Genetic and functional characterisation of pTet-like plasmids of Campylobacter jejuni

Submitted by Andrea Gori to the University of Exeter as a thesis for the degree of
PHD Biological Sciences (SWDTP)
In November 2016

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:

Abstract

With more than 400 million cases a year, Campylobacter jejuni is a leading cause of gastroenteritis worldwide. Farm animals, such as cattle poultry and pigs, act as an environmental reservoir for the bacterium. Although many studies have been performed in order to gain a better understanding of the disease and of the environmental lifestyle of the bacterium, much remains to be uncovered. This work aim is to understand the role of the plasmid pTet in the bacterium lifestyle: firstly, analysing which genes are most represented in the plasmids pTet-like and if a difference in genetic set-up between pTet-like plasmids exists and what is its significance. Secondly, assessing whether the plasmids pTet-like are associated with bacterial characteristics, such as virulence, survival or adaptation to different ecological niches.

Several plasmids have previously been described in C. jejuni: pTet is the most widely distributed plasmid amongst the known C. jejuni strains. This plasmid is about 45 kilobase pairs (kbp) long and 52 open reading frames (ORFs) can be identified in its sequence. Before this work, it was known to be found in about 20% of C. jejuni strains, to encode for tetracycline resistance and a conjugative type four secretion system and to possess several genes involved in horizontal gene transfer. However, the function of this plasmid and the reason why it is so broadly distributed remain largely unknown.

In the first part of this work I screened 4005 genome sequenced strains of C. jejuni for the presence of the plasmid. I investigated the genetic make-up of the pTet plasmids, sequencing 19 new plasmids and described a core and accessory sets of genes in this plasmid family using an innovative approach. I found that the core set of genes is predicted to be primarily involved with the maintenance and transfer of

the plasmid pTet, while the accessory set of genes are predicted to be associated with metabolism, resistance and regulative functions.

In the second part of this work I produced 11 C. jejuni deletion mutants. I tested these mutants for phenotypes associated with environmental survival and host invasion such as biofilm production, motility and infection of the model organism Galleria mellonella larvae. Two of the mutant strains showed an impaired phenotype, when compared to the wild type strain, in motility, production of biofilm and growth in MH broth.

These findings indicate that the pTet plasmids have functions other than tetracycline resistance and horizontal transfer, and may help to explain the broad distribution of the plasmids in C. jejuni.

Table of Contents

Declaration 14
Chapter 1 - Introduction 19
1.1 Virulence and survival factors of C. jejuni 24
1.1.1 Motility 24
1.1.2 Biofilm formation 25
1.1.3 Adhesion and invasion of host cells 26
1.1.4 Production of toxins 28
1.1.5 Iron uptake 28
1.1.6 Resistance to antibiotics and other antimicrobial molecules 29
1.1.7 Stress tolerance and response 30
1.2 Plasmids 33
1.3 Plasmids in C. jejuni 37
1.3.1 Plasmid pVir 37
1.3.2 Plasmid pTet 39
1.3.3 Other plasmids in C. jejuni: small "cryptic" plasmids and mega-plasmids 41
1.4 Conclusions 43
1.5 Aim of this work 44
Chapter 2 - Materials and Methods 46
2.1 Bacterial Strains and Growth conditions 47
2.2 DNA amplification (PCR) 48
2.3 DNA purification 49
2.4 Molecular cloning 50
2.5 Transformation of chemically competent E. coli 51
2.6 Transformation of electro-competent C. jejuni 52
2.7 Mutagenesis of C. jejuni 53
2.8 Complementation of the mutant strains of C. jejuni 53
2.9 Phenotypic assays 56
2.9.1 Growth curves 56
2.9.2 Identification of minimal inhibitory concentration (MIC) of antibiotics 56
2.9.3 Acid tolerance assay 57
2.9.4 Survival in Synthetic Gastric Fluid (SGF) 58
2.9.5 Motility assays 59
2.9.6 Biofilm production 60
2.9.7 Persister cells formation 60
2.9.8 Survival in water 61
2.9.9 Galleria mellonella larvae injection 61
2.10 Bioinformatics techniques and Genome sequencing 62
2.10.1 Genome Sequencing 62
2.10.2 Bioinformatics tools and analysis 62
2.10.3 Quality check and trimming of sequence reads 62
2.10.4 Genome assembly and annotation 63
2.10.5 Alignment and coverage analysis 64
2.10.6 Sequence retrieving, pairwise alignments and phylogenetic analysis. 67
2.10.7 Plasmid pan genome construction and analysis 68
Chapter 3 - Conservation and distribution of plasmid pTet in Campylobacter jejuni 70
3.1 In vitro testing for the presence of the plasmid pTet 72
3.1.1 Molecular and phenotypic test overview 74
3.1.2 Plasmid sequence determination via whole genome sequencing 80
3.1.3 Overview of the plasmid sequences in the strains analysed 83
3.1.3.1 Comparison of newly sequenced strains against plasmid pTet from strain 81-176 85
3.1.3.2 Global plasmid comparison 94
3.2 - Survey of all available Campylobacter jejuni genome sequences for the presence of pTet 102
3.2.1 Overview of the pTet presence survey 106
3.2.3 Association with the presence of the plasmid pTet and the time of isolation, the origin of the strain and phylogeny 113
3.2.3.1 Year of isolation 113
3.2.3.2 Phylogeny 117
3.2.3.3 Origin 120
3.3 Plasmid pan-genome analysis 125
3.3.1 Overview of the genes distribution of C. jejuni plasmid pan-genome 126
3.3.2 Core genes and accessory genes of the plasmid pan-genome associated with pTet-like plasmids 139
3.4 Discussion. 143
Chapter 4 - Function prediction of the genes in the p -Tet like plasmid pan- genome 151
4.1 Summary of CD-search results 153
4.2 Association between cluster analysis and predicted functions 157
4.3 Discussion 160
Chapter 5 - Mutagenesis of pTet-like plasmid pan-genome accessory and core genes 166
5.1 Assess the possibility to introduce mutations 168
5.2 Description of the strain Cj1 genome 172
5.3 Genes selected for mutagenesis 178
5.4 Mutagenesis of Campylobacter jejuni 183
5.5 Constructs design and mutagenesis 187
5.6 Discussion 199
Chapter 6 - Phenotypic analysis of the C. jejuni mutations in pTet-like genes 204
6.1 Growth rate in MH 206
6.2 Motility 208
6.3 Biofilm production 213
6.3.1 Method design 213
6.3.2 Biofilm production of the mutant strains and persister cells formation 216
6.3.2.1 Biofilm production 216
6.3.2.2 Persister cells formation in the mutant DhicA 217
6.4 Survival in water 221
6.5 Antibiotic resistance 223
6.6 Acid tolerance 225
6.7 Tolerance to synthetic gastric fluid 227
6.8 Galleria mellonella larvae infection 229
6.8.1 Method design 229
6.8.2 Infection of larvae 231
6.9 Complementation of the mutant strains 233
6.10 Phenotype of the complemented mutants 235
6.10.1 Complementation of the tetO mutant 235
6.10.2 Complementation of the hicA mutant 237
6.10.3 Complementation of the unk9 mutant 240
6.11 Discussion 242
Concluding remarks 250
References 258
Supplementary material 290
Acknowledgements 318

List of Figures

Figure 1.1 - Main evolutionary processes in Campylobacter. 23
Figure 1.2 - The sources and outcomes of C. jejuni infection 23
Figure 2.1 - Representation of the integration cassette of pCJC1 expression vector 55
Figure 3.1 - PCR gels for the 23 strains positive to at least one marker 75
Figure 3.2 - Example of one plate for tetracycline resistance screening 76
Figure 3.3 - Number of strains positive for at least one marker, divided by origin 78
Figure 3.4 - Percentage of analysed strains positive for at least one marker and their origin 78
Figure 3.5 - Plasmid extraction from selected C. jejuni strains 79
Figure 3.6-Graphical representation of the assembly of the strain Cj 2 using Bandage software 82
Figure 3.7-Graphical representation of the BLASTn alignment of each genome sequence of the 23 strains in Table 1.2.1 and the plasmid pTet (NC008790.1) 87
Figure 3.8 Localisation of $\operatorname{tet}(O)$ gene in the genome of Streptococcus species 93
Figure 3.9 - Representation of the global alignment between 19 pTet like plasmids and the plasmid pTet (NC008790.1) 95
Figure 3.10 - Phylogenetic tree obtained with the alignment of the linearised plasmid sequences (shown in Figure 3.9). 101
Figure 3.11 - Overview of presence of pTet genes in the 4005 genome sequences of C. jejuni analysed. 107
Figure 3.12 - Cluster analysis of the plasmid pTet genes (1). 109
Figure 3.13 - Cluster analysis of the plasmid pTet genes (2) 111
Figure 3.14 - Number of strains per year showing the presence of at least 1 gene annotated on the plasmid pTet 116
Figure 3.15 - Number of strains per year showing the presence of at least 26 genes annotated on the plasmid pTet. 116
Figure 3.16 - MLST analysis tree for a subset of 168 strains and presence of pTet genes 118
Figure 3.17 - Number of strains per different origin of isolation showing the presence of at least 1 gene annotated on the plasmid pTet. 122
Figure 3.18 - Number of strains per different origin of isolation showing the presenceof at least 26 genes annotated on the plasmid pTet122
Figure 3.19 - Cluster analysis of the plasmid pTet genes and the strains of known origin. 124
Figure 3.20 - Cluster analysis of the C. jejuni plasmid pan genome 129
Figure 3.21 - Hierarchical clustering tree of the genes identified in the C. jejuni plasmid pan genome 131
Figure 3.22 - Mauve alignment of the plasmids used in the C. jejuni plasmid pan genome analysis 134
Figure 3.23 - Cluster analysis of the pTet-like plasmid pan-genome 137
Figure 3.24 - Hierarchical clustering tree of the genes identified in the pTet-like plasmid pan genome 140
Figure 3.25 - Average gene frequency per cluster identified in Figure 3.24 142
Figure 3.26 - Average gene frequency per core and accessory gene set of the pTet- like plasmid pan genome 142
Figure 5.1 - Depths of genomic sequencing coverage for strains $\mathrm{Cj} 1, \mathrm{Cj} 2$, and Cj 3 170
Figure 5.2 - Genome assembly of the strain Cj 1 174
Figure 5.3 - Graphical representation of the genes annotated on the Contig 9 (NODE_9+_length_43551_cov_27.7867) of the Cj1 draft genome sequence 176
Figure 5.4-C. jejuni mutagenesis protocol 185
Figure 5.5 - Production of the construct for the mutant Dcag 190
Figure 5.6 - Plasmid pJMK30 digested with BamHI 192
Figure 5.7-Graphical representation of a pGEM::construct::kanR Campylobacter suicide vector 192
Figure 5.8 - Result of the screening of six E. coli clones transformed with the ligation between pGEM::cag::kan_R and the kanamycin resistance cassette 193
Figure 5.9 - PCR testing the successful production of DhicA mutant 194
Figure 5.10 - PCR testing the successful production of DlabA and Datr mutant 194
Figure 5.11- PCR testing the successful production of $D v a p D$ mutant 195
Figure 5.12 - PCR testing the successful production of Dcoag mutant 195
Figure 5.13 - PCR testing the successful production of DparB mutant 196
Figure 5.14 - PCR testing the successful production of Dabc mutant 196
Figure 5.15 - PCR testing the successful production of DepsG and Dunk9 mutant 197 197Figure 5.16 - PCR testing the successful production of DtetO and Dcag mutant197
Figure 6.1-Growth rate of each mutant compared to the WT strain Cj1 in 25 ml of MH broth measured for 28 hours 207
Figure 6.2 - Example of six motility plates (MH, 0.4\% agar) 209
Figure 6.3 - Example of six motility plates (MH half nutrients concentration, 0.4\% agar) 210
Figure 6.4 - Colony diameter after 24 hours of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$ of MH plates 0.4% agar 211
Figure 6.5 - Colony diameter after 48 hours of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$ of MH plates 0.4% agar 211
Figure 6.6 - Colony diameter after 48 hours of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, 0.4% agar 211
Figure 6.7 - Colony diameter after 72 hours of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, 0.4% agar 212
Figure 6.8 - Colony diameter after 96 hours of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, 0.4% agar 212
Figure 6.9 - Biofilm formation in MH plate (0.8% agar) supplemented with Congo Red and Coomassie Brilliant Blue (MHA-Congo red) 215
Figure 6.10 - Example of six MH-Congo red plates for the identification of C. jejuni strains able to produce biofilm 219
Figure 6.11 - Persister cells formation after 24 hours incubation in strain Cj1 WT and strain DhicA 220
Figure 6.12 - Percent of bacterial survival after 8 days incubation in water of each mutant strain and the strain Cj 1 WT 222
Figure 6.13 - Percent of bacterial survival after 20 minutes incubation in MH buffered at $\mathrm{pH} 3, \mathrm{pH} 4$ or pH 5 of each mutant strain and the strain Cj 1 WT 226
Figure 6.14 - Percent of bacterial survival after 20 minutes incubation in syntheticgastric fluid (SGF) buffered at pH 4.5 of each mutant strain and the strain Cj 1 WT 228Figure 6.15 - Percent of bacterial survival after 3 hours incubation in synthetic gastricfluid (SGF) buffered at pH 4.5 of each mutant strain and the strain Cj 1 WT 228

Figure 6.16 - Percent survival of G. mellonella larvae injected with $10^{7}, 10^{6}, 10^{5}, 10^{4}$
bacterial cells (C. jejuni strain Cj1 WT), PBS or not injected (Non-stabbed control
NSC)
230
Figure 6.17 - Percent survival of G. mellonella larvae injected with $10^{7}, 10^{6}, 10^{5}, 10^{4}$ bacterial cells (C. jejuni strain Cj1 WT), PBS or not injected (Non-stabbed control NSC) 230
Figure 6.18 - Percent survival of G. mellonella larvae injected with 10^{7} bacterial cells of each mutant strain, strain Cj1 WT, PBS or not injected (Non-stabbed control NSC) 232
Figure 6.19 - PCR for testing the successful complementation of the mutant strains DtetO 234
Figure 6.20 - Measurement of MIC of tetracycline for strains DtetO, Cj1 WT and DtetO+tetO (from bottom to top) using Estrips (Biomerieux) 236
Figure 6.21 - Motility of strains Cj1, DhicA and DhicA+hicA in MH 0.4\% agar (half nutrients) 238
Figure 6.22 - Biofilm formation of strains Cj1, DhicA and DhicA+hicA in MH-Congo red 0.8\% agar. 238
Figure 6.23 - Motility of strains Cj1, DhicA and DhicA+hicAB in MH 0.4\% agar (half nutrients) 239
Figure 6.24 - Biofilm formation of strains Cj 1 , DhicA and DhicA+hicAB in MH-Congo red 0.8\% agar. 239
Figure 6.25 - Sequence alignment of the region affected by the mutation in the strain Cj1 WT and DhicA 239
Figure 6.26 - Motility of strains Cj1, Dunk9 and Dunk9+unk9 in MH 0.4\% agar 241
Figure 6.27 - Growth rate of the mutant Dunk9, the complemented mutant Dunk9 and in the WT strain Cj 1 in 25 ml of MH broth measured for 28 hours 241

List of Tables

Table 3.1-Sequences of PCR primers for the plasmid genes marker 73
Table 3.2 - Summary of the PCR and tetracycline resistance screening for the 23 positive strains 76
Table 3.3 - Assembly statistics for the sequenced strains 81
Table 3.4 - Summary of the characteristics of the sequenced plasmids 84
Table 3.5 - Breadth of overage of each ORF of pTet in strain 81-176 (NC008790.1) in the newly sequenced strains of C. jejuni (Table 3.4). 88
Table 3.6 - Conserved domains identified in the hypothetical protein sequences of FIG00471069_hypothetical_protein FIG00471024_hypothetical_protein and ToIA_protein in the strain 81-176. 91
Table 3.7 - Conserved domains identified in the hypothetical protein sequences of FIG00469644_hypothetical_protein, FIG00469861_hypothetical_protein 91
Table 3.8 - Conserved domains identified in the hypothetical protein sequence of FIG00470960_hypothetical_protein 98
Table 3.9-Conserved domains identified in the hypothetical protein sequences ofFIG00472625_hypothetical_protein, FIG00469644_hypothetical_protein,FIG00470281_hypothetical_protein, Hypothetical protein (FIG|354242.88.peg. 1849on the annotation of strain A6/T2/15), FIG00628667_hypothetical_protein, Serinethreonine protein kinase PrkC, Hypothetical protein (FIG|354242.88.peg. 1854 on theannotation of strain A6/T2/15), Virulence associated protein D (VapD), Hypotheticalprotein (FIG|354242.88.peg. 1851 on the annotation of strain A6/T2/15) 98
Table 3.10 - Number of strains of C. jejuni genome sequences used for surveying the presence of the plasmid pTet 104
Table 3.11 - Breadth of coverage of each ORF of pTet in strain 81-176(NC008790.1) in the 50 strains showing the highest number of genes covered andthe 50 strains showng the lowest number of gene covered104
Table 3.12 - Number of strains isolated per year included in the analysis described in 3.2.3.1 115
Table 3.13 - Number of strains per different origin included in the analysis described in Section 3.2.3.3 121
Table 3.14 - Summary of the characteristics of the plasmids included in the C. jejuni plasmid pan-genome analysis 128
Table 3.15 - Summary of the characteristics of the plasmids included in the pTet-like plasmid pan-genome analysis 135
Table 4.1-Results summary of the conserved domains search in the hypothetical proteins encoded by the pTet-like plasmid pan genome 155
Table 4.2 - Results summary of the conserved domains search in the hypothetical proteins encoded by the pTet-like plasmid pan genome 158
Table 5.1 - Data associated to Figure 5.1 170
Table 5.2 - Strains used to assess for transformability with exogenous DNA 171
Table 5.3 - Results of the first four BLASTn hits of contigs 8, 9, 15, 16, 18, 19 and 20 of C. jejuni strain Cj 1 genome assembly versus the bacterial genome database... 175
Table 5.4 - Genes annotated on the Contig 9(NODE_9+_length_43551_cov_27.7867) of the draft genome sequence of strain Cj1177
Table 5.5 - Summary of the characteristics of the genes selected for deletion 182
Table 5.6 - Primers designed for the production of each mutant 189
Table 5.7 - Plasmid vectors used for the production of the mutant strains 191
Table 5.8 - PCR primers used to check the integration and the orientation of the kanamycin cassette in the plasmid vectors described in Table 5.7 192
Table 5.9 - Expected lengths and primers sequences for the mutant confirmation PCRs 198
Table 6.1 - Biofilm production in the 11 mutant strains and in the Cj 1 WT strain, evaluated with the MH-Congo red plate method 218
Table 6.2 - Minimum inhibitory concentrations (MICs) for growth in Erythromycin, Penicillin, Ciprofloxacin and Ceftazidime in each mutant strain and in the strain Cj1 WT 224
Table 6.3 - PCR primers designed for the complementation of mutants DtetO, DhicA and Dunk9 234
Table 6.4 - Vectors designed for the complementation of mutants DtetO, DhicA and Dunk9 234

Declaration

Unless otherwise stated, the results and data presented in this thesis were solely my work.

The perl scripts "pangenome_parser.pl" and "presence_absence_bowtie2.pl" were originally developed by Jamie Harrison (University of Exeter) and modified in this work.

The perl scripts "compare_coverage.pl" and "generate_reads.pl" were developed by Prof. David J. Studholme (University of Exeter).

The PCRs and antibiotic testing described in Chapter 3.1, were completed with the aid of Katie Lukies in 2014, during her final year rotation project under my supervision.

The mutants DepsG and Dunk9 described in Chapter 6 and 7 were produced with the aid of Emily Holton in 2015, during her final year rotation project under my supervision.

List of Abbreviations

AAG	Auto-agglutination
ABC	ATP-binding cassette
Amp100	Ampicyllin $100 \mu \mathrm{~g} / \mathrm{ml}$
bp	Base pair
CAD	Cytolethal distending toxin
Cas	CRISPR associated protein
CBA	Columbia blood agar
CBA+	Columbia blood agar + Skirrow's supplement
CD	Conserved domain
CFU	Colony-forming unit
CME	Campylobacter multidrug efflux pump
CRISPR	Clustered regularly interspaced short palindromic repeats
GWAS	Genome-wide association study
IAA	Indole-3-acetic acid
IPTG	Isopropyl β-D-1-thiogalactopyranoside
Kan50	Kanamycin $50 \mu \mathrm{~g} / \mathrm{ml}$
kbp	1000 base pairs
kDa	kilodaltons
LB	Lysogeny broth
LBA	Lysogeny broth agar
LOS	Lipooligosaccharide
MATE	Multi-antimicrobial extrusion protein
MH	Mueller-Hinton growth medium
MHA	Mueller-Hinton agar
MHB	Mueller-Hinton broth
MIC	minimum inhibitory concentration
MLST	Multi-locus sequence tag
OD600	Optical density measured at 600nm
ORF	Open reading frame
PBS	Phospate-saline buffer
PCR	Polymerase chain reaction

PSK Post-segregational killing
ROS Reactive oxygen species
SGF Synthetic gastric fluid
ST Sequence type
T4SS Type four secretion system
T6SS Type six secretion system
TAE Tris-acetate EDTA buffer
VBNC Viable bur nonculturable
WT Wild-type
$\mathrm{w} / \mathrm{v} \quad$ weight/volume
x-gal $\quad 5$-bromo-4-chloro-3-indolyl- β-D-galactopyranoside

Supplementary Material

S1 - Strains from Molecular Microbiology Laboratory (Geoffrey Pope building, laboratory 401, EX44QD) used in this study. Columns show (from right to left): strain name, origin of isolation of the strain, ability of growing on CBA+ at $42^{\circ} \mathrm{C}$, ability of growing on MH plates with tetracycline $10 \mu \mathrm{~g} / \mathrm{ml}$, presence of virD4 marker, presence of $t e t(O)$ marker, presence of Helicase marker, presence of hicA/B marker, species (identified via pcr screening Wang et al., 2002), plasmid setup 1 to 4 according to the presence of the different markers. $\mathrm{Y}=$ present, $\mathrm{N}=$ absent.

S2 - Plasmids sequenced in this study. Plasmids maps were obtained with BRIG software. Green and Red arrows represent the genes annotated on the plasmid, as reported by RAST automated annotation. Inner circles represent C+G \% and GC skew (C+G \% only for pCj3 and pK2).

S3 - Annotated genes in the 19 newly sequenced plasmids and in the plasmid pTet (NC_008790.1). Plasmids have been linearised at the start of the virB2 gene. Each plasmid annotation shows the start nucleotide, the end nucleotide, the gene orientation (+/- = sense or antisense), gene name (as reported by RAST automated annotation pipeline).

S4 - Conserved domains found in the putative proteins of the pTet-like plasmid pan-genome.

Electronic Supplementary Material

All the Electronic supplementary material is available for consultation at http://bit.ly/2g2c8AJ

E0 - Perl Scripts. (zip) used in this work.
E1 - Genome sequences (fasta) and annotation (gff) files obtained in this study (zip).
E2 - Plasmid sequences (fasta) and annotation (gff) files obtained in this study (zip).
E3 - Table 3.11, Breadth of overage of each ORF of pTet in strain 81-176
(NC008790.1) and metadata of the 4005 C. jejuni genome sequenced strains used in Chapter 3.2 (xlsx).

E4 - Figure 3.12 - Cluster analysis of the plasmid pTet genes (1) (pdf).
E5 - Figure 3.13-Cluster analysis of the plasmid pTet genes (2) (pdf).
E6 - Figure 3.20-Cluster analysis of the C. jejuni plasmid pan genome (pdf).
E7 - Figure 3.22 - Mauve alignment of the plasmids used in the C. jejuni plasmid pan genome analysis (jpg).

E8 - Figure 3.23 (A) - Cluster analysis of the pTet-like plasmid pan-genome (pdf).
E9 - Figure 3.23 (B) - Cluster analysis of the pTet-like plasmid pan-genome (pdf).

Chapter 1 - Introduction

Campylobacter spp. are the causal agents of Campylobacter enteritis, one of the leading causes of gastroenteritis worldwide (Tauxe, 2002). It is responsible for 400-500 million cases of food poisoning worldwide every year (Ruiz-Palacios, 2007), with an estimated cost for England and Wales of $£ 583$ million in 2008, according to the "UK Research and Innovation Strategy for Campylobacter in the food chain, Global Food Security, 2010-2015". Overall, more than 80% of human cases are caused by C. jejuni, around 10% by C. coli, and the remainder by other Campylobacter species (e.g. foetus). The infectious dose of Campylobacter is as low as 500-800 cells (Young et al., 2007), and common symptoms of the disease include diarrhoea containing mucus and blood, acute abdominal pain, vomit, fever, and general malaise (Van Vliet and Ketley, 2001). The disease is usually limited to 5-8 days, but immunocompromised patients can face a persistent infection and, in rare cases, death (less than 1 case in 1000). Complications following Campylobacter infections are rare but involve severe pancreatitis (De bois, 1989) and in some cases Guillain-Barrè syndrome (Nachamkin et al., 1998).

From a phenotypical and morphological point of view, the bacterium is a Gram negative, spirally curved rod, and it was described for the first time by Jones et al., in 1931. The Campylobacter species are fastidious microorganisms, obligate microaerophilic and thermophilic, requiring complex growth media, a concentration of oxygen between 3% and 15%, and a temperature range for growth of 34 to $44{ }^{\circ} \mathrm{C}$ with an optimum of $42{ }^{\circ} \mathrm{C}$. Moreover, they are unable to ferment carbohydrates. Campylobacter cells usually show a polar flagellum at both ends and are highly motile (Van Vliet and Ketley 2001).

The genomes of Campylobacter species are relatively small compared to other enteric pathogens species such as Escherichia or Salmonella, between 1.6 and 1.7
megabases, and the G+C content is relatively low, around 30% (Van Vliet and Ketley, 2001; Chang and Taylor, 1990). The first complete genome sequencing of C. jejuni was published in 2000 (Parkhill et al., 2000); since then several studies have aimed to understand the genome diversity of the bacterial species, particularly the differences between isolates deriving from different sources. In a DNA microarray study performed on 111 C. jejuni isolates, six genes belonging to a flagellin glycosylation locus were associated with the chicken-associated strains (Champion et al., 2005); that study also suggested that the majority of C. jejuni infection may derive from non-livestock sources. A comparison amongst C. jejuni isolated from wild birds and farm animals highlighted that the genetic differences between strains isolated from wild birds was much more pronounced than the strains isolated from a "domestic" environment, concluding that the flow between different hosts makes the differentiation of strains isolated from farm animals much more complex (Sheppard et al., 2011). However, the same study associated the presence of different Sequence Types (STs, identified by MLST) in different hosts. In 2013, the first genome-wide association study (GWAS) was performed on Campylobacter, and it identified a statistical association between genes for the biosynthesis of vitamin B5 and strains isolated from cattle, rather than other farm animals (Sheppard et al., 2013). Finally, a study on the entire Campylobacter genus, published in 2014 by Iraola et al., showed how different Campylobacter species have emerged, originating from a putative non-pathogenic Campylobacter ancestor, which acquired a repertoire of virulence genes from other bacteria in order to establish success in a different ecological niche (Iraola et al., 2014, Figure 1.1).

Farm animals such as cattle, poultry, and pigs are known to act as reservoirs for Campylobacter species (Young et al., 2007), and they are adapted to survive in
the intestine and cecum of warm-blooded birds. Cross contamination usually occurs during the slaughter process, during which faeces containing bacteria can contaminate meat. Consumption of inadequately cooked meat is one of the major sources of infection (Van Vliet and Ketley, 2001). Other sources include infected milk, other animal products, and water, where the bacterium has been shown to be capable of surviving for prolonged periods of time (Rollins and Colwell, 1986; Sacks et al., 1986; Young et al., 2007; Figure 1.2).

During the infection process, Campylobacter makes use of several different virulence factors: an ability to move into the mucus layer that protects the intestine is crucial for colonisation (Szymanski et al., 1995), as well as binding and invasion of the host cell with the aid of membrane oligo and poly-saccharides (Woolbridge and Ketley, 1997) and producing toxins once the invasion is started (Wassenaar, 1997). For a successful colonisation, the bacterium needs to acquire iron from the host (Field, 1986; Pickett, 1992); it needs to be able to deal with the oxidative stress during transmission or the host response, as well as heat stresses due to the different temperatures found in human or avian guts $\left(37^{\circ} \mathrm{C}\right.$ and $42^{\circ} \mathrm{C}$ respectively) or during the transmission via water, meat, or milk.

This introduction will firstly describe the virulence and survival factors identified in C. jejuni to date. Secondly, it will describe the plasmids identified in C. jejuni, with a particular focus on pTet and pVir plasmids. Finally, it details the aims and research questions of this thesis.

Figure 1.1 - Main evolutionary processes in Campylobacter. Species are highlighted in blue (genital), red (gastrointestinal), and green (oral). Adapted from Iraola et al., 2014.

Figure 1.2 - The sources and outcomes of \boldsymbol{C}. jejuni infection. Environmental reservoirs that can lead to human infection by C. jejuni. It colonizes the chicken gastrointestinal tract and is passed between chicks through the faecal-oral route. C. jejuni can be associate with protozoans in water supplies, such as freshwater amoebae. Unpasteurised milk, contaminated meat and drinking water are the primary routes of infection. In humans, C. jejuni invades the intestinal epithelial layer provoking inflammation and diarrhoea. Adapted from Young et al., 2007.

1.1 Virulence and survival factors of C. jejuni

1.1.1 Motility

C. jejuni motility is mediated by flagella composed of a major and a minor flagellin (FlaA and FlaB, Nuijten et al., 1990), which are highly conserved proteins and about 59 kDa in size. Campylobacter species are characterised by a fast, darting motility, and flagella have been recognised as essential elements for pathogenesis, as early studies observed the necessity of functional motility for the successful colonisation of the intestine of animals and humans (Guerry, 2007; Morooka et al., 1985; Nachamkin et al., 1993, Pavlovskis et al., 1991). Gene expression for fla A and flaB is mediated by a σ^{28} and a σ^{54} dependent promoter respectively (Hendrixson and DiRita, 2003). Mutations in the gene flaA result in the production of a truncated flagellum, while the mutation of the gene flaB does not appear to have an effect on motility and the flagellar structure (Wassenaar et al., 1991). A kinase/response regulator system FlgSR has been highlighted as a primary regulatory system controlling the expression of flagella in C. jejuni (Hendrixson and DiRita, 2003). Moreover, flagellar gene expression and biosynthesis are also controlled by a phase variation process (Lertsethtakarn et al., 2011). Phase variation is a fast and reversible genetic process used by bacteria to influence quickly the transcription or the translation of a gene in response to a rapid change in the environment (van der Woude and Bäumler, 2004). For instance, a mechanism of phase variation may involve the modification of the number of nucleotide repeats in a homopolymer present in the gene or in the promoter, leading to a frameshift of the coding sequence or in the loss of the promoter "power". An example of phase variation regulation in the flagellar genes has been identified in C. jejuni, where
homopolymeric tracts of adenines or thymines are present in the genes flaS and flaR, and whose alteration truncate the genes (Hendrixson, 2006; Hendrixson, 2008).

Flagella in C. jejuni have been shown to be involved in a series of cellular functions important for host colonisation and environment survival other than motility. For instance, a functional flagellar system is essential for the export of secreted proteins important in pathogenesis (Konkel et al., 2004), such as the Cia proteins, a protein family typical of Campylobacter essential for successful cell invasion but that is not secreted in the absence of flagellar structures (Konkel et al., 1999). Moreover, flagellar structure is considered essential for autoagglutination (AGG), a process shared by many bacterial species in which cells aggregate as micro-colonies: it is often shown as an initiation of biofilm formation (Misawa et al, 2000; Cole et al., 2004; Moreira et al., 2006; Golden and Acheson, 2002). AAG has been associated with virulence in C. jejuni strain 81-176 (Misawa et al, 2000).

1.1.2 Biofilm formation

C. jejuni has a strict microaerobic requirement, and it is typically hard to grow and maintain in a laboratory environment. It is susceptible to a variety of environmental stresses, food processing procedures, and antimicrobial treatments. Nevertheless, it is extremely widespread in the environment and its high incidence is nearly solely due to the ingestion of living bacterial cells, as the human-to-human transmission is extremely rare. This fact was described as the "Campylobacter paradox" in 1999 (Solomon and Hoover, 1999). A hypothesis commonly embraced is that the bacterium makes the best use of biofilm structures to survive in its known environmental reservoirs (Buswell et al., 1998). Biofilms are described as bacterial
populations adherent to each other and/or to surfaces and interfaces (Costerton et al., 1995).
C. jejuni was shown to form three different types of biofilms in a monoculture: attached to a glass surface, as a pellicle at the gas-liquid interface in a stationary culture, and as free cellular aggregate in a liquid culture (Joshua et al., 2006). C. jejuni 11168 was shown to be more resistant to environmental stresses when in a biofilm structure, compared to planktonic bacteria (Joshua et al., 2006). Environmental and growth conditions influence the ability of C. jejuni to form biofilm: high nutrient conditions and high osmolarity were shown to inhibit biofilm formation (Reeser et al., 2007), while growth in atmospheric oxygen concentration enhanced the formation of biofilm (Reuter et al., 2010). Both flagellar structure and quorum sensing play a central role in biofilm formation in C. jejuni, as mutants in flaAB and luxS genes are significantly impaired during biofilm formation (Reeser et al., 2007).

1.1.3 Adhesion and invasion of host cells

Campylobacter's ability to adhere to gastrointestinal epithelial cells is essential for host colonisation. The process is believed to be mediated by a series of adhesins (Jin et al., 2001). The adhesion to a glycoprotein commonly found in the membrane of epithelial cells also triggers the signalling cascade, mediated by Rac1 and Cdc24 GTPases, which promotes the internalisation of the bacterial cells (Monteville et al., 2003). The protein CadF mediates the adhesion of Campylobacter cells to fibronectin. It is reported that an inactivation of cadF gene results in a reduced ability of Campylobacter to adhere and invade INT407 human intestinal epithelial cells (Krause-Gruszczynska et al., 2007). Other factors controlling the ability of C. jejuni cells to adhere to epithelial cells include: the Campylobacter adhesion protein A
(CapA), mutation of which results in a reduced capacity to adhere to and invade human epithelial cells (Flanagan et al., 2009); FlpA, a protein that is capable of binding fibronectin and is thought to work together with CadF in the adhesion/invasion process (Konkel et al., 2010; Eucker and Konkel, 2012); and JlpA, which has been suggested to be involved in the adhesion to Hep-2 cells via mutation analysis (Jin et al., 2003). The plasmid pVir has also been reported to be involved in adherence and invasion, as mutants lacking in the virB11 gene of the type four secretion system encoded by that plasmid are significantly impaired both in adherence and invasion of INT 407 cells (Bacon et al., 2000). However, subsequent studies failed to replicate the result (Dasti et al., 2010).

The surface lipooligopolysaccharide (LOS) molecule of C. jejuni is composed of a lipid A and a core oligosaccharide and was reported to serve in immune system evasion, host cells adhesion, and invasion. The sialylation of the LOS is a marker of increased invasive potential and immune system evasion (Guerry et al., 2000; Louwen et al., 2008). The oligosaccharide encapsulation of C. jejuni cells also facilitates adherence and evasion from the host immune system (Karlyshev et al., 2000). Non-capsulated mutants (e.g. mutants in the gene that encodes the capsular polysaccharide transport protein, KspM) show reduced ability to colonise INT407 human cells and poultry intestine (Bacon et al., 2001, Jones et al., 2004 and Bachtiar et al., 2007). Other glycosylation systems encoded by the bacterial genome, such as the N -linked glycosylation system encoded by the pgl locus, facilitate the immune system evasion and promote the ability to colonise the chicken gastrointestinal tract (Hendrixson and DiRita, 2004, Jones et al., 2004 and Karlyshev et al., 2004).

Finally, flagellar structures are known to be involved in host invasion. The secretion function of the flagellar apparatus is pivotal in this process (Poly and

Guerry 2008). Mutants in fla and flg genes are reported to have impaired ability to invade host cells (Konkel et al., 2004). The products of cia genes (CiaB, CiaC and Cial) are delivered in to the cytoplasm of the host cells through the flagellar secretion system, and they have an essential role in the invasion process and in the intracellular survival of the bacterium (Konkel et al., 2004; Konkel et al., 1999; Buelow et al., 2011).

1.1.4 Production of toxins

When colonising the host, Campylobacter is known to produce an array of different toxins (McFarland and Neill, 1992 and Schulze et al., 1998). The cytolethal distending toxin (CDT), produced by many Gram-negative bacteria, is the only one studied in detail (Pickett and Whitehouse, 1999). The CDT is composed of three subunits (encoded by $c d t A, c d t B$ and $c d t C$ genes). It is delivered in the cytosol of the host's cell where it blocks the kinase cascade essential for the transition to the G2 phase of mitosis (Asakura et al., 2008, Pickett and Whitehouse, 1999). The LOS molecules trigger complications of the Campylobacter infection, such as the neuropathies Guillain-Barré and Miller-Fisher Syndrome (Nachamkin et al., 2002).

1.1.5 Iron uptake

The significance of iron acquisition and metabolism for successful microbial proliferation is displayed by numerous examples from medical and environmental biology (Ratledge and Dover, 2000). Campylobacter acquires iron from the host in order to establish a successful infection, and it is believed that in order to achieve this, the bacterium uses siderophores derived from the existing microflora (Palayada et al., 2004). Mutants in genes encoding for membrane ferric receptors (Cj0178, cfrA
and $\operatorname{cfr} B$) and ferric uptake regulator (fur gene) all show impaired chicken colonisation ability (Palayada et al., 2004; Xu et al, 2010), and in the chicken cecum an increased transcription level of a gene encoding for a haemoglobin membrane receptor have been observed (Woodall et al., 2005).

1.1.6 Resistance to antibiotics and other antimicrobial molecules

Campylobacter is able to resist to a high concentration of bile salts, heavy metals, and several other antimicrobial agents thanks to the Campylobacter multi efflux pump (CME, Lin et al., 2002). This pump is made of a periplasmic protein, an efflux transporter, and an outer membrane protein, encoded by the $c m e A B C$ operon (Lin et al., 2002). The expression of the operon cmeABC is controlled by the transcriptional repressor CmeR: mutation of the $c m e R$ gene impaires the ability of C. jejuni to colonise chicken (Guo et al., 2008).

Antibiotic resistance in Campylobacter is often mediated by specific resistance genes located on the chromosome or on plasmids (Pratt and Korolik, 2004; Chatzipanagiotou et al., 2005; Zhao et al., 2015). The problem of antibiotic resistance is recognised as an issue of public health importance (Takkinen et al., 2003; McDermott et al., 2002; Moore et al., 2006). Even if Campylobacter infections are usually self-limiting and not treated in humans other than replacing lost fluids and electrolytes, antibiotic treatments are used to treat severe systemic infections of Campylobacter spp. (Aarestrup and Engberg, 2001). Several studies comparing the evolution of antibiotic resistance in time observed a rapid development of multiple antibiotic resistant strains both in the food chain and in clinical isolates (Gallay et al., 2003; Mazi et al., 2008; Smole Možina et al., 2009). For decades, animal production was supplemented with an indiscriminate use of antibiotics (EFSA, 2008; Igimi et al.,
2008), and strong evidence supports the conclusion that this led to the emergence and spread of antibiotic resistance in Campylobacter spp. (Takkinen et al., 2003; Smith and Fratamico, 2010). In countries or farming areas where the use of antibiotics in animal production is limited, the incidence of antibiotics-resistant Campylobacter strains is reduced (Norström et al., 2007; Luangtongkum et al., 2006). It was shown that a limitation in the use of antimicrobial drugs in animals food resulted in a reduction in fluoroquinolone resistance (Gallay et al., 2007, Han et al., 2009): however Nelson et al., in 2007 and Price et al., 2007, have suggested that the antimicrobial resistance may persist in the environment for long periods of time.

1.1.7 Stress tolerance and response

Following the first genome sequence of C. jejuni (Parkhill et al., 2000), it was observed that a homologue of the E. coli stationary phase regulator rpoS (which encode for the global regulator RpoS, σ^{38}) was missing, and therefore a range of adaptive responses present in other bacteria are not present in C. jejuni. Other σ factors are present (FliA $-\sigma^{28}$, RpoN $-\sigma^{54}$ and RpoD $-\sigma^{70}$), and they control the expression of a range of genes involved in survival and virulence (Jagannathan et al., 2001, Carrillo et al., 2004, Wösten et al., 2004 and Hendrixson, 2006). The protein SpoT is extremely important in controlling the cell response in conditions of stress: SpoT is an effector molecule of stringent response (guanosine tetraphosphate - ppGpp) that negatively regulates the rRNA transcription (acting with the RNA polymerase-associated protein DksA), in favour of amino acid biosynthesis, moving cellular resources away from growth and division, in favour of cellular survival (Gaynor et al., 2005). spoT deletion impairs oxygen tolerance, stationary phase survival, invasion and survival in intestinal cells, as well as rifampicin
resistance (Gaynor et al., 2005). The DksA protein has also been shown to be involved in iron metabolism and host cell invasion (Yun et al., 2008)

Campylobacter is primarily a foodborne pathogen, and in the food chain it encounters several stresses that it must endure. In the slaughter chain, Campylobacter is subject to desiccation and oxidative stress. The bacterium is particularly sensitive to desiccation and its presence is reduced considerably on beef and pork meat, which are air chilled in the slaughtering process, while its survival is facilitated on chicken where the wet surface is maintained by the water chilling procedure (Humphrey et al., 1995; Oosterom et al., 1983; Butzler and Oosterom, 1991). C. jejuni endures different oxygen conditions during its life cycle: aerobic respiration and the immune response of hosts generate ROSs (Reactive oxygen species) including the superoxide anion, hydrogen peroxide, and the hydroxyl radical (Atack and Kelly, 2009). Campylobacter can respond to high concentration of ROS with an antioxidant defence system which includes a wide range of enzymes and antioxidant molecules, such as glutathione, catalase (KatA, Atack and Kelly, 2009), alkyl hydroperoxide reductase (AhpC), and other peroxiredoxins (such as the thiol peroxidise Tpx and bacterioferritin co-migratory protein Bcp), cytochrome c peroxidises (Cj0358 and Cj0020c; Atack and Kelly, 2009), and superoxide dismutase (Storz and Imlay, 1999): the increased production of these enzymes results in a long-term aerobic adaptation (Klancnik et al., 2009). Superoxide dismutase proteins (SOD) protect against the superoxide anions (Palyada et al., 2009): the survival of mutants deficient in SOD is impaired in the avian gut due to the presence of oxygen and to the ability to invade Caco-2 cells (Garénaux et al., 2008; Purdy et al., 1999; Mihaljevic et al., 2007).

In the food chain, Campylobacter also encounter starvation stress and may be exposed to low pH . In these conditions, the Campylobacter cells were shown to enter a viable but non-culturable state (VBNC; Chaveerach et al., 2003), which is characterised by a decreased metabolic activity and change in cell shape and in which the cell survives to stress condition for a prolonged period of time (Moore, 2001; Mihaljevic et al., 2007). Different abilities of retaining virulence were observed in Campylobacter VBNC cells, with studies that demonstrated a loss of virulence and others that demonstrated maintenance of the ability to invade intestinal epithelial cells (Byrne et al., 2007, Klancnik et al., 2009).
C. jejuni has an optimum growth temperature of $41.5^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$, and cells are unable to grow below $30{ }^{\circ} \mathrm{C}$ (Bolton, 2015). During food processing, bacterial cells are exposed to temperatures close to $4{ }^{\circ} \mathrm{C}$ and over $42{ }^{\circ} \mathrm{C}$. Chilled cells remain viable and metabolically active for a prolonged period (Hazeleger et al., 1998 and Dasti et al., 2010). A heat-shock response has been previously described in Campylobacter (Konkel et al., 1998). The differential expression of at least 15 genes, the majority of which encode for regulative proteins, was reported when comparing the growth of C. jejuni at $37^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ —the body temperatures of humans and chickens respectively (Zhang et al., 2009). The RacR/RacS signal transduction system may also have a role in growth at $42{ }^{\circ} \mathrm{C}$: it regulates a heat-shock protein DnaJ. Mutation of the gene encoding DnaJ severely impairs the ability to colonise chicken (Hermans et al., 2011; Konkel et al., 2004; Ziprin et al., 2001).
C. jejuni is characterised by an extremely high frequency of intragenomic recombination, which can alter its phenotypic characteristics, virulence, and ability to survive in an array of different adverse conditions (Park, 2005; Ridley et al., 2008).

1.2 Plasmids

Plasmids are circular or linear DNA molecules able to replicate autonomously in the host cell (Jackson et al., 2011). They appear in all domains of life and they carry genes encoding for a broad variety of functions (Lipps, 2008; Sundin 2007). In bacteria, plasmids can spread horizontally via conjugation, and indeed plasmid transfer has been defined as "sex in bacteria" (Lederberg and Tatum, 1953). Plasmids play a central role in the adaptation and evolution of prokaryotes (Gogarten and Townsend, 2005).

Classically plasmids were classified into five major groups, according to the functions they encode (Hardy, 1986):
(i) Fertility plasmids (F-plasmids) encode tra genes and are responsible for the expression of pili and conjugation structures. These plasmids are capable of horizontal transfer between bacteria via conjugation. Many of the tra genes are necessary for the formation of the conjugative pili, and almost all of the genes necessary for the DNA transfer are organised into a single operon. Further genes carried by an F-plasmid may encode for production of bacteriocins or metabolism of carbon compounds. Resistance to antibiotics may be included in an F-plasmid (Hardy, 1986);
(ii) Resistance plasmids (R-plasmids) possess genes conferring antibiotic resistance. The most notable and studied examples are tetracycline and chloramphenicol, but genes encoding for many different antibiotic resistances are known to be carried by plasmids. More broadly, the resistance properties conferred by these plasmids also extend to different classes of compounds such as heavy metals or other toxic
molecules, to physical stresses such as ultraviolet radiations, and to bacteriophages (Martins et al, 2001; Thomas and Summers 2008);
(iii) Col plasmids encode for genes responsible for the synthesis of bacteriocins. These proteins are toxic to other bacteria and are used to gain competitive advantage in a particular ecological niche (Hardy 1986); Degradative plasmids carry those genes that confer on the bacterium the ability to metabolise particular substances. The classes of compounds that are degraded this way are various and may be simple carbohydrates, complex carbon compounds (such as toluene, nicotine or camphor), halogenated carbon compounds, or proteins (Schmidt et al., 2001);
(v) Virulence plasmids carry "virulence genes", usually organised in contiguous pathogenicity islands. Virulence plasmids may encode for: toxins, such as the enterotoxins of Escherichia coli or the neurotoxins of Clostridium tetani; cell structures to evade host defence, such as the capsule of Bacillus anthracis or colonisation antigens produced by E. coli; or effectors to obtain nutrients from the host, such as an iron transport system in E. coli (Thomas and Summers 2008; Hardy 1986).

Another way of classifying plasmids is through incompatibility groups. Replication of plasmids is typically controlled by a region of about 1-3 kbp, known as the basic replicon (which is the shortest piece of the plasmid able to replicate independently). The replicon contains the functions to initiate and control the replication (such as the origin of replication), and the inhibitor of the replication (which can be, a protein factor derived from a bacteriophage or an RNA antisense) which controls the copy number per cell typical of every plasmid (Del Solar and

Espinoza, 2002). If two plasmids share the same replicon, they belong to the same incompatibility group. Two plasmids belonging to different incompatibility groups replicate independently and use independent mechanism to control their copy number; two plasmids that belong to the same incompatibility group share those mechanisms, and also share the total number of copy per cells. They are selected randomly for replication inside the cell and, consequently, one of the incompatible plasmids ends up diluted in subsequent generations, leaving only one of the two incompatible plasmids in the bacterial cell (Bergquist, 1987, Ebersbach et al., 2005). Some plasmids can have more than one replicon and belong to more than one incompatibility group. Closely related plasmids tend to be incompatible, while plasmids that are distantly related tend to be compatible (Thomas, 2014).

Several examples of the roles of plasmids in pathogenic bacteria have been published over the last 50 years. Plant pathogenic bacteria, for example, are known often to rely on several different plasmids to express secretion systems for delivering toxin molecules, which are themselves expressed by several different plasmids (Vivian et al., 2001). For example, Erwinia arboicola pv. gypsophilae carries the hrp genes for the expression of the Type Three Secretion System on a large pPATH plasmid of about 150 kbp in size (Nizan et al., 1997), and in Ralstonia solanacearum these genes are on a pVir megaplasmid (Boucher et al., 1986). Other functions specifically linked to virulence are often encoded by plasmids in phytopathogenic bacteria. One example is the production of phytohormones, such as the indole-3acetic acid (IAA), to affect plant cell proliferation at the infection site (Vivian et al., 2001); several pathovars of Pseudomonas savastanoi and Erwinia herbicola are known to carry the iaaLMH genes for IAA biosynthesis on plasmids, such as pIAA1
and pIAA2 (P. savastanoi, Yamada et al., 1986) and pPATH (E. herbicola, Clark et al., 1993).

What is described for plant pathogenic bacteria is also true of bacterial pathogens of animals and humans. Clostridium perfringens is known to be dependent on its toxin-producing ability to be successful in causing disease (Li et al, 2013): many of the 16 known toxins produced by the bacterium are encoded by large plasmids (Miyamoto et al., 2006, Lepp et al., 2010). In Salmonella enterica, a group of virulence plasmids with size between 50 and 100 kbp was described (Rychlik et al., 2006). These plasmids are all characterised by the presence of the genes spvRABCD (Salmonella virulence genes), which are known to be involved in the systemic phase of Salmonella infection and with the destabilisation of the macrophage cells cytoskeleton (Wallis et al., 1995; Lesnick et al., 2001). Moreover, different serovars of S. enterica carry plasmids encoding additional virulenceassociated genes, such as rck (resistance to complement killing, Hackett et al., 1987) for evading the host immune response, or pef (plasmid encoding fimbriae, Baumler et al., 1996), which contributes to S. typhimurium adhesion to the mouse intestinal epithelium.

Plasmids encode for a variety of genes and functions, but there is an important similarity among them that is represented by the circumstances in which they are useful for the bacterial host (Top et al., 2000). A part of each plasmid is devoted to the "survival" of the plasmid itself: it encodes for genes that promote replication, maintenance, and conjugation of the plasmid-genes typically referred as "plasmidselfish" or backbone genes. A part of the plasmid encodes for genes that are useful to the bacterial host only in particular circumstances, such as genes for the adaptation to a particular environment or genes used to initiate the disease in a host.

These genes are concentrated on plasmids as a direct consequence of natural selection: in conditions where a gene would increase the host fitness, the plasmid localisation would allow a more rapid spread both through horizontal and vertical transmission, and the chromosomal localisation would be more limited in conferring advantage only through vertical transmission (Top et al., 2000; Thomas and Summers, 2008).

1.3 Plasmids in C. jejuni

The presence of several different plasmids is reported in Campylobacter spp. With the exception of a few cases-describing the presence and the structure of small "cryptic plasmids" in regional isolates (Jesse et al., 2006, Hiett et al., 2013), and a handful of mega-plasmids between 80 and 150 kbp long (Gunther et al., 2016; Marasini and Fakir, 2016)-the literature is focused on two plasmids: namely, pTet and pVir (Bacon et al., 2000, Bacon et al., 2002, Batchelor et al., 2004).

Both plasmids were described for the first time in C. jejuni strain 81-176, one of the better-characterised strains of C. jejuni. It was isolated from a diarrheal outbreak associated with raw-milk consumption (Korlath et al., 1985); it causes inflammatory diarrhoea in humans and disease in several different experimental models (Black et al., 1988, Russell et al., 1989). Moreover, C. jejuni strain 81-176 invades INT407 cells at particularly high levels (Hu et al., 1999, Bacon et al., 2000, Bacon et al., 2001, Yao et al., 1994).

1.3.1 Plasmid pVir

The plasmid $p V$ ir in the strain $81-176$ is reported to be 37,468 bp and to encode for 54 putative ORFs. The G+C content of this plasmid is 26% and just the 83% of
the pVir sequence is predicted to be coding: both these numbers are significantly lower than the chromosome of the strain $81-176$ where the $G+C$ content is 30.6% and the percentage of coding sequence is 94% (Bacon et al., 2002).

Amongst the 54 ORFs, the function of the vast majority is unknown. Seven genes encode for homologues of the type four secretion system (T4SS): namely virB4, virB7, virB8, virB9, virB10, virB11, virD4, all grouped in an 8.9 kbp long area. The type four secretion system is described in a wide number of bacterial species, and it is involved in a variety of bacterial cell processes including conjugation, DNA translocation, and protein delivery (Bacon et al., 2000).

