though, the system157

was shown to be stable if the Coriolis parameter was set to zero.158

Following the analysis of BPT it is possible to show analytically that indeed for a constant basic background velocity and null Coriolis159

parameter the system is neutrally stable. Since this was not explicitly proven in either BPT or Lazić et al. (1986), we describe the proof160

in Appendix A. Also, BPT show how the non-dimensional growth rate (ωi) of the instability is related to the Coriolis parameter, and161

that it is stronger for larger grid Rossby numbers, and do not show what happens in the case of absence of rotation (f0 = 0). BPT162

normalize the growth rate using the Coriolis parameter, so that the dimensional growth rate is actually f0ωi. An increase in the grid163

Rossby number, considering a fixed grid and fixed velocity, is related to the decrease of the Coriolis parameter (f0). BPT shows that164

with increasing grid Rossby number the non-dimensional growth rate (ωi) also increases, but this increase in ωi is small compared165

to the decrease in f0. So, in fact, the dimensional growth rate ωif0 reduces with a reduction of f0, even with an increase of the grid166

Rossby number. In the limit, the dimensional growth rate is zero once f0 is also zero, in agreement with the analysis of Appendix A.167

This all goes against our intuition about the known source of the instability, which is the lack of discrete cancellation of terms related168

to momentum advection solely. This is elucidated in what follows.169

The momentum advection plus Coriolis term may be written in vector invariant form as170

v · ∇v + fk× v = ∇K + (ζ + f)k× v, (4)

where we see that the Coriolis term is added to the vorticity term. The basic velocity states used in both analysis, BPT and Lazić171

et al. (1986), did not have background vorticity. Following the notation from BPT for the planar analysis, let us impose a non-rotating172

(f0 = 0) system, but add a background basic flow with vorticity as173

u = u1 − ζ0y, v = v1 + ζ0x, (5)

where u1, v1 are constant velocities and 2ζ0 will be the basic flow vorticity. Assume a constant basic depth, η0, and let the bottom174

topography (b) be used to ensure steady state as175

gb = gb0 + ζ0(v1x− u1y) +
ζ2
0

2
(x2 + y2), (6)

where g is the gravity constant and b0 is a constant.176

With this basic state, performing the linear analysis would lead to a set of stability equations that depend on the position (x, y).177

By assuming that the disturbances are of small scale compared with that on which the zonal flow varies, that is, that terms involving178

perturbation variables times position variables (x or y) are neglected, this dependence disappears. As a consequence, simple calculations179

show that all that changes in the linear equations derived in BPT is that ζ0 appears instead of f0. Therefore, the system with f0 = 0, but180

with background vorticity ζ0 6= 0, is unstable and subject to exactly the same analysis as done in BPT for the height coordinate model.181

We clearly see that the Coriolis term is acting as a background vorticity, which seems to be necessary to trigger the instability. Also,182
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Numerical instabilities of spherical shallow water models 5

one could interpret the relationships between the Rossby numbers and the instability growth rates simply as Rossby numbers relative183

to the background vorticity of the flow, not necessarily related to the Earth rotation.184

Summarizing, although the Coriolis term plays no role in the lack of cancellation that leads to the existence of the instability, it can185

influence the instability as a source of vorticity in the vector invariant momentum equations. Also, in the absence of rotation (f0 = 0)186

the ‘een’ scheme is still linearly unstable when the background state has non-zero vorticity and varies slowly between grid points.187

In spherical geometry one cannot define a continuous constant vector field over the whole surface. Therefore, basic states used for188

linear analysis naturally have some source of divergence or vorticity. Simple basic states, such as the purely zonal flows that will be189

defined next in Section 4, should have enough vorticity to trigger the instability even without the Coriolis term.190

4. Test case191

In this section we describe a zonal balanced flow test case that mimics small equivalent depth behaviours in spherical shallow water192

models. This will be used to analyse the stability properties of several schemes in later sections. Shallow water models based on193

either non-depth-weighted or depth-weighted Coriolis terms will be considered, as defined in section 2.2. The test is based on existing194

spherical shallow water tests (Williamson et al. 1992) and is intended to be very simple to implement in existing codes.195

Consider as basic state a constant fluid depth η0, which is used to mimic small equivalent depths and may vary from millimetres to196

a few metres, and a zonal flow (u = u0 cos(φ), v = 0), with maximum velocity given by u0 = 2πa/12days ≈ 38.6 ms−1, where φ is197

the latitude and a = 6.371 km is the Earth radius.198

The bottom topography is then used to ensure a steady state,199

b =
1

g

(
aΩu0 +

u2
0

2

)
sin2(φ), (7)

where g = 9.80616 ms−2 is the gravity constant and Ω = 7.292× 10−5 rad · s−1 is the rotation rate of the Earth. The test should be200

set up identically as in test case 2 of Williamson et al. (1992), except that the topography is used to balance the flow to become steady201

state, and the depth is defined to be constant (η0). A good starting point for the constant depth is to assume η0 = 1m, but some models202

may require tests with smaller depths. As in the Williamson et al. (1992) test cases, all the experiments performed in this study do not203

use any additional perturbation to the initial conditions, as the numerical errors are enough to allow possibly existing unstable modes204

to emerge. Schemes that exactly represent the initial steady state may need a small perturbation in the initial conditions to allow an205

investigation of the unstable modes.206

For the analysis of the Hollingsworth instability, this test may be ran without the Coriolis term (Ω = 0), since the instability happens207

due to the lack of a discrete cancellation of advection terms solely.208

The theoretical linear analysis for spherical models can be rather complicated, particularly on unstructured spherical grids. Also,209

numerical implementations of schemes for spherical shallow water models rarely allow the possibility of running linear shallow water210

only. Nevertheless, it is not difficult to numerically investigate the eigen-structure of the most unstable modes with slight modifications211

of a nonlinear shallow water code. In this work, we use a variation of the power method for small perturbations, which is fully described212

in Appendix B.213

The output of the method is the value of the largest growth rate of a possibly existing unstable mode, which can be used to infer214

the e-folding time (time for the numerical solution to grow by a factor of e), and its associated eigenvector, which describes the spatial215

structure of the unstable mode.216

5. Instabilities on quasi-uniform spherical grids217

In this section we investigate the stability of spherical shallow water models that adopt the vector invariant form of the momentum218

equations and quasi-uniform spherical grids (Staniforth and Thuburn 2012) considering small equivalent depths.219

5.1. Analysis of Finite Volume schemes on icosahedral grids220

For recently developed schemes that use spherical unstructured grids, it is very difficult to derive formulations in which the advection221

term is decomposed into vortical and kinetic energy terms in a way that satisfies the cancellation property in the discrete sense.222

Considering mimetic finite volume schemes for hexagonal-pentagonal grids (Voronoi grids), following the discretizations proposed in223

(Thuburn et al. 2009; Ringler et al. 2010), hereafter named TRSK, no discrete cancellation is expected and the model is prone to being224

unstable. Shallow water experiments with TRSK on the sphere (Ringler et al. 2010; Weller et al. 2012; Peixoto 2016) did not reveal225

instabilities related to the non-cancellation issue of the vector invariant momentum equations. Nevertheless, Skamarock et al. (2012)226

and Gassmann (2013) show that the instability indeed appears in 3D models. We will show here that the main point for the instability227

not to appear in the shallow water models was that the growth rates of the instability were too small because of the large fluid depths228

adopted and runtime scales tested.229

TRSK is well suited for icosahedral grid-based models. Icosahedral grids can be initially built based on a triangulation of the sphere230

