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Abstract

Land-surface models (LSMs) are crucial components of the Earth system models (ESMs)

that are used to make coupled climate-carbon cycle projections for the 21st century. The

Joint UK Land Environment Simulator (JULES) is the land-surface model used in the

climate and weather forecast models of the UK Met Office. JULES is also extensively

used offline as a land-surface impacts tool, forced with climatologies into the future. In

this study, JULES is automatically differentiated with respect to JULES parameters using

commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the

model. Using this adjoint, the adJULES parameter estimation system has been devel-

oped to search for locally optimum parameters by calibrating against observations. This

thesis describes adJULES in a data assimilation framework and demonstrates its ability

to improve the model-data fit using eddy-covariance measurements of gross primary pro-

ductivity (GPP) and latent heat (LE) fluxes. The adJULES system is extended to have

the ability to calibrate over multiple sites simultaneously. This feature is used to define

new optimised parameter values for the five plant functional types (PFTs) in JULES.

The optimised PFT-specific parameters improve the performance of JULES at over 85%

of the sites used in the study, at both the calibration and evaluation stages. The new

improved parameters for JULES are presented along with the associated uncertainties for

each parameter. The results of the calibrations are compared to structural changes and

used in a cluster analysis in order to challenge the PFT definitions in JULES. This thesis

concludes with simple sensitivity studies which assess how the calibration of JULES has

affected the sensitivity of the model to CO2-induced climate change.
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1. Introduction

1.1. Motivation

Atmospheric carbon dioxide (CO2) plays a critical role in regulating the global climate. Its

role can best be understood by considering the terrestrial radiation balance which deter-

mines the Earth’s climate. This is the balance between incoming solar energy and outgoing

longwave radiation. Changes to the atmospheric composition or surface properties of the

Earth inevitably alter this balance.

Shortwave radiation emitted by the Sun warms the Earth’s surface, causing it to emit

longwave radiation. Some of the longwave radiation is then absorbed and re-emitted by

clouds and greenhouse gases (GHGs), warming the surface and lower atmosphere. Chang-

ing the atmospheric concentrations of long-lived GHGs, including CO2, alters the Earth’s

energy balance by changing the amount of absorbed outgoing longwave radiation. An-

thropogenic emissions of GHGs have dramatically increased atmospheric concentrations,

leading to changes in the Earth’s climate, most of which are still unknown and hard to

predict.

The oceans and the terrestrial biosphere absorb CO2, removing on average 50% of anthro-

pogenic emissions from the atmosphere. However, the driving mechanisms and feedbacks

of this prcoess are not completely understood. As such, the terrestrial carbon cycle rep-

resents a large source of uncertainty in climate projections, and so the development of

accurate land-surface models is an important prerequisite for reliable climate projections.

As well as removing CO2 from the atmosphere, the land is a significant store of carbon,

containing about three times as much as the atmosphere [Denman et al., 2007]. The carbon

store is partitioned between live vegetation, litter, and soil carbon, of which the latter is

the greatest. Land carbon depends on the balance of inputs and outputs of carbon from

and to the atmosphere. Currently, the land is a carbon sink, meaning there is net uptake

of carbon. However, changes to the land carbon sink are likely because land carbon fluxes

are sensitive to changes in the climate [Cox et al., 2006]. Changes to the land carbon sink

could have signification ramifications for the climate system.

Photosynthesis provides the main input of carbon to the terrestrial biosphere. This is

the process by which plants use water from the soil, CO2 from the atmosphere and solar

energy to convert carbon dioxide to stores of chemical energy. Outputs of carbon from the

terrestrial biosphere to the atmosphere include decomposition, respiration, fire, and land

use changes.
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Increased atmospheric CO2 is expected to enhance photosynthesis, increasing carbon up-

take, while warming is expected to accelerate respiration rates, decreasing carbon storage

[Cox et al., 2006]. Accordingly, therefore, understanding the effects of CO2 and temper-

ature on plant growth and respiration is vital for predictions of the future land carbon

balance.

1.2. Modelling the land-surface

1.2.1. The fluxes between the biosphere and the atmosphere

The movement of any material from one place to another is called a flux. The main fluxes

that make up the terrestrial carbon cycle describe the exchange of carbon, water and

energy between the biosphere and the atmosphere.

Carbon flux

Plants use water from the soil, atmospheric CO2, and energy from sunlight to make car-

bohydrates via the photosynthesis reaction:

6CO2 + 6H2O+ energy −→ C6H12O6 + 6O2 (1.1)

The gross primary productivity (GPP) is the gross uptake of CO2 to plants associated

with this reaction. Current estimates suggest photosynthesis removes 120 gigatonnes of

carbon per year (GtCyr−1) from the atmosphere.

The carbohydrates synthesised in this process are used in the building of tissues that make

up the leaves, branches, roots, and trunk of plants. In this way, part of the CO2 removed

from the atmosphere is stored in the structure of plants; the residence time of plant carbon

is about one year in the leaves, up to more than 100 years in certain types of tree trunks.

Plants release CO2 back into the atmosphere through the process of respiration. Respira-

tion occurs as plant cells use the carbohydrates made during photosynthesis and oxygen

to release energy (Eq. 1.1 in reverse). This energy is then used to grow and maintain

the plant’s tissues. Plant respiration is called autotrophic respiration (Ra) and represents

approximately half (60 GtCyr−1) of the CO2 that is returned to the atmosphere in the

terrestrial portion of the carbon cycle.

The amount of photosynthetic carbon that is not used for respiration and available for

other processes is called the net primary productivity (NPP) and is equal to GPP minus

Ra. This represents the actual sequestration of carbon by the plant biomass.

In addition to the death of whole plants, living plants lose biomass by shedding a portion of

their leaves, roots and branches each year. This acts as a transfer of carbon from the plant

to the soil. Dead plant material is then decomposed by microbial fauna and bacteria. The
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activity of these organisms releases carbon to the atmosphere via heterotrophic respiration

(Rh), while the main nutrients, such as nitrate and phosphate, are rapidly recycled by

plants.

The net exchange of carbon between the ecosystem and the atmosphere (NEE) is the dif-

ference between the sum of the respiration fluxes (Reco = Ra+Rh) and the photosynthesis

flux:

NEE = Reco −GPP. (1.2)

NEE is negative when an ecosystem is a net carbon sink and positive for a net source.

Water and Energy Flux

Two major fluxes determine the Earth’s energy balance; the ‘radiative’ flux and the ‘tur-

bulent’ flux. Radiative fluxes are associated with the shortwave radiation from the sun

and reflected by the Earth’s surface, and the longwave radiation emitted by Earth’s sur-

face and radiated toward the surface by the atmosphere. Turbulent fluxes are associated

with heating of the atmosphere by the Earth’s surface (sensible heat) and phase changes

of water (latent heat), so named because both processes are driven by wind.

Rnet −G = H + LE +∆S (1.3)

The left-hand side of the equation denotes radiative and conductive fluxes; Rnet is the net

radiation and G the soil heat flux. The right-hand side contains the turbulent fluxes; H is

the sensible heat flux and LE is the latent heat flux. Positive Rnet supplies energy to the

surface and positive G, H and LE remove energy from the surface. Finally, ∆S denoted

the change in storage of energy in the soil, vegetation, and air within the canopy.

The latent heat flux (LE) represents the summed contribution of the evapotranspiration

processes: evaporation from the soil, evaporation of the rain water intercepted by the

leaves, and transpiration of water by the plant through the leaves. Transpiration consists

of the vaporisation of liquid water contained in plant tissues and its removal to the at-

mosphere. Transpiration takes place at the level of the leaf stomata; small openings on

the plant leaf through which gases and water vapour pass through. The vapour exchange

with the atmosphere is therefore controlled by the stomatal aperture.

CO2 used for the photosynthesis reaction is also transmitted through the leaf stomata (in

the opposite direction). This results in a coupling between photosynthesis and transpira-

tion via the concept of stomatal conductance. This coupling is crucial because the plant

regulates its stomatal conductance in order to minimise water loss as a function of soil

moisture availability and to maximise CO2 absorption. Therefore, in order to constrain

the carbon cycle, it is also important to consider the LE flux.

Evapotranspiration (E) is also a key part of the water balance where

P = R+ E +∆S (1.4)
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with P representing precipitation, R representing runoff and ∆S is the change in storage

(in soil or the bedrock/ground water).

1.2.2. A brief history of land-surface models

Land-surface models (LSMs) have formed an important component of climate models for

many decades [Pitman, 2003]. They have evolved greatly over time due to advances in sci-

entific understanding and increased motivation for modelling the climate. The increasing

availability of satellite and in situ measurements has facilitated the development of more

complex models by providing data against which to validate. Although there have been

great advances made over the last fifty years, even the most sophisticated LSM remains a

gross simplification of the full climate system [McGuffie and Henderson-Sellers, 2001].

First generation LSMs focussed on providing the lower boundary condition for atmospheric

models by calculating the land-atmosphere fluxes of heat, moisture, and momentum, and

updating the surface state variables on which these fluxes depend (e.g. soil temperature,

soil moisture, snow cover). These models date back to the late 1960s and early 1970s (e.g.

Manabe [1969]) and were developed for use in numerical weather prediction models. As

such, vegetation was treated simply as a passive structure separating, but not interacting

with, the soil and the atmosphere.

In the mid to late 1990s some land-surface modelling groups began to introduce additional

aspects of biology into their schemes, most notably the dynamic control of transpiration

by leaf stomata and the connected rates of leaf photosynthesis [Sellers et al., 1997; Cox

et al., 1999]. In the early 2000s, climate modelling groups began to use the carbon fluxes

simulated by LSMs within first generation climate carbon cycle models [Cox et al., 2000;

Friedlingstein et al., 2001]. These early results, and a subsequent model inter-comparison

[Friedlingstein et al., 2006], highlighted the uncertainties associated with land carbon cli-

mate feedbacks. The 5th Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC AR5; Stocker et al. [2013]) for the first time routinely included climate

models with an interactive carbon cycle (now called Earth System models or ESMs),

confirming that land responses to climate and CO2 are amongst the largest of the un-

certainties in future climate change projections [Brovkin et al., 2013; Jones et al., 2013;

Friedlingstein et al., 2013]. Any future decreased ability of the land surface to draw down

atmospheric CO2 could imply smaller “compatible emissions” in order to stay below key

warming thresholds such as 2◦C.

Uncertainties in LSMs arise from three major sources: uncertainty due to initial and

boundary conditions, process uncertainty, and parameter uncertainty. Taking these one

by one, uncertainty due to initial and boundary conditions include uncertainties in the

forcing data and initial state of the model [Kavetski et al., 2006a,b; Ajami et al., 2007].

Process uncertainty includes the misrepresentation of land-surface processes and also the

neglect of important processes such as nitrogen limitations on plant growth (see for exam-

ple Thornton et al., 2007; Zaehle et al., 2010) or canopy light interception [Mercado et al.,
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2009]. The drive to reduce process uncertainty almost invariably leads to increases in LSM

complexity, which typically lead to the introduction of additional internal model param-

eters. Parameter uncertainty arises from uncertainty in these internal model parameters.

The evolution of LSMs has therefore involved an attempt to reduce process uncertainty

by increasing model realism and complexity, but at the cost of increasing parameter un-

certainty. This thesis concerns the development and application of a technique to reduce

parameter uncertainty in the widely used Joint UK Land Environment Simulator (JULES)

LSM [Best et al., 2011; Clark et al., 2011].

1.3. Using land-surface models in climate predictions

1.3.1. Land-surface models as components of Earth System models

The land-surface is an integral component of the Earth System and a fundamental part of

the carbon cycle. Understanding land-atmosphere exchanges of CO2 is of great relevance

when calculating emission reductions. In addition, since the land-surface provides food

and influences the water supply, understanding the potential impact of climate change

on agricultural yield is of vital importance. Land-carbon feedbacks remain uncertain and

there are many questions associated with future land surface functioning in a changing

climate as well as the impact of different land-use changes [Huntingford et al., 2010].

Therefore, the land-surface component is an integral part of any Earth System Model

used to predict the effect of climate change.

Earth System Models (ESMs) are the main tool of climate change research. They provide

remarkable and important insights into the functioning of the climate system, and are

used in the Intergovernmental Panel on Climate Change (IPCC) reports to set targets for

mitigation (IPCC AR5; Stocker et al. [2013]).