Although, the plasmid pVir alone does not confer the ability to invade INT407 cells, as demonstrated transforming the strain NCTC 11168 with the full pVir plasmid, some of the pVir genes were associated with the bacterium's ability to move and to invade INT407 cells in vitro (Bacon et al., 2002). Mutants in genes encoding for putative components of the T4SS, genes with orthologs in H. pylori or genes that appear to be unique to the campylobacter plasmid show a broad range of reduction in INT407 cells invasion, which is difficult to interpret and might be due to the presence of a second plasmid in the strain where this mutant were produced (strain 81-176, which harbours both plasmid pTet and pVir; Bacon et al., 2002). A second study tried to replicate this result unsuccessfully (Dasti et al., 2010). More recently, the presence of the plasmid pVir was also associated with symptoms in humans: patients infected with pVir positive strains were more likely to develop bloody diarrhoea (Tracz et al., 2005). However, the distribution of pVir amongst clinical strains is exceptionally low; a survey conducted in 2005 reported that just one strain out of 56 isolated from symptomatic humans harbouring plasmids contains a plasmid related to pVir (Schmidt-Ott et al., 2005). This observation challenges this plasmid
family's importance in C. jejuni virulence, as in that case a higher occurrence in clinical isolates would be expected (Friis et al., 2007). Moreover, the higher virulence of the strains carrying the pVir plasmid have been strongly criticised: Louwen et al. in 2006 was not able to replicate the results shown by shown by Tracz et al., in 2005.

1.3.2 Plasmid pTet

A second plasmid was identified in the strain 81-176 of C. jejuni (Bacon et al., 2000). Plasmid pTet in the strain 81-176 was determined to be $45,205 \mathrm{bp}$, approximately 20% bigger than pVir, and to encode 49 ORFs. The G+C content in this case is 29.1%, just slightly lower than the $G+C$ content of the chromosome. It is worth noting that a region with a particularly high $G+C$ content of 40.4% incorporates the tetracycline resistance gene, suggesting the incorporation of this region via horizontal transfer (Batchelor et al., 2004).

The majority of the predicted ORFs are of unknown function. A tetO gene was identified, known to confer tetracycline resistance, along with several hypothetical proteins sharing a high percent of similarity with Helicobacter pylori. Ten genes grouped in a region that spans across approximately 12.6 kbp encode for proteins that share a high amino acid similarity with the T4SS of some Brucella and Actinobacillus species. These genes were demonstrated to be involved in the conjugative transfer of the plasmid pTet, which happens to a rate of 10^{-4} to 10^{-6} transconjugant per donor cell (Batchelor et al., 2004). Genes homologous to T4SS have been designated as Campylobacter mating genes (cmg). Other genes with predicted known functions encoded by pTet are tolA (uptake of colicin A), a virulence-associated protein (sharing 42\% similarity with Helicobacter pilori), and several genes involved in conjugative transfer (Batchelor et al., 2004).

Schmidt-Ott et al., in 2005 reported the presence of several pTet-like plasmids, which were identified as the "mob" family, in a study involving 56 patients with bloody or watery diarrohea. This class of conjugative plasmids conferring tetracycline resistance was identified in 53% of clinical isolates. Their study shows that it is impossible to cure the "mob" plasmid, except from 81-176 (the only described strain that carries both pTet and pVir), in which the loss of p Tet does not affect the ability to invade INT407 cells. Finally, the study reveals the lack of correlation between invasiveness and the presence of a "mob" plasmid: if a strain that is unable to invade caco- 2 cells acquires a "mob" plasmid, it does not acquire the ability of invading caco-2 cells, and vice versa.

In both the studies described here (Batchelor et al., 2004; Schmidt-Ott et al., 2005), the conjugation experiments involved the use of DNAse in the suspension buffers used to harvest the bacteria and on the plates used to induce the conjugation. The DNAse was used to avoid the possibility of natural transformation of extracellular DNA.

A second survey published in 2007 by Friis et al., where sequences of the plasmids were considered, reported the high diffusion of pTet-like plasmid across 29 tetracycline-resistance or plasmid-carrying strains isolated in various geographical areas and sources (UK, U.S., and Canada; both from environmental and clinical samples). The conservation and diffusion of the pTet-like sequence and structure is remarkable: 83% of the analysed strains showed the presence of a full or partial set of genes previously annotated on the plasmid pTet. Moreover, not one of the analysed strains in that case showed the presence of p Vir. The study concludes that pTet-like plasmids are stably maintained and broadly diffused in Campylobacter, and
its prevalence in Campylobacter population may play an important role in genomic plasticity of Campylobacter (De friis et al., 2007).

Other than the plasmid pTet isolated from the strain 81-176 in 2000 (Bacon et al., 2000), plasmids similar to pTet have been isolated from several strains: one example is the strain ICDCCJ07001, harbouring the plasmid 07001_pTet (Zhang et al., 2010). A mosaic structure is described for the plasmid 07001_pTet in this work. It shares homology with 26 pTet genes, and harbours 5 unique genes previously undescribed in the plasmid (Zhang et al., 2010). Mosaic plasmids share homologous genes with a variety of different bacteria (Batchelor et al., 2004), and it is suggested that their origin derives from the acquisition of different DNA regions from different bacterial sources (Boyd et al., 1996).

1.3.3 Other plasmids in C. jejuni: small "cryptic" plasmids and megaplasmids.

Plasmids are defined as cryptic when they do not have genes that appear to contribute to the phenotype of the bacterium. They are typically very small, carry the genes necessary for self-repliction and can be used to develop plasmid vectors for molecular manipulation of specific bacteria (Burian et al., 1997; Li-Zhao et al., 2011).

The first plasmid defined as "cryptic" in C. jejuni was a short plasmid described in 2000 (Luo and Zhang): the plasmid pCJ01 was 3212 bp long and exhibited a G+C content of 33.5%. Four open reading frames were identified in that plasmid, and at the time they did not show any sequence similarity with any of the C. jejuni DNA sequences available. It was suggested that the plasmid could be used to produce molecular tools for the genetic manipulation of C. jejuni, such as E. coli - C. jejuni shuttle vectors (Luo and Zhang, 2000). In 2003, a second cryptic plasmid was
described in a human clinical isolate of C. jejuni: the plasmid pCJ419 (Alfredson and Korolik, 2003). It was 4013 bp long and its G+C content was lower pCJ01 and the chromosome of C. jejuni with a value of 27.1%. The plasmid pCJ419 encodes for four ORFs, three of which involved with DNA mobilization and replication (encoding for the proteins Mob, RepA and RepB), and one sharing a higly similar with a gene of unknown function (cjp23). The plasmid was successfully used to produce a shuttle vector pGU0202 for the transformation of both C. jejuni and E. coli. In 2006, the small plasmid pCJ1170 was described in C. jejuni: it was 4381 bp long and shared a 99.7% identity with the plasmid pCC2228 isolated in the same study from Campylobacter coli. It was identified to be a member of a novel incompatibility group for plasmids in Campylobacter and it was suggested that it could be used as a base for the design of vectors to modify plasmid carrying strains of C. jejuni and C. coli (Miller et al., 2006). Finally, in 2013 the plasmid pTIW94, purified from C. jejuni strains isolated from wild birds in south-east US, was described (Hiett et al., 2013). It was a short 3860 bp plasmid, encoding for five ORFs: two ORFs encoded for the repA and repB found on the pCC2228 plasmid (100\% and 95\%, similarity respectively), one ORF was 99% similar to a mob gene identified in C. coli previously, and the remaining two ORFs exhibited no significant similarity with any of the other DNA sequences present in the GenBank database (Hiett et al., 2013).

With the advent of novel sequencing and assembly techniques, it has been possible to identify new and larger plasmids in several strains of C. jejuni. The first example is an 81.08 kbp plasmid isolated from a clinical bacterial isolate from 1994 showing an increased resistance to UV light (strain RM3194; Gunther et al., 2016). The plasmid was identified to encode for an UV-damage repair protein (ImpB), a full type six secretion system, and several proteins involved in the plasmid conjugation.

These characteristics could associate the plasmid with an increased fitness in particular environmental conditions and in virulence. Secondly, a plasmid conferring kanamycin and tetracycline resistance was described in the strain 11601MD isolated from turkey. The length of this plasmid and its organization showed a high similarity with the plasmid pTet (44095 bp, Crespo et al., 2016), and it is the first fully characterized plasmid carrying both the gene $\operatorname{tet}(O)$ and the aphA-3 for resistance to tetracycline and kanamycin. The presence of the two resistance genes on plasmids was first shown in 2004 in a partially characterized plasmid (Nirdnoy et al., 2004) and further addressed in the study from Zhao et al., 2016, concluding that the two resistance genes are often associated. Finally, the genome sequencing of the strains OD267 and WP2202, isolated from the liver and the digestive tract of chicken, showed the presence of two mega-plasmids and a shorter plasmid (pCJDM67S) homologous to pVir (Marasini and Fakir, 2016). In particular, the plasmid pCJDM202L, isolated from the strain WP2202 is 119 kbp, encodes for 116 genes and has a C+G content of about 30.5\%. It was shown to encode for tetracycline resistance, cag pathogenicity island genes, and the 14 core genes for the conjugative type four secretion system.

1.4 Conclusions

The plasmid pTet in C. jejuni is found in a high number of known strains. If studies that take into account the tetracycline resistance phenotype are considered, the number of strains potentially carrying this phenotypic marker is even higher. Although the plasmid is reported to be extremely common, the function of the majority of pTet genes is unknown. Moreover, no study of the genetic differences between the several plasmids similar to pTet that were isolated and sequenced was
ever performed. In fact, the literature about the plasmid pTet stops in 2007, when de Friis et al., were surprised by the level of conservation and maintenance of the plasmids pTet-pCC31-like in Campylobacter populations (pCC31 is a pTet homologous plasmid isolated from C. coli, Batchelor et al., 2004). The question that concludes that paper from 2007 is indeed still open: why and how are plasmids pTetlike maintained?

In this study, a thorough genomic survey for the presence of the plasmid pTet will be performed: several plasmid markers were tested via PCR and phenotypically on the strain collection of the University of Exeter's Molecular Pathogenesis Laboratory for the identification of new strains carrying the plasmid pTet; the presence of the plasmid pTet was assessed in all the C. jejuni strains sequenced to date (June 2016). The pTet-like plasmid pan-genome was defined in order to identify the genes present in all the pTet-like plasmids sequenced. The core and the accessory genes for the pTet-like plasmids will be defined and the putative function of those genes will be defined. In order to study the function of a set of genes found with different frequencies on the pTet-like plasmids, a series of 12 mutants will be produced in one model strain of C. jejuni and their phenotypic difference when compared to the wild-type will be tested in conditions linked to environmental survival or virulence.

1.5 Aim of this work

The aim of this work is to identify the importance of the plasmid pTet-like for C. jejuni: which genes are most represented in the plasmids pTet-like, whether a difference in genetic set-up between pTet-like plasmids exists, and what is its significance? This study will also assess whether or not the plasmids pTet-like are
associated with different functions, such as virulence, survival in particular conditions, or adaptation to different ecological niches.

Chapter 2 - Materials and Methods

2.1 Bacterial Strains and Growth conditions

Campylobacter jejuni strains used in this study are held by the Campylobacter collection of the Molecular Pathogenesis Laboratory of University of Exeter (Geoffrey Pope building, laboratory 401, EX44QD) and have been isolated in Asia (Thailand and Pakistan), USA, and the United Kingdom. Table S1 lists the bacterial strains present in this collection. Bacterial strains were stored in glycerol ($30 \% \mathrm{v} / \mathrm{v}$) or on Cryobank ${ }^{\mathrm{TM}}$ ceramic beads (Copan Diagnostics Inc.) and maintained at $-80^{\circ} \mathrm{C}$. Campylobacter strains were cultured under the conditions detailed here or in the relevant section of Materials and Methods for each phenotypic analysis. All strains were streaked in Colombia Blood Agar plates (CBA, CBA Base from Oxoid LTD, supplemented with 5% defribinated horse blood, Oxoid LTD) with selective growth supplement for Campylobacter (CBA+, Skirrow's supplement, Oxoid LTD) and incubated for 48 hours in microaerophilic conditions at $42{ }^{\circ} \mathrm{C}(83 \%$ Nitrogen, 8% Oxygen, 5\% Carbon Dioxide). Colonies were selected from these plates and streaked on CBA+ and incubated at $37^{\circ} \mathrm{C}$ for 24 hours in microaerophilic conditions prior to any further analysis. For counting colony forming units (CFU), C. jejuni strains were spotted on Mueller-Hinton agar (MHA, Oxoid LTD) and the protocol described by Miles et al. 1938 was followed. For growth in liquid media, C. jejuni was grown on a CBA+ plate as a lawn for 24 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$; bacterial cells were removed from this plate with a sterile swab to produce a starter bacterial suspension in phosphate buffered saline (PBS, pH 7.4, Sigma-Aldrich ${ }^{\circledR}$) or Mueller-Hinton broth (MHB, Oxoid LTD); the starter suspension was used to inoculate a volume of MHB to a starting concentration of bacterial cells equal to 0.1 optical density measured as turbidity at 600 nm with a spectrophotometer in a cuvette with 1 cm of path length, OD_{600}.
E. coli strain TOP 10 was used for molecular cloning experiments. E. coli was stored in glycerol ($30 \% \mathrm{v} / \mathrm{v}$) or on Cryobank ${ }^{\mathrm{TM}}$ ceramic beads (Copan Diagnostics Inc.) and maintained at $-80^{\circ} \mathrm{C}$. For growing E. coli, plates of lysogeny broth agar (LBA) or lysogeny broth (LB) were used, with incubation at $37^{\circ} \mathrm{C}$ and supplementary antibiotics as required.

2.2 DNA amplification (PCR)

All primers in this study were designed with Clone Manager Professional 9 software (Scientific \& Educational Software) and synthesised by Eurofins Scientific UK (HPSF quality, scale 0.01). Standard DNA amplification was achieved using the following protocol, unless otherwise stated: Buffer Q5 (1X, New England Biolabs); MgCl_{2} (2 mM to 4 mM if needed); dNTP ($0.2 \mu \mathrm{M}$, Thermo Fisher Scientific Inc.), primers ($1 \mu \mathrm{M}$ each); Q5® High-Fidelity DNA Polymerase (0.5 units/reaction, New England Biolabs); bacterial DNA (10-50 ng); MilliQ water to a final volume of $25 \mu \mathrm{l}$. For each reaction in this work Q5® High-Fidelity DNA Polymerase (New England Biolabs) was used, with the following thermal protocol, unless otherwise stated.

1- $\quad 30$ seconds at $95^{\circ} \mathrm{C}$;
2- $\quad 10$ seconds at $95^{\circ} \mathrm{C}$;
3- $\quad 10$ seconds at $45-55^{\circ} \mathrm{C}$, according to the annealing temperature of each primer pair;

4- $\quad 30$ seconds per kbp at $72^{\circ} \mathrm{C}$;
5- \quad Repeat steps 2 to 4 for 35 times;
6- $\quad 2$ minutes at $72^{\circ} \mathrm{C}$;
7- \quad Hold $12{ }^{\circ} \mathrm{C}$.

Primers used in this work are listed in the appropriate result section. PCR products were run electrophoretically on agarose gels for analysis. Unless otherwise stated, 1% w/v agarose/Tris-EDTA acetate buffer (TAE) gels were made according to manufacturer's directions (Hi-Res standard agarose, ATGC bioproducts). Agarose gels were stained with $5 \mu \mathrm{~L} / 100 \mathrm{ml}$ of Midori green advanced gel stain (Geneflow LTD.) according to manufacturer's directions. $20 \mu \mathrm{~L}$ of PCR product was mixed with an appropriate volume of DNA Gel Loading Dye (6X, Thermo Fisher Scientific Inc.) and loaded on agarose gel for electrophoresis with a current of $120 \mathrm{~V} / \mathrm{cm}$ for a variable time (between 30 and 90 minutes, according to the specific experiment requirements). Gel imaging was performed with a Gel Doc ${ }^{\text {TM }}$ Gel Documentation System (BioRad Laboratories, inc.).

2.3 DNA purification

Whole genome bacterial DNA extractions were performed using Wizard® Genomic DNA Purification Kit (Promega corp.), according to the specific protocol for Gram negative bacteria. When DNA was extracted from C. jejuni, cells were lawnplated on a CBA+ plate and left to grow overnight at $37^{\circ} \mathrm{C}$. Cells were then dislodged with a swab and suspended in 5 ml of PBS buffer. 1 ml of bacterial suspension was used for DNA extraction (OD_{600} between 0.8 and 1.5).

For the PCR reactions described in Chapter 3.1, a thermal lysis extraction method was used. One colony of C. jejuni was picked from a plate with a sterile toothpick and suspended in $100 \mu \mathrm{~L}$ of MilliQ water. The bacterial suspension was incubated at $95{ }^{\circ} \mathrm{C}$ for 15 minutes in a thermal block, then transferred immediately to ice for 5 minutes. The suspension was then spun for 5 minutes at $13000 \times \mathrm{g} .2 \mu \mathrm{l}$ of supernatant were used for template in a PCR reaction.

DNA was extracted from agarose gels following electrophoresis using the GeneJET® Gel Extraction Kit (Thermo Fisher Scientific Inc.), according to the manufacturer's directions.

Plasmid DNA was extracted from E. coli using GeneJET® Plasmid Miniprep Kit (Thermo Fisher Scientific Inc.), according to the manufacturer's directions.

Plasmid DNA was extracted from C. jejuni strains using either QIAprep® Spin Miniprep Kit (QIAGEN Ltd.) following the protocol modification advised for low copynumber plasmids; QIAGEN Plasmid Midi Kit (QIAGEN Ltd.); or PureYield ${ }^{\text {TM }}$ Plasmid Midiprep System (Promega corp.), according to the manufacturer's directions. For QIAprep® Spin Miniprep Kit and PureYield ${ }^{\text {TM }}$ Plasmid Midiprep System, C. jejuni was grown overnight in 25 ml of MHB at $37^{\circ} \mathrm{C}$, and 10 ml or 25 ml of bacterial culture was used as starting material. For QIAGEN Plasmid Midi Kit 50 ml of bacterial culture was used.

DNA was stored at $4^{\circ} \mathrm{C}$ up to 1 month or at $-20^{\circ} \mathrm{C}$ for longer periods. DNA concentration was evaluated with Nanodrop® ND-1000 (Thermo Fisher Scientific Inc.), when needed, according to the manufacturer's directions.

2.4 Molecular cloning

DNA digestions were performed using restriction enzymes from Thermo Fisher Scientific, following manufacturer's directions.
pGEM®-T Easy Vector System II (Promega corp.) was used to build the constructs used for Campylobacter mutagenesis, according to the TA cloning protocol described by the manufacturer. A-tailing of PCR products was used to achieve successful cloning according to pGEM®-T Easy Vector System II protocol, using Qiagen HotstarTaq® (QIAGEN Ltd.).

Ligation of digested DNA fragments in digested vectors was achieved using DNA ligase (Thermo Fisher Scientific Inc.), following manufacturer's directions for sticky-ends. Insert to vector molar ratio was calculated to be between $3: 1$ and $5: 1$ using the following formula:
[(mass of vector $(\mathrm{ng})^{*}$ size of insert (bp))/size of vector (bp)] * insert/vector molar ratio $=$ mass of insert (ng)

Ligations were transformed in $100 \mu \mathrm{~L}$ of chemically competent E. coli strain TOP 10.

2.5 Transformation of chemically competent E. coli

Chemically competent E. coli strain TOP 10 was produced according to the following protocol: 5 ml of E. coli were grown overnight in LB medium at $37^{\circ} \mathrm{C} ; 1 \mathrm{ml}$ of overnight growth was used to inoculate 99 ml of LB medium; once the bacterial culture reached to $0.4-0.5 \mathrm{OD}_{600}$ (1.5-3 hours), the culture was divided in two 50 ml falcon tubes and centrifuged at $4000 \times \mathrm{g}$ for 10 minutes at $4^{\circ} \mathrm{C}$; the supernatant was removed and the pellet was resuspended in 10 ml of ice cold $0.1 \mathrm{M} \mathrm{CaCl}_{2}$; the bacterial suspension was incubated on ice for 1 hour, then centrifuged at $4000 \times \mathrm{g}$ for 10 minutes at $4^{\circ} \mathrm{C}$; the supernatant was discarded and the bacterial cell pellet was carefully resuspended in 1.5 ml of ice-cold $0.085 \mathrm{M} \mathrm{CaCl}_{2}$ and $15 \%(\mathrm{v} / \mathrm{v})$ glycerol. After 1 hour's incubation in ice, the chemically competent cells were divided in $100 \mu \mathrm{~L}$ aliquots and used immediately for chemical transformation of DNA or snap-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ for up to 1 month.
$100 \mu \mathrm{~L}$ of chemically competent E. coli strain TOP 10 were inoculated with 10 $\mu \mathrm{L}$ of ligation mixture or 100 ng of purified plasmid DNA in an Eppendorf tube and incubated on ice for 1 hour. The mixture was incubated for 2 minutes at $42^{\circ} \mathrm{C}$, and transferred immediately back to ice for at least 2 minutes. 1 ml of LB broth was added to the Eppendorf tube and incubated in orbital agitation (200 rpm) at $37^{\circ} \mathrm{C}$ for 1 hour, in order to allow antibiotic resistance to be expressed. After 1 hour, $100 \mu \mathrm{~L}$ of bacterial suspension was spread-plated on an appropriate LBA plate supplemented with antibiotic/screening molecule.

LB plates supplemented with ampicillin ($100 \mu \mathrm{~L} / \mathrm{ml}$), IPTG (0.1 mM) and X-gal $(40 \mu \mathrm{~L} / \mathrm{ml})$ (LB-Amp100-IPTG-Xgal) or kanamycin ($50 \mu \mathrm{~L} / \mathrm{ml}$) (LB-Kan50) were used when required.

2.6 Transformation of electro-competent C. jejuni

The protocol for producing electro-competent C. jejuni and subsequent electroporation was described previously (Van Vliet et al., 1998). Briefly, C. jejuni was grown overnight as lawns on $4 \mathrm{CBA}+$ plates at $37^{\circ} \mathrm{C}$; cells were collected with a sterile swab and resuspended in 2 ml of MH broth. Bacterial cells were then washed three times: the suspension was centrifuged for 5 minutes at $10000 \times \mathrm{g}$ at $4^{\circ} \mathrm{C}$, the supernatant was removed, and cells were carefully resuspended in 2 ml of ice-cold wash buffer (272 mM sucrose, 15\% glycerol). Finally, the cells were resuspended in 1 ml of ice-cold wash buffer, and $100 \mu \mathrm{~L}$ aliquots were used immediately for electroporation.

For electroporation 1 to $5 \mu \mathrm{~g}$ of plasmid DNA in a maximum volume of $10 \mu \mathrm{~L}$ was added to $100 \mu \mathrm{~L}$ of electro-competent cells. The mixture was added to an icecold electroporation cuvette (1mm chamber, BioRad Laboratories, Inc.) and
electroporated immediately at $2.5 \mathrm{kV}, 200 \Omega, 25 \mathrm{pF} ; 1 \mathrm{ml}$ of MHB was used to wash the cuvette and transfer the bacteria to a fresh 1.5 ml Eppendorf tube; the bacterial suspension was spotted on an MHA plate ($15 \mu \mathrm{~L}$ spots), and the plate was incubated at $37{ }^{\circ} \mathrm{C}$ in microaerophilic conditions for 5 hours. Cells were then collected with a sterile swab and resuspended in $500 \mu \mathrm{l}$ of MHB. The bacterial suspension was then centrifuged at $6000 \times \mathrm{g}$ for 2 minutes, the supernatant was removed and the cell pellet was resuspended in $100 \mu \mathrm{l}$ of MHB, which was then spread on the appropriate MHA screening plate.

MHA plates supplemented with kanamycin ($50 \mu \mathrm{~L} / \mathrm{ml}$) (MHA-Kan50) or chloramphenicol ($30 \mu \mathrm{~g} / \mathrm{ml}$) (MHA-Cat30) were used in this study.

2.7 Mutagenesis of Campylobacter jejuni

The allelic exchange protocol used in this work to produce mutant strains of Campylobacter jejuni is detailed in Chapter 5. Section 5.4 lists the primers and the plasmid vectors used for the mutant design.

2.8 Complementation of the mutant strains of Campylobacter jejuni

Mutant strains of Campylobacter jejuni that exhibited a phenotypic difference when compared to the wild-type have been complemented re-introducing the deleted gene in the genome of the mutant strain.

The strategy used here to complement the mutant strains was described by Jervis et al. in 2015. The study describes the construction of a series of suicide expression vectors for the integration of heterologous genes in C. jejuni: these plasmids were named pCJC1, pCJC2, pCJC3, and pCJC4. Each one of them was characterised by a selection marker conferring resistance to chloramphenicol and
one of four different promoters followed by the cloning site for the gene of interest. These elements were included between the upstream and the downstream sections of the gene Cj0223, promoting the integration of the chloramphenicol resistance and the gene of interest in the chromosome of the target strain. To produce the complemented mutants in this study, the vector pCJC1 was used (kindly provided by Dr Dennis Linton), in which the expression of the integrated gene is controlled by the chloramphenicol (cat) cassette promoter. The section of the plasmid vector showing the orientation of the cat cassette, the Cj0023 genes and the position of the restriction sites is represented in Figure 2.1.

The genes of interest for each complementation (namely hicA, unk9 and tetO) were amplified using the primers described in Table 6.3. Each primer pair introduced a restriction site for the enzymes Ncol and Nhel in the 5^{\prime} and the 3 ' end of the PCR product respectively, which were then used to clone the gene in the complementation vector, as described in paragraph 2.4. The vectors built for the complementation of the mutants are reported in Table 6.4.

Each mutant was transformed with the corresponding complementation vector via electroporation (DhicA with pCJC1::hicA, Dunk9 with pCJC1::unk9, DtetO with pCJC1::tetO), as described in paragraph 2.5. Successful transformation was screened via chloramphenicol resistance, using MHA plates supplemented with 30 $\mu \mathrm{g} / \mathrm{ml}$ of chloramphenicol.

The correct insertion of each wild-type gene was checked by PCR, using primers annealing outside the integration site. Sanger sequencing confirmed the correct integration in each of the complemented mutants.

Figure 2.1 - Representation of the integration cassette of pCJC1 expression vector. The vector is described in Jervis et al. in 2015. A fragment of Cj0223 was cloned into pUC18 and interrupted by a chloramphenicol resistance cassette (cat). Nhel and Ncol restriction sites were used to insert the gene to be complemented in each mutant.

2.9 Phenotypic assays

2.9.1 Growth curves

A starter culture of C. jejuni was prepared suspending bacteria grown as a lawn on CBA+ plates overnight in MHB. The initial OD_{600} of 25 ml of MHB was adjusted to 0.1. Bacterial cultures (in a volume of 25 ml) were incubated for up to 30 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$.

Bacterial growth was monitored removing 1 ml for OD_{600} measurement when needed.

2.9.2 Identification of minimal inhibitory concentration (MIC) of antibiotics

MIC of different antibiotics for the different C. jejuni strains used in this study was calculated in different ways, as described in different results sections (e.g. Chapter 3.1 or 6.5).

MIC of tetracycline was calculated on plate, preparing MH plates supplemented with increasing quantity of tetracycline $(1,2,5,10,20$ and $50 \mathrm{mg} / \mathrm{l})$. The tested strain of C. jejuni was streaked on the different plates and after 48 hours incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$, the lowest concentration of antibiotic inhibiting the growth of the bacterium was identified as MIC.

MIC for tetracycline was also calculated with etest \circledR^{\circledR} strips (bioMérieux UK Ltd.), following manufacturer specifications for C. jejuni (a bacterial suspension of 2 McFarland standards in PBS was spread onto MHA plates supplemented with 5% of horse blood and incubated in microaerophilic conditions for 48 hours).

MIC for phenotypic testing of mutants (Chapter 6.5) was calculated with the plate dilution method, unless otherwise stated. Each well of the first column of a 96wells plate was filled with 100μ l of MHB supplemented with twice the maximum
concentration of antibiotic to be tested. All remaining wells were filled with $50 \mu \mathrm{~L}$ of MHB. Each column was subsequently topped-up with $50 \mu \mathrm{~L}$ of MHB with antibiotic taken from the previous column (e.g.: column 2 was topped-up with $50 \mu \mathrm{~L}$ of MHB+antibiotic taken from column 1, then column 3 was topped-up with $50 \mu \mathrm{~L}$ of MHB+antibiotic taken from column 2 and so on). In the final layout, each well was filled with $50 \mu \mathrm{~L}$ of MHB and each column had half the concentration of the antibiotic present in the previous column. The last column was filled with MHB and no antibiotic (growth positive control). C. jejuni grown overnight as a lawn on CBA+ in microaerophilic conditions at $37^{\circ} \mathrm{C}$ were suspended in MHB , and the cell density was adjusted to $0.2 \mathrm{OD}_{600}$. Each well was topped-up with $50 \mu \mathrm{~L}$ of bacterial suspension and the plate was finally incubated for 24 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$. The last row was filled with fresh MHB instead of bacterial suspension as a sterility control. After incubation, the OD600 in each well was measured with a microplate reader (Infinite® 200 PRO, Tecan Trading AG, Switzerland): the lowest concentration of antibiotic inhibiting the growth of the bacterium was identified as MIC.

2.9.3 Acid tolerance assay

Strains of C. jejuni were harvested in MHB after growing overnight on CBA+ plates at $37^{\circ} \mathrm{C}$ in microaerophilic condition.

MHB pH 3, pH 4 or pH 5 (Test conditions) were prepared by adding drops of 2 M HCl to normal MHB (pH 7.2, Control condition). Bacteria were collected with a sterile swab from solid medium and resuspended in MH broth. Each suspension was diluted to an OD_{600} of 0.5 , then bacteria were centrifuged @ $13000 \times \mathrm{g}$ for 5 minutes and resuspended in standard MHA or in modified MHA at pH 3.

Suspensions were incubated for 20 minutes at $37^{\circ} \mathrm{C}$ in microaerophilic conditions, centrifuged for 5 minutes at $13000 \times \mathrm{g}$, resuspended in standard MH medium, and serially diluted to 10^{-7} of the control test.

Finally, three 10μ l drops for each dilution point were spotted on separate MHA plate. After 48 hours of incubation in microaerophilic condition at $37^{\circ} \mathrm{C}$ colonies in each spot showing a number of colonies between 30 and 300 were counted.

Acid tolerance data are here expressed in \% of survival following the equation $\%$ survival $=($ test cfu/ml \div control cfu/ml) x100.

2.9.4 Survival in Synthetic Gastric Fluid (SGF)

The SGF test medium was produced according to the "Simulated stomach environment" as reported by Beumer et al., 1992. The pH of the SGF was buffered to 4.0, as shown by Reid et al, 2008. The SGF was composed of proteose-peptone (8.3 g/liter), D-Glc (3.5 g/liter), NaCl (2.05 g/liter), KH2PO4 (0.6 g/liter), CaCl2 (0.11 g/liter), KCl ($0.37 \mathrm{~g} /$ liter), bile (bovine; $0.05 \mathrm{~g} /$ liter), lysozyme ($0.1 \mathrm{~g} / \mathrm{liter)}$, (13.3 mg/liter) (15). All of the components except the enzymes were dissolved in distilled water, the pH of the solution was adjusted to 4.0 with 1 M HCl , and the solution was filter sterilized and stored at $4^{\circ} \mathrm{C}$. Prior to its use, lysozyme and pepsin were added from fresh stock solutions.

Bacterial suspensions to a concentration of $1.0 \mathrm{OD}_{600}$ in PBS were prepared by collecting bacteria grown overnight as a lawn on CBA+ in microaerophilic conditions at $37^{\circ} \mathrm{C}$ with a sterile swab.

1 ml of bacterial suspension in PBS was spun down and resuspended in $200 \mu \mathrm{l}$ of sterile MilliQ water, then quickly transferred to 4.8 ml of SGF or MHB (Control condition). After 20 minutes, 3 hours or 6 hours of incubation at $37^{\circ} \mathrm{C}$ in
microaerophilic conditions, $100 \mu \mathrm{~L}$ of bacterial suspension in SGF or MBH were transferred to a microtiter plate (96 wells) and serially diluted for cell counting.

Cell counting and \% survival was estimated as reported in "acid tolerance assay".

2.9.5 Motility assays

The ability of C. jejuni to move in soft agar was evaluated following a modification of the protocol described in Reuter et al., 2013.

Cells grown overnight on CBA+ in microaerophilic conditions at $37^{\circ} \mathrm{C}$ as a lawn, were suspended in PBS with a sterile swab and cell concentration was adjusted to OD_{600} 1.0. $5 \mu \mathrm{~L}$ of bacterial suspension was spotted onto each plate for testing the motility: two or three strains were tested at the same time on each plate.

MH motility plates were prepared starting from MHB powder (Oxoid LTD.) and adding agarose (Agar n .2 bacteriological, Lab M, Ltd.) separately to a final concentration of $0.4 \% \mathrm{w} / \mathrm{v}$. The quantity of MHB powder was also adjusted to half the advised quantity when needed.

The two tests conditions were: MH plates with full quantity of nutrients ($21 \mathrm{~g} / \mathrm{l}$ of MHB powder) and $0.4 \% \mathrm{w} / \mathrm{v}$ agarose; MH plates with half quantity of nutrients (10.5 g / l of MHB powder) and $0.4 \% \mathrm{w} / \mathrm{v}$ agarose.

Media were autoclaved at $121^{\circ} \mathrm{C}, 2$ atm for 20 minutes and allowed to cool down to $50^{\circ} \mathrm{C}$ before pouring in the petri dishes. Plates were incubated at room temperature for, at the least, over night before being inoculated. After inoculation, spots were left to dry on the bench for 30 minutes and plates were incubated in microaerophilic conditions at $37^{\circ} \mathrm{C}$ upside-down (lid up); pictures were taken every 24 hours. Measurements of the diameter of the bacterial movement area were
performed analysing each picture with imageJ software (version 1.48, https://imagej.nih.gov/ij/).

2.9.6 Biofilm production

MH plates with half quantity of nutrients ($10.5 \mathrm{~g} / \mathrm{l}$ of MHB powder) were prepared as described in "Motility Assay" section (2.7.5) with two adjustments: the quantity of agarose used was $0.8 \% \mathrm{w} / \mathrm{v}$ and before autoclaving $40 \mu \mathrm{~g} / \mathrm{ml}$ of Congo red (Certified biological stain, Thermo Fisher Scientific Inc.) and $20 \mu \mathrm{~g} / \mathrm{ml}$ of Coomassie Brilliant Blue G-250 (Thermo Fisher Scientific Inc.) were added to the medium.
$5 \mu \mathrm{~L}$ of bacterial suspension prepared as described in motility assay section (2.9.5) were spotted on each plate: two or three strains were tested at the same time on each plate.

After inoculation, spots were left to dry on the bench for 30 minutes and plates were incubated in microaerophilic conditions at $37^{\circ} \mathrm{C}$ for 48 hours upside-down. Plates were then incubated in aerobic conditions for 48 hours upside-down (lid up) and before observing the results of the test and taking pictures.

2.9.7 Persister cells formation

Persister cells were induced incubating a bacterial culture in MHB supplemented with a quantity of antibiotic up to 100 times the MIC. 1 ml of bacterial culture supplemented with the appropriate quantity of antibiotic was incubated for 24 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$ in a 12 wells plate (Corning Inc.), together with the appropriate controls (bacterial culture without antibiotic, uninoculated broth). $100 \mu \mathrm{~L}$ of bacterial suspension were transferred to a microtiter
plate for serial dilutions and the number of CFU per ml was enumerated as described in 2.1 (Miles et al., 1938).

2.9.8 Survival in water

Tap water was collected from Geoffrey Pope building (Exeter, EX4 4QD, lab. 401), and autoclaved for 20 minutes at $121^{\circ} \mathrm{C}, 2$ atm. C. jejuni grown overnight as a lawn on CBA+ in microaerophilic conditions at 37 C were suspended in autoclaved tap water and cells concentration was adjusted to 0.5 OD 600.5 mL of bacterial suspension in water was incubated at $4{ }^{\circ} \mathrm{C}$ for 8 days. $100 \mu \mathrm{~L}$ samples were collected at the start of the experiment and after 8 days of incubation. Cell counting and \% survival was estimated as reported in "acid tolerance assay".

2.9.9 Galleria mellonella larvae injection

Larvae of G. mellonella TruLarv ${ }^{\text {TM }}$ were provided by Biosystems Technology (biosystemstechnology.com). Larvae were maintained in plastic pots for up to 2 weeks at $15{ }^{\circ} \mathrm{C}$ and were weighted before each experiment: only larvae with a body weight between 0.2 and 0.3 grams were challenged with C. jejuni.

The injection of G. mellonella larvae was performed as reported by Champion et al., 2010, with the following adjustments.
C. jejuni grown overnight as a lawn on CBA+ in microaerophilic conditions at 37 ${ }^{\circ} \mathrm{C}$ were suspended in PBS buffer with a sterile swab; cell concentration was adjusted to 2.0 OD $600.10 \mu \mathrm{~L}$ of bacterial suspension was injected with the aid of a microsyringe (Hamilton) in the first right foreleg of the larvae. 10 larvae per strain were injected. Each experiment included 10 larvae injected with sterile PBS buffer and 10 non-injected control larvae. Larvae were incubated in microaerophilic
conditions at $37^{\circ} \mathrm{C}$ for up to 48 hours in empty petri dishes, lined at the bottom with a disc of filter paper.

2.10 Bioinformatics techniques and Genome sequencing

2.10.1 Genome Sequencing

All the strains analysed in this study, were sequenced using the in-house Illumina MiSeq facility available at the University of Exeter.

Paired End Library preparation for each genome was carried out following the procedure reported in the Illumina protocols (Preparing Samples for Paired-End Sequencing, Rev. A, June 2008) on 1 to $5 \mu \mathrm{~g}$ of DNA, shearing the DNA to obtain a final length of <800 bp per fragment.

Illumina MiSeq V3 reagent kit was used, allowing a read length of 300 bp per fragment in each paired read.

2.10.2 Bioinformatics tools and analysis

In this work, for the scripting and programming activity, the following programming languages were used: Perl (version 5.10.1, www.perl.org) with BioPerl module, when necessary (ver 1.0069, www.bioperl.org); R (version 3.3.0, R Core Team (2016), https://www.R-project.org/) and GNU/Linux Bash (under Ubuntu server environment, version 14.04). Scripts used in this work are available in the online supplementary material.

2.10.3 Quality check and trimming of sequence reads

In this study FastQC (version 0.10.0, www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) package was used for the quality
check step of all the raw data. The report that FastQC outputs highlights the following: (i) Basic statistics, a report of the number, length, overall GC\% and the sequencing pipeline used; (ii) Per base sequence quality; (iii) Per base quality score; (iv) Per base sequence content; (v) Per base GC content; (vi) Per sequence GC content; (vii) Per base N content; (viii) Sequence length distribution; (ix) Duplicate sequences; (x) Overrepresented sequences; (xi) Overrepresented k-mers.

Fastq-mcf (from package ea-utils, version 1.1.2-537. Aronesky, 2013) software was used for the adaptors-removal process. It was run with the following options: (i) an adapter file, listing the overrepresented sequences in the input file; (ii) an initial sub-sampling of 100000 of reads; (iii) an average quality of 20 and the presence of more than 1% of N to discard a read; (iv) a minimum sequence length of 45 bp remaining after the cleaning; (v) Illumina PF filtering was enabled. Fastx_trimmer (from FASTX-toolkit package, version 0.0.7, http://hannonlab.cshl.edu/fastx_toolkit/) software was used to trim the beginning and/or the end of each read when a drop under 28 points in quality or a GC\% bias was identified. After this, Fastq-mcf was run again with the only purpose of eliminating all the reads shorter than 35 bp , in order to avoid issues in the assembly phase due to the presence of too short reads.

2.10.4 Genome assembly and annotation

Once raw reads were cleaned and trimmed a series of software was used to produce a draft assembly. SPAdes genome assembler software (version 3.9, Nurk, Bankevich et al., 2013, http://bioinf.spbau.ru/SPAdes) was used to assemble each genome. This software is composed of a series of algorithms designed to apply the de Brujin graph to a shotgun sequencing composed of very short reads. Briefly, the de Brujin graph is preferred to classical and "greedy" assembly methods with very
short reads: it is based on the identity between a series of k-mers in which each read is fragmented and the sequence of the assembly is represented by a "path" that connects k-mers that differs by just one base (Miller et al., 2010).

The optimisation of the k -mer length was performed as advised by the software developers for assembly of reads obtained with Illumina MiSeq technology: after running the assembler with a k-mer value of $21,33,55,77,99$ and 127 , the output was processed via QUAST software (version 3.2, http://bioinf.spbau.ru/quast, Gurevich et al., 2013) which estimates all the typical statistics for the assembled genomes, such as N50, longest contig, total length of the assembly.

Genome assemblies obtained this way have been annotated with RAST ("Rapid Annotation using Subsystem Technology", Overbeek et al., 2014, http://rast.nmpdr.org/), an automated on-line pipeline for the annotation of bacterial genomes.

Final genome assembly graphs were visualised with Bandage software (Wick, et al., 2015); the software displays the connections between contigs that are not present in the final assembly file, also highlighting circular contigs that can be identified as plasmids.

2.10.5 Alignment and coverage analysis

The approach used to evaluate the presence and absence of plasmid genes from each genome analysed in this study was composed of two main steps: (i) the alignment of the raw reads of each sample to a reference sample, and (ii) the evaluation of the coverage of each annotated feature in the reference in each alignment.

The plasmid pTet or the plasmid pan genome genes (described in section 2.8.7) were used as a reference for the reads alignment. For the genomes retrieved as scaffolds or completed (e.g the genomes retrieved from the NCBI database http://www.ncbi.nlm.nih.gov/) a set of raw reads for each one was produced with an ad-hoc perl script (generate_reads.pl). These artificial read sets were composed of 300000 reads 100 bp long in fasta format, randomly obtained from the whole genome.

For the strains of C. jejuni that were sequenced in this study or for which the sequencing reads were available, a subset of 300000 reads was used for the alignment of reads obtained with Hi-seq technology (up to 100 bp long, for the sequencing reads used in this study), and a subset of 100000 reads was used for reads obtained with Miseq technology (up to 300 bp long, for the sequencing reads used in this study). Fastq reads subsets were randomly sub-sampled with an ad-hoc perl script (reads_subset.pl).

The random sub sampling of sequencing reads provided the same theoretical coverage for each alignment, which was on average ~20X considering the length of C. jejuni strain 81-176 genome, according to the formula:

Expected coverage $=($ Read Length * Number of Reads) / Genome length

In order to ascertain whether the depth of coverage fell within 10\% difference of the expected coverage, the alignments were inspected using and the "depth" module of Samtools (http://samtools.sourceforge.net/), which provides the depth of coverage per site for the sequence alignment and visually inspected using Integrated Genome

Viewer software (version 2.3.5, Thorvaldsdóttir et al., 2013, http://www.broadinstitute.org/igv/).

For the sequencing read alignments, Bowtie 2 software was used (version 2.10.0, Langmead and Salzmed 2012, http://bowtiebio.sourceforge.net/bowtie2/index.shtml). The software is specifically designed to align a set of short reads to a genome sequence or an assembly and outputs an alignment file in sam format (detailed information about the format can be found at http://samtools.sourceforge.net/SAMv1.pdf). In order to evaluate the coverage of each feature, the sam file was converted to bam format (http://samtools.sourceforge.net/SAMv1.pdf), ordered and indexed with three softwares belonging to the samtools suite (Samtools view, Samtools order and Samtools index respectively). CoverageBed was finally used (software included in Bedtools suite, version 2.17.0, Quinlan and Hall, 2010, https://code.google.com/p/bedtools) in order to assign a point scale from 0 to 1 to each annotated feature, where 0 is completely non-covered and 1 is fully covered.

An ad-hoc perl script was used to produce a table containing the percentage of coverage of each feature in each strain (compare_coverages.pl). Alignments were visually inspected with the aid of Integrated Genome Viewer software. R software (version 3.0.1, R core team, 2013) was then used to produce a graphical analysis as well as a cluster analysis of the obtained data.

In particular, the aheatmap function contained in the NMF package (version 0.17.6, Gaujoux R and Seoighe C, 2010) was used to produce the heatmap showing the presence and absence of each plasmid feature, in order to graphically identify clusters of gene presence or absence in different strains.

Hierarchical clustering analysis was performed with the Rfunction "hclust" on a Jaccard distance matrix calculated using the with R functions "vegdist" contained in the "vegan" pagkage (version 2.4.3, https://cran.r-
project.org/web/packages/vegan/index.html). Hierarchical clustering trees were converted into Newick tree format when needed (e.g. for the annotation on Evolview software, as described in results chapter 3), with the R function "as.phylo" ("ape" package, version 3.5, http://ape-package.ird.fr/).

2.10.6 Sequence retrieving, pairwise alignments and phylogenetic

analysis

To retrieve the sequences by similarity from genome assemblies (e.g in the MLST analysis in Chapter 3.2.3.2), a BLAST alignment approach was used. The sequence of each fragment in a reference strain (strain C. jejuni NTCC 11168 in the MLST analysis) was used as template for command line BLAST (blastall version 2.2.21, Camacho et al., 2009, ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.21/).

Each genome file in FASTA format (contigs or the completed genome sequence) was formatted as a database with the format-db command, then blastall command was run with the following input arguments and options: (i) the sequences in fasta format we wanted to find in each genome as input file, (ii) the database formatted sequence of the genome as database to perform the alignment, (iii) "blastn" as the BLAST algorithm used for the research, (iv) 1×10^{-6} as the e-value used for the reliability of the alignment.

The result of the BLAST alignment was parsed with an ad-hoc perl script using the bio-perl module to facilitate the input-output of the sequences, in order to obtain a fasta file showing the hits of the BLAST alignment.

For pairwise alignment, MUSCLE (version 3.7, Edgar, 2004) algorithm was used. The alignment was then visually inspected and used as input for phyML (version 3.0, Guindon et al., 2010) in order to produce a maximum likelihood phylogenetic tree. Option used for PhyML were the following, unless otherwise stated: (i) GTR (General Time Reversible) as tree model, (ii) aLTR (SH-like) as branch support algorithm (Anisimova and Gascuel, 2006), (iii) Optimized across site variation rate, (iv) NNI (Nearest-Neighbor-Interchange) as tree searching model, and (v) BioNj with optimized tree topology as starting tree.

Alignments and phylogenetic tree building was performed with of SEAVIEW software (version 4.2, Gouy et al., 2010, http://pbil.univlyon1.fr/software/seaview.html) that provides a graphical user interface for MUSCLE and PhyML. Trees were explored and formatted for presentation using Mega 5 (version 5.2, Tamura et al., 2011, http://www.megasoftware.net/) or CLC sequence viewer (version 7, QIAGEN Inc.), and annotated with Evolview online suite (version 2, https://evolview.codeplex.com/, He et al, 2016). The branching layout of each tree as inferred by PhyML was not modified.

2.10.7 Plasmid pan genome construction and analysis

Plasmid pan-genomes (described in Chapter 3.3) were built pooling all the orthologous proteins in all the plasmids annotations then extracting a representative gene sequence for each orthologous protein.

The list of proteins and genes in fasta format annotated on each plasmid was retrieved from the output of the RAST annotation pipeline. The list of proteins of each plasmid was used as input for ProteinOrtho software (Version 5.15, Lechner et al., 2011). The output of this software was parsed with an ad-hoc perl script (pangenome_parser.pl) in order to extract a representative gene sequence from the annotation of a representative plasmid.

The final output of the plasmid-pan genome shows one representative gene sequence for each of the orthologous proteins identified by the ProteinOrtho software. The list of genes in FASTA format was used as a reference for the alignment of the sequencing reads of each C. jejuni strain analysed in this study using an approach similar to the one described previously (Section 2.10.5Alignment and coverage analysis). In contrast to Section 2.10.5, an ad-hoc perl script (presence_absence_bowtie2.pl) was used to align the sequencing reads to the reference and produce a pileup file using the "mpileup" module of SamTools (Handsaker et al., 2009). The pileup file indicates the coverage of each base in the reference-in this case the gene lists: the breadth of coverage for each gene was calculated as number of covered bases divided by length of the gene.

Chapter 3 - Conservation and distribution of plasmid pTet in Campylobacter jejuni

The plasmid pTet is reported to be present in a large number of strains of C. jejuni (Schmidt-Ott et al., 2005), but its importance has yet to be elucidated.

The first section of this chapter will assess the presence of a plasmid pTet in the collection of C. jejuni strains hosted by the Molecular Pathogenesis Lab in Exeter. In each strain I will check for the presence of the plasmid using PCR markers on genes that have been described in pTet, and determine the tetracycline resistance phenotype (Batchelor et al., 2004). The strains exhibiting the presence of one of the molecular of phenotypic markers will be sequenced in order to assess the variability of the plasmid pTet-like family.

Secondly, I will assess the presence of the plasmid pTet in all the available sequenced C. jejuni strains (corrected in May 2016). I will profile the frequencies of the genes found in the plasmid pTet in all the sequenced Campylobacter strains and assess where the greatest conservation and greatest variability resides. I will also assess the association of plasmid presence with the strain origin, year of isolation and phylogeny.

Finally, I will describe the gene composition of the plasmid pan-genome of C. jejuni and the frequency of those genes amongst the sequenced strains of C. jejuni. I took a pan-genome approach in order to describe the full picture of the plasmid genes in the C. jejuni species instead of describing every plasmid singularly.

The aims of this chapter are to assess the presence of the plasmid pTet and the plasmids pTet-like amongst all the sequenced C. jejuni strains, to describe the variablility of this plasmid family and the genes composing it and, ultimately, studying the frequencies of the different genes annotated in the plasmids pTet-like to ascertain whether this plasmid appears to be maintained solely for the purpose of antibiotics resistance, a thesis already challenged by Friis et al., 2006.

3.1 In vitro testing for the presence of the plasmid pTet

To assess the distribution of the plasmid pTet in C. jejuni, the collection of 121 C. jejuni strains hosted by the Molecular Pathogenesis Lab in Exeter (Table S1) was first tested with PCR markers specific for the plasmid pTet and for the tetracycline resistance phenotype. Moreover, all the strains positive for at least one marker were sequenced using MiSeq sequencing technology and a 300+300 bp paired end library. The first step was to identify markers for the plasmid p Tet. Four primer pairs were designed, covering four different regions of the plasmid pTet in the strain 81176 (Table 3.1). These primers were designed to amplify a 300 to 400 bp section of the helicase gene, the virD4 gene of the T4SS cluster, the tet (O) gene, and the hic A / B cluster, described for the first time on the plasmid pTet in this thesis (and its presence is detailed in Chapter 4). Secondly, I measured the MIC of tetracycline on plate for the strain 81-176 (10 ug/ml, as described in Section 2.7.2), and I used the same concentration for all the other 121 strains of the collection.

Each strain was grown on Columbia Blood agar plates with Skirrow supplement (CBA+) for 2 days at $42^{\circ} \mathrm{C}$ in microaerophilic conditions, then re-streaked and grown at $37^{\circ} \mathrm{C}$ in microaerophilic conditions. Single colonies were then tested for growth on tetracyline (Muller-Hinton agar plates w $10 \mathrm{ug} / \mathrm{ml}$ of antibiotic), and for presence of virD4 PCR marker (DNA was obtained with the thermal lysis method described in Section 2.3). In case of growth or positive PCR, the strain was tested for the remaining PCR markers, tested with a PCR assay to identify the Campylobacter species (C. jejuni or C. coli, Wang et al., 2002), and grown for plasmid and genomic DNA extraction.

Table 3.1-Sequences of PCR primers for the plasmid genes marker. Table columns (from right to left): Primer name, primer sequence, product length for the primer pair, description of the PCR product.

Primer Name	Sequence	Product Length	Description
hicAB_markF	GATCAGGATGGATATTTTGCAC	342	Plasmid marker for the hicBA operon
hicAB_markR	TTAGGGTGCAATATTTCTCC		
tet_markF	TACGGGTCTGTGCCTGTATG	303	Plasmid marker for the tet(O) gene
tet_markR	CTCACGTTGACGCAGGAAAG		
virD4_markF	TATCTACCGCCAGCACAAAG	399	Plasmid marker for the virD4 gene
virD4_markR	TATCCGCCCACGCATTAATC		
hel_markF	TGGATTGCCTGTTGCTTCTG	329	Plasmid marker for the helicase gene
hel_markR	TGGGTGCTGGAACAAATGTG		

3.1.1 Molecular and phenotypic test overview

A total of 23 strains out of 121 were found to be positives for at least one marker between virD2, helicase gene, or hicA/B. The PCR products were visualised on agarose gel, as reported in Material and Methods (section 2.2). Figure 3.1 shows the result PCR for each of the markers on selected strains. 20 strains out of 121 were able to grow on MH plates supplemented $10 \mathrm{ug} / \mathrm{ml}$ of Tetracycline. All the strains positive for the $\operatorname{tet}(O)$ gene were also resistant to tetracycline. One of the MH plates is shown in Figure 3.2. Table 3.2 summarises the results of the PCR and the tetracycline screening for the strains that were identified as C. jejuni. The full results of this analysis are reported in Supplementary Materials Table S1. Four different makeups were identified according to the presence of the PCR markers and the phenotypic resistance to tetracycline: (i) three strains are positive for $3 / 5$ markers, and negative for both tetracycline resistance on plate and the tetracycline PCR marker; (ii) three strains are positive for both tetracycline resistance on plate and the tetracycline PCR marker and negative for the virD4, the helicase and the hicA/B PCR marker; (iii) two strains are negative for the hicA/B marker and positive to the other four makers, (iv) fifteen strains are positive for all the PCR markers tested and for tetracycline resistance.