(a Delaunay grid), but usually the dual grid (its Voronoi diagram) is adopted for the finite volume computational cells (Staniforth and231

Thuburn 2012). All test cases here use a dual Voronoi (hexagonal-pentagonal) grid of level 5, that has 10242 computational cells (12232

regular pentagons and 10230 not necessarily regular hexagons) which corresponds to an approximate grid resolution of 240km. This233

resolution may not adequately resolve the Rossby radius of deformation in most experiments performed below, but it is fine enough to234

investigate the stability of the scheme in a non-time-consuming way. See section 5.3 below for further discussion of this point.235

The grids used here adopt a Spherical Centroidal Voronoi Tessellation (SCVT), which slightly modifies the original icosahedral grid236

cell nodes to ensure that they are very close to the centroid of the Voronoi cell that they define (Ju et al. 2011). In what follows, all237

figures that show spatial distribution of a scalar field on this grid will also show the Voronoi diagram associated with the basic triangular238
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Numerical instabilities of spherical shallow water models 6

icosahedral grid, to serve as reference of the underlying grid structure. A four stage, fourth order, explicit Runge-Kutta was used as the239

time-stepping scheme with a time-step of 400s.240

The original TRSK scheme is proposed to ensure total energy conservation (within time truncation error) and compatibility with the241

potential vorticity equation. To achieve this, the vorticity terms are weighted by the layer depth. We start the analysis with this original242

depth-weighted (DW) formulation and later show how the scheme behaves with a non-depth-weighted (NDW) formulation, which243

should be more closely related to the results of Skamarock et al. (2012) and Gassmann (2013), since they adopt level-based vertical244

coordinate systems.245

Zonal balanced flow with no Coriolis force for depth-weighted TRSK246

We start the analysis with the zonal balanced flow described in section 4, but without the Coriolis force (Ω = 0), just to illustrate247

that indeed the Hollingsworth instability can be triggered independently of a Coriolis force. Using the original TRSK scheme (depth-248

weighted) and a constant fluid depth of 1 m, the model is unstable and the linear analysis shows that the most unstable mode has a249

growth rate with e-folding time of 25.7 days, and eigenvector shown in Figure 1. We see that the mode is related to the underlying grid250

structure. For a depth of 0.1 m the e-folding time reduces to 19.5 days, and for a depth of 0.01 m the e-folding time drops to 5.2 days.251

For large depths, such as 100 m or larger, the model does not blow up in run-times of up to one year.252

ICOS-TRSK-NOROT Dominant eigenvector

−5.3e−05

−4.2e−05

−3.2e−05

−2.1e−05

−1.1e−05

0.0e+00

1.1e−05

2.1e−05

3.2e−05

4.2e−05

5.3e−05

Figure 1. Dominant eigenvector for the depth field deviation from basic state with constant mean depth of 1 m for the TRSK scheme considering the zonal flow test case
without Coriolis force.

This example shows how the Hollingsworth instability exists independently of the Coriolis force. Nevertheless, since most253

atmosphere and ocean models do have the Coriolis term included, we will continue with further analysis using only the test with254

Coriolis force included.255

Zonal balanced flow with Coriolis force for depth-weighted versions of TRSK256

We will now consider the test of balanced zonal flow with rotation, as described in section 4. Adopting a constant fluid depth of 1 m, we257

show in Figure 2(a) the error in the depth field for the TRSK scheme after 14.5 days, which is a few time steps before the model blows258

up. The model is clearly unstable and Figure 2(b) shows the dominant eigenvector. Both the error and the eigenvector patterns seem to259

be related to geometric properties of the grid, which agrees with previous knowledge of grid imprinting often observed in this kind of260

model (Peixoto and Barros 2013; Weller et al. 2012), but they do not match each other exactly. The method used for the linear analysis261

is sensitive to possibly very close eigenmodes, which may be hard to separate. Also, nonlinear effects may influence the patterns in the262

full model run. Nevertheless, both patterns seem to indicate that the unstable mode is stronger near edges of the original icosahedral263

dual grid.264

ICOS-TRSK-DW Depth deviation at 14.5 days Dominant eigenvector
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(b) −4.1e−06
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Figure 2. (a) Depth field deviation from a basic state with mean depth of η0 = 1 m for the depth-weighted TRSK scheme at time 14.5 days considering the zonal flow test
case with Coriolis terms. The stopping time is a few time-steps only from blow-up. (b) Dominant eigenvector for the depth field deviation from basic state with constant
mean depth of 1 m.

The blue line in Figure 3, referring to the TRSK scheme, shows the e-folding times of the instability for various depths. The instability265

is noticeably stronger for the smaller the depths, almost reaching an e-folding time of approximately 1 day. For the depths adopted in266

standard shallow water test cases (Williamson et al. 1992), which are of about 10km, the growth rate is so small that one would not267

observe instabilities even in long runs (of many years). For the high resolution 3D models discussed in section 2, which have very small268
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Figure 3. E-folding times (days) for different mean fluid depths (η0) and different finite volume schemes with depth-weighted vorticity terms (TRSK, GASS and PXT).

equivalent depths, we are very likely to be in the region where the e-folding time is near to 1 day. This can have significant impact in269

medium- and long-range weather forecasts, and also in long climate simulations for either the ocean or the atmosphere.270

ICOS-GASS-DW Depth deviation at 5.3 days Dominant eigenvector
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Figure 4. Same as Figure 2, but now for the GASS scheme with depth-weighted vorticity, and error at time 5.3 days.

Gassmann (2013) analysed the instability problem on planar regular hexagons and did not find a way to modify the kinetic271

energy discretization to ensure exact discrete cancellation. Nevertheless, a discretization that minimizes the non-cancellation effect272

is suggested. In 3D models this scheme was shown to reduce the effects of the instability in standard baroclinic wave test cases (e.g.273

Skamarock et al. 2012; Gassmann 2013). The stable results observed are of course very important to enable practical usage of such274

schemes, but no warranty of stability is established. In fact, it might be the case that other experiments, or longer run-time periods,275

reveal the instability.276
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Figure 5. E-folding time (days) relative to different parameter choices (α) of GASS scheme with constant mean depths of 1 m (top), 0.1 m, 0.01 m and 0.001 m (bottom).
On the left (a) for depth-weighted vorticity, on the right (b) for non-depth-weighted vorticity.