Until the last decade, the majority of experiments neglected the feedback between climate

and the carbon cycle. Instead, to predict future climate changes, studies used general

circulation models with prescribed CO2 concentrations and fixed vegetation distribution.

These CO2 concentrations were derived from emission scenarios using relatively simple of-

fline carbon cycle models (emission scenarios are further discussed in Sect. 1.3.3). However,

in order to understand fully the large feedbacks between the climate and carbon cycle, it

is essential to model the two simultaneously in coupled climate-carbon cycle models [Cox

et al., 2000; Friedlingstein et al., 2006].

Met Office Hadley Centre models

The JULES land-surface model is one of the components of the UK Met Office Unified

Model. The UK Met Office Hadley Centre has developed different configurations of the

Unified Model to use for climate predictions at varying time-scales: seasonal, decadal, and

centennial. With a prefix Had- (for Met Office Hadley Centre), multiple iterations exist
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such as the HadCM3 (coupled-model version 3) and more recently the HadGEM3 (Global

Environment Model version 3).

These climate models are usually at a lower resolution than the models used for day to

day weather forecasting due to computational cost. By default they include ocean and

sea-ice components coupled to the atmosphere model in order to represent the full coupled

climate system. The “Earth System” configurations also add processes associated with

atmospheric chemistry and the terrestrial ecosystem. The JULES land-surface model

provides the land-surface element found in the latter configurations.

Dynamic global vegetation models

In order to understand fully the role of climate-vegetation feedbacks on large timescales,

the land cover needs to be treated as an interactive element . This is done by incorporating

dynamic global vegetation models (DGVMs) directly within climate models. DGVMs

update the plant distribution and soil carbon based on climate-sensitive CO2 fluxes at the

land-atmosphere interface.

When JULES is running as part of the UK Met Office Unified Model, or as the terrestrial

carbon cycle component of the Met Office Hadley Centre’s coupled climate-carbon cycle

model, it is run with a dynamic global vegetation model called TRIFFID (Cox [2001]:

Top-down Representation of Interactive Foliage and Flora Including Dynamics).

Each plant functional type (PFT) covers a different fraction of each gridbox in JULES.

The area covered by each PFT is updated by TRIFFID, typically every ten days, based on

the net carbon available to it and on the competition with other vegetation types, which is

modelled using a Lotka-Volterra approach. Competition between the PFTs in the model

is based on a dominance hierarchy ordered tree-shrub-grass, with dominant types limiting

the expansion of sub-dominant types.

Each time TRIFFID is called, land-surface parameters, such as albedo and roughness

length, are updated based on the new vegetation state. These land-surface parameters

depend on the type, height and leaf area index of the vegetation. The new vegetation

state allows for the changes in the biophysical properties of the land surface and in the

terrestrial carbon storage to feed back into the atmosphere.

TRIFFID has historically used five PFTs [Clark et al., 2011]. These are the same five

PFTs discussed throughout this thesis, chosen as a minimal set to represent the variation

in vegetation structure (e.g canopy height, root depth) and function (e.g. C3 versus

C4 photosynthesis). This ensures the inclusion of both biophysical and biogeochemical

vegetation feedbacks in ESMs [Clark et al., 2011], although latter versions of TRIFFID

now represent nine PFTs to improve the simulation of the global distribution of vegetation

types [Harper et al., 2016].

The number of PFTs in other DGVMs will differ depending on the parameterisations used

in the model. The availability of field data for defining and validating parameter values is
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also an important factor in deciding the number of PFTs. When running a LSM within

an ESM, detailed ecophysiological and physical parameters are needed [Clark et al., 2011].

Uncertainty in these parameter values will feed through as a source of uncertainty in the

ESM.

1.3.2. Uncertainty in climate change predictions

Understanding and quantifying uncertainty in climate change projections is of increasing

importance. It is a fundamental part of climate research, and plays an important role in

mitigation planning and advice to policymakers.

Uncertainties in LSMs feed-through into uncertainties in climate change projections. Briefly

touched on in Sect. 1.2.2, the uncertainties from LSMs can be grouped into initial condi-

tion, boundary condition, parameter, and structural uncertainties. Initial condition and

boundary condition uncertainties, sometimes grouped as forcing uncertainty, are intro-

duced if datasets are used to replace what in reality is an interactive part of the system

[Tebaldi and Knutti, 2007]. In running JULES for this thesis, this is the uncertainty as-

sociated with the driving data which are used to represent the atmosphere and find the

initial state of the model. When running climate models, the LSMs are coupled with atmo-

spheric and ocean models, removing the need for driving data. Similarly, the uncertainty

associated with the initial state of the system is less important when running long-term

projections such as the multi-decadal runs used in climate predictions [Tebaldi and Knutti,

2007]. Therefore, the uncertainties from LSMs which will affect climate change projections

will be the parameter and structural uncertainties associated with the model.

The parameter and structural uncertainties in the LSMs will differ between different mod-

els due to differences in physical and numerical formulations. Due to the highly complex

climate system, it is impossible to describe all the processes accurately, no matter how

complex the model [Tebaldi and Knutti, 2007]. Therefore, different models will choose

to capture different processes and parameterise them in different ways. These choices in

model design and resolution, most notably the ones which cannot be captured by changing

parameter values, contribute to what is called structural (or process) uncertainty. This

error is difficult to quantify since it is not always clear which processes are missing.

Parameter uncertainties in a model can be explored and quantified by perturbed physics

ensembles (PPEs). This is where the model is run with an ensemble of different parameter

values. Many of the attempts to quantify climate change or climate model parameters in a

probabilistic sense have taken this approach [Tebaldi and Knutti, 2007]. The PPE method

has the advantage of being relatively simple and easy to implement though it will only

capture the uncertainty of a given model’s representation of climate, i.e. it will not be able

to capture uncertainty beyond the parameterisation. It is still able to provide valuable

insight into the model even if just one parameter is perturbed.

The work leading up to this chapter has involved reducing parameter uncertainty in

JULES. Therefore, in this chapter, the main emphasis will be on the effects of param-
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eter change on the model’s response. Reduction in structural uncertainty will also be

briefly considered in order to contrast between parameter and structural uncertainty.

In addition to the model uncertainty found in the different components of the climate

model, the full model will also suffer from forcing uncertainty. This arises mainly from

incomplete knowledge of external factors influencing the climate system [Deser et al.,

2012]. Climate models are run using prescribed emissions of greenhouse gasses (GHGs).

These trajectories are highly uncertain due to unknowns in future world economic and

social development. For example, changes in land-use, population size, emissions, and the

developing of new technologies are all important factors.

1.3.3. Emission scenarios

To tackle the forcing uncertainty, a standard set of emission scenarios is used in most

climate research. These scenarios do not reduce the uncertainty but help to understand

it better in order to reach decisions that are robust under a wide range of possible futures

[Schwartz, 1996].

A standard set of socio-economic and emission scenarios is used for climate research to be

complementary and comparable across the scientific community. These ensure that start-

ing conditions, historical data and projections are employed consistently across different

studies. Due to the high computational cost of climate models, the scenarios can also

provide a standardised starting framework for different types of experiments.

Scenarios provide plausible descriptions of how the future may evolve with respect to a

range of variables [Van Vuuren et al., 2011]. In addition to future greenhouse gas and emis-

sions of other air pollutants, the other variables considered cover technological changes,

changes in energy generation and land use, global and regional economic circumstances,

and population growth.

Scenarios are an integral part of the IPCC reports. They are used in the assessment of

possible climate impacts, mitigation options and associated costs. It is important to note

that the scenarios are not actual future predictions or policy recommendations, but a tool

to explore both the scientific and real-world implications of different plausible futures.

Previous scenarios used in IPCC

Several sets of scenarios have been published by the IPCC. The first set of climate change

scenarios published in 1992 was called IS92 [Leggett et al., 1992]. These were followed in

2000, by a second generation of projections, collectively referred to as the Special Report

on Emissions Scenarios (SRES; Nakicenovic et al. [2000]). The SRES were used in two

subsequent reports; the Third Assessment Report (TAR) and Assessment Report Four

(AR4).
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The SRES scenarios were designed to improve upon some aspects of the IS92 scenarios.

Generated through an open process involving many different modelling teams, the SRES

scenarios are ‘baseline’ scenarios; they do not take into account potential mitigation. For

example, it is possible that emissions may change less than these scenarios imply through

policy actions.

The SRES scenarios investigate the uncertainty of future greenhouse gas and short-lived

pollutant emissions given a wide range of driving forces. Some of the cases explored the

implications of economic convergence between developed and developing countries [Moss

et al., 2010]. The quantitative SRES projections are complemented by storylines of the

future, which facilitate the interpretation of the scenarios [Moss et al., 2010].

Both IS92 and SRES assumed there were no policy actions to mitigate climate change.

Motivated by the need to explore mitigation options and evaluate adaptation strategies,

SRES was superseded by Representative Concentration Pathways (RCPs) in 2014.

Representative Concentration Pathways

The Representative Concentration Pathways (RCPs) are the scenarios presented in the

IPCC Fifth Assessment Report (AR5). The pathways are defined by their total radiative

forcing pathway and level by 2100. Radiative forcing is a cumulative measure of human

emissions of greenhouse gases (GHGs) from all sources expressed in Watts per square

metre. There are four pathways: RCP8.5, RCP6.0, RCP4.5 and RCP2.6 (also referred

to as RCP3-PD), where the numbers refer to the radiative forcing (Wm−2) for each RCP

and PD stands for Peak and Decline. Details of the pathways are found in Table. 1.3.3.

The name was chosen specifically to highlight the selection process involved in selecting the

scenarios. The scenarios are ‘representative’ of the existing literature, and were developed

independently by different modelling groups and chosen to represent a broad range of

climate outcomes. The term ‘pathway’ is used to emphasize the trajectory that is taken

over time to reach that outcome is of interest, as well the specific long-term concentration.

For this thesis, the RCPs are used to provide a link between change in atmospheric CO2

and temperature rise. Figure. 1.1 shows the temperature time series generated when using

the RCPs in the HadGEM2ES model.
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Markers placed every 25 years.
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1. Introduction

1.4. The importance of calibration

The Earth System is highly complex and diverse, with many different physical, ecological,

and biochemical processes governing it. As such, accurately reflecting all these processes

with equations for a computer model is impossible. Even the most complex and sophisti-

cated climate model is still a simplification of reality. It is impossible to model everything,

and so different models choose to capture different processes, and equations are often pa-

rameterised in different ways. The optimal values of the parameters that make up these

equations are often unknown and may vary over different models.

The representation of the vegetation in terrestrial models is an example of such a simpli-

fication. Since it is impossible to model every individual type of vegetation found around

the globe, vegetation is grouped. The number of groupings tends to be small but still aims

to cover variations in structure (such as canopy height), climate and function (e.g. C3 and

C4 photosynthesis). In the JULES land-surface model, the terrestrial model used in this

study, vegetation is collected into 5 such groupings called plant functional types (PFTs).

Each PFT has a vector of approximately ten parameters describing it.

Even when parameters have a physical meaning that can be determined by experimental

measurements, these measurements are often carried out at small scales, for example on

leaves or on individual plants. These then need to be extrapolated to a value representative

of an entire ecosystem. This can be difficult given the spatial variability and non-linearity

of ecophysiological processes [Jarvis, 1995].

Calibration is a tool that can be used to improve these parameter values, determining the

best estimates. It is the act of confronting a model with observations and changing the

internal parameters so that the best match between model and observation is achieved.

This is a very powerful technique, which can improve the model output and refine knowl-

edge of the parameters. In addition, if the calibration is unable to find a satisfactory fit

of the model to the observations, it is often possible to deduce structural problems in the

model. These could include poorly described or missing processes in the model.

With respect to vegetation models, local flux measurements using the eddy-correlation

method constitute the observational data of choice, as they provide direct, continuous,

and high frequency observations of carbon and water vapour (discussed Sect. 2.2). These

measurements are found at individual sites typically covering a few hectares.

1.5. Key questions

The mathematical framework of data assimilation makes it possible to adjust the internal

parameters of a model and to quantify the contribution of this adjustment on the accu-

racy of the simulations. Optimising a model thus allows better parameterisation if the

calibration is conclusive, or suggests new conceptual development. This thesis proposes

to adopt this approach with the JULES land-surface model, using measurements of water
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1. Introduction

and carbon fluxes. The internal parameters varied in this study correspond to the PFTs

of JULES and are saved in a vector.

In light of the above, this thesis aims to answer the following key questions:

KQ1: Can a (locally) optimal vector of generic parameters for each of the

JULES PFT classes be found in a robust and repeatable manner?