Figure 3.1 - PCR gels for the 23 strains positive to at least one marker. (A) Marker virD4, (B) Marker tet(O), (C) Marker hlcAB, (D) Marker Helicase. Each image is composed of 2 gels; the lanes are ordered as follows: 1 kb Plus marker (Thermo scientific $®$, Lane 1), 100 bp Plus marker (Thermo scientific $®$, lane 14 for the first gel and lane 13 for the second gel), strain $93 / 372$, strain MB3, strain MB12, strain Hi81006, strain Hi81214, strain MB8, strain Goose_222, strain K2, strain 11818, strain Hi40620300, strain PS623, strain PS762 (lanes 2-13 of the first gel), strain A1.CF.12, strain A6.T2.15, strain $\mathrm{A} 8 / 35 / 15 \mathrm{~A}$, strain $\mathrm{C} 1 / \mathrm{C} / 2$, strain $\mathrm{C} 3 / \mathrm{T} / 25$ col3, strain $\mathrm{C} 5 / \mathrm{T} 2 / 8$, strain MB9, strain MB18, strain Cj1, strain Cj2, strain Cj3 (lanes 2-12 of the second gel), positive control (strain 81-176, lane 14 of the second gel), negative control (no template, lane 15 of the second gel). Agarose gel 1% in TAE, 30 minutes run, 120 V .

Figure 3.2 - Example of one plate for tetracycline resistance screening. The plate is divided into three sectors for strains EX1286, MB9 and PS304. The strain present in each sector is recorded on the plate. Each strain is streaked in triplicate with an " X " shape.

Table 3.2 - Summary of the PCR and tetracycline resistance screening for the 23 positive strains. Table columns (from right to left): strain name, origin of isolation of the strain, ability of growing on MH plates with tetracycline $10 \mu \mathrm{~g} / \mathrm{ml}$, presence of virD4 marker, presence of tet(O) marker, presence of Helicase marker, presence of hicA/B marker, species (identified via pcr screening Wang et $a l$, 2002), plasmid setup 1 to 4 according to the presence of the different markers. $\mathrm{Y}=$ present, $\mathrm{N}=$ absent.

Strain	Origin	Tet R	virD4 mark	tet(0) mark	hel mark	hicA/B mark	Species	Setup
93/372	Unknown (Pet)	N	Y	N	Y	Y	jejuni	1
MB3	Poultry	N	Y	N	Y	Y	jejuni	1
MB12	Poultry	N	Y	N	Y	Y	jejuni	1
Hi81006	Human	Y	N	Y	N	N	jejuni	2
Hi81214	Human	Y	N	Y	N	N	jejuni	2
MB8	Poultry	Y	N	Y	N	N	jejuni	2
222	Goose	Y	Y	Y	Y	N	jejuni	3
K2	Human	Y	Y	Y	Y	N	jejuni	3
11818	Human	Y	Y	Y	Y	Y	jejuni	4
Hi40620300	Human	Y	Y	Y	Y	Y	jejuni	4
PS623	Pig	Y	Y	Y	Y	Y	jejuni	4
PS762	Pig	Y	Y	Y	Y	Y	jejuni	4
A1.CF. 12	Poultry	Y	Y	Y	Y	Y	jejuni	4
A6.T2.15	Poultry	Y	Y	Y	Y	Y	jejuni	4
A8/35/15A	Poultry	Y	Y	Y	Y	Y	jejuni	4
C1/C/2	Poultry	Y	Y	Y	Y	Y	jejuni	4
C3/T/25col3	Poultry	Y	Y	Y	Y	Y	jejuni	4
C5/T2/8	Poultry	Y	Y	Y	Y	Y	jejuni	4
MB9	Poultry	Y	Y	Y	Y	Y	jejuni	4
MB18	Poultry	Y	Y	Y	Y	Y	jejuni	4
Cj1	Human	Y	Y	Y	Y	Y	jejuni	4
Cj2	Human	Y	Y	Y	Y	Y	jejuni	4
Cj3	Human	Y	Y	Y	Y	Y	jejuni	4

The barplot in Figure 3.3 includes the number of strains that gave a positive result for at least one plasmid pTet marker and the origin of the strain. A higher number of strains were isolated from farm animal/environmental sources than from human patients. 8 out of 52 strains (15.4\%) isolated from humans were positive for least one pTet marker, while out of 65 strains isolated from animal or environmental sources 14 were positive (21.5\%).

The percentages of strains showing the presence of at least 1 pTet marker are reported in Figure 3.4. Of positive strains 52% were isolated from poultry including goose, 35% from symptomatic humans (clinical strains), 9% from pigs, and 4% had unknown origins.

The gel in Figure 3.5 shows an example of the plasmid extraction result for three strains found positive for at least one marker: strains $\mathrm{Cj}_{\mathrm{j}} 1, \mathrm{Cj} 2$, and Cj 3 . The strain Cj 1 did not show the presence of plasmid when subjected to extraction using the Promega PureYield ${ }^{\text {TM }}$ Plasmid Midiprep System, the QIAprep Spin Miniprep Kit or the QIAprep HiSpeed® Plasmid Midi kit, designed to extract high molecular weight plasmid and equal the CsCl gradient results (HiSpeed $®$ ® plasmid purification handbook, May 2012). The genomic set-up of Cj 1 will be detailed in Chapter 5.

Figure 3.3 - Number of strains positive for at least one marker, divided by origin. The grey bar represents the total number of strain analysed; the blue part represents the number of strains identified as positive to at least one marker.

Figure 3.4 - Percentage of analysed strains positive for at least one marker and their origin.

Figure 3.5 - Plasmid extraction from selected C. jejuni strains. Lane 1, 1 Kb plus ladder (Thermo scientific); Lanes 2-5, strain Cj1, Cj2, Cj3 and 81-176. Extraction performed with QIAprep Hi-Speed plasmid midi kit (Qiagen). 0.8\% agarose gel in TAE, 2.5 hours run, 60 V .

3.1.2 Plasmid sequence determination via whole genome sequencing

The 23 strains positive for at least one molecular or phenotypic marker listed in Table 3.1.1.1 have been sequenced to identify the full sequence of the plasmid. Full assembly statistics for each sequenced genome are reported in Table 3.3; the sequences of each assembly can be retrieved as Electronic Supplementary Material (E1). After assembly, the sequence of the plasmid was identified with the help of Bandage (https://rrwick.github.io/Bandage/, Wick et al., 2015). This software shows a graphical representation of the de-novo assembly graph, showing connections that are not present in the draft genome contigs because the assembler was not able to resolve them. These connections derive from the physical distance between the paired end reads, whose sequence is determined by the sequencing process. This is a powerful tool for plasmid study, because it allows the identification of contigs deriving from a circular plasmid by a physical DNA connection between the ends. Another important feature of this software for this application is the possibility of using BLAST internally in order to identify the location of particular sequences in the assembly: I used this feature to identify the location of the PCR markers (tet(O), virD2, helicase gene, hicA/B) in the assembly, confirming that they were in the circular plasmid contig or locating them in the chromosomal contigs set. Figure 3.6 shows an example output of Bandage, highlighting the presence of a small circular plasmid structure separated from the large chromosomic contigs set. For the rest of the work, for the strains isolated from animal hosts, the strain name and the host of isolation shown in Table 3.2 will be merged into a new strain name (e.g.: strain 222 isolated from goose will be named strain Goose_222).

Table 3.3-Assembly statistics for the sequenced strains. Table columns (from right to left): Strain name, number of contigs longer than 500 bp , largest contig in the assembly (bp), total length of the assembly (bp), percent of G+C, N50 (bp), L50 (bp), number of contigs of any length, number of contigs longer than 1000 bp . Unless otherwise specified, every statistic shown in this table is based on the number of contigs longer than 500 bp . The N50 is the weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value. The L50 is the number of contigs longer than or equal to the N50 value.

Strain name	\# contigs >=500	Largest contig	Total length	GC (\%)	N50	150	\# contigs >= 0 bp	\# contigs >= 1000 bp
11818	24	728271	1767836	30.45	191357	2	49	16
Poultry_C3_T_25	21	563591	1751552	30.24	331004	2	52	13
Cj1	22	543624	1763494	30.22	215989	3	24	20
Cj2	19	656205	1696696	30.43	297362	2	61	12
Cj3	22	547640	1746094	30.37	211082	3	46	20
Goose_222	24	559741	1674799	30.49	213026	3	78	16
Hi81006	19	688355	1722779	30.44	231706	2	32	14
Hi81214	28	553931	1636265	30.48	282176	2	69	12
Hi40620300	85	548118	1810698	30.36	272673	3	167	18
K2	33	301612	1786320	30.19	176277	4	50	30
Poultry_MB8	27	612691	1690067	30.31	190197	3	52	18
93/327	28	544865	1665129	30.48	189514	3	113	19
Pig_PS623	91	320151	1863679	30.23	170709	5	198	31
Pig_PS762	63	319777	1808539	30.2	175289	4	134	24
Poultry_A1_CF_12	31	563460	1757893	30.25	331004	2	82	15
Poultry_A6_T2_15	18	563464	1748612	30.25	331006	2	49	13
Poultry_A8_35_15A	33	563467	1758955	30.25	331006	2	101	13
Poultry_C1_C_2	19	563463	1749593	30.25	331002	2	50	13
Poultry_C5_T2_8	18	563589	1750271	30.25	331006	2	46	13
Poultry_MB12	21	776946	1676902	30.44	245358	2	48	14
Poultry_MB18	49	777734	1734473	30.39	189506	2	112	15
Poultry_MB3	29	658226	1695267	30.44	297333	2	58	14
Poultry_MB9	22	563964	1753260	30.27	331004	2	72	13

Figure 3.6-Graphical representation of the assembly of the strain Cj 2 using Bandage software. Each segment of the figure represents a contig of the genome assembly (grey lines), linked to each other using the "graph" information provided by the software SPAdes. The red arrow indicates the plasmid pCj 2 (zoomed in the image inset), which self-circularises in the assembly procedure thanks to the information deriving to the paired end. Colours on the contig indicated by the red arrow represent Blastn hits of the genes annotated in the plasmid pTet (NC008790.1), indicating the presence of the pTet genes on this contig, rather than on the rest of the assembly.

3.1.3 Overview of the plasmid sequences in the strains analysed

Each of the sequenced plasmids from the previous analysis was graphically represented with the aid of BLAST Ring Image Manipulator (BRIG, Alikhan et al., 2011) and is reported in Supplementary Material S2. Full plasmid DNA sequences and annotations are available as Electronic Supplementary Material E2. Table 3.4 shows the general characteristics of each plasmid.

Table 3.4 - Summary of the characteristics of the sequenced plasmids. Table columns (from right to left): Strain name, name of the plasmid, Size in kilobases, G+C percentage, number of putative proteins, number of predicted genes.

Organism	Plasmid name	Size (Kb)	GC(\%)	Protein	Gene
Campylobacter jejuni 11818	p11818	44.95	29.06	52	52
Campylobacter jejuni poultry C3_T_25	pPoultry_C3_T_25	47.66	28.04	56	56
Campylobacter jejuni Cj2	pCj 2	43.67	27.57	48	48
Campylobacter jejuni Cj3	pCj3	42.01	27.84	46	46
Campylobacter jejuni goose 222	pGoose222	46.08	28.13	52	52
Campylobacter jejuni Hi40620300	pHi4062300	44.83	29.27	50	50
Campylobacter jejuni K2	pK2	47.59	28.77	54	54
Campylobacter jejuni Pet_93_327	pPet93_327	37.73	27.19	43	43
Campylobacter jejuni Pig_PS623	pPigPS623	45.38	28.72	50	50
Campylobacter jejuni Pig_PS762	pPigPS762	45.59	28.99	51	51
Campylobacter jejuni Poultry_A1_CF_12	pPoultry_A1_CF_12	47.64	28.05	54	54
Campylobacter jejuni Poultry_A6_T2_15	pPoultry_A6_T2_15	47.64	28.03	54	54
Campylobacter jejuni Poultry_A8_35_15A	pPoultry_A8_35_15A	47.64	28.05	55	55
Campylobacter jejuni Poultry_C1_C_2	pPoultry_C1_C_2	47.64	28.05	54	54
Campylobacter jejuni Poultry_C5_T2_8	pPoultry_C5_T2_8	47.64	28.05	55	55
Campylobacter jejuni Poultry_MB12	pPoultry_MB12	37.53	27.23	45	45
Campylobacter jejuni Poultry_MB18	pPoultry_MB18	44.76	28.99	52	52
Campylobacter jejuni Poultry_MB3	pPoultry_MB3	38.15	27.17	43	43
Campylobacter jejuni Poultry_MB9	pPoultry_MB9	47.66	28.04	56	56

3.1.3.1 Comparison of newly sequenced strains against plasmid pTet from

strain 81-176

The graphical representation of the BLASTn alignment between the genome assembly of the newly sequenced strains against the pTet reference sequence is shown in Figure 3.7. In this analysis, the sequence of pTet (NC008790.1) was reannotated with RAST automated annotation pipeline (Overbeek et al., 2014). This structural comparison was obtained using BRIG. Similar data are reported in Table 3.5 , where the raw reads of each sequenced strain were mapped to the reference plasmid with using Bowtie2 and assessing the breadth of coverage with the tool CoverageBed, as described in materials and methods 2.10.5.

The columns in Table 3.5 are ordered from the lowest to the highest difference compared with the reference: the method used to quantify the difference was as follows. Given the value of 1 as 100% breadth of coverage and 0 as 0% coverage of each feature, considering 52 as the number of features in the plasmid pTet, the sum of the breadths of coverage in each strain would be a maximum of 52 . The rows of Table 3.5 have been ordered from the start of the plasmid pTet as retrieved from the NCBI database, accession number NC008790.1.

The presence of conserved domains and further hypothetical functions has been assessed with the CDS engine from the ncbi (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?). Each CDS result reported from here on is associated to an e-value lower than 10^{-3}.

The greatest variability occurred around specific regions of the reference plasmid; the gene encoding for "replication protein" was present in 9 of the strains. The plasmids from other strains are missing the gene encoding the replication
protein of the reference plasmid pTet. Interestingly, this CDS is missing from nearly all the strains isolated from poultry, except from the strain Poultry_MB18.

The BRIG plot in figure 3.7 highlights several conserved gaps when the sequences of the newly isolated plasmids are compared to the pTet plasmid NC008790.1: in particular, in the regions around the replication protein and the surrounding hypothetical proteins, and the hypothetical proteins FIG00469861 and FIG00471987.

Figure 3.7-Graphical representation of the BLASTn alignment of each genome sequence of the 23 strains in Table 1.2.1 and the plasmid pTet (NC008790.1). Coloured line shows >70\% identity. Each ring represents (starting from the inner ring): strain HI81214, strain HI81106, strain MB8, strain MB12, strain 93/327, strain MB3, strain goose222, strain K2, strain pig726, strain Hi40620300, strain 11818, strain Pig623, strain A6/T2/15, strain A1/CF/12, strain C1/C/2, strain A8/35/15A, strain T3/C/25, strain MB9, strain Cj3, strain Cj1, strain Cj2, gene annotation of pTet (NC008790.1) produced with RAST automated annotation pipeline (Overbeek et al., 2014).

Table 3.5 - Breadth of overage of each ORF of pTet in strain 81-176 (NC008790.1) in the newly sequenced strains of \boldsymbol{C}. jejuni (Table 3.4). Columns are (from left to right): gene name, position in NC008790.1, and each of the newly sequenced strain. Each cell shows the value of coverage percentage in each strain, and is coloured in dark grey if it is higher than 90%, in light grey if it is lower than 10%, and in shades of grey for intermediate values.

A series of genes encoding for hypothetical proteins annotated close to the replication protein were missing or showed up to 50% coverage in plasmids that lacked the p Tet replication protein (Table 3.6). These proteins carry a partial CRISPR/Cas domain (FIG00471069_hypothetical_protein), a partial Ras/GTPase enhancer domain (FIG00471024_hypothetical_protein), and a partial ToIA domain involved in several cellular processes, from the uptake of colicins and filamentous DNA to pathogenesis (TolA_protein).

Two other hypothetical proteins from the reference plasmid pTet were absent in the pTet-like plasmids from a large number of the strains analysed (Table 3.7): FIG00469644 hypothetical protein, present in 11 of the plasmids and which encodes for a partial acetyl transferase or sialyl tranferase largely found in C. jejuni (Gilbert et al., 2000) and FIG00469861 hypothetical protein, which carries a conserved domain shared with bacteriophage resistance proteins and is present in 11 analysed strains.

The pTet plasmid from 3 strains, Pet 93 327, Poultry MB3 and Poultry MB12 lacked the tetracycline resistance gene. Moreover, all these plasmids were missing genes flanking the $\operatorname{tet}(O)$ gene. In particular: the replication protein and the proteins associated with it (described above in this section), the DNA topoisomerase III encoded by a gene upstream tet(O), and two hypothetical proteins-FIG00470802 encoding for a conserved domain of unknown function and a hypothetical protein encoding for no putative conserved domains.

The strains Poultry MB8, Hi81214 and Hi81006 possessed the tet(O) gene and a gene encoding a single hypothetical protein flanking the tet (O) gene but lacked any other genes from the reference pTet plasmid. The tet (O) in these strains is integrated in the chromosome.

Table 3.6- Conserved domains identified in the hypothetical protein sequences of FIG00471069_hypothetical_protein FIG00471024_hypothetical_protein and ToIA_protein in the strain 81-176. For each hypothetical protein, a screenshot of the results retrieved from NCBI's CDSearch search engine, the name of each conserved domains, the accession number of the conserved domain, the region showing the predicted domain, and the e-value is reported.

TolA protein, part of the Tol/Pal complex involved in maintaining outer membrane integrity. Also implicated in transport of colicins, filamentous dna and pathogenesis
Relaxase/mobilisation nuclease domain

TIGR02794	$55-417$	$2.62 \mathrm{e}-6$
cl21589	$301-603$	$6.65 \mathrm{e}-7$

Table 3.7-Conserved domains identified in the hypothetical protein sequences of FIG00469644_hypothetical_protein, FIG00469861_hypothetical_protein. For each hypothetical protein a screenshot of the results retrieved from NCBI's CD-Search search engine, the name of each conserved domain, the accession number of the conserved domain, the region showing the predicted domain, and the e-value is reported.

The integration point of the tet (O) gene from strains Poultry MB8 and Hi81214 showed a repeated sequence, highlighted in the following sequence:

5'_ATTTAGGGTATAACAAAATAACCCACCCGAATATC<tet(O)__ Hypothetica IProtein>CTATGAGCCTTTCAAAGCGTTCCTGTGCCTGTCTGTTG_3'

A BLASTn alignment of this sequence against the bacterial genomes database highlights how the same sequence is present in several strains of C. jejuni and in different bacterial species, such as Streptococcus spp. (Figure 3.8), when the gene tet (O) is present chromosomically.

The plasmid of about 37 kbp that can be identified in the Poultry MB8 appears to belong to a different plasmid family compared to the other families described in this chapter: it shows $>90 \%$ similarity to the plasmid pVir (Bacon et al., 2000), and for this reason it will not be discussed further (data not shown).

Figure 3.8 Localisation of $\boldsymbol{t e t}(0)$ gene in the genome of Streptococcus species. Graphic representation of a BLASTn alignment of the 73 bp surrounding the tet (O) gene in the strain MB8 against the complete genome of Streptococcus suis NSUIO60. The red arrow indicates the query sequence; the green arrow indicates the gene tet (O) in S. suis genome.

3.1.3.2 Global plasmid comparison

To understand the differences and the similarities amongst all the plasmids, a global comparison of all the plasmids sequenced from C. jejuni strains (19 plasmids) and the original pTet (NC008790.1) was next carried out.

In order to do so, the plasmids were linearised starting from the gene annotated as virB2. This was chosen because it was present in each of the plasmids. The plasmids were aligned using the internal aligner of CLC sequence viewer (standard parameters) and visualised with the same software (ClustalW2 algorithm, Thompson et al., 1994). This software was chosen because it was relatively simple to retain the annotation in the alignment and this allowed a better visualisation. The output is shown in Figure 3.9, and Table S3 (Supplementary material) shows the annotated genes identified in each plasmid.

This alignment revealed that the most conserved parts of the alignment correspond to the type four secretion system cluster, a helicase gene (involved in the ATP-dependent unwinding of DNA), a virD2 homologous gene involved in the DNA transfer, a DNA primase gene 40000 bp from the beginning of the alignment, and a hypothetical protein (FIG00470960) possessing a domain associated with DNA repair (Table 3.8).

This analysis also highlights several differences amongst the plasmids, unnoticeable according to the analysis performed in the previous section. This is because the approach previously adopted did not take into account features absent from the original plasmid pTet .

Several hypothetical proteins were completely absent from the plasmid pTet of strain 81-176 and are highlighted for the first time in this analysis.

Figure 3.9 - Representation of the global alignment between 19 pTet like plasmids and the plasmid pTet (NC008790.1). pTet_original = sequence of pTet accession NC008790.1. Each black line represents the sequence of a plasmid linearised at the start of the annotated gene virB2. Numbers are related to the length of each plasmid. Red squares highlight sections of the alignment described in paragraph 3.1.3.2; red numbers on top of the alignment are referred in the text when the relevant part of the alignment id described.

Starting from the beginning of the alignment, (1) the CDS encoding the DNA topoisomerase in pCj 3 was absent despite the fact that it appears to be present in Table 3.5. It is possible to notice an insertion of 127 bp that seems to disrupt the CDS is present in this strain. (2) where 17 plasmids show the presence of the tet(O) gene, the three plasmids (pPet_93_327, pPoultry_MB3 and pPoultry_MB12) lacking the tetracycline resistance gene show a protein annotated as hypothetical protein pVir0015, conserved in the C. jejuni pVir plasmid.
(3) CDS encoding for several different hypothetical proteins are present in the region of the alignment around the "replication protein" gene of p Tet. This region was already described as highly variable in Figure 3.7. It is possible to identify a gene encoding for a small hypothetical protein in the three strains lacking the tetracycline resistance gene, a gene encoding for a hypothetical protein FIG00471065 in the strain Cj 3 , and a gene encoding for a hypothetical protein FIG00471069 in most of the strains isolated from poultry. None of these hypothetical proteins shows any putative conserved domain.
(4) Strains Poultry C3_T_25 and Cj2 lack the complete helicase (snf2 family) gene because of a 127 bp insertion at the 3' end of it. Downstream of the Helicase (snf2 family) gene, plasmid pTet NC008790.1 has a CDS encoding a hypothetical protein (FIG00469644) carrying a conserved acetyl transferase domain (Table 3.1.3.2.3). (5) Upstream the gene encoding for the hypothetical protein FIG00469644, seven plasmids (p11818, pPoultryMB18, pHi40620300, pPigPS762, $\mathrm{pCj} 2, \mathrm{pK} 2$ and pCj 3) show the presence of a gene encoding for a putative protein FIG00472625 carrying a LabA-like conserved domain, involved with the regulation of several cellular process (from circadian rhythm in cyanobacteria to degradation of toxic substance, Taniguchi et al., 2007; Tang et al., 2008). In the same region of the
plasmid, most of strains isolated from poultry (Poultry_A6_T2_15, Poultry_C5_T2_8, Poultry_C1_C_2, Poultry_MB9, Poultry_A1_CF_12, Poultry_A8_35_15_A and Poultry_C3_T_25), show a different gene cluster. It is formed by 5 CDSs, all encoding for hypothetical proteins, with conserved domains associated with acetyl transferase, a porin, type 2 secretion system associated proteins, and with a peptidase for bacteriocin processing (Table 3.9).
(6) Moreover, between 40000 and 50000 bp from the beginning of the alignment, a CDS encoding for a hypothetical protein FIG00469861 (described in section 3.1.3.1) present in pTet was missing from 10 plasmids (p11919, pPoultry_MB18, pHi40620300, pPoultry_A6_T2_15, pPoultry_C5_T2_8, pPoultry_C1_C_2, pPoultry_MB9, pPoultry_A1_CF_12, pPoultry_A8_35_15_A and pPoultry_C3_T_25). In the same area of the alignment, a CDS encoding for a serine/threonine kinase signal transductor was only found in 2 plasmids (pK2 and pGoose222).
(7) Towards the 3 ' end of the alignment, a gene cluster is present that is associated with strains isolated from poultry. It contains four CDSs, with domains associated with signal transduction and regulation (TIR_2 bacterial toll like receptor), virulence (VapD), and protein metabolism (metallo-beta-lactamase) (Table 3.1.3.2.3). Plasmid pCj2 and pGoose222 possessed a single gene encoding for a hypothetical protein with no CD identifiable in the same region, while a membrane aromatic cluster protein (lipoprotein associated with Mycoplasma) is identifiable in the plasmid pK2.

Table 3.8 - Conserved domains identified in the hypothetical protein sequence of FIG00470960_hypothetical_protein. A screenshot of the results retrieved from NCBI's CD-Search search engine: the name of each conserved domain, the accession number of the conserved domain, the region showing the predicted domain, and the e-value is reported.

FIG00470960_hypothetical_protein

Table 3.9 - Conserved domains identified in the hypothetical protein sequences of FIG00472625_hypothetical_protein, FIG00469644_hypothetical_protein, FIG00470281_hypothetical_protein, Hypothetical protein (FIG|354242.88.peg. 1849 on the annotation of strain A6/T2/15), FIG00628667_hypothetical_protein, Serine threonine protein kinase PrkC, Hypothetical protein (FIG|354242.88.peg. 1854 on the annotation of strain A6/T2/15), Virulence associated protein D (VapD), Hypothetical protein (FIG|354242.88.peg. 1851 on the annotation of strain A6/T2/15). For each hypothetical protein, a screenshot of the results retrieved from NCBI's CD-Search search engine, the name of each conserved domain, the accession number of the conserved domain, the region showing the predicted domain, and the e-value is reported.

The alignment shown in Figure 3.9 was used to infer the phylogeny of the plasmids. A tree was produced using the software CLC Sequence Viewer (Neighborjoining algorithm, Jukes-Cantor distance measuring method, 100 bootstrap replicates). The result of this analysis is shown in Figure 3.10.

The tree has several characteristics worth highlighting: the plasmids isolated from the same source do not always cluster together (e.g.: the two plasmids isolated from pig, the plasmids isolated from a human host, or the plasmids isolated form poultry do not cluster with each other). Moreover, there is not a clear clustering related to the length of the plasmid. Plasmids in cluster A exhibit a higher average length than the plasmids in cluster B. When compared to the plasmid pTet NC008790.1 (isolated from 81-176), the strains identified in cluster A appear to have acquired several gene-for instance, the gene cluster towards the 3 ' end of the alignment described in above (area highlighted with number 7 in Figure 3.9). The strains identified in the cluster B on the other hand appear to have lost several genes, in particular the gene cluster around the tetracycline resistance gene. None of the other strains in this analysis follows any pattern associating phylogeny and length of the plasmid.

Figure 3.10 - Phylogenetic tree obtained with the alignment of the linearised plasmid sequences (shown in Figure 3.9). Neighbor-joining algorithm, Jukes-Cantor distance measuring method, 100 bootstrap replicates. (pC3_T_25 = pPoultry_C3_T_25). Plasmids highlighted by A show a higher average length than plasmids highlighted by B.

3.2 - Survey of all available Campylobacter jejuni genome sequences for the presence of pTet

To understand the distribution of the plasmid pTet amongst C. jejuni, I built a database of all available C. jejuni genome sequences (updated in May 2016). This included 3211 strains from a study conducted by the Sanger Institute between 2008 and 2012, monitoring an Oxford Hospital's patients (http://www.ebi.ac.uk/ena/data/view/ERP000129, "The genomic speciation of Campylobacter", unpublished, study accession number PRJEB2075). It also included 78 strains from a Genome-Wide Association Study (GWAS) reported by Sheppard et al., 2013 (http://datadryad.org/resource/doi:10.5061/dryad.28n35) and 679 strains sequenced in the last 15 years and retrieved from the NCBI database (completed and draft stage, retrieved in May 2016 http://www.ncbi.nlm.nih.gov/genome/). Finally, I included 37 strains sequenced at Exeter University, before or during this work.

The final database included a total number of 4005 strains and is summarised in Table 3.10. The complete table with the meta-data associated for each strain is available in electronic format (Electronic Supplementary Material E3).

In this analysis, the presence of each gene of the plasmid pTet in the database of 4005 C. jejuni has been assessed. Briefly, raw reads were aligned to the pTet sequence, using Bowtie2 as described at 2.10.5. If the raw reads were not available, the draft genome or the complete genome was treated with an ad-hoc perl script to obtain a set of artificial raw reads (generate_reads.pl). All of the alignments were then analysed using CoverageBed. Each file reporting the "breadth of coverage" for each alignment was parsed with a perl script (compare_coverages.pl) to obtain a single table showing the breadth of coverage of each single gene in each strain.

Table 3.11 shows a subset of the full analysis, reporting the breadth of coverage of the 50 strains showing the highest number of genes covered and the 50 strains showing the lowest number of genes covered. The full result of this analysis is available in electronic format (Electronic Supplementary Material E3).

Table 3.10 - Number of strains of C. jejuni genome sequences used for surveying the presence of the plasmid pTet. Columns are (from left to right): number used for each group of strains (i to iv), number of strain in each group, study from which the group was retrieved, status of the genome sequences in each group.

\# of strains Study		Sequencing status	
(i)	3211	"The genomic speciation of campylobacter" (Unpublished)	Raw reads
(ii)	78	Sheppard et al. 2013	Contigs (draft)
(iii)	679	Various - retrieved from http://www.ncbi.nlm.nih.gov/genome/	Complete - Contigs (draft)
(iv)	37	Seqeunced in-house	Contigs (draft)
Total	4005		

Table 3.11 - Breadth of coverage of each ORF of pTet in strain 81-176 (NC008790.1) in the 50 strains showing the highest number of genes covered and the 50 strains showng the lowest number of gene covered. One different strain per row. Columns are (from left to right): strain name, study name (according to Table 3.10: SANGER = i, GWAS = ii, NCBI = iii, IN-HOUSE = iv), origin of isolation (where unavailable $=N / A$), year of isolation (where unavailable $=N / A$), breadth of coverage of each gene annotated in pTet (NC008790.1). Last column is the sum of the breadths of coverage. Each cell shows the value of coverage percentage in each strain, and the dot present in each cell is a graphical representation of each number (completely black $=80-100 \%$, three quarters black $=60$ 80%, half black $=40-60 \%$, one quarter black $=20-40 \%$, blank $=0-20 \%$). The full table is available in xlsx format (Electronic Supplementary Material E3).
\qquad hypothetical protein5

Tola protein
1160469626: hypothetical protein
hypothetical protein4
\qquad

1600470802: hypothetich

\qquad F1600470273: hypothetical protein FIG00469957: hypothetical protei Caplasmid conjugative transter- TraQ (APP4 T | VirDa ATPase |
| :---: |
| FIG00471065: hypothetical protein |

VirB11
VirB10
VirB9
VirB8
VirB7
VirB6
VirB5
FIG004704557: hypothetical protein
Single-stranded DNA-binding protein
FIG00471987: hypothetical protein
FIG00471069: hypothetical protein
Phage Rha protein
Virb4
hypothetical protein2

 avededo ata
 O全

 0 O 0

 OिO पिक्र०

 Hmen
 OैO O 0 0 0
 O2 20

 2 20

 (2) (4) (4)
 (e)
 क० 0
 2x 2

$=2=2=$

!
${ }^{4}$䊾

3.2.1 Overview of the pTet presence survey

A general analysis of the number of strains possessing pTet-like plasmids is reported in this paragraph. As shown in Figure 3.11, a total of 1344 (33.6\%) strains show the presence of at least 1 gene annotated in the 81-176 pTet plasmid. To establish the presence of a gene, I defined a cut-off of 80% in breadth of coverage in the coverage table described in Section 3.2. Of this set of strains, 617 had more than $50 \%(n>26)$ of the total $81-176$ pTet genes. This indicates that 15.4% of the total database analysed has more than half of the annotated genes for the plasmid pTet (NC008790.1) identified in this study with RAST (Overbeek et al., 2014), and 45.9\% of the strains showed evidence of possessing a pTet-like plasmid. Of the 1344 strains with at least 1 pTet gene in their genome, 941 strains show the presence of the tetracycline resistance gene tet(O), while 403 lacked this gene sequence. From the analysis of the group showing the presence of at least 50% of the plasmid pTet 81-176, it emerges that a total of 461 strains out of 617 (74.7\%) showed the presence of the tet(O) gene, while 156 (25.3\%) strains show a complete lack of tet (O) sequence. One of the main reasons why pTet is believed to be conserved is because it encodes resistance to the tetracycline (Batchelor et al., 2004). This analysis highlights a possible absence of this association, as the 25.3% of C. jejuni sequenced strains showing the presence of the majority of the pTet plasmid from 81176 do not appear to possess the tet(O) gene.

Figure 3.11- Overview of presence of pTet genes in the 4005 genome sequences of C. jejuni analysed. A gene is defined as present in a genome if it is covered for at least 80%, when the breadth of coverage is assessed as described in Section 2.1. tet(O) + or - = Tetracycline resistance gene is present or absent, plasmid + or - = at least 26 genes of the plasmid pTet are present, plasmid "traces" = at least one gene of the plasmid pTet is present.

The heatmap in Figure 3.12 A (also reported in full electronically in Electronic Supplementary Material E4) is obtained using the data matrix of breadth of coverage of the 52 pTet NC008790.1 genes (columns) in the 617 strains showing more than 26 genes present (rows). The clustering tree of the column dimension is also reported in Figure 3.12 B. Cluster one, corresponding to the rightmost side of the heatmap, shows genes conserved in the majority of the strains having the pTet-like plasmid. A second cluster shows less conserved genes characterised by a higher variability (including some of the vir genes of the type four secretion system), and four clusters alternatively present in different groups of strains, including the tet(O) gene and the replication protein.

If the same type of analysis is expanded to the strains exhibiting the presence of at least one plasmid gene, the result obtained is shown in Figure $3.13 A$ and B (heatmap in Figure 3.13 A is available as Electronic Supplementary Material E5). In this case, the data matrix used as input for the heatmap clustering shows the breadth of coverage of the 52 pTet NC008790.1 genes (columns) in the 1344 strains showing at least 1 of the genes present (rows). The plasmid genes are clustered in three main clusters in this case: this is because the small frequency differences between the 617 strains showing the presence of the majority of the plasmid genes are masked by the high number of C. jejuni strains showing the lack of the genes in the cluster II, and the presence of the tetracycline resistance gene chromosomally (cluster III).

Figure 3.12 - Cluster analysis of the plasmid pTet genes (1). (A) Heatmap built with the breadth of coverage table of each gene annotated in the plasmid pTet (NC008790.1) in each of the 617 strain showing at least the presence of 26 genes of the plasmid pTet. Clustering distance for columns and rows = euclidean, clustering method = complete. The 52 genes annotated on the plasmid pTet are in the column, the 617 strains are in the rows. Each cell is coloured from white (0% coverage) to dark green ($80-100 \%$) as reported in the legend. (B) Clustering tree for the genes (columns). The rightmost element is on top (rotated 90 degrees left). The clusters identified on the tree (numbered from I to IV) are also highlighted on the heatmap. The full heatmap is available in pdf format (Electronic Supplementary Material E4).

Genes

$$
\begin{aligned}
& 1 \\
& 0.8 \\
& 0.6 \\
& 0.4 \\
& 0.2 \\
& 0
\end{aligned}
$$

Figure 3.13 - Cluster analysis of the plasmid pTet genes (2). (A) Heatmap built with the breadth of coverage table of each gene annotated in the plasmid pTet (NC008790.1) in each of the 1344 strains showing at least the presence of 1 gene of the plasmid pTet. Clustering distance for columns and rows = euclidean, clustering method = complete. The 52 genes annotated on the plasmid pTet are in the column, the 617 strains are in the rows. Each cell is coloured from white (0% coverage) to dark green ($80-100 \%$) as reported in the legend. (B) Clustering tree for the genes (columns). The rightmost element is on top (rotated 90 degrees left). The clusters identified on the tree (numbered from I to IV) are also highlighted on the heatmap. The full heatmap is available in pdf format (Electronic Supplementary Material E5).

3.2.3 Association with the presence of the plasmid pTet and the time of isolation, the origin of the strain and phylogeny

The previous analysis was performed on a set of 4005 C. jejuni isolates, composed of strains isolated at different times, by different labs, following different standards for recording the metadata of each strain. For this reason, each of the following Sections describes just a subset of the entire dataset. For instance, strains with unknown year of isolation are not included in Section 3.2.3.1.

3.2.3.1 Year of isolation

For this analysis, a subset of strains from the Sanger Institute collection and from the NCBI database was used. Most of the strains from the Sanger Institute collection were isolated from symptomatic patients between 2009 and 2012, and the genome sequencing deposited on the NCBI database were obtained from strains isolated between 1980 and 2014: the metadata were retrieved from the project page at the MLST database of Campylobacter jejuni/coli (http://pubmlst.org/perl/bigsdb/, Jolley and Maiden, 2010) and from the BioSample database entry associated with each genome assembly (http://www.ncbi.nlm.nih.gov/biosample). Unfortunately, the number of strains isolated each year is not consistent and not all the strains included in the collection have a timestamp. The numbers of strains isolated in each year is reported in Table 3.12.

The number of strains possessing a pTet-like plasmid is reported in the barplot in Figure 3.13 for strains showing the presence of at least 1 gene annotated in pTet and in Figure 3.14 for strains showing the presence of at least half of the genes annotated in the pTet.

From this analysis, I identified strains retaining the pTet-like plasmid every year between 2006 and 2013—particularly, between year 2009 and 2012, when the sample size is larger, the number of strains positives for the plasmid presence was 34.5% (2009), 13.1% (2010), 20.1\% (2011), 13.6\% (2012).

Table 3.12 - Number of strains isolated per year included in the analysis described in 3.2.3.1.

Year	Number of CJ strains
1980	1
1985	1
1993	1
1994	2
1995	2
1996	12
1997	1
1998	2
1999	4
2000	10
2001	8
2002	14
2003	13
2004	13
2005	9
2006	8
2007	14
2008	5
2009	52
2010	130
2011	844
2012	545
2013	8
2014	1

Figure 3.14 - Number of strains per year showing the presence of at least 1 gene annotated on the plasmid pTet. The inset shows a zoom for the years 2009 to 2012.

Figure 3.15 - Number of strains per year showing the presence of at least 26 genes annotated on the plasmid pTet. The inset shows a zoom for the years 2009 to 2012.

3.2.3.2 Phylogeny

In order to understand whether the possession of the pTet-like plasmids is associated with the phylogeny of C. jejuni, the presence of each gene was associated to the phylogenetic analysis of the Multi-Locus Sequence Tag of C. jejuni. A 400 to 600 bp fragment of 7 core genes have been extracted from the genome sequence of a subset of 168 strains. This included the strains in the GWAS study (Sheppard et al., 2013), the completed genomes retrieved from the NCBI database (NCBI bacteria), and 20 strains sequenced in-house up to 2013. The MLST of C. jejuni is described in "Multilocus Sequence Typing System for C. jejuni" (Dingle, 2001), curated by http://pubmlst.org/Campylobacter/, which includes the sequence of internal fragments of 7 housekeeping genes: aspA (aspatase), glnA (glutamine synthetase), gltA (citrate synthase), glyA (serine hydroxy methyl transferase), pgm (phospho glucomutase), tkt (transketolase), uncA (ATP synthase alpha subunit). The sequence of these fragments in the reference strain 11168 were retrieved from the NCBI database (NC_002163.1), aligned against the entire draft or complete genome of each strain included in the analysis using BLASTn, and the matching sequence extracted

The sequences of the 7 fragments were concatenated, pairwise-aligned with MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/) and the phylogenetic tree was built as described in 2.8.6. The phylogenetic tree was then annotated with EvolView (version 2, https://evolview.codeplex.com/, He et al., 2016): the presence or absence of each gene is reported as breadth of coverage in the alignment of raw reads or artificial reads (as described in Section 2.8.5 of materials and methods).

Figure 3.16 shows the result of the analysis. It is clear that none of the clusters are associated with the presence of one or more plasmid genes.

Figure 3.16 - MLST analysis tree for a subset of 168 strains and presence of pTet genes. The table shows the presence of each gene annotated on the plasmid pTet in each strain as percent of coverage as reported in the legend (white $=0 \%$ coverage, black $=100 \%$ coverage). Strains are listed on the rows of the table, corresponding to the leaves of the phylogenetic tree, genes are listed on the columns.

3.2.3.3 Origin

For this analysis a subset of strains of known origin of isolation was used. This included the NCBI sequence assembly whose origin could be retrieved from the "Biosample" database (http://www.ncbi.nlm.nih.gov/biosample), 36 of the strains sequenced in-house, the strains from the GWAS analysis and part of the strains retrieved from the Sanger Institute Database. The total number of strains with recorded origin used in this section was 821, and they were divided in 7 groups as reported in Table 3.13. The poultry group includes every strain isolated from chicken, goose, duck, and turkey; the clinical group includes the strains isolated from humans in a clinical environment; the environmental group includes strains that were not isolated from animals or stool (e.g. from soil or water).

The results are reported in Figures 3.17 and 3.18 and are associated with strains showing at least one gene or half of the genes of pTet plasmid.

The analysis reveals that 206 strains of known origin of isolation show at least half the 52 genes of the 81-176 pTet covered. Of these, 64 are found in the 234 strains isolated from poultry (27.3\% of poultry strains), 131 in the 503 clinical isolates (26.0\%), 9 in the 61 strains isolated from cattle (14.7\%), and 2 out of 3 strains isolated from pig. None of the environmental strains or the strains isolated from sheep and rabbit exhibit the presence of the majority of the plasmid pTet genes.

Almost the same percentage of clinical isolates and strains isolated from poultry shows more than 26 genes associated with the plasmid pTet (more than 25% of the isolates in both groups), while 14.7% of isolates from cattle possessed a pTet-like plasmid.

Table 3.13- Number of strains per different origin included in the analysis described in Section 3.2.3.3.

Origin	Number of CJ strains
cattle	70
clinical	503
environment	7
pig	3
poultry	234
rabbit	1
sheep	3

Figure 3.17 - Number of strains per different origin of isolation showing the presence of at least 1 gene annotated on the plasmid pTet. The inset shows a zoom for the strains isolated from cattle, poultry and clinical environment (symptomatic humans).

Figure 3.18 - Number of strains per different origin of isolation showing the presence of at least 26 genes annotated on the plasmid pTet. The inset shows a zoom for the the strains isolated from cattle, poultry and clinical environment (symptomatic humans).

The heat-map reported in Figure 3.19 shows clustering according to gene presence and the rows are annotated with the origin of each strain (for the 377 strains showing the presence of at least 1 gene annotated on the plasmid pTet), showing that the presence of different pTet genes is not linked to a particular origin of the strain.

Figure 3.19 - Cluster analysis of the plasmid pTet genes and the strains of known origin. Heatmap built with the breadth of coverage table of each gene annotated in the plasmid pTet (NC008790.1) in each of the 377 strains of known origin showing at least the presence of 1 gene of the plasmid pTet. Clustering distance for columns and rows = euclidean, clustering method = complete. The 52 genes annotated on the plasmid pTet are on the column, the 617 strains are on the rows. Each cell is coloured from white (0% coverage) to dark green ($80-100 \%$) as reported in the legend. The leftmost row shows the annotation related to the origin of the strain (as shown in legend).

3.3 Plasmid pan-genome analysis

Pan-genome studies are described in the literature (Rouli et al., 2015) and are used to define the set of core and accessory genes of a bacterial species. A pangenome study aims to identify the core and the accessory genome of a species or a set of strain belonging to a species: every gene annotated in every genome sequence that is part of the study is compared, in order to identify every orthologous sequence present in at least one genome. The list these unique orthologous genes is the pan-genome of the species. Usually, if the genes are present in every strain, they are defined as "core genes", essential for the bacterium survival or lifestyle; otherwise, they are defined as "accessory genes" (Ozer et al., 2014). Several pangenome studies have been published in recent years, including studies on C. jejuni (Meric et al., 2014; Lefeubre et al., 2010). I treated the plasmids as genomes to try to define groups of core and accessory plasmid genes, focusing particularly on the pTet-like plasmids. With the exception of two works in Acinetobacter that used a completely different approach to the one used here (Fondi et al., 2010, where the focus was the plasmids rearrangement and the exchange of information between plasmids and chromosomes), this is the first time that plasmids isolated from different strains of a bacterial species have been treated as a plasmid pan-genome to assess the presence and infer the importance of each gene for the make up of a plasmid family.

The study of 20 plasmids isolated and sequenced highlighted a variety of different plasmid organisations. The analysis of the entire database of C. jejuni strains described in Section 3.2 shows a remarkably high number of strains with traces of plasmid sequences. In order to separate the comparison of these plasmids from the single reference pTet, I decided to pool all the sequenced plasmids in C.
jejuni in a pan-genome-like study in order to assess the variability in gene presence. At the end of this section, I will narrow down the plasmid pan-genome analysis only to the pTet-like plasmids, and define a core and an accessory set of genes for this plasmid family.

3.3.1 Overview of the genes distribution of C. jejuni plasmid pan-genome

To assess the full list of plasmid genes, the full list of sequenced C. jejuni plasmids was retrieved (corrected in February 2016, Table 3.14). The first analysis included pTet and pTet-like plasmids, along with other sequenced plasmids including pVir plasmids, small "cryptic plasmids" (Jesse et al., 2006; Hiett et al., 2013; pCJ1170-pCJ01-pTIW94- pCJ419) and large plasmids longer than 100 kbp. This allowed the relationships of these plasmids to be explored.

The plasmid pan-genome was built according to the protocol detailed in Materials and Methods, Section 2.10.7. Briefly, in this analysis I assessed the orthologous proteins between the plasmids and extracted one gene sequence for these orthologous proteins. This resulted in a list of 178 genes (the plasmid pangenome of C. jejuni).

In order to assess the presence of each of these 178 genes in the 4005 strains that were described in Section 3.2, sequencing reads were aligned to their DNA sequence as described in Section 2.10.5.

The breadth of coverage of each gene, for each strain, compared to the reference, was used to produce the heatmap in Figure 3.20 (an electronic version is available as Electronic Supplementary Material E6) and the representation of the hierarchical clustering of the genes according to the presence in the database analysed in Figure 3.21. For these analyses, the breath of coverage value was
turned into presence or absence, selecting a cut-off of $0.8(80 \%$ of sequence covered) for a gene to be present. In other words, if the breadth of coverage were greater than 80% the gene was considered present and the coverage value was converted into a 1 ; if the breadth of coverage were lower than 80% the gene was considered absent and the coverage value was converted into a 0 . The heatmap shows how different genes clusters are associated with different strains, which is not surprising considering that this analysis is obtained using several different plasmid families of C. jejuni: the different genes clusters are associated to these different plasmids.

The hierarchical clustering is reported in Figure 3.21 in the same order as the heat-map columns, and it is annotated with the frequency of each gene. The dendrogram was produced on the basis of a Jaccard distance matrix built on the presence and absence of each gene in each strain as described in Material and Methods section 2.10.6. The clusters are highlighted by different colours. They are associated with different genes frequencies, and contain genes deriving from different plasmids. In particular we can observe: cluster V in green, containing genes present in pTet-like plasmids (present also in pcjDM T1-T2, as it contains ~40000 bp homologous to pTet); cluster II in red, associated with plasmid pCJDM202, containing, amongst others, genes for the type 6 secretion system; cluster III in light blue, associated with the genes of the plasmid pVir; clusters I and IV in yellow, containing genes deriving from several different pTet-like plasmids, showing an intermediate frequency between pTet-like cluster (V) and pVir cluster (III).

Table 3.14 - Summary of the characteristics of the plasmids included in the C. jejuni plasmid pan-genome analysis. Table columns (from right to left): Strain name, name of the plasmid, Accession number (where available), Size in kilobases, G+C percentage, number of putative proteins, number of predicted genes, number of predicted pseudogenes.

Organism	Plasmid name	RefSeq	INSDC	Size (Kb)	GC(\%)	Protein	Gene	Pseudogene
Campylobacter jejuni 11818	p11818	This study	This study	44.95	29.06	52	52	-
Campylobacter jejuni poultry C3_T_25	pPoultry_C3_T_25	This study	This study	47.66	28.04	56	56	-
Campylobacter jejuni Cj2	pCj 2	This study	This study	43.67	27.57	48	48	-
Campylobacter jejuni Cj3	pCj3	This study	This study	42.01	27.84	46	46	-
Campylobacter jejuni goose 222	pGoose222	This study	This study	46.08	28.13	52	52	-
Campylobacter jejuni Hi40620300	pHi4062300	This study	This study	44.83	29.27	50	50	-
Campylobacter jejuni K2	pK2	This study	This study	47.59	28.77	54	54	-
Campylobacter jejuni Pet_93_327	pPet93_327	This study	This study	37.73	27.19	43	43	-
Campylobacter jejuni Pig_PS623	pPigPS623	This study	This study	45.38	28.72	50	50	-
Campylobacter jejuni Pig_PS762	pPigPS762	This study	This study	45.59	28.99	51	51	-
Campylobacter jejuni Poultry_A1_CF_12	pPoultry_A1_CF_12	This study	This study	47.64	28.05	54	54	-
Campylobacter jejuni Poultry_A6_T2_15	pPoultry_A6_T2_15	This study	This study	47.64	28.03	54	54	-
Campylobacter jejuni Poultry_A8_35_15A	pPoultry_A8_35_15A	This study	This study	47.64	28.05	55	55	-
Campylobacter jejuni Poultry_C1_C_2	pPoultry_C1_C_2	This study	This study	47.64	28.05	54	54	-
Campylobacter jejuni Poultry_C5_T2_8	pPoultry_C5_T2_8	This study	This study	47.64	28.05	55	55	-
Campylobacter jejuni Poultry_MB12	pPoultry_MB12	This study	This study	37.53	27.23	45	45	-
Campylobacter jejuni Poultry_MB18	pPoultry_MB18	This study	This study	44.76	28.99	52	52	-
Campylobacter jejuni Poultry_MB3	pPoultry_MB3	This study	This study	38.15	27.17	43	43	-
Campylobacter jejuni Poultry_MB9	pPoultry_MB9	This study	This study	47.66	28.04	56	56	-
Campylobacter jejuni	pCJ419	NC_004997.1	AY256846	4.01	30.15	4	4	-
Campylobacter jejuni	pVir	NC_005012.1	AF226280	37.47	25.88	52	54	2
Campylobacter jejuni	pTet	NC_006135.1	AY394561	45.21	29.14	49	49	-
Campylobacter jejuni	pTet	NC_007141.1	AY714214	45.21	29.14	44	44	-
Campylobacter jejuni	pCJ1170	NC_008052.1	DQ518173	4.38	30.79	3	3	-
Campylobacter jejuni	pCJ01	NC_008438.1	AF301164	3.21	33.50	4	4	-
Campylobacter jejuni	pTIW94	NC_021493.1	KF192842	3.86	31.11	5	5	-
Campylobacter jejuni	unnamed	NZ_CP013117.1	CP013117	82.73	29.82	103	106	3
Campylobacter jejuni	unnamed	NZ_CP014345.1	CP014345	81.08	25.99	70	80	10
Campylobacter jejuni	pCJDM67 L	NZ_CP014745.1	CP014745	116.88	26.91	97	108	11
Campylobacter jejuni	pCJDM67S	NZ_CP014746.1	CP014746	36.60	26.07	45	46	1
Campylobacter jejuni	pCJDM202	NZ_CP014743.1	CP014743	119.54	27.24	104	116	12
Campylobacter jejuni subsp. jejuni 01-1512	pCj1	NZ_CP010073.1	CP010073	48.87	29.01	51	54	3
Campylobacter jejuni subsp. Jejuni 01-1512	pCj2	NZ_CP010074.1	CP010074	36.60	25.95	46	47	1
Campylobacter jejuni subsp. Jejuni 00-0949	pTet	NZ_CP010302.1	CP010302	48.87	29.01	52	55	3
Campylobacter jejuni subsp. Jejuni 00-0949	pVir	NZ_CP010303.1	CP010303	36.60	25.95	46	47	1
Campylobacter jejuni subsp. jejuni 00-2544	unnamed	NC_022354.1	CP006710	46.90	29.41	51	52	1
Campylobacter jejuni subsp. jejuni 81-176	pVir	NC_008770.1	CP000550	37.47	25.89	46	47	1
Campylobacter jejuni subsp. jejuni 81-176	pTet	NC_008790.1	CP000549	45.03	29.09	50	50	-
Campylobacter jejuni subsp. jejuni 81-176-UMCW7	pVir	NZ_AZNS01000034.1	AZNS01000034	37.57	25.85	46	47	1
Campylobacter jejuni subsp. jejuni IA3902	pVir	NC_017284.1	CP001877	37.17	25.91	48	48	-
Campylobacter jejuni subsp. jejuni ICDCCJ07001	pTet	-	CP002030.1	44.08	28.69	37	37	-
Campylobacter jejuni subsp. jejuni S3	pTet	NC_017282.1	CP001961	43.22	28.99	42	45	3

Figure 3.20-Cluster analysis of the C. jejuni plasmid pan genome. Heatmap built with the breadth of coverage table of each gene identified in the plasmid pan-genome of C. jejuni in each of the strains showing at least the presence of 9 genes (5%) of genes identified in the plasmid pangenome of C. jejuni. Clustering distance was calculated with Jaccard distance matrix. The 178 genes are in the column; the strains are in the rows. Each cell is coloured in light green if the percentage of coverage is smaller than 80% or dark green if it is greater than or equal to 80%. The full heatmap is available in pdf format (Electronic Supplementary Material E6).