We examined the scheme proposed by Gassmann (2013) (hereafter denoted as GASS scheme) using the the zonal flow test case with277

Coriolis force. Considering 1 m constant depth, it blows up shortly after 5 days. Figure 4(a) shows the error in the depth field a few steps278

before blowing up. The errors dominate at the center of the original pentagons of the icosahedral grid, so they are clearly connected279

to the grid structure. The linear analysis of this scheme, confirms the lack of stability, and the pattern of the dominant eigenvector is280
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given in Figure 4(b) and also shows larger values near the center of the original pentagons. We notice that the blow-up time in this case281

was sooner than that of the original TRSK scheme. This is confirmed by the calculation of the e-folding time, which is smaller for the282

GASS scheme (see Figure 3 for 1 m depth).283

The above result is somewhat counter-intuitive compared with the previous results discussed by Skamarock et al. (2012) and284

Gassmann (2013) for 3D models, since in this scenario the modification seems to have worsened the stability of the scheme. There are285

two main points here. First, these 3D models can be more naturally classified as having non-depth-weighted vorticity terms, since the286

vorticity is weighted by density, not the layer depth. A non-depth-weighted version of the TRSK scheme will be investigated later in287

this paper. Also, both models use a Lorenz vertical grid, which, as discussed in section 2, is related to very small equivalent depths288

(much smaller than the 1 m tested here). For smaller equivalent depths, the GASS scheme has e-folding time larger than the original289

TRSK scheme, as one can see in Figure 3, noting that the two lines cross at about half metre. For example, for a depth of 0.1 m, TRSK290

has e-folding of 1.56 days and GASS has 1.8 (the growth rate is approximately 15% slower with GASS scheme).291

The modified kinetic energy proposed by Gassmann (2013) is based on a linear combination of the original kinetic energy used292

in TRSK, defined at cell centers and which we will denote as Kc, and a kinetic energy Kv , calculated based on the kinetic energies293

obtained from the triangles surrounding the cell, which results in the total kinetic energy K = αKc + (1− α)Kv . The choice of α = 1294

gives back the original TRSK scheme, and a standard choice of α = 0.75 is suggested to be stable, as it minimizes the cancellation295

error in the advection decomposition on the plane. The experiments shown so far all adopted this standard parameter of α = 0.75. Now296

we investigate the influence of this parameter choice with respect to the growth rates of the most unstable modes. Figure 5(a) shows297

how the e-folding times vary with α for four choices of equivalent depths. For a depth of 1 m, we notice that the choice of parameter298

of α = 0.75 seems to give faster growth rates (smaller e-folding times) than the original scheme (as already observed before), but the299

figure also points out that it is possible to choose the parameter in a range that reduces the growth rates (α near 0.9− 0.95). For a300

smaller depth, of 0.01 m, the scheme using α = 0.75 indeed gives smaller growth rates, but the optimal parameter in this case would301

be close to α = 0.625, which is in fact what is adopted in the MPAS† model (Skamarock et al. 2012). Experiments with even smaller302

depths seems to indicate that the choice of α = 0.625 is optimal for very small equivalent depths.303

ICOS-PXT-DW Depth deviation at 2.8 days Dominant eigenvector
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Figure 6. Same as Figure 2, but now for the PXT scheme with depth-weighted vorticity, and error at time 2.8 days.

Peixoto (2016) noticed that the gradient of the kinetic energy discretization used in the TRSK scheme was very inaccurate on304

unstructured spherical grids, in fact, it was proven to be inconsistent (0th order accurate), a problem also shared with the discretization305

of other terms of the TRSK scheme. Peixoto (2016) suggests modifications of the TRSK scheme to ensure at least overall first order306

accuracy, at the cost of losing some mimetic properties. More accurate kinetic energy and vorticity discretizations could, in theory,307

reduce the mis-cancellation gap that occurs in the advective term. The cancellation in this case would be ensured asymptotically for308

sufficiently smooth fields. Nevertheless, stability issues are usually related to near-grid-scale features, so asymptotic cancellation might309

not be enough to avoid the instability. We investigated the stability of the consistent scheme proposed in Peixoto (2016), which we310

hereafter refer to as PXT. The test case using 1 m depth shows that the scheme blows up shortly before 3 days (see Figure 6(a) for the311

pattern of the error in the depth field at 2.8 days). The growth rate is in fact somewhat larger than that of the original TRSK scheme, as312

illustrated by the smaller e-folding times in Figure 3 with label PXT.313

Analysis of non-depth-weighted versions of TRSK314

So far, all analysis done for the TRSK-based schemes has considered the depth-weighted form of the vorticity term, as in the original315

shallow water formulation, and appropriate for a three-dimensional layer-based coordinate model. It is possible to remove the depth316

weighting of the vorticity, corresponding to a three-dimensional level-based coordinate, although some mimetic properties will be lost.317

We analysed the non-depth-weighted version of TRSK and found it to be unstable. The error pattern of the depth field observed a318

few steps before blow-up assuming a mean depth of 1 m is shown in Figure 7. The calculated growth rate indicates an e-folding time319

of 1.85 days, which is smaller than the e-folding time of the layer version of TRSK (which has an e-folding time of approximately 6.5320

days), so the instability grows faster in the non-depth-weighted version for this mean depth.321

The GASS scheme can also be used without depth weighting of the vorticity term. In fact, the method as derived in Gassmann322

(2013) considered only the relative vorticity, not the potential vorticity. Also, in three-dimensional models such as MPAS (Skamarock323

et al. 2012), the vorticity is weighted by density rather than the fluid layer depth, and the behaviour is best captured by the non-depth-324

weighted shallow water case. The non-depth-weighted version of the GASS scheme, using the original scheme parameter choice of325

0.75, is still unstable, with e-folding times shown in Figure 5(b). With a mean fluid depth of 1 m, the e-folding time of the instability is326

approximately 5 days, so this time larger than the original TRSK scheme. For a smaller depth of 0.01 m we have an e-folding time of327

†The Model for Prediction Across Scales (MPAS)

c© 2017 Royal Meteorological Society

Prepared using qjrms4.cls



Numerical instabilities of spherical shallow water models 9

ICOS-TRSK-NDW Depth deviation at 3.24 days Dominant eigenvector
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Figure 7. Same as Figure 2, but now for the non-depth-weighted TRSK scheme and error at time 3.24 days.

ICOS-GASS-NDW Depth deviation at 8.1 days Dominant eigenvector
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Figure 8. Same as Figure 2, but now for the non-depth-weighted GASS scheme and error at time 8.1 days.

1.6 days for TRSK and 3.2 days for GASS. Therefore the GASS scheme seems to be slowing down the growth speed of the instability328

with respect to TRSK.329

We show in Figure 5(b) how the parameter choice of the GASS scheme affects the e-folding time of the most unstable mode. In all330

our tests with the non-depth-weighted scheme, using the GASS scheme with the original parameter choice of 0.75 was always beneficial331

to reduce the growth speed of the instability. We also note that the modification of the GASS scheme seems to be more effective (larger332

e-folding times) for the non-depth-weighted scheme than for the depth-weighted scheme when compared to the original TRSK scheme333

(the TRSK scheme e-folding times can be observed in the same figure looking at the parameter choice of 1).334

As a result from the shallow water equation analysis for both depth-weighted and non-depth-weighted models, we conclude that335

the modification proposed by Gassmann (2013) does not seem to be enough to eliminate the instability. Nevertheless, it can delay its336

interference in the model by reducing its growth rate. The two 3D models for which the instability was recently reported (Skamarock337

et al. 2012; Gassmann 2013) showed results based on a baroclinic wave test suggested by Jablonowski and Williamson (2006). The338

tests show a clear unstable mode at day 8 or 9 of integration for the original TRSK scheme. At day 9, Gassmann’s scheme does not339

reveal traces of the unstable mode yet. From our analysis, apparently the instability has not yet grown significantly, due to the smaller340

growth rate, but it is prone to appear in later times. Further investigations to see if indeed the instability appears later in the baroclinic341

wave test case would be required to confirm the extension of these results for 3D models, but this is beyond the scope of this paper.342