Is it possible to create a robust framework in which repeatable and objective calibra-

tions take place? How complicated does the framework need to be? Is it possible to

calibrate over individual sites and pick one to be representative of the whole PFT?

KQ2: Are the PFT definitions in JULES robust or do the observations suggest

a different partitioning of the vegetation?

Do vegetation groupings in the JULES make sense? Is it possible to calibrate over the

whole PFT without creating too many outliers? And if calibrations are performed

over individual sites, do these results support the current PFT grouping? Is it

possible to look at the optimised parameter values for a specific site and know what

type of vegetation is found at that site?

KQ3: How do the parameter changes in JULES affect the model’s response to

CO2 driven climate change?

Once the model has been calibrated what does this mean for climate predictions?

Does calibration affect how the model responds to changes in atmospheric CO2 and

temperature?

1.6. Thesis structure

In Chapter 2, the different components that make up the adJULES system are introduced.

Beginning with the JULES land-surface model, some of the key equations are introduced

in Sect. 2.1.2, putting the critical parameters in context. These equations relate mainly to

photosynthesis, a vital process of the carbon cycle discussed above. In Sect 2.2, the data

used to constrain the model are presented. These are in situ eddy-covariance data taken

from the FluxNet database.

In Chapter 3, the cost function, the focal point of the optimisation scheme, is explored

in greater depth. In order to answer KQ1, a multi-site cost function is developed and its

robustness at different timescales is tested. In Sect. 3.3.2, the sensitivity of the system to

different initial conditions is discussed.

Chapter 4 is split into two parts, both with the aim of answering KQ2. In the first half,

the results of the optimisation are considered. In Sect. 4.1, the calibrations at site level

are explored, i.e. using in situ data at specific FluxNet sites. In Sect. 4.3, new generic

PFT parameter values are found by calibrating over multiple locations simultaneously.
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1. Introduction

The second half of Chapter 4 considers the ways in which the PFT representations in

JULES could be redefined. The results of Harper et al. [2016] are discussed, which redefine

the PFT through scientific changes. These are compared to the calibration results in

Sect. 4.4.2. The PFT definitions are also challenged through a clustering experiment

using the parameter values found in the site level experiments.

In Chapter 5, the main focus is KQ3. In this chapter, the calibrated and uncalibrated

versions of the JULES model are run with different atmospheric CO2 and temperature

perturbations in order to see if the response of the model has changed. This is done first

by focusing on photosynthesis in Sect. 5.1.1 and then by looking at Water Use Efficiency

(the ratio of carbon uptake through photosynthesis to loss water by transpiration) in

Sect. 5.1.2.

Finally, the main conclusions of the thesis are summarised in Chapter 6, with recommen-

dations for the development of the adJULES system and a brief discussion of possible

future work.

30



2. Background and Methodology

In this chapter, the different components of the adJULES system are introduced. In

Sect. 2.1, a land-surface model to be optimised is considered. The observations against

which to calibrate the model are considered in Sect. 2.2.

In Sect. 2.3, a data assimilation method within a Bayesian framework is discussed. Due

to the mathematical nature of this thesis, this discussion of methodology is the main

focus. Initially, in Sect. 2.3.2, data assimilation as a whole is discussed. This is followed

in Sect. 2.3.4 by a specific look at the adjoint method used in this thesis. Automatic

differentiation, which is used to generate the adjoint used in this project, is also covered

in Sect. 2.3.4.

Some of the diagnostic tools used to analyse and quantify the improvements made are

covered in Sect. 2.4. The chapter concludes in Sect. 2.5 by introducing the adJULES

system, which is the parameter estimation system developed in this study.

2.1. The JULES land-surface model

The JULES land-surface model [Best et al., 2011; Clark et al., 2011] simulates the inter-

actions between the land and the atmosphere. Originally developed from the Met Office

Surface Exchange Scheme (MOSES, Cox et al. [1999]), JULES can be used in a stand-alone

mode with observed atmospheric forcing data, or can be coupled into a general circulation

model (GCM). JULES is currently the land surface model used in the UK Met Office

Unified Model.

JULES is a mechanistic land-surface model including physical, biophysical, and biochemi-

cal processes. These control the radiation, heat, water, and carbon fluxes between land and

atmosphere in response to time-series of the state of the overlying atmosphere [Best et al.,

2011; Clark et al., 2011]. Processes such as photosynthesis, evaporation, plant growth,

and soil microbial activity are all linked through mathematical equations. These equa-

tions quantify how soil moisture and temperature govern evapotranspiration, heat balance,

respiration, photosynthesis, and carbon assimilation [Best et al., 2011; Clark et al., 2011].

JULES runs at a given sub-daily step (typically 30 minutes). Meteorological drivers such

as rainfall, incoming radiation, temperature, humidity, and wind speed are used as inputs.

The vegetation in the JULES model is categorised into five plant functional types (PFTs);

broadleaf trees (BT), needleleaf trees (NT), C3 grasses (C3G), C4 grasses (C4G), and
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2. Background and Methodology

Figure 2.1.: Schematic diagram of the JULES land-surface model retrieved from
http://jules.jchmr.org/content/about.

shrubs (Sh). Each PFT class has a different set of input parameters, the default values

for which are taken from a previous study [Blyth et al., 2010]. The leaf-level carbon

assimilation is calculated differently depending on whether a plant is modelled with a C3

or a C4 photosynthetic pathway.

The five PFTs, along with four non-vegetation surface types, exist on separate tiles within

each gridbox in JULES [Best, 2005]. The fractional area of each surface type can be

prescribed for each gridbox. A separate energy and carbon balance is calculated for each

tile. The gridbox average for each flux is taken by weighting the values from each tile.

In JULES, soil processes are modelled in several layers. However, all the tiles lie over

and interact with the same soil column [Best, 2005]. Meteorological driving variables

are needed for each gridbox along with variables that describe the soil properties at that

location.

JULES can be run for any number of gridboxes. It can also be run at a point where the

inputs are taken to represent conditions at that point. This latter configuration is used in

this project.

2.1.1. The JULES version used in this study

The JULES land-surface model is a community built model and under continual develop-

ment. The most up to date version of JULES in circulation at the start of this project

was version 3.4. The adJULES system utilises the adjoint of the JULES model - a com-

plex piece of code which requires time (and money when using commercial programs) to
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2. Background and Methodology

develop. This has meant that it has not been possible to keep up to date with the most

recent version of JULES and still be able to conduct scientific studies. The most recent

version of JULES to have an adjoint is 2.2. Therefore this is the version used in the

thesis. The most pertinent changes to JULES between versions 2.2 and 3.4 (summarised

from JULES version release notes found at http://jules.jchmr.org/content/about) are as

follows:

• JULES v3.0: integrates the IMOGEN impacts tool into the JULES release. IMO-

GEN is an emulation of climate change using pattern-scaling calibrated against the

Met-Office Hadley Centre GCM. A version of IMOGEN compatible with version 2.2

does exist and is briefly discussed in Chapter 5.

• JULES v3.1: restructuring of the code and interface.

• JULES v3.2: includes new output variables for isoprene. emissions

• JULES v3.3: set up to run in parallel and some improvements to the numerics in

the soil hydrology.

• JULES v3.4: more changes to the structure of the code.

Note that there have been no major scientific changes between versions 2.2 and 3.4, only

code structure changes. The scientific changes that have been made exist as switches

which are switched off in default JULES runs.

Despite the above, there have been a few significant scientific changes since the beginning

of this thesis. First, is the inclusion of a crop module in JULES (version 4.0). As a result,

when considering which FluxNet sites to use for this study, the crop sites were purposefully

omitted. The second major change has been to the plant physiology and PFT partitioning

described in Harper et al. [2016]. This work is further discussed in Chapter 4.

Since the trunk of the JULES code has not changed significantly between versions 2.2 and

3.4, the results found using this version will still be informative, with structural problems

identified, as well as parameter interactions and sensitivities, being easily be transferrable

to the newest versions of the model. Future work includes updating the adJULES system

to include the most current version of JULES. The framework and tools created during

this study will be applicable to later versions, provided the adjoint is generated.

Several high impact publications have been produced using version 2.2 of the model (e.g.

Gedney et al. [2006], Sitch et al. [2007], Cox et al. [2008], Booth et al. [2012]). Most

importantly for this study perhaps is Blyth et al. [2011], which lays out benchmarking tests

for JULES and acts as a precursor to this project. Without calibrating the model, Blyth

et al. [2011] found, for example, that JULES systematically underestimated photosynthesis

at temperate sites, while overestimating evaporation. These are the type of issues that

the adJULES system aims to tackle.
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2. Background and Methodology

2.1.2. Key parameters and their equations

Even a relatively simplistic land-surface representation such as JULES has over a hundred

internal parameters representing the environmental sensitivities of the various land-surface

types and PFTs within the model. In general these parameters are chosen to represent

measurable quantities within the real world (e.g. aerodynamic roughness length, surface

albedo, plant root-depth). This allows observationally-based estimates of these parameters

to be made in the early stages of the model development process.

Symbol Name in code Description Units

n0 nl0 Top leaf nitrogen concentration kgN (kgC)−1

f0 f0 Maximum ratio of internal to external

CO2

-

dr rootd ft Root depth m

α alpha Quantum efficiency molCO2 (mol PAR)−1

δc
δL dcatch dlai Rate of change of canopy interception ca-

pacity with leaf area index (LAI)

kg m−2

Tlow tlow Lower temperature for photosynthesis ◦C

Tupp tupp Upper temperature for photosynthesis ◦C

dqc dqcrit Humidity deficit at which stomata close kg kg−1

Table 2.1.: The key JULES parameters used in this thesis.

The eight parameters calibrated within this study (see Table 2.1) relate predominantly to

leaf-level stomatal conductance (g) and photosynthesis (A). Four of the parameters control

the responses of g and A to environmental conditions, such as surface temperature (Tupp,

Tlow), solar radiation (α), and atmospheric humidity deficit (dqc). The calibration param-

eters f0 and n0 essentially control the maximum values of leaf-level stomatal conductance

and photosynthesis. The remaining two calibration parameters influence the hydrological

partitioning at the land surface and relate to the amount of rainfall intercepted by the

plant canopy (δc/δL), and the root depth (dr) from which each PFT can access soil water

for transpiration. The simulated latent heat flux and gross primary productivity have

been found to be especially sensitive to these parameters in previous studies [Blyth et al.,

2010].

The full set of equations within the JULES model is documented in the literature by Best

et al. [2011] and Clark et al. [2011], but the key equations for C3 vegetation are highlighted

below. The C4 vegetation uses slightly different equations, but these only apply to two of

the sites in this study.

In JULES, leaf-level photosynthesis and stomatal conductance are treated with a coupled

model [Cox et al., 1998]. Based on the models of Collatz et al. [1991, 1992], leaf-level

photosynthesis A is controlled by the carboxylation rate (which depends on n0, Tlow,

Tupp) and light-limited photosynthesis (which depends on α).

When unstressed by water availability, the potential leaf-level photosynthesis Ap is the
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2. Background and Methodology

smoothed minimum of the following three limiting rates:

• Rubisco-limited rate

Wc = Vcmax(n0, Tupp, Tlow)

[
ci(f0, dqc)− c∗

ci(f0, dqc) +Kc(1 +Oa/Ko)

]
(2.1)

• Light-limited rate

Wl = α(1− ω)Ir

[
ci(f0, dqc)− c∗
ci(f0, dqc) + 2c∗

]
(2.2)

• Rate of transport of photosynthetic products

We = 0.5Vcmax(n0, Tupp, Tlow) (2.3)

where Vcmax (molCO2 m
−2 s−1; Eq. 2.5) is the maximum rate of carboxylation of Rubisco,

ci (Pa; Eq. 2.4) is the leaf internal CO2 partial pressure, Oa (Pa) is the partial pressure

of atmospheric oxygen, Kc and Ko (Pa) are Michaelis-Menten constants for CO2 and O2

respectively, c∗ (Pa) is the CO2 compensation point in the absense of mitochondrial respi-

ration, ω is the leaf scattering coefficient for PAR, and Ir is the incident photosynthetically

active radiation (PAR, molm−2 s−1).

The internal CO2 concentration ci is assumed to be dependent on the external CO2 con-

centration ca and the atmospheric humidity deficit dq [Cox et al., 1998] via the equation

ci − c∗
ca − c∗

= f0

(
1− dq

dqc

)
, (2.4)

where c∗ is the CO2 compensation point, and f0 and dqc are parameters that are calibrated

in this study. Rearranging this equation, ci can be written as a function of these two

parameters.