Figure 3.21 - Hierarchical clustering tree of the genes identified in the C. jejuni plasmid pan genome. The clustering tree was built according to the presence/absence data used for the heatmap in Figure 3.2.3. Clustering distance was calculated using Jaccard distance matrix. The colours (yellow, red, green and light blue) highlight different clusters. The tree annotation (roman numbers I to V) follows the description in the text, the blue bar next to each leaf of the tree represent the frequency of each gene in the subset of strains used for the heatmap in Figure 3.3.1.3.

The analysis was then narrowed down to just the pTet-like plasmids. In order to identify which plasmids to include in this final analysis, I aligned every plasmid isolated from C. jejuni using the software Mauve (http://darlinglab.org/mauve/mauve.html, Darling et al., 2004) and obtained the result in Figure 3.22 (available as electronic supplementary material E7). For clarity, in the image I masked the pVir-like plasmids and the small plasmids pCJ1170-pCJ01-pTIW94- pCJ419, and I did not include the plasmids pTet NC006135.1 and NC007141.1. The plasmids included in the following analysis are the ones indicated by the arrows: they require a clear similarity with pTet, in length and gene content.

Figure 3.22 - Mauve alignment of the plasmids used in the C. jejuni plasmid pan genome analysis. The name of each plasmid is indicated in the figure, if the coloured bars above the plasmid name (representing the plasmid sequence) are missing, that plasmid sequence has been masked for clarity. Red arrows indicate the plasmids picked for the pTet-like plasmid pan-genome analysis. The image is available in jpeg format (Electronic Supplementary Material E7).

Table 3.15-Summary of the characteristics of the plasmids included in the pTet-like plasmid pan-genome analysis. Table columns (from right to left): Strain name, name of the plasmid, Accession number (where available), Size in kilobases, $G+C$ percentage, number of putative proteins, number of predicted genes, number of predicted pseudogenes.

Organism	Plasmid name	RefSeq	INSDC	Size (Kb)	GC(\%)	Protein	Gene	Pseudogene
Campylobacter jejuni 11818	p11818	This study	This study	44.95	29.06	52	52	-
Campylobacter jejuni poultry C3_T_25	pPoultry_C3_T_25	This study	This study	47.66	28.04	56	56	-
Campylobacter jejuni Cj2	pCj 2	This study	This study	43.67	27.57	48	48	-
Campylobacter jejuni Cj3	pCj3	This study	This study	42.01	27.84	46	46	-
Campylobacter jejuni goose 222	pGoose222	This study	This study	46.08	28.13	52	52	-
Campylobacter jejuni Hi40620300	pHi4062300	This study	This study	44.83	29.27	50	50	-
Campylobacter jejuni K2	pK2	This study	This study	47.59	28.77	54	54	-
Campylobacter jejuni Pet_93_327	pPet93_327	This study	This study	37.73	27.19	43	43	-
Campylobacter jejuni Pig_PS623	pPigPS623	This study	This study	45.38	28.72	50	50	-
Campylobacter jejuni Pig_PS762	pPigPS762	This study	This study	45.59	28.99	51	51	-
Campylobacter jejuni Poultry_A1_CF_12	pPoultry_A1_CF_12	This study	This study	47.64	28.05	54	54	-
Campylobacter jejuni Poultry_A6_T2_15	pPoultry_A6_T2_15	This study	This study	47.64	28.03	54	54	-
Campylobacter jejuni Poultry_A8_35_15A	pPoultry_A8_35_15A	This study	This study	47.64	28.05	55	55	-
Campylobacter jejuni Poultry_C1_C_2	pPoultry_C1_C_2	This study	This study	47.64	28.05	54	54	-
Campylobacter jejuni Poultry_C5_T2_8	pPoultry_C5_T2_8	This study	This study	47.64	28.05	55	55	-
Campylobacter jejuni Poultry_MB12	pPoultry_MB12	This study	This study	37.53	27.23	45	45	-
Campylobacter jejuni Poultry_MB18	pPoultry_MB18	This study	This study	44.76	28.99	52	52	-
Campylobacter jejuni Poultry_MB3	pPoultry_MB3	This study	This study	38.15	27.17	43	43	-
Campylobacter jejuni Poultry_MB9	pPoultry_MB9	This study	This study	47.66	28.04	56	56	-
Campylobacter jejuni	pTet	NC_006135.1	AY394561	45.21	29.14	49	49	-
Campylobacter jejuni	pTet	NC_007141.1	AY714214	45.21	29.14	44	44	-
Campylobacter jejuni subsp. jejuni 01-1512	pCj1	NZ_CP010073.1	CP010073	48.87	29.01	51	54	3
Campylobacter jejuni subsp. jejuni 00-0949	pTet	NZ_CP010302.1	CP010302	48.87	29.01	52	55	3
Campylobacter jejuni subsp. jejuni 00-2544	unnamed	NC_022354.1	CP006710	46.90	29.41	51	52	1
Campylobacter jejuni subsp. jejuni 81-176	pTet	NC_008790.1	CP000549	45.03	29.09	50	50	-
Campylobacter jejuni subsp. jejuni ICDCCJ07001	pTet	-	CP002030.1	44.08	28.69	37	37	-
Campylobacter jejuni subsp. jejuni S3	pTet	NC_017282.1	CP001961	43.22	28.99	42	45	3

This second analysis the 27 pTet-like plasmids reported in Table 3.15 were analysed with the same technique described above and in section 2.10.7. The plasmid pan-genome narrowed down to just the pTet-like plasmids (the pTet-like plasmid pan-genome) was composed of 79 genes. The sequencing reads deriving from the 4005 C. jejuni strains analysed here were aligned to the DNA sequence of these 79 genes, as described above in this section.

The same clustering performed with the C. jejuni plasmid pan-genome was performed with the pTet-like plasmid pan-genome (Figures 3.23 A and B, Available as Electronic Supplementary Material E8 and E9). The heatmap shown in Figure 3.23 A was produced with the frequency of the 79 genes of pTet-like plasmid pangenome in the strains exhibiting at least the presence of 5% of the genes $(n=4)$. This heatmap highlights the presence of a high number of strains showing just a few genes, for instance, the tetracycline resistance gene. The second heatmap, Figure 3.23 B, was produced with the strains showing at least 26 genes (half of the genes present in the original plasmid pTet). The second heatmap is essentially a close-up of the bottom section of Figure 3.23 A , which highlights the presence of a cluster present in most of the strains and several genes clusters present in just some groups of strains.

The gene names shown in the heatmaps (Electronic Supplementary Material E8 and E9) and in the hierarchical clustering described in section 3.3.2 have been simplified for clarity. The sequence of an orthologous gene with the accession number and the putative function of each gene will be discussed in Chapter 4.

Figure 3.23 - Cluster analysis of the pTet-like plasmid pan-genome. (A) Heatmap built with the breadth of coverage table of each gene identified in pTet-like the plasmid pan-genome in each of the strains showing at least the presence of 4 genes (5\%) of genes identified in the plasmid pan-genome of C. jejuni. (B) Heatmap built with the breadth of coverage table of each gene identified in pTet-like the plasmid pan-genome in each of the strains showing at least the presence of 26 genes (half of the plasmid pTet NC008790.1) of genes identified in the plasmid pan-genome of C. jejuni. Clustering distance was calculated using Jaccard distance matrix. The 178 are on the column; the strains are on the rows. Each cell is coloured in light green if the percent of coverage is smaller than 80% or dark green if it is greater than or equal to 80%. The full heatmaps are available in pdf format (Electronic Supplementary Material E8 and E9).
Genes \longrightarrow

A
B

3.3.2 Core genes and accessory genes of the plasmid pan-genome associated with pTet-like plasmids

Figure 3.24 shows the clustering dendrogram associated with the column of the heat-map in Figure 3.23 A (at least 5\% of pTet-like plasmid pan genome). The hierarchical clustering tree is annotated with two bar-plots: the green plot shows the total frequency of the genes in all 4005 strains, the blue barplot shows the frequency of the genes in the strains showing at least the presence of 26 genes associated with the pTet-like plasmid pan-genome. It is important to notice the CDs encoding for X43 hypothetical protein, Tet(O), and X57 FIG00469861 hypothetical protein showing a remarkable difference between the two barplots. This highlights the presence of these genes on the chromosomes of several strains regardless of the presence of the plasmid pTet or on plasmids different from pTet.

Figure 3.24 - Hierarchical clustering tree of the genes identified in the pTet-like plasmid pan genome. The clustering tree was built according to the presence/absence data used for the heatmap in Figure 3.3.1.8 (A). Clustering distance was calculated using Jaccard distance matrix. The colours (yellow, red, green, and light blue) highlight different clusters. The tree annotation (I to IV) follows the description in the text; the bars next to each leaf of the tree represent the frequency of each gene in the subsets of strains used to produce the heatmaps in Figure 3.3.1.8 A (green bar) and B (blue bar), respectively.

Moreover, the clusters that are identifiable in the heatmaps and in this hierarchical clustering analysis are associated with different frequencies of the genes included in the cluster. In the clustering tree, four main clusters can be identified. The average frequency relative to each cluster is reported in Figure 3.25.

Clusters I and II are present in most of the strains exhibiting at least 26 genes associated with the plasmid pTet. The genes that are easily identifiable from the annotation encode for all the type four secretion system proteins, for proteins associated with conjugations and DNA repair, and for proteins associated with virulence and pathogenicity. Clusters III and IV are associated with a lower frequency, with the exception of the cluster IIIB, which includes the tet(O) gene and other genes that have been frequently identified in chromosomes. These clusters include, for instance, genes for antibiotic resistance and genes encoding a virulence associated protein, a Tol protein (associated with translocation of colicins in E. coli, Lazzaroni et al., 2002), and other hypothetical proteins.

The core and the accessory pTet-like plasmid pan genome were defined combining the gene frequencies of clusters I and II and the frequencies of clusters III and IV. Genes present in cluster I and II combined form the "core" part of the pTetlike plasmid pan genome; genes present in the clusters III and IV form the "accessory" part pTet-like plasmid pan genome. The average gene frequency of the core and the accessory pTet-like plasmid pan genome is shown in Figure 3.26.

Figure 3.25 - Average gene frequency per cluster identified in Figure 3.24. Error bars indicate standard deviation.

Figure 3.26 Average gene frequency per core and accessory gene set of the pTet-like plasmid pan genome. Error bars indicate standard deviation.

3.4 Discussion

In this chapter, I analysed the distribution of pTet-like plasmids in genome sequenced strains of C. jejuni. I assessed the sequence diversity of the plasmid pTet and sequenced 19 strains carrying the plasmid. I described the plasmid pan-genome of C. jejuni, focusing on the pTet-like plasmid pan genome and defining a core and an accessory set of genes.

The method used in this chapter to assess the presence, absence, and variability of the genes annotated on the plasmid pTet or identified on the pTet-like plasmid pan-genome involved the alignment of raw sequencing reads to the plasmid or pan-genome reference. This method was chosen because for the majority of the 4005 strains analysed the sequencing reads were available, and to avoid the bias which may be introduced by the genome assembly step. For 679 strains for which the sequencing reads were not available, it was necessary to transform the draft or the completed genome in a set of simulated reads. Although this method may also introduce bias in the analysis, this extra step was necessary to apply the same pipeline to every sample analysed. The ability of correctly identifying gene presence and absence in the set of strains in which raw sequencing reads was not available, was confirmed manually in a subset of those strains (via BLAST alignment of the annotated genes of the plasmid pTet against the draft or the completed genome assembly, data not shown). If this analysis was to be repeaded in the future with a larger subset of genomes for which sequencing reads is not available, those strains could be treated separately.

A further source of bias in this anaylsis may originate from the alignment technique. The default parameters used with Bowtie2 in this study are stringent (corresponding to the "sensitive" paramenters set described in the Bowtie2 manual,
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml), and were chosen to allow a balance between computational cost and precision of the alignment. With these paramenters, the alignment of a sequencing read needs a score of at least $-0.6+$ (0.6 * Length of the read) to be valid. Considering the length of the read to be 150 , the score threshold for an alignment to be valid is -90 . The scoring system for the default "sensitive" parameters set in Bowtie2 is: mismatch penality of -6, a gap penality of -5 for gap opening, and -3 for gap extension. This means that 16 bases mismatch, or 10 bases mismatch and 10 bases gap, are enough to consider the alignment of the read non-valid. Both these examples show how the cut-off for the read alignment is below 20% mismatch. Although this value could be improved in future analyses, having used sequencing reads that have been cleaned as described in section 2.10 .3 (quality check and trimming of sequence reads), and having used the scoring system described here, artefacts such as those with very short alignments, which may skew the analysis, were ruled out.

The findings described in this chapter regarding the distribution and the diversity of pTet are in accordance with previous literature. For instance, in the study from Smidt-Ott et al., 2007, 29\% of strains analysed are reported to have a plasmid up to 66 kbp long of which 2% was pVir plasmid. Here, I show that a plasmid pTetlike is likely to be present in 15.4 to 33.6% of the 4005 C. jejuni strains analysed (where 15.4% of strains show half of the genes annotated in pTet and 33.6% of strains show the presence at least one feature annotated in pTet). It has been reported previously that the tetracycline resistance is not always associated with the presence of pTet and in some strains the gene is located chromosomally (Pratt et al., 2005). It is interesting to note a group of strains that has the majority of the genes for the plasmid pTet but lacks the tetracycline resistance gene. This characteristic has
never been suggested at a sequence level before and reinforces the hypothesis that the function of the plasmid pTet is not limited to a tetracycline resistance phenotype.

A study of the presence of the pTet plasmid in association with the phylogeny of the different strains, the year of isolation, and the ecological niche of isolation did not show any clear association. This plasmid has been shown to be transmitted via conjugation (Avrain et al., 2004; Smitt-Ott et al., 2007), and the broad distribution of the plasmid is in accordance with this observation.

A molecular and phenotypic survey was carried on 120 C. jejuni strains. This showed 100% association between the presence of tetracycline resistance gene tet(O) and the tetracycline resistance phenotype confirming what recently shown in Zhao et al., 2016. It also showed the presence of 4 different plasmid makeups. The 20 strains positive for at least one molecular marker have been sequenced, in order to obtain the full sequence of 19 completely new pTet-like plasmids.

Three of these plasmids lack the tetracycline resistance gene: this is the first complete sequence of a plasmid showing homology with part of the plasmid pTet but lacking the tetracycline resistance gene. These plasmids have also lost genes flanking the tetracycline resistance gene. The loss of the replication protein gene repA may influence the compatibility group of the plasmid and the possible distribution of the plasmid. Also, the loss of a Topoisomerase III encoding gene suggests the involvement of this protein in a recombination event (Roja, 1995). Plasmids pPoultry_MB3, pPet93_372 and pPoultyry_MB12 may have lost the tetracycline resistance or they may have yet to acquire it. What is possible is that these plasmids belong to a lineage that either did not ancestrally acquire the gene, or they belong to a lineage that lost the gene. In either of these cases, the plasmids would be closely related, as they are. If they have yet to acquire the gene for the
tetracycline resistance, it would be reasonable to expect to find the gene cluster that they are missing $(\operatorname{tet}(O)$, with genes for a DNA topoisomerase II, replication protein RepA, a protein ToIA and a further 3 hypothetical proteins, as reported in table 3.1.3.1.1) in any of the strains analysed that show the chromosomal presence of the tet (O) gene. Such a gene cluster is missing from the strains sequenced in this study: in fact, in the three sequenced strains that encode for $\operatorname{Tet}(\mathrm{O})$ chromosomally (PoultryMB8, Hi81214, and Hi81006), tet(O) is associated with just one single hypothetical protein. Furthermore, when the plasmid pTet genes distribution is analysed in the 4005 sequenced strains database (Figure 1.6.2.1), we can identify a single hypothetical protein clustering together with tet(O), suggesting that the gene cluster missing from the plasmids pMB3, pPet93, and pMB12 is not present in any of the strains exhibiting a chromosomal integration of $\operatorname{tet}(O)$. It is reasonable to expect that the plasmids pPoultry_MB3, pPet93_327, and pPoultry_MB12 have lost the gene cluster containing $\operatorname{tet}(O)$; however, the possibility that these plasmids belong to a lineage that has not yet acquired the tetracycline resistance cannot be dismissed.

The reason why the plasmids lack the tetracycline resistance can only be conjectured. The reduction in use of tetracycline in the farming industry might have played a role in the loss of selective advantage in carrying the resistance gene. The fact that the plasmid is still conserved in the largest part suggests further selective advantage of the remaining genes.

The plasmids lacking the tet (O) gene show the presence of a gene originally annotated in $p V i r$ but with no predicted function. This could indicate the exchange of material between the plasmids pTet and pVir (Bacon et al., 2004).

Two of the three strains that possess the tet(O) gene chromosomally also have a repeated sequence at each end of the gene cluster that includes $\operatorname{tet}(O)$. This
repeated sequence might represent a previously undescribed integration point, or part of it. It has been reported that tetracycline resistance is acquired via HGT in the intestine of chicken (Avrain et al., 2004), and this event may also happen in other ecological niches. I described the existence of the same tet (O) chromosomal cluster in the three strains MB8, Hi81006, and Hi81214 and in Streptococcus spp., which include the gene $\operatorname{tet}(O)$ and the a small CDS upstream. This observation, together with a marginally different $G+C$ content of the $\operatorname{tet}(O)$ cluster compared to the rest of the plasmid, reinforces the theory that the gene cluster was acquired horizontally (Batchelor et al., 2004; Luangdonkum et al., 2009).

A global comparison of the pTet-like plasmid sequenced in this study highlights the presence of areas that are more conserved than others. The type four secretion system (T4SS) gene cluster appears is present in all the plasmids sequenced and is highly conserved. The T4SS is involved in the conjugal transfer of the genetic material (Wallden et al., 2010). Also highly conserved between the plasmids are 2 hypothetical proteins involved with DNA repair (FIG00470960) and a DNA primase. Other small differences are identifiable within the sequenced plasmids; the most striking one is the presence of a cluster of 5 different genes in seven strains isolated from poultry. This cluster encodes proteins whose functions signal transduction and regulation, virulence, and protein metabolism, which have not previously been described in plasmids of the pTet-like family. The literature focuses on the presence of different antibiotic-resistance genes on the C. jejuni plasmids: recently, papers showing the association of $\operatorname{tet}(O)$ with several different antibiotics resistances have been published, including very recently the sequence of a plasmid encoding for tetracycline and kanamycin resistance, in which the maintenance of the structure of the plasmid pTet was described (Crespo et al., 2016). The study of the plasmid pan-
genome of C. jejuni in section 3 also highlighted that the genes tet (O) and aph3 (aminoglycoside resistance) appear at remarkably different frequencies, and they appear in two different clusters when their presence in the sequenced C. jejuni genomes is assessed. Several papers reported an association between these 2 resistances (Gibreel et al., 2004; Zhao et al., 2016), but the data reported in this chapter are in contrast with this observation. They are present together in a fraction of sequenced plasmid as reported by Zhao et al., 2016, but this association is not universally present in C. jejuni.

Focusing on the plasmid pan-genome of C. jejuni showed in Section 3.3.1, strong differences are noticeable in frequencies between the genes present in the different clusters highlighted by the analysis. For instance, the cluster III of the Figure 3.21 shows the frequency of several genes associated with the plasmid pVir. When the frequency of the genes belonging to this cluster is compared to the genes belonging to cluster V , which is composed of genes associated with plasmids pTetlike, it appears clear that the plasmid pVir appears less frequently in C. jejuni (as reported by Friis et al., 2006), and this may be an indication of the lack of phenotypic advantage brought by the plasmid pVir (Friis et al., 2007; Schmitd-Ott et al., 2005).

Another gene cluster present in several strains reported in the global plasmid pan-genome is cluster II, which includes the genes encoding for the type six secretion system (T6SS). The T6SS have been reported to be present chromosomally in several Campylobacter strains (Harrison et al., 2014; Lertpiriyapong et al., 2012), and it is known to be resent on a plasmid (pCJDM202). It is associated with virulence (Lertpiriyapong et al., 2012), but it lacks association with the plasmid pTet.

When the plasmid pan-genome analysis is narrowed down to the plasmids pTet-like only, it appears that there are different genes clusters associated with different plasmids set-ups. The plasmid pTet-like, have been identified via a global alignment with the software Mauve, and 79 genes are picked up when these plasmids are parsed into a plasmid pan-genome pipeline.

As shown in the Figure 3.3.1.8 and highlighted in the clustering analysis 3.3.2.1, two clusters are present in most of the strains exhibiting a plasmid pTet, and two clusters are present to a much lower extent. As highlighted in the heatmap, these gene clusters can be associated to a CORE and an ACCESSORY plasmid pan genome.

This distribution suggests that the plasmid pTet has a mosaic structure, built on a foundation that is generally conserved, and different genes originated from different bacterial sources (which may be strains of C. jejuni or other commensal bacteria) are added on to it. One might speculate, in this regard, that the accessory genome might add a phenotypic advantage in particular ecological niches and that different strains might conserve the genes useful in the particular environment that they are colonising.

Simply, one remark can be addressed to the antibiotics resistance carried by the pTet-like plasmids. According to the gene distribution of tet(O) and aph3, it appears clear that there are other functions associated with the plasmids. Two scenarios can be imagined if the function of this plasmid family were only linked to the presence of antibiotic resistance: either they were much more frequent or the plasmid would have been lost by Campylobacter, leaving the resistance at a chromosomal level. None of these scenarios appear to have occurred: plasmids
pTet-like are very common and hundreds of strains exhibit the presence of the plasmid and no antibiotic resistance, three of which are fully sequenced in this study In the next chapter, the putative function of each of these hypothetical proteins will be inferred, searching for conserved domains in the putative protein sequence.

Chapter 4 - Function prediction of the

 genes in the p -Tet like plasmid pangenomeApproximately 60 percent of genes in the pTet-like plasmid pan genome are predicted to encode for "hypothetical proteins", accorded to the RAST automatic annotation pipeline. In order to try to understand the putative function of the encoded proteins, I searched for conserved domains using the NCBI Conserved Domains Search tool (CD-Search, Marchler-Bauer et al., 2015).

NCBI's CD-search tool allows searching in the Conserved Domain Database using a protein or a nucleotide query (which is translated in 6 possible reading frames). The search algorithm used by this tool is RPS-BLAST (Reverse PositionSpecific Blast), which uses the query sequence to scan quickly a database of precalculated Position-Specific Score Matrices, corresponding to conserved domain models retrieved from several different databases sources: NCBI-curated domains, SMART database (Simple Modular Architecture Research Tool - Letunic et al., 2015), Pfam (Protein families - Finn et al., 2016), COGs database (Clusters of Orthologous Groups of proteins - Tatusov et al., 1997), TIGRFAM (The Institute for Genomic Research's database of protein families) and PRK (NCBI's collection of Protein Clusters).

The CD-Search result includes hits at various confidence levels, such as specific hits (top ranked RPS-BLAST hits) or non-specific hits (RPS-BLAST hits that exceed the confidence threshold for statistical significance), Multi-domains hits, and the Superfamily to which the domains hits belong.

Each ORF identified in the pTet-like plasmid pan genome was used as input in the CD Search interface. The sequence was searched against the CDDs database v3.15 (Marchler-Bauer et al., 2015), with an e-value threshold of 10e-3, and the output reported shows only domain models identified in the reading frame +1 .

This chapter opens with a section summarising the conserved domains identified. The full results are reported in Section 4.3.

4.1 Summary of CD-search results

Table 4.1 was produced in order to summarise the results of the domains identified in the hypothetical proteins of pTet.

In Supplementary material section S4, the details of each conserved domains identified in each gene are described: this includes the results retrieved from NCBI's CD-Search search engine for each hypothetical protein, together with the name, the accession number and the e-value of each conserved domain, and a description of the putative function of each conserved domain identified.

Table 4.1 shows the gene names used in Chapter 3.3.1 for the genes identified in the pTet-like plasmid pan-genome.

Several key functions emerge from the identified conserved domains. VirB/D4 genes have been identified, together with a group of proteins involved in DNA transfer (e.g. TrbM). Horizontal transfer of DNA is one of the main functions described for this plasmid family (Batchelor et al., 2004), and the identification of the expected conserved domains in the plasmid pan-genome seems to confirm this function.

A second function associated with this plasmid family was antibiotic resistance: the sequenced pTet-like plasmids are primarily associated with tetracycline resistance (tet(O)) and aminoglycoside resistance (aph3) (Smitt-Ott et al., 2007, Zhao et al., 2016). In this analysis, conserved domains for resistance to tetracycline, aminoglycoside, and glycopeptide antibiotics have been identified, together with a
series of peptidase involved in bacteriocins resistance and multidrugs toxin extrusion (MATE-like) proteins.

A group of hypothetical proteins are associated with CRISPR/Cas domain (e.g. 18_FIG00470991_hypothetical_protein, 58_FIG00471069_hypothetical_protein, 76_hypothetical_protein). This function was not identified in any of the pTet-like plasmids before and is associated with bacterial immunity from bacteriophages.

Other key functions that emerge from this analysis include an HicA/B toxinantitoxin system for plasmid stabilisation (19_FIG00471111_hypothetical_protein, 23_FIG00470952_hypothetical_protein); several proteins that are associated with regulation or signal transduction, such as the ATPase domain in 12_FIG00471537_hypothetical_protein 32_FIG00469957_hypothetical_protein and 45_Ribbon-helix-helix_protein_copG_family_domain_protein, the acetyl transferase domain in 6_FIG00469644_hypothetical_protein, the regulatory domain in 77_FIG00472625_hypothetical_protein; and several hypothetical proteins carrying conserved domains for membrane transporters and receptors, like the ABC transporter domains in 54_FIG00470281_hypothetical_protein or 20 FIG00471065_hypothetical_protein, the carbohydrate transporter in 70 FIG00469626_hypothetical_protein, the colicin uptake domain in 68_TolA_protein, the C4 carbohydrate transporter in 7_FIG00471069_hypothetical_protein.

Table 4.1 - Results summary of the conserved domains search in the hypothetical proteins encoded by the pTet-like plasmid pan genome. Columns are (from left to right): hypothetical protein name (as reported in the pTet-like plasmid pan genome analysis in chapter 1), predicted function according to the conserved domains found, gene length, $+/-=$ conserved domains found or not found, accession numbers for the conserved domains hits
(56_FIG00470802_hypothetical_protein shows 12 conserved domains whose accession number is not reported in the table for lack of space).

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Name (Chapter 3.3)	fun
1_hypothetical_protein	
2_-virivence_associated_protein_D_(vapo)	CRISPR/Cas2
3-hypootheicalalprotein	TR_2 Bataterialtollilikereceptor-Lipoprotein [membrane]
4-hypootheitial_protein	Cellsurface hemolisin
5 _hyootheicial protein	--
6_FFicoots9644_hypothetical.protein	Aceetritansferse
7-FIC600471069_hypotheicial_protein	TTM domains Membrane carbohidrate transpor
8 _hypotheicial_protein	
9 9-Ficootas571 hypothetical.protein	Unknown - Chromosome structure [Eukaraioic]
10_hypothetical_protein	Guanilate binding protein [Eukariotic]
11. FF600669626] hypothetical.protein	MATE-1/12e eroteien [Multidrus toxin extrusion]
${ }_{1}^{13-1600469557-h y p o t h e t i c a l ~ p r o t e i n ~}$	LM proteien interation domain - Zinc finger domain [0NA interaction]
	Vral
16_Tetracycline_ _esistance_protein_Teto	Tetraycline resistance
17_hypotheitial_protein	
18_F\|600470991_hyotheicial_protein	CRISPR/Cas8- Viral protein domain - Varous celluar functions
19_F\|600471111_hyotheical_protein	Hicatoxin
20_Fi600471055_hyotheicial_protein	ABC Transoorte- Glycopepitid antibiotics resistance
21_hypothetical_protein	Para atase repelication protein
22_Viruenceassociated _protein__(vapo)	CRISPR/Cas2
23_Fi60047095_ hyyotheical_protein	HicB antitoxin
24_Stit-specific_recombinase_resolvase	Resowase/nve
25 -FI600469707 hyotheicialprotein	
$26 . F 6600470038$ _hyoothetical_protein	Blood coasulase (5. aureus)
${ }^{27}$-FIf600470273, hypothetical_protein	Alpha helices rich domain
${ }^{28}$ 28-IncQ.plasmid_ coniugative_transter_protein_Trad	Coniugal tranfer (Trom)
${ }_{30}^{29}$ Curibing_protein_VViro4_ATPase	Vrib
31_FIGOo471711_hypotheicial_protein_NTPase	Unknown function (Borrellia bugdoferi)- ONA mobilisation/recombination
32_F600469957_hyootheicial_protein	Parb-like dommin LLigand-bindinin of fucose receptor - AAA15 ATPase
33_cas_ pathosenicity_Sland_protein	Membrane proteien (Helicobatere pylori)
34_Vir811	Vir811
$35 . \mathrm{VirB2}$	TricNirb2
	Virg9
	Transation initation factor
39-VirB10	Vris10
40_Fi600471323_hyothetical_protein	Membrane protein
	Single strand DNA binding protein [Transer
42-FIGO0638867] hypothetical_protein	${ }^{\text {C336 peptidase [Bacteriocins resistance] }}$
	Viro2 - Reaxase
45 -Riboon-helix-helix_Proteie__copo_famiv_domiin_protein	CRISPR/Cas9 - ATPase
46 _ONA_primse_(EC 2.7.7.)	Topoisomerase/Primase
47_Ince_plasmid__oniugative_transer__protein_TraG	Unkownfunction
48-FIGO070966_hypothetical_protein	AAA-25 ATPase-Repa repliction
49 Vire4	${ }^{\text {Virb3}}$ - Vires ${ }^{\text {Phaseregutor yrotein }}$
${ }^{50}$ - Phage _Rha_protein	Phageresulator y protein
51-Minor_pilin_of_type_N__secretion_complex_Vires	Vriss
53_ONA_topoisomeraselllil_2882-31020_00-0949-pret	DNA Toposisomerase
54_Fi60047028__hyotheicicalprotein	Porin [membrane channel]- ABC Trasporter
${ }_{5}^{55-16600478082}$ _hypotheteical_protein	-
${ }_{56-16000478802}$ _hypothetical_protein	DNA Protection and repair
57-F\|600469861_hyyothetical_protein	Unknown function (Borrelli bugdoferi)
	CRISRR/Cas Csxi - Membrane signal transdu
59_aminoglycoside_3_phosphotransferase_aph3_HypA 60 hypothetical_protein	
61 _hypothetical_protein	AAS_18 ATPase- Proteren kinase
hypothetical.protein	Membrane protein
${ }_{6}^{63}$ _hypotheticial_protetein	Helix-Turn-Helix DNA interaction protein
	${ }_{\text {Prager eesulatory protein }}$
66 hypotheiticalprotein	RNA polymerase subunit
67 _repA_replication_protein	
68_TolA_protein	TolA colicins uptake - DNA mobilisation relaxase
	Carbohydrate transporter
71._hypotheitical_protein	-
72_ONA_topoisomerase Ill_TraE_(EC [.999.1.2)	DNA topoisomerse I
${ }^{73}$ _hypothetical_protein	
	GTPase [Regu CRISPR/Cas6
77- 78 H6004726252 hypothetical_protein	Labaregulator domain family
79-pK2_Serinetrreonine_protein_kinasepprkc2C	Protein kinse

4.2 Association between cluster analysis and predicted functions

Table 4.2 shows the genes displayed in Table 4.1 ordered and coloured according to the clustering analysis shown in Section 3.3.2.

The table shows how the functions predicted for the genes appearing in the pTet-like plasmid pan genome can be clustered according to how frequently they are present in a bacterial strain.

In particular, the analysis highlights how the majority of the core genes of the plasmid pan genome (yellow cluster and red cluster) are associated with DNA transfer, with a few exceptions, such as the ABC Transporter 20_FIG00471065_hypothetical_protein or the 33_cag_pathogenicity_island_protein. These genes encode for the virB/D2 cluster, topoisomerases, and conjugative proteins. Moreover, the hicAB system for plasmid stabilisation is present in the yellow cluster, which is associated with a higher frequency in the C. jejuni database analysed. The proteins of the plasmid pan genome associated with lower frequencies (green and light blue clusters) seem to be associated with functions presumably associated with adaptation, like membrane transporters and nutrients uptake, antibiotic resistances, regulation, and signal transduction.

Table 4.2 - Results summary of the conserved domains search in the hypothetical proteins encoded by the pTet-like plasmid pan genome. Columns are analogous to Table 4.1. The second column is coloured according to the different clusters identified in the pTet-like plasmid pan genome analysis (Chapter 3, Section 3.3.2).

4.3 Discussion

In this chapter, a conserved domain search was used to identify the putative functions in the genes identified in the pTet-like plasmid pan genome.

For the majority of the proteins annotated as "hypothetical" by the automated pipeline RAST (Overbeek et al., 2014), several conserved domains have been identified with a high degree of confidence (e-value lower than 10e-3).

The genes predicted to be involved in the conjugational DNA transfer and with the Type Four Secretion System, have all been confirmed to be present by the presence of the expected conserved protein domains in the translated sequence.

DNA replication-associated proteins (RepA, ParA/B) have also been identified, even if the CDS identified as "67_repA_replication_protein" does not show the presence of any conserved domains associated with the function. The sequence of the gene "67_repA_replication_protein" is homologous to the repA gene of the plasmid pTet, but no conserved domain is identified in the translated sequence. This might be a mis-annotation in the original pTet NC008790.1 plasmid (locus tag CJJ81176_pTet0001) annotated for the first time in 2004 (Batchelor et al, 2004).

Several CRISPR/Cas system associated hypothetical proteins have been identified in this study: in particular, two CRISPR/Cas2 domains associated with the virulence-associated proteins VapD and VapD2 and domains associated with Cas9, Cas8, Cas6, Csx1 in other hypothetical proteins.

CRISPR/Cas systems have been described extensively in literature recently and they are associated with bacterial resistance to phages (Boyaval et al., 2007; reviewed by Marrafini in 2015). They are described as bacterial adaptive immunity: CRISPR loci are formed by arrays of short repeated sequences with intervening short sequences of viral or plasmid origins. The small RNAs produced by the
transcription of the spacers target the complementary viral sequence, and they are used as a guide by the Cas endonucleases as guide for the direct cleavage of the viral genome. The function of CRISPR/Cas Systems have also been associated to virulence in pathogenic bacteria (reviewed by Louwen et al., 2014): in particular, it was observed that the deletion of cas9 in C. jejuni affected the ability of the bacterium to translocate across intestinal epithelial cells (Louwen et al., 2013).

A HicA/HicB system is part of the pTet-like plasmid pan genome. This system is a toxin/antitoxin system used for plasmid stabilisation in bacterial cells by Post Segregational Killing (PSK). The function of this system is reviewed by Van Melderen and De Bast in 2009. The system is organised into an operon: the toxin is expressed constitutively and is more stable than the antitoxin, which degrades the mRNA encoding for the toxin. If the bacterial cell does not inherit the plasmid after duplication, it loses the antitoxin and is killed the stable toxin protein still present in it. The HicAB system has been shown to be involved with other functions in other bacterial species, such as chemotaxis and biofilm formation in E. coli, to promote virulence in Salmonella and to have a role in persister formation in Burkholderia pseudomallei (De la Cruz et al., 2013, Butt et al., 2014, Kim et al., 2009). The TAsystem described here in particular was found to share between 70\% and 80\% protein sequence identity with TA-systems described in the chromosome of several strains of H. pylori. Recently the expression of one TA-system of H. pylori (hp0968hp0967, a TA-system of the same family of the HicAB system described here in C. jejuni) was described to be regulated by environmental signals relevant in the context of human infection and to be induced in biofilm formation (CárdenasMondragón et al., 2016).

The presence of this TA-system may explain why it was not possible to cure a pTet-like plasmid when it is found without other plasmids in a C. jejuni strain (SmitdOtt et al., 2004), but its involvement in environmental adaptation or virulence cannot be excluded.

Several conserved domains associated with antibiotic resistance and membrane transport were identified in the pTet-like plasmid pan-genome. These include an ABC transporter in 54 FIG00470281 hypothetical protein, an ABC transporter/glycopeptide antibiotic resistance in 20_FIG00471065_hypothetical_protein, a MATE-like protein involved in multidrug and toxin extrusion in 11_FIG00469626_hypothetical_protein, the tetracycline resistance gene tet(O), a resistance to aminoglycoside antibiotics (aph3) a C39G peptidase involved in resistance to bacteriocins in 42_FIG00638667_hypothetical_protein. ABC (ATP-binding cassette) transporters rely on the hydrolysis of an ATP molecule for the uptake or the extrusion of molecules (reviewed by Wilkens in 2015) and are used by bacteria for uptake of nutrients or extrusion of toxic molecules. In C. jejuni, a class of amino acid ABCtransporters have been recently linked to abiotic stress resistance (peroxide, heat, and osmotic shock) and virulence in mouse and macrophage cell infection models (Lin et al., 2009). As far as the antibiotic resistance genes are concerned, Campylobacter species are known to exhibit resistance to a wide variety of antibiotics (Luangtongkum et al, 2010), and it is not surprising to find several antibiotic-resistance genes and MATE-like transporters in this analysis.

A number of proteins carry conserved domains identified in other bacterial species, and some of them seem involved with pathogenicity. Examples are the conserved domains highlighted in the hypothetical proteins

26_FIG00470038_hypothetical_protein (a factor promoting the initiation of blood coagulation in S. aureus, Friedrich et al., 2003),

33_cag_pathogenicity_island_protein (a membrane protein expressed by the Cag12 pathogenicity island of H. pylori, Kim et al., 2006), and 4_hypothetical_protein (a cellsurface protein promoting the lysis of blood cells and associated with pathogenicity of the insect pathogen Xenorhabdus nematophila, Cowles et al., 2005). The presence of genes derived from other bacterial species has been already observed in this plasmid family, as described in the previous chapter for the gene tet (O) and in the mosaic structure of a multiple-drug resistance plasmid (Nirdnoy et al, 2005). Several studies highlighted the genome plasticity of C. jejuni: Gibreel et al. in 2004 were able to transfer a plasmid from C. jejuni to E. coli, and C. jejuni is naturally competent and can efficiently uptake DNA from the environment (De Boer 2002, Wang 1990, Vegge 2012). These mechanisms can be used by the bacterium in the process of adaptation.

The regulative function often appears in the conserved domains identified in the hypothetical proteins encoded by the pTet-like plasmid pan-genome. A large number of conserved domains are associated with ATPases, Protein Kinases, Acetyltransferases, and Membrane receptors for signal transduction. It is not clear in which regulative process these proteins are involved, but their presence highlights the possibility of the association of the plasmid family pTet-like in a large number of regulative functions.

A number of membrane transporter-associated conserved domains are also identified. For instance, a carbohydrate transporter domain is present in 70_FIG00469626_hypothetical_protein and 7_FIG00471069_hypothetical_protein; ABC transporter domains are present in the hypothetical proteins

20 FIG00471065_hypothetical_protein and 54_FIG00470281_hypothetical_protein. The C4-carbohydrate transporter domain identified in the hypothetical protein 7_FIG00471069_hypothetical_protein may be of particular interest in the Campylobacter species: it is reported that most Campylobacter strains cannot utilise sugars and several works have shown how they rely on the use of amino acids and C4 carbohydrates for survival and successful colonisation (Guccione et al., 2008; Stahl et al., 2011).

Because of the presence of these transporter proteins, one of the functions of the plasmid could be the uptake of molecules that are present just in particular environments, giving the bacterium a higher fitness in different ecological niches.

Finally, the comparison of the cluster analysis performed in the previous chapter (3.3.1) with the putative functions of the hypothetical proteins highlights different hypothetical functions associated with different gene frequencies in the set of C. jejuni strains analysed.

In Campylobacter, several studies showed genes for particular functions associated with different ecological niches, such as a cluster of six genes within the O-linked flagellin glycosylation locus associated with strains isolated from livestock and a series of strains isolated from a sandy beach environment lacking a putative serine protease (Champion et al., 2005), or a gene cluster implicated in the production of B5 vitamin in strains isolated from cattle (Sheppard et al., 2013). In these cases, the association was found with chromosomal genes.

The distribution of gene functions associated with frequencies at which those genes are found in a Campylobacter strain explains the composition of the plasmid pan-genome of the pTet-like plasmids. The "core" genes, found at a higher frequency, are associated with plasmid maintenance and transfer; the "accessory",
found at a lower frequency, genes are associated with metabolism, regulation and resistance: it is possible that they give a higher fitness to the organism in determinate conditions and are added to the plasmid or maintained just in particular niches.

In the next chapters, I explain the functions of some of the genes identified in the pTet-like plasmids via a mutagenesis analysis and phenotype evaluation.

Chapter 5 - Mutagenesis of pTet-like
plasmid pan-genome accessory and core
genes

After assessing a possible function for the 79 genes in the p Tet plasmid pangenome, I next carried out a functional study of a set of these genes via targeted mutagenesis.

In the last 30 years, several protocols for targeted mutagenesis in this C. jejuni have been described and successfully applied. These protocols are based on the introduction of a plasmid vector carrying an antibiotic resistance marker in C. jejuni via electroporation or conjugation. These plasmid vectors were constructed to be unable to replicate in Campylobacter (suicide-vector) and to include an antimicrobial resitance cassette, surrounded by two regions homologous to Campylobacter genome-specifically upstream and downstream of the gene targeted for deletion. Once the plasmid is transformed in Camptlobacter, and under selective pressure, the homologous regions would facilitate the recombination event that will result in the stable integration of the antimicrobial resistance cassette in the genome of the bacterium, substituting the gene targeted for deletion with the resistance cassette. The use of these protocols was successfully described in several recent publications (Reuter et al., 2013; Vegge et al., 2009).

The main aims of this chapter are to develop a reliable method for the application of one these mutagenesis protocols and to mutate a subset of genes from the pTet-like plasmid pan-genome.

Moreover, I will describe the genomic set up of the only C. jejuni strain in which I was able to stably introduce foreign DNA.

5.1 Assess the possibility to introduce mutations in C. jejuni strains

I performed two studies in order to assess the possibility of producing mutants in different C. jejuni strains.

First, the copy number of the pTet-like plasmid in different strains was measured. This is important: if the plasmid is present at a copy number higher than 1 per cell, only one copy would be mutated. In this analysis, I evaluated the copy numbers of pCj 2 and pCj and some of the plasmid genes present in the strain Cj 1 . Sequencing reads of $\mathrm{Cj} 1, \mathrm{Cj} 2$, and Cj 3 were aligned back to the corresponding draft genome assemblies using Bowtie2 software. The "Mpileup" module of SamTools was then used to calculate the coverage per site of the alignment (Li et al., 2009). An ad hoc perl script extracted the average coverage value for each contig, and the coverage of plasmid genes (tetO, virD4, traQ and traR) was compared to the coverage of chromosomal genes (extract_pileup_coverage_gene.pl). The results are reported in Figure 5.1 and Table 5.1. The average coverage value of the plasmid genes-compared to the rest of the genome-suggests a copy number of 1 .

Once the low copy number of the plasmid pTet-like genes was established in the strains $\mathrm{Cj} 1, \mathrm{Cj} 2$, and Cj 3 , assuming the low copy number is conserved in the other strains analysed, the possibility of transforming C. jejuni strains with exogenous DNA was assessed. In order to do so, 19 strains of C. jejuni were transformed with pGEM::cj1411 via electroporation. Plasmid pGEM::cj1411 was designed in the University of Exeter's Molecular Pathogenesis Laboratory (Olivia Champion, personal communication), to integrate fully into gene cj1411 of C. jejuni strain 11168 (AL111168.1). This gene is broadly conserved in C. jejuni and encodes a cytochrome P450 protein (Alvarez et al., 2013). Transformant strains could be identified thanks to the kanamycin cassette marker, in case of a successful
transformation and chromosomic integration of the resistance marker. The strains used in this analysis are reported in Table 5.2, together with the percentage of similarity of the gene cj1411, which was always higher than 98%. Only strain Cj 1 gave positive results, showing 10^{2} transformant cells $/ \mathrm{ml}$ able to grow on kanamycin when transformed with $1 \mu \mathrm{~g}$ of vector DNA (Materials and methods, Section 2.6). I decided to use the strain Cj 1 to produce mutants of plasmid genes.

Figure 5.1 - Depths of genomic sequencing coverage for strains $\mathbf{C j} 1, \mathrm{Cj} 2$, and Cj 3 . Genomic shotgun sequence reads were aligned against the respective genome assembly using BWA-mem and the depth of coverage was calculated for each site. Blue bars are the average depths across the entire genome sequence; red bars are the average depths for four plasmid genes (tetO, virD4, traQ and traR). The differences between whole genome and plasmid genes are not significant in any of the 3 strains (Single tailed, t -test, $\mathrm{p}<0.01$)

Table 5.1 - Data associated to Figure 5.1 Average coverage per site of the alignment of $\mathrm{Cj} 1, \mathrm{Cj} 2$, and C 3 sequencing reads versus their own assemblies.

	Genome average	SD	Plasmid genes	SD
Cj1	299.70	249.28	359.39	131.47
Cj2	180.57	110.08	276.99	63.2
Cj3	421.15	246.87	429.44	79.03

Table 5.2 - Strains used to assess for transformability with exogenous DNA. Columns show (from left to right): strain name (accession number in bracket, where available), nucleotide sequence identities versus the cj1411 gene, \% of identity with the cj1411 gene, $+/-=$ positive or negative result of the transformation.

Strain	Identities		
Cj1	$1361 / 1362$	99%	+
Cj2	$1355 / 1362$	99%	-
Cj3	$1351 / 1362$	99%	-
11818	$1354 / 1362$	99%	-
Hi40620300	$1362 / 1362$	100%	-
Pet_93_327	$1331 / 1362$	97%	-
Pig_PS623	$1336 / 1362$	98%	-
PoultryC5_T2_8	$1361 / 1362$	99%	-
Poultry_MB12	$1333 / 1362$	97%	-
Poultry_MB9	$1361 / 1362$	99%	-
$81-176$ (NZ_AASL01000001.1)	$1362 / 1362$	100%	-
Cj5	$1349 / 1362$	99%	-
Cj32799	$1355 / 1362$	99%	-
cow201	$1355 / 1362$	99%	-
Pig_PS549	$1336 / 1362$	98%	-
Poultry_D2	$1355 / 1362$	99%	-
Sheep_S120	$1338 / 1362$	98%	-
Sheep_S216	$1362 / 1362$	100%	-
11168 (AL111168.1)	$1362 / 1362$	100%	-

5.2 Description of the strain Cj 1 genome

C. jejuni Cj 1 is a strain originally isolated in Thailand from a hospitalised patient with bloody diarrhoea in 2009. That strain was positive when tested using the PCRs for plasmid marker genes and the tetracycline resistance gene reported in Chapter 3. However, I was unable to isolate a plasmid from strain Cj 1 (see Figure 3.5). This strain exhibits the majority of the genes annotated in the plasmid pTet NC00079.1 (Table 3.5), as well as the majority of the genes (48) annotated in the pTet-like plasmid-pan genome. When compared to the global plasmid pan-genome of C. jejuni, it shows the presence of 99 genes out of 168. It possible that the plasmid is integrated into the chromosome or that the plasmid is larger than 100 kbp and impossible to extract with any of the techniques I used in Chapter 3.

Strain Cj1 was sequenced using Illumina HiSeq (100bp paired-end reads, short insert) and Illumina MiSeq (300bp paired-end reads, short insert). An assembly was performed from this sequencing data using SPAdes (Bankevich et al., 2012; Materials and Methods, Section 2.10.4). The final assembly statistics are reported in Table 3.3. The analysis of the graph file performed with Bandage (Wick et al., 2015) shows two distinct contig sets (Figure 5.2 A), whose contiguity can be inferred via the paired end information. The longer contig set is 1.6 Mb and represents the chromosome of strain Cj 1 . The shorter contig set is 115 kbp total and includes the 99 genes from the plasmid pan genome (Figure 5.2 B). This is consistent with reports that some strains of C. jejuni possess megaplasmids (pCJDM202 and pCJDM67 L, Table 3.14). Analysing the coverage of the contigs included in the shorter set, it is possible that 2 of them (contig 18 and 19) are repeated in the mega plasmid of $\mathrm{C}_{\mathrm{j}} 1$, assuming it is present, as they show a read coverage almost double when compared to the rest of the contigs included in this set (Figure 5.2 C).

A Blastn search against the bacterial sequence database of contigs $8,15,16$, 18, 19 and 20 against the NCBI database showed similarity between 95 and 100% with plasmids pCJDM202, pCJDM67 L, the plasmid from strain RM3194 and plasmid pcjDM (accession numbers CP014743.1, CP014745.1, CP014345.1, CP013117.1). The same contigs from the Cj1 genome assembly show a high percent of similarity (between 95% and 100%) with the genome of strains $00-1597$ and RM1221, which are not reported to possess plasmids.

Table 5.3 shows the results of the Blastn search against the bacterial sequence database for the contigs $8,9,15,16,18,19$, and 20.

Contig 9 of strain Cj 1 shows the presence of 45 genes listed in the pTet-like plasmid pan genome (Figure 5.2 D), and its sequence was used to design the mutants. An image representing the contig 9 is reported in Figure 5.3. The genes present in contig 9 of the genome sequence of Cj 1 are described in Table 5.3.

Figure 5.2 - Genome assembly of the strain $\mathbf{C j} 1$ (A) Graphical representation of the assembly of the strain Cj1 using Bandage software. Each grey segment of the figure represents a contig of the genome assembly (grey lines), linked to each other using the "graph" information provided by the software SPAdes. Numbers shown on the grey segments are referred to the number of the contig in the genome assembly. Two contig sets are identifiable; each contig in the different sets is linked thanks to the paired end information. (B) Zoom on the shorter contig set (total length 115 kbp). Colours are referred to the BLASTn hits of the C. jejuni plasmid pan-genome genes versus the strain Cj 1 . (C) Zoom on the shorter contig set. Average coverage of each contig, as reported by the automated assembler SPAdes, is shown on each contig. (D) Zoom on the shorter contig set. Colours are referred to the BLASTn hits of the pTet-like plasmid pan-genome genes versus the strain Cj 1 .

Table 5.3 - Results of the first four BLASTn hits of contigs 8, 9, 15, 16, 18, 19 and 20 of C. jejuni strain Cj1 genome assembly versus the bacterial genome database. For each of the seven contigs each column shows (from left to right): the description of the the sequence hit, the maximum BLASTn score, the total score, the \% of coverage of the query, the e-value, the \% of identity, the accession number of the hit sequence. Contigs $8,15,16,18,19$, and 20 show hits both on the chromosome and on plasmids of C. jejuni strains.

