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Abstract. We consider the question of how approximations satisfying Dirichlet’s theorem spiral

around vectors in Rd. We give pointwise almost everywhere results (using only the Birkhoff ergodic
theorem on the space of lattices). In addition, we show that for every unimodular lattice, on average,

the directions of approximates spiral in a uniformly distributed fashion on the d − 1 dimensional

unit sphere. For this second result, we adapt a very recent proof of Marklof and Strömbergsson [19]
to show a spherical average result for Siegel transforms on SLd+1(R)/ SLd+1(Z). Our techniques

are elementary. Results like this date back to the work of Eskin-Margulis-Mozes [9] and Kleinbock-

Margulis [14] and have wide-ranging applications. We also explicitly construct examples in which
the directions are not uniformly distributed.

1. Introduction

It is a corollary of a classical theorem of Dirichlet [6], that, for every x ∈ Rd (d ≥ 1), there exist
infinitely many (p, q) ∈ Zd × N such that

(1.1) ‖qx− p‖ < Cd|q|−1/d.

Here, ‖ ‖ denotes the Euclidean norm on Rd and Cd is a constant depending only on d. If the L∞-
norm is used in (1.1), then Cd can be taken to be 1 for all d. In this paper, we are interested in the
distribution of the directions of the approximates (p, q) ∈ Zd×N approaching x, that is, the quantities

θ(p, q) :=
qx− p

‖qx− p‖
∈ Sd−1.

Given A ⊂ Sd−1, T > 0, we form the counting functions

N(x, T ) = #{(p, q) ∈ Zd × N, 0 < q ≤ T : ‖qx− p‖ < Cd|q|−1/d}

and

N(x, T, A) = #{(p, q) ∈ Zd × N, 0 < q ≤ T : ‖qx− p‖ < Cd|q|−1/d, θ(p, q) ∈ A}.
Note that, while Dirichlet’s theorem guarantees that N(x, T ) → ∞ as T → ∞, N(x, T, A) could, a
priori, be 0 for all T > 0. Our first main theorem is

Theorem 1.1. For A ⊂ Sd−1, a measurable subset, and for almost every x ∈ Rd,

lim
T→∞

N(x, T, A)

N(x, T )
= vol(A).

Here vol := volSd−1 is the Lebesgue probability measure on Sd−1.
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Figure 1. The region P50 in R2+1
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Corollary 1.2. If vol(A) > 0, the inequality

‖qx− p‖ < Cd|q|−1/d, θ(p, q) ∈ A

has infinitely many solutions (p, q) ∈ Zd × N for almost every x ∈ Rd.

Remark. Logarithmic (in T ) almost sure (in x) asymptotics for N(x, T ) follow from work of
W. Schmidt [22]; see also [3] for a simple proof. We will show how the latter argument yields similar
asymptotics for N(x, T, A) in §2.

1.1. Lattices. Theorem 1.1 is closely related to a general theorem about approximation of directions
by lattice vectors. Fix d ≥ 1, c > 0 and define the set

R :=

{
v =

(
v1

v2

)
∈ Rd × R : ‖v1‖d|v2| ≤ c

}
,

which, for v2 large enough, we may regard as a thinning region around the v2-axis. And, for T > 1,
identify pieces of R:

(1.2) PT :=

{
v =

(
v1

v2

)
∈ Rd × R : ‖v1‖dv2 ≤ c, 1 < v2 ≤ T

}
⊂ Rd+1.

For a subset A of Sd−1, we define the subset PA,T of PT by

PA,T :=

{
v =

(
v1

v2

)
∈ PT :

v1

‖v1‖
∈ A

}
.

For Λ ⊂ Rd+1, a unimodular lattice, define

N(Λ, T ) := #(Λ ∩ PT ) and N(Λ, T, A) := #(Λ ∩ PA,T ).

Recall that Xd+1 := SLd+1(R)/ SLd+1(Z) is the moduli space of unimodular lattices in Rd+1 via the
identification g SLd+1(Z) 7→ gZd+1. With this identification, we endow Xd+1 with the probability
measure µ = µd+1 induced by the Haar measure on SLd+1(R). Our second main theorem is

Theorem 1.3. For µ-almost every Λ ∈ Xd+1,

(1.3) lim
T→∞

N(Λ, T, A)

N(Λ, T )
= vol(A).

The relationship to Theorem 1.1 is given by the following standard construction: given x ∈ Rd, we
form the matrix

hx =

(
Idd x
0 1

)
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and the associated unimodular lattice in Rd+1

Λx := hxZd+1 =

{(
qx− p
q

)
: p ∈ Zd, q ∈ Z

}
.

Then we can view the approximates (p, q) of x satisfying Dirichlet’s theorem with 1 ≤ q ≤ T as points
of the lattice Λx in the regions PT , and those with θ(p, q) ∈ A as points of Λx in PA,T with c = Cd.
That is, we have that N(x, T ) = N(Λx, T ), and N(x, T, A) = N(Λx, T, A), and, so, Theorem 1.1 can
be reformulated as saying that (1.3) holds for Λx for almost every x ∈ Rd.

1.2. Average Spiraling. We also have an L1 (average) spiraling result on the space of lattices. Fix
0 ≤ ε < 1 and T > 0, and define

(1.4) Rε,T := {v ∈ R : εT ≤ v2 ≤ T}

and, for a subset A of Sd−1 with zero measure boundary,

(1.5) RA,ε,T :=

{
v ∈ Rε,T :

v1

‖v1‖
∈ A

}
.

For a unimodular lattice Λ, define

N(Λ, ε, T ) = #{Λ ∩Rε,T }

and

N(Λ, A, ε, T ) = #{Λ ∩RA,ε,T }.

Let dk denote the Haar measure on K := Kd+1 := SOd+1(R). Our third main theorem is

Theorem 1.4. For every lattice Λ ∈ Xd+1, subset A ⊂ Sd−1 with zero measure boundary, and ε > 0,
we have that

(1.6) lim
T→∞

∫
K
N(k−1Λ, A, ε, T ) dk∫
K
N(k−1Λ, ε, T ) dk

= vol(A).

Theorem 1.4 is derived from our result on spherical averages of Siegel transforms, Theorem 2.2, which
we believe to be of independent interest.

1.3. Biased Spiraling. On the other hand, we construct explicit examples of lattices Λ and directions
v for which (non-averaged) equidistribution does not hold. Our fourth main theorem is

Theorem 1.5. Let d ≥ 1. There exists a lattice Λ ∈ SLd+1(R)/ SLd+1(Z), a set A ⊂ Sd−1 with zero
measure boundary, and a sequence {Tn} for which

lim
n→∞

N(Λ, A, ε, Tn)

N(Λ, ε, Tn)
6= vol(A)

for every 1 > ε ≥ 0.