Vcmax is given by the following equation dependent on temperature T :

Vcmax =
n0ne2

(T−25)/10[
1 + e0.3(T−Tupp)

] [
1 + e0.3(Tlow−T )

] . (2.5)

where ne = 8× 10−4 molCO2m
−2 s−1 kgC (kgN)−1. To account for soil moisture stress,

the potential leaf photosynthesis Ap is multiplied by a soil water factor β to get the leaf

photosynthesis A [Cox et al., 1998],

A = Apβ (2.6)

β is the dimensionless moisture stress factor, which is related to the mean soil moisture

concentration in the root zone (θ), and the critical and wilting point concentrations (θc
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and θw) as follows:

β =


1 for θ > θc

θ−θw
θc−θw

for θw < θ ≤ θc

0 for θ ≤ θw

. (2.7)

β is also used to calculate the transpiration E′. Each soil layer k, the flux extracted is

e0kE where

e0k =
rkβk∑
k rkβk

(2.8)

with rk denoting the fraction of roots in soil layer k extending from depth zk1 to zk

rk =
exp(−2

zk−1

dr
)− exp(−2 zk

dr
)

1− exp(−2 zk
dr
)

. (2.9)

The plant root depth dr is a parameter optimised in this thesis.

The stomatal conductance for water vapour g is diagnosed in JULES from the leaf-level

photosynthesis A and the internal and external CO2 concentrations:

g = 1.6
A

ca − ci
. (2.10)

The factor of 1.6 converts the stomatal conductance for CO2 into a stomatal conductance

for water vapour.

The photosynthesis model used in JULES is based on scaling up observed processes at

the leaf scale to represent the canopy. The scaling to canopy level can be done in several

ways. In this study the simple ‘big leaf’ approach was adopted [Clark et al., 2011], although

optimisations can also be carried out for more complex canopy radiation options [Mercado

et al., 2009].

In the big leaf approach, incident radiation decreases through the canopy following Beer’s

law [Monsi and Saeki, 1953]:

Ic = I0e
−kLc (2.11)

where Ic is irradiance beneath the canopy, I0 irradiance at the top of the canopy, k is a

light extinction coefficient and Lc is the canopy leaf area index. Leaf-level photosynthesis,

which is assumed to vary proportionally with the vertical distribution of irradiance [Sellers,

1985], can be expressed in a similar manner

A1 = A0e
−kLc (2.12)

where A0 denotes the photosynthesis at the top of the canopy. The canopy photosynthesis

is then calculated as the integral of leaf-level photosynthesis over the entire canopy leaf

area index

Ac =

∫ Lc

0
A1dL =

A0

k

(
1− e−kLc

)
(2.13)

The canopy-level conductance is expressed in a similar manner.
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Finally, for rainfall rate R, the change in canopy water content is calculated as

∂C

∂t
= R− TF (Cm) (2.14)

where TF is the through-fall, which depends on Cm, the maximum canopy water that can

be held by vegetation. This in turn is calculated by

Cm = C0 +
δc

δL
L (2.15)

where C0 is the interception by leaf-less vegetation, L is leaf area index (LAI) and δc
δL is

the rate of change of water holding capacity with LAI.

The default values and prescribed ranges for each of the parameters used in this study are

shown in Table 2.2. The lower and upper bounds set for each parameter are elicited from

expert opinion.

BT NT C3 C4 Sh Lower bound Upper bound

n0 0.046 0.033 0.073 0.06 0.06 0.001 0.2

α 0.08 0.08 0.12 0.06 0.08 0.001 0.999

f0 0.875 0.875 0.9 0.8 0.9 0.5 0.99

Tlow 0 −10 0 13 0 −50 40

Tupp 36 26 36 45 36 25 50

dr 3 1 0.5 0.5 0.5 0.1 4
δc
δL 0.05 0.05 0.05 0.05 0.05 0.001 0.1

dqc 0.09 0.06 0.1 0.075 0.1 0.001 0.2

Table 2.2.: PFT-specific JULES parameters optimised in this study (Table 2.1). The prior
values and ranges for each PFT are given.

The eight parameters optimised were selected prior to this study and are part of a fix

subset integrated in the adJULES system. Increasing the subset of possible parameters to

choose from involves regenerating the adjoint code. As discussed in Sect. 2.1.1, generating

a new adjoint is beyond the scope of this project. Therefore no new parameters could be

optimised at this stage. With more time, a sensitivity test would help pick out the best

parameters to optimise.
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2.1.3. Driving data

In order to model the behaviour of vegetation evolving against time, JULES uses the

following local driving data at each time-step:

• Pstar: Air pressure (Pa)

• T: Air temperature (K)

• q: Specific humidity (kg kg−1)

• wind: Wind speed (m s−1)

• Precip: Precipitation (kgm−2 s−1)

• SW down: Downward shortwave radiation (Wm−2)

• LW down: Downward longwave radiation (Wm−2)

Data for each of these variables are obtained from half-hourly gap-filled meteorological

data measured at in situ field sites. The driving data are also used to spin up the model

from an arbitrary starting point to a steady soil moisture and temperature state.

2.2. FluxNet data

Eddy-covariance flux data are used to drive and calibrate the model. These data are

part of FluxNet [Baldocchi et al., 2001]. At each FluxNet site there is a tall ‘flux’ tower

that measures the net carbon and water fluxes between the surrounding atmosphere and

vegetated canopies. The data are collected at a high temporal resolution (half-hourly)

continuously day and night, in some cases over multiple years [Papale, 2012]. The FluxNet

database contains more than 500 locations worldwide, and all of the data are processed

in a consistent manner using standard methodologies including correction and gap-filling

[Papale et al., 2006].

2.2.1. The eddy-covariance technique

The mathematics of eddy-covariance

Air flow can be imagined as a horizontal flow of numerous rotating eddies, all having

horizontal and vertical components [Burba and Anderson, 2010]. The vertical movement

of the components can be measured from the tower. As the wind passes a tower, the tower

measures the covariance between the concentration of CO2 (or water vapour concentration)

and the vertical wind component of each eddy [Baldocchi et al., 2001].
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In turbulent flow, vertical flux is equal to the mean time of the product of air density ρa

(molm−3), vertical wind speed w (m s−1) and the mixing ratio χ of the gas of interest

F = ρaχw. (2.16)

When calculating carbon fluxes, the gas of interest is CO2. When calculating latent heat,

the gas of interest is water vapour.

Reynolds decomposition [Reynolds, 1895] is a mathematical technique used to separate

a scalar ϕ into a sum of its average (ϕ) and fluctuating (ϕ′) parts. The fluctuations, or

‘perturbations’, are defined such that their time average equals zero (ϕ′=0).

Using Reynolds decomposition on F , each component can be broken down into its mean

and fluctuation. By assuming that the air density fluctuations are negligible (ρ′a ≈ 0) and

that vertical flow is negligible for horizontal homogeneous terrain (w ≈ 0), i.e. there is no

divergence or convergence, F can be rewritten as:

F = ρa χ′w′︸︷︷︸
eddy−covariance

(2.17)

Limitations

Before discussing the limitations of the eddy-covariance data, it is important to clarify the

difference between error and uncertainty. Error is the difference between the measurement

and truth, whereas uncertainty is the confidence placed on the measurement.

The varying footprints, i.e. the area ‘seen’ by the flux tower, can be a source of errors and

uncertainties. This can affect the data quality particularly if the area is inhomogeneous

and patchy [Göckede et al., 2006]. Several errors can also occur due to instrumentation

limits such as collection frequency. Most of these problems can be solved by applying

correction procedures accordingly [Papale et al., 2006].

Despite the sophisticated instruments and data processing methods, technical and human

faults are inevitable. These faults create gaps in the data. Common failures during the

collection phase include power breaks due to solar panels and damaged instruments due

to animals or lightning [Papale, 2012]. Gaps are also created in the data during the data

quality control phase; measurements not acquired during the ideal conditions are filtered

out. Falge et al. [2001] estimated that 35% of data are missing or rejected (based on a 19

site experiment) whilst Papale et al. [2006] suggested between 20-60% of the data were

rejected based on quality filters alone.

The presence of gaps in the time-series is not necessarily a problem in itself. Due to the

high temporal resolution of the measurements, there can exist many similar observations

found in similar conditions. The problem occurs when the gaps do not happen randomly

but systematically, e.g. over large timescales such as solar panels powering down in winter.

Gap filling algorithms exist to cover such periods. Extensive information on these can be
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found in Falge et al. [2001], Moffat et al. [2007], and Papale [2012].

There are three other known sources of errors in eddy-covariance. First, the underestima-

tion of night time fluxes is a recurrent problem identified by Goulden et al. [1996]. Eddy

flux measurements can underestimate the net ecosystem exchange during periods with low

turbulence and therefore limited air mixing. This error occurs at night when there is a

net emission of CO2. Therefore, the ecosystem respiration is often underestimated and

the carbon assimilation overestimated [Moncrieff et al., 1996]. Second, is the problem of

energy closure. The incoming radiant heat does not equal the sum of the outgoing latent

and sensible heat fluxes. These two errors are called systemic errors. They are constant

but unknown.

The last source of error is due to random measurement errors in the flux data. These

include errors due to the stochastic nature of turbulence, the variations in the direction

of the wind, and instrumental error. There have been different approaches used to assess

these errors. Hollinger and Richardson [2005] compare the measurements from two towers

with the same footprint, and Richardson et al. [2006] compare measurements made on

successive days from the same tower under the same environmental conditions. The most

common method is the model residual approach which uses the difference between the data

and the outputs from a highly tuned empirical model [Richardson et al., 2008; Stauch et al.,

2008; Lasslop et al., 2008]. The model error is assumed to be negligible and therefore the

model residual can be attributed almost entirely to random measurement error [Moffat

et al., 2007].

Partitioning NEE into GPP and Reco

The carbon flux between the canopy and the atmosphere (NEE) is defined as the differ-

ence between the the respiration of the ecosystem (Reco) and the carbon assimilated by

photosynthesis (GPP). The measured NEE therefore does not reveal the actual value of

either flux. Algorithms have been developed to partition NEE into these two components.

The data used in this thesis are partitioned using the algorithm described in Reichstein et

al. (2005). This proposed methodology uses two key ideas. First, it exploits the fact that

photosynthesis does not occur at night, i.e. GPP is 0 and therefore NEE = Reco. Second,

it assumes that the temperature sensitivity of Reco follows the exponential regression

model laid out in Lloyd & Taylor (1994):

Reco = Rref · exp
[
E0

(
1

Tref − T0
− 1

T − T0

)]
, (2.18)

where Tref = 10◦C and T0 = −46.02◦C, and E0 determines the temperature sensitivity.

To calculate Rref and E0, Reco is calibrated using night-time NEE over a 15 day window,

and then extrapolated during the day-time. Finally, GPP is calculate from the estimated

Reco and measured NEE.
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It is important to remember that Reco and GPP are calculated by a model and therefore

subject to its assumptions. The values are derived from NEE measurements and hence

cannot be treated as independent.

2.2.2. FluxNet sites used in this thesis

Data from 160 sites were made available for this study by M. Groenendijk. These sites

were selected based on data availability; sites with missing input variables or data gaps of

more than 50% during the growing season were omitted.

Since the FluxNet database does not distinguish between the different types of grasslands,

using Met Office ancillary files, the grasslands were partitioned into C3 grasses and C4

grasses according to fractional cover. In the case of C3 grasses, sites were picked only

when the fractional cover was over 60%. Since the C4 grasses are under-represented in

the FluxNet database, this boundary was lowered to include all sites where C4 grass was

the dominant PFT. Crops were not included in either grass class, as discussed in section

2.1.1.

In all, one year of FluxNet data is used for each site considered in this study at the

calibration stage. Where multiple years are available, the most complete year was chosen.

For each site the model is spun up to a steady soil moisture and temperature state. Where

possible, the 2 years of data preceding the year of comparison were applied repeatedly in

the spin up. Where this was not possible, the first year of data was repeatedly applied.

Only sites with at least 2 years of data are used in this study, so that the spin-up year

is different from the experiment year. In each case, the model was spun up for at least

50 years. For deciduous sites and crop sites, leaf area index values are taken from MODIS

data for the appropriate year. Where possible, a second year of FluxNet data was spun

up to be used at the evaluation stage of this study. This second year was chosen to be the

second most complete year when more than 1 year was available.