Query	Description	Max score	Tot score	Query cov.	E-value	\% identity	Acc. no.
NODE_8+_length_61577_cov_25.6027	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	56061	$1.20 \mathrm{E}+05$	100\%	0	99\%	CP014743.1
	Campylobacter jejuni strain OD267 plasmid pCJDM67 L, complete sequence	48592	$1.18 \mathrm{E}+05$	98\%	0	99\%	CP014745.1
	Campylobacter jejuni strain RM3194 plasmid, complete sequence	48228	1.17E+05	98\%	0	99\%	CP014345.1
	Campylobacter jejuni subsp. jejuni strain 00-1597, complete genome	31388	71009	60\%	0	98\%	CP010306.1
NODE_9+_length_43551_cov_27.7867	Campylobacter coli strain OR12 plasmid pOR12TET, complete sequence	36326	42594	54\%	0	98\%	CP013735.1
	Campylobacter coli strain CO2-160 plasmid pccdm3, complete sequence	36287	68965	88\%	0	98\%	CP013033.1
	Campylobacter jejuni subsp. jejuni 81-176 plasmid pTet, partial sequence	33323	69191	90\%	0	99\%	CP000549.1
	Campylobacter jejuni strain 81-176 plasmid pTet, complete sequence	33318	69156	90\%	0	99\%	AY714214.1
NODE_15+_length_3370_cov_21.3309	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	5526	8114	100\%	0	99\%	CP014743.1
	Campylobacter jejuni strain OD267 plasmid pCIDM67 L, complete sequence	5520	8114	100\%	0	99\%	CP014745.1
	Campylobacter jejuni strain RM3194 plasmid, complete sequence	3646	9254	100\%	0	98\%	CP014345.1
	Campylobacter jejuni RM1221, complete genome	3256	7949	100\%	0	94\%	CP000025.1
NODE_16+_length_2770_cov_23.6115	Campylobacter jejuni strain OD267 plasmid pCIDM67 L, complete sequence	4935	7292	100\%	0	99\%	CP014745.1
$\stackrel{\rightharpoonup}{2}$	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	4924	7292	100\%	0	99\%	CP014743.1
	Campylobacter jejuni strain RM3194 plasmid, complete sequence	4905	7693	100\%	0	99\%	CP014345.1
	Campylobacter jejuni RM1221, complete genome	3843	6909	100\%	0	99\%	CP000025.1
NODE_18+_length_1994_cov_54.6422	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	3659	6513	100\%	0	99\%	CP014743.1
	Campylobacter jejuni strain OD267 plasmid pCJDM67 L, complete sequence	3603	6242	100\%	0	99\%	CP014745.1
	Campylobacter jejuni strain T1-21 plasmid pcjDM, complete sequence	3090	3090	100\%	0	95\%	CP013117.1
	Campylobacter coli CVM N29710 plasmid pN29710-1, complete sequence	2191	2191	100\%	0	87\%	CP004067.1
NODE_19+_length_1237_cov_53.7802	Campylobacter jejuni strain OD267 plasmid pCJDM67 L, complete sequence	2285	4570	100\%	0	100\%	CP014745.1
	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	2285	4570	100\%	0	100\%	CP014743.1
	Campylobacter jejuni strain RM3194 plasmid, complete sequence	2257	4515	100\%	0	99\%	CP014345.1
	Campylobacter jejuni RM1221, complete genome	2252	4504	100\%	0	99\%	CP000025.1
NODE_20+_length_1130_cov_27.3659	Campylobacter jejuni strain WP2202 plasmid pCJDM202, complete sequence	2069	2468	100\%	0	99\%	CP014743.1
	Campylobacter jejuni strain RM3194 plasmid, complete sequence	2058	2129	100\%	0	99\%	CP014345.1
	Campylobacter jejuni strain OD267 plasmid pCJDM67 L, complete sequence	2052	2452	100\%	0	99\%	CP014745.1
	Campylobacter jejuni RM1221, complete genome	2041	2041	100\%	0	99\%	CP000025.1

Figure 5.3-Graphical representation of the genes annotated on the Contig 9 (NODE_9+_length_43551_cov_27.7867) of the Cj1 draft genome sequence. Yellow arrows represent the genes; the gene names (as reported in Chapter 3.3) are linked to each arrow.

Table 5.4 - Genes annotated on the Contig 9 (NODE_9+_length_43551_cov_27.7867) of the draft genome sequence of strain Cj1. Columns show (from left to right): gene name assigned by RAST automated annotation, gene name as assigned in the pTet-like plasmid pan genome analysis (chapter 3, section 3), relative position of the first gene nucleotide, relative position of the end nucleotide, transcription direction, names of the mutant strains (for genes selected for mutagenesis, described in Chapter 5.3), cluster number of the genes selected for mutagenesis (according to the pTet-like plasmid pan genome analysis described in Chapter 3.3.2).

Gene name (RAST assembly)	Gene name (Homologous to pTet-like plasmsd pan-genome)	Start	End	Direction	Mutant name	Cluster (Figure 3.24)
fig\|354242.102.peg. 1781	31_FIG00471711_hypothetical_protein_NTPase	57	668	-		
fig\|354242.102.peg. 1782	18_FIG00470991_hypothetical_protein	697	978	-	Dcri	1
fig\|354242.102.peg. 1783	45_Ribbon-helix-helix_protein_copG_family_domain_protein	1172	1723	+		
fig\|354242.102.peg. 1784	44_IncQ_plasmid_conjugative_transfer_TraR_(VirD2)	1723	3111	+		
fig\|354242.102.peg. 1785	6_FIG00469644_hypothetical_protein	3134	3874	+	Datr	3
fig\|354242.102.peg. 1786	77_FIG00472625_hypothetical_protein	3849	4577	-	DlabA	3
fig\|354242.102.peg. 1787	56_FIG00470802_hypothetical_protein	4714	10524	-		
fig\|354242.102.peg. 1788	25_FIG00469707_hypothetical_protein	10527	10793	-	Dhyp25	2
fig\|354242.102.peg. 1789	21_hypothetical_protein	10796	11356	-	DparA	2
fig\|354242.102.peg. 1790	13_FIG00469557_hypothetical_protein	11415	11681	-		
fig\|354242.102.peg. 1791	12_FIG00471537_hypothetical_protein	11686	12243	-	DepsG	3
fig\|354242.102.peg. 1792	11_FIG00469626_hypothetical_protein	12240	12752	-	Dmate	3
fig\|354242.102.peg. 1793	20_FIG00471065_hypothetical_protein	12749	13102	-	Dabc	1
fig\|354242.102.peg. 1794	58_FIG00471069_hypothetical_protein	13062	13295	-		
fig\|354242.102.peg. 1795	67_repA_replication_protein	13647	14300	-		
fig\|354242.102.peg. 1796	17_hypothetical_protein	14479	14661	-		
fig\|354242.102.peg. 1797	16_Tetracycline_resistance_protein_TetO	15056	16975	-	DtetO	3
fig\|354242.102.peg. 1798	15_DNA_topoisomerase_II	17334	17513	-		
fig\|354242.102.peg. 1799	55_FIG00470802_hypothetical_protein	17532	18953	-		
fig\|354242.102.peg. 1800	53_DNA_topoisomerase_III_28828-31020_00-0949_pTet	19059	21251	-		
fig\|354242.102.peg. 1801	27_FIG00470273_hypothetical_protein	21514	22134	-	Dhyp27	1
fig\|354242.102.peg. 1802	32_FIG00469957_hypothetical_protein	22205	23002	-	DparB	1
fig\|354242.102.peg. 1803	28_IncQ_plasmid_conjugative_transfer_protein_TraQ	23005	23769	-		
fig\|354242.102.peg. 1804	33_cag_pathogenicity_island_protein	23781	24218	-	Dcag	2
fig\|354242.102.peg. 1805	29_Coupling_protein_VirD4_ATPase	24199	26010	-		
fig\|354242.102.peg. 1806	34_VirB11	26011	27003	-		
fig\|354242.102.peg. 1807	39_VirB10	26984	28159	-		
fig\|354242.102.peg. 1808	36_VirB9	28186	29073	-		
fig\|354242.102.peg. 1809	30_VirB8	29070	29732	-		
fig\|354242.102.peg. 1810	38_VirB7	29722	29889	-		
fig\|354242.102.peg. 1811	52_VirB6	29879	30877	-		
fig\|354242.102.peg. 1812	51_Minor_pilin_of_type_IV_secretion_complex_VirB5	30874	31845	-		
fig\|354242.102.peg. 1813	37_FIG00470457_hypothetical_protein	31849	32124	-		
fig\|354242.102.peg. 1814	41_Single-stranded_DNA-binding_protein	32140	32562	-		
fig\|354242.102.peg. 1815	9_FIG00469571_hypothetical_protein	32596	33162	-	Dunk9	3
fig\|354242.102.peg. 1816	50_Phage_Rha_protein	33159	33710	-		
fig\|354242.102.peg. 1817	49_VirB4	33721	36489	-		
fig\|354242.102.peg. 1818	35_VirB2	36502	36765	-	DvirB2	1
fig\|354242.102.peg. 1819	26_FIG00470038_hypothetical_protein	36935	37258	+	Dcoag	1
fig\|354242.102.peg. 1820	22_Virulence-associated_protein_2_(vapD)	37249	37626	+	DvapD	1
fig\|354242.102.peg. 1821	24_Site-specific_recombinase_resolvase	37623	38237	+		
fig\|354242.102.peg. 1822	hypotetical protein	38246	38365	-		
fig\|354242.102.peg. 1823	48_FIG00470960_hypothetical_protein	38447	40240	-		
fig\|354242.102.peg. 1824	19_FIG00471111_hypothetical_protein	40243	40446	-	DhicA	2
fig\|354242.102.peg. 1825	23_FIG00470952_hypothetical_protein	40439	40657	-		
fig\|354242.102.peg. 1826	hypotetical protein	41391	41531	+		
fig\|354242.102.peg. 1827	hypotetical protein	41918	42541	-		
fig\|354242.102.peg. 1828	47_IncQ_plasmid_conjugative_transfer_protein_TraG	42992	43255			

5.3 Genes selected for mutagenesis

A set of 17 genes were selected from the pTet-plasmid pan genome for mutagenesis. These genes were part of either the "core" or the "accessory" pTet plasmid pan-genome. They were selected on the basis of the automated annotation of the genome fo Cj 1 and of the conserved domains identified, described in Chapter 4. I decided to design mutants on genes present in the genome of the strain Cj 1 , whose function was not fully described or on genes whose function could be linked to phenotypes previously undescribed in C. jejuni. The following targets were selected for mutagenesis. The names given to the mutants reflect the conserved domains identified in the hypothetical protein if a conserved domain was found.

Datr - 6_FIG00469644_hypothetical_protein (see S4.4) - A partial acetyl transferase domain is present in the hypothetical protein encoded by this gene (Neuwald et al., 1997, Cort et al., 2008).

DlabA - 77_FIG00472625_hypothetical_protein (see S4.64) - This hypothetical protein shows a LabA-like conserved domain, associated with a variety of diverse regulatory and metabolic functions (Taniguchi et al., 2007; Taniguchi et al., 2010; Tang et al., 2008; Parsons et al., 2002).

DepsG - 12_FIG00471537_hypothetical_protein (see S4.9) - Several conserved domains are here identified: a domain for an ATPase associated with diverse cellular activity (lyer et al., 2004), a CsbA domain involved in stress response in B. subtilis (Petersohn et al., 2001), and an EpsG domain involved in production and maintenance of biofilm structure (Branda et al., 2004).

Dabc-20_FIG00471065_hypothetical_protein (see S4.15) - A conserved domain for an ABC (ATP-binding cassette) membrane transporter is described in this
hypothetical protein (Reizer et al., 1992), together with a VanZ domain for glycopetide antibiotics resistance (Arthur et al., 1995).

DparB - 32_FIG00469957_hypothetical_protein (see S4.26) - Conserved domains involved with nuclease activity are identified in this hypothetical protein (ParB, AAA-domain, Easter and Gober, 2002). A domain for the cellular sensing of L-fucose is also described (Felder et al., 1999). Together with the ParA domain identified in the protein 21_hypothetical_protein, a putative function of this protein is the control and regulation of DNA replication.

Dcag-33_cag_pathogenicity_island_protein (see S4.27) - A conserved domain (Cag12) belonging to the cag pathogenicity island of Helicobacter pylori is described in this hypothetical protein. The function of Cag12 is unknown (Kim et al., 2006).

Dunk9-9_FIG00469571_hypothetical_protein (see S4.6) - The only conserved feature identified in this hypothetical protein is associated with chromosomal structure in meiotic phase in eukaryotic cells (Meuwissen et al., 1992). Its function is not yet fully described but its structure shows motifs present in DNA-binding proteins and several potential targets for protein kinases. There is no function that can be associated with bacterial cells in this hypothetical protein.

Dcoag-26_FIG00470038_hypothetical_protein (see S4.20) - A conserved domain from a blood coagulase of S. aureus is described in this hypothetical protein (Friedrich et al., 2003).

DvapD-22_Virulence-associated_protein_2_(vapD) (see S4.17) - The VapD domain identified here is part of the CRISPR/Cas superfamily, involved in the protection of the bacterium against foreign DNA (Boyaval et al., 2007; Nam et al., 2012).

DhicA - 19_FIG00471111_hypothetical_protein (see S4.14) - The HicA_toxin domain identifies this hypothetical protein as the cognate toxin of the HicA/B toxinantitoxin system (see 4.3.18, 23_FIG00470952_hypothetical_protein; Yamaguchi and Inouye, 2011; Makarova et al., 2006).

Dcri-18_FIG00470991_hypothetical_protein (see S4.13) - This hypothetical protein shows several conserved domains, including a a Cas8a1 domain associated to CRISPR/Cas proteins (Boyaval et al., 2007) and a PRK14149 domain, part of the GrpE superfamily which includes heat shock and bacterial chaperones proteins (Harrison, 2003).

Dhyp25-25_FIG00469707_hypothetical_protein - the conserved domains search did not highlight the presence an any conserved domain in thys hypothetical protein.

DparA-21_hypothetical_protein (see S4.16) - This hypothetical protein shows the presence of a ParA domain, which is part of the ParA-ParB system and promotes the regulation of DNA replication (Easter and Gober, 2002). FlgG, a member of the ParA-ATPase superfamily, has been shown to be regulate the production of polar flagella in C. jejuni (Balaban and Hendrixson, 2011).

Dmate - 11_FIG00469626_hypothetical_protein (see S4.8) - The conserved domain identified in this protein is associared with the MATE protein family ("Multidrug And Toxic compound Extrusion"; Putman et al., 2000; Hvorup et al., 2003). The function of this protein family is exporting metabolites across the cell membrane and conferring multi drug resistance to bacteria.

Dhyp27-27_FIG00470273_hypothetical_protein (see S4.22) - With the exception of a single domain of unknown function conserved in Mycoplasma species
(Sasaki et al., 2002), this protein does not show the presence of any conserved domain.

DvirB2 - 35_VirB2 (see S4.29) - According to the automated annotation and the conserved domains search, this protein encodes for the main component of the type four secretion system pilus (VirB2; Kalkum et al., 2002; Schulein and Dehio, 2002).

A further mutant has been designed in the $\operatorname{tet}(O)$ gene in order to have a positive control for a mutation with a known phenotype.

The targets selected for mutagenesis are also highlighted in Table 5.4, indicating the associated mutant name. The characteristics of the genes selected for deletion are summarised in Table 5.5.

Table 5.5 - Summary of the characteristics of the genes selected for deletion. Columns show (from left to right): mutant name, gene name (accordin to the pTet-like plasmid pan-genome described in Chapter 3.3), predicted gen function, gene length, and protein length.

	Name (Chapter 3.3)	Predicted function from associated domains	Gene (bp)
Datr	6_FIG00469644_hypothetical_protein	Acetyltransferase	705
Dunk9	9_FIG00469571_hypothetical_protein	Unknown - Chromosome structure [Eukariotic]	552
DepsG	12_FIG00471537_hypothetical_protein	AAA_23 ATPase - EpsG domain [Biofilm/EPS]	558
Dabc	20_FIG00471065_hypothetical_protein	ABC transporter - Glycopeptide antibiotics resistance	399
Dcoag	26_FIG00470038_hypothetical_protein	Blood coagulase (S. aureus)	324
Dcag	33_cag_pathogenicity_island_protein	Membrane protein (Helicobacter pylori)	438
DparB	32_FIG00469957_hypothetical_protein	ParB-like domain - Ligand-binding of fucose receptor - AAA15 ATPase	798
DlabA	77_FIG00472625_hypothetical_protein	LabA regulatory domain family	729
DhicA	19_FIG00471111_hypothetical_protein	HicA toxin	204
DvapD	22_Virulence-associated_protein_2_(vapD)	CRISPR/Cas2	408
DtetO	16_Tetracycline_resistance_protein_TetO	Tetracycline resistance	1920
Dcri	18_FIG00470991_hypothetical_protein	CRISPR/Cas8 - Viral protein domain - Varous cellular functions	282
Dhyp25	25_FIG00469707_hypothetical_protein	---	267
DparA	21_hypothetical_protein	ParA ATPase - replication protein	561
Dmate	11_FIG00469626_hypothetical_protein	MATE-like protein [Multidrug toxin extrusion]	513
Dhyp27	27_FIG00470273_hypothetical_protein	Alpha helices rich domain	621
DvirB2	35_VirB2	TrbC/VirB2	264

5.4 Mutagenesis of Campylobacter jejuni

The protocol for the mutagenesis of C. jejuniwas a variation of the allelic exchange protocol used previously for Campylobacter and other bacteria (Van Vliet et al., 1998, Karlyshev and Wren 2005, Tunio et al., 2010).

The protocol is summarised in Figure 5.4.1. PCR was used to amplify 500 to 700 base pair regions upstream and downstream the target gene. The PCR primers were designed so that amplification would introduce a 20 to 25 bp complementary overhang at the 3 ' end of the upstream region and the 5 ' end of the downstream region. This overhang included a bamHI restriction site (Figure 5.4 A).

An overlapping extension PCR was performed using the upstream forward primer (USF) and the downstream reverse primer (DSR) and the two purified PCR products from the previous step as template DNA (Figure 5.4 A). The construct, composed of 500 to 700 bp flanking the 5 ' and the 3 ' extremity of the gene of interest, intervaled by a bamHI site, was cloned in pGEM-T easy (Promega), via TA cloning (Figure 5.4.1 A, Materials and Methods, Section 2.4). The pGEM::construct vector was cloned into chemically competent E. coli TOP10 and positive clones were selected (Materials and Methods, Section 2.5). The pGem::construct vector was then digested with bamHI enzyme. A plasmid vector pJMK30 containing a kanamycin resistance cassette (kan_cas, van Vliet et al., 1998, kindly provided by Dr Mark Reuters) was digested with bamHI, resulting in the digestion of the cassette from the plasmid (Karlyshev and Wren, 2005). The kan ${ }^{\mathrm{R}}$ _cas was subsequently cloned into the digested pGem::construct vector, resulting in pGem::construct::kan ${ }^{\text {R }}$ _cas vector (Figure 5.4 B). This vector was then introduced in Campylobacter via electroporation (Van Vliet et al., 1998).
pGEM-T Easy is not able to replicate in Campylobacter: the homologous regions on the vector promotes the double recombination event on the Campylobacter genome. The result is a substitution of the gene of interest with the kanamycin cassette (Figure 5.4 C). C. jejuni transformants were screened on MH kan50 plates and patched replicated on CBA with Skirrow supplement (Materials and methods 2.6).

Figure 5.4 - C. jejuni mutagenesis protocol. (A) Primer pairs USF-USR and DSF-DRS are used to amplify 500-700 base pairs upstream and downstream of the gene of interest and to include a BamHI in the PCR product. Overlapping extension is used to join the upstream and the downstream segment, which is then cloned in a pGEM-Teasy vector (pGEM::construct). (B) A kanamycin resistance cassette is cloned in the pGEM::construct vector using the BamHI restriction site (pGEM::construct:: kan ${ }^{\text {_ }}$ cas). (C) The pGEM::construct:: kanR_cas is transformed in C. jejuni. The homology regions promote the double recombination event, and the substitution of the target gene with the $\operatorname{kan}^{\mathrm{R}}$ cassette.

5.5 Constructs design and mutagenesis

Primer pairs were used to amplify the upstream and the downstream section of each target gene according to Table 5.6. A gradient of temperatures was tested to find the optimal annealing temperature for each primer pair. Figure 5.5 A and B show the result of a temperature gradient of annealing temperature for the primer pairs Gac_USF/Gac_USR and Gac_DSF/Gac_DSR. The amplicons were then used in an overlapping extension PCR (Ho et al., 1988), inserting a BamHI restriction site between the two fragments. Figure 5.5 C shows the result of such reaction for the construct necessary for the mutant Dcag.

The construct was cloned into pGEM-T Easy plasmid (Promega) obtaining the plasmids listed in Table 5.7 and transformed into chemically competent E. coli TOP10 cells. The presence of the construct in the pGEM-T Easy plasmid was assessed via amplification with SP6 and T7 primers (annealing outside the integration point of pGEM-T Easy) and sequencing. The recombinant plasmids pGEM carrying the construct of interest and plasmid pJMK30 carrying the kanamycin $\left(k a n^{R}\right)$ resistance cassette were digested with the BamHI restriction enzyme, obtaining a linearised pGEM::construct plasmid and a 1440 bp kan cassette. The result of the $\mathrm{BamH} /$ digestion for the plasmid vector pJMK30 is shown in Figure 5.6.

The kan cassette and the linearised pGEM::construct plasmid were purified from the agarose gel and ligated to obtain a pGEM::construct::kan_cassette plasmid; Table 5.7 lists the plasmids obtained. To check that the orientation of the $k a n^{R}$ cassette was the same of the gene to be deleted, the plasmid pGEM::construct:: $k a n^{R}$ _cassette was used as PCR template with the primer pairs kan_out_F/T7 and kan_out_R/SP6 (Figure 5.7, Table 5.8). The PCR with primers kan_out_F/T7 and kan_out_R/SP6 would only yield a product if the kan^{R} cassette were integrated with
the same orientation to the fragments of the gene to be deleted. The result of the PCR reaction with the primers kan_out_R/SP6 for the vector pGEM::cag::kan_R is shown in Figure 5.8. Each plasmid pGEM::construct::kan_cassette was also sangersequenced using the SP6 and T7 primers and maintained in E. coli TOP10 cells.

Finally, each plasmid was transformed into electro-competent C. jejuni strain Cj 1 cells, promoting the double recombination and the substitution of the target gene with the kanamycin resistance cassette and therefore meaning recombinants should grow on MH plates supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin.

Six transformant strains did not grow on the screening plate. These were the mutant strains Dcri, Dhyp25, DparA, Dmate, Dhyp27, and DvirB2. This can be due to the lack of recombination between the construct and the plasmid vector (the substitution of the target gene with the kanamycin cassette did not happen), to fact that the mutation disrupted an essential gene, or due to the fact that the pTet-like plasmid carried that may by the strain Cj 1 was lost after the mutation of a gene that stopped it from replicating or transmitting to the daughter cells.

The mutants that were able to grow on kanamycin were screened for successful mutation: five to ten colonies of transformant C. jejuni were tested for the substitution of the gene of interest with the kanamycin resistance cassette via PCR with the primers XXX_screenEXT_F and XXX_screenEXT_R (Table 5.9). The annealing site of these primers was 50-100 bp upstream of the USF primer and 50100 bp downstream of the DSR primer, respectively. The resulting PCR products are shown in Figures 5.9 to 5.16 , the predicted length of each product and the primer sequences are shown in Table 5.9.

The sequence of each PCR product was assessed via Sanger-sequencing in order to confirm the successful construction of the mutant.

Table 5.6 - Primers designed for the production of each mutant. Columns show (from left to right): mutant name as reported in Section 5.3, name of each primer, sequence of each primer, length of the amplified product, length of the overlapping PCR product.

Mutant Name	Primer Name	Primer Sequence	PCR product Length	Overlapping PCR product Length
DtetO	Dtet_USF	GCAAAATATAATGAATTTGCA	651	1240
	Dtet_USR	TATATGACTTTTGCAAGCTGggatccGTGATTTTCCTCCTATCAAC		
	Dtet_DSF	GTTGATAGGAGGAAAATCACggatccCAGCTTGCAAAAGTCATATA	635	
	Dtet_DSR	TTCATCAGCCGGATAAAGGT		
Datr	Datr_USF	GGCTAAAGAATTGGCTAAG	610	1118
	Datr_USR	AAATTATATAGGAGTAAGAAATAggatcctanaincagacganagant		
	Datr_DSF	CATCCTTTCGTCTGTTTTTAggatccTATTTCTTACTCCTATATAATTT	557	
	Datr_DSR	TAGAAAGGGTTGTAAGAG		
DlabA	Dlab_USF	ATAAGCGGAGAAAGAACAG	623	1194
	Dlab_USR	GTtTAATAAAAATAAAAGCAAAAAggatcctGTtGCGTAGTCCTAATTTATTA		
	Dlab_DSF	TAATAAATTAGGACTACGCAACAggatcctTTTTGCTTTTATTTTTATTAAAC	624	
	Dlab_DSR	GAAATAAGAGCGTTTGTG		
Deps 6	Deps_USF	TAATGCCTATATTTGTCGCG	659	1238
	Deps_USR	TATCCATCTCTAGCATTTTAggatccTTATCCTCCTTTAATATTTC		
	Deps_DSF	GAAATATTAAAGGAGGATAAggatcctanaitcctagagatgata	625	
	Deps_DSR	ATGTTCTAAGTAAAGAATTG		
Dabc	Dabc_USF	ATGTGAAAGACGGTATAAAG	548	1132
	Dabc_USR	TGCTACTATTGTAATTTTTTggatcctantcantctitutictuttic		
	Dabc_DSF	GAAAAAGAAAAAAGATTGATTAggatccaAAAAATTACAATAGTAGCA	632	
	Dabc_DSR	ATTTACTACTCTCATTTATC		
DparB	Dpar_USF	AGTtAAACCACCTGAATG	595	1217
	Dpar_USR			
	Dpar_DSF	GGATAAACGAGAAATAACAggatccacagaicait	667	
	Dpar_DSR	TTGAAATTACAGCTATAAAC		
Dcag	Dcag_USF	TCATAACCTCTTTCCCAATC	594	1082
	Dcag_USR	AATTCAAATTATAGGAGAAAACAggatccagGagaganainatganamanatat		
	Dcag_DSF	ATATTTTTTTCATTTTTCTCTCCTggatccTGTTTTCTCCTATAATTTGAATT	541	
	Dcag_DSR	TTTATGGCTGGTTATTGG		
Dunk9	Dunk_USF	CAAGAAGTGCAATTTGGCAC	551	1130
	Dunk_USR	CTTTTTGTTGGTGTAATATTTTTTggatccTGCAACTTCTTTGGATCTTT		
	Dunk_DSF	AAAGATCCAAAGAAGTTGCAggatccaAAAAATATTACACCAACAAAAAG	629	
	Dunk_DSR	ATtTGATCTGAATTAAGATC		
Dcoag	Dcoa_USF	AAATTACTAAGTTCCATTTG	704	1373
	Dcoa_USR	GATTTTTGATGAAAGGATAAAAAggatccatcccanaccant antt T		
	Dcoa_DSF	AAAATTAATTGCTTTGCGATggatccTTTTTATCCTTTCATCAAAAATC	718	
	Dcoa_DSR	TCTTAGACGCAGGATTAG		
DvapD	Dvap_USF	CCATCATCTTTGTATAATAAC	626	1130
	Dvap_USR	AAGCTGAAGGAGAAGGAATggatccATATAGCATACATAAGAGTATC		
	Dvap_DSF	GATACTCTTATGTATGCTATATggatccattcctictecticacct	551	
	Dvap_DSR	ACATAAATGCAATTGTGAGTAG		
DhicA	Dhic_USF	TAACTTATGGGTGATTGTATGC	505	1025
	Dhic_USR	AATAGTATTGCGTTTAGGCATTTggatccTCAGGCATTTGCTAAAACCATTG		
	Dhic_DSF	CAATGGTTTTAGCAAATGCCTGAggatccaAATGCCTAAACGCAATACTATT	550	
	Dhic_DSR	TACAGAGCTACCCATAAGAC		
Dcri	Dcri_USF	TTTCCACTTCTAAGAATC	610	1107
	Dcri_USR	CTCCTATGATAAATTTTTGTTggatccancatctcctt tatantat		
	Dcri_DSF	AATATTATAAAGGAGATGTTggatccancaianatttatcataggag	544	
	Dcri_DSR	GTTGCTAATTTCTCTATCTG		
Dhyp25	Dhyp25_USF	TAACCATAAAGAAGATAGAG	582	1154
	Dhyp25_USR	GCAAGGATATTGTAACATTTggatcctattatttatcctutctantana		
	Dhyp25_DSF	TTTTATTAGAAAGGATAAATAATAggatccAAATGTTACAATATCCTTGC	622	
	Dhyp25_DSR	GCTTAGTTCGCTAACATC		
DparA	Dpaa_USF	AGCTTCAGGAATACTATG	594	1086
	Dpaa_USR	AAATGGTTTTTTTTCCATTAggatccaAAAAAACCTTTTTTATATTTTTG		
	Dpaa_DSF	CAAAAATATAAAAAAGGTTTTTTTggatcctantg ianaianaiccatt	587	
	Dpaa_DSR	TTTAAAGCTTCTGCTATTG		
Dmate	Dmate_USF	GTTGAGTTTCAGCCGAATG	643	1218
	Dmate_USR	TTTGACAAATTTACTACTCTggatccct'ttcattracactccaica		
	Dmate_DSF	TCATGGAGTGTAAATCAAAGggatccagagtagtaint tictcaia	621	
	Dmate_DSR	TATCGCAAATGCCATAAC		
Dhyp27	Dhyp27_USF	AATCCTCCTAATGATGAAG	558	1100
	Dhyp27_USR	CCTTTATGAGGTGCATATTTggatcctutt ctcctuttianattuttia		
	Dhyp27_DSF	TAAAAAATTTAAAAAGGAGAAAAAggatccaAATATGCACCTCATAAAGG	592	
	Dhyp27_DSR	GTAATCTTGTCGCTATGG		
DvirB2	Dvir_USF	ATATTGTCTATGCTCGAAAC	662	1227
	Dvir_USR	CTCCATAGCTAGTCCTATTggatccCCATATCCTTTCGTTAAAAAATTG		
	Dvir_DSF	CAATTTTTTAACGAAAGGATATGGggatccAATAGGACTAGCTATGGAG	614	
	Dvir_DSR	AGGTTAGTTTATCTTCGATAG		

Figure 5.5 - Production of the construct for the mutant Dcag (A) Result of the amplification with the primers Dcag_USF/Dcag_USR. Lane 1: 1kb plus ladder; lane 2-9: amplification result on Cj 1 strain using a gradient of annealing temperature between $65^{\circ} \mathrm{C}$ (lane 2), and $50{ }^{\circ} \mathrm{C}$ (lane 9); lane 10, NTC. (B) Result of the amplification with the primers Dcag_DSF/Dcag_DSR. Lane 1: 1kb plus ladder; lane 2-9: amplification result on Cj 1 strain using a gradient of annealing temperature between $65{ }^{\circ} \mathrm{C}$ (lane 2), and $50{ }^{\circ} \mathrm{C}$ (lane 9); lane 10, NTC. Annealing temperature of $60{ }^{\circ} \mathrm{C}$ is shown in lane 4. (C) result of overlapping extension PCR used for the Dcag mutant. Lane 1-3, overlapping extension PCR (Dcag_USF/ Dcag_DSR primers, using the purified product from 3.5.1 A and 3.5.1 B as template); lane $4,1 \mathrm{~kb}$ plus ladder; lane 5, positive control (using the DNA extraction from strain Cj 1 as templete); lane 6, NTC. Each gel was 1% agarose in TAE. Run 30-45 minutes at 120 V .

Table 5.7 - Plasmid vectors used for the production of the mutant strains. Columns show (from left to right): plasmid name, length of the plasmid, brief description of the plasmid vector, markers present on each plasmid, reference (where available).

Figure 5.6 - Plasmid pJMK30 digested with BamHI. Lane 1 and 15, 1 kb plus ladder (Thermo scientific); lane 2-14, digestion of pJMK30 with BamHI restriction enzyme. 1\% agarose in TAE. Run for 1 hour at 120 V .

Figure 5.7-Graphical representation of a pGEM::construct::kanR Campylobacter suicide vector. Positions of primers SP6, T7, Kan_out_F and Kan_out_R are shown.

Table 5.8 - PCR primers used to check the integration and the orientation of the kanamycin cassette in the plasmid vectors described in Table 5.7.

Primer name	Primer sequence
kan_out_F	CATCCTCTTCGTCTTGGTAGC
kan_out_R	TTGCCTTCTGCGTCCGGTCG
SP6	ATTTAGGTGACACTATAG
T7	TAATACGACTCACTATAGGG

Figure 5.8 - Result of the screening of six E. coli clones transformed with the ligation between pGEM::cag::kan_R and the kanamycin resistance cassette (both digested with BamHI). Lane 1, 1 kb plus ladder (Thermo scientific); lane 2-7, screening with kan_out_R/SP6 primers of 6 different E. coli clones; lane 8, NTC. 1\% agarose in TAE. Run for 1 hour at 100 V.

Figure 5.9 - PCR testing the successful production of DhicA mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1 kb ladder (Thermo scientific); Lane 2, DhicA mutant confirmation PCR; Lane 3, positive control (Cj1 WT); lane 4, NTC. 1% agarose in TAE. Run for 1 hour at 100 V .

Figure 5.10 - PCR testing the successful production of DlabA and Datr mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1kb plus ladder (Thermo scientific); lane 2, positive control (Cj1 WT) with DlabA mutant confirmation primers; lane 3, DlabA mutant confirmation PCR; lane 5, positive control (Cj1 WT) with Datr mutant confirmation primers; lane 6, Datr mutant confirmation PCR; lane 4 and 7, NTC. 1\% agarose in TAE. Run for 45 minutes at 100 V .

Figure 5.11- PCR testing the successful production of DvapD mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1kb plus ladder (Thermo scientific); Lane 2, positive control (Cj1 WT); Lane 3, DvapD mutant confirmation PCR; lane 4, NTC. 1% agarose in TAE. Run for 45 minutes at 100 V.

Figure 5.12 - PCR testing the successful production of Dcoag mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1kb plus ladder (Thermo scientific); Lane 2, positive control (Cj1 WT); Lane 3, Dcoag mutant confirmation PCR; lane 4, NTC. 1% agarose in TAE. Run for 45 minutes at 100 V .

Figure 5.13 - PCR testing the successful production of DparB mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1kb plus ladder (Thermo scientific); Lane 2, positive control (Cj1 WT); Lane 3, DparB mutant confirmation PCR; lane 4, NTC. 1% agarose in TAE. Run for 45 minutes at 100 V.

Figure 5.14 - PCR testing the successful production of Dabc mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1 kb plus ladder (Thermo scientific); lane 2, NTC; Lane 3, Dabc mutant confirmation PCR; Lane 4, positive control (Cj1 WT). 1\% agarose in TAE. Run for 1 hour at 100 V .

Figure 5.15 - PCR testing the successful production of DepsG and Dunk9 mutant. (A)
Confirmation of DepsG and Dunk9 mutant production. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1 kb plus ladder (Thermo scientific); lane 2, DepsG mutant confirmation PCR; lane 3, positive control (Cj1 WT) with DepsG mutant confirmation primers; lane 5, Dunk9 mutant confirmation PCR; lane 6, positive control (Cj1 WT) with Dunk9 mutant confirmation primers; lane 4 and 7, NTC. 1\% agarose in TAE. Run for 45 minutes at 100 V . (B) Confirmation of DepsG mutant production, repeated at $55^{\circ} \mathrm{C}$. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1kb ladder (Thermo scientific); Lane 2, DepsG mutant confirmation PCR; Lane 3, positive control (Cj1 WT); lane 4, NTC. 1\% agarose in TAE. Run for 1 hour at 100 V.

Figure 5.16 - PCR testing the successful production of DtetO and Dcag mutant. Amplification performed with primers annealing outside of the DNA fragments used for the construct production. Lane 1, 1 kb plus ladder (Thermo scientific); lane 3, positive control (Cj1 WT) with DtetO mutant confirmation primers; lane 4, DtetO mutant confirmation PCR; lane 6, positive control (Cj1 WT) with Dcag mutant confirmation primers; lane 7, Dcag mutant confirmation PCR; lane 2 and 5, NTC. 1\% agarose in TAE. Run for 45 minutes at 100 V .

Table 5.9 - Expected lengths and primers sequences for the mutant confirmation PCRs.
Columns show (from left to right): name of the mutant strain, length of the target gene, expected length of the PCR product in the Cj1 WT strain, expected length of the PCR in the mutant strain.

Mutant Name	Primer Name	Primer sequence	Gene Length	WT - screen PCR Length	Mutant - screen PCR Length
DtetO	Dtet_screen_F	AATTGCGTTTATACAAGAAG	1920	3454	3032
	Dtet_screen_R	CTTCTTCCCGGTTTCGATAC			
Datr	Datr_screen_F	TTCAAGCAATCCAAATATGG	741	2027	2785
	Datr_screen_R	GTTATTATGTGAGTTATAAAACC			
DlabA	DlabA_screen_F	AGCGATTTAAACAAAAGCAG	729	2083	2853
	DlabA_screen_R	TGAATTTTGAAATAGAGATAAG			
DepsG	DepsG_screen_F	TAGCTATTTGTGCTGTTTGG	558	2034	2975
	DepsG_screen_R	AAGAAGCTCCACTACTCATAG			
Dabc	Dabc_screen_F	TCTTATGGCTTGAAGTGTGG	354	1646	2791
	Dabc_screen_R	AACACGATTTATTCTCAAAAAC			
DparB	DparB_screen_F	CCCATTTTGTGTTTTTGGTG	798	2165	2866
	DparB_screen_R	GTTTTTGTGCTTTCATTTCAGC			
Dcag	Dcag_screen_F	CTTGTTCTCTTTGCGATAC	438	1573	2634
	Dcag_screen_R	TTTATGGCTGGTTATTGG			
Dunk9	Dunk9_screen_F	TGATGAAAAAGTATTAGAGC	567	1900	2832
	Dunk9_screen_R	TTCTTGTTTTTTGCAAAGCTC			
Dcoag	Dcoag_screen_F	CTAGCTCTAGCATTTTCTAG	324	1847	3022
	Dcoag_screen_R	TTTGTCTATAAGAATTTGTGCT			
DvapD	DvapD_screen_F	GGAGCGTTTTATTTTATTAC	378	1562	2674
	DvapD_screen_R	AAATAGGTGCAACTTCTCTAAG			
DhicA	DhicA_screen_F	ATAGAATTTACAAGCTATAAG	204	1925	3102
	DhicA_screen_R	TAAGTGGCTTTATTGATCTTG			

5.6 Discussion

In this chapter, I described how 11 deletion mutants have been obtained in C. jejuni strain Cj 1 .

I targeted plasmid genes, and consequently the first step was to assess the copy number of the plasmid in the selected strains. It is reported that large plasmids are present at low copy number in several strain of C. jejuni (Marasini, et al., 2014). In strains $\mathrm{Cj} 1, \mathrm{Cj} 2$, and Cj 3 I showed that the copy number was close to one, so compatible with the production of a series of mutants.

Even if the bacterium is reported to be naturally transformable (Vegge et al., 2012), conferring a high level of genome plasticity, it is reported that the ability of producing mutants in C. jejuni is highly strain-specific, and it is linked to the ability of each strain to accept foreign DNA (Van Vliet et al., 1998). The technique described in this chapter to produce deletion mutants is a variation of the protocol described by Van Vliet et al., 1998, and Karlyshev and Wren, 2005. We used pGEM-T Easy as the backbone vector for cloning of the construct produced via overlapping PCR and subsequent cloning of the kanamycin cassette (derived from pJMK30) in substitution of the gene to be removed in the genome of C. jejuni. The vector is then transformed in C. jejuni via electroporation. I was not able to induce the allelic exchange of a target gene with a kanamycin resistance cassette in strains such 11168 or 81-176, in which such protocol has been already used for the production of deletion mutants. The reason for this might be the vector used (pGEM-T Easy) or in the E. coli strain used for maintaining and replicate the vector (TOP-10).

I applied the targeted mutagenesis protocol to the several strains of C. jejuni available: the only strain that was able to accept the introduction of exogenous DNA was the strain Cj 1 . This strain has a particular genomic set-up; it shows the presence
of all the PCR markers tested in Chapter 3, together with the tetracycline resistance and a total of 48 genes of the pTet-like plasmid pan genome, but it is the only strain in which a full circular plasmid sequence of a pTet-like plasmid could not be determined by analysing the assembly graph with Bandage (Wick et al., 2015), nor could the plasmid be visualised on an agarose gel following a plasmid extraction (as shown in Chapter 3).

The presence of a chromosomally-encoded tetracycline resistance has been observed in this work and previously (Albert et al, 2009; Pratt and Korolik, 2005), and although it has not been observed before, we cannot discard the possible integration of a full plasmid pTet-like in the chromosome of the strain Cj 1 . This strain could also carry a plasmid that cannot be extracted or properly assembled, similar to the megaplasmids isolated from strain RM3194 (NZ_CP014345.1) or pCJDM202 (NZ_CP014743.1).

Strain Cj1 showed the presence of a number of the genes of the pTet-like plasmid pan genome comparable to those strains showing a pTet-like plasmid, such as Cj 2 or Cj 3 . It is unclear whether the strain possesses a larger plasmid or the plasmid pTet-like is integrated in the chromosome. According to the results shown in Section 5.2, the set of a small contigs set of the strain Cj 1 shows a high percent of similarity (>90\%) with the plasmids pCJDM202, pCJDM67 L, pcjDM, and the plasmid of strain RM3194 (accession NZ_CP014345.1) that are between 80 kbp and 120 kbp long, and the genome of the strain RM1221 that shows plasmid sequences integrated in the chromosome. The graph analysis of the genome assembly produced with the libraries derived by two different sequencing technologies show a structure that cannot be resolved but whose total length resembles the one of the plasmids pCJDM202 and pCJDM67 L. However, when trying to isolate the plasmid
from Cj 1 , I was never able to visualise it on an agarose gel. The kit used to isolate the plasmid from Cj 1 is indicated for plasmid up to 50 kbp , so we cannot discount the possibility that the plasmid size might be greater.

The 17 genes selected for deletion were chosen amongst the genes present in the strain Cj 1 and in the pTet-like plasmid pan genome. For the majority of the mutants, I did select genes whose functions were unknown and focussed on hypothetical proteins whose function in C. jejuni was not described previously. Several mutants I attempted to produce were in genes encoding for proteins showing conserved domains that could exhibit a bacterial phenotype different from the wild type when deleted, and potentially important for environmental or clinical adaptation, such as the ABC transporter of 20_FIG00471065_hypothetical_protein, the MATElike domain of 11_FIG00469626_hypothetical_protein or the LabA-like domain in 77_FIG00472625_hypothetical_protein. Other genes I attempted to delete encoded for hypothetical proteins with domains of unknown functions, such as

9_FIG00469571_hypothetical_protein, or showing no conserved domains, such as 27_FIG00470273_hypothetical_protein.

Six genes targeted for mutation were not successfully deleted. These were the mutant strains Dcri, Dhyp25, DparA, Dmate, Dhyp27, and DvirB2. For each of these mutants, the DNA construct and the vector for mutation were produced, but once transformed into the wild-type strain of C. jejuni, the recombinant strain failed to grow on the selective plate.

This can be due to several reasons: the construct may have failed to integrate in the genome and the substitution of the target gene with the kanamycin cassette did not happen; the construct may have integrated in the genome, and the deletion of the target gene happened, but the mutation may have disrupted an essential
gene, and the resulting strain of C. jejuni may not be able to grow; or the pTet-like plasmid that may be carried by the strain $\mathrm{C} j 1$ was lost after the mutation of a gene that stopped it from replicating or transmitting to the daughter cells. Regarding the latter case, if the HicA/B toxin-antitoxin system function is post-segregational killing, and if a plasmid is present in the strain Cj 1 and the gene parA function is regulating its replication, we may speculate that the mutation of parA was successful, but the mutant strain lost the plasmid pTet-like, and this event could not be identified because the bacterium is killed as soon as the plasmid is lost either by the HicA/B system or by the presence of Kanamycin in the selective plate. In order to investigate, the first step should be completing the genome of the strain Cj 1 , in order to understand unequivocally whether it carries a plasmid pTet-like or only a set of genes integrated in the chromosome. If this is the case, then it would be necessary to understand what is the mechanism regulating its replication, including discovering the origin of replication of the plasmid and understanding which proteins regulate its replication. These may include the ParA/B system but also the RepA protein described in the contig of the genome assembly of the strain Cj 1 used to design the mutants described in this chapter.

Further investigation is also required to understand whether one or more of the genes targeted for deletion are essential for the growth of C. jejuni, in particular the mutants Dhyp25 and Dhyp27, which show no conserved domains, or whether the disruption of one of those genes may have facilitated the curing the plasmid pTetlike.

In the next chapter, I describe the design and the application of the phenotypic tests to the 11 mutants produced.

The deletion of the tetracycline resistance gene tet (O) will be used for testing the validity of the gene deletion protocol (as the DtetO mutant should be susceptible to tetracycline and have a known and identifiable phenotype) and will be used to assess the ability of the protocol described in section 2.8 to complement the phenotype of the mutant strains.

Chapter 6 - Phenotypic analysis of the C. jejuni mutations in pTet-like genes

The previous chapters described the plasmid pan-genome of C. jejuni, focusing on the pTet-like plasmid pan-genome. I described 79 genes present in all of the sequenced plasmids of C. jejuni, dividing them into 4 clusters defined according to the frequency of each gene in the sequenced strains of C. jejunito date. The genes present in two of these clusters are present in C. jejuni with a higher frequency than the others, and I defined the genes belonging to these as "core" genes of the plasmid pan genome. I defined the genes in the clusters associated with lower frequency "accessory" genes of the pTet-like plasmid pan-genome. I described the conserved domains present in the proteins encoded by those 79 genes, and I constructed 11 mutants in core and accessory genes.

In this chapter, I will describe the application of a series of phenotypic assays to these mutants, and I will compare their phenotype with the wild-type C. jejuni strain Cj1.

For the mutants that showed a phenotype different from the wild type, I complemented the mutation (Jervis et al., 2015), integrating the wild type gene into the chromosome of the mutant and under the control of a constitutive promoter.

This chapter identifies previously undescribed functions for genes associated with the pTet-like plasmid.

6.1 Growth rate in MH

The growth rates of the mutants in MH broth were first measured. A 25 ml liquid culture was set up for each strain, with a starting OD $(600 \mathrm{~nm})$ value of 0.1 . The culture was incubated for 28 hours in microaerophilic conditions, and the OD_{600} value was read at intervals (Figure 6.1). The full protocol is described in Chapter 2.7.1.

With this test a difference between the WT and the mutant strain Dunk9 was identified, in particular the strain Dunk9 grew significantly ($p<0.01$) more slowly than the strain Cj 1 .

Figure 6.1 - Growth rate of each mutant compared to the WT strain Cj1 in 25 ml of MH broth measured for 28 hours. Each point is the average of three biological replicates; error bars show the SD. The growth rate of each mutant is shown in red the growth rate of the wild type is shown in blue. Each graph is annotated with the name of each mutant. The graph associated with the mutant Dunk9 is highlighted in red. * $=$ statistically significant difference. $\mathrm{p}<0.01 \mathrm{~T}$-test, single tailed, paired.

6.2 Motility

To assess the motility of the different mutant strains of C. jejuni, I used a variation of the method described by Reuter et al., in 2013. The full protocol is described in Chapter 2.7.5.

Briefly, 5μ of a C. jejuni suspension was spotted on plates containing MHA with 0.4% agar. The MHA plates contained either a full dose or a half dose of nutrient. Each plate was photographed and the area covered by the bacterial movement was measured with ImageJ software (https://imagej.nih.gov/ij/index.html). Figures 6.2 and 6.3 show examples of the plates after 48 hours on $\mathrm{MH}+0.4 \%$ agar plates and after 72 hours on MH (half nutrient dose) $+0.4 \%$ agar plates. Figures 6.4 to 6.8 shows the percentage of spreading of the colonies compared to the wildtype.

There was a statistically significant difference ($\mathrm{p}<0.01$) between the mutant Dunk9 and the wild type Cj 1 strain in the conditions of MH with full nutrients, and between the mutant DhicA and the wild type strain Cj1, which moves at a slower rate than the wild type both in condition of full nutrients and half nutrients.

Figure 6.2 - Example of six motility plates (MH, 0.4\% agar). On each plate strain Cj 1 WT and one or two mutant strains were spotted. Plates were incubated for 48 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$.

Figure 6.3 - Example of six motility plates (MH half nutrients concentration, 0.4% agar). On each plate strain Cj 1 WT and one or two mutant strains were spotted. Plates were incubated for 72 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$.

Figure 6.4-Colony diameter after 24 hours of incubation in microaerophilic conditions at $37{ }^{\circ} \mathrm{C}$ of MH plates $\mathbf{0 . 4} \%$ agar. Each measurement is the average of at least three biological replicates. The error bars represent the SD. * = Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc.

Figure 6.5-Colony diameter after 48 hours of incubation in microaerophilic conditions at $37{ }^{\circ} \mathrm{C}$ of MH plates $\mathbf{0 . 4 \%}$ agar. Each measurement is the average of at least three biological replicates. The error bars represent the SD. * = Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc.

Figure 6.6 - Colony diameter after 48 hours of incubation in microaerophilic conditions at $37{ }^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, 0.4% agar. Each measurement is the average of at least three biological replicates. The error bars represent the SD. * = Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc.

Figure 6.7 - Colony diameter after 72 hours of incubation in microaerophilic conditions at $37{ }^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, $\mathbf{0 . 4} \%$ agar. Each measurement is the average of at least three biological replicates. The error bars represent the SD. * = Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc.

Figure 6.8-Colony diameter after 96 hours of incubation in microaerophilic conditions at $37{ }^{\circ} \mathrm{C}$ of MH plates, with half the concentration of nutrients, 0.4% agar. Each measurement is the average of at least three biological replicates. The error bars represent the SD. * = Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc.

6.3 Biofilm production

6.3.1 Method design

The test described by Oh et al. in 2014 was first used to measure biofilm production. The test is based on the incubation of a bacterial suspension in MH in a 96 -well plate for 24 hours. After this time, the plate is rinsed with water and stained with a crystal violet solution, and de-stained with ethanol. Biofilm is quantified by reading the absorbance at 595 nm . This test was characterised by a high degree of variability, and I could not repeat the results between experiments (data not shown).

Therefore, I developed a test on agar plates that provides more repeatable results. This test is based on the use of Congo-red, which stains b-(1-*4)-linked Dglucopyranosyl units, as described in Theather and Wood in 1982, and Coomassie blue. Although the main component identified in C. jejuni biofilm is reported to be α dextran (Jowila et al., 2015), the Congo-red molecule have been successfully used to stain the biofilm of C. jejuni (Reuter et al, 2010): this study showed how the results obtained with Congo red staining were confirming the observations made with Crystal violet and concluded that C. jejuni biofilms bind Congo red.

After an optimisation of the duration of the test, temperatures, and concentration of agarose in the plates, the test involved a growing step, in which the plates were spotted with of 5μ of bacterial suspension (1.0 OD600) and incubated for 48 hours in microaerophilic conditions, and a biofilm development step, during which the plates were incubated in normal aerobic conditions (i.e. atmospheric) for 48 hours at $37{ }^{\circ} \mathrm{C}$. As reported by Reuter et al. in 2010, Campylobacter shows an increased ability to produce biofilm when incubated in aerobic conditions, and this incubation was necessary to identify the biofilm production in this assay. During the growing phase (Figure 6.9 A), bacterial colonies do not develop an identifiable
colour. During the biofilm development phase, the colonies develop the colour shown in Figure 6.9 B in case of ability of producing biofilm. The final protocol adopted for this test is described in Chapter 2.6.7.

Figure 6.9 - Biofilm formation in MH plate (0.8% agar) supplemented with Congo Red and Coomassie Brilliant Blue (MHA-Congo red). The plate was spotted three times with $5 \mu \mathrm{l}$ of Cj 1 WT bacterial suspension (PBS, $\mathrm{OD}_{600}=1.0$). (A) MHA-Congo red plate after 48 hours incubation at $37^{\circ} \mathrm{C}$ in microaerophilic conditions. (B) MHA-Congo red plate from (A) after further 48 hours of incubation at $37^{\circ} \mathrm{C}$ with atmospheric oxygen concentration.

6.3.2 Biofilm production of the mutant strains and persister cells

formation

The biofilm production and the ability for the bacterium to produce persister cells are linked in several bacterial species (Wang and Wood, 2011, Wood et al., 2013); I therefore decided to measure the ability to develop persister cells in the strains showing impairment in biofilm formation. Although the association between biofilm and persister cells was never shown in C. jejuni, previous unpublished work by Champion et al. had shown persisters cells features in the strain 11168 of C. jejuni. That data shows how the exposure of strain 11168 to up to 100 MIC of Penicillin and Ciprofloxacin for up to 24 hours does not kill the entire bacterial population and that the surviving cells remain susceptible to the drug when recultured.

The protocol applied here to identify the presister cells formation in C. jejuni was developed in the University of Exeter's Molecular Pathogenesis Laboratory (Olivia Champion, personal communication).

6.3.2.1 Biofilm production

10 of the 11 mutant strains showed the same phenotype of the wild-type strain Cj 1 of C. jejuni, with colonies that diffuse in the MH plate 0.8% agar stained in pink/red after 2 days of incubation in microaerophilic conditions at $37^{\circ} \mathrm{C}$, followed by 2 days of incubation in normal atmospheric condition at $37^{\circ} \mathrm{C}$.

The DhicA mutant showed a different phenotype, with bacterial colonies that were not stained after the same incubation periods. A picture of the plates is shown in Figure 6.10 and a Table 6.1 summarises the results.

6.3.2.2 Persister cells formation in the mutant DhicA

The mutant DhicA was assayed for the ability to form persister cells after 24 hours of incubation in presence of concentrations of penicillin 10X, 50X, and 100X higher than the MIC ($256 \mu \mathrm{~g} / \mathrm{ml}$) and concentrations of ciprofloxacin 10X and 20X higher than the MIC $(32 \mu \mathrm{~g} / \mathrm{ml})$.