For d = 1, note that S0 := {−1, 1} and we define vol({−1}) = vol({1}) = 1/2.
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Organization of the paper. In §2, we state Theorem 2.2, our result on spherical averages of Siegel
transforms and use it to prove Theorem 1.4. We also prove Theorem 1.3. In §3, we prove Theorem
2.2. The construction of examples of nonuniform spiraling for certain lattice approximates (and the
proof of Theorem 1.5) is carried out in §4. Despite the extensive literature on Dirichlet’s theorem and
its variants, as far as we are aware, our work is the first to study the problem of spiralling for lattice
approximates. In a sequel [1], we prove multiparameter versions of the main theorems considered in
the present work and related problems in Diophantine approximation and in [2] we establish versions
of the main theorems in the wider generality of number fields.

Acknowledgements: This work was initiated during a visit by A. Ghosh to the University of Illinois
at Urbana-Champaign. He thanks the department for its hospitality. J. S. Athreya would like to
thank Yale University for its hospitality in the 2012-13 academic year, when this work was completed.
He would also like to thank G. Margulis for useful discussions. The authors would like to thank
Jens Marklof for pointing us to [19] and J. Tseng would, in addition, like to thank Jens for useful
discussions and comments. We also thank D. Kleinbock for helpful discussions and the referee for a
helpful report.

2. Equidistribution on the space of lattices

In this section, we show how to reduce the proofs of Theorems 1.4 and 1.3 to equidistribution prob-
lems on the space of lattices. Theorem 1.3 is a consequence of this reduction and the Birkhoff ergodic
theorem, which gives us almost everywhere equidistribution of trajectories for diagonal flows. For The-
orem 1.4, our ergodic tool Theorem 2.2 will be of independent interest, as it gives an equidistribution
theorem for spherical averages of Siegel transforms for quite general functions.

Recall the definition of the Siegel transform: given a lattice Λ in Rd+1 and a bounded Riemann-

integrable function f with compact support on Rd+1, denote by f̂ its Siegel transform1:

f̂(Λ) :=
∑

v∈Λ\{0}

f(v).

Let µ = µd+1 be the probability measure on Xd+1 := SLd+1(R)/ SLd+1(Z) induced by the Haar
measure on SLd+1(R) and dv denote the usual volume measure on Rd+1. (We also let vol := volRd+1

denote this volume measure and will make use of the subscript should the need to distinguish it from
volSd−1 arise.) We recall the classical Siegel Mean Value Theorem [23]:

Theorem 2.1. Let f be as above.2 Then f̂ ∈ L1(Xd+1, µ) and∫
Rd+1

f dv =

∫
Xd+1

f̂ dµ.

Note that if f is the indicator function of a set A\{0}, then f̂(Λ) is simply the number of points in
Λ ∩ (A\{0}).

Let

gt :=

(
et Idd 0

0 e−dt

)
∈ SLd+1(R)

and e1, · · · , ed+1 be the standard basis of Rd+1.
Note that if we set t so that edt = T , we have

gtRε,T = Rε,1 =: Rε

and

gtRA,ε,T = RA,ε,1 =: RA,ε.

1One could define the Siegel transform only over primitive lattice points, in which case results analogous to Theo-

rems 2.2 and 2.3 also hold (using, essentially, the same proof).
2This condition can be generalized to f ∈ L1(Rd+1).
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We write 1A,ε,T for the characteristic function of RA,ε,T and 1ε,T for the characteristic function of
Rε,T , and drop the subscript when T = 1.

In view of the above discussions, we have

(2.1) N(Λ, A, ε, et) = 1̂RA,ε(gt/dΛ)

(2.2) N(k−1Λ, A, ε, T ) = 1̂RA,ε(gtkΛ).

Integrating these formulas with respect to t and k respectively, we obtain

(2.3)

∫ S

0

N(Λ, A, ε, et)dt =

∫ S

0

1̂RA,ε(gt/dΛ)dt

(2.4)

∫
K

N(k−1Λ, A, ε, T )dk =

∫
K

1̂RA,ε(gtkΛ)dk.

2.1. Proof of Theorem 1.3 and Theorem 1.1. Let s := log 2
d . (Note that s is a fixed constant).

Moore’s ergodicity theorem (see, for example, [4]) states that the action of gt on Xd+1 is ergodic, so,
by the Birkhoff ergodic theorem, for any h ∈ L1(Xd+1, µ), we have, for almost every Λ ∈ Xd+1,

lim
N→∞

1

N

N−1∑
n=0

h(gns Λ) =

∫
Xd+1

hdµ.

By Siegel’s mean value formula, the functions 1̂PA,2 and 1̂P2
are in L1(µ). Write Qi = P2i\P2i−1 ,

QA,i = PA,2i\PA,2i−1 . Then, since

g−sQi = Qi+1 and g−sQA,i = QA,i+1,

we have
N−1∑
i=0

1̂P2
(gisΛ) =

N−1∑
i=0

#(Λ ∩Qi+1) = #(Λ ∩ P2N ) = N(Λ, 2N )

N−1∑
i=0

1̂PA,2(gisΛ) =

N−1∑
i=0

#(Λ ∩QA,i+1) = #(Λ ∩ PA,2N ) = N(Λ, 2N , A).

By applying the Birkhoff ergodic theorem and the Siegel mean value theorem to these functions, we
obtain, for almost every Λ,

lim
N→∞

1

N
N(Λ, 2N ) = vol(P2) and lim

N→∞

1

N
N(Λ, 2N , A) = vol(PA,2).

Note that if F : [0,∞)→ [0,∞) is an increasing function, and F (2k)
k → log 2, then

lim
T→∞

F (T )

log T
= 1.

Thus, we obtain (for almost every Λ)

lim
T→∞

1

log T
N(Λ, T, A)

/
1

log T
N(Λ, T ) =

vol(PA,2)

vol(P2)
.

Since vol(PA,2)/ vol(P2) = vol(A), we obtain Theorem 1.3. �

This argument was used in [3] to obtain logarithmic (in T ) asymptotics for N(Λ, T ) (and other
related functions), and, as shown, also yields logarithmic asymptotics for N(Λ, T, A). To prove The-
orem 1.1, consider the collection of matrices {hx : x ∈ Rd} forms the horospherical subgroup for
{gt}, and as such, the set of lattices {Λx : x ∈ Rd} is the unstable manifold for the action of {gt}t≥0
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on Xd+1. In particular, for almost every x ∈ Rd, Λx is Birkhoff generic for the action of gs, which
following the above argument, yields Theorem 1.1 (see [3, Section 2.5.1]). �

2.2. Statement of results for Siegel transforms. By (2.4), to prove Theorem 1.4, we need to show
the equidistribution of the Siegel transforms of the sets RA,ε and Rε with respect to the integrals over
gt-translates of K. The main ergodic tool in this setting is our fifth main theorem, a result on the
spherical averages of Siegel transforms:

Theorem 2.2. Let f be a bounded Riemann-integrable function of compact support on Rd+1. Then
for any Λ ∈ Xd+1,

lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk =

∫
Xd+1

f̂ dµ.