After filtering out sites without a dominant PFT or without at least 2 years of data, 81

where left. The sites used in each of the PFT classes are described in Table A.1 and their

locations shown in Fig. 2.2. From Fig. 2.2 it is clear that the FluxNet sites used are

concentrated in the northern hemisphere, notably in Europe and North America.

To constrain photosynthetic parameters described in section 2.1.2, this study uses the

gross primary productivity (GPP) and latent heat (LE) fluxes calculated at each of these

sites. As described in section 2.2.1, GPP is one of the products partitioned from the NEE

carbon flux, the other being Reco [Reichstein et al., 2005]. The Reco flux is sensitive to soil

parameters which are not part of the parameters used to define the PFTs. Since one of

the aims of this thesis is to find new generic parameters for each PFT, the soil parameters

were not chosen as part of the study and, therefore, the respiration flux was not used for

calibration. Even though GPP data are model-derived estimates, which could introduce

an additional uncertainty into the results, they are separate from the respiration flux. This

is why the data stream is chosen instead of the NEE flux.
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Figure 2.2.: The distribution of the FluxNet sites used in this thesis, broken down by PFT.

The choice of fluxes against which to calibrate will affect the results. Due to model struc-

tural errors, calibration against two particular observables could cause model simulations

of other fluxes (not used in the tuning) to become worse [Gupta et al., 1999].

2.2.3. Other site data used

In an attempt to run the experiments as closely as possible to a standard JULES run, input

fields of vegetation structure and soil type were drawn from the UK Met Office ancillary

files used in the HadGEM2 configurations. The LAI seasonal cycle used is derived from a

MODIS product [Myneni et al., 2002] from Boston University. The values taken for each

of the experiment sites correspond to the closest grid point at which data are available.

This could lead to inconsistencies between the actual vegetation at a given site and the

vegetation structure and soil type used in the model.

The decision to prescribe LAI dated from Luke [2011] when adJULES was set up the

calibrate the FluxNet sites from Blyth et al. [2011]. However, since LAI can also be

directly calculated by JULES, this would be more desirable for future experiments. The

use of prognostic LAI would solve the mismatch in spatial scale between flux towers and

MODIS.

2.2.4. Example of a JULES run

Figure 2.3 shows the JULES modelled output for gross primary productivity (GPP), the

carbon flux used in this project. This run uses driving data from a broadleaf site in

Denmark (DK-Sor). As mentioned above, this run is conducted at a single point.
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Figure 2.3.: A default JULES run for GPP at the DK-Sor site. One year is shown at
different frequencies: half-hourly (a), daily (b) and monthly (c). The modelled time-series
(red) is plotted against observations from that site (black).

The JULES model outputs half-hourly data (Fig. 2.3a). Figures 2.3b,c show this first

run averaged over different time-scales. The observations shown in each plot are averaged

in the same manner. These observations are eddy-covariance flux data taken from the

DK-Sor site (see section 2.2). In all cases, the modelled GPP is seen to be underestimated

compared to the observations. Due to known structural problems in the photosynthesis

model, this thesis does not try to fit subdaily cycles but will focus on fitting the seasonal

cycle.

For m time points, 365 for daily data and 12 for monthly data, the modelled time-series

can be saved in a vector mt of length m. A similar observation vector ot can also be

constructed. This notation is used for the rest of this thesis.

2.3. Data Assimilation

So far, the land-surface model has been introduced, along with the parameters to be opti-

mised, and the observational data against which to calibrate. This next section concerns

different optimisation techniques and applications.

2.3.1. Terminology

To improve the performance of a model, two components can be optimised. Either the

values of unknown parameters (parameter estimation) or the predictions of the model

according to a given data set (state estimation). This is achieved by trying to find an

‘optimal match’ between the model and the observations by varying the properties of the

model [Peng et al., 2011]. This process is also sometimes referred to as calibration.

The term Data Assimilation is commonly used to describe the process of using observations

to refine the initial state within a numerical representation of a system [Bouttier and

Courtier, 2002]. This is most obviously the case for weather forecasting, in which the

temperature, humidity and wind fields define the initial state. However, data assimilation

techniques have also been used for parameter estimation, for example in hydrological

43



2. Background and Methodology

models (Madsen [2003], Liu and Gupta [2007]), and carbon cycle data assimilation systems

(CCDAS; Rayner et al. [2005], Kaminski et al. [2013]). In parameter optimisation by data

assimilation, the internal parameters of a model take on the role of the dynamical state

variables in initial state estimation by data assimilation. Nevertheless, the underlying

techniques (e.g. of defining a model adjoint and minimising the error in the fit to data),

are very similar in these two applications of data assimilation. This study is certainly not

the first to define parameter estimation of this form as data assimilation (Braswell et al.

[2005], Stöckli et al. [2008], Verbeeck et al. [2011], Kuppel et al. [2012], Hararuk et al.

[2014]).

Another term in the literature is Model-data fusion. It encompasses both data assimila-

tion (in its classic definition) and inversion techniques (i.e. using observed properties to

constrain scientific processes) [Peng et al., 2011].

Finally, optimisation refers to the branch of mathematics concerned with minimising (or

maximising) an objective function. In this project, the objective function is a cost function

based on the differences between observed and modelled fluxes.

2.3.2. Data assimilation methods

Data assimilation allows for integrating multiple types of data, while making allowance

for associated uncertainties and including prior knowledge. The optimisation techniques

used in data assimilation fall into two categories: batched and sequential.

Notation

Taking the common notation from Bouttier and Courtier [2002], the dimension of the state

space of the system is denoted by n and the dimension of the observation space by m:

x state vector of size n that describes the state of the forecast model

xt the true state of the system

xb the background state, an initial guess

xa the analysis which is an estimate of xt

xf the forcast

y observation vector of size m (denoted o in the later parts of this work)

H observation operator which maps x from model space to observation

space (denoted m in the later parts of this work)

B the background error covariance matrix

R the observation error covariance matrix

In parameter estimation, the state vector x becomes a vector of parameters, with n de-

noting the number of parameters used in the optimisation.
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Sequential methods

Sequential methods process the data one by one. Initialised by the background state xb,

these methods work as a two-part cycle. First the model is used to evolve a previous state

estimate (analysis) to find a forecast. Then, once an observation becomes available, the

observation is used to update the forecast state to give an improved analysis.

The most famous example of sequential data assimilation is the Kalman filter (Williams

et al., 2009). The Kalman gain K is an evolving weight matrix dependent on model state

errors and observation errors. It is used to adjust the model forecast xf to an analysis xa:

xa = xf +K(y −H(xf )) (2.19)

The Ensemble Kalman filter is an extension of the Kalman filter used for non-linear prob-

lems [Raupach et al., 2005]. The idea behind it is to use a statistical sample (ensemble)

of state estimates instead of a single estimate. For example, Quaife et al. (2008) uses the

Ensemble Kalman filter to estimate model parameters.

Batch methods

Unlike sequential methods, batch methods process all the data at once. The model is run

forwards with the background state xb for the whole of the assimilation window, before

being confronted by observations.

In batched optimisation, a cost function J , also known as an objective function, is min-

imised. In most examples, the cost calculates the difference between model outputs H(x)

and observations y as well as the mismatch between background xb and optimal state x

[Williams et al., 2009]:

J(x) =
1

2

[
(y −H(x))TR−1(y −H(x)) + (x− xb)

TB−1(x− xb)
]
. (2.20)

Batch methods can be further broken down into two categories; gradient-based and ‘global

search’ methods. These categories refer to the approach used to minimise the cost function.

Gradient descent algorithms find a direction in parameter space along which to minimise

the cost function. These methods are deterministic and highly efficient, often converging

with relatively few iterations. However, they may discover local rather that global minima

[Williams et al., 2009]. Local minima refer to turning points found in some neighbourhood

that need not be a global minimum (Fig. 2.4). A local minimum is found either when the

gradient is zero or at the boundaries of the domain. These are both termination criteria

for gradient descent algorithms, however, they do not guarantee the lowest point. A global

minimum is the lowest value the function J(x) can take over the whole x domain.

Posterior uncertainties for gradient descent algorithms are calculated using model output

sensitivity or in some cases the second derivative of the cost function with respect to
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x

J(x)

Local Minimum

Global Minimum

Figure 2.4.: Visualisation of global minimum vs local minima in one-dimension.

the parameters (Hessian). For an example of a gradient descent algorithm used for pa-

rameter optimisation, see Santaren et al. [2007], where the cost function is differentiated

analytically in order to find the descent direction (see Sect. 2.3.4).

Global search algorithms are often based on a random generator e.g. genetic algorithms,

or Markov Chain Monte Carlo, as used in a study by Braswell et al. [2005]. They are

more likely to find a global minimum and are well adapted to highly non-linear models.

However, they tend to have a high computational cost [Peng et al., 2011].

In this study, the adjoint model is used to find the descent direction (further described in

Sect. 2.3.4).

A combination of batch methods is used in Vrugt et al. [2005]. The study starts with

a global search to find the right area of parameter space, followed by a gradient-based

method to find the minimum.

2.3.3. Data assimilation with LSMs

There have been many studies using a large variety of data assimilation methods to im-

prove land-surface models. The optimisation techniques used range from simple ad hoc

parameter tuning to rigorous data assimilation frameworks, and cover various LSMs, to

derive vectors of parameters that improve model–data fit significantly (e.g. Wang et al.,

2001, 2007; Reichstein et al., 2003; Knorr and Kattge, 2005; Raupach et al., 2005; Santaren

et al., 2007; Thum et al., 2008; Williams et al., 2009; Peng et al., 2011). However, very

few studies have quantified the errors in the observations, model parameters, and model

structure systematically and consistently [Wang et al., 2009].
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Peng et al. [2011], Raupach et al. [2005], Wang et al. [2009] and MacBean et al. [2016]

all provide comprehensive summaries of these studies outlining the advantages and disad-

vantages of the methods used. Peng et al. [2011] clearly lays out different methodologies

with their key features and applications to LSMs in a concise table. Williams et al. [2009]

also give an overview, describing a clear framework for using FluxNet data to improve

land-surface models, and a breakdown of data assimilation methods. They also give an

explanation of FluxNet sites along with the characteristics and limitations of the data

available.

Parameter estimation with LSMs

In numerical weather prediction, data assimilation has predominately been used to opti-

mise the state whilst keeping the parameters fixed. This is because the physics are mostly

known and well understood. In terrestrial carbon cycle models however, where most of

the equations are unknown, finding the correct set of parameters is more pertinent [Luo

et al., 2015]. Due to their easy implementation, Monte Carlo Markov Chain (MCMC)

methods have dominated the field. Smaller ecosystem models are much less computation-

ally expensive than numerical weather prediction models and so many ensemble runs can

be performed. For example, Rosolem et al. [2012] uses a multi-operator genetic algorithm

on the Simple Biosphere 3 model and data assimilation experiments on the Data Assimila-

tion Linked Ecosystem Carbon (DALEC) model [Williams et al., 2005] have predominately

been sequential and MCMC.

For larger scale global models, variational methods are much more efficient. Key ex-

amples of such implementations are the ORganizing Carbon and Hydrology In Dynamic

EcosystEms model (ORCHIDEE) [Krinner et al., 2005] and the Biosphere Energy Trans-

fer HYdrology scheme (BETHY) as part of a Carbon Cycle Data Assimilation System

(CCDAS) (Rayner et al. [2005]; Kaminski et al. [2013]).

The majority of LSMs group vegetation into a small number of PFTs. Model parameters

are assumed to be generic over each PFT. Through different optimisation techniques, some

studies have tried to assess the robustness of PFT-specific parameters (e.g. Kuppel et al.,

2014). Medvigy et al. [2009] and Verbeeck et al. [2011] both showed that parameters

derived at one site can perform well on a similar site and over the surrounding region

(Medvigy and Moorcroft, 2011). However, a contradictory study by Groenendijk et al.

[2011] found that there was cross-site parameter variability after optimisation within the

PFT groupings.

Many of these studies calibrate the model at individual measurement sites. Given the

small spatial footprint of each flux tower, this can often result in over-tuning. This over-

tuning may occur when a single site does not represent the full range of a plant functional

type (PFT), given different tree types, tree ages, and above-ground biomass found at

each site. There may be some anomalous plants in the flux tower footprint that are not

representative of the PFTs over a broader area. The optimised model parameters are site
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specific and often struggle to perform as well when generalised over other sites [Xiao et al.,

2011].