5.2. Analysis of a Finite Element Mimetic scheme343

Thuburn and Cotter (2015) proposed a finite element numerical scheme for the shallow water equations on a rotating sphere. It uses344

compound elements, which provide a generalization of the lowest order Raviart-Thomas finite elements to arbitrary polygonal grids345

and give a finite element analogue of the C-grid placement of variables. The finite element scheme is closely related to the finite volume346

scheme of Thuburn et al. (2014), which in turn is derived from TRSK. It has the same mimetic properties, and it uses the same semi-347

implicit time integration scheme and the same finite volume advection scheme for advection of mass and potential vorticity. As in the348

original TRSK scheme, this finite element scheme also adopts a depth-weighted vorticity in order to obtain compatibility between the349

linear shallow water equation scheme and the discrete potential vorticity equation. The finite element scheme has greater accuracy than350

TRSK, which comes at the price of inverting certain mass matrices and related operators at each time step.351

The discretizations are built starting from the vector invariant form of the equations, and so are susceptible to non-cancellation352

effects of the momentum advection term decomposition. No numerical instabilities were detected within the experiments performed in353

the original paper. Closely related numerical methods are under consideration for the next generation three-dimensional atmospheric354

dynamical core at the UK Met Office. Therefore, insights about whether the Hollingsworth instabilities will happen in this case are355

highly desirable.356

We used our suggested test case of a very thin layer of shallow water (with Coriolis force) to investigate potential instabilities. Two357

grid possibilities were used: (i) a cubed sphere grid, where we used a resolution with 13824 quadrilateral cells, and (ii) an icosahedral358

based grid, formed by hexagons and 12 pentagons, where we used a resolution with 10242 Voronoi cells. The icosahedral grid was359

modified with the approach suggested by Heikes and Randall (1995), and has an orthogonal dual grid, whereas the cubed sphere grid360

used the same modification adopted in Thuburn et al. (2014), and is non-orthogonal. The time step adopted was 400 s.361

Our experiments showed that the model indeed reveals itself to be unstable under small enough mean fluid depth. For a mean depth362

of 1 m, the cubed sphere model blows up shortly after 5.17 days (see Figure 9(a)). For this same depth, the hexagonal grid did not blow363
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up for runs of over one year, which shows that it is potentially less susceptible to the instability. Nevertheless, for a mean depth of364

0.10 m, it blows up shortly after 5.95 days (see Figure 9(a)).365

An attempt to use the power method to estimate the growth rates was performed. We observed lack of convergence of the algorithm366

in the experiments performed, even with very small mean depths. The dominating vector seems to be strongly caught by grid structures367

during the iterations, and does not seem to reflect the actual dominant computational mode of the instability. So these results are not368

shown.369

FEM-CUBE Depth deviation at 5.17 days FEM-HEX Depth deviation at 5.95 days
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Figure 9. (a) Depth field deviation from basic state considering a constant mean depth of η0 = 1 m for the FEM scheme on a cubed sphere at time 5.17 days. (b) Depth
field deviation from basic state considering a constant mean depth of η0 = 0.1 m on an icosahedral grid at time 5.95 days.

5.3. Equivalent depths and the Rossby radius of deformation370

In the experiments discussed above, reducing the mean depth has the effect of reducing the Rossby radius of deformation λ =
√
gη0/f .371

It is well-known that C-grid schemes can behave poorly when the Rossby radius is not well resolved. For example, taking η0 = 1 m,372

the Rossby radius at mid-latitudes is approximately λ =
√
gη0/f ≈ 30 km, which is far from being resolved on the grids used above373

with horizontal resolution of approximately 240 km. It is therefore legitimate to ask whether the poor resolution of the Rossby radius374

might be contributing to the observed instability, and whether the instability might be ameliorated by using much higher horizontal375

resolution typical of that in modern weather and climate models.376

For the non-depth-weighted ‘een’ and ‘AL’ schemes on a plane, the analysis of BPT (their figures 6 and 7) shows that the growth377

rate (non-dimensionalized using f ) in fact increases as resolution is refined, that is, for increasing grid Rossby number Ru keeping378

Froude number Fu fixed. Consistent with this, Ducousso et al. (2017) found that, in a version of the NEMO ocean model using the379

‘een’ scheme, the instability became significantly worse at finer horizontal resolution.380

To examine this issue in our experiments the test cases for depth-weighted TRSK without and with Coriolis force at η0 = 1 m may381

be compared. In the case without Coriolis force, the Rossby radius, based on the the mid-latitude absolute vorticity rather than f , is382

λ ≈ 360 km and so is marginally resolved. In the case with Coriolis force, on the other hand, the Rossby radius λ ≈ 30 km is badly383

underresolved. The respective e-folding times are 25.7 days and 6.5 days. Thus, the absolute growth rate of the instability is greater384

for the case of baldy underresolved Rossby radius. However, the background absolute vorticity is 13 times as strong in the case with385

Coriolis force. Therefore, the growth rate non-dimensionalized by the background absolute vorticity is in fact greater for the case of386

marginally resolved Rossby radius.387

We also repeated the test for depth-weighted TRSK, with η0 = 1 m and including Coriolis force, on grids with 120 km, 60 km,388

and 30 km resolution. In all cases the model crashed after about 14.5 days, similar to the original 240 km run. The linear analysis389

indicates that the e-folding time at 240 km resolution is about 6.5 days. Increasing the grid resolution to 120 km and 60 km results390

in e-folding times respectively of 7.4 and 9.5 days. In this set of experiments the growth rate of the instability (both absolute and391

non-dimensionalized) shows a modest decrease as the resolution of the Rossby radius improves.392

From this limited set of results it appears that the dependence of the instability on resolution of the Rossby radius may be quite393

complicated, and might be affected by the specific scheme used, depth-weighting, spherical geometry, and whether the background394

vorticity is provided by the flow or the planetary rotation. Nevertheless, it is clear that increasing the horizontal resolution does not,395

in general, suppress the instability, and may make it worse. The results also imply that a relatively coarse and computationally cheap396

horizontal resolution, as used in most of our tests, is adequate for diagnosing the presence of an instability.397

6. Analysis of instabilities in ENDGame398

The discretization of the atmosphere dynamical core of the Unified Model of the UK MetOffice, also known as ENDGame (Wood399

et al. 2014), is based on the shallow water discretization discussed in Zerroukat et al. (2009). In this section, we will first perform a400

linear stability analysis of the Zerroukat et al. (2009) scheme and two alternatives, under a similar approach as adopted in BPT, for the401

planar version of the scheme. This shows that depth weighting of the Coriolis term on its own can give rise to instabilities, depending402

how it is applied. Then, we will show numerical results for the spherical shallow water model. Implications for the stability of the403

three-dimensional ENDGame will be discussed at the end.404
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6.1. Analysis on an f -plane405