We note that the above theorem is reminiscent of [9, Theorem 3.4] of Eskin-Margulis-Mozes, but the
compact group and the one-parameter diagonal subgroup used there are different. In fact, a proof
of this theorem in this spirit can be assembled from the work of Kleinbock-Margulis [14, Appendix],
but we present an elementary proof relying on counting lattice points in balls. This proof is adapted
from [19, Section 5.1], where the result is proved for balls around the origin (for the slightly different
context of a cut-and-project quasicrystal).3 For the proof of Theorem 2.2, we must adapt this proof
for balls not containing the origin. This is done in Section 3 for the upper bound:

Theorem 2.3. Let f be a bounded function of compact support in Rd+1 whose set of discontinuities
has zero Lebesgue measure. Then for any Λ ∈ Xd+1,

lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk ≤
∫
Xd+1

f̂ dµ.

Remark 2.4. Since Rd+1 is σ-compact, it follows immediately from the theorem that the assumption
that f has compact support can be replaced with that of f ∈ L1(Rd+1)—the other assumptions are
still, however, necessary for the proof.

Corollary 2.5. Let f be a bounded Riemann-integrable function of compact support in Rd+1. Then
for any Λ ∈ Xd+1,

lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk ≤
∫
Xd+1

f̂ dµ.

Proof. Immediate from the theorem and the Lebesgue criterion. �

In this paper, we will focus on upper bounds, i.e. on the proof of Theorem 2.3. The lower bound, on
the other hand, follows either from the methods in [15] or by applying the following equidistribution
theorem (Theorem 2.6) of Duke, Rudnick and Sarnak (cf. [7]) (a simpler proof was given by Eskin
and McMullen [10] using mixing and generalized by Shah [21]) and then approximating the Siegel

transform f̂ from below by h ∈ Cc(Xd+1).

Theorem 2.6. Let G be a non-compact semisimple Lie group and let K be a maximal compact
subgroup of G. Let Γ be a lattice in G, let λ be the probabilty Haar measure on G/Γ, and let ν be any
probability measure on K which is absolutely continuous with respect to a Haar measure on K. Let
{an} be a sequence of elements of G without accumulation points. Then for any x ∈ G/Γ and any
h ∈ Cc(G/Γ),

lim
n→∞

∫
K

h(ankx) dν(k) =

∫
G/Γ

h dλ.

Remark 2.7. One can replace dk by dν(k) in Theorems 2.2 and 2.3 without any changes to the
proofs.

3For an introduction to [19], see [18]. Also see [17] and [20].



SPHERICAL AVERAGES AND SPIRALING 7

2.3. Proof of Theorem 1.4. We prove Theorem 1.4 using Theorem 2.2, while deferring the proof
of the latter to Section 3. Thus, applying Theorem 2.2 to characteristic functions of RA,ε and Rε, we
obtain

lim
t→∞

∫
K

1̂RA,ε(gtkΛ)dν(k) =

∫
Xd+1

1̂RA,εdµ = vol(RA,ε),

where we have applied Siegel’s mean value theorem in the last equality.4 We apply this to numerator
as well as denominator in (1.6) to get

lim
T→∞

∫
K
N(k−1Λ, A, ε, T ) dk∫
K
N(k−1Λ, ε, T ) dk

=
vol(RA,ε)

vol(Rε)
= vol(A),

which finishes the proof. �

3. Proof of Theorem 2.3

As mentioned, to prove Theorem 2.2, we need only show the upper bound (Theorem 2.3):

(3.1) lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk ≤
∫
Xd+1

f̂ dµ.

We will approximate using step functions on balls (see Section 3.4), where we use the norm on
Rd+1 = Rd × R given by the supremum of Euclidean norm in Rd = span(e1, · · · , ed) and by absolute
value in R = span(ed+1). Hence, balls will be open regions of Rd+1 that are rods (i.e. solid cylinders).
We need four cases: balls centered at 0 ∈ Rd+1, balls centered in span(ed+1)\{0}, balls centered in
span(e1, · · · , ed)\{0}, and all other balls. Since we will approximate using step functions, it suffices
(as we show in Section 3.4) to assume that the balls in the second case do not meet 0 and in the last
case do not meet span(ed+1) ∪ span(e1, · · · , ed).5 Let E := B(w, r) be any such ball and χE be its
characteristic function. By the monotone convergence theorem, we have∫

Kd+1

χ̂E(gtkΛ) dk =
∑

v∈Λ\{0}

∫
Kd+1

χk−1g−1
t E(v) dk.

We show each case in turn. For the first case, we refer the reader to [19, Section 5.1], in which the
desired result (with balls given by the Euclidean norm in e1, · · · , ed+1) is shown for quasicrystals and
is essentially the same for us. (Alternatively, a simplified version of the proof of the third case will
also show the first case.) The proofs of the other three cases adapt this basic idea. For convenience
of exposition, we show the fourth case before the third.

4There are two parameters 0 < r1 < r2, easy to compute and depending on ε, such that, if we define the set W
to be the union of all intervals with a terminal point on the sphere of radius r1 in Rd × {0}, the other terminal point

on the sphere of radius r2 in Rd × {0}, lying in a ray emanating from the origin of Rd × {0}, and passing through a
point of A, then we may regard the set RA,ε as the region under the graph of the continuous function v2 = c

‖v1‖d
over

W union a cylinder over the sphere of radius r1. Since ∂(A) has zero Lebesgue measure (on Sd−1), so does ∂(W ) (on

Rd) using polar coordinates for Lebesgue measurable functions. As RA,ε is bounded, it has finite Lebesgue measure.
Applying Fubini’s Theorem and noting that the cylinder over the sphere is a Jordan set, one sees that the compact set
∂(RA,ε) has zero Lebesgue measure (on Rd+1). It is easy to see that a compact set of zero Lebesgue measure also has

zero Jordan content. Therefore, the set RA,ε is a Jordan set. Likewise, for Rε. It is well-known that the characteristic

functions of Jordan sets are Riemann-integrable and, thus, Theorem 2.2 applies to these functions.
5We note that the second and the fourth cases already suffice to show Theorem 1.4.
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3.1. The second case: balls centered in span(ed+1)\{0}. In this case, w = wed+1 for some w 6= 0.
The proof is similar for whether w is positive or negative, so we may assume without loss of generality
that w > 0. Let

B̃d := B̃d(r) := {(x1, · · · , xd)t | R2x2
1 + · · ·+R2x2

d < r2}
and

I(w) := I(w, r) := {xd+1 | w − r <
xd+1

Rd
< w + r}

where R := et. Then g−1
t E is the rod given by

B̃d × I(w).