In the last few years, there has been a move towards deriving PFT-specific parameters

using data from multiple sites, the results of which have been generally positive (e.g. Xiao

et al., 2011 and Kuppel et al., 2012). Both of these studies used data from multiple

sites in their optimisation (calling it multi-site optimisation) and have commented on the

robustness of this technique, showing that the choice of the initial parameter vector had

little effect on the optimised values.

Kuppel et al. [2012] compared different approaches for finding generic PFT-specific param-

eters, such as averaging optimised parameter vectors over PFTs and directly optimising

over multiple sites. They found that the latter method was best for finding PFT-specific

parameters. The multi-site optimisation procedure was refined in Kuppel et al. [2014],

extended to other PFTs, and evaluated at a global scale.

For global modelling, there is a clear need to find generic parameters and associated

uncertainties for each PFT by optimising against observations in a reproducible way.

Data assimilation with JULES

There have been very few studies of data assimilation on JULES, most of which have

used ensemble methods to improve the state of the model. Ghent et al. [2010] use an

ensemble Kalman filter (described in section 2.3.2) to improve the simulations of land

surface temperature and some preliminary work by Quaife et al. [2014] looks at assimilating

satellite data into JULES via a particle filter (also known as sequential Monte Carlo).

These methods are relatively easy to implement, but costly when large ensembles are used.

Due to the random element of these methods, the results are not always reproducible.

The JULES study most resembling the work performed in this thesis is the unpublished

work of Pearson et al. [2009]. Also aiming to optimise carbon cycle parameters, their

presentation states that due to the complexity of JULES, for parameter estimation, vari-

ational data assimilation wins over monte carlo methods.

Due to the lack of a rigorous and established data assimilation framework, the default

parameters in JULES have remained unchanged for many years. When calibrating the

model, rather ad hoc methods are used with the modeller varying the parameters that

he/she believes are most relevant to the model performance. Such model tuning is by its

very nature subjective, lacks reproducibility, and is often sub-optimal because the modeller

is unable to explore the full feasible parameter space through such a manual technique.

The adJULES system provides this much-needed framework. Using the adjoint method

and a gradient-descent method, it has the ability to find minima rapidly across multiple

parameters via matrix inversion and has the advantage of reproducibility.
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2.3.4. The adjoint method

Descent algorithm

Most of the theory in this section in taken from Press et al. [2007]. This thesis uses

a gradient-based algorithm, a method which uses the derivative of a function to pick a

direction in parameter space along which to minimise (or maximise) the function.

One example is gradient-decent, also known as method of steepest descent. As the name

suggests, it uses the gradient to find the direction of steepest descent. The negative

gradient acts as a compass pointing downhill. Starting at point x0, this methods works by

iteratively minimising a function along this downhill direction for a step size γ. In order

to use this method, the function needs to be defined and differentiable in a neighbourhood

around each xi.

xi+1 = xi − γi∇f(xi), i ≥ 0. (2.21)

For small enough γi, a sequence {xi} is constructed with f(xi) > f(xi+1), which hopefully

converges to a local minimum. The step size γi is allowed to change between iterations.

The choice of γi is vital to this method. If γi is too small, the method will be too slow

and will need many iterations to converge. If γi is too big, it might miss the minimum.

Similarly, Newtonian algorithms of descent attempt to construct a sequence xi converging

towards some value x∗, but here, they also use the second derivative of f . In one dimension,

the algorithm is derived by taking the second order Taylor expansion of f around xi where

δx denotes a small change in x.

f(xi + δx) ≈ f(xi) + f ′(xi)δx+
1

2
f ′′(xi)δx

2. (2.22)

This expression is then differentiated with respect to δx and set to zero. This yields the

following relationship

δx = −f ′(xi)/f ′′(xi). (2.23)

This in turn gives an iterative sequence that converges to the stationary point x∗

xi+1 = xi + δx = xi − f ′(xi)/f
′′(xi). (2.24)

This methods works by fitting a quadratic function around xi and stepping towards the

minimum of that quadratic. By using this curvature information, the method takes a more

direct route than the gradient-descent method.

Generalising this iterative scheme to higher dimensions, the gradient, called the Jacobian

matrix, is denoted by∇f and the second derivative, called the Hessian matrix (or curvature

matrix) is denoted by C,

xi+1 = xi −C−1 · [∇f(xi)], i ≥ 0. (2.25)
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The Hessian is the matrix composed of second partial derivatives, i.e.

Cjk =
∂2f

∂xj∂xk
, (2.26)

where xj represents the different elements of x.

Finding the inverse of the Hessian, C−1, in high dimensions can be costly. Quasi-Newton

methods approximate the Hessian used in the optimisation algorithm at every iterative

step i. This approximation helps cut computational costs. There are several ways the

Hessian can be approximated, of which the BFGS method is the most used (suggested

independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970).

In this thesis, a cost function similar to Eq. 2.20 is minimised iteratively using a gradient-

based algorithm called L BFGS B (Byrd et al. [1995], optim: R Development Core Team

[2015]). This is based on the BFGS quasi-Newton method but is modified to use limited

memory, for computational affordability, and box constraints, so each parameter is given

an upper and lower bound based on an educated opinion or physical reasoning [Byrd et al.,

1995].

Theory of automatic differentiation

Knowledge of the gradient of the cost function with respect to the model variables is

needed as part of the descent algorithm. An efficient way to calculate the gradient of the

cost function with respect to many parameters is through an adjoint model [Giering and

Kaminski, 2003].

Automatic differentiation is software used to find the derivative of a function specified by a

computer program [Naumann, 2011]. Since every computer program can be broken down

into a sequence of elementary arithmetic operations (e.g. +, -, ×,÷ . . . ) and elementary

functions (e.g. exp, log, sin, cos . . . ), the chain rule is applied repeatedly to these operations

to compute the derivative accurately.

Consider a model as a mapping of input variables onto output variables,

f : Rn → Rm.

The first derivative of the model (assuming the mapping is differentiable) is the Jacobian

matrix. Automatic differentiation allows us to evaluate the Jacobian matrix numerically.

There are two ‘modes’ of automatic differentiation: the forward mode which generates

the tangent linear model (similar to a person using the chain rule), and the reverse mode

which generates the adjoint model. Both modes generate identical derivatives [Errico,

1997], the choice of forward or reverse mode refers to the order in which the derivatives

are computed. The Jacobian matrix can be generated with n sweeps in forwards mode,

or m sweeps in the reverse mode.
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Simple example

To illustrate the difference between the two modes, following Berland [2006]’s example,

consider the following function:

f(x1, x2) = x1x2 + sin(x1) (2.27)

This can be broken down into a sequence of operations (namely ×,+, sin) on work variables

wi as follows:

w1 = x1 (2.28)

w2 = x2 (2.29)

w3 = sin(w1) (2.30)

w4 = w1w2 = x1x2 (2.31)

w5 = w3 + w4 = w1w2 + sin(w1) = x1x2 + sin(x1) (2.32)

When differentiating in the forward mode, as shown in Fig. 2.5, the work variables are

differentiated sequentially, moving forwards through the sequence of operations and down

the figure. To give the different derivatives, the computation is seeded by ẇ1, ẇ2 ∈ {0, 1}
with ẇ1 ̸= ẇ2. When ẇ1 = 1, the function is differentiated with respected to x1. Similarly,

when ẇ2 = 1, the function is differentiated with respected to x2.

The differentiation procedure is as follows:

ẇ1, ẇ2 ∈ {0, 1} (2.33)

ẇ3 =
∂w3

∂w1
ẇ1 = cos(w1)ẇ1 (2.34)

ẇ4 =
∂w4

∂w1
ẇ1 +

∂w4

∂w2
ẇ2 = ẇ1w2 + w1ẇ2 (2.35)

ẇ5 = ẇ3 + ẇ4 = ẇ1w2 + w1ẇ2 + cos(w1)ẇ1 (2.36)

It is easy to see that seeding with (ẇ1, ẇ2) = (1, 0) gives

∂f

∂x1
= x2 + cos(x1) (2.37)

and similarly seeding with (ẇ1, ẇ2) = (0, 1) gives

∂f

∂x2
= x1. (2.38)

The reverse mode is shown in Fig. 2.6. This time the operation starts with the complete

function and propagates backwards through all dependencies. This reverse pass starts at

the end, i.e. with

f̄ =
df

df
= 1. (2.39)
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+

f(x1, x2)

×sin

x2x1

ẇ1
ẇ1 ẇ2

ẇ3 = cos(w1)ẇ1 ẇ4 = ẇ1w2 + w1ẇ2

ẇ5 = ẇ3 + ẇ4

w1 w2

w3 w4

w5

seeds, ẇ1, ẇ2 ∈ {0, 1}

1

Figure 2.5.: Automatic differentiation in forward mode on f(x1, x2), adapted from Berland
[2006].
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×sin
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ẇ1 ẇ2
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w3 w4
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+

×

x1 x2

sin
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w1 w2

w3 w4
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ẇ1 ẇ2

ẇ3 = cos(w1)ẇ1

ẇ5 = ẇ3 + ẇ4

f̄ = w̄5 = 1 (seed)

w̄3 = w̄5
∂w5
∂w3

= w̄5 · 1 w̄4 = w̄5
∂w5
∂w4

= w̄5 · 1

w̄a
1 = w̄3 cos(w1)

w̄b
1 = w̄4w2

w̄2 = w̄4
∂w4
∂w2

= w̄4w1

x̄1 = w̄a
1 + w̄b

1 = cos(x1) + x2 x̄2 = w̄2 = x1

1

Figure 2.6.: Automatic differentiation in reverse mode on f(x1, x2), adapted from Berland
[2006].
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This expression states that a change in f results in exactly the same change in f . This is

equivalent to seeding the computation with f̄ = w̄5 = 1. Since there is only one output,

only one derivation computation is required.

Using the chain rule and the work variables wi as defined above, the differentiation pro-

cedure in reverse mode is as follows:

First, the computation is seeded with 1

w̄5 =
∂f

∂w5
= 1 (2.40)

To calculate the next work variables down the tree, the chain rule is utilised to get w̄4 =
∂f
∂w5

× ∂w5
∂w4

and w̄3 =
∂f
∂w5

× ∂w5
∂w2

. Since w5 is linear depend on w3 and w4

w̄4 = w̄5
∂w5

∂w4
= w̄5

∂

∂w4
(w3 + w4) = w̄5 × 1 = w̄5 = 1 (2.41)

w̄3 = w̄5
∂w5

∂w3
= w̄5

∂

∂w3
(w3 + w4) = w̄5 × 1 = w̄5 = 1 (2.42)

Using the chain again, w̄2 = ∂f
∂w4

× ∂w4
∂w2

. Therefore, from the definition of w4 and rules of

partial derivatives, w̄2 is calculated as follows

w̄2 = w̄4
∂w4

∂w2
= w̄4

∂

∂w2
(w1w2) = w̄4w1 = w1 (2.43)

To move down to w1, there are two paths possible since w1 contributes to f via w3 and

w4. Both are possibilities are calculated using the chain rule and summed together to get

w̄1

w̄a
1 = w̄3

∂w3

∂w1
= w̄3

∂

∂w2
(sin(w1)) = w̄3 cos(w1) = cos(w1) (2.44)

w̄b
1 = w̄4

∂w4

∂w1
= w̄4

∂

∂w2
(w1w2) = w̄4w2 = w2 (2.45)

w̄1 = w̄a
1 + w̄b

1 = cos(w1) + w2 (2.46)

This calculation yields

∂f

∂x1
= x̄1 = w̄a

1 + w̄b
1 = cos(x1) + x2 (2.47)

and
∂f

∂x1
= x̄2 = x1, (2.48)

which are identical to the partial derivatives found when differentiating in forwards mode.

In this example, since f : R2 → R, n = 2 and m = 1. The forward mode took two sweeps,

whereas the reverse mode only required one sweep. One sweep in reverse mode is more

involved compared to one sweep in forwards mode, requiring six operations compared to

three. However, since the forwards mode here requires two sweeps, it is easy to see that

given a high enough number of variables xi, i.e. situations when m≪ n, the reverse mode
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is more efficient.