6.1.1. Original ENDGame scheme406

Following the notation of BPT, consider the shallow water equations written in advective form for a planar domain with velocity
components (u, v), water height η and bottom topography (bathymetry) b,

ut + uux + vuy − f0v = −g(ηx + bx),

vt + uvx + vvy + f0u = −g(ηy + by),

ηt + (uη)x + (vη)y = 0,

(8)

where the subscripts refer to partial derivatives, g is the gravity constant, f0 is the Coriolis parameter (constant) and the free surface407

height is given by η + b.408

The scheme proposed in Zerroukat et al. (2009) adopts a semi-implicit semi-Lagrangian approach, but we are interested in the
instabilities that arise due to spatial discretizations related to geostrophic and inertia-gravity linear modes, so we will adopt a simplified
advection scheme. The scheme is constructed on a usual horizontal C-staggered grid. The semi-discrete version of these equations for
a planar domain of constant Coriolis parameter can then be written as

ut + uδxu
x + vxδyu

y − f

η
ηyv

y
x

= −g(δxη + δxb),

vt + uyδxv
x

+ vδyv
y +

f

η
ηxu

x
y

= −g(δyη + δyb),

ηt + δx(uηx) + δy(vηy) = 0,

(9)

where the over-lines indicate a centred averaging in the direction of the super-script and the δs indicate a centred differencing in the409

direction of the sub-script (see BPT for details on the notation). The key point of this discretization is that it uses depth-weighted410

Coriolis terms so that the Coriolis terms do not contribute to the energy budget and have good Rossby mode dispersion properties411

(Thuburn and Staniforth 2004).412

The linearization will be taken with respect to a geostrophically balanced non-resting steady state. To ensure the flow is balanced,413

one could either think of adding a forcing to the equations, or else, and as we will adopt, use the bottom topography b to enforce the414

steady state. To do so, consider the constant basic velocity and mean water depth, (u1, v1, η0), and bottom topography defined as415

b = b0 +
f0

g
(v1x− u1y), (10)

with b0 constant. Clearly the bottom topography terms in the right-hand-side of the discrete equations reduce to f0v1 and −f0u1 for416

the u and v equations, respectively.417

The linearized version of these equations may then be written for the perturbations variables (u′ = u− u1, v
′ = v − v1, η

′ = η − η0)

as

u′t + u1δxu′
x

+ v1δyu′
y − f0v′

xy − f0v1

η0

(
η′
yy − η′

x)
= −gδxη′,

v′t + u1δxv′
x

+ v1δyv′
y

+ f0u′
xy

+
f0u1

η0

(
η′
xx − η′

y)
= −gδyη′,

η′t + η0(δxu
′ + δyv

′) + u1δxη′
x

+ v1δyη′
y

= 0,

(11)

where the over-lines with double superscript indicates averaging in both directions indicated.418

Assume that the perturbations are of a wave-like form,419

(u′, v′, η′) = (û, v̂, η̂)exp

(
iκx

∆x
+

iλy

∆y
− iωf0t

)
, (12)

where ω is a non-dimensional frequency normalised using f0, and κ and λ are non-dimensional horizontal wavenumbers for the x- and420

y-directions normalised using the grid spacings ∆x and ∆y respectively. Define the following convenient non-dimensional quantities421

Fu =
u1

c
, Fv =

v1

c
, Rc =

2c

f0∆y
, X =

∆x

∆y
, (13)

respectively for the Froude numbers for the basic flows u1 and v1,Rc as twice the ratio of the Rossby radius (c/f0) and the grid spacing422

∆y, where423

c =
√
gη0. (14)

The grid-scale Rossby numbers Ru and Rv for the flows u1 and v1 can be constructed using the above parameters424

Ru =
2u1

f0∆x
=
FuRc
X

, Rv =
2v1

f0∆y
= FvRc. (15)
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(a) Ru = 10, Fu = 10 (b) Ru = 40, Fu = 40
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Figure 10. The fastest growing instabilities (maximum |ωi|) for varying λ and κ for the ENDGame scheme for the case with v1 = 0 and two combinations of Ru and
Fu.
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Figure 11. The fastest growing instabilities for all λ and κ for the ENDGame scheme for the case with v1 = 0 as a function of Fu and Ru; (a) the maximum non-
dimensional growth rates, |ωi|, and (b) their wavenumber (κ, λ); the arrows show their direction and the contours their magnitude.

Substituting the wave-like form into the discrete linearized equations (11), and using the above relations together with the definitions,425

426

cp = cos(p/2), sp = sin(p/2), p = κ, λ, (16)

one obtains a matrix form of the stability problem,[
$ −icκcλ −Rcsκ

X
− iEu

icκcλ $ −Rcsλ + iEv
−Rcsκ

X
−Rcsλ $

][
û
v̂
cη̂
η0

]
= 0, (17)

where

$ = ω −Rusκcκ −Rvsλcλ,

Eu = Fvcκ(c2λ − 1),

Ev = Fucλ(c2κ − 1).

(18)

Although it is possible to derive analytical solutions for special cases, such as those aligned with the grid (κ = 0), these do not427

capture the most unstable modes, so direct numerical evaluations of the eigenvalues (ω) of the stability matrices were performed. We428

considered only the imaginary part of the eigenvalues, ωi, which is the part that leads to the instability, and present their maximum429

absolute values for a few parameter settings in Figures 10 and 11. These show that for a zonal flow (v1 = 0) there are unstable modes430

that are stronger for larger horizontal wavenumbers (κ). The maximum growth rate increases as equivalent depth decreases (increasing431

Froude number) and also as horizontal resolution is refined (increasing grid Rossby number). Figure 11(b) shows that the most unstable432

modes are not necessarily aligned with the grid.433

Therefore, the planar version of the ENDGame formulation of the SWEs may suffer from grid-scale instabilities. However, in434

comparison to BPT, their dispersion relation is not the same as that for Hollingsworth instabilities; in fact, as will be shown below, it is435

solely related to the discretization of the Coriolis term.436

6.1.2. Alternative simplified scheme437

The instability detected in the previous section is directly related to the form of discretization of the Coriolis term. This can be seen by438

noting that if the terms Eu and Ev in (17) were set to zero then the matrix of the system could be written as ($I +H), where H is439

Hermitian; $ would then be real-valued and the problem is neutrally stable. The terms Eu and Ev arise from the the last terms on the440

left hand sides of the u′ and v′ equations in (11), which in turn arise from the depth weighting of the Coriolis term.441

With this insight, it is simple to derive a stable discretization for this problem. For example, using simple uniform averaging442

fv ≈ fvxy, fu ≈ fuyx, (19)
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results in Eu = 0, Ev = 0, and the scheme is then stable for this problem.443

This is not a new scheme, in fact, it is actually the standard kind of discretization one would first apply in finite difference C-grid444

models. It was frequently used in the early days of weather forecasting (e.g. McDonald and Bates 1989) and is still considered in445

some models (e.g. Barros and Garcia 2004). Nevertheless, this approach lacks some important properties of the scheme adopted in446

ENDGame. For example, in this scheme the Coriolis term is not neutral in the energy budget when used in a layer-based model. On an447

f -plane, Eq. (19) is obtained from Eq. (9) simply by removing the depth weighting.448