Replacing the < r2 with = ρ2 for a 0 ≤ ρ2 < r2 and using the equation for the sphere τSd where
τ > 0, we note that the intersection has at most two values for the xd+1. Moreover, since we only
need to consider balls not meeting 0, we may assume that the rod completely lies in the half-space
determined by ed+1 and thus xd+1 =

√
τ2 − ρ2/R2 =: c(ρ) is our value of intersection provided that

it lies in I(w). Therefore, the intersection C(τ) of the rod with the sphere is a d-dimensional cap,
through which each intersection (i.e. slice) with the affine hyperplane through and normal to c(ρ)ed+1

is a d− 1-dimensional sphere (with radius ρ/R). There are two types of caps. A full cap is a cap such
that

(3.2) c(ρ)|0<ρ2<r2 ⊂ I(w).

We remark that the continuity of the function c means that (3.2) is interval inclusion. Otherwise, a
cap is called an end cap because it is near one or the other end of the rod. Now let τ− := Rd(w − r)
and τ̃+ := Rd(w + r). Then, for 0 < τ < τ− and τ+ :=

√
τ̃2
+ + r2/R2 < τ , the intersection between

sphere and rod is empty. Since whether a cap is full or end depends only on (3.2), C(τ) are all full

caps for τ̃− :=
√
τ2
− + r2/R2 < τ < τ̃+.

We are only interested in the case where R is large (and where r is small). Since

τ̃− − τ− = O(R−(d+2))

τ+ − τ̃+ = O(R−(d+2)),

the end caps are negligible (as we shall see below). We remark that these estimates also give the
approximate “depth” of any full cap.

For R large, the d-dimensional volume of a full cap is nearly, but slightly larger than, that of the
d-dimensional ball B with boundary sphere exactly the slice through c(r). More precisely,

volτSd(C(τ))

vold(B)
↘ γ(τ̃+) ≥ 1(3.3)

as τ ↗ τ̃+ over the interval (τ̃−, τ̃+). (Note that γ(τ̃+)↘ 1 as τ̃+ ↗∞.)

Let K̃d :=

(
SOd(R) 0

0 1

)
. Then g−1

t E is stabilized by every element of K̃d. It is well-known that

the unit sphere Sd can be realized as the homogeneous space K̃d\Kd+1. Consequently,∫
Kd+1

χk−1g−1
t E(v) dk =

1

volSd(Sd)

∫
Sd
χs−1g−1

t E(v) dvolSd(s)

=
volSd(Sd ∩ ‖v‖−1g−1

t E)

volSd(Sd)
=: AER(‖v‖)(3.4)

where the second equality follows from the correspondence sv ∈ g−1
t E ⇐⇒ sv/‖v‖ ∈ ‖v‖−1g−1

t E ∩
Sd. The invariance of the ratio of the volume measures on spheres of different radii implies that

AER(τ) =
volτSd(τSd ∩ g−1

t E)

volτSd(τSd)



SPHERICAL AVERAGES AND SPIRALING 9

for τ > 0. By (3.3) and the fact that the full caps are determined by polynomial equations, AER(τ) is
a strictly decreasing smooth function with respect to τ over the interval (τ̃−, τ̃+).

To take care of the end caps, we shall replace our rod with a slightly larger one. More precisely,
replace I(w, r) with I(w, r+ 1

R2d+1 ), which, for R large enough, lengthens the rod enough (see estimates

above) so that all caps of the shorter rod are now full caps of the longer rod. In particular, AER(τ) is
strictly decreasing over the interval (τ−, τ+).

Let BEuc(0, τ) denote a ball of radius τ in Rd+1 with respect to the Euclidean norm. Now it follows
from the formula for AER that∑

v∈Λ\{0}

AER(‖v‖) ≤
∫ τ+

τ−

#
(
BEuc(0, τ) ∩ Λ\{0}

)
(−dAER(τ))

where the integral is the Riemann-Stieltjes integral. We remark that the integrability of the function
#
(
BEuc(0, τ) ∩ Λ\{0}

)
follows from its monotonicity.

Now the well-known generalizations of the Gauss circle problem (or, alternatively, [19, Proposi-
tion 3.2]) show that

#
(
BEuc(0, τ) ∩ Λ\{0}

)
≤ (1 + ε) vol(BEuc(0, τ))

= (1 + ε) vol(BEuc(0, 1))τd+1(3.5)

for ε→ 0 as R→∞ (and hence as τ− →∞).
Also, by (3.3), we have that C(τ−) := volτSd(C(τ−))→ vold(B) as R→∞ (and hence as τ− →∞).

And we have

AER(τ) ≤ C(τ−)

τdvolSd(Sd)
over the interval (τ−, τ+). Consequently, it follows that∑

v∈Λ\{0}

AER(‖v‖) ≤ d
∫ τ+

τ−

(1 + ε) vol(BEuc(0, 1))
C(τ−)

volSd(Sd)
dτ

= d(1 + ε)
vol(BEuc(0, 1))

volSd(Sd)
C(τ−)(τ+ − τ−).

Now C(τ−)(τ+ − τ−) is the volume of a rod that has length within O( 1
Rd+1 ) of the length of our

original rod, but with cross-section volume C(τ−). Let R→∞ and ε→ 0, we have∑
v∈Λ\{0}

AER(‖v‖) ≤ vol(E),

as desired. (Note that vol(BEuc(0,1))
volSd (Sd)

= 1
d+1 .)

3.2. The fourth case: all other balls. The proof of this case is similar to the second case. The

differences are as follows. In this case, g−1
t E is no longer invariant under every element of K̃d;

however, we need this property only to show (3.4), which also follows because dvolSd(s) is preserved
under rotations. Caps are no longer such simple geometric objects (their boundaries are ellipsoids,
not spheres); however, the proof is unaffected by this change.

3.3. The third case: balls centered in span(e1, · · · , ed)\{0}. The difference between this case and
the fourth case is that the ends of the rod do not both go to wed+1 for w →∞ or both for w → −∞,
but one end goes to one direction and the other goes to the other. To take care of this issue, we must
consider what happens near the origin. Fix the lattice Λ. Then, by the discreteness of the lattice,
there is a ball BEuc(0, τ0)) that does not meet Λ\{0} for some τ0 > 0 depending only on Λ. Since
there are no relevant lattice points in any ball around the origin of radius smaller than τ0, we need
only consider τ ≥ τ0. Note that the rod and sphere meet in two connected components, each of which
we will refer to as caps. This fact, however, does not affect the proof, except in minor ways as noted
below.
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Now recall the center of our ball E is w, whose last coordinate is wd+1 = 0. Thus, g−1
t w → 0.

And since the rod g−1
t E is contracting in x1, · · · , xd, our analysis of AER(τ) for the fourth case also

hold in this case for large enough R over the desired range τ ≥ τ0. In particular, for large R, we have
that AER(τ) is a smooth decreasing function of τ over (τ0, τ+) such that

AER(τ) ≤ C(τ0)

τdvolSd(Sd)
.

Here C(τ0) is the volume of the two caps that is the relevant intersection. We may take care of end
caps as in the previous cases.

Since, for R large, our analysis in the fourth case applies, we have from (3.3) that C(τ0) = O(R−d)
or, more precisely,

(3.6) vold(B) ≤ C(τ0) <
d+ 1

d
vold(B).