The results of this assay are shown in Figure 6.11: in each condition tested, the number of CFUs measured in the mutant strain is not statistically different from the number of CFUs measured in the WT Cj1 strain ($\mathrm{p}<0.01$).

Table 6.1 - Biofilm production in the 11 mutant strains and in the Cj1 WT strain, evaluated with the MH-Congo red plate method. +/- = strain is able or unable to produce biofilm, as identified by the colony staining in at least three biological replicates.

Strains	Congo Red staining
Cj1 WT	+
DhicA	-
DlabA	+
DvapD	+
Dcoag	+
DparB	+
Dabc	+
Dcag	+
Dunk	+
Datr	+
DtetO	+
DepsG	+

Figure 6.10 - Example of six MH-Congo red plates for the identification of C. jejuni strains able to produce biofilm. On each plate strain Cj 1 WT and one or two mutant strains were spotted. Plates were incubated for 48 hours in microaerophilic conditions at $37^{\circ} \mathrm{C}$, followed by 48 hours with normal atmospheric concentration at $37^{\circ} \mathrm{C}$.

Figure 6.11 - Persister cells formation after 24 hours incubation in strain Cj1 WT and strain DhicA. Control $=$ MH broth; Pen $10 x=\mathrm{MH}+$ penicillin $2.56 \mathrm{mg} / \mathrm{ml}$; Pen $50 \mathrm{x}=\mathrm{MH}+$ penicillin 12.8 $\mathrm{mg} / \mathrm{ml}$; Pen 100x = MH + penicillin $25.6 \mathrm{mg} / \mathrm{ml}$; Cip 10x = MH + Ciprofloxacin $320 \mu \mathrm{~g} / \mathrm{ml}$; Cip 20x = $\mathrm{MH}+$ Ciprofloxacin $640 \mu \mathrm{~g} / \mathrm{ml}$. Each measurement is the average of three biological replicates. The error bars represent the SD. The mean of each pair (Cj1 WT vs. DhicA) is not significantly different ($p<0.01$ T-test, single tailed, paired).

6.4 Survival in water

The ability to survive in tap water was tested as described in Chapter 2.7.8. Briefly, bacteria were grown on CBA+ plate, re-suspended and washed twice in PBS buffer. Bacterial were finally re-suspended in 10 ml of filter sterilised tap water, adjusting the bacterial concentration to $0.5 \mathrm{OD}_{600}$. At the beginning of the incubation and after 8 days of incubation at $4^{\circ} \mathrm{C}, 100 \mu \mathrm{~L}$ of bacterial suspension was serially diluted and bacteria enumerated on agar.

The results are shown in Figure 6.12. None of the mutants showed a significant difference ($\mathrm{p}<0.01$) in survival compared with the wild type.

Figure 6.12 - Percent of bacterial survival after 8 days of incubation in water of each mutant strain and the strain Cj1 WT. Each measurement is the average of three biological replicates. The error bars represent the SD. Each mean is not significantly different from the strain Cj 1 WT ($\mathrm{p}<0.01$, One-way ANOVA, Tukey's post-hoc),

6.5 Antibiotic resistance

Antibiotic resistance in the mutant strains was evaluated via MIC quantification on microtiter plates, except for the tetracycline resistance in DtetO, for which an estrip test (Bio-Merieux) was used. The full protocols are described in Chapter 2.7.2. As expected, the mutant DtetO showed susceptibility to tetracycline, with an MIC $>0.048 \mu \mathrm{~g} / \mathrm{ml}$, compared to $48-32 \mu \mathrm{~g} / \mathrm{ml}$ in strain Cj 1 .

The MIC values for the antibiotics erythromycin, ciprofloxacin, penicillin, and ceftazidime are reported in Table 6.2. None of the mutants showed a significant difference ($p<0.01$) in MIC compared with the wild type.

Table 6.2 - Minimum inhibitory concentrations (MICs) for growth in Erythromycin, Penicillin, Ciprofloxacin, and Ceftazidime in each mutant strain and in the strain Cj1 WT. The values were measured with the plate dilution method in three biological replicates; values are shown in $\mu \mathrm{g} / \mathrm{ml}$.

Strain	Erythromycin MIC Penicillin MIC	Cyprofloxacin MIC		Ceftazidine MIC
Cj1 WT	>0.5	$256-128$	$32-16$	$32-16$
Dabc	>0.5	$256-128$	$32-16$	$32-16$
DepsG	>0.5	$256-128$	$32-16$	$32-16$
Dcag	>0.5	$256-128$	$32-16$	$32-16$
DhicA	>0.5	$256-128$	$32-16$	$32-16$
DtetO	>0.5	$256-128$	$32-16$	$32-16$
DlabA	>0.5	$256-128$	$32-16$	$32-16$
Datr	>0.5	$256-128$	$32-16$	$32-16$
DvapD	>0.5	$256-128$	$32-16$	$32-16$
Dcoag	>0.5	$256-128$	$32-16$	$32-16$
DparB	>0.5	$256-128$	$32-16$	$32-16$
DhicA	>0.5	$256-128$	$32-16$	$32-16$

6.6 Acid tolerance

Acid tolerance was evaluated using a modification of the method described by Reid et al., in 2008 (1). Briefly, MH medium was adjusted to $\mathrm{pH} 3,4$ and 5 using HCl . Bacteria grown on CBA plates overnight were used to produce a $0.5 \mathrm{OD}_{600}$ bacterial suspension in MH. One ml of culture was centrifuged and re-suspended in MH adjusted to different pH values. The tubes were incubated under microaerophilic conditions for 20 minutes and surviving bacteria enumerated on agar. The full protocol is described in Chapter 2.7.3.

The results are showed in Figure 6.13, expressed as percentage of bacteria surviving the treatment. None of the mutants showed a significant difference ($p<0.01$) in acid tolerance compared with the wild type.

Figure 6.13 - Percent of bacterial survival after 20 minutes of incubation in MH buffered at pH $3, \mathrm{pH} 4$ or pH 5 of each mutant strain and the strain Cj1 WT. Each measurement is the average of three biological replicates. The error bars represent the SD. Each mean is not significantly different from the strain Cj1 WT ($p<0.01$, One-way ANOVA, Tukey's post-hoc).

6.7 Tolerance to synthetic gastric fluid

The tolerance to synthetic gastric fluid buffered to pH 4.5 (SGF for the simulation of stomach environment, Beumer et al., 1992; Reid et al., in 2008 (2)) was evaluated using a similar method to the one described in previous section but using synthetic gastric fluid in place of MH medium. The ability to tolerate incubation in SGF has been evaluated for 6 hours, preparing $10 \mathrm{ml} 0.5 \mathrm{OD}_{600}$ bacterial suspension and enumerating the number of surviving bacteria after 20 minutes, 3 hours, and 6 hours. The full protocol is described in Chapter 2.7.4.

The results are reported in Figure 6.14 and Figure 6.15. None of the mutants showed a significant difference ($\mathrm{p}<0.01$) in synthetic gastric fluid tolerance compared with the wild type. After 6 hours of incubation in SGF no bacteria grew after plating samples.

Figure 6.14 - Percent of bacterial survival after 20 minutes of incubation in synthetic gastric fluid (SGF) buffered at pH 4.5 of each mutant strain and the strain Cj1 WT. Each measurement is the average of three biological replicates. The error bars represent the SD. Each mean is not significantly different from the strain Cj 1 WT ($\mathrm{p}<0.01$, One-way ANOVA, Tukey's post-hoc).

Figure 6.15 - Percent of bacterial survival after 3 hours of incubation in synthetic gastric fluid (SGF) buffered at pH 4.5 of each mutant strain and the strain Cj 1 WT . Each measurement is the average of three biological replicates. The error bars represent the SD. Each mean is not significantly different from the strain Cj 1 WT ($\mathrm{p}<0.01$, One-way ANOVA, Tukey's post-hoc).

6.8 Galleria mellonella larvae infection

6.8.1 Method design

In order to evaluate the ability of killing the model organism Galleria mellonella larvae, bacteria were injected into the first right foreleg of the larva.

As with other studies (e.g. Elmi et al., 2012), I was not able to obtain the reproducible killing of larvae incubated under aerobic conditions. I optimised the technique, incubating the larvae post-injection in different concentrations of oxygen, which promoted the growth of Campylobacter, and injecting different bacterial concentrations.

As described in Figure 6.16, when the larvae were injected with 10^{4} to 10^{7} bacterial cells and incubated for 48 hours at $37^{\circ} \mathrm{C}$ in normal atmospheric conditions, the maximum killing registered was 20% of larvae. If the larvae were injected with the same doses of bacteria and then incubated for 48 hours at $37^{\circ} \mathrm{C}$ in microaerophilic conditions, $90-100 \%$ of larvae were killed after challenge with 10^{6} or 10^{7} bacterial cells (Figure 6.17). There was no killing of control larvae injected with PBS or in not-injected.

Therefore, the virulence of the mutants compared to the wild type was evaluated injecting 10^{7} bacterial cells and incubating the larvae for 48 hours in microaerophilic conditions. The full protocol is described in Chapter 2.7.9.

Figure 6.16 - Percent survival of G. mellonella larvae injected with $10^{7}, 10^{6}, 10^{5}, 10^{4}$ bacterial cells (C. jejuni strain Cj1 WT), PBS or not injected (Non-stabbed control NSC). Larvae were incubated in normal atmospheric conditions at $37^{\circ} \mathrm{C}$ for 48 hours post inoculation. Each measurement is the result of the injection of 10 larvae.

Figure 6.17 - Percent survival of G. mellonella larvae injected with $10^{7}, 10^{6}, 10^{5}, 10^{4}$ bacterial cells (C. jejuni strain Cj1 WT), PBS or not injected (Non-stabbed control NSC). Larvae were incubated in microaerophilic conditions at $37^{\circ} \mathrm{C}$ for 48 hours post inoculation. Each measurement is the result of the injection of 10 larvae.

6.8.2 Infection of larvae

The results of the injection of at least two groups of 10 larvae per mutant are shown in Figure 6.18. The controls (PBS injection and non-injected control) are shown in the same graphs, showing 100\% survival in every repetition of the experiment. None of the mutants showed a significant difference ($p<0.01$) in killing of G. mellonella larvae compared with the wild type.

Figure 6.8 - Percent survival of G. mellonella larvae injected with 10^{7} bacterial cells of each mutant strain, strain Cj1 WT, PBS or not injected (Non-stabbed control NSC). Larvae were incubated in microaerophilic conditions at $37^{\circ} \mathrm{C}$ for 48 hours post inoculation. Each measurement is the average of three independent experiments; in each experiment 10 larvae were injected. The error bars represent the SD. Each mean is not significantly different from the strain Cj 1 WT ($\mathrm{p}<0.01$, Oneway ANOVA, Tukey's post-hoc).

6.9 Complementation of the mutant strains

Three mutants exhibited a different phenotype to the wild type in some of the experiments described above. The mutant Dunk9 grew significantly slower than the wild type in MH in microaerophilic conditions and reached a lower final OD_{600} (Figure 6.1); the same mutant Dunk9 was impaired in motility (Figures 6.2.3 and 6.2.4). The DhicA mutant showed an impaired ability to produce a biofilm (Figure 6.10 and Table 6.1) and motility in particular nutrient and agarose concentrations (Figures 6.4 to 6.8). Finally, the DtetO mutant showed increased susceptibility to tetracycline, compared to the wild type. Although this phenotype of the DtetO mutant is not surprising given that $\operatorname{tet}(O)$ is known to be required for tetracycline resistance (Mazi et al., 2008), it was useful to confirm the success of the mutagenesis protocol and will be used to confirm the success in the complementation of the phenotypes.

The strategy used here to complement the mutant strains was described by Jervis et al. in 2015 and detailed in Chapter 2.8.

Briefly, the three mutants were complemented by amplifying the gene of interest (hicA, tetO, or unk9) with the primers in Table 6.3. Each primer pair introduced a restriction site for the enzymes Ncol and Nhel in the 5 ' and the 3 ' end of the PCR product respectively, which were then used to clone the gene in the complementation vector. The vectors built for the complementation of the mutants are reported in Table 6.4.

The correct insertion of each wild-type gene was checked by PCR, using primers annealing outside the integration site. The PCR product confirming the integration of the gene of interest is shown in Figure 6.19. Sanger sequencing confirmed the correct integration in each of the complemented mutants.

Table 6.3-PCR primers designed for the complementation of mutants DtetO, DhicA and Dunk9. Columns show (from left to right): name of the complemented mutant, name of each primer, sequence of each primer, length of the amplified product.

| Mutant Name | Primer Name | Primer Sequence | PCR product length |
| :--- | :--- | :--- | :--- | :---: |
| Dunk9+unk9 | unk9_complF | CATGCCATGGATGAGTGATAAAGAATTAGAA | 576 |
| | unk9_complR | CTAGCTAGCTCATCTTTTAAACTCCTTATT | |
| DhicA+hicA | hiCA_compIF | CATGCCATGGATGCCTGAATTACCAAGATTG | 204 |
| | hicA_compIR | CTAGCTAGCTTAATCCTTTGCTACTTCTATA | |
| DtetO+tetO | tetO_complF | CATGCCATGGATGAAAATAATTAACTTAGGC | |
| | tetO_compIR | CTAGCTAGCTTAAGCTAACTTGTGGAACAT | |

Table 6.4-Vectors designed for the complementation of mutants DtetO, DhicA and Dunk9. Columns shows (from left to right): plasmid name, length of the plasmid, brief description of the plasmid vector, markers present on each plasmid, reference (where available).

Plasmid Name	Length	Description	Markers	
pCJC1	5775	Vector designed for recombination-mediated delivery of genes onto the C. jejuni chromosome.	cat, ampR	Jervis et al., 2015
pCJC1::tetO	7695	$\mathrm{pCJC1}$ for the complementation of the mutant DtetO	cat, ampR	This study
pCJC1::unk9	6342	pCJC1 for the complementation of the mutant Dunk9	cat, ampR	"
pCJC1::hicA	5979	pCJC1 for the complementation of the mutant DhicA	cat, ampR	"

Figure 6.19-PCR for testing the successful complementation of the mutant strains DtetO, Dunk9 and DhicA. Lane 1, 1 kb plus ladder (Thermo scientific); lane 2, NTC; lane 3, Cj1 WT; lane 4, DtetO; lane 5, DtetO+tetO complemented strain; lane 6, Dunk9; lane 7, Dunk9+unk9 complemented strain; lane 8, DhicA; lane 9, DhicA+hicA complemented strain.

6.10 Phenotype of the complemented mutants

6.10.1 Complementation of the tetO mutant

The resistance to tetracycline was partially restored in the complemented tetO mutant. Figure 6.20 shows the comparison between the strains Cj 1 , DtetO, and DtetO+tetO.

The MIC of the complemented mutant DtetO+tetO was $1.0-1.5 \mu \mathrm{~g} / \mathrm{ml}$. In contrast the MIC was $32-48 \mu \mathrm{~g} / \mathrm{ml}$ for the wild type strain and $>0.048 \mu \mathrm{~g} / \mathrm{ml}$ for the DtetO mutant.

Figure 6.20-Measurement of MIC of tetracycline for strains DtetO, Cj1 WT and DtetO+tetO (from bottom to top) using Estrips (Biomerieux).

6.10.2 Complementation of the hicA mutant

It was not possible to restore the wild type phenotype to the DhicA mutant by complementation. The phenotype of the mutant and the complemented mutant for motility and biofilm assays were not statistically different ($p<0.01$), as shown in Figure 6.21 and 6.22.

A second type of complementation was next attempted by cloning the full hicAB operon into the pCJC1 plasmid. This experiment was performed in order to test whether both genes of the hicAB operon need to be under the control of the same promoter to complement the mutation. The DhicA+hicAB showed the same phenotype as the DhicA mutant, as indicated in Figures 6.23 and 6.24.

Finally, in order to ascertain that during the deletion of the gene hicA no other mutations were introduced, the DhicA mutant was genome sequenced (MiSeq, PE library 300+300, Illumina Inc.). The alignment between the genome sequence of the wild type strain Cj 1 and DhicA is shown in Figure 6.25. No other mutation was identified in the genome of the mutant strain.

Figure 6.21 - Motility of strains Cj1, DhicA, and DhicA+hicA in MH 0.4\% agar (half nutrients). (A) A plate used to assess the mobility. (B) Average colony diameter and SD (three biological replicates, * $=$ significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc).

Figure 6.22 - Biofilm formation of strains Cj1, DhicA and DhicA+hicA in MH-Congo red 0.8\% agar.

Figure 6.23 - Motility of strains Cj1, DhicA, and DhicA+hicAB in MH 0.4\% agar (half nutrients).
(A) A plate used to assess the mobility. (B) Average colony diameter and SD (three biological replicates, * = significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc).

B

Figure 6.24 - Biofilm formation of strains Cj 1 , DhicA and DhicA+hicAB in MH-Congo red 0.8\% agar.

Figure 6.25-Sequence alignment of the region affected by the mutation in the strain Cj1 WT and DhicA. Sequence alignment was obtained with MUSCLE software (Edgar, 2004) and visualised with CLC Genome Wiewer (Qiagen Inc.). Full pink bars at the bottom of the alignment indicate a perfect match. Only the gene DhicA is affected by the mutation. aphA: chloramphenicol resistance gene (insertion cassette).

6.10.3 Complementation of the unk9 mutant

The phenotype of the WT strain Cj 1 was completely restored in the mutant Dunk9 when complemented with the unk9 gene. Figures 6.26 and 6.27 show the growth curves of the complemented mutant Dunk9+unk9 compared to the Dunk9 mutant and the Cj 1 strain, and the motility phenotype in the three strains (mutant, complemented mutant and wild-type) in MH plates with full concentration of nutrients and 0.4% of agarose.

Figure 6.26 - Motility of strains Cj1, Dunk9, and Dunk9+unk9 in MH 0.4\% agar. (A) An example plate used to assess the mobility. (B) Average colony diameter and SD (three biological replicates, * $=$ Significantly different from Cj1 WT. p<0.01 One-way ANOVA, Tukey's post-hoc).

Figure 6.27 - Growth rate of the mutant Dunk9, the complemented mutant Dunk9 and in the WT strain Cj1 in $\mathbf{2 5 m l}$ of MH broth measured for $\mathbf{2 8}$ hours. Each point is the average of three biological replicate, error bars show the SD. * = Statistically significant difference. p<0.01 T-test, single tailed, paired

6.11 Discussion

In this chapter, I described the phenotypic effects of the 11 mutations I introduced into the strain Cj 1 of C. jejunion selected phenotypes related to environmental survival and infection. In particular, I assessed the ability to grow in a controlled environment, the ability to producing biofilm, the motility of the bacterium in 0.4% agar plates with different concentration of nutrients, the survival at low pH , in synthetic gastric fluid and in tap water at low temperature, resistance to different antibiotics, and the ability to kill G. mellonella.

Two of these assays needed to be optimised in this study: the measurement of biofilm production and killing of G. mellonella.

I adapted a method that was not applied before to C. jejunito assess the biofilm production on agar plates. Use of Congo Red for bacterial enumeration thanks to its interaction with beta-polysaccharides was described for the first time in 1981 (Teather and Wood, 1981). The method described in this chapter was previously applied to other bacterial species to judge the colony morphology and biofilm production, including Salmonella (Montiero et al., 2011) and Neisseria (Kyungcheol et al., 2007). Other methods for biofilm production evaluation in Campylobacter described in the literature are based on the staining with crystal violet of cells adhesive to borosilicate or plastic substrates (Oh et al., 2014; Oh et al., 2016; Naito et al., 2010). These methods, although quantitative, are, in my experience, laborious and give results that are difficult to replicate. Moreover, the application of different gas concentrations to a static liquid bacterial suspension requires the tube to be prepared in a defined environment (i.e. gas cabinet), with broth that was equilibrated to the different oxygen concentrations and needs to be incubated open, which may lead to the contamination of the assay. Here, I describe a method that is qualitative,
hence it just highlights a positive or a negative phenotype, but it is simple and gives repeatable results.

Congo red was used previously to quantify the biofilm production of C. jejuni and the results obtained with this molecule were comparable to the one obtained with a less specific stain, such as Crystal violet (Reuter et al, 2010). Although only alpha-linked sugars have been identified as components of C. jejuni biofilm (Jowiya et al., 2015), given the phenotype identified in this thesis and the previous results shown by Reuter et al. in 2010, we observed that Congo red binds with a component of the biofilm of C. jejuni. This could be explained with a previously undescribed beta-linked polysaccharide secreted by C. jejuni, or with an intereaction of the Congo red with the known exopolysaccharides secreted by C. jejuni, and requires further investigation.

In order to apply it to the microaerophilic species C. jejuni, the G. mellonella larvae killing assay needed to be optimised. G. mellonella larvae have been used as a model organism to evaluate the attenuation in virulence of several pathogenic bacteria including Legionella pneumophila, Helicobacter pylori and Escherichia coli (Giannouli et al., 2014; Harding et al., 2012; Leuko and Raivio 2012). For C. jejuni, the evaluation of virulence in G. mellonella larvae was described by Champion et al. in 2010 and Senior et al. in 2011. In both these papers, the larvae were challenged injecting 10^{4} to 10^{6} bacterial cells, causing close to 100% killing after two days at 37 ${ }^{\circ} \mathrm{C}$. I could replicate this percentage of killing only when incubating the injected larvae under microaerophilic conditions. This result may be explained with a different growth and propagation conditions of the G. mellonella larvae: different pet shop suppliers grows the larvae under different conditions, feeding them different substrates or even treating them with antibiotics prophylactically to avoid infections
(Olivia Champion, personal communication). As shown by the PBS-injected and the non-injected groups, the larvae can survive for two days under microaerophilic conditions. It is not clear if the killing by C. jejuni is due to the extra stress imposed on the animal or it is due to a longer survival of the bacterium in the larvae, allowing colonisation. I was not able to recover any bacterial cells after incubation in atmospheric conditions, while I was able to count 10^{3} to 10^{4} bacterial cells in the haemocoel of the insect after incubation in microaerophilic conditions (data not shown). This might indicate that C. jejuni is not able to colonise the larvae in presence of atmospheric concentrations of oxygen, although I cannot exclude the presence of bacteria colonising the internal organs of the larvae (e.g. the larva's digestive system). The oxygen concentrations used in this study allowed estimating the attenuation of Campylobacter virulence, having a baseline of $90-100 \%$ killing in the wild type.

The conditions in which the genes of the plasmid pTet are expressed are poorly understood. The most valuable work in this area is the complete transcriptome of C. jejuni strain 81-176 (Taveirne et al., 2013), showing the expression profiles amongst the whole genome of this strain of C. jejuni during stationary and mid-log phase and during an in vivo colonisation of chicken. That study highlighted how the genes on the plasmid pTet are only expressed during the stationary and mid-log phase of the bacterial growth and not during the colonisation of chicken. Even though the bacterium is considered to be non-pathogenic in poultry, it is fair to assume that in order to colonise the animal, C. jejuni has to resist stresses that are similar to those that it encounters when colonising other hosts (e.g. acid tolerance). The mutants analysed in this study, did not exhibit any difference in phenotypes associated with
acid tolerance, SGF tolerance or virulence in Galleria mellonella larvae, which accords with the observations described in the transcriptome analysis.

Another assay that did not show any difference between wild type and any of the mutant strains tested was survival in tap water. C. jejuni has been shown to survive up to 64 days in drinking water when incubated at $4^{\circ} \mathrm{C}$, while at $25^{\circ} \mathrm{C}$ the number of viable cells drops to zero in the first day of incubation (Cools et al., 2003; Trigui et al., 2015). Although Campylobacter may be able to survive for such a long time at $4^{\circ} \mathrm{C}$, a difference between strains characterised by a different resistance to this particular stress can be identified in the first week (Trigui et al., 2015), hence the time of incubation of 8 days was selected.

As far as the assays highlighting a phenotype in some of the mutant strains are concerned, the DtetO mutant showed a high level of susceptibility to tetracycline, the Dunk9 mutant showed an impaired growth in liquid culture and impaired motility, and the DhicA mutant showed impaired motility and an a lack of biofilm production in the condition tested in this analysis.

The tetracycline susceptibility in DtetO is unsurprising, even though it is only partially restored by the complementation. Although this test only confirms that the tetracycline resistance phenotype is due to the presence of the tetO gene, it is useful to confirm that the technique used to produce the mutants works in these conditions. The reason why the complementation of tetO is only partial might reside in the different promoter that controls the expression of the gene in the complemented mutant. It may be useful to test the complementation of DtetO by tetO controlled by different promoters (for instance pCJC2, pCJC3, and pCJC4m described in Jervis et al., 2015).

The Dunk9 mutant showed two interesting phenotypes. They were both fully complemented when the unk9 gene was integrated back in the chromosome of the mutant strain, a sign that these phenotypes are due solely to the absence of this gene. Unfortunately, the predicted gene product did not possess any conserved domains that may be associated to the phenotypes identified. The only conserved domain identified in the hypothetical protein is part of a superfamily identified in a protein involved in the meiotic phase in eukaryotic organism (Meuwissen et al, 2004, domain SCP-1, as reported in Section 4.3.6). The unk9 gene expressing the hypothetical protein 9_FIG00469571_hypothetical_protein is much shorter than the one described in the original paper: the protein SCP1 is 946 amino acids long, while unk9 encodes a protein of just 194 amino acids, and the fact that the only domain identified here is a partial multi-domain lowers the confidence of function association between these two proteins. However, recently an association between DNA supercoiling and motility in C. jejuni was described (Shortt et al., 2016). The protein SCP1 interacts with chromatin and DNA, and it could be involved in processes that might influence DNA-supercoiling and tertiary structure. Certainly, a much deeper study of the gene unk9 and its protein product is required to ascertain its cellular function. Motility is an extremely important phenotype for C. jejuni, involved in the colonisation of the host and in the environmental survival (Young et al, 2007), and being involved with this phenotype makes the unk9 gene a candidate for future investigation. A follow up of this work should fully characterise the Unk9 protein (9_FIG00469571_hypothetical_protein). The protein should be isolated and its structure determined in order to gain a better understanding of its function, and the conditions in which the protein is produced by the bacterium should be identified.

Finally, the DhicA mutant showed a phenotype different from the wild-type but it could not be complemented. The gene hicA is part of a toxin-antitoxin system encoded by C. jejuni. These systems are formed by a toxin deleterious to the bacterial cell and an antitoxin acting like an antidote. Today, as many as six classes of toxin-antitoxin systems are known, characterised by different mechanisms of toxin inactivation (Page and Peti, 2016). Plasmid-encoded TA-systems were described initially to be involved in the maintenance and stabilisation of the plasmid by postsegregational killing (PSK), as described in Van Melderen and De Bast in 2009, but since then several chromosomal encoded TA-systems were discovered, which are not involved in PSK but work to ensure the survival of the bacterial population in response to various stresses (Page and Peti, 2016). For instance, in Salmonella, a toxin-antitoxin system seh $A B$ was associated with virulence in mice (De La Cruz, et al., 2013); in Acidithiobacillus ferrooxidans a series of TA-system were associated with the maintenance of integrated genetic elements (Bustamante et al., 2014); in Burkolderia pseudomallei the toxin HicA was shown to have a role in persister formation (Butt et al., 2014); in Escherichia coli multiple TA-systems were shown to influence biofilm formation and fimbriae (Kim et al., 2009). In particular, the study of Kim et al. has found that 5 TA systems are involved in the upregulation of biofilm formation in the early phases of bacterial growth $(8 \mathrm{H})$ through upregulation of fimbriae production (by repressing the expression of a single gene, yjgK, which encodes for an uncharachterised protein and has no homologues in C. jejuni) and in repression of biofilm production in the late phases of bacterial growth $(24 \mathrm{H})$. Although an association between hicA and production of biofilm and motility is described C. jejuni for the first time, the phenotypes identified in this study are consistent with at least two of the previous works in other bacterial organisms. I
recorded impairment in motility and in biofilm production in the mutant DhicA. I also evaluated the possibility of forming persister cells in the mutant strain DhicA, because TA systems and ability of forming biofilm are linked to the ability of producing persister cells in several bacterial species (Xang and Wood, 2011). Persister cells are a small fraction of bacterial cells that survive to an antibiotic treatment but are not genetically resistant to the antibiotic molecule (Lewis et al., 2007). I could not identify a difference between the WT strain Cj 1 and the mutant DhicA in the number of persister cells formed after 24 hours. The impossibility of complementing the mutant that I observed applying the methods here described undermines the full association between the presence of the hicA gene and the phenotypes observed; however, the absence of other mutations in the genome of the strain DhicA was ascertained via whole genome sequencing. Several hypotheses could be formulated about the impossibility observed here of complementing the phenotype of this mutant strain. For instance, according to the mechanism described in 1986 for post-segregational killing of plasmid free cells (Gerdes et al, 1986), for the TA-system to work the quantity of toxin and antitoxin needs to be finely regulated: for the system to work, the quantity of RNAse translated (HicB antitoxin, in this case), has to be enough to quickly degrade all the toxin (HicA, in this instance). If the two genes are transcribed under the control of different promoters, as in this case with the complementation method with pCJC1, this could disrupt the correct synergy of the system. Moreover, it is reported that the TA-systems are transcribed in an operon, hence a single polycistronic mRNA (Yamaguchi et al., 2011). Separating the toxin and the antitoxin gene might have an effect on the correct function of the system. Further investigation is required on this novel putative TAsystem of C. jejuni: it is necessary to ascertain the involvement of this system in the
phenotypes identified; I suggest producing a mutant lacking for the entire system, and measuring its phenotype in the conditions identified in this work, then complementing the mutant with hicBA operon. I also suggest evaluating the mRNA levels of the toxin and the antitoxin in the complemented mutant via qPCR.

In conclusion, two genes have been associated with novel phenotypes in this mutagenesis analysis: this directly links the plasmids pTet-like to novel functions other than the maintenance of tetracycline resistance in a Campylobacter population. These functions are directly responsible for a greater fitness of the strains carrying those genes (the importance of chemotaxis and biofilm production for Campylobacter in the environment and in the pathogenesis was reviewed by Bolton in 2015 and by Young et al. in 2007) and may explain at least in part the great diffusion of the plasmid pTet, as expected by De Friis in 2007.

Concluding remarks

The importance of the pTet-like family of plasmids in C. jejuni has been neglected for the last 10 years. Since its description in the strain 81-176 of C. jejuni in 2000 (Bacon et al., 2000), research has focused on the importance of the plasmid pVir, possibly because the plasmid pTet's function looked clear: the plasmid was transferred via the conjugative type four secretion system that it encodes, and it was maintained for tetracycline resistance (Batchelor et al., 2004).

In this work, I studied the importance of this plasmid family through sequence analysis and mutagenesis.

Initially, I determined the sequence of 19 new pTet-like plasmids in C. jejuni. These plasmids were between $\sim 37 \mathrm{kbp}$ and $\sim 48 \mathrm{kbp}$ long and showed a high level of similarity with the plasmid pTet but also showed some remarkable differences: for example, three of them lacked the tetracycline resistance gene, and 10 of them lacked for the replication protein described in the pTet plasmid carried by the strain 81-176 (NC008790.1). I also assessed the presence of the plasmid pTet in a database of 4005 strains of C. jejuni, sequenced before February 2016. This study showed that the majority of the pTet genes are carried by around 15.4% percent of the strains, and of these, 25.3% lack the tetracycline resistance gene. Also, different clusters of genes of the plasmid pTet were characterised by different frequencies in the C. jejuni strain database. I approached this variability between the plasmids pTet-like producing a plasmid pan genome for the plasmids pTet-like that I sequenced, together with the ones that are already present in the NCBI database. The result of this analysis shows that the pTet-like plasmids are composed of 79 genes. The majority of them are core genes, which largely encode for maintenance and conjugation. The remainders are accessory genes, encoding for disposable
phenotypes, such as antibiotic resistance, colicin production, or metabolism of particular compounds.

One strain of C. jejuni tested in this work (strain Cj1) was able to accept foreign DNA using a mutagenesis method developed for this bacterium, using a suicide plasmid constructed on pGEM-T easy as DNA vector. This strain has a particular genomic set-up: it shows the presence of the majority of the pTet-like plasmid pangenome genes in a structure that appear to be either a much bigger plasmid, like the one present in the strains RM3194 (CP014745.1), or integrated in the chromosome. The sequencing experiments applied to this strain were not able definitively to ascertain the chromosomal or plasmid location of the pTet-like genes; however, 11 mutants were produced on this strain in order to study the importance of the pTetencoded functions. The production of a further 7 mutants was attempted, but the mutant strains were not able to grow on selective plates for screening after transformation. Future work is required to understand whether this is due to a technical problem in the deletion protocol (and the kanamycin cassette used failed to substitute the target gene) or whether one or more of these seven genes are essential for the growth of C. jejuni. The genes targeted for mutation successfully encoded largely for hypothetical proteins, which contained conserved domains associated with several important functions: an acetyl transferase domain (Datr), a LabA-like domain associated with a variety of regulatory functions (DlabA), an ATPase associated with several cellular activity and a CsbA domain for stress response (DepsG), an ABC transporter (Dabc), a domain for nuclease activity and a domain for sensing extracellular L-fucose (DparB), a domain associated with a cag pathogenicity island in H. pylori (Dcag), a blood coagulase described in S. aureus (Dcoag), a conserved domain involved in chromatin structure in eukaryotic cells
(Dunk9), and a virulence-associated protein (DvapD). Furthermore, a mutant on the toxin protein hicA of the toxin-antitoxin system hicAB identified for the first time on the plasmids pTet-like was constructed, together with a mutant on the gene tet(O) responsible for tetracycline resistance.

Nine different phenotypic tests were applied to the 11 mutants produced on the strain Cj 1 . These tests were designed to simulate an array of conditions associated with pathogenesis and environmental survival and included a growth curve in Mueller-Hinton broth, resistance to different antibiotics, tolerance to low pH , survival in Synthetic Gastric Fluid, motility in soft agar, production of biofilm and formation of persister cells, survival in water and virulence in the model organism G. mellonella larvae. Two of these tests required an optimisation that led to the design of a novel protocol for the test of biofilm production in C. jejuni when grown in solid medium and a modification of the incubation conditions for testing the virulence in G. mellonella larvae.

Three of the mutants showed a different phenotype when compared to the wildtype strain in some of the conditions tested: the mutant DtetO exhibited a high susceptibility to the antibiotic tetracycline, the mutant DhicA exhibited an impaired ability of swimming in soft agar in particular concentrations of nutrients and an impaired ability to produce biofilm, the mutant Dunk9 showed a reduced growth rate in MHB and an impaired ability of swimming in soft agar in particular concentrations of nutrients. If the phenotype of the mutant DtetO is unsurprising, as the gene tet(O) is reported to be responsible of the tetracycline resistance phenotype, the phenotypes of the other two mutants require a deeper study.

The hypothetical protein affected by the mutation in the mutant Dunk9 carries a conserved domain involved in the interaction with chromatin and DNA in eukaryotic
organisms. In Campylobacter, an association between DNA supercoiling and motility was described recently (Shortt et al., 2016), and it is certainly interesting that the mutant Dunk9 shows a phenotype impaired in motility and growth.

The mutant DhicA exhibit an interesting phenotype on motility and biofilm production: these phenotypes were shown to be associated with a toxin-antitoxin system in several bacterial species, such as E. coli (Kim et al., 2009), but never before in C. jejuni.

Complementation of the mutants was performed in order to ascertain the association of the genes deleted with the phenotype observed: the phenotype of mutant Dunk9 was fully restored to the wild-type, the phenotype of the mutant DtetO was partially restored, and finally it was impossible to restore the wild-type phenotype in the mutant DhicA.

The work carried out in this thesis can be further extended both in the bioinformatics section and in the functional analysis of the pTet-associated genes.

In the production of the pTet-like plasmid pan-genome, I used a total of 27 pTet-like plasmids, present on the NCBI database, or sequenced in-house and whose sequence was ascertained using the paired-end information of the Illumina sequencing. I have demonstrated how 15.4% percent of the C. jejuni strains sequenced to date show at least half of the genes associated with the plasmid pTet. A step that can be taken in the direction of extending the knowledge on the variability of the plasmids pTet-like could be producing a pTet-like plasmid pan-genome using a larger number of plasmids pTet-like. These could be assembled from the strains that have been already sequenced, with the help of Bandage (Wick et al., 2015) or a newer version of SPAdes software that promises to be plasmid-aware (PlasmidSPAdes, Bankevich et al., 2012). A characteristic of pan-genomes is the
completeness: adding more genomes in the analysis corresponds to having more genes in the pan-genome result. When this growth in the number of genes after adding more genomes in the analysis reaches a plateau, the pan-genome is complete (Lefébure et al., 2010; Méric et al., 2014). It would be interesting to investigate whether the same were true for the pTet-like plasmid pan-genome: the 79 genes described in this study describe the variability of the 27 pTet-like plasmids I used in the pan-genome analysis, but further work is required to ascertain if this is the total variability of the plasmid or if new genes can be discovered by adding other pTet-like plasmids to the analysis.

Secondly, other mutants could be produced in order to study the phenotype of other genes identified in the pTet-like plasmid pan-genome. An array of hypothetical proteins has been identified in several different plasmids pTet-like, and many of them show interesting conserved domains that could not be studied in this work. A few examples of hypothetical proteins that would require further study are the one encoded by "7_FIG00471069_hypothetical_protein", carrying a conserved domain for membrane carbohydrate transport or the one encoded by

"42 _FIG00638667_hypothetical_protein," which shows a conserved domain

 encoding for a peptidase involved with bacteriocins resistance. Furthermore, several hypothetical proteins identified with automated annotation show no putative function and no conserved domains (Table 4.1.1), leaving the production of a mutant and a thorough phenotypic study the only way to identify their importance.The mutants produced in this work were tested with an array of phenotypic tests designed to simulate conditions important for bacterial environmental survival and host colonisation, but they by no means cover all the possible characteristics of C. jejuni. The majority of the mutants did not show a phenotype different from the
wild-type, but different phenotypic assays could highlight differences that I was not able to identify. In particular, future work could point in the direction of high throughput metabolic analysis using Biolog system (Biolog INC., http://www.biolog.com/) and host invasion, evaluating the ability to invade the wellestablished models for C. jejuni caco-2 or INT407 cell lines.

The important phenotype shown by the mutant Dunk9 has been fully complemented with the system developed by Jervis et al. in 2015. In the future, it is necessary to characterise fully the function of the deleted gene and the protein produced. As far as the deleted gene is concerned, it would be interesting to ascertain possible interactions with other genes and expression patterns in different conditions via transcriptomics study. It is also necessary to identify the deleted protein, studying its cellular localisation or secretion, structure, and interaction with other proteins.

The phenotype of the mutant DhicA was not complemented; however, the absence of mutations different from the expected one was ascertained via whole genome sequencing of the mutant strain. The impossibility of restoring the wild-type phenotype in this mutant strain could be due to the operon structure of the toxinantitoxin system, and future analyses of this mutant could involve the study of the expression levels of the toxin and the antitoxin in the complemented strain and production of a mutant lacking of the entire system, if possible. I also suggest trying to complement the mutant with different pCJC plasmids, containing the gene to complement under the control of different promoters (Jervis et al., 2015).

Overall, in this project, I demonstrated that plasmids pTet-like have a role in the lifestyle of C. jejuni other than the tetracycline resistance. I described a variability in the plasmids pTet-like and the absence of the tetracycline resistance characteristic
from a large set of them. I summarised the variability of the plasmids pTet-like describing the pTet-like plasmid pan-genome and a set of core and accessory genes for the plasmid pTet. I produced several mutants on pTet-like genes and tested them for phenotypes that simulated the environmental survival and host invasion, revealing that some of the genes encoded by the plasmids pTet-like are useful in previously undescribed conditions, such as the production of biofilm and motility.

This work could shed new light on the lifestyle of C. jejuni: I showed that a common characteristic like the presence of a plasmid pTet-like is not to be ignored. A better understanding of the genetic and the lifestyle of C. jejuni, achieved with studies of this kind, can lead to the design of better control measures for the bacterium, aiming to eliminate it while it colonises the environment and typical ecological niches, preventing the attack to the human host.

References

Aarestrup, F. M., \& Engberg, J. (2001). Antimicrobial resistance of thermophilic Campylobacter. Veterinary Research, 32(3/4), 311-321.

Albert, M. J., Udo, E., Jose, B. T., Haridas, S., \& Rotimi, V. O. (2009). Tetracycline resistance is frequent among Campylobacter jejuni isolates from Kuwait. Microbial Drug Resistance (Larchmont, N. Y.), 15(2), 115-20.

Alfredson, D. a., \& Korolik, V. (2003). Sequence analysis of a cryptic plasmid pCJ419 from Campylobacter jejuni and construction of an Escherichia coliCampylobacter shuttle vector. Plasmid, 50(2), 152-160.

Alfredson, D. A., \& Korolik, V. (2007). Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters, 277(2).

Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., \& Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12(1), 402.

Anderson, L. B., Hertzel, A. V, \& Das, A. (1996). Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proceedings of the National Academy of Sciences of the United States of America, 93(17), 8889-94.

Aravind, L., Leipe, D. D., \& Koonin, E. V. (1998). Toprim - A conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Research, 26(18), 4205-4213.

Arcus, V. (2002). OB-fold domains: A snapshot of the evolution of sequence, structure and function. Current Opinion in Structural Biology. 12(6), 794-801.

Arthur, M., Depardieu, F., Molinas, C., Reynolds, P., \& Courvalin, P. (1995). The vanZ gene of Tn1546 from enterococcus faecium BM4147 confers resistance to teicoplanin. Gene, 154(1), 87-92.

Asakura, M., Samosornsuk, W., Hinenoya, A., Misawa, N., Nishimura, K., Matsuhisa, A., \& Yamasaki, S. (2008). Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. Fems Immunology and Medical Microbiology, 52(2), 260-266.

Atack, J. M., \& Kelly, D. J. (2009). Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiology, 4(6), 677-690.

Atmakuri, K., Cascales, E., \& Christie, P. J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Molecular Microbiology, 54(5), 1199-1211.

Avrain, L., Vernozy-Rozand, C., \& Kempf, I. (2004). Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens. Journal of Applied Microbiology, 97(1), 134-140.

Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T., \& Emr, S. D. (2002). Escrt-III: An Endosome-Associated Heterooligomeric Protein Complex Required for MVB Sorting. Developmental Cell, 3(2), 271-282.

Bachtiar, B. M., Coloe, P. J., \& Fry, B. N. (2007). Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium-host interactions. FEMS Immunology and Medical Microbiology, 49(1), 149-154.

Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P. R., ... Meyer, T. F. (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cellular Microbiology, 2(2), 155-164.

Bacon, D. J., Alm, R. A., Burr, D. H., Hu, L., Kopecko, D. J., Ewing, C. P., ... Guerry, P. (2000). Involvement of a Plasmid in Virulence of Campylobacter jejuni 81176. Infection and Immunity, 68(8), 4384-4390.

Bacon, D. J., Alm, R. A., Hu, L., Hickey, T. E., Ewing, C. P., Batchelor, R. A., ... Guerry, P. (2002). DNA Sequence and Mutational Analyses of the pVir Plasmid of Campylobacter jejuni 81-176. Infection and Immunity, 70(11), 6242-6250.

Bacon, D. J., Szymanski, C. M., Burr, D. H., Silver, R. P., Alm, R. A., \& Guerry, P. (2001). A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Molecular Microbiology, 40(3), 769-777.

Balaban, M., \& Hendrixson, D. R. (2011). Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathogens, 7(12), e1002420.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455-477.

Barrett, a. J., \& Rawlings, N. D. (2001). Evolutionary lines of cysteine peptidases. Biological Chemistry. 382(5), 727-733.

Barrett, A. J., Tolle, D. P., \& Rawlings, N. D. (2003). Managing peptidases in the genomic era. Biological Chemistry, 384(6), 873-882.

Batchelor, R. a, Pearson, B. M., Friis, L. M., Guerry, P., \& Wells, J. M. (2004). Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology (Reading, England), 150(Pt 10), 3507-17.

Bäumler, A. J., Tsolis, R. M., Bowe, F. A., Kusters, J. G., Hoffmann, S., \& Heffron, F. (1996). The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infection and Immunity, 64(1), 61-68.

Bawden, a L., Glassberg, K. J., Diggans, J., Shaw, R., Farmerie, W., \& Moyer, R. W. (2000). Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology, 274(1), 120-39.

Bayliss, R., Harris, R., Coutte, L., Monier, A., Fronzes, R., Christie, P. J., ... Waksman, G. (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1673-1678.

Bergquist, P. L. (1987) Incompatibility. In: Hardy KG (ed.) Plasmids: A Practical Approach, pp. 37-78. Oxford: IRL Press.

Beumer, R. R., de Vries, J., \& Rombouts, F. M. (1992). Campylobacter jejuni nonculturable coccoid cells. International Journal of Food Microbiology, 15(1-2), 153-163.

Bolton, D. J. (2015). Campylobacter virulence and survival factors. Food Microbiology, 48, 99-108.

Boucher, C., Martinel, A., Barberis, P., Alloing, G., \& Zischek, C. (1986). Virulence genes are carried by a megaplasmid of the plant pathogen Pseudomonas solanacearum. MGG Molecular \& General Genetics, 205(2), 270-275.

Boyaval, P., Moineau, S., Romero, D. A., \& Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315(March), 1709-1712.

Branda, S. S., González-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., \& Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology, 186(12), 3970-3979.

Buelow, D. R., Christensen, J. E., Neal-McKinney, J. M., \& Konkel, M. E. (2011). Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein Cial. Molecular Microbiology, 80(5), 1296-1312.

Burian, J., Guller, L., Macor, M., \& Kay, W. W. (1997). Small cryptic plasmids of multiplasmid, clinical Escherichia coli. Plasmid, 37(1), 2-14.

Bustamante, P., Tello, M., \& Orellana, O. (2014). Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS ONE, 9(11), e112226.

Buswell, C. M., Herlihy, Y. M., Lawrence, L. M., McGuiggan, J. T. M., Marsh, P. D., Keevil, C. W., \& Leach, S.A. (1998). Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Applied and Environmental Microbiology. 64:733-741.

Butt, A., Higman, V. A., Williams, C., Crump, M. P., Hemsley, C. M., Harmer, N., ... Christopher, W. (2014). The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochemical Journal, 459(19464), 333-44.

Butzler, J.-P., \& Oosterom, J. (1991). Campylobacter: pathogenicity and significance in foods. International Journal of Food Microbiology, 12(1), 1-8.

Byrne, C. M., Clyne, M., \& Bourke, B. (2007). Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology, 153(2), 561-569.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., \& Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.

Cárdenas-Mondragón, M. G., Ares, M. A., Panunzi, L. G., Pacheco, S., CamorlingaPonce, M., Girón, J. A., ... De la Cruz, M. A. (2016). Transcriptional profiling of type II toxin-antitoxin genes of Helicobacter pylori under different environmental conditions: Identification of hp0967-hp0968 system. Frontiers in Microbiology, 7(NOV), 1872.

Carrillo, C. D., Taboada, E., Nash, J. H. E., Lanthier, P., Kelly, J., Lau, P. C., ... Szymanski, C. M. (2004). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. The Journal of Biological Chemistry, 279(19), 20327-38.

Castanié-Cornet, M. P., Bruel, N., \& Genevaux, P. (2014). Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochimica et Biophysica Acta - Molecular Cell Research.

Champion, O. L., Gaunt, M. W., Gundogdu, O., Elmi, A., Witney, A. A., Hinds, J., ... Wren, B. W. (2005). Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 16043-8.

Champion, O. L., Karlyshev, A. V, Senior, N. J., Woodward, M., La Ragione, R., Howard, S. L., ... Titball, R. W. (2010). Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. The Journal of Infectious Diseases, 201(5), 776-782.

Champoux, J. J. (2001). DNA TOPOISOMERASES: Structure, Function, and Mechanism. Annual Review of Biochemistry, 70(1), 369-413.

Chang, N. and Taylor, D.E. (1990) Use of pulsed-field agarose gel electrophoresis to size genomes of Campylobacter species and to construct a Sall map of Campylobacter jejuni UA580. Journal of Bacteriology 172, 5211-5217

Chatzipanagiotou, S., Papavasileiou, E., Lakumenta, A., Makri, A., Nicolaou, C., Chantzis, K., ... Legakis, N. I. (2002). Antimicrobial susceptibility patterns of

Campylobacter jejuni strains isolated from hospitalized children in Athens, Greece. The Journal of Antimicrobial Chemotherapy, 49(5), 803-805.

Chaveerach, P., ter Huurne, A. A. H. M., Lipman, L. J. A., \& van Knapen, F. (2003). Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. Applied and Environmental Microbiology, 69(1), 711-714.

Chen, C. M., Ye, Q. Z., Zhu, Z., Wanner, B. L., \& Walsh, C. T. (1990). Molecular biology of carbon-phosphorus bond cleavage: Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. Journal of Biological Chemistry, 265(8), 4461-4471.

Christie, P. J. (2004). Type IV secretion: The Agrobacterium VirB/D4 and related conjugation systems. Biochimica et Biophysica Acta - Molecular Cell Research, 1694(1-3 SPEC.ISS.), 219-234.

Christie, P. J., \& Vogel, J. P. (2000). Bacterial type IV secretion: Conjugation systems adapted to deliver effector molecules to host cells. Trends in Microbiology. 8(8), 354-360.

Clark, E., Manulis, S., Ophir, Y., Barash, I., \& Gafni, Y. (1993). Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology, 83, 234-240.

Cole, S. P., Harwood, J., Lee, R., She, R., \& Guiney, D. G. (2004). Characterization of monospecies biofilm formation by Helicobacter pylori. Journal of Bacteriology, 186(10), 3124-32.

Cools, I., Uyttendaele, M., Caro, C., D'Haese, E., Nelis, H. J., \& Debevere, J. (2003). Survival of Campylobacter jejuni strains of different origin in drinking water. Journal of Applied Microbiology, 94(5), 886-892.

Cort, J. R., Ramelot, T. A., Murray, D., Acton, T. B., Ma, L. C., Xiao, R., ... Kennedy, M. A. (2008). Structure of an acetyl-CoA binding protein from Staphylococcus aureus representing a novel subfamily of GCN5-related N-acetyltransferase-like proteins. Journal of Structural and Functional Genomics, 9(1-4), 7-20.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., \& Lappin-Scott, H.M. (1995). Microbial biofilms. Annual Reviews of Microbiology. 49:711-745

Cowles, K. N., \& Goodrich-Blair, H. (2005). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology, 7(2), 209-219.

Crespo, M. D., Altermann, E., Olson, J., Miller, W. G., Chandrashekhar, K., \& Kathariou, S. (2016). Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD. Plasmid, 86, 32-37.

Cummins, P. M., \& O'Connor, B. (1998). Pyroglutamyl peptidase: An overview of the three known enzymatic forms. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1429(1), 1-17.

Rollins, D., \& Colwell, R. (1986). Viable but Nonculturable Stage of Campylobacter jejuni and Its Role in Survival in the Natural Aquatic Environment, Applied and Environmental Microbiology. 52 (3), 531-538.

Darling, A. C. E., Mau, B., Blattner, F. R., \& Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14(7), 1394-403.

Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., \& Groß, U. (2010). Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology, 300(4), 205-211.

De Boer, P., Wagenaar, J. A., Achterberg, R. P., Van Putten, J. P. M., Schouls, L. M., \& Duim, B. (2002). Generation of Campylobacter jejuni genetic diversity in vivo. Molecular Microbiology, 44(2), 351-359.

De Bois, M. H., Schoemaker, M. C., van der Werf, S. D., \& Puylaert, J. B. (1989). Pancreatitis associated with Campylobacter jejuni infection: diagnosis by ultrasonography. BMJ (Clinical Research Ed.), 298(6679), 1004.

De la Cruz, M. A., Zhao, W., Farenc, C., Gimenez, G., Raoult, D., Cambillau, C., ... Méresse, S. (2013). A Toxin-Antitoxin Module of Salmonella Promotes Virulence in Mice. PLoS Pathogens, 9(12), 1-13.

Del Solar, G., \& Espinosa, M. (2002). Plasmid copy number control: an ever-growing story. Molecular Microbiology, 37(3), 492-500.

Delauney, A. J., Cheon, C. I., Snyder, P. J., \& Verma, D. P. S. (1990). A nodulespecific sequence encoding a methionine-rich polypeptide, nodulin-21. Plant Molecular Biology, 14(3), 449-451.

Derouiche, R., Gavioli, M., Bénédetti, H., Prilipov, a, Lazdunski, C., \& Lloubès, R. (1996). TolA central domain interacts with Escherichia coli porins. The EMBO Journal, 15(23), 6408-6415.

Dingle, K. E., Colles, F. M., Wareing, D. R. A., Ure, R., Fox, A. J., Bolton, F. E., ... Maiden, M. C. J. (2001). Multilocus sequence typing system for Campylobacter jejuni. Journal of Clinical Microbiology, 39(1), 14-23.

Easter, J., \& Gober, J. W. (2002). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Molecular Cell, 10(2), 427-434.

Ebersbach, G., Sherratt, D. J., \& Gerdes, K. (2005). Partition-associated incompatibility caused by random assortment of pure plasmid clusters. Molecular Microbiology, 56(6), 1430-1440.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.