6.1.3. Alternative energy conserving scheme449

Alternatively, one can build a depth-weighted discretization that still retains an energy conserving Coriolis term and is stable for the450

planar analysis:451

fv ≈ f

ηxy
ηyv

x
y

, fu ≈ f

ηxy
ηxu

y
x

. (20)

This is identical to the energy conserving scheme of Sadourny (1975), with the exception that here only the planetary vorticity (Coriolis452

parameter) is used instead of the absolute or relative fluid vorticity, since the momentum equations are not in vector invariant form.453

With this discretization, again it is possible to show that Eu = 0 and Ev = 0, so the scheme is neutrally stable.454

One intellectually satisfying aspect of this discretization is that f is evaluated at vorticity points, which feels more natural and is455

closer to the approach of Arakawa and Lamb (1981) than the original scheme, which evaluates f at mass/pressure points.456

6.2. Analysis on the sphere457

6.2.1. Description of the schemes458

We have described 3 numerical schemes so far. First the original ENDGame scheme, described in Eq. (9), which we will denote as459

“ORIG”. Second, the simplified scheme, described in Eq. (19), which we will denote as “SIMP”. And third, an alternative energy460

conserving scheme, analogous to Sadourny’s energy conserving scheme, described in Eq. (20), which will be denoted as “ALTEC”461

scheme.462

On the sphere, considering variable Coriolis parameter (f = 2Ω sinφ) and the spherical metric terms, the original scheme (ORIG)
is written as

fv ≈ 1

cosφ

f

η
ηφ cos(φ)v

φ
λ

,

fu ≈f
η
ηλu

λ
φ

,

(21)

where φ refers to latitude and λ to longitude coordinates on the sphere.463

This scheme ensures that the Coriolis term does not contribute to the energy budget and also has steady geostrophic modes on the464

f -sphere. Thuburn (2007) shows that it also has accurate representation of Rossby waves (β-effect), as the Coriolis parameter f is465

calculated at mass points. Unfortunately, the previous section shows that it is numerically unstable on an f -plane.466

The simplified scheme (SIMP) is calculated on the sphere as

fv ≈fvφ
λ
,

fu ≈fuλ
φ
.

(22)

On the calculation of the energy budget, it is possible to show that no exact cancellation is expected, and therefore the Coriolis term467

might undesirably contributed to energy budget. Based on Thuburn (2007), it is possible to show that it also has steady geostrophic468

modes and accurate representation of Rossby waves. Also, it is numerically stable on an f -plane.469

The alternative scheme (ALTEC) considers the Coriolis parameter calculated at vorticity points, and may be written on the sphere as

fv ≈ 1

cosφ

f

ηφλ
ηφ cos(φ)v

λ
φ

,

fu ≈ f

ηφλ
ηλu

φ
λ

.

(23)

Again this matches the energy conserving scheme of Sadourny (1975). It is energy conserving and has steady geostrophic modes, but470

due to the position of the calculation of the Coriolis parameter at vorticity points, the β-effect may not be as accurate as the original471

scheme.472

6.2.2. Numerical experiments473

The numerical experiments will be based on the zonal flow test case with Coriolis force, as described in section 4. The experiments474

will be performed with the original configurations of the shallow water ENDGame scheme, with semi-Lagrangian semi-implicit475

discretization with 256× 128 grid points and time-step size of 1200 s.476

A simulation run with this configuration assuming η0 = 1m reveals that the original model (ORIG) is unstable. Figure 12(a) shows477

the error in the height field at 14.5 days, a few time-steps before the model blew up (the figure shows the step where the model attained478
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ENDGAME-ORIG Height deviation at 14.5 days Dominant eigenvector
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Figure 12. (a) Height field deviation from basic state with constant mean height of 1 m for the original ENDGame scheme at time 14.5 days. (b) Dominant eigenvector
for height field deviation from basic state with constant mean height of 1 m.

ENDGAME-ALTEC Height deviation at 60 days Dominant eigenvector
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Figure 13. (a) Height field deviation from basic state with constant mean height of 1 m for the alternative ENDGame scheme at time 60 days. (b) Dominant eigenvector
for height field deviation from basic state with constant mean height of 1 m.
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Figure 14. E-folding time (days) relative to different mean fluid depths (in metres) for ENDGame model.

maximum error in the velocity greater than 10ms−1). The spherical linear analysis shows that the dominant eigenvector has larger479

values concentrated over mid-latitudes (see Figure 12(b)), as happens with the error pattern observed a few time-steps before blow-up.480

The e-folding times of the instability for different mean fluid depths (η0) are shown in Figure 14. For depths larger than 4 metres the481

linear analysis method did not converge, indicating that either the model is stable, or that the methodology is not sufficiently accurate482

to capture the instability. Indeed, for such larger layer depths we did not observe instability within reasonable runtime of the model (up483

to 1 year).484

The most unstable mode lies around 60◦ latitude, where, for a resolution of 256× 128 in latitude-longitude coordinates, f0 ≈485

7× 10−5, ∆x ≈ 78 km and ∆y ≈ 156 km, so the ratio of grid spacings is X ≈ 0.5. Also, the velocity field is zonal with speed486

approximately 19 ms−1 at this latitude. Therefore, we may estimate the local planar Froude number Fu ≈ 6 and the Rossby number487

Ru ≈ 7. The linear analysis on the plane provides an estimate for these parameters of a maximum growth rate of approximately488

ωf0 ≈ 6.5× 10−5 s−1, which gives an e-folding time of about 4 hours. This is pessimistic compared to our numerical estimates of489

e-folding time, which, for this scenario on the sphere, are of about 1 day (see Figure 14), but not so far off given the great deal of490

approximations. Also, this scheme has implicit diffusion within the semi-Lagrangian advection, which might be responsible for the491

slower growth of the instability.492

The simple averaging scheme for the Coriolis term (SIMP) was found to be stable in all experiments performed, as predicted by the493

planar linear analysis. The error of the scheme remains small throughout the experiment for long periods of time.494

The alternative energy conserving scheme (ALTEC) was shown to be stable on the f -plane. Nevertheless, on the sphere, the variable495

velocity and combination of averagings involving the depth variable and cos(φ) factors in the Coriolis term breaks the exact cancellation496

observed on the plane. A simulation run assuming η0 = 1 m reveals that the alternative scheme is also unstable on the sphere, but it497

takes much longer for the model to crash. Figure 13(a) shows the error in the depth field at 60 days, only a few steps before blow-up.498

The unstable pattern emerging before blowing up seems to be very close to the poles. The dominant eigenvector (see Figure 13(b)) of499

the most unstable mode also shows that the problem is mainly closer to the poles. A closer look at how the growth rates change with500

the mean depth (see Figure 14) reveals that indeed at 1 m height the e-folding time of the alternative scheme is far larger than that of501

the original scheme (about 4 times), which is approximately the extra time required for this model to blow up compared to the original502

scheme. Figure 14 also shows that for larger depths (larger than 4 m), the original scheme is in fact more stable than the alternative.503

A similar situation may happen if the depth is too small (smaller than 0.1 m). So, except for the interval of [0.01, 4] mean depths, the504

original scheme has growth rates smaller than the alternative scheme.505
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6.3. Implications for 3D ENDGame506