Here, vold(B) is twice the volume of the intersection of a d-hyperplane normal to ed+1 with the rod.
Finally, as in the second case, for every ε > 0, there exists a (large) τ1 > 0 depending only on Λ such
that for all τ ≥ τ1, we have that (3.5) holds. Hence, for large R, we have, as in the previous cases,∑

v∈Λ\{0}

AER(‖v‖) ≤
∫ τ+

τ0

#
(
BEuc(0, τ) ∩ Λ\{0}

)
(−dAER(τ))

≤ const(τ1)

∫ τ1

τ0

(−dAER(τ)) + (1 + ε) vol(BEuc(0, 1))

∫ τ+

τ1

τd+1 (−dAER(τ))

≤ O(R−d) + d(1 + ε)
vol(BEuc(0, 1))

volSd(Sd)
C(τ0)(τ+ − τ1),

where the inequality for second integral follows as in previous cases. Since the function that counts lat-
tice points in larger and larger balls is monotonically increasing, const(τ1) := (1+ε) vol(BEuc(0, 1))τd+1

1 ,
and thus the implicit constant depends only on r, ε, τ0, and τ1. Applying (3.6) and letting R → ∞
and ε→ 0 yields the desired result. (Recall that vold(B) is twice the volume of the intersection of a
d-hyperplane normal to ed+1 with the rod.)

3.4. Finishing the proof. We may now approximate using step functions to obtain Theorem 2.3.6

For the convenience of the reader, we give a proof. Let F ⊂ Rd+1 be a compact subset with nonempty
interior (i.e. F ◦ 6= ∅) and measure zero boundary (i.e. vol(∂F ) = 0). Recall that our balls, which we
have called rods, are given by the Euclidean norm in e1, · · · , ed and by absolute value in ed+1—the
unit ball defines a norm ‖ · ‖rod on Rd+1. Let us denote the rods defined in the beginning of this
section (Section 3) as case-one, case-two, case-three, or case-four rods, respectively—recall these rods
are open sets. We will refer to a sequence of sets as a disjoint sequence if the sets in the sequence are
pairwise disjoint.

Lemma 3.1. There exists a disjoint sequence {Bn}∞n=1 of case-one, case-two, case-three, and case-
four rods of Rd+1 so that

F ◦ ⊃
∐

Bn

vol(F ) =
∑

vol(Bn).

Moreover, the radii of all the rods in the sequence may be chosen to be ≤ η for any choice of η > 0.

This lemma follows easily from a classical result: the Vitali covering theorem (see [12, Theorem 1.6]
for example).

6The construction presented here is general and may be of independent interest.



SPHERICAL AVERAGES AND SPIRALING 11

Theorem 3.2 (Vitali Covering Theorem). Let A be a subset of a doubling metric space (X,µ) and
F be a collection of closed balls centered at A such that

inf{r > 0 | B(a, r) ∈ F} = 0

for each a ∈ A. Then there exists a countable subcollection {Bn}∞n=1 of pairwise disjoint closed balls
such that

µ

(
A\

∞⋃
n=1

Bn

)
= 0.

It will soon become apparent that we would like to mimic the construction of the Riemann integral,
which, for the functions that we are interested in, is constructed over cubes. But, instead of cubes, we
will use partitions (mod 0) consisting of pairwise disjoint open rods and will use the Vitali covering
lemma (stated below). Let B0 be a large enough open rod, not necessarily of any of the four cases,
containing supp(f) and let ρ0 be its radius. Let P0 = {B0} be the initial partition.

3.4.1. Refinements of partitions. We recursively define refinements as follows: let Pj be a partition
(mod 0) in which every element of Pj−1 with radius > 2−jρ0 is replaced with a sequence of pairwise
disjoint open rods as constructed in Lemma 3.1 with η ≤ 2−jρ0.7 We note that Pj is a countable
union of case-one, case-two, case-three, and case-four rods only. Let us define the size of a partition
Pj to be the supremum over all radii of elements in Pj . Then the size of Pj ≤ 2−jρ0. By construction,
we have that ⋃

B∈Pj

B ⊂
⋃

B∈Pj−1

B

and, by Lemma 3.1, we have that both sets have Lebesgue measure equal to vol(B0) and thus the
following set has Lebesgue measure zero

D′ = B0

∖ ∞⋂
j=0

⋃
B∈Pj

B.

Now let D′′ denote the set of discontinuities of f , a set of Lebesgue measure zero by assumption. Let
D := D′ ∪ D′′. Note that D is subset of B0, but it need not be compact.

3.4.2. Approximating f by step functions. We now wish to approximate f on the full measure set
B0\D by step functions over the rods of Pj . Define the step functions on B0\D as follows:

fj :=
∑
B∈Pj

(
sup f

∣∣
B

)
χB\D.

For any point of B0\D, we note that the sum only has one term. Moreover, it is easy to see that these
functions converge Lebesgue-a.e. to f :

Lemma 3.3. The step functions fj → f for every point of B0\D.

3.4.3. Proof for the case of step functions. We now prove Theorem 2.3 for fj . Take any total ordering
of the set Pj = {Bn}∞n=1 and let

fj,n :=

n∑
i=1

(
sup f

∣∣
Bi

)
χBi\D.

Then we have that

lim
n→∞

fj,n = fj ,

where the limit denotes pointwise convergence over the domain B0\D.

7Note that the many choices that we make in constructing the partition and its refinements do not affect the proof.
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Let M := sup |f |B0
|. Fix a lattice gtkΛ\{0}. Since MχB0\D ≤MχB0

, we have that∑
v∈gtkΛ\{0}

MχB0\D(v) <∞

because the same sum over χB0
is the number of lattice points in this ball, which is finite. Now since

|fj,n| ≤MχB0\D, dominated convergence implies that∑
v∈gtkΛ\{0}

fj = lim
n→∞

∑
v∈gtkΛ\{0}

fj,n <∞.(3.7)

Here, more precisely, v ∈ gtkΛ\{0}∩B0\D. Furthermore, we note that (3.7) holds for every k ∈ Kd+1.
Applying dominated convergence again, we conclude∫

Kd+1

f̂j(gtkΛ) dk = lim
n→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

fj,n dk.(3.8)

Now define f̃j,n :=
∑n
i=1

(
sup f

∣∣
Bi

)
χBi and repeating the above with f̃j,n +MχD (which is domi-

nated by 2MχB0
) in place of fj,n yields∫

Kd+1

f̂j(gtkΛ) dk ≤ lim
n→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

f̃j,n dk +

∫
Kd+1

∑
v∈gtkΛ\{0}

MχD dk.(3.9)

Note that

lim
n→∞

f̃j,n +MχD

is well defined and the limit denotes pointwise convergence on B0.
To handle the integral involving the zero Lebesgue measure set D, we proceed as follows. Recall

that Lebesgue measure is outer regular, which applied to D is the following:

vol(D) = inf{vol(U) | U ⊃ D, U open}.