This study uses automatic differentiation software from FastOpt [FastOpt, 2010]. In the

example, the software processes the FORTRAN code for the function:

subroutine f(x, y)

real x(2),y

y = x(1) * x(2) + sin(x(1))

end

and produces code for the Jacobian:

Forward Mode (Tangent Linear)

subroutine f tl( x, x tl, y, y tl )

real x(2),x tl(2),y,y tl

y = x(1)*x(2)+sin(x(1))

y tl = x tl(2)*x(1)+x tl(1)*(x(2)+cos(x(1)))

end

Reverse Mode (Adjoint)

subroutine f ad( x, x ad, y, y ad )

real x(2), x ad(2), y, y ad

y = x(1)*x(2)+sin(x(1))

x ad(2) = x ad(2)+y ad*x(1)

x ad(1) = x ad(1)+y ad*(x(2)+cos(x(1)))

y ad = 0.

end

Both algorithms can be used to calculate the derivative of f(x, y). The algorithm gen-

erated in forward mode is known as the tangent linear, whereas the code generated in

reverse mode is called the adjoint.

Creating the adjoint model

For the purposes of parameter estimation, the function in question is the cost function

J : Rn → R, where n is the number of parameters to optimise.

Calculating ∇J is most efficient in reverse mode as only one sweep is needed to generate

the derivative with respect to all parameters. As discussed in the previous section, the

complexity of one sweep in forward mode is proportional to the complexity of the original

code. The complexity of one sweep in reverse mode is greater than this, but not as great

as n-times the complexity of the original code. Therefore, for large enough n, the reverse

mode is more efficient for calculating ∇J [Bartholomew-Biggs et al., 2000].

JULES has been differentiated line by line using commercial software from FastOpt [FastOpt,

2010] to create the adjoint model adJULES. In order to differentiate the model, disconti-

nuities in the model caused by step changes in the code (i.e. IF, MAX and MIN statements)

needed to be smoothed out [FastOpt, 2010]. It is possible to replace such statements with
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smoother alternatives. For example, IF statements of the form:

IF x > a

f = b

ELSE

f = c

can be replaced with the following function:

f(x) =
1

1 + e−2k(x−a)
b+

1

1 + e2k(x−a)
c (2.49)

where k is a ‘sharpness’ constant. It is easy to see that the left-hand term dominates when

x > a and similarly, the right-hand term dominates when x < a.

For MAX and MIN functions, also using a sharpness constant k, a smooth alternative for the

function g=max(x,y) is

g(x, y; k) =
ln(exp (kx) + exp (ky))

k
(2.50)

and for the function h=min(x,y), a smooth alternative is

h(x, y; k) =
− ln(exp (−kx) + exp (−ky))

k
. (2.51)

Smoothing parts of the model code is allowed because generally the world operates in a

smooth manner. For example, a tree could be modelled in such a way that when the

temperature is below a threshold, it loses all its leaves at once. In reality, the tree would

be losing its leaves gradually with decreasing temperature. In practice, the MAX and MIN

statements have been the main causes of discontinuities in JULES [Luke, 2011].

Generating the adjoint to use in the adJULES system is complicated and very costly. As

such, the adJULES system has struggled to keep up with the new releases of JULES which

occur approximately every six months. In comparison, the ORCHIDEE land-surface model

developed in France uses the tangent linear model [Verbeeck et al., 2011]. The developers

of ORCHIDEE have had trouble generating the adjoint due to complexity of derivation

process. [Chevallier, 2016].

Instead of using an out-dated version of the model, it is possible to do these calculation us-

ing finite differences which doesn’t require the adjoint code. However, the adjoint method,

once implement, does reduce computational time and increases accuracy. The speed of

finite differences will be similar forward mode calculation whereas as discussed previously,

the reverse mode can be faster, especially for parameter estimation schemes. In terms of

accuracy, the adjoint method computes the derivatives exactly (up to machine precision)

while finite differences incur truncation errors [Homescu, 2011]. Also the size of the step h

needed for finite difference varies with the current value of input parameters, making the
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problem of choosing h, such that it balances accuracy and stability, a challenging one. The

adjoint method on the other hand, is automatic and does not require time spent choosing

step-size parameters.

2.4. Tools for analysis

2.4.1. Parameter uncertainty

In addition to generating optimal parameter values, it is possible to estimate the uncer-

tainty associated with each parameter. This is done by using the Hessian, described in

Eq. (2.26). The Hessian is the second derivative of the cost function calculated using the

adjoint code. It is evaluated at the optimal parameter value, yields information about the

curvature of the cost function at the local minimum. A “sharp” cost function, where the

cost function is steep either side of the optimal parameter value, indicates lower parame-

ter uncertainty. This can also be interpreted as meaning that a small deviation from the

optimal parameter value yields a large increase in cost. Conversely, a “flat” cost function

indicates higher parameter uncertainty, or little change in cost caused by deviation from

the optimal parameter value.

In order to generate statistics associated with the curvature of the cost function, the

Hessian is used to generate samples from the posterior distribution. This is a truncated

multivariate normal distribution [Genz et al., 2015] because of the box constraints placed

on the prior. These box constraints come from the upper and lower bounds allowed for

each parameter as specified in Table 2.2. Using Gibbs sampling [Geman and Geman,

1984], an ensemble of plausible parameter vectors is generated from this distribution, for a

statistically satisfactory match between observations and modelled time series. The mul-

tivariate normal parameter distribution allows marginal density plots to be generated for

each parameter. To visualise the parameter uncertainties, error bars are used to represent

the 80% quantile range (10th to 90th percentile) for each optimal parameter.

Fig. 2.7 illustrates this method. Calculated in a preliminary experiment, this figure shows

four of the optimised parameters at the Harvard Forest FluxNet site (US-Ha1). In each

case, the top plot is a ‘slice’ through parameter space, the red line showing the prior value

and the blue the optimal value. To generate this ‘slice’, the cost function is evaluated at

different increments of parameter range. The zero derivative at the optimal parameter

confirms a local minimum.

The plot below the slice is a marginal density plot taken from the multivariate truncated

normal distribution. Note that the curvature of the marginal density plot does not always

follow the slice. This is because the second derivative is calculated locally at the opti-

mal parameter value instead of over the whole range shown by the slice. The marginal

density plot shows one dimension of an n-dimensional multivariate normal distribution,

and as such, the optimal values, shown in blue, are not always found at the peak of the

distributions.
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Figure 4: Parameter distributions at Havard Forest
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parameter indicating high parameter uncertainty; changing this optimal parameter value will have little e↵ect
on the cost. nl(0) is unconstrained and can take any value within our bounds. In this case it has hit the upper
limit. The ↵ and F

0

parameters in this example are better constrained and have nice marginal density plots.
The T

low

parameter is the most constrained parameters. It has a ‘sharp’ cost function and therefore a much
lower uncertainty associated to it.

In attempts to quantify the constraints on each parameter, we consider the 80% interval fraction calculated
by dividing the 80% quantile range by the initial parameter range. Values closer to 0 will represent well con-
strained optimised parameters and values near 1 will represent the parameters with greatest uncertainty. The
80% interval fraction values for the parameters shown in figure 4 are: T

low

- 0.07, ↵ - 0.40, F
0

- 0.45 and nl(0)
- 0.78. We will use this measure of uncertainty in the section below.
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parameter indicating high parameter uncertainty; changing this optimal parameter value will have little e↵ect
on the cost. nl(0) is unconstrained and can take any value within our bounds. In this case it has hit the upper
limit. The ↵ and F

0

parameters in this example are better constrained and have nice marginal density plots.
The T

low

parameter is the most constrained parameters. It has a ‘sharp’ cost function and therefore a much
lower uncertainty associated to it.

In attempts to quantify the constraints on each parameter, we consider the 80% interval fraction calculated
by dividing the 80% quantile range by the initial parameter range. Values closer to 0 will represent well con-
strained optimised parameters and values near 1 will represent the parameters with greatest uncertainty. The
80% interval fraction values for the parameters shown in figure 4 are: T

low

- 0.07, ↵ - 0.40, F
0

- 0.45 and nl(0)
- 0.78. We will use this measure of uncertainty in the section below.
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Figure 2.7.: Parameter distributions at Harvard Forest. The first row for each parameter
shows a ‘slice’ through parameter space. Prior value (red) and the optimised value (blue)
are shown. The second row shows the posterior distribution for that parameter and the
third rows shows the 80% quantile range
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2. Background and Methodology

The error bars below the plots show the 80% quantile range for each the optimal values.

The prior parameter is shown as a dashed line, and the box spans the prescribed range

over which the parameter is allowed to vary in the adJULES system.

In this example, the n0 optimal value is outside the 80% quantile range. The cost function

is ‘flat’ for this parameter, indicating high parameter uncertainty. Changing this optimal

parameter value will have little effect on the cost; n0 is unconstrained and can take any

value within our bounds. In this case, it has hit the upper limit. The α and f0 parameters

in this example are better constrained. The Tlow parameter is the most constrained

parameter. It has a ‘sharp’ cost function and therefore a much lower uncertainty associated

with it.

The plausible parameter ensemble can also be plotted in parameter space to show the

correlation between parameter values, as shown in the two-dimension marginal density

plot in Fig. 2.8. The densely populated areas on the plot show likely or plausible parameter

combinations. The sparsely populated or unpopulated areas on the plot show unlikely or

implausible parameter combinations. In this figure, it is also possible to identity a positive

correlation structure between the two parameters.

When considering these two-dimensional marginal density plots, as in one-dimension, it

is important to remember that they represent only two dimensions of a high-dimensional

multivariate normal distribution which is truncated. Consequently, the optimal parameter

values (which are modes of the full high-dimensional distribution) may not coincide with

modes of the one- and two-dimensional marginal distributions.

2.4.2. Metrics of model-data fit

Fractional error

To measure the performance of the model run using different parameter vectors, the frac-

tion of variance unexplained ϵ2 is used to define the fractional error ϵ. This metric was

chosen to quantify not only the model-data fit using different parameter vectors at each

site, but also to show how each site performed relative to others.

Given a parameter vector, a modelled time-series mi,t with m data points is generated

using JULES, where i denotes one of the observable data streams (in this case LE and

GPP). This is compared to an observed time-series oi,t. For each data stream i, the

fraction of variance unexplained by the model is

ϵ2i =

∑m
t=1(oi,t −mi,t)

2∑m
t=1(oi,t − ōi)2

, where ōi =
1

m

m∑
t=1

oi,t. (2.52)

It follows that the mean fraction of variance unexplained across two data streams,

ϵ2 =
ϵ21 + ϵ22

2
, (2.53)
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Figure 2.8.: Two-dimensional marginal density plot between α and n0 at US-Ha1. The
1-D marginal distributions for each parameter is found on the edges. The dimensions of
the plot represent the prior range of each parameter. Red points/dashed lines represent
initial parameter values. Blue points/dashed lines represent optimised parameter values.
Blue contours illustrate the posterior distribution.
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2. Background and Methodology

is a single dimensionless measure of model misfit. The fractional error ϵ can then be

interpreted as the typical (root-mean-square) error expressed as a fraction of the (root-

mean-square) magnitude of the observed seasonal cycle. Thus, ϵ = 0 represents a perfect

match to the observations, while ϵ = 1 corresponds to the error in a null model whose

prediction mi,t always equals the observational mean ōi.

In hydrology, this is related to a metric known as the Nash–Sutcliffe efficiency [Nash and

Sutcliffe, 1970] equivalent to 1−ϵ2, and has been used by many studies to perform cross-site

comparisons.

Taylor diagrams

The fractional error is a good tool for cross-site comparison but it does not give much

information about model performance at each site. Taylor diagrams (Taylor, 2001) can

provide more insight into the fit by considering the relationship between observed variance

var(ot), modelled variance var(mt), error variance var(ot − mt) and model-observation

correlation cor(ot, mt).

Taylor diagram for initial LE
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Figure 2.9.: Initial model-data fit calculated over monthly time-series represented by Taylor
diagrams. Observed time series (black dot) can be compared with modelled time series
generated with the default JULES parameters at all of the FluxNet sites used in this study.
Radial distance from the origin (dotted lines) represents normalised standard deviation√
var(mt)/var(ot), and so a modelled time series with the correct variance lies on the thick

black line. Angular position represents the correlation between modelled and observed
time series. The distance from the black dot (dotted green lines) represents the normalised
standard deviation in the errors

√
var(ot −mt)/var(ot). Three sites are omitted in the

LE plot due to extremely high variances: BR-Sa1 (BT), ZA-Kru (C4G), US-Los (Sh).