The three-dimensional operational ENDGame model (Wood et al. 2014) used at the UK MetOffice uses the original scheme (ORIG)507

but in a height-based vertical coordinate with density times model layer depth as weights for the Coriolis term. In a height-based508

coordinate the model layer depths are fixed and the local variations in density are relatively small. Therefore, as discussed in Section509

2.2, the appropriate shallow water model to analyse the stability of 3D ENDGame is one with non-depth-weighted Coriolis terms,510

similar to (22) but with some cosφ weights. To date no traces of this instability have been detected in the operational model, and511

indeed, the above analysis suggests the model should be stable.512

A version of 3D ENDGame with a Lagrangian vertical coordinate has been developed by Kavčič and Thuburn (2017). Early versions513

of that model used a depth-weighted Coriolis term, but were found to suffer from an instability with short vertical and meridional scales514

that appeared in regions of strong zonal wind. Removing the depth weighting from the Coriolis term eliminated the instability. All of515

these symptoms are consistent with the analysis above for the ORIG scheme.516

7. Discussion and concluding remarks517

We have proposed the use of shallow water models with very small layer depth as a useful means of investigating certain modes of518

instability of three-dimensional numerical models. We have suggested a shallow water test case that is simple to implement, and also519

a straightforward variant of the power method to identify the most unstable mode. In using this approach it is important to identify520

which shallow water scheme corresponds to a given three-dimensional model since stability can depend crucially on the details. This521

is especially true for depth weighting of vorticity or Coriolis terms, whose effects can be either stabilizing or destabilizing.522

The results obtained for all models investigated in this paper are summarized in Table 1 .523

The finite difference energy-enstrophy conserving schemes (EEN and AL) were only investigated by BPT on the f -plane, and524

empirical results (e.g. Lazić et al. 1986) seem to corroborate that the schemes are unstable for level-based models with non-depth-525

weighted vorticity terms. The planar analysis indicates that these schemes are stable for depth-weighted vorticity terms, and no526

evidence of instabilities in layer-based models exists to these authors’ knowledge. Further investigations would be required to confirm527

the stability properties of these schemes for spherical shallow water models with depth-weighted vorticity terms, which may be done528

following the lines discussed in this paper.529

A key point shown in this paper, complementing BPT, is that the Hollingsworth instability exists even without the presence of530

Coriolis terms (Earth rotation). The Hollingsworth instability is due to a lack of discrete cancellation of advection terms and seems to531

exist only in the presence of some background vorticity. That said, the Coriolis force can influence the Hollingsworth instability by532

simply acting as a source of vorticity.533

Equation Method Scheme Non-depth-
weighted

Depth-
weighted

Observations

Vector
Invariant

Finite Differences
(Energy-Enst Cons)

EEN Unstable Stable Stability on the f -plane
(Bell et al. 2017)AL Unstable Stable

Finite Volume
(TRSK based)

TRSK Unstable Unstable
GASS Unstable Unstable Slower growth wrt TRSK
PXT Unstable Unstable Faster growth wrt TRSK

Finite Elements
(Compound)

CUBE - Unstable Faster growth wrt HEX
HEX - Unstable Slower growth wrt CUBE

Advective
Finite Differences
(ENDGame)

SIMP Stable - Not energy conserving
ORIG - Unstable Faster growth wrt to ALTEC
ALTEC - Unstable Stable on plane

Table 1. Summary of results. Notation as defined in text. The finite element scheme was not investigated in non-depth-weighted form. For the ENDGame
schemes, the simple Coriolis averaging (SIMP) does not apply to a depth-weighted form, and ORIG and ALTEC were only tested in depth-weighted form.

The finite volume schemes investigated, based on the TRSK scheme, all seem to be unstable, either with or without depth weighting534

of vorticity terms. These analysis have direct impact, for example, on models such as MPAS (Skamarock et al. 2012) or DYNAMICO535

(Dubos et al. 2015), that use this scheme. The modifications proposed by Gassmann (2013) seem to slow down the growth rate of the536

instability, and is particularly beneficial for non-depth-weighted (level-based) models that run in configurations that imply very small537

equivalent depths (e.g. use a Lorenz grid). For the scheme with the modifications proposed by Peixoto (2016), we see that ensuring538

more accurate calculations of the terms involved in the existence of the instability is not a sufficient condition to improve the stability539

properties of the scheme.540

The finite element scheme tested in this work shows strong instabilities, particularly on the cubed-sphere grid, with slower growth541

rates on the hexagonal-grid. Further analysis on the stability properties of these and other finite element schemes are currently under542

investigation and will be reported elsewhere.543

An interesting point is how the different weighting of the vorticity term influences the stability of models based on the vector invariant544

momentum equations. For a depth-weighted scheme, the depth field appears in the vorticity term but does not appear in the kinetic545

energy term. This suggests that the non-cancellation would be more pronounced in this case when compared to a non-depth-weighted546

formulation. Indeed, our results for TRSK based schemes using very small equivalent depths (< 1m) show that the e-folding times of547

the depth-weighted formulations are smaller than the non-depth-weighted versions (see Figure 5), indicating that the instability grows548

faster in depth-weighted models. Intriguingly though, BTP shows that for FD schemes on an f-plane the opposite happens: the depth-549

weighted model is stable, whereas the non-depth-weighted is not. The reason is that the stability of the depth-weighted scheme shown550

in BTP is not directly connected to a perfect cancellation, but related to the conservation of uniform potential vorticity (see Appendix551
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F of BPT). Further analytical inspection of the unstable modes on hexagons would be required to make a detailed connection between552

the results of BTP for the een scheme and the results shown in this paper for TRSK.553

The instability detected for the ENDGame scheme was surprising at first, since it is not in principle related to the Hollingsworth554

instability, as it does not use the vector invariant momentum equations. However, it shows that the suggested test cases seem to be555

applicable in a more general sense. In this case the suggested test case revealed an instability that had not been anticipated, and led us556

subsequently to perform the analysis presented in section 6.1.557

As a final point, we note that the investigation of numerical instabilities arising in shallow water systems considering small equivalent558

depths seems to be not only of theoretical interest, but of practical importance. Non-idealised weather and ocean models indeed possess559

vertical modes corresponding to very small equivalent depths and may be subject to these instabilities. The main purpose of this paper560

was not to show solutions to stability issues, but more to enlighten the investigation path with tools and better understanding of such561

instabilities.562
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A. Linear analysis for the ‘een’ scheme with no Coriolis force568

In this section we follow the analysis of BPT to show that with a constant velocity basic state and null Coriolis force (f0 = 0) the569

original ‘een’ scheme is neutrally stable on a plane.570

Using the same notation as in BPT, one may write the linearized form of the shallow water equations for the height coordinate model,
ignoring the Coriolis term, as (see equations (61-62) of BPT)