It is easy to see that the subcollection of open rods

T :=

{
B

(
x,

1

5
r

)
| B(x, r) is a case-one, case-two, case-three, or case-four rod

}
is a basis of the usual topology of Rd+1. Consequently, for every γ′ > 0, there exists a family {B′α} ⊂ T
such that

D ⊂ ∪B′α and vol(∪B′α) < γ′.

We now require a classical result: the Vitali covering lemma (see [11, Lemma 1.9] or [12, Theo-
rem 1.16] for example).

Theorem 3.4 (Vitali covering lemma). Let C be a collection of balls contained in a bounded subset
of Rd+1. Then there exists a finite or countably infinite subcollection of pairwise disjoint balls {Bm}
such that ⋃

B∈C

B ⊂
⋃
m

5Bm

where 5Bm is the ball concentric with Bm of 5 times the radius.
Moreover, the subcollection {Bm} can be chosen so that

∞∑
m=1

χ5Bm(x) ≤ C(d)

where C is a constant depending only on d.

The covering lemma allows us to cover D by a countable collection of our rods:
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Lemma 3.5. For every γ > 0, there exists (at most) a countable sequence {B̃m}∞m=1 of case-one,
case-two, case-three, and case-four rods such that

D ⊂ ∪∞m=1B̃m and

∞∑
m=1

vol(B̃m) < γ.

Proof. Let {B′α} (defined above) be C and {B′m}∞m=1 be the subcollection in the Vitali covering lemma.

Let B̃m := 5B′m. Then {B̃m} is a countable collection of case-one, case-two, case-three, and case-four
rods. Consequently, we have

vol(D) ≤
∞∑
m=1

vol(B̃m) =

∞∑
m=1

5d+1 vol(B′m) = 5d+1 vol(∪∞m=1B
′
m) < 5d+1γ′.

Our desired result is now immediate. �

Choose γ > 0 small. To bound the integral involving D in (3.9), we may approximate with the

{B̃m}∞m=1 from Lemma 3.5 as follows. We have

0 ≤
∫
Kd+1

∑
v∈gtkΛ\{0}

MχD dk ≤
∫
Kd+1

∑
v∈gtkΛ\{0}

∞∑
m=1

MχB̃m dk

because

MχD(v) ≤Mχ∪mB̃m(v) ≤
∞∑
m=1

MχB̃m(v)

for all v. Now, replacing all instances of our use of the dominated convergence theorem by the
monotone convergence theorem in the argument that we used to show (3.8), we have that∫

Kd+1

∑
v∈gtkΛ\{0}

∞∑
m=1

MχB̃m dk = lim
N→∞

N∑
m=1

M

∫
Kd+1

∑
v∈gtkΛ\{0}

χB̃m dk,

where, a priori, the limit may be infinite—we will, however, show that the limit is finite and can be
made arbitrarily small below.

Putting this together with (3.9) yields∫
Kd+1

f̂j(gtkΛ) dk ≤ lim
n→∞

n∑
i=1

(
sup f

∣∣
Bi

) ∫
Kd+1

∑
v∈gtkΛ\{0}

χBi dk(3.10)

+ lim
N→∞

N∑
m=1

M

∫
Kd+1

∑
v∈gtkΛ\{0}

χB̃m dk,

which is an inequality involving only characteristic functions on case-one, case-two, case-three, and
case-four rods, and thus our results in the beginning of this section (Section 3) for these rods apply
as follows.

The main term. We now estimate the first term of the right-hand side of (3.10), which we refer to
as the main term. Consider the ancillary step functions

f ′j,n :=

n∑
i=1

(
sup f

∣∣
Bi
−M

)
χBi .

These f ′j,n are dominated by 2MχB0
. By the disjointness of the {Bi}, the function

f ′j := lim
n→∞

f ′j,n

is well-defined (and the limit denotes pointwise convergence). Now define

Fj,n :=

n∑
i=1

MχBi
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and

Fj := lim
n→∞

Fj,n,

which is also well-defined function. Moreover, they satisfy

f ′j = lim
n→∞

f̃j,n − Fj .(3.11)

We may apply the proof that we used to derive (3.8) with f ′j in place of fj and f ′j,n in place of fj,n to
deduce ∫

Kd+1

f̂ ′j (gtkΛ) dk = lim
n→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

f ′j,n dk = lim
n→∞

∫
Kd+1

f̂ ′j,n(gtkΛ) dk.

Moreover, these ancillary step functions satisfy

f ′j,n ≥ f ′j,n+1 ≥ · · · ≥ −2MχB0

for all n and, consequently, we have∫
Kd+1

∑
v∈gtkΛ\{0}

f ′j,n dk ≥
∫
Kd+1

∑
v∈gtkΛ\{0}

f ′j,n+1 ≥ const,

which forms a monotonically decreasing sequence of real numbers (for every fixed t) and thus converges
as n→∞ to a limit that is less than any element in the sequence. Namely, we have that

lim
t→∞

lim
n→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

f ′j,n dk ≤ lim
t→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

f ′j,n dk

for every n. Applying our results for characteristic functions on case-one, case-two, case-three, and
case-four balls, we have

lim
t→∞

∫
Kd+1

f̂ ′j (gtkΛ) dk ≤
n∑
i=1

(
sup f

∣∣
Bi
−M

)
vol(Bi)

for every n. Letting n→∞, we have

lim
t→∞

∫
Kd+1

f̂ ′j (gtkΛ) dk ≤
∫
Rd+1

fj dv −
∞∑
i=1

M vol(Bi)(3.12)

Here we have used the properties of the Lebesgue integral, the fact that the {Bi} are pairwise disjoint,
and the fact that D has zero Lebesgue measure.

An easy modification of the above argument for Fj,n in place of f ′j,n yields

lim
t→∞

∫
Kd+1

F̂j(gtkΛ) dk ≤
∞∑
i=1

M vol(Bi).(3.13)

Finally, applying (3.11), (3.12), (3.13), and the fact that the argument used to deduce (3.8) also works

for f̃j,n implies the following:

lim
t→∞

lim
n→∞

n∑
i=1

(
sup f

∣∣
Bi

) ∫
Kd+1

∑
v∈gtkΛ\{0}

χBi dk ≤
∫
Rd+1

fj dv.(3.14)

This handles the main term.

The null term. The second term of the right-hand side of (3.10), we refer to as the null term and
handle exactly as Fj,n to obtain

lim
t→∞

lim
N→∞

N∑
m=1

M

∫
Kd+1

∑
v∈gtkΛ\{0}

χB̃m dk ≤
∞∑
i=m

M vol(B̃m),
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where we note that it is immaterial that the {B̃m} may not be pairwise disjoint by the second part
of Theorem 3.4. Finally, letting γ → 0 in the proceeding (which bounds the null term from above by
0) and applying (3.10) and (3.14) yields our desired result:

lim
t→∞

∫
Kd+1

f̂j(gtkΛ) dk ≤
∫
Rd+1

fj dv.