EFSA. (2008). Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, in the EU, 2006-2007, part A: Salmonella prevalence estimates. EFSA J. 135, 1-111.

Elmi, A., Watson, E., Sandu, P., Gundogdu, O., Mills, D. C., Inglis, N. F., ... Dorrell, N. (2012). Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infection and Immunity, 80(12), 4089-4098.

Eucker, T. P., \& Konkel, M. E. (2012). The cooperative action of bacterial fibronectinbinding proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host cells by stimulating membrane ruffling. Cellular Microbiology, 14(2), 226-238.

Felder, C. B., Graul, R. C., Lee, A. Y., Merkle, H.-P., \& Sadee, W. (1999). The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS pharmSci, 1(2), 7-26.

Fidelma Boyd, E., Hill, C. W., Rich, S. M., \& Hard, D. L. (1996). Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics, 143(3), 10911100.

Field, L.H., Headley, V.L., Payne, S.M., Berry, L.J. (1986) Influence of iron on growth, morphology, outer membrane protein composition, and synthesis of siderophores in Campylobacter jejuni. Infection and Immunity 54, 126-132.

Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., ... Bateman, A. (2016). The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 44(D1), D279-D285.

Flanagan, R. C., Neal-McKinney, J. M., Dhillon, A. S., Miller, W. G., \& Konkel, M. E. (2009). Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infection and Immunity, 77(6), 2399-407.

Fondi, M., Bacci, G., Brilli, M., Papaleo, M. C., Mengoni, A., Vaneechoutte, M., ... Fani, R. (2010). Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. Bmc Evolutionary Biology, 10(1).

Friedrich, R., Panizzi, P., Fuentes-Prior, P., Richter, K., Verhamme, I., Anderson, P. J., ... Bock, P. E. (2003). Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature, 425(2001), 535-539.

Friis, L. M., Pin, C., Taylor, D. E., Pearson, B. M., \& Wells, J. M. (2007). A role for the tet(O) plasmid in maintaining Campylobacter plasticity. Plasmid, 57(1), 1828.

Galinski, M. R., Xu, M., \& Barnwell, J. W. (2000). Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Molecular and Biochemical Parasitology (Vol. 108).

Gallay, A., Prouzet-Mauléon, V., Kempf, I., Lehours, P., Labadi, L., Camou, C., ... Mégraud, F. (2007). Campylobacter Antimicrobial Drug Resistance among Humans, Broiler Chickens, and Pigs, France. Emerging Infectious Diseases, 13(2), 259-266.

Garbers, D. L., Chrisman, T. D., Wiegn, P., Katafuchi, T., Albanesi, J. P., Bielinski, V., ... Burnett, J. C. (2006). Membrane guanylyl cyclase receptors: an update. Trends in Endocrinology and Metabolism. 17(6):251-258.

Garénaux, A., Guillou, S., Ermel, G., Wren, B., Federighi, M., \& Ritz, M. (2008). Role of the Cj 1371 periplasmic protein and the Cj 0355 c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. Research in Microbiology, 159(9-10), 718-726.

Garénaux, A., Jugiau, F., Rama, F., de Jonge, R., Denis, M., Federighi, M., \& Ritz, M. (2008). Survival of Campylobacter jejuni Strains from Different Origins Under Oxidative Stress Conditions: Effect of Temperature. Current Microbiology, 56(4), 293-297.

Gaujoux, R., \& Seoighe, C. (2010). A flexible R package for nonnegative matrix factorization. BMC Bioinformatics, 11(1), 367.

Gaynor, E. C., Wells, D. H., MacKichan, J. K., \& Falkow, S. (2005). The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Molecular Microbiology, 56(1), 8-27.

Giannouli, M., Palatucci, A. T., Rubino, V., Ruggiero, G., Romano, M., Triassi, M., ... Zarrilli, R. (2014). Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiology, 14(1), 228.

Gibreel, A., Sköld, O., \& Taylor, D. E. (2004). Characterization of plasmid-mediated aphA-3 kanamycin resistance in Campylobacter jejuni. Microbial Drug Resistance (Larchmont, N.Y.), 10(2), 98-105.

Gilbert, M., Brisson, J. R., Karwaski, M. F., Michniewicz, J., Cunningham, A. M., Wu, Y., ... Wakarchuk, W. W. (2000). Biosynthesis of ganglioside mimics in Campylobacter jejuni OH 4384 . Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by $600-\mathrm{MHz} 1 \mathrm{H}$ and 13C NMR analysis. Journal of Biological Chemistry, 275(6), 3896-3906.

Gogarten, J. P., \& Townsend, J. P. (2005). Horizontal gene transfer, genome innovation and evolution. Nature Reviews Microbiology, 3(9), 679-687.

Golden, N. J., \& Acheson, D. W. K. (2002). Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infection and Immunity, 70(4), 1761-1771.

Gouy, M., Guindon, S., \& Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221-224.

Guccione, E., Del Rocio Leon-Kempis, M., Pearson, B. M., Hitchin, E., Mulholland, F., Van Diemen, P. M., ... Kelly, D. J. (2008). Amino acid-dependent growth of Campylobacter jejuni: Key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Molecular Microbiology, 69(1), 77-93.

Guerry, P. (2007). Campylobacter flagella: not just for motility. Trends in Microbiology, 15(10), 456-461.

Guerry, P., Ewing, C. P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., ... Logan, S. (2006). Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Molecular Microbiology, 60(2), 299-311.

Gunther, N. W., Reichenberger, E. R., \& Bono, J. L. (2016). Complete Genome Sequence of UV-Resistant Campylobacter jejuni RM3194, Including an 81.08Kilobase Plasmid. Genome Announcements, 4(2), e00305-16.

Gunther, N. W., Reichenberger, E. R., \& Bono, J. L. (2016). Complete Genome Sequence of UV-Resistant Campylobacter jejuni RM3194, Including an 81.08Kilobase Plasmid. Genome Announcements, 4(2), e00305-16.

Guo, B., Wang, Y., Shi, F., Barton, Y.-W., Plummer, P., Reynolds, D. L., ... Zhang, Q. (2008). CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. Journal of Bacteriology, 190(6), 1879-1890.

Gurevich, A., Saveliev, V., Vyahhi, N., \& Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072-1075.

Hackett, J., Wyk, P., Reeves, P., \& Mathan, V. (1987). Mediation of serum resistance in Salmonella typhimurium by an 11-kilodalton polypeptide encoded by the cryptic plasmid. The Journal of Infectious Diseases, 155(3), 540-549.

Haft, D. H., Selengut, J., Mongodin, E. F., \& Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474-0483.

Hallet, B., \& Sherratt, D. J. (1997). Transposition and site-specific recombination: Adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiology Reviews. 21(2), 157-178.

Han, F., Pu, S., Hou, A., \& Ge, B. (2009). Characterization of Clinical and Environmental Types of Vibrio vulnificus Isolates from Louisiana Oysters. Foodborne Pathogens and Disease, 6(10), 1251-1258.

Handford, J. I., Ize, B., Buchanan, G., Butland, G. P., Greenblatt, J., Emili, A., \& Palmer, T. (2009). Conserved network of proteins essential for bacterial viability. Journal of Bacteriology, 191(15), 4732-4749.

Hapfelmeier, S., Domke, N., Zambryski, P. C., \& Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. Journal of Bacteriology, 182(16), 4505-4511.

Harding, C. R., Schroeder, G. N., Reynolds, S., Kosta, A., Collins, J. W., Mousnier, A., \& Frankel, G. (2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infection and Immunity, 80(8), 2780-2790.

Hardy, K. C. (1986). Bacterial plasmids. Kluwer Academic Publishers Group.
Harrisingh, M. C., \& Lloyd, A. C. (2004). Ras/Raf/ERK signalling and NF1: Implications for neurofibroma formation. Cell Cycle, 3(10), 1255-1258.

Harrison, C. (2003). GrpE, a nucleotide exchange factor for DnaK. Cell Stress \& Chaperones, 8(3), 218-224.

Harrison, J. W., Dung, T. T. N., Siddiqui, F., Korbrisate, S., Bukhari, H., Vu Tra, M. P., ... Champion, O. L. (2014). Identification of possible virulence marker from Campylobacter jejuni isolates. Emerging Infectious Diseases, 20(6), 10261029.

Hazeleger, W. C., Wouters, J. A., Rombouts, F. M., \& Abee, T. (1998). Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Applied and Environmental Microbiology, 64(10), 3917-3922.

He, Z., Zhang, H., Gao, S., Lercher, M. J., Chen, W. H., \& Hu, S. (2016). Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res, 44(W1), W236-W241.

Hendrixson DR. 2006. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol. 61:1646-59

Hendrixson DR. 2008. Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni. Mol. Microbiol. 70:519-36

Hendrixson, D. R. (2006). A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Molecular Microbiology, 61(6), 1646-1659.

Hendrixson, D. R., \& DiRita, V. J. (2003). Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated
with formation of the flagellar secretory apparatus. Molecular Microbiology, 50(2), 687-702.

Hendrixson, D. R., \& DiRita, V. J. (2004). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Molecular Microbiology, 52(2), 471-484.

Henthorn, K. S., \& Friedman, D. I. (1995). Identification of related genes in phages 80 and P22 whose products are inhibitory for phage growth in Escherichia coli IHF mutants. Journal of Bacteriology, 177(11), 3185-3190.

Hermans, D., Van Deun, K., Martel, A., Van Immerseel, F., Messens, W., Heyndrickx, M., ... Pasmans, F. (2011). Colonization factors of Campylobacter jejuni in the chicken gut. Veterinary Research, 42(1), 82.

Hiett, K. L., Rothrock, M. J., \& Seal, B. S. (2013). Characterization of the Campylobacter jejuni cryptic plasmid pTIW94 recovered from wild birds in the southeastern United States. Plasmid, 70(2), 268-71.

Hofreuter, D., Odenbreit, S., \& Haas, R. (2001). Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Molecular Microbiology, 41(2), 379-391.

Humphrey, T., Mason, M., \& Martin, K. (1995). The isolation of Campylobacter jejuni from contaminated surfaces and its survival in diluents. International Journal of Food Microbiology, 26(3), 295-303.

Hvorup, R. N., Winnen, B., Chang, A. B., Jiang, Y., Zhou, X. F., \& Saier, M. H. (2003). The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. European Journal of Biochemistry. 270(5), 799-813.

Igimi, S., Okada, Y., Ishiwa, A., Yamasaki, M., Morisaki, N., Kubo, Y., ... Yamamoto, S. (2008). Antimicrobial resistance of Campylobacter: prevalence and trends in Japan. Food Additives \& Contaminants. Part A, Chemistry, Analysis, Control, Exposure \& Risk Assessment, 25(9), 1080-3.

Iraola, G., Pérez, R., Naya, H., Paolicchi, F., Pastor, E., Valenzuela, S., ... Morsella, C. (2014). Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter. Genome Biology and Evolution, 6(9), 2392-405.
lyer, L. M., Koonin, E. V, \& Aravind, L. (2002). Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biology, 3(3), RESEARCH0012.

Iyer, L. M., Leipe, D. D., Koonin, E. V., \& Aravind, L. (2004). Evolutionary history and higher order classification of AAA+ ATPases. Journal of Structural Biology, 146(1-2), 11-31.

Izard, T. (2001). Structural basis for chloramphenicol tolerance in Streptomyces venezuelae by chloramphenicol phosphotransferase activity. Protein Science, 10(8), 1508-1513.

J Sacks, S Lieb et al., (1986), Epidemic Campylobacteriosis Associated with a Community Water Supply, American Journal of Public Health. 76 (4) 424-428.
J.L., S., \& P.M., F. (2010). Fluoroquinolone resistance in Campylobacter. Journal of Food Protection, 73(6), 1141-1152.

Jackson, R. W., Vinatzer, B., Arnold, D. L., Dorus, S., \& Murillo, J. (2011). The influence of the accessory genome on bacterial pathogen evolution. Mobile Genetic Elements, 1(1), 55-65.

Jagannathan, A., Constantinidou, C., \& Penn, C. W. (2001). Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. Journal of Bacteriology, 183(9), 2937-42.

Jervis, A. J., Butler, J. A., Wren, B. W., \& Linton, D. (2015). Chromosomal integration vectors allowing flexible expression of foreign genes in Campylobacter jejuni. BMC Microbiology, 15(1), 230.

Jesse, T. W., Pittenger-Alley, L. G., \& Englen, M. D. (2006). Sequence analysis of two cryptic plasmids from an agricultural isolate of Campylobacter coli. Plasmid, 55(1), 64-9.

Jin, S., Joe, A., Lynett, J., Hani, E. K., Sherman, P., \& Chan, V. L. (2004). JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Molecular Microbiology, 39(5), 1225-1236.

Jin, S., Joe, A., Lynett, J., Hani, E.K., Sherman, P., Chan, V.L., (2001). JIpA, a novel surface- exposed lipoprotein specificto Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39, 1225-1236.

Jin, S., Song, Y. C., Emili, A., Sherman, P. M., \& Chan, V. L. (2003). JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways leading to the activation of NFkappaB and p38 MAP kinase in epithelial cells. Cellular Microbiology, 5(3), 165174.

Jolley, K. A., Maiden, M. C., Pettersson, E., Lundeberg, J., Ahmadian, A., Roumagnac, P., ... Mavromatis, K. (2010). BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 11(1), 595.

Jones, F. S., Orcutt, M., \& Little, R. B. (1931). Vibrios (Vibrio jejuni, n. sp.) associated with intestinal disorders of cows and calves. The Journal of Experimental Medicine, 53(6), 853-864.

Jones, M. A., Marston, K. L., Woodall, C. A., Maskell, D. J., Linton, D., Karlyshev, A. V, ... Barrow, P. A. (2004). Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infection and Immunity, 72(7), 3769-76.

Joshua, G. W. P., Guthrie-Irons, C., Karlyshev, A. V., \& Wren, B. W. (2006). Biofilm formation in Campylobacter jejuni. Microbiology, 152(2), 387-396.

Kado, C. I. (2000). The role of the T-pilus in horizontal gene transfer and tumorigenesis. Current Opinion in Microbiology. 3(6), 643-648.

Kalkum, M., Eisenbrandt, R., Lurz, R., \& Lanka, E. (2002). Tying rings for sex. Trends in Microbiology. 10(8), 382-387.

Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C., \& Manning, G. (2007). Structural and functional diversity of the microbial kinome. PLoS Biology, 5(3), 0467-0478.

Karlyshev, A. V, \& Wren, B. W. (2005). Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Applied and Environmental Microbiology, 71(7), 4004-4013.

Keck, J. L. (2000). Structure of the RNA Polymerase Domain of E. coli Primase. Science, 287(5462), 2482-2486.

Kim, C., \& Mobashery, S. (2005). Phosphoryl transfer by aminoglycoside 3phosphotransferases and manifestation of antibiotic resistance. Bioorganic Chemistry. 33(3), 149-158.

Kim, S. J., Jun, D. Y., Yang, C. H., \& Kim, Y. H. (2006). Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice. Applied Microbiology and Biotechnology, 72(3), 462-470.

Kim, Y., Wang, X., Ma, Q., Zhang, X. S., \& Wood, T. K. (2009). Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. Journal of Bacteriology, 191(4), 1258-1267.

Klančnik, A., Guzej, B., Jamnik, P., Vučković, D., Abram, M., \& Možina, S. S. (2009). Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Research in Microbiology, 160(5), 345-352.

Konkel, M. E., Kim, B. J., Klena, J. D., Young, C. R., \& Ziprin, R. (1998). Characterization of the thermal stress response of Campylobacter jejuni. Infection and Immunity, 66(8), 3666-72.

Konkel, M. E., Kim, B. J., Rivera-Amill, V., \& Garvis, S. G. (1999). Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Molecular Microbiology, 32(4), 691-701.

Konkel, M. E., Klena, J. D., Rivera-Amill, V., Monteville, M. R., Biswas, D., Raphael, B., \& Mickelson, J. (2004). Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus. Journal of Bacteriology, 186(11), 3296-3303.

Konkel, M. E., Larson, C. L., \& Flanagan, R. C. (2010). Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. Journal of Bacteriology, 192(1), 68-76.

Korlath, J. A., Osterholm, M. T., Judy, L. A., Forfang, J. C., \& Robinson, R. A. (1985). A point-source outbreak of Campylobacteriosis associated with consumption of raw milk. Journal of Infectious Diseases, 152(3), 592-596.

Krause-Gruszczynska, M., van Alphen, L. B., Oyarzabal, O. A., Alter, T., Hänel, I., Schliephake, A., ... Backert, S. (2007). Expression patterns and role of the CadF protein in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters, 274(1), 9-16.

Kumar, R. B., \& Das, A. (2001). Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. Journal of Bacteriology, 183(12), 3636-3641.

Langmead, B., \& Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359.

Lau, S.K. (2014), Molecular interrogation of Campylobacter infection. PhD Thesis. University of Exeter.

Laursen, B. S., Mortensen, K. K., Sperling-Petersen, H. U., \& Hoffman, D. W. (2003). A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. Journal of Biological Chemistry, 278(18), 16320-16328.

Lechner, M., Findeiss, S., Steiner, L., Marz, M., Stadler, P. F., \& Prohaska, S. J. (2011). Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics, 12(1), 124.

Lederber, J., \& Tatum, E. L. (1953). Sex in bacteria; genetic studies, 1945-1952. Science, 118(3059), 169-175.

Lefébure, T., Bitar, P. D. P., Suzuki, H., \& Stanhope, M. J. (2010). Evolutionary dynamics of complete Campylobacter pan-genomes and the bacterial species concept. Genome Biology and Evolution, 2(1), 646-655.

Lepp, D., Roxas, B., Parreira, V. R., Marri, P. R., Rosey, E. L., Gong, J., ... Prescott, J. F. (2010). Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis. PLoS ONE, 5(5), e10795.

Lertpiriyapong, K., Gamazon, E. R., Feng, Y., Park, D. S., Pang, J., Botka, G., ... Fox, J. G. (2012). Campylobacter jejuni type VI secretion system: Roles in
adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE, 7(8), e42842.

Lertsethtakarn, P., Ottemann, K. M., \& Hendrixson, D. R. (2011). Motility and chemotaxis in Campylobacter and Helicobacter. Annual Review of Microbiology, 65, 389-410.

Lesnick, M. L., Reiner, N. E., Fierer, J., \& Guiney, D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Molecular Microbiology, 39(6), 1464-1470.

Lessl, M., Balzer, D., Pansegrau, W., \& Lanka, E. (1992). Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. Journal of Biological Chemistry, 267(28), 2047120480.

Letunic, I., Doerks, T., \& Bork, P. (2015). SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1), D257D260.

Leuko, S., \& Raivio, T. L. (2012). Mutations that impact the enteropathogenic Escherichia coli Cpx envelope stress response attenuate virulence in galleria mellonella. Infection and Immunity, 80(9), 3077-3085.

Levengood, S. K., \& Webster, R. E. (1989). Nucleotide sequences of the tolA and tol B genes and localization of their products, components of a multistep translocation system in Escherichia coli. Journal of Bacteriology, 171(12), 66006609.

Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48-56.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079.

Li, J., Adams, V., Bannam, T. L., Miyamoto, K., Garcia, J. P., Uzal, F. A., ... McClane, B. A. (2013). Toxin plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews: MMBR, 77(2), 208-33.

Li, L., Chen, O. S., Ward, D. M., \& Kaplan, J. (2001). CCC1 Is a Transporter That Mediates Vacuolar Iron Storage in Yeast. Journal of Biological Chemistry, 276(31), 29515-29519.

Lin, A. E., Krastel, K., Hobb, R. I., Thompson, S. A., Cvitkovitch, D. G., \& Gaynor, E. C. (2009). Atypical roles for Campylobacter jejuni amino acid ATP binding cassette transporter components PaqP and PaqQ in bacterial stress tolerance and pathogen-host cell dynamics. Infection and Immunity, 77(11), 4912-4924.

Lin, J., Michel, L. O., \& Zhang, Q. (2002). CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 46(7), 2124-31.

Lipps, G. (2008). Plasmids: current research and future trends. Horizon Scientific Press.

Lopper, M., Holton, J. M., \& Keck, J. L. (2004). Crystal structure of PriB, a component of the Escherichia coli replication restart primosome. Structure, 12(11), 1967-1975.

Louwen, R. P. L., Van Belkum, a., Wagenaar, J. a., Doorduyn, Y., Achterberg, R., \& Endtz, H. P. (2006). Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis. Journal of Clinical Microbiology, 44(5), 1867-1868.

Louwen, R., Horst-Kreft, D., De Boer, A. G., Van Der Graaf, L., De Knegt, G., Hamersma, M., ... Van Belkum, A. (2013). A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 32(2), 207-226.

Louwen, R., Staals, R. H. J., Endtz, H. P., van Baarlen, P., \& van der Oost, J. (2014). The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiology and Molecular Biology Reviews: MMBR, 78(1), 74-88.

Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M., \& Zhang, Q. (2010). Antibiotic resistance in Campylobacter. emergence, transmission and persistence. Future Microbiology, 4(2), 189-200.

Luangtongkum, T., Morishita, T. Y., Ison, A. J., Huang, S., McDermott, P. F., \& Zhang, Q. (2006). Effect of Conventional and Organic Production Practices on the Prevalence and Antimicrobial Resistance of Campylobacter spp. in Poultry. Applied and Environmental Microbiology, 72(5), 3600-3607.

Luo, N., \& Zhang, Q. (2001). Molecular characterization of a cryptic plasmid from Campylobacter jejuni. Plasmid, 45(2), 127-133.

Luscombe, N. M., Austin, S. E., Berman, H. M., \& Thornton, J. M. (2000). An overview of the structures of protein-DNA complexes. Genome Biology, 1(1), REVIEWS001.

Makarova, K. S., Grishin, N. V, \& Koonin, E. V. (2006). The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics, 22(21), 2581-2584.

Makarova, K. S., Grishin, N. V, Shabalina, S. a, Wolf, Y. I., \& Koonin, E. V. (2006 (2)). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1(1), 7.

Manival, X., Yang, Y., Strub, M. P., Kochoyan, M., Steinmetz, M., \& Aymerich, S. (1997). From genetic to structural characterization of a new class of RNAbinding domain within the SacY/BgIG family of antiterminator proteins. EMBO Journal, 16(16), 5019-5029.

Marasini, D., \& Fakhr, M. K. (2014). Exploring PFGE for Detecting Large Plasmids in Campylobacter jejuni and Campylobacter coli Isolated from Various Retail Meats. Pathogens (Basel, Switzerland), 3(4), 833-844.

Marasini, D., \& Fakhr, M. K. (2016). Whole-Genome Sequencing of a Campylobacter jejuni Strain Isolated from Retail Chicken Meat Reveals the Presence of a Megaplasmid with Mu-Like Prophage and Multidrug Resistance Genes. Genome Announcements, 4(3), e00460-16.

Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., ... Bryant, S. H. (2015). CDD: NCBl's conserved domain database. Nucleic Acids Research, 43(D1), D222-D226.

Marraffini, L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature, 526(7571), 55-61.

Marsin, S., Mathieu, A., Kortulewski, T., Guérois, R., \& Radicella, J. P. (2008). Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS Genetics, 4(8), e1000146.

Martins, A., Spengler, G., Molnár, J., \& Amaral, L. (2001). Bacterial Antibiotic Resistance. In eLS. CHAP, John Wiley \& Sons, Ltd.

Matthews, J. M., \& Visvader, J. E. (2003). LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Reports, 4(12), 1132-1137.

Mazi, W., Senok, A., Al-Mahmeed, A., Arzese, A., Bindayna, K., \& Botta, G. (2008). Trends in Antibiotic Sensitivity Pattern and Molecular Detection of tet(O)Mediated Tetracycline Resistance in Campylobacter jejuni Isolates from Human and Poultry Sources. Jpn. J. Infect. Dis, 61, 82-84.

McDermott, P. F., Bodeis, S. M., English, L. L., White, D. G., Walker, R. D., Zhao, S., ... Wagner, D. D. (2002). Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. The Journal of Infectious Diseases, 185(6), 837-40.

McFarland, B. A., \& Neill, S. D. (1992). Profiles of toxin production by thermophilic Campylobacter of animal origin. Veterinary Microbiology, 30(2), 257-266.

Méric, G., Yahara, K., Mageiros, L., Pascoe, B., Maiden, M. C. J., Jolley, K. A., \& Sheppard, S. K. (2014). A reference pan-genome approach to comparative bacterial genomics: Identification of novel epidemiological markers in pathogenic Campylobacter. PLoS ONE, 9(3), e92798.

Meuwissen, R. L., Offenberg, H. H., Dietrich, A. J., Riesewijk, A., van Iersel, M., \& Heyting, C. (1992). A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. Embo J, 11(13), 5091-5100.

Meyer, R. (2000). Identification of the mob genes of plasmid pSC101 and characterization of a hybrid pSC101-R1162 system for conjugal mobilization. Journal of Bacteriology, 182(17), 4875-4881.

Mickelson, C., \& Wiberg, J. S. (1981). Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. Journal of Virology, 40(1), 65-77.

Mihaljevic, R. R., Sikic, M., Klancnik, A., Brumini, G., Mozina, S. S., \& Abram, M. (2007). Environmental stress factors affecting survival and virulence of Campylobacter jejuni. Microbial Pathogenesis (Vol. 43).

Miles, A. A., Misra, S. S., \& Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. The Journal of Hygiene, 38(6), 732-749.

Miller, J. R., Koren, S., \& Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315-27.

Miller, W. G., Heath, S., \& Mandrell, R. E. (2007). Cryptic plasmids isolated from Campylobacter strains represent multiple, novel incompatibility groups. Plasmid, 57(2), 108-17.

Misawa, N., \& Blaser, M. J. (2000). Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infection and Immunity, 68(11), 6168-75.

Miyamoto, K., Fisher, D. J., Li, J., Sayeed, S., Akimoto, S., \& McClane, B. A. (2006). Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. Journal of Bacteriology, 188(4), 1585-1598.

Monteiro, C., Fang, X., Ahmad, I., Gomelsky, M., \& Römling, U. (2011). Regulation of biofilm components in Salmonella enterica serovar typhimurium by lytic transglycosylases involved in cell wall turnover. Journal of Bacteriology, 193(23), 6443-6451.

Monteville, M. R. (2003). Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology, 149(1), 153-165.

Monteville, M. R., Yoon, J. E., \& Konkel, M. E., (2003). Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outermembrane protein and microfilament reorganization. Microbiology. 149, 153e165.

Moore, J. E. (2001). Bacterial dormancy in Campylobacter: abstract theory or cause for concern? International Journal of Food Science and Technology, 36(6), 593600.

Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S. G., Fanning, S., ... Tolba, O. (2006). The epidemiology of antibiotic resistance in Campylobacter. Microbes and Infection, 8(7), 1955-1966.

Moreira, C. G., Palmer, K., Whiteley, M., Sircili, M. P., Trabulsi, L. R., Castro, A. F. P., \& Sperandio, V. (2006). Bundle-Forming Pili and EspA Are Involved in Biofilm Formation by Enteropathogenic Escherichia coli. Journal of Bacteriology, 188(11), 3952-3961.

Morooka, T., Umeda, A., \& Amako, K. (1985). Motility as an Intestinal Colonization Factor for Campylobacter jejuni. Microbiology, 131(8), 1973-1980.

Muzzin, O., Campbell, E. a., Xia, L., Severinova, E., Darst, S. a., \& Severinov, K. (1998). Disruption of Escherichia coli HepA, an RNA polymerase-associated protein, causes UV sensitivity. Journal of Biological Chemistry, 273(24), 1515715161.

Nachamkin, I., Allos, B. M., \& Ho, T. (1998). Campylobacter species and GuillainBarré syndrome. Clin Microbiol Rev. 11, 555-567.

Nachamkin, I., Liu, J., Li, M., Ung, H., Moran, A. P., Prendergast, M. M., \& Sheikh, K. (2002). Campylobacter jejuni from patients with Guillain-Barre syndrome preferentially expresses a GD1a-like epitope. Infection and Immunity, 70(9), 5299-5303.

Nachamkin, I., Yang, X. H., \& Stern, N. J. (1993). Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Applied and Environmental Microbiology, 59(5), 1269-1273.

Naito, M., Frirdich, E., Fields, J. A., Pryjma, M., Li, J., Cameron, A., ... Gaynor, E. C. (2010). Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. Journal of Bacteriology, 192(8), 2182-2192.

Nakjang, S., Williams, T. A., Heinz, E., Watson, A. K., Foster, P. G., Sendra, K. M., ... Martin Embley, T. (2013). Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biology and Evolution, 5(12), 2285-2303.

Nam, K. H., Ding, F., Haitjema, C., Huang, Q., DeLisa, M. P., \& Ke, A. (2012). Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. Journal of Biological Chemistry, 287(43), 35943-35952.

Nelson, J. M., Chiller, T. M., Powers, J. H., \& Angulo, F. J. (2007). FluoroquinoloneResistant Campylobacter Species and the Withdrawal of Fluoroquinolones from

Use in Poultry: A Public Health Success Story. Clinical Infectious Diseases, 44(7), 977-980.

Neuwald, A. F., \& Landsman, D. (1997). GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends in Biochemical Sciences. 22(5), 154-5.

Nguyen, C. C., \& Saier, M. H. (1995). Phylogenetic, structural and functional analyses of the Lacl-GalR family of bacterial transcription factors. FEBS Letters, 377(2), 98-102.

Niedenzu, T., Roleke, D., Bains, G., Scherzinger, E., \& Saenger, W. (2001). Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010. Journal of Molecular Biology, 306(3), 479-487.

Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 67(4), 593-656.

Nirdnoy, W., Mason, C. J., \& Guerry, P. (2005). Mosaic structure of a multiple-drugresistant, conjugative plasmid from Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 49(6), 2454-9.

Nizan, R., Barash, I., Valinsky, L., Lichter, A., \& Manulis, S. (1997). The Presence of hrp Genes on the Pathogenicity-Associated Plasmid of the Tumorigenic Bacterium Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions, 10(5), 677-682.

Norström, M., Johnsen, G., Hofshagen, M., Tharaldsen, H., \& Kruse, H. (2007). Antimicrobial resistance in Campylobacter jejuni from broilers and broiler house environments in Norway. Journal of Food Protection, 70(3), 736-8.

Nuijten PJM, Bleumink-Pluym NMC, Gaastra W \& Zeijst BAM van der (1989) Flagellin gene expression in Campylobacter jejuni is regulated at the transcriptional level. Infect. Immun. 57: 1084-1088

Nyengaard, N. R., Mortensen, K. K., Lassen, S. F., Hershey, J. W., \& SperlingPetersen, H. U. (1991). Tandem translation of E. coli initiation factor IF2 beta: Purification and characterization in vitro of two active forms. Biochemical and Biophysical Research Communications, 181(3), 1572-1579.

Oggioni, M. R., Dowson, C. G., Smith, J. M., Provvedi, R., \& Pozzi, G. (1996). The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid, 35(3), 156-163.

Oh, E., \& Jeon, B. (2014). Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS ONE, 9(1).

Oh, E., Kim, J.C., \& Jeon, B. (2016). Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions. Virulence, 7(7), 846851.

Oosterom, J., De Wilde, G. J. A., De Boer, E., De Blaauw, L. H., \& Karman, H. (1983). Survival of Campylobacter jejuni during Poultry Processing and Pig Slaughtering. Journal of Food Protection, 46(8), 702-706.

Oudot, M. P., Kloareg, B., \& Loiseaux-de Goër, S. (1999). The mitochondrial Pylaiella littoralis nad11 gene contains only the N -terminal FeS-binding domain. Gene, 235(1-2), 131-137.

Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., ... Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), D20614.

Ozer, E. A., Allen, J. P., Hauser, A. R., Silby, M., Winstanley, C., Godfrey, S., ... Edgar, R. (2014). Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics, 15(1), 737.

Page, R., \& Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol, 12(4), 208-214.

Palyada, K., Sun, Y.-Q., Flint, A., Butcher, J., Naikare, H., \& Stintzi, A. (2009). Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics, 10, 481.

Palyada, K., Threadgill, D., \& Stintzi, A. (2004). Iron Acquisition and Regulation in Campylobacter jejuni. Journal of Bacteriology, 186(14), 4714-4729.

Park, S. F. (2005). Campylobacter jejuni stress responses during survival in the food chain and colonization. Campylobacter molecular and cellular biology. Horizon Bioscience, Wymondham, 311-330.

Park, S., Tian, G., Roelofs, J., \& Finley, D. (2010). Assembly manual for the proteasome regulatory particle: the first draft. Biochemical Society Transactions, 38(Pt 1), 6-13.

Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., ... Barrell, B. G. (2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403(6770), 665-8.

Parsons, J. F., Lim, K., Tempczyk, A., Krajewski, W., Eisenstein, E., \& Herzberg, O. (2002). From structure to function: Yrbl from Haemophilus influenzae (HI1679) is a phosphatase. Proteins: Structure, Function and Genetics, 46(4), 393-404.

Pavlovskis, O. R., Rollins, D. M., Haberberger, R. L., Green, A. E., Habash, L., Strocko, S., \& Walker, R. I. (1991). Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infection and Immunity, 59(7), 2259-64.

Perez, J., Castaneda-Garcia, a, Jenke-Kodama, H., Muller, R., \& Munoz-Dorado, J. (2008). Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci U S A, 105(41), 15950-15955.

Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U., \& Heckler, M. (2001). Global analysis of the general stress response of Bacillus subtilis. Journal of Bacteriology, 183(19), 5617-5631.

Pickett, C. L., \& Whitehouse, C. A. (1999). The cytolethal distending toxin family. Trends in Microbiology, 7(7), 292-297.

Pickett, C.L., Auffenberg, T., Pesci, E.C., Sheen, V.L., Jusuf, S.S. (1992). Iron acquisition and hemolysin production by Campylobacter jejuni. Infection and Immunity, 60, 3872-3877.

Pijlman, G. P., Pruijssers, A. J. P., \& Vlak, J. M. (2003). Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. Journal of General Virology, 84(8), 2041-2049.

Poly, F., \& Guerry, P. (2008). Pathogenesis of Campylobacter. Current Opinion in Gastroenterology, 24(1), 27-31.

Pratt, A., \& Korolik, V. (2005). Tetracycline resistance of Australian Campylobacter jejuni and Campylobacter coli isolates. Journal of Antimicrobial Chemotherapy, 55(4), 452-460.

Price, L. B., Lackey, L. G., Vailes, R., \& Silbergeld, E. (2007). The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environmental Health Perspectives, 115(7), 1035-9.

Purdy, D., Cawthraw, S., Dickinson, J. H., Newell, D. G., \& Park, S. F. (1999). Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: Evidence for the significance of SOD in Campylobacter survival and colonization. Applied and Environmental Microbiology, 65(6), 2540-2546.

Putman, M., van Veen, H. W., \& Konings, W. N. (2000). Molecular properties of bacterial multidrug transporters. Microbiology and Molecular Biology Reviews : MMBR, 64(4), 672-93.

Quick, M., Yano, H., Goldberg, N. R., Duan, L., Beuming, T., Shi, L., ... Javitch, J. A. (2006). State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. Journal of Biological Chemistry, 281(36), 2644426454.

Quinlan, A. R., \& Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841-842.

Ratledge, C., \& Dover, L. G. (2000). Iron Metabolism in Pathogenic Bacteria. Annual Review of Microbiology, 54(1), 881-941.

Reeser, R. J., Medler, R. T., Billington, S. J., Jost, B. H., \& Joens, L. A. (2007). Characterization of Campylobacter jejuni biofilms under defined growth conditions. Applied and Environmental Microbiology, 73(6), 1908-1913.

Reid, A. N., Pandey, R., Palyada, K., Naikare, H., \& Stintzi, A. (2008) (2). Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Applied and Environmental Microbiology, 74(5), 15831597.

Reid, A. N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E., \& Stintzi, A. (2008) (1). Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Applied and Environmental Microbiology, 74(5), 1598-1612.

Reizer, J., Reizer, A., \& Saier, M. H. (1992). A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Science : A Publication of the Protein Society, 1(10), 1326-1332.

Ren, J., Sainsbury, S., Nettleship, J. E., Saunders, N. J., \& Owens, R. J. (2010). The crystal structure of NGO0477 from Neisseria gonorrhoeae reveals a novel protein fold incorporating a helix-turn-helix motif. Proteins, 78(7), 1798-1802.

Reuter, M., \& van Vliet, A. H. M. (2013). Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni. PloS One, 8(1), e54390.

Reuter, M., Mallett, A., Pearson, B. M., \& van Vliet, A. H. M. (2010). Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Applied and Environmental Microbiology, 76(7), 2122-8.

Ridley, A. M., Toszeghy, M. J., Cawthraw, S. A., Wassenaar, T. M., \& Newell, D. G. (2008). Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine. Journal of Applied Microbiology, 105(1), 95-104.

Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiology Letters. 245(2), 195-203.

Robertson, H. M., \& Thomas, J. H. (2006). The putative chemoreceptor families of C. elegans. In WormBook: the online review of C. elegans biology (pp. 1-12).

Roca, J. (1995). The mechanisms of DNA topoisomerases. Trends in Biochemical Sciences, 20(4), 156-160.

Ruiz-Palacios, G. M. (2007). The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. Clinical Infectious Diseases:

An Official Publication of the Infectious Diseases Society of America, 44(5), 701-3.

Rychlik, I., Gregorova, D., \& Hradecka, H. (2006). Distribution and function of plasmids in Salmonella enterica. Veterinary Microbiology, 112(1), 1-10.

Sadhale, P. P., \& Woychik, N. a. (1994). C25, an essential RNA polymerase III subunit related to the RNA polymerase II subunit RPB7. Molecular and Cellular Biology, 14(9), 6164-6170.

Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U., \& Vijayan, M. (2003). Structure of Mycobacterium tuberculosis singlestranded DNA-binding protein. Variability in quaternary structure and its implications. Journal of Molecular Biology, 331(2), 385-393.

Sasaki, Y., Ishikawa, J., Yamashita, A., Oshima, K., Kenri, T., Furuya, K., ... Hattori, M. (2002). The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Research. Oxford University Press.

Schmidt, R., Ahmetagic, A., Philip, D. S., \& Pemberton, J. M. (2001). Catabolic Plasmids. Encyclopaedia of life sciences, DOI: 10.1002/9780470015902.a0000471.pub3.

Schmidt-Ott, R., Pohl, S., Burghard, S., Weig, M., \& Gross, U. (2005). Identification and characterization of a major subgroup of conjugative Campylobacter jejuni plasmids. The Journal of Infection, 50(1), 12-21.

Schulein, R., \& Dehio, C. (2002). The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Molecular Microbiology, 46(4), 1053-1067.

Schulze, F., Hänel, I., \& Borrmann, E. (1998). Formation of cytotoxins by enteric Campylobacter in humans and animals. Zentralblatt Für Bakteriologie, 288(2), 225-236.

Senior, N. J., Bagnall, M. C., Champion, O. L., Reynolds, S. E., la Ragione, R. M., Woodward, M. J., ... Titball, R. W. (2011). Galleria mellonella as an infection model for Campylobacter jejuni virulence. Journal of Medical Microbiology, 60(5), 661-669.

Sheppard, S. K., Colles, F. M., McCarthy, N. D., Strachan, N. J. C., Ogden, I. D., Forbes, K. J., ... Maiden, M. C. J. (2011). Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Molecular Ecology, 20(16), 3484-3490.

Sheppard, S. K., Didelot, X., Meric, G., Torralbo, A., Jolley, K. A., Kelly, D. J., ... Falush, D. (2013). Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proceedings of the

National Academy of Sciences of the United States of America, 110(29), 11923-11927.

Shortt, C., Scanlan, E., Hilliard, A., Cotroneo, C. E., Bourke, B., \& Cróinín, Ó. (2016). DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus. mBio, 7(5), e01227-16.

Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P. A., \& Teixeira, P. (2011). Campylobacter spp. as a Foodborne Pathogen: A Review. Frontiers in Microbiology, 2, 200.

Smith, M. C. M., \& Thorpe, H. M. (2002). Diversity in the serine recombinases. Molecular Microbiology. 44(2), 299-307.
Smole Možina S., Kurincic, C. M., Kramar, A., Uršicc, S., and Katalinic, V. (2009). Prevalence and resistance against different antimicrobial compounds of Campylobacter spp. in/from retail poultry. Meat Technology. 50, 112-120.

Solomon, E. B., Hoover, D.G. (1999). Campylobacter jejuni: a bacterial paradox. Journal of Food Safety. 19, 121-136.

Stahl, M., Friis, L. M., Nothaft, H., Liu, X., Li, J., Szymanski, C. M., \& Stintzi, A. (2011). L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7194-7199.

Storz, G., \& Imlayt, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2(2), 188-194.

Sundin, G. W. (2007). Genomic Insights into the Contribution of Phytopathogenic Bacterial Plasmids to the Evolutionary History of Their Hosts. Annual Review of Phytopathology, 45(1), 129-151.

Szymanski, C. M., King, M., Haardt, M., \& Armstrong, G. D. (1995). Campylobacter jejuni motility and invasion of Caco-2 cells. Infection and Immunity, 63(11), 4295-300.

Takkinen J., Ammon A., Robstad O., Breuer T., The Campylobacter Working Group (2003) European survey on Campylobacter surveillance and diagnosis 2001. European communicable disease bulletin 8, 207-213.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., \& Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.

Tanaka, H., Chinami, M., Mizushima, T., Ogasahara, K., Ota, M., Tsukihara, T., \& Yutani, K. (2001). X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. Journal of Biochemistry, 130(1), 107-118.

Tang, H., Wang, S., Ma, L., Meng, X., Deng, Z., Zhang, D., ... Xu, P. (2008). A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16. Applied and Environmental Microbiology, 74(5), 1567-1574.

Tangney, M., \& Fitzgerald, G. F. (2002). AbiA, a lactococcal abortive infection mechanism functioning in Streptococcus thermophilus. Applied and Environmental Microbiology, 68(12), 6388-6391.

Taniguchi, Y., Katayama, M., Ito, R., Takai, N., Kondo, T., \& Oyama, T. (2007). labA: A novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes and Development, 21(1), 60-70.

Taniguchi, Y., Takai, N., Katayama, M., Kondo, T., \& Oyama, T. (2010). Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 32633268.

Tatusov, R. L., Koonin, E. V, Lipman, D. J., Fleischmann, R. D., Fraser, C. M., Himmelreich, R., ... Koonin, E. V. (1997). A genomic perspective on protein families. Science, 278(5338), 631-637.

Tauxe, R. V. (2002). Emerging foodborne pathogens. International Journal of Food Microbiology, 78(1-2), 31-41.

Taveirne, M. E., Theriot, C. M., Livny, J., \& DiRita, V. J. (2013). The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq. PloS One, 8(8), e73586.

Teather, R. M., \& Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777-780.

Teramoto, H., Shirai, T., Inui, M., \& Yukawa, H. (2008). Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Applied and Environmental Microbiology, 74(17), 5290-5296.

Thomas, C. M. (2014). Plasmid Incompatibility. In E. Bell (Ed.), Molecular Life Sciences: An Encyclopedic Reference (pp. 1-3). Springer New York.

Thomas, C. M., \& Summers, D. (2008). Bacterial Plasmids. In eLS. CHAP, John Wiley \& Sons, Ltd.

Thompson, J. D., Higgins, D. G., \& Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680.

Thorvaldsdóttir, H., Robinson, J. T., \& Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192.

Todone, F., Brick, P., Werner, F., Weinzierl, R. O. J., \& Onesti, S. (2001). Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Molecular Cell, 8(5), 1137-1143.

Top E.M., Moënne-Loccoz Y., Pembroke T. and Thomas C.M. (2000) Phenotypic traits conferred by plasmids. In: Thomas C.M. (ed.) The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 249-285. Amsterdam: Harwood Academic Press

Tracz, D. M., Keelan, M., Ahmed-Bentley, J., Gibreel, A., Kowalewska-Grochowska, K., \& Taylor, D. E. (2005). pVir and bloody diarrhea in Campylobacter jejuni enteritis. Emerging Infectious Diseases, 11(6), 838-843.

Trigui, H., Thibodeau, A., Fravalo, P., Letellier, A., \& P. Faucher, S. (2015). Survival in water of Campylobacter jejuni strains isolated from the slaughterhouse. SpringerPlus, 4(1), 799.

Tunio, S. A., Oldfield, N. J., Ala'Aldeen, D. A., Wooldridge, K. G., Turner, D. P., Caugant, D., ... Ketley, J. (2010). The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiology, 10(1), 280.

Türck, M., \& Bierbaum, G. (2012). Purification and activity testing of the full-length YycFGHI proteins of Staphylococcus aureus. PLoS ONE, 7(1), e30403.

Van der Woude, M. W., \& Bäumler, A. J. (2004). Phase and antigenic variation in bacteria. Clinical Microbiology Reviews, 17(3), 581-611.

Van Melderen, L., \& Saavedra De Bast, M. (2009). Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genetics, 5(3), e1000437.

Van Vliet, A. H. M., Wood, A. C., Wooldridge, K., Ketley, J. M., \& Henderson, J. (1998). Genetic Manipulation of Enteric Campylobacter Species. Methods in Microbiology, 27(C), 407-419.

Van Vliet, A. H., \& Ketley, J. M. (2001). Pathogenesis of enteric Campylobacter infection. Journal of Applied Microbiology, 90, 45S-56S.

Vegge, C. S., Brøndsted, L., Li, Y.-P., Bang, D. D., \& Ingmer, H. (2009). Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Applied and Environmental Microbiology, 75(16), 5308-5314.

Vegge, C. S., Brøndsted, L., Ligowska-Marzeta, M., \& Ingmer, H. (2012). Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth. PLoS ONE, 7(9), e45467.

Vegge, C. S., Brøndsted, L., Ligowska-Marzeta, M., \& Ingmer, H. (2012). Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth. PLoS ONE, 7(9), e45467.

Vestal, D. J., \& Jeyaratnam, J. A. (2011). The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. Journal of Interferon \& Cytokine Research, 31(1), 89-97.

Vivian, A., Murillo, J., \& Jackson, R. W. (2001). The roles of plasmids in phytopathogenic bacteria: Mobile arsenals? Microbiology. 147(4), 763-780

Wallden, K., Rivera-Calzada, A., \& Waksman, G. (2010). Type IV secretion systems: Versatility and diversity in function. Cellular Microbiology. 12(9), 1203-1212

Wallis, T. S., Paulin, S. M., Plested, J. S., Watson, P. R., \& Jones, P. W. (1995). The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of Salmonellosis in cattle. Infection and Immunity, 63(7), 2755-2761.

Wang, G., Clark, C. G., Taylor, T. M., Pucknell, C., Barton, C., Price, L., ... Rodgers, F. G. (2002). Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. Journal of Clinical Microbiology, 40(12), 4744-4747.

Wang, X., \& Wood, T. K. (2011). Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Applied and Environmental Microbiology, 77(16), 5577-5583.

Wang, Y., \& Taylor, D. E. (1990). Natural transformation in Campylobacter species. Journal of Bacteriology, 172(2), 949-955.

Ward, J. E., Dale, E. M., Christie, P. J., Nester, E. W., \& Binns, A. N. (1990). Complementation analysis of Agrobacterium tumefaciens Ti plasmid virB genes by use of a vir promoter expression vector: virB9, virB10, and virB11 are essential virulence genes. Journal of Bacteriology, 172(9), 5187-5199.

Wassenaar, T. M., Bleumink-Pluym, N. M., \& van der Zeijst, B. A. (1991). Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. The EMBO Journal, 10(8), 2055-2061.

Wassenaar, T.M. (1997) Toxin production by Campylobacter. Clinical Microbiology Reviews 10, 466-476.

Wick, R. R., Schultz, M. B., Zobel, J., \& Holt, K. E. (2015). Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics, 31(20), 33503352.

Wilkens, S. (2004). Structure and mechanism of ABC transporters. Current Opinion in Structural Biology. 14(4), 426-431.

Winter, E., \& Ponting, C. P. (2002). TRAM, LAG1 and CLN8: Members of a novel family of lipid-sensing domains? Trends in Biochemical Sciences, 27(8), 381383.

Wintjens, R., \& Rooman, M. (1996). Structural Classification of HTH DNA-binding Domains and Protein--DNA Interaction Modes. Journal of Molecular Biology, 262(2), 294-313.

Wood, T. K., Knabel, S. J., \& Kwan, B. W. (2013). Bacterial persister cell formation and dormancy. Applied and Environmental Microbiology. 79(23), 7116-7121.

Woodall, C. A., Jones, M. A., Barrow, P. A., Hinds, J., Marsden, G. L., Kelly, D. J., ... Maskell, D. J. (2005). Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infection and Immunity, 73(8), 5278-5285.

Woolbridge, K.G. \& Ketley, J.M. (1997) Campylobacter-host cell interactions. Trends in Microbiology. 5, 96-102.

Wösten, M. M. S. M., Wagenaar, J. A., \& van Putten, J. P. M. (2004). The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. The Journal of Biological Chemistry, 279(16), 1621416222.

Wu, B., Gong, J., Liu, L., Li, T., Wei, T., \& Bai, Z. (2012). Evolution of prokaryotic homologues of the eukaryotic SEFIR protein domain. Gene, 492(1), 160-166.

Wu, K. H., \& Tai, P. C. (2004). Cys32 and His105 Ate the Critical Residues for the Calcium-dependent Cysteine Proteolytic Activity of CvaB, an ATP-binding Cassette Transporter. Journal of Biological Chemistry, 279(2), 901-909.

Xia, W., Li, H., Sze, K. H., \& Sun, H. (2009). Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites. Journal of the American Chemical Society, 131(29), 10031-10040.

Xu, F., Zeng, X., Haigh, R. D., Ketley, J. M., \& Lin, J. (2010). Identification and characterization of a new ferric enterobactin receptor, CfrB, in Campylobacter. Journal of Bacteriology, 192(17), 4425-4435.

Xuan, Y. H., Hu, Y. B., Chen, L.-Q., Sosso, D., Ducat, D. C., Hou, B.-H., \& Frommer, W. B. (2013). Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America, 110(39), E3685-3694.

Yamada, T., Lee, P., \& Kosuge, T. (1986). Insertion sequence elements of Pseudomonas savastanoi: Nucleotide sequence and homology with Agrobacterium tumefaciens transfer DNA. Proceedings of the National Academy of Sciences of the United States of America, 83(21), 8263-8267.

Yamaguchi, Y., \& Inouye, M. (2011). Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nature Reviews. Microbiology, 9(11), 779-790.

Yamaguchi, Y., Park, J.-H., \& Inouye, M. (2011). Toxin-Antitoxin Systems in Bacteria and Archaea. Annual Review of Genetics, 45(1), 61-79.

Yeo, H.-J., Yuan, Q., Beck, M. R., Baron, C., \& Waksman, G. (2003). Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15947-15952.

Yi, K., Rasmussen, A. W., Gudlavalleti, S. K., Stephens, D. S., \& Stojiljkovic, I. (2004). Biofilm formation by Neisseria meningitidis. Infection and Immunity, 72(10), 6132-6138.

Young, K. T., Davis, L. M., \& Dirita, V. J. (2007). Campylobacter jejuni: molecular biology and pathogenesis. Nature Reviews. Microbiology, 5(9), 665-679.

Yun, J., Jeon, B., Barton, Y.-W., Plummer, P., Zhang, Q., \& Ryu, S. (2008). Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. Journal of Bacteriology, 190(13), 4512-4520.

Zhang, M., He, L., Li, Q., Sun, H., Gu, Y., You, Y., ... Zhang, J. (2010). Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate. PloS One, 5(11), e15060.

Zhang, M., Xiao, D., Zhao, F., Gu, Y., Meng, F., \& He, L. (2009). Comparative Proteomic Analysis of Campylobacter jejuni Cultured at $37^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$. Japanese Journal of Infectious Diseases, 62(5), 356-361.

Zhang-Akiyama, Q. M., Morinaga, H., Kikuchi, M., Yonekura, S. I., Sugiyama, H., Yamamoto, K., \& Yonei, S. (2009). KsgA, a 16S rRNA adenine methyltransferase, has a novel DNA glycosylase/ AP lyase activity to prevent mutations in Escherichia coli. Nucleic Acids Research, 37(7), 2116-2125.

Zhao, D.-L., Yu, Z.-C., Li, P.-Y., Wu, Z.-Y., Chen, X.-L., Shi, M., ... Zhang, Y.-Z. (2011). Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microbial Cell Factories, 10, 30.

Zhao, S., Tyson, G. H., Chen, Y., Li, C., Mukherjee, S., Young, S., ... McDermott, P. F. (2016). Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Applied and Environmental Microbiology, 82(2), 459-466.

Ziprin, R. L., Young, C. R., Byrd, J. A., Stanker, L. H., Hume, M. E., Gray, S. A., ... Konkel, M. E. (2014). Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Diseases, 45(3), 549-557.

Zückert, W. R., \& Meyer, J. (1996). Circular and linear plasmids of Lyme disease spirochetes have extensive homology: Characterization of a repeated DNA element. Journal of Bacteriology, 178(8), 2287-2298.

Supplementary material

S1-Strains from Molecular Microbiology Laboratory (Geoffrey Pope building, laboratory 401, EX44QD) used in this study.