∂u′

∂t
+ gδxη

′ + u1δxu′
x
+ v1δyu′

yµE+

v1δx
(
v′
y − v′

yµE
)
= 0,

∂v′

∂t
+ gδyη

′ + u1δxv′
xνE + v1δyv′

y
+

u1δy
(
u′
x − u′

xνE
)
= 0,

∂η′

∂t
+ u1δxη′

x
+ v1δyη′

y
+

η0

(
δxu

′ + δyv
′) = 0,

(24)

where the basic state has constant velocities (u1, v1) and constant depth η0 and the system refers to the perturbed variables for velocity571

and depth (primed variables).572

Let us assume wave-like solutions as573

(u′, v′, η′) = (û, v̂, η̂)exp

(
iκx

∆x
+

iλy

∆y
− iωt

)
, (25)

where ω is the frequency and (κ,λ) are non-dimensional horizontal wavenumbers for the x- and y-directions normalised using the grid574

spacings ∆x and ∆y respectively. Substituting the wave-like forms in the perturbation equations, and using that, for a quantity ψ, the575

x- and y-averaging operators and the differencing operators δx and δy give, respectively,576

ψ
x

= cκψ, ψ
y

= cλψ, (26)

577

δxψ =
2i

∆x
sκψ, δyψ =

2i

∆y
sλψ, (27)

one obtains the following linear system, ω − E11 E12 − 2
∆x

csκ
E21 ω − E22 − 2

∆y
csλ

− 2
∆x

csκ − 2
∆y

csλ ω − E33

[ ûv̂
cη̂
H

]
= 0, (28)

where,

E11 =
2u1

∆x
sκcκ +

2v1

∆y
sλcλµE ,

E22 =
2u1

∆x
sκcκνE +

2v1

∆y
sλcλ,

E33 =
2u1

∆x
sκcκ +

2v1

∆y
sλcλ,

E12 =
2v1

∆x
sκcλ(µE − 1),

E21 =
2u1

∆y
sλcκ(νE − 1).

(29)

c© 2017 Royal Meteorological Society

Prepared using qjrms4.cls



Numerical instabilities of spherical shallow water models 17

As in BPT,578

µE =
1

3
(1 + 2c2κ), νE =

1

3
(1 + 2c2λ), (30)

and c, cκ, cλ, sκ and sλ are defined in Eqs. (14) and (16).579

It will be convenient to introduce580

Tu ≡
2u1

∆x
cκ(1− νE), Tv ≡

2v1

∆y
cλ(1− µE). (31)

Using these definitions with (29) one sees that581

E11 = E33 − Tvsλ, E22 = E33 − Tusκ, (32)

and the matrix (28) becomes582 $ + Tvsλ Tv
sκ
X

− 2
∆x

csκ
TuXsλ $ + Tusκ − 2

∆y
csλ

− 2
∆x

csκ − 2
∆y

csλ $

[ ûv̂
cη̂
H

]
= 0, (33)

in which583

$ = ω − E33 = ω − 2u1

∆x
sκcκ −

2v1

∆y
sλcλ (34)

is the Doppler-shifted non-dimensional frequency of the perturbation and X = ∆x/∆y.584

By direct calculation of the determinant DM of the matrix in (33), one finds that585

DM = $3 + P$2 −Q2$ − PQ2, (35)

where586

P = Tusκ + Tvsλ,

Q2 =
(

2sκc

∆x

)2

+

(
2sλc

∆y

)2

.
(36)

Substituting $ = −P into (35) one sees that it is a solution of DM = 0. Hence it is easy to factorise (35),587

DM = ($ + P )($2 −Q2). (37)

The solutions of DM = 0, $ = ±Q and $ = −P , are real valued, so the system is neutrally stable.588

B. Linear analysis on the sphere589

In this appendix we describe an algorithm to evaluate the eigen-structure of the most unstable modes using a nonlinear shallow water590

code modified to apply a variation of the power method to small perturbations.591

Let x(k) be the vector of values representing the model state at time step k and let G represent the action of the nonlinear shallow592

water model integration scheme over one time step, so that the unmodified shallow water model obeys593

x(k+1) = G(x(k)). (38)

We are interested in the evolution of perturbations to some basic state x̄, which should be steady. In practice, for a given numerical594

method it may be difficult or impossible to find a state close to the desired basic state that satisfies x̄ = G(x̄). Therefore a constant595

forcing term F = x̄−G(x̄) is introduced to compensate for the numerical drift of the desired basic state; F is easily computed by596

taking one model time step from the state x̄. The model governing equation (Eq. (38)) is then replaced by597

x(k+1) = G(x(k)) + F. (39)

Clearly x̄ is now a steady solution for the model (39). Note that F must be a constant forcing, not a relaxation back towards the basic598

state; such a relaxation would damp perturbations and so affect the diagnosed eigenmode growth rates.599

Now consider the evolution of a small perturbation y(k) to the basic state, so that x(k) = x̄+ y(k). Linearizing (39) gives600

y(k+1) = G′(x̄)y(k) +O(2), (40)

where G′(x̄) is the Jacobian matrix of the model evolution operator evaluated for the state x̄, and O(2) denotes higher (second) order601

terms in y(k). It is the dominant eigenvalue and eigenvector of G′ that we wish to determine. Provided y remains small, taking repeated602

model time steps according to (39) will cause y to evolve according to (40) with O(2) negligible, and y should evolve towards the603

dominant eigenvector of G′, as in the power method.604

However, with this method, it is likely that y fails to remain small and so the linearization breaks down before the dominant605

eigenvector emerges. Therefore, another modification is needed to the model to rescale perturbations to ensure they remain small.606

Thus we take a preliminary step forward using the model with constant forcing607

x∗ = G(x(k)) + F, (41)
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diagnose the perturbation608

r(k+1) = x∗ − x̄, (42)

then rescale the perturbation before computing the state at the new time level609

x(k+1) = αk+1r
(k+1) + x̄. (43)

Here αk+1 = ε/‖r(k+1)‖, for ε > 0 a small constant. Iterating (41)-(43) should then determine the same eigenvector as the power610

method applied to G′.611

If the method converges then the absolute value of the dominant eigenvalue (λ) may be obtained using the converged value of αk,612

which we will denote simply as α, as λ = 1/α.613

Provided the basic state is fluid-dynamically stable, the shallow water equations should not have any growing modes. Then, for a614

stable numerical scheme, it is expected that λ = 1 for any parameter choice. The unstable modes are detected when λ > 1 (α < 1),615

and, in this case, the associated eigenvector will be given by the converged vector y.616

The growth rate (ν) may be then obtained observing that λ = eν∆t, where ∆t is the time-step used in the calculation of G.617

Consequently, the e-folding time (time for the instability to grow by a factor of e), may be also calculated directly from ν.618

In our experiments we adopted ε = 1× 10−5 and the 2 norm of the velocity field for calculation of αk. A small local perturbation619

was added to the initial height field to trigger any unstable modes. This approach can usually be easily incorporated in standard shallow620

water model codes.621

Some important points must be made with respect to the application of this scheme and the interpretation of its results. First, we622

are assuming that the forcing F is small. For the basic states used in this paper, which are all in analytical balance, F represents623

the numerical error between the numerical adjustment with respect to the analytical steady state; therefore should be limited to local624

truncation errors, and thus small. Second, the eigenvalues might not necessarily be well separated, which means that the eigenvector625

obtained might not always match the dominant pattern appearing in a full model run. This lack of matching might also happen due to626

nonlinear effects influencing the full model run. Therefore, if the method converges, we have as result one of the possible dominant627

eigenmodes, which is enough to show that the model is linearly unstable and will provide estimates of the instability growth rate.628
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