Remark 3.6. Instead of introducing ancillary step functions, one could use the compactness of B0 to

obtain a finite subcover of rods in Pj and {B̃m}∞m=1 to approximate fj .

3.4.4. Proof for the general case. The fj ’s are dominated by MχB0
. Using an analogous argument to

that for f ′j,n, we have that

lim
t→∞

lim
j→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

fj dk ≤ lim
t→∞

∫
Kd+1

∑
v∈gtkΛ\{0}

fj dk

for every j. Now, applying our result for step functions, we have

lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk ≤
∫
Rd+1

fj dv

for every j. Finally, we apply dominated convergence and Lemma 3.3 to obtain our desired result:

lim
t→∞

∫
Kd+1

f̂(gtkΛ) dk ≤ lim
j→∞

∫
Rd+1

fj dv =

∫
Rd+1

f dv.

4. Nonuniform spiraling: proof of Theorem 1.5

In this section, we prove Theorem 1.5 by using continued fractions to construct a family of one-
dimensional examples for which the directions are not uniformly distributed. For higher dimensions,
we use non-minimal toral translations as examples.

We can strengthen the conclusion of Theorem 1.5:

Theorem 4.1. Let d ≥ 1. There exists a lattice Λ ∈ SLd+1(R)/ SLd+1(Z) and a set A of Sd−1 for
which

lim inf
T→∞

#{Λ ∩RA,ε,T }
#{Λ ∩Rε,T }

> vol(A)

and

lim sup
T→∞

#{Λ ∩R−A,ε,T }
#{Λ ∩Rε,T }

< vol(A)

for every 1 > ε ≥ 0.

4.1. Proof of Theorems 1.5 and 4.1 in dimension one. We prove Theorem 4.1, which also
suffices to show Theorem 1.5. We must construct a lattice in R2 and pick a set A of S0 for that lattice.
Let

A = {−1}.
To construct the lattice, we construct a number x ∈ R\Q using continued fractions (see [13] for an
introduction) and form the associated unimodular lattice Λx. At the end, we will note that our method
of construction provides a family of numbers, corresponding to a family of lattices, which satisfy the
theorem. Using an analogous construction allows us to consider A = {1} too.

Let x be the irrational number between zero and one for which

an :=

{
4 if n is odd,

nn if n is even
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is the nth continued fraction element (note n ≥ 1). Since x is irrational, there is an unique p ∈ Z
for which |qx − p| < 1/2, which, by forgetting p, we can regard as a rotation of the circle R/Z by
the unique representative of qx in the interval (−1/2, 1/2). And therefore the only lattice points that
matter for the region R from (1.2) are those (p, q) ∈ Z×Z coming from this rotation. Also, since the
negation of a lattice point in R stays in R, we may, without loss of generality, consider lattice points
with q ∈ N. Finally, since x is positive, our lattice points will have p ∈ N ∪ {0}.

For some pairs of such (p, q), the ratio qx−p
‖qx−p‖ will be 1 and for others −1, which is equivalent to

asking whether (p, q) is on one or the other side of the ray starting at the origin and going through
(x, 1)T , which is equivalent to asking whether qx− p > 0 or qx− p < 0, and which, if, for conciseness,
we introduce the notation

q · x
to denote the circle rotation above, is equivalent to asking whether q · x > 0 or q · x < 0.

Let pn/qn denote the nth convergent of x. We will use the following well-known facts about
continued fractions and circle rotations:

(1) The rotations qn−1 · x and qn · x alternate in sign.
(2)

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

(3)
qnpn−1 − pnqn−1 = −1n

(4)
1

qn + qn+1
< |qn · x| <

1

qn+1

(5) Convergents are best approximates (of the second kind):

|qn · x| < |q · x|
for all 0 < q < qn+1.

The following is a general fact of the continued fraction of any irrational number:

Lemma 4.2. We have
an+1

2
<
|qn−1 · x|
|qn · x|

< an+1 + 2.

Proof. Both inequalities follow from Facts (2) and (4). �

For our particular number x, the lemma implies that

Corollary 4.3. For n, an even number, we have

2 <
|qn−1 · x|
|qn · x|

< 6

and, for n, an odd number, we have

(n+ 1)n+1

2
<
|qn−1 · x|
|qn · x|

< (n+ 1)n+1 + 2.

Since x < 1/2, we have that 1 · x > 0. Using facts about continued fractions, the usual conventions
q−1 = 0, p−1 = 1, and that p0 = 0 by construction, it follows that q0 = 1. Consequently,

Lemma 4.4. For n, an even integer, we have

qn · x > 0

and, for n, an odd integer, we have
qn · x < 0.



SPHERICAL AVERAGES AND SPIRALING 17

Proof. As noted, q0 · x > 0. Fact (1) immediately implies the result. �

Since the denominators of the convergents are strictly increasing, Fact (4) implies that (pn, qn) are
in R and that, for n large enough, qn · x is itself a rotation by a small angle (much smaller than angle
x). However, there are other lattice points in R, which we now describe.

We will count relevant lattice points by induction; it is convenient to induct on n, the index of the
convergents. Since we are considering a limit, we may start counting lattice points starting with some
large qn without affecting our result. Therefore, we may assume that 1

qn
is small.

We are interested in lattice points in R. Recall that these lattice points come from the above-
mentioned rotations and hence lattice points in R are equivalent to rotations q ·x for which |q ·x| ≤ 1

q .

To help us count, let us enlarge the lattices points of interest to those corresponding to

|q · x| ≤ 1

qn
(4.1)

for qn ≤ q < qn+1 and exclude those not in R. It follows from Fact (4) that the only lattice points
satisfying (4.1) from those corresponding to 0 ≤ q < qn are qn−1 and 2qn−1 on one side of 0, 0
itself, and one on the other side of 0, which we will say corresponds to q̃—since convergents are best
approximates, we know that |q̃ · x| > |qn−1 · x|.

For the initial step of the induction on n, we have chosen to ignore the lattice points corresponding
to qn−1, 2qn−1, 0, and q̃ and, for an induction step, we have already counted the contribution from
these points. It the in-between lattice points corresponding to qn ≤ q < qn+1 that concern us. The
division algorithm describes all such lattice points as follows: q = mqn + r. The only remainders r of
interest are the ones already chosen, namely qn−1, 2qn−1, 0, and q̃. By Fact (2) applied to x, there are
always at least three in-between points—to be precise, these in-between points for a given remainder
r correspond to {qn + r, 2qn + r, 3qn + r, · · · }. Moreover, the number of in-between points is either
an+1 − 1 or an+1 depending on the remainder r. If r1 · x and r2 · x are adjacent on the circle for
0 ≤ r1 6= r2 < qn, then their in-between lattice points divides the interval formed by r1 · x and r2 · x
up into equal length pieces with the sole exception of one piece which may be slightly longer—this
observation follows from Fact (1) and the fact that convergents are best approximates and rotations
are isometries.