Strain	Origin	Growth	Tet R	virid mark	tet(0)	hel mark	k hich/B mark	secies
Calf_3	Cow	Y	N	N	\times	\times	x	x
99/118	cow	N	x	x	\times	\times	x	x
99/194	Cow	N	\times	\times	\times	\times	\times	\times
99/201	cow	r	N	N	x	\times	\times	\times
99/202	cow	r	N	N	-	\times	\times	\times
C85-4-99-5	cow	r	N	N	\times	\times	\times	\times
C50-1-99-2	cow	r	N	N	\times	\times	\times	x
C559-3.99-2	cow	r	N	N	x	\times	x	\times
KS_Catle _ 8	cow	r	N	N	\times	\times	\times	\times
881267	Environmental	r	N	N	\times	\times	x	x
Beach_28766	Environmental	r	N	N	\times	\times	x	\times
Ex182	Environmental	r	N	N	\times	\times	\times	\times
47	Goose	r	N	N	-	\times	\times	x
95	Goose	r	N	N	\times	\times	x	\times
222	Goose	r	r	r	Y	Y	N	jejuni
32799	Human	r	N	N	x	x	\times	x
33084	Human	r	N	N	x	x	x	x
K1	Human	r	N	N	\times	\times	x	\times
K3	Human	r	N	N	\times	\times	\times	\times
K4	Human	r	N	N	\times	\times	-	\times
K5	Human	r	r	r	r	r	N	coli
K6	Human	N	x	\times	-	\times	\times	\times
${ }^{67}$	Human	r	r	N	N	N	N	coli
Jan-43	Human	r	N	N	-	x	\times	\times
99/97	Human	r	N	N	\times	\times	-	\times
99/188	Human	r	N	N	x	\times	\times	\times
99/189	Human	r	N	N	\times	\times	x	\times
99/197	Human	r	N	N	\times	\times	x	\times
99/212	Human	r	N	N	\times	\times	\times	\times
99/216	Human	r	N	N	-	-	-	x
11818	Human	r	r	N	r	Y	r	jejuni
11919	Human	r	N	N	\times	\times	\times	x
11974	Human	r	N	N	\times	x	x	x
12241	Human	r	N	N	\times	\times	\times	\times
12450	Human	N	\times	\times	x	\times	\times	\times
13305	Human	r	N	N	\times	\times	\times	\times
18836	Human	r	N	N	\times	\times	x	x
30280	Human	r	N	N	\times	-	\times	\times
30328	Human	r	N	N	\times	\times	\times	\times
31467	Human	r	N	N	x	x	x	x
31481	Human	r	N	N	\times	\times	\times	\times
31485	Human	r	N	N	x	x	x	x
32787	Human	r	N	N	x	X	X	x
33106	Human	r	N	N	\times	\times	\times	\times
34007	Human	r	N	N	\times	\times	\times	\times
44119	Human	r	N	N	\times	\times	\times	\times
47693	Human	r	N	N	-	-	x	x
K2	Human	r	r	r	r	r	N	jejuni
90843	Human	r	N	N	\times	\times	\times	\times
Hi40500471	Human	r	N	N	\times	\times	\times	\times
Hi40620300	Human	r	r	r	r	Y	r	jeiuni
Hi40980306	Human	r	N	N	x	x	\times	x
Hi80547	Human	r	N	N	\times	\times	\times	x
Hi80554	Human	N	x	x	x	x	x	\times
Hi80586	Human	r	N	N	\times	\times	\times	x
Hi81006	Human	r	r	N	-	N	N	jeiuni
H:81214	Human	r	r	N	Y	N	N	jejuni
Hi81266	Human	r	N	N	\times	\times	x	x
K8	Human	r	N	N	\times	\times	\times	\times
KSSAPSM6	Human	r	N	N	-	-	x	x
5247	Human	N	x	x	\times	-	x	\times
KSSHPSM4	Human	r	N	N	\times	\times	\times	x
93/372	Unknown	r	N	r	N	Y	r	jeiuni
Ps304	Pig	r	Y	N	r	r	r	coli
PS549.1	Pig	r	N	N	\times	\times	\times	x
P5623	Pig	r	r	r	r	r	r	jeiuni
P5762	Pig	Y	r	r	r	r	r	jejuni
Ps838	Pig	r	N	N	\times	\times	\times	x
PS843	Pig	r	N	N	\times	\times	x	\times
PS849	Pig	Y	N	N	x	x	x	x
Ps852	Pig	r	N	N	\times	x	x	\times
P8857	Pig	Y	N	N	x	X	X	\times
Chickn_19181	Poultry	r	N	N	\times	\times	\times	x
A1.C.F. 12	Poultry	r	r	r	r	N	r	${ }_{\text {jejuni }}$
A6.T. 15	Poultry	r	r	r	r	r	r	jejuni
A8/35/15A	Poultry	r	r	r	r	r	r	jejuni
C1/c/2	Poultry	r	r	r	r	r	r	jejuni
C120/2	Poultry	r	N	N	x	\times	\times	x
C132/1	Poultry	r	x	\times	\times	\times	\times	x
C3/T/25013	Poultry	r	r	N	r	r	r	${ }_{\text {jeijui }}$
C5/T2/8	Poultry	r	r	r	Y	r	r	${ }_{\text {jejuni }}$
02/27/3	Poultry	r	N	N	\times	\times	\times	x
02/T/8	Poultry	r	N	N	-	X	\times	x
02/T/95	Poultry	Y	N	N	\times	\times	\times	\times
05-20.9A	Poultry	r	N	N	\times	\times	\times	\times
Ex1286	Poultry	r	N	N	\times	\times	\times	\times
M81	Poultry	r	N	N	x	x	\times	x
M82	Poultry	r	N	N	\times	\times	\times	x
M 3	Poultry	r	N	r	N	Y	r	jeiuni
M84	Poultry	r	N	N	x	X	X	x
MB5	Poultry	r	N	N	\times	\times	\times	-
M66	Poultry	r	N	N	\times	x	\times	\times
M87	Poultry	r	N	N	\times	-	x	x
M88	Poultry	r	r	N	r	N	N	jejuni
M89	Poultry	r	\checkmark	r	r	r	r	jejuni
M810	Poultry	,	N	N	x	-	x	x
M812	Poultry	r	N	r	N	N	r	jejuni
M813	Poultry	r	N	N	x	x	\times	x
M114	Poultry	Y	N	N	\times	X	x	\times
M815	Poultry	r	N	N	\times	\times	x	\times
M816	Poultry	r	v	N	x	x	x	\times
M117	Poultry	r	r	N	r	N	N	coli
M818	Poultry	r	r	Y	r	Y	Y	jejuni
94/229	Poultry	r	v	N	x	x	\times	x
S39-2-99-3	sheep	r	N	N	\times	\times	x	\times
587-4.99-3	Sheep	r	N	N	-	${ }^{\text {x }}$	x	\times
S120-4.99-4	Sheep	r	,	N	-	-	x	\times
5216-5.99-1	Sheep	r	N	N	\times	\times	x	\times
S372-5.99-4	Sheep	Y	N	N	-	X	x	x
S379-8.99.1	Sheep	r	N	N	x	${ }^{\mathrm{x}}$	x	${ }^{\times}$
5435-3.99	Sheep	r	N	N	x	x	x	x
5499-1-99.5	sheep	r	v	N	\times	\times	\times	
S585-3.99	Sheep	r	N	N	x	x	x	x
${ }^{30 \times 2 \text { tag60 }}$	Unknown	r	N	N	-	x	${ }^{\mathrm{x}}$	${ }^{\mathrm{x}}$
KSSHPFEL_2	Unknown	r	N	N	\times	x	x	
KSSHPM	Unknown	r	\times	92x	r	${ }^{\text {x }}$	-	x
C_{11}	Human	r	r	r	Y	Y	r	${ }_{\text {jeieiuni }}$
ci2	Human	r	r	r	Y	Y	r	jejuni
ci3	Human	r	r	r	r	r	r	${ }_{\text {jejuni }}$
ci4	${ }_{\text {Human }}$ Human	N		\times			x	

S2 - Plasmids maps sequenced in this study. Plasmids maps were obtained with BRIG software. Green and Red arrows represent the genes annotated on the plasmid, as reported by RAST automated annotation. Inner circles represent C+G \% and GC skew ($\mathrm{C}+\mathrm{G} \%$ only for pCj 3 and pK 2).

S3 - Annotated genes in the 19 newly sequenced plasmids and in the plasmid pTet (NC_008790.1). Plasmids have been linearised at the start of the virB2 gene. Each plasmid annotation shows the start nucleotide, the end nucleotide, the gene orientation (+/- = sense or antisense), gene name (as reported by RAST automated annotation pipeline).

Putative proteins of the pTet-like plasmid pan-genome

This section will provide a summary of the conserved domains identified in the pTet-like plasmid pan-genome. The protein names reported in this section refer to the pTet-like plasmid pan-genome (Section 3.3.1). For each hypothetical protein, the detail of each conserved domain identified is described: this includes the results retrieved from NCBI's CD-Search search engine for each hypothetical protein, together with the name, the accession number and the e-value of each conserved domain and a brief description of the putative function of each conserved domain identified.

S4.1 2_virulence_associated_protein_D_(vapD)

This protein shows a VapD (virulence associated protein) domain. The function of this domain is unknown, but it belongs to the "Cas2_I_IIIII Superfamily", a CRISPR/Cas system associated domain (cl11442). A CRISPR_Cas2 domain is also identified in the same region of the VapD domain.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic
cells against phage and other foreign DNA, this domain is present in most CRISP/Cas systems (Barrangou et al., 2007).

Further, a non-specific hit against a PBP1_NPR_GC_like domain is reported in this hypothetical protein (cd06352). This domain is a ligand-binding domain of membrane guanylyl-cyclase receptors, and it is found in several mammalian tissues (Garbers et al., 2006).

S4.2 3_hypothetical_protein

The conserved domains shown in this protein suggest a surface expression, possibly involved in signal transduction. A domain of superfamily TIR_2 is described as a bacterial toll-like receptor (Wu et al., 2012) involved with signal transduction. The aro_clust_Mycop, is a domain restricted to Mollicutes, far from gram negative bacteria such as C. jejuni, and is associated with a lipoprotein suggesting membrane expression. COG2604 is a conserved domain in bacterial proteins with unknown function.

Borrelia ORF-A is a conserved domain often found in the putative proteins from the pTet-like pan-genome and it is derived from plasmid-borne DNA repeats in Borrelia species (Zückert et al., 1996). Its putative function is unknown.

S4.3 4_hypothetical_protein

$R F+1$ Non-specific hits Superfanilies Multi-donains	75	${ }^{150}$	${ }^{225}$	300	${ }_{3}^{375}$, ${ }^{420}$
	Xhla				
	XhiA superfamily				
		PRK05771			
Haemolysin XhIA					
PRK05771 - V-type ATP synthase subunit I					
pfam10779		4-132		8.67e-03	
PRK05771		3-327		8.00e-04	

A partial domain related to XhIA is identified in this protein. This is described as a cell-surface haemolysin in an insect pathogen, also able to lyse mammalian horse cell (Cowles et al., 2005).

A multi domain PRK05771 is also identified in this putative protein, associated with the subunit 1 of a V-type ATP synthase.

S4.4 6_FIG00469644_hypothetical_protein

| RF +1
 Specific hits
 Superfanilies |
| :--- | :--- | :--- | :--- | :--- |
| Acetyltransf_1 |
| NAT_SF superfamily |

In this hypothetical protein a partial acetyl transferase domain is identified. It belongs to a NAT_SF superfamily (cl17182), a large superfamily of enzymes that catalyses the transfer of an acyl group with several associated functions, from histone acylation to antibiotic resistance in bacteria (Neuwald et al., 1997, Cort et al., 2008).

S4.5 7_FIG00471069_hypothetical_protein

In this small hypothetical protein two partial non-specific hits are identified: the first is far from the bacterial kingdom, associated with a 7 transmembrane domain chemoreceptor in Caenorhabditis elegans (Robertson et al., 2006); the second is associated with a partial Tellurite-resistance/Dicarboxylate Transporter (TDT). This protein family is conserved in all kingdoms of life. In bacteria a member of this family has been identified as an uptake channel for C 4 carbohydrates (Teramoto et al., 2008). This may be particularly relevant in Campylobacter, as most Campylobacter strains cannot utilise sugars and they rely on the use of amino acids and C4 carbohydrates for survival and successful colonisation (Guccione et al., 2008; Stahl et al., 2011).

S4.6 9_FIG00469571_hypothetical_protein

In this hypothetical protein, the only hit is related to a superfamily that is involved with a chromosomal structure that is formed during the meiotic phase in eukaryotic cells (Meuwissen et al., 1992).

S4.7 10_hypothetical_protein

The conserved domain GBP_C is the only domain found in this hypothetical protein. It is the C-terminal domain of a guanylate-binding protein, a regulative protein synthesised in eukaryotic cells after activation with interferons (Vestal et al., 2011).

S4.8 11_FIG00469626_hypothetical_protein

This hypothetical protein shows several partial domains the majority of which seem related to a membrane transporter or a membrane protein. One of the conserved domains identified is a MATE-like domain (Putman et al., 2000; Hvorup et al., 2003). It encodes for a family of proteins associated with the function of multidrug and toxic compound extrusion (MATE), which is involved in exporting metabolites across the cell membrane and conferring multi drug resistance to bacteria.

Further, it is possible to identify the domain MpPF26, a paralogue of a protein family in Mycoplasma penetrans (Sasaki et al., 2002). The domains RfbX and glyco_RPT_poly are involved with the synthesis and export of cell walls component. The domain ND5 associated with a NADH dehydrogenase subunit and an undescribed Tetraspannin family domain associated with eukaryotic membrane proteins.

S4.9 12_FIG00471537_hypothetical_protein

In the hypothetical protein 12_FIG00471537_hypothetical_protein, one specific hit is identified as AAA protein (ATPase associated with diverse cellular activities; lyer et al., 2004). Other non-specific hits include an EpsG domain, which appears often in the plasmidic proteins of C. jejuni: it is related to the EpsG protein of Bacillus subtilis, which appears to be involved in the production of exopolysaccharides
required for biofilm maintenance (Branda et al., 2004). Moreover, a general stress protein CsbA domain is identified, related to a protein of unknown function in Bacillus subtilis involved in stress response (Petersohn et al., 2001).

Finally, this hypothetical protein includes domains associated with viral proteins (PHA02590), mitochondrial cation transport (cd12823), chromosome segregation (PRK03918), and a membrane protein of unknown function occurring in members of Mycoplasma species.

S4.10 13_FIG00469557_hypothetical_protein

RF $\boldsymbol{+ 1}$ Non-specific hits Superfanilies	${ }^{100}$	${ }^{200}$	${ }^{250} \quad{ }^{268}$
	LIM		
	zf-RRP1_C4		
	LI		
	zf-RRP1_C4 superfamily		
Small protein-protein interaction domain - LIM			
Putative ribonucleoprotein zinc-finger pf C4 type - zf-RRPI_C4			
cd08368	85-165	2.97e-03	
pfam17026	16-183	$6.73 \mathrm{e}-03$	

The LIM domain found in this protein is identified in several proteins with various functions in eukaryotic cells, such as DNA expression regulation and cell development (Matthews et al., 2003). The domain contains two zinc finger motifs.

Furthermore, a domain for a putative ribonucleoprotein is identified. This family (zinc finger of C4 type) is largely represented in Microsporidia and carries residues (in a pattern of CxxC) that suggest DNA binding (Nakjang et al., 2013).
S4.11 15_DNA_topoisomerase_II

| RF +1
 nulti-donains | | |
| :--- | :--- | :--- | :--- |
| endonuclease subunit - 47 | $1-165$ | $1.77 \mathrm{e}^{25}-03$ |
| PHA02546 | | |

This putative protein, annotated as a DNA topoisomerase II carries a viral endonuclease domain (Mickelson and Wiberg, 1981).

S4.12 16_Tetracycline_resistance_protein_TetO

RE ${ }^{1}$				
 Switch II resion G1 box $\quad \mathrm{G} 2$ box $\underset{\text { G3 box }}{\text { 分 }}$				
Specific hits Superfanilies Multi-donains	Teth_Iike	Tet_III	Tet_Iike_Iv	Tet_C
	P-loop_NTPase superfamily tran	EfG_III-1ike sur	EFG_I ike_IV surerememily	Elonation_Sactor_
Tet(M)-like family				
EF-G_domain IV_RPP - Tet_like_IV				
Domain III of Tetracycline resistance protein Tet - Tet_III				
Domain II of ribosomal protection proteins $\operatorname{Tet}(\mathrm{M})$ and $\operatorname{Tet}(\mathrm{O})$ - Tet_II				
Tet_C: C-terminus of ribosomal protection proteins Tet(M) and Tet(O)				
Translation elongation factor EF-G - FusA				
cd04168	13-723		3.32e-149	
cd01684	1252-1596		5.89e-65	
cd16258	1030-1242		$1.34 \mathrm{e}-35$	
cd03690	736-987		1.12e-34	
cd03711	1609-1839		2.22e-32	
COG0480	1-1875		$3.25 \mathrm{e}-137$	

This putative protein shows all the typical domains of a tetracycline resistance protein $\operatorname{Tet}(\mathrm{O})$ or $\operatorname{Tet}(\mathrm{M})$ (Roberts, 2005; Oggioni et al., 1996). This protein acts protecting the ribosome and it is a homologue to the elongation factors EF-Tu and EF-G.

S4.13 18_FIG00470991_hypothetical_protein

Several conserved domains appear in this protein.
Pkip-1 is related to viral proteins of unknown function. PRK14149 is a part of the GrpE superfamily, including heat-shock proteins and an essential factor for bacterial chaperone proteins. Other non-specific domains are mainly involved in
eukaryotic cellular processes (PRK03918 and Apg6) (Pijlman et al., 2003; CastaniéCornet et al., 2014).

Cas8a1 domain is associated with CRISPR/Cas proteins (Boyaval et al., 2007).

S4.14 19_FIG00471111_hypothetical_protein

RF +1 Specific hits Non-specific hits Superfanilies	75	${ }^{150}$	${ }^{175} \quad 1$
			-
Predicted RNA binding protein YcfA			
HicA toxin of bacterial toxin-antitoxin			
COG1724	1-198	$8.40 \mathrm{e}-19$	
pfam07927	28-174	$1.00 \mathrm{e}-12$	

This protein shows the conserved domain for YfcA/HicA toxin. The HicA toxin acts as an mRNA interferase and is neutralised by the cognate antitoxin HicB, usually found in tandem in the sequenced plasmids and described later on in this chapter (23_FIG00470952_hypothetical_protein). The HicAB system is often used in the bacterial cell for plasmid stabilisation (Makarova et al., 2006; Yamaguchi and Inouye, 2011).

S4.15 20_FIG00471065_hypothetical_protein

This hypothetical protein shows several domains linked with membrane protein and transport. In particular, the domain with a lower p-value associated with this sequence is an ABC transporter domain, a bacterial system associated with export of drugs and carbohydrates (Reizer et al., 1992). Another domain hit associated with molecules transport is the solute carrier from Fusobacterium nucleatum Tyt1-like. Bacterial variants of this protein family are involved in transport of amino acids (Quick et al., 2006).

Furthermore, a VanZ domain is identified and this is involved in the resistance to glycopeptide antibiotics such as vancomicin and teicoplanin (Arthur et al., 1995).

S4.16 21_hypothetical_protein

RF +1 Non-specific hits Superfanilies Multi-donains		${ }^{200}$	400	${ }^{500}$	${ }_{564}$
		Para			
		se super			
	Bcs0				
ParA					
Cellulose biosynthesis protein BcsQ [Cell motility]					
cd02042		4-333	$3.01 \mathrm{e}-04$		
COG1192		1-66	$3.29 \mathrm{e}-03$		

The conserved domain ParA is recognisable in this hypothetical protein. It is part of a ParA-ParB system involved in bacterial chromosome segregation. ParA, in particular, appears to have an ATPase activity that promotes the regulation of the DNA replication process. It shares similarity with a conserved family of ATPases involved in the same processes that includes RepA (Easter and Gober, 2002).

S4.17 22_Virulence-associated_protein_2_(vapD)

The conserved domain found here is consistent with the automated annotation. VapD, is a virulence-associated protein of unknown function, part of a superfamily of CRISPR/Cas system-associated protein involved in the protection of the bacterium against phages and other foreign DNA (Boyaval et al., 2007; Nam et al., 2012).

S4.18 23_FIG00470952_hypothetical_protein

RF +1 Specific hits Superfanilies Multi-donains	75	${ }^{151}$	${ }^{200} \quad{ }^{220}$
	Hict	1	
	HicB superfamily		
	Hulti-donains HicB_Ik_antitox		
Predicted nuclease of the RNAse H fold, HicB family			
HicB_like antitoxin of bacterial toxin-antitoxin system - HicB_lk_antitox			
COG1598	1-168	$2.34 \mathrm{e}-16$	
pfam15919	13-192	$3.78 \mathrm{e}-09$	

This putative protein harbours an HicB domain, antitoxin of the HicAB toxinantitoxin system. The conserved domain associated with the cognate toxin is
encoded by the "19_FIG00471111_hypothetical_protein" (Yamaguchi and Inouye, 2011; Makarova et al., 2006).

S4.19 24_Site-specific_recombinase_resolvase

As predicted by the automated annotation, this hypothetical protein contains conserved domain associated with a resolvase/inverase of the serine recombinase family. This family of proteins catalyses the site-specific recombination of DNA
molecules (Hallet and Sherratt, 1997; Smith and Thorpe, 2002). Several catalytic features associated with this protein family are also identified in the sequence.

S4.20 26_FIG00470038_hypothetical_protein

The coagulase conserved domain shown here derives from a coagulase protein described in Staphylococcus aureus, which initiates blood clotting (Friedrich et al., 2003).

S4.21 27_FIG00470273_hypothetical_protein

RF +1 nulti-donains		
helix-rich Mycoplasma protein		
TIGR04523	$328-606$	$1.51 e^{500}$

A partial domain of unknown function is present in this hypothetical protein. It is associated with Mycoplasma species, strong amino acid periodicity and it is almost completely formed by alpha helices (Sasaki et al., 2002).

S4.22 28_IncQ_plasmid_conjugative_transfer_protein_TraQ

$\begin{aligned} & \text { RF +1 } \\ & \text { Non-specific } \\ & \text { hits } \end{aligned}$	${ }^{250}$	500	${ }^{625}$	${ }_{7} 76$
	Trber			
Superfanilies	TrbM superfamily			
TrbM				
conjugal transfer protein TrbM - PRK13893				
pfam07424	70-582	1.60e-35		
PRK13893	1-327	$4.67 \mathrm{e}-27$		

The protein family described here is consistent with the automated annotation and represents a TrbM protein (homologous with TraQ), involved with DNA conjugal transfer (Lessl et al., 1992).

S4.23 29_Coupling_protein_VirD4_ATPase

	+ ${ }^{250}$	${ }^{750}$	1000	${ }^{1250} \quad 1500$	${ }^{17550} 18{ }^{1812}$
RF +1 Specific hits	$\underset{\substack{\text { ATP bindi } \\ \text { Halker }}}{\text { at }}$	-			
				Trasomec	
Non-specific hits Superfanilies Multi-donains	TleC		6.Vir04		
	MFS superfamily			P-loop-NTPase surereramily	
			NA_t		
TraG_VirD4 bacterial conjugation protein					
TraM recognition site of TraD and TraG - TraG-D_C					
ATP/ADP translocase - TIcC					
Type IV secretory system Conjugative DNA transfer - T4SS-DNA_transf					
Type IV secretory pathway, VirD4					
type IV secretion system component VirD4 - PRK13897					
Ti-type conjugative transfer system protein TraG					
cd01126		379-1581		5.96e-82	

pfam12696	$1216-1584$	$5.53 \mathrm{e}-28$
COG3202	$40-315$	$9.86 \mathrm{e}-03$
pfam02534	$274-1704$	$4.98 \mathrm{e}-104$
COG3505	$109-1758$	$6.78 \mathrm{e}-107$
TIGR13897	$61-1674$	$2.63 \mathrm{e}-76$

This hypothetical protein, annotated as VirD4 ATPase, shows conserved domain consistent with the function of ATPase providing the energy to the Type IV Secretion System (Hofreuter et al., 2001; Kado, 2006).

S4.24 30_VirB8

This hypothetical protein, annotated as VirB8, shows a complete conserved domain associated with that Type IV Secretion System protein (Kumar and Das, 2001; Backert et al., 2000).

	${ }^{200}$	400	${ }^{500}$ - , , ${ }^{612}$
Non-specific hits Superfanilies Multi-donains	Sorrelia_orfe		
	Borrelia_orfA superfamily		
	Hop		-
	PRK13909		
Borrelia_orfA			
Intein/homing endonuclease - Hop			
putative recombination protein RecB - PRK13909			
pfam02414	43-561	1.77e-03	
COG1372	4-603	$1.25 \mathrm{e}-03$	
PRK13909	34-558	1.29e-03	

This hypothetical protein shows a conserved domain associated with an ORF of unknown function identified in plasmids of Borrelia bugdoferi (Zückert and Meyer, 1996).

Two further domains are involved with DNA mobilisation and recombination (Marsin et al., 2008).

S4.26 32_FIG00469957_hypothetical_protein

PRK07133	$7-561$	$3.74 \mathrm{e}-05$
COG4487	$1-447$	$3.11 \mathrm{e}-03$
smart00787	$76-438$	$6.49 \mathrm{e}-03$

Several domains of different functions are identified in this protein. A partial uncharacterised protein domain (COG1479) is present which contains a ParB-like nuclease domain, making it a candidate to complete the ParA-ParB nuclease system described with the 21_hypothetical_protein (Easter and Gober, 2002). Other Domains are consistent with the nuclease activity, such as the AAA-domain pfam13175.

The domain PBP1_FucR_like (cd06276) is also found in this hypothetical protein: it is described as a ligand binding domain sensor for L-fucose which function as a transcription repressor. The protein FucR, from which this domain family is derived, is composed of a helix-turn-helix DNA-binding domain at the N -termius, and a C-terminal sugar binding domain, homologous to other sugar binding domain found in other membrane transport systems, such as ABC transporters. (Felder et al., 1999; Nguyen and Saier. 1995).

S4.27 33_cag_pathogenicity_island_protein

$\begin{aligned} & \text { RF }+1 \\ & \text { Hon-secific } \\ & \text { hints } \\ & \text { Superfanilies } \end{aligned}$	${ }^{150}$		${ }_{375}^{375}$
	cas12		
	Cag12 superfamily		
Cag pathogenicity island protein Cag12			
pfam13117	37-369	1.05e-22	

This putative protein shows a Cag12 conserved domain, which is consistent with the predicted function of the automated annotation. The protein Cag12 is part of the Cag pathogenicity island of Helicobacter pylori. The Cag-PAI encodes for the Type IV Secretion System of H. pylori, used by the bacterium to deliver cytotoxins to the host cells. Although the function of Cag12 is not clear, it is a component located on the outer membrane of the bacterium and it has been proved that it could be used to develop a protective immunity against the pathogen (Kim et al., 2006).

S4.28 34_VirB11

TIGR02788	$46-975$	$3.32 \mathrm{e}-132$
COG0630	$37-975$	$4.49 \mathrm{e}-74$
PRK13900	$13-984$	$3.35 \mathrm{e}-67$
pfa1130	$454-972$	$5.63 \mathrm{e}-67$
COG2804	$46-933$	$5.90 \mathrm{e}-58$
TIGR02525	$385-894$	$2.11 \mathrm{e}-12$
smart00382	$490-957$	$4.43 \mathrm{e}-11$
pfam12846	$478-723$	$7.72 \mathrm{e}-06$
PRK11131	$484-591$	$2.79 \mathrm{e}-04$

As predicted by the automated annotation, this putative gene encodes for conserved domains strictly related to the VirB11 ATPase of the Type Four Secretion System (Atmakuri et al., 2004).

RF $\boldsymbol{+ 1}$ Specific hits	${ }^{100}$	${ }^{200}$	${ }^{250} \quad 264$
Non-specific hits	stp		
	-		
Superfanilies SLC5-6-1ike_sbd superfamily			
Superfanilies			
Hulti-donains MFS_2			
TrbC/VIRB2 family			
serine transporter - stp			
Subfamily of the multidrug and toxic compound extrusion (MATE) proteins - MATE_like_3			
MFS/sugar transport protein - MSF2			
pfam04956	7-255	$1.64 \mathrm{e}-19$	
TIGR00814	7-174	$2.21 \mathrm{e}-03$	
cd13148	22-258	7.04e-03	
pfam13347	7-243	$2.16 \mathrm{e}-05$	

Consistent with the automated annotation, the most reliable hit according to the p -Value is the TrbC/VirB2 family domain. It is the main structural component of the Type IV secretion system (Kalkum et al., 2002; Schulein and Dehio, 2002).

S4.30 36_VirB9

The conserved domains identified in this protein are consistent with the component VirB9 of the Type IV secretion system. A VirB7 interaction site is also identified: the two proteins form a complex when the Type IV secretion system is assembled (Anderson et al., 1996; Bayliss et al., 2007).

S4.31 37_FIG00470457_hypothetical_protein

The N-termini of the IF2 translation initiation factor of E. coli is identified in this hypothetical protein. The IF2 factor ensures the binding of the MET-tRNA to the 30S ribosomal subunit (Nyengaard et al., 1991; Laursen et al., 2003).

A non-specific hit is also identified with a superfamily associated with vacuolar sorting and transport of membrane protein in eukaryotic cells (Babst et al., 2002).

S4.32 39_VirB10

RF +1 Specific hits Superfanilies Multi-donains	${ }^{375}$	${ }^{875}$	${ }_{1125}{ }^{1176}$
		TrbI	,
		bI superfami	
	DUF1510		
Bacterial conjugation Trbl-like protein			
Type IV secretory pathway, VirB10			
type IV secretion system protein VirB10-PRK13855			
Protein of unknown function - DUF1510			
pfam03743	577-1119	5.96e-55	
COG2948	76-1149	7.49e-54	
PRK13855	223-1140	1.69e-39	
pfam07423	61-240	$3.05 \mathrm{e}-03$	

The conserved domains identified in this protein are associated with the VirB10 component of the Type IV secretion system, with the exception of a small domain of unknown function (pfam07423) (Ward et al., 1990).

S4.33 40_FIG00471323_hypothetical_protein

This hypothetical protein includes conserved domains associated with several putative functions. A nodulin related protein associated to nitrogen fixation in plants and metals transporter in yeast (Delauney et al, 1990; Li et al., 2001); a domain associated with lipid sensing in yeast and mammalian cells (Winter and Ponting,
2002); a domain of unknown function present in proteins with five transmembrane domains; and domains associated with a NADH dehydrogenase function. A putative function is not possible to predict, but the majority of the conserved domains suggest that this is likely to be a membrane protein.

S4.34 41_Single-stranded_DNA-binding_protein

The conserved domains identified in this protein suggest the possible function of single-strand DNA binding protein. This protein family are known to bind ssDNA in order to aid several processes including transcription, replication and recombination.

In E. coli this protein is known to form stable homodimer, while in other bacterial species (such as Mycobacterium tuberculosis) it forms tetramer. The sequence here described shows features for dimer and tetramer interaction, highlighted in the figure (Lopper et al., 2004; Saikrishnan et al., 2003; Arcus, 2002).

S4.35 42_FIG00638667_hypothetical_protein

$\text { RF } \boldsymbol{+ 1}$ Specific hits	${ }^{209}$	400	${ }^{509}$	${ }^{596}$
	C0G3271			
	Peptidase_C39GPeptidase_C39			
Non-specific hits Superfanilies Hulti-donains				
	Peptidase_C39_like superfamily			
	Sunt			
	bacteriocin_ABC			
Predicted double-glycine peptidase - COG3271				
Peptidase_C39G				
Peptidase C39 family				
ABC-type bacteriocin/lantibiotic exporters - SunT				
ABC-type bacteriocin transporter - bacteriocin_ABC				
COG3271	1-537	$2.73 \mathrm{e}-39$		
cd02423	103-513	6.64e-38		
pfam03412	94-522	$2.89 \mathrm{e}-21$		
COG2274	100-570	$8.50 \mathrm{e}-12$		
TIGR01193	121-546	$7.79 \mathrm{e}-06$		

This hypothetical protein shows several conserved domains associated with the C39 peptidase, proteins necessary to process various bacteriocins. These are antibiotic proteins produced by bacteria to inhibit the growth of other bacterial species. This family of peptidase is usually the N -terminal of an ABC-transporter: the
processing of the bacteriocin involves the cleavage of a Glycine-Glycine bond, followed by the export of the molecule across the cytoplasmic membrane. The putative active site is also identified in the protein sequence (Wu and Tai, 2004; Barrett and Rawlings, 2001).

S4.36 44_IncQ_plasmid_conjugative_transfer_TraR_(VirD2)

	${ }^{1000}$	${ }^{1250} \quad{ }^{1392}$
RF +1 Non-specific hits Superfanilies		
Relaxase/Mobilization nuclease domain		
Type IV secretory pathway - VirD2		
pfam03432	5.24e-08	
COG3843	$2.61 \mathrm{e}-04$	

The domains identified in this putative protein are consistent with the VirD2/TraR protein. This protein is involved with the mobilisation of DNA during conjugational transfer (Meyer, 2000).

S4.37 45_Ribbon-helix-helix_protein_copG_family_domain_protein

This hypothetical protein presents several domains of different nature. One of these is a complete conserved domain associated with the proteasome assembly in yeast showing an ATPase function (Park et al., 2010).

A CRISPR/Cas9 associated protein domain is also identifiable (Boyaval et al., 2007).

Other domains are of unknown function, an ATP synthetase and several ATPase putative domains.

S4.38 46_DNA_primase_(EC_2.7.7.-)

RF +1	${ }_{50}$	1000	${ }^{1228}$
Specific hits		TOPRIM	
Non-specific		Toprim_3	
Superfanilies		TOPRIM superfanily	
Hulti-donains COG4643			
SMC_N			
topoisomerases, DnaG-type primases - TOPRIM			
Toprim domain - Toprim_3			
Topoisomerase-primase - TOPRIM_primases			
Uncharacterized domain associated with phage/plasmid primase COG4643			
helix-rich Mycoplasma protein - Mplasa_alph_rch			
RecF/RecN/SMC N terminal domain - SMC_N			
smart00493	799-1026	$2.79 \mathrm{e}-06$	
pfam13362	808-1122	6.89e-06	
cd01029	799-966	7.45e-06	
COG4643	241-1017	$6.85 \mathrm{e}-28$	

TIGR04523	$373-1224$	$4.80 \mathrm{e}-04$
pfam02463	$208-1215$	$6.07 \mathrm{e}-03$

This protein carries a Topoisomerase/Primase domain. Bacterial primases synthesise RNA primer to initiate DNA replication. The reaction is Mg2+ dependent. The active site together with the metal binding site are identified in the conserved domain (Keck et al., 2000; Aravind et al., 1998).

S4.39 47_IncQ_plasmid_conjugative_transfer_protein_TraG

	${ }^{100}$	${ }^{200}$	${ }^{250}$	${ }^{280}$
RF +1 Non-specific hits Superfanilies	PRK15396			
	DUF4223			
	ly			
	LPP superfamily			
Murein lipoprotein - PRK15396				
Protein of unknown function - DUF4223				
PRK15396 pfam13978	7-222	$1.50 \mathrm{e}-04$		
	1-114	$4.78 \mathrm{e}-03$		

In this hypothetical protein, annotated as a plasmid conjugative transfer protein, it is possible to identify just two conserved domains of unknown function.

S4.40 48_FIG00470960_hypothetical_protein

This hypothetical protein carries domains for DNA repair and replication. In particular, one of the highest p-value is identified for a hexameric replicative protein RepA domain including its catalytic and polymerisation sites. The RepA protein is an

ATP-dependent helicase encoded by plasmids in gram-negative bacteria, which initiates the replication of DNA (Niedenzu et al., 2001).

The other conserved domains are consistent with the ATPase function of the protein RepA, with the exception of 235 kDa -fam (TIGR01612), which is usually found in plasmodium species.

S4.41 49_VirB4

TIGR00929	$340-2700$	$0 \mathrm{e}+00$
COG3451	$331-2763$	$0 \mathrm{e}+00$
PRK13898	$331-2760$	$5.71 \mathrm{e}-134$
pfam12846	$1636-2532$	$4.05 \mathrm{e}-36$

This hypothetical protein annotated as VirB4 shows conserved domains for both the protein VirB3 and the protein VirB4 of bacterial Type IV secretion system (Christie and Vogel, 2000). These domains might appear together in this hypothetical protein because of an error in the automated annotation and CDS prediction pipeline.

S4.42 50_Phage_Rha_protein

RF +1 ${ }^{1}$			
Mon-specific	phases		
hits MopB_Res-Cmplx1_Nad11-M			
superfaniles \quad Phage_pRha superfamily			
Hulti-donains pRha			
Phage regulatory protein Rha - Phage_pRha			
phage regulatory protein - phage_pRha			
NADH-quinone oxidoreductase/respiratory complex I-MopB_Res-Cmplx1_Nad11-M			
Phage regulatory protein Rha - pRha			
pfam09669	70-357	$2.24 \mathrm{e}-40$	
TIGR02681	46-372	$3.62 \mathrm{e}-29$	
cd02774	91-525	5.16e-04	
COG3646	37-372	1.89e-26	

The conserved domains included in this hypothetical protein encode for a phage regulatory protein, with the exception of the mitochondrial NADH oxidoreductase, which has the highest e value. This protein, found in temperate phages and bacterial prophages, interferes with the infection of the bacterial cell (lyer et al., 2002).

S4.43 51_Minor_pilin_of_type_IV_secretion_complex_VirB5

This hypothetical protein is associated with several VirB5-like conserved domains. VirB5 is required for the assembly of the Type IV secretion system extracellular pilus. It was shown to be involved in protein-protein interaction with

VirB2, and coiled-coiled motifs that could explain this interaction are identified in the protein sequence (Yeo et al., 2003; Christie, 2004).

S4.44 52_VirB6

PRK05846	$493-819$	$6.14 \mathrm{e}-05$
pfam06808	$376-813$	$7.11 \mathrm{e}-05$
COG1757	$94-513$	$8.00 \mathrm{e}-03$

The conserved domains in this protein sequence are associated with the TrbL/VirB6 protein of the Type IV secretion system (Hapfelmeier et al., 2000).
S4.45 53_DNA_topoisomerase_III_28828-31020_00-0949_pTet

DNA topoisomerase I PRK07219		
cd00186	$475-1812$	$3.76 \mathrm{e}-86$
smart00437	$793-1686$	$8.16 \mathrm{e}-54$
cd03362	$1-423$	$3.93 \mathrm{e}-46$
pfam01751	$4-402$	$6.58 \mathrm{e}-07$
pfam01396	$1882-1998$	$2.55 \mathrm{e}-06$
Pfam02414	$1450-1881$	$1.82 \mathrm{e}-04$
TIGR01056	$1-2067$	$0 \mathrm{e}+00$
COG0550	$1-1983$	$2.64 \mathrm{e}-173$
pfam01131	$1-1872$	$6.76 \mathrm{e}-151$
COG0551	$454-1794$	$1.99 \mathrm{e}-111$
PRK07219	$1864-2124$	$1.28 \mathrm{e}-10$

The conserved domains identified in this protein sequence are consistent with the automated annotation and they are related to a bacterial topoisomerase Topoisomerases break the single or double stranded DNA and re-join the phosphodiester-backbone: these enzymes tune the supercoil state of DNA, facilitating interactions with other proteins (Champoux, 2001).

S4.46 54_FIG00470281_hypothetical_protein

This hypothetical protein shows hits with conserved domain associated with membrane transport. Both OMP_w_GlyGly and LomR are part of a superfamily of porins (cl21487), which are non-specific channels for transport of various molecules, for instance hydrophilic molecules or various sugars (Nikaido, 2003).

A further partial conserved domain is involved in the uptake of alkylphosphonate in E. coli (Chen et al., 1990).

S4.47 55_FIG00470802_hypothetical_protein

Several conserved domains identified in this hypothetical protein are uncharacterised or of unknown function: these include TIGR04313, pfam02414, COG1479, PHA03016 (Bawden et al., 2000).

Other conserved domains are associated with a eukaryotic respiratory complex (Mitochondrial-encoded NADH-quinone oxidoreductase, Oudot et al., 1999), a protein for phage defence in Lactococcus lactis (Abortive phage infection protein, Tangney and Fitzgerald, 2002) and a transcriptional anti-terminator protein (Manival et al., 1997).

S4.48 56_FIG00470802_hypothetical_protein

Probable chromatin-re-modeling complex ATPase chain - PLN03142		
Chromosome segregation ATPase - Smc		
AAA ATPase domain - AAA_15		
EpsG family - EpsG		
Glucosyl transferase GtrII - Glucos_trans_IIB2B1:C24B24B3:C24		
COG4646	1528-3168	$1.15 \mathrm{e}-74$
COG4646	3592-4209	5.07e-44
pfam13659	937-1269	1.01e-17
smart00490	4498-4752	$1.13 \mathrm{e}-07$
pfam04851	2995-3312	1.32e-06
pfam00271	4498-4752	2.97e-06
cd00046	3049-3723	3.69e-04
cd00079	4402-4758	1.03e-03
pfam02414	5068-5784	$1.90 \mathrm{e}-03$
PHA03412	838-1167	8.87e-03
COG0553	2041-4887	8.16e-13
COG0286	784-1494	5.77e-15
pfam02384	853-1494	$4.53 \mathrm{e}-13$
pfam00176	3013-3894	$9.04 \mathrm{e}-12$
smart00487	2998-3732	$4.04 \mathrm{e}-11$
TIGR04523	5026-5784	3.27e-08
PTZ00440	91-2343	3.51e-06
TIGR00497	757-1419	8.63e-06
PRK01156	4378-5790	1.89e-05
PLN03142	3553-3834	2.97e-04

COG1196	$4870-5796$	$8.73 \mathrm{e}-04$
pfam13175	$1846-2538$	$1.31 \mathrm{e}-03$
pfam14897	$5017-5799$	$6.00 \mathrm{e}-07$
pfam14264	$94-828$	$2.40 \mathrm{e}-05$

This is the largest predicted hypothetical protein. In total, 24 conserved domains are predicted. The lowest E-values are identified in three domains associated with an adenine-specific methyl transferase domain, involved in DNA protection and repair (Zhang-Akiyama et al., 2009).

Furthermore, a group of Helicase-associated conserved domains is characterised by an E-value between $1.0 \mathrm{e}-13$ and $1.0 \mathrm{e}-15$. This class of proteins is associated with the unwinding of supercoiled DNA in order to regulate transcription and replication (Muzzin et al., 1998).

S4.49 57_FIG00469861_hypothetical_protein

This hypothetical protein is associated with an uncharacterised domain found in plasmid DNA of the spirochete Borrelia (Zückert and Meyer, 1996).

Other multi-domains family are associated with an ATPase domain and an alpha-helix rich uncharacterised domain.

S4.50 58_FIG00471069_hypothetical_protein

Two domains of different functions are identified in this hypothetical protein: a CRISPR/Cas system domain, and a domain of unknown function belonging to the superfamily $\mathrm{YycH} _\mathrm{N}$ _like. This superfamily includes the membrane signal transductor of a two component system YycG-YycC in several bacteria, including S. aureus (Makarova et al., 2006 (2); Türck and Bierbaum, 2012).

S4.51 59_aminoglycoside_3_phosphotransferase_aph3_HypA

This putative protein is associated with an aminoglycoside phosphotransferase function. The enzyme catalyses the transfer of a phosphate group to a small molecule such as an antibiotic belonging to the aminoglycoside or macrolide class in order to inactivate it. This protein may also catalyse the transfer of a phosphate group to other small molecules, such as choline, ethanolamine, and homoserine,
which function as precursors for the synthesis of several biological compounds, like phospholipids or amino acids (Kim and Mobashery, 2005).

S4.52 60_hypothetical_protein

A domain for the incorporation of nichel in Nichel-containing enzyme is identified in this protein. This type of protein was identified and described in H. pylori (Xia et al., 2009).

Two further multi-domains are identified, involved with DNA interaction (helicase) and with NTP reduction.

S4.53 61_hypothetical_protein

The lowest e-value score for this hypothetical protein is associated with an ATPase domain associated with a variety of cellular functions, from DNA replication to signal transduction and the regulation of gene expression (AAA_18) (lyer et al., 2004).

A partial conserved domain (CPT, cd00227) of the same superfamily (Ploop_NTPase) is identified and is associated with resistance to chloramphenicol. (Izard, 2001).

S4.54 62_hypothetical_protein

The conserved domains associated with this hypothetical protein are associated with a membrane localisation but unknown function, and no literature in support.

S4.55 63_hypothetical_protein

In this hypothetical protei, n several DNA-protein interactions conserved domains are identified. The HTH_XRE domain is described as a DNA binding protein regulating gene expression in response to xenobiotic compounds (Wintjens and Rooman, 1996; Luscombe et al., 2000; Ren et al., 2010).

S4.56 64_antirepressor_partial

RF +1 ${ }^{1}$				
Non-specific	Phage_pRha			
hits	Phasesenha			
Superfanilies	Phage_pRha superfamily			
Multi-donains	pRha			
Phage regulatory protein Rha - Phage_pRha phage regulatory protein, rha family [Mobile element, Prophage functions] - phage_pRha Phage regulatory protein Rha - pRha				
pfam09669	70-351	1.32E-34		
TIGR02681	46-366	4.23E-24		
COG3646	31-366	2.68E-25		

This hypothetical protein is associated with phage regulatory proteins. The protein pRha is a phage regulative protein. The presence of this gene interferes with infection of bacterial strains without integration host factor (IHF) (Henthorn and Friedman, 1995).

S4.57 65_peptidase_C15_partial

RF +1 Non-specific hits	75	$209 \quad 2{ }^{216}$
pyrrolidone-carboxylate peptidase - PRK13197		
Pyrrolidone-carboxylate peptidase - Pcp		
Pyroglutamyl peptidase (PGP) type I, pyrrolidone carboxyl peptidase (pcp) type I - Peptidase_C15		
Pyroglutamyl peptidase - Peptidase_C15		
pyroglutamyl-peptidase I-pyro_pdase		
PRK13197	1-216	
COG2039	1-216	
cd00501	1-216	
pfam01470	1-216	
TIGR00504	4-216	

The conserved domains identified in this protein are consistent with the automated annotation: a peptidase associated with the cleavage of C-terminal pyroglutamate. The role of this protein in the various species is not fully understood (Tanaka et al., 2001; Barrett et al., 2003; Cummins and O'Connor, 1998).

S4.58 66_hypothetical_protein

The partial conserved domain (RNA_pol_Rpb4) is identified in this hypothetical protein. It is associated with an essential subunit of the RNA polymerase III.

Other partial multi-domains families are identified, including a Mycoplasma associated-helix rich domain, and two domains associated with immune response in mycoplasma (Todone et al., 2001; Sadhale and Woychik, 1994; Galinski et al., 2000).

S4.59 68_TolA_protein

This protein is annotated as a ToIA protein, part of the Tol-Pal complex. It is required for maintaining outer membrane integrity and also involved in uptake of colicins and filamentous DNA, and implicated in pathogenesis. The ToIA and tolA_full Multi-domains are identified in this protein, alongside other domains of different functions including mobilisation of DNA (pfam03432) and an ATP synthase
associated with archaeal organisms (TIGR02926) (Levengood and Webster, 1989; Derouiche et al., 1996; Meyer, 2000).

S4.60 70_FIG00469626_hypothetical_protein

In this hypothetical protein, three non-specific hits are identified: one of them is associated with a sucrose membrane transporter (SWEET), part of a PQ-loop superfamily (Xuan et al., 2013).

S4.61 72_DNA_topoisomerase_III_TraE_(EC_5.99.1.2)

| $\mathrm{RF}+1$
 nulti-donains | | |
| :--- | :--- | :--- | :--- |
| DNA topoisomerase I/SWI domain fusion protein - PRK06319 | | |
| PRK06319 | $43-123$ | 2.32 C |

This protein is annotated by the automatic pipeline as DNA topoisomerase III, and the conserved domain identified in it confirms this.

S4.62 75_FIG00471024_hypothetical_protein

The partial conserved domain identified in this protein is associated with eukaryotic organisms. Ras proteins have been described in yeast and human cells to activate the cAMP/protein kinase $\mathrm{A}(\mathrm{PKA})$ pathway, controlling metabolism, stress resistance, growth, and meiosis (Harrisingh and Lloyd, 2004).

S4.63 76_hypothetical_protein

RF +1 Non-specific hits Superfanilies	
	Cas6-I-III superfamily
CRISPR/Cas system endoribonuclease Cas6	
COG1583	34-126

This small hypothetical protein shows the presence of a CRISPR/Cas system conserved domain belonging to the Cas6 superfamily. As described in other hypothetical proteins, CRISPR/Cas systems are associated with defence from phage infection in bacteria (Makarova et al., 2006 (2), Haft et al., 2005).

S4.64 77_FIG00472625_hypothetical_protein

	250	500	${ }^{625}$	${ }^{732}$
Specific hits LabA_like				
		NYN		
Superfanilies LabA_like/DUF88 superfamily				
Hulti-donains	LabA			
LabA_like proteins				
NYN domain				
Uncharacterized conserved; LabA/DUF88 family [Function unknown] - LabA				
cd06167	52-684	6.40E-20		
pfam01936	385-627	$2.09 \mathrm{E}-08$		
COG1432	304-639	$2.72 \mathrm{E}-10$		

The LabA domain found in the hypothetical protein encoded by this gene has no defined function but it is well conserved in all kingdoms of life. In cyanobacteria, it is required to regulate the circadian clock system via negative feedback of an
autokinase (KaiC). In Pseudomonas putida a protein falling in the "LabA family" is involved in the bacterial degradation of nicotine. The hypothetical protein also exhibits a putative metal binding site, structurally similar to proteins like Yrbl phosphatase from Haemophilus influenzae (Taniguchi et al., 2007; Taniguchi et al., 2010; Tang et al., 2008; Parsons et al., 2002).

S4.65 79_pK2_Serinethreonine_protein_kinase_PrkC2C_regulator_of _stationary_phase

cd00180	$472-1110$	$2.32 \mathrm{E}-46$
TIGR03724	$469-885$	$1.44 \mathrm{E}-10$
PRK14879	$463-885$	$1.15 \mathrm{E}-09$
COG3642	$463-885$	$5.99 \mathrm{E}-06$
pfam02414	$445-1161$	$4.91 \mathrm{E}-05$
pmam00069	$463-1164$	$5.85 \mathrm{E}-34$
COG0515	$463-1047$	$7.44 \mathrm{E}-36$
PTZ00024	$463-1113$	$2.43 \mathrm{E}-30$
TIGR04523	$472-885$	$3.91 \mathrm{E}-17$
pfam14093	$493-1170$	$2.42 \mathrm{E}-06$

The conserved domains identified with a solid hit in this hypothetical protein are associated with a protein kinase function. Protein kinases in bacteria are often involved in signal transduction and response regulation (Kannan et al., 2007; Handford et al., 2009; Pérez et al., 2008).

Acknowledgements

This work wouldn't have happened without the help and support of a few very important people.

In no particular order (Daly, 2016):
My family. The support and love that my mum and my sister gave me in the last few years is impossible to describe; it is actually unbelievable. Thank you, I'll love you forever. And my dad, without your support this would have been much harder. And my Turkish family, you just arrived, you are already so important. And it's such a shame that nana won't see this thesis, she would have read it all. I miss you.

My wife. I came for the science and I found the one love of my life, again, unbelievable. I am the luckiest man on earth; you make every day a better one. Together, we can do everything. We got each other and that's a lot (Jovi, 1986). I love you.

My supervisors. I had to wait 26 years to find the best teachers, but it was definitely worth the wait. What Rick, David and Olivia thought me in science and in life is invaluable. It was a pleasure and an honour working with you.

My friends close. Callan, Tom, Nathan, Alex, Silvia, Ed, Juliette (also Jani, Melek, Benny, David and Pam, even if unfortunately, they are not so close anymore). If I never felt home sick it is because of you guys, you are the best. You made England, home.

My friends far. Luca, Giacomo, Giorgio, Giovanni, Roberto, Dario. I miss you every day. Why don't you just move here, already? And Mavi (you are pretty close now!), Stefano, Elisa, Betta, Mirko, Cami, Elena. You all guys are my roots, and is good to have solid roots, that will always be there.

My workmates. The people I encountered during this journey, and made it the very best. Vanessa (thank you for the massive help with the congo red assay), Babs,

Michael, Harriet, Rebecca, Nicola, Phil, Selina, Sariqa, Tom, Jamie and everyone else. And Steve Porter for the supervision in my first year project.

My SWDTPmates. Alex, Mickey, Odette and Emma, I will never forget my first year, and that's also because of you. And Ron Yang. Best lecturer, best courses.

Dr Callan Davies, again. He is a Shakespeare laureate and went through the whole thing. I can't wait to read a poem on pTet-like plasmids. Thank you, mate.

Of course I want to acknowledge the University of Exeter for the support and the BBSRC for the generous funding of my research.

That's it, I think. If I forgot someone, please don't be mad.
Thank you all, very very much.