Let us consider these in-between points. We claim that the only in-between point for the remainder
r = q̃ that may be relevant corresponds to qn + q̃. First note, by Fact (1), the fact that circle rotation
is translation on the abelian group R/Z, and that this translation is an isometry, we have that
|(mqn + q̃) · x| > |(`qn + q̃) · x| for an+1 > m > ` ≥ 0. For m ≥ 2, we have

|(mqn + q̃) · x| > 1

2qn

by Fact (4), but we also have
1

mqn + q̃
<

1

2qn
,

which shows our claim. The lattice point corresponding to qn+ q̃ is only one point and may be ignored
for the limit that we are computing.

We claim that the only in-between point for remainder r = 2qn−1 that may be relevant corresponds
to qn + 2qn−1. The proof is analogous to that for q̃. And the possible relevant lattice point can be
ignored for the limit.

For the remaining two remainders, the behaviors differ greatly (by construction) for odd-indexed
and even-indexed convergents; we consider these cases separately.

4.1.1. Odd-indexed convergents. Let n be odd. We will show that many of the in-between lattice
points for the remainder 0 are in R, while very few of the in-between lattice points for remainder
qn−1 are. Let us first consider the in-between points for qn−1, which correspond to {mqn + qn−1} for
0 < m < an+1 by Fact (2). By Lemma 4.4, we have

0 < (mqn + qn−1) · x < (`qn + qn−1) · x < qn−1 · x
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for 0 < ` < m < an+1. Note that we have exactly M := an+1 − 1 in-between points between qn−1 · x
and 0 in the given range. Since circle rotation by x is an abelian group, these in-between points divide
up the interval between 0 and qn−1 · x into equal length segments, except for the segment with 0 as
an endpoint, which is slightly longer. Thus, we have

(4.2) qn−1 · x−
m

M + 1
(qn−1 · x) < (mqn + qn−1) · x

for 0 < m ≤M . Now to be excluded from R, a lattice point must satisfy the following condition

1

mqn + qn−1
< (mqn + qn−1) · x,

which is satisfied, as one can see by applying Fact (4) to (4.2), if the point satisfies

1

mqn
<

1

2qn

(
1− m

M + 1

)
.

The latter condition, in turn, is equivalent to asking at which values of m is the parabola −m2 +(M+
1)m − 2(M + 1) > 0. The answer is between the two roots, which, for M large enough, are as close
as we like to 2 and M − 1. Since n is odd, M can be chosen large. Thus, except, possibly, for four
in-between points, the rest are excluded from R. We can ignore these four points for computing the
limit.

Finally, to finish the odd-indexed case, we consider in-between points for 0. There are N := an+1

of such points in the given range (which divide up the segment between q̃ · x and 0 into equal length
pieces, except for a slightly longer piece with endpoint q̃ · x). From (4.2), we have that

−m
N

(qn−1 · x) < (mqn) · x(4.3)

for 0 < m < N . Now for a lattice point to be in R, we need the following condition to hold:

− 1

mqn
≤ (mqn) · x,

which is satisfied, as one can see by applying Fact (4) to (4.3), if the point satisfies

− 1

mqn
≤ − m

qnN
.

Let Ln be the number of in-between lattice points for remainder 0 in R. Our calculation implies that
Ln ≥ b(n+ 1)(n+1)/2c.

4.1.2. Even-indexed convergents. For any remainder, there are at most an+1 = 4 in-between points.
All of these can be ignored in the limit calculation.

4.1.3. Finishing the proof of Theorem 4.1. Thus, the lattice points that project onto A have count∑
(L2k+1+P1) where P1 is a natural number ≤ 5. While, all lattice points in R have count

∑
(L2k+1+

P2) where P2 is a natural number ≤ 10. It is clear that fixing an ε does not affect the proceeding.
Therefore, we have shown that

lim inf
T→∞

#{Λ ∩RA,ε,T }
#{Λ ∩Rε,T }

= 1

and

lim sup
T→∞

#{Λ ∩R−A,ε,T }
#{Λ ∩Rε,T }

= 0.

The theorem is now immediate.
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4.2. Other numbers that satisfy Theorem 4.1 in dimension one. It is clear that our construc-
tion of x via continued fractions in the proof of Theorem 4.1 is a general construction. Let an(x1) and
an(x2) be the n-th elements of the continued fraction expansions of x1 and x2, respectively. Then we
define x1#x2 to be the continued fraction whose elements are

a2n(x1#x2) :=an(x1)

a2n+1(x1#x2) :=an(x2)

for n ∈ N ∪ {0}. Since continued fractions are unique, the operation # is a well-defined (noncommu-
tative) product of real numbers, which we refer to as the continued fraction product. It is clear from
our construction above that, to satisfy the theorem, the number x1#x2 must have an(x2) grow faster
than an(x1) as n→∞. Let us refer to such numbers as unbalanced.

Finally, reversing the order of the continued fraction product for our constructed number x will
provide an example of a number satisfying the theorem for A = {1}.

4.3. Proof of Theorems 1.5 and 4.1 in higher dimensions. We use the well-known fact:

Lemma 4.5. The toral translation by a vector x = (x1, · · · , xd)T is non-minimal if and only if there
exist integers k1, · · · , kd not all zero such that

∑
kixi ∈ Z.

This is example is a simple observation. Let d ≥ 1. Let x correspond to a non-minimal toral trans-
lation. Then, it follows that there is a primitive integer lattice vector v perpendicular (with respect
to the usual dot product in Rd+1) to the d+ 1-vector (xT , 1)T . And v 6= (0, · · · , 0, 1)T . Changing the
basis of Zd+1 to {v,v2, · · · ,vd+1} allows us to see that (xT , 1)T lies in the X := span{v2, · · · ,vd+1}
(thought of as a subspace of Rd+1). Now it follows that the basis vectors {v,v2, · · · ,vd+1} determine
a parallelepiped of d+1-volume equal to 1. Hence it follows that the only lattice points of Zd+1 closer
to (xT , 1)T than the Euclidean distance between v and X must lie on X.

Now let Y := span{e1, · · · ed} (thought of as a subspace of Rd+1). The spaces X and Y do not
coincide because their normal vectors are not in the same direction. Therefore X ∩ Y ∩ Zd+1 is a
proper sublattice of X ∩ Zd+1 and hence no lattice points in the thinning region R (after becoming
thin enough) project onto Sd−1 outside of this sublattice—the projection is onto a lower dimensional
sphere Sd−2. This proves the theorem for d ≥ 2.

For d = 1, we note that the (x, 1)T is a rational vector and hence goes through an point of Z2. It
easy to see that all integer lattice points close enough to (x, 1)T lie on the line through it—in this
case, there is no projection at all. This proves the theorem for d = 1.

We conclude by remarking that an exaggerated version of the proceeding example is given by
taking the unbalanced number x constructed in the proof of Theorem 4.1 in dimension one and
forming x = (x, · · · , x)T . This gives a higher dimensional example satisfying Theorem 4.1.
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[19] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Communications in Mathematical Physics

330 (2014) 723–755.
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