The Taylor diagrams in Fig.2.9 show the initial error in each of the data streams at each

of the FluxNet sites focused on in this project.
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2. Background and Methodology

For the initial latent heat fit (left), needleleaf sites tend to underestimate the seasonal

cycle, whereas the broadleaf sites tend to overestimate it. The C3 grass sites tend to have

a latent heat seasonal cycle of the right magnitude. The correlation between the modelled

time series and observation time series is relatively high for the majority of the sites, most

lying between 0.6 and 0.9.

For the initial GPP fit (right), the seasonal cycle is typically underestimated for all PFT

types, especially needleleaf sites. The correlation between model and observed time series

is also above 0.6 for the majority of the sites.

Bias

Since Taylor diagrams are based on a decomposition of the variance of the errors, they are

insensitive to any systematic offset in the model. It therefore makes sense to consider in

addition the normalised bias

b =
|µm − µo|

σo
(2.54)

where µm and µo are the means of the modelled and observed time series respectively, and

σo denotes the standard derivation of the observations.

2.5. The adJULES system

To conclude this chapter, all of the components described above are combined to make

the adJULES system.

2.5.1. The theory of adJULES

The JULES land-surface model generates a modelled time-series for a given vector of

internal parameters, z. The internal parameters z are the parameters chosen in section

2.1.2, and are a subset of all available parameters denoted by x. The cost function, J(z),

consists of a weighted sum of squares of the difference between mt (the vector of model

outputs at time t), and ot (the vector of observations at time t), combined with a term

quadratic in the difference between parameter values z and initial parameter values z0:

J (z; ẑ, z0) =
1

2

[∑
t

(mt(z)− ot)
T R

(
ẑ)−1(mt(z)− ot) + λ(z− z0)

TB−1(z− z0
)]
.

(2.55)

Here, R(ẑ) = 1
m

∑m
t=1(m(ẑ)t − ot)(m(ẑ)t − ot)

T denotes the error cross product matrix

produced by a JULES run with parameter value ẑ. In an optimisation, z and ẑ are updated

separately in nested loops, having both been initialised to the default JULES parameter

value z0. In the inner loop, z is varied to minimise the cost function (termination criterion:
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2. Background and Methodology

∇J ≈ 0) for the current value of ẑ. In the outer loop, ẑ is reset to the new value of z

from the inner loop (termination criterion: change in ẑ negligible). At the end of an

optimisation, therefore, the matrix R conveys information about the error correlation

structure in a JULES run with optimal parameter values.

The matrix B describes the prior covariances assigned to the parameters, and is here

chosen to be a diagonal matrix proportional to the inverse square of the ranges allowed for

each parameter. The prior uncertainties are therefore assumed to be uncorrelated between

the parameters. The λ parameter controls the relative importance of the background (i.e.

the right-hand term in Eq. 2.55) and the error term (i.e. the left-hand term in Eq. 2.55).

This is further discussed in Sect. 3.2.3. In most experiments, λ acts as a switch; when

set to 1, the background term is included, when set to 0, the prior is non-informative and

takes on a top-hat distribution.

The optimal vector of parameters is the vector z that minimises the cost function (Eq.

2.55). The aim of adJULES is to find this vector. The adJULES system minimises the cost

function iteratively using the gradient descent algorithm L-BFGS-B described in section

2.3.4. At each iteration, the gradient ∇J(z) of the cost function J(z) is computed with

respect to all parameters, using the adjoint model of JULES (see section 2.3.4). The adjoint

is generated with the automatic differentiator tool TAF (Transformation of Algorithms in

Fortran; see Giering et al. [2005]).

Once the cost function reaches the minimum, a locally optimal parameter vector is re-

turned. This process is then repeated, the locally optimised parameters are fed back

through JULES, generating a new modelled time-series and hence a new cost function.

The loop terminates when the modelled time series no longer improves or when the dif-

ference between consecutive z vectors is below a tolerance of 1× 10−5 (Fig. 2.10). At the

end, z1 denotes the locally optimal parameter vector and the second derivative of the cost

function with respect to the parameters can be used to calculate posterior uncertainties

(as described in section 2.4.1).

Meteorological data

Parameters
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JULES

z0 = (z1, z2, ..., zn)
T
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t
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Figure 2.10.: Schematic of the adJULES parameter estimation system starting with the
initial parameter vector z0. This is usually based on default JULES parameter values
[Blyth et al., 2010]. The optimised parameter vector is denoted z1.
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2. Background and Methodology

The tools in section 2.4.2 can then be used to quantity the model-data fit given by the

optimal parameter vector.
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2. Background and Methodology

2.5.2. Inherited version of the adJULES system

The adJULES system was originally developed by Tim Jupp and FastOpt at the University

of Exeter. Set up to calibrate a subset of 50 soil and vegetation of parameters against three

fluxes: net ecosystem exchange (NEE), sensible heat (H) and latent heat (LE), adJULES

could be run ‘at a point’, i.e. could calibrate at a single location.

Since its creation circa 2008 (five years prior to the start of this project), the adJULES

system as been through some changes, most notably the addition of new data streams

against which to calibrate in Luke [2011].

As it stands, the adJULES system inherited for this project was set up to optimise:

• 94 of the physical JULES parameters covering five PFTs and four soil layers

• individually over the 9 FluxNet sites described in Blyth et al. [2011]

• simultaneously over a subset of the 6 different data streams (NEE, H, LE, T, GPP,

Resp)

• following the cost function:

J (z; ẑ) =
∑
t

(mt(z)− ot)
T R

(
ẑ)−1(mt(z)− ot

)
(2.56)

• by iteratively looping 3 times (the main loop in the schematic shown in Fig.2.10)

• using the adjoint generated from JULES version 2.2

• using the BFGS optimisation scheme

In the following chapter, the cost function used in the adJULES system is more closely

examined. It is extended from the definition in Eq. 2.56 to include a background term

and to include the ability to calibrate over multiple measurement sites simultaneously.
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3. Improvements to the adJULES system

In this chapter the cost function is considered more closely. This is done in two ways, first

by defining it within a Bayesian framework (Sect. 3.1.1), and then by looking specifically

at the error covariance matrices R and B (Sect. 3.1.2 and 3.1.3 respectively). The math-

ematical theory used to define these matrices is covered, and in Sect. 3.1.4, alternative

formulations of the cost function are discussed.

In order to calibrate over multiple sites simultaneously, the cost function is extended to

a ‘multi-site’ framework in Sect. 3.2 and its robustness is tested at different timescales

(Sect. 3.2.2). In Sect. 3.2.3, the background term B is reconsidered. In a multi-site

framework both the B matrix and the additional sites in the calibration were found to

place strong constraints on the optimisation.

This chapter concludes in Sect. 3.3 by looking at the system’s sensitivity to initial condi-

tions, both in terms of fit and optimal parameter vectors.

3.1. Building the cost function

3.1.1. Bayesian framework

In order to understand the statistical assumptions made in the adJULES scheme, the

cost function is built up within a Bayesian framework following the example of Tarantola

[1987].

Bayes’ theorem states [de Laplace, 1820]:

P (B|A) = P (A|B)P (B)

P (A)
(3.1)

where A and B are events and P (A) ̸= 0. This formulation allows for the combination

of the prior distribution P (B), with the probability of A given B, to give a posterior

distribution P (B|A) of B given A.

Changing the notation to that of this study, this theorem can be used to obtain the cost

function described by Eq. 2.55. Let the observations be denoted by the vector o ∈ Rm,

where m represents the number of observations. The model outputs are represented by

vector m(z) ∈ Rm, where z ∈ Rn is the model parameter vector with n denoting the

number of parameters to be optimised.
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Starting from a known parameter value called the background z0, knowledge of the pa-

rameters z is described by the probability density function p(z). Define p(o|z) to be the

likelihood of the observations o given the parameter vector z. This distribution takes

into account the uncertainties associated with the prediction of o. The probability sought

after is p(z|o), which describes the distribution of the parameters given the observations

o. Using Bayes’ theorem (Eq. 3.1), these probabilities can be combined to give:

p(z|o) ∝ p(o|z)p(z). (3.2)

In a Bayesian setting, normal (Gaussian) distributions are commonly used to represent the

different terms of the optimisation [Tarantola, 1987]. The choice comes from the central

limit theorem which states that the sum of a sequence of random variables with finite

variances converges towards a normal distribution [de Laplace, 1820].

The normal probability distribution function (PDF) for variable x ∈ Rq is completely

defined by the first two moments, mean and variance:

p(x) =
1

(2π)q/2Σ1/2
exp

[
−1

2
(x− x̄)TΣ−1(x− x̄)

]
(3.3)

where x̄ and Σ are the mean of x and the covariance matrix associated with x respectively.

By setting up a prior centred on z0, the PDF of p(z) is given by

p(z) ∝ exp

[
−1

2
(z− z0)

TB−1(z− z0)

]
(3.4)

where the Bmatrix is the background covariance matrix. Similarly, the likelihood function

of p(o|z) is given by

p(o|z) ∝ exp

[
−1

2
(o−m(z))TR−1(o−m(z))

]
(3.5)

where the R matrix is the covariance matrix of the observation errors.

Using Bayes’ theorem to combine these analytical expressions, the posterior can be calcu-

lated as follows:

p(z|o) ∝ exp

[
−1

2

[
(o−m(z))TR−1(o−m(z)) + (z− z0)

TB−1(z− z0)
]]
. (3.6)

Therefore, in order to maximise p(z|o), the function

J(z) =
1

2

[
(o−m(z))TR−1(o−m(z)) + (z− z0)

TB−1(z− z0)
]

(3.7)

needs to be minimised.

This gives the formulation of the cost function used in this thesis and reflects the as-

sumption of Gaussian probability distributions for the observed values and the a priori

information about the parameters [Kaminski et al., 2002]. In the case of a linear model,
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Tarantola [1987] shows that the posterior probability distribution is also Gaussian and

that the uncertainties in the optimal parameters are quantified by a covariance matrix

which is the inverse of the Hessian at the minimum. In the case of a non-linear model,

uncertainties derived in this way are merely a local approximation [Kaminski et al., 2002].

It is clear that there are two components to the cost function in Eq. 3.7. First, a cost

function based on model-data fit,

Jo(z) =
1

2
(o−m(z))TR−1(o−m(z)) (3.8)

and second, a cost function which penalises when the optimal parameters are too far from

the prior values

Jb(z) =
1

2
(z− z0)

TB−1(z− z0). (3.9)

When discussing the set up of the R and B covariances in the next few sections, each

component is considered separately.

3.1.2. Observations covariance matrix R

As described above, R is the observation error covariance matrix. This matrix should

include both the model errors and measurement errors.

Taking them one by one, the model errors represent the errors in model process repre-

sentation and structure. This error is very hard to characterise since it is not directly

observable. In general model error is likely to dominate R though some studies choose to

ignore it, assuming the error is small or is compensated for by the cost. In this study, the

model error is assumed to be absorbed in the output error residual.

The measurement errors cover the errors from the data themselves. These errors can

be characterised as random or systematic. In eddy-covariance data, random errors arise

from the measurement instruments, the stochastic nature of turbulence and the varying

FluxNet footprints [Lasslop et al., 2008]. The systematic errors can be constant, e.g. from

inaccurately calibrated instruments, or appear only at certain times, e.g. CO2 errors at

night (see Sect. 2.2.1 for more details). For later theory to apply, the measurement errors

are assumed to be normally distributed.

Most studies opt for a diagonal R matrix assuming uncorrelated errors. Indeed, including

correlations between observations is a recent addition to numerical weather prediction

studies [Stewart et al., 2013]. Accounting for some correlation structure in R has been

shown to improve data assimilation results and forecast accuracy [Weston et al., 2014].

In carbon model data assimilation, the inclusion of correlated observation error is even

more recent due to the relative infancy of the field. There are nonetheless a couple of

relevant studies worth noting.

The first is the work of Pinnington et al. [2016]. Using a 4D-Var framework, Pinnington
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et al. [2016] use time correlations between observation errors to update the R covariance

matrix, which is shown to reduce the root mean square error in the 14 year forecast of

daily NEE by 44%.

The second is the work conducted by the ORCHIDEE team covered in MacBean et al.

[2016] and Peylin et al. [2016]. Both these investigate stepwise assimilation of multiple data

streams into carbon models, MacBean et al. [2016] using simple toy models and Peylin

et al. [2016] using the ORCHIDEE model itself. Peylin et al. [2016]’s study keeps the

R matrix uncorrelated throughout, but does comment on the possibility of propagating

correlations through the different steps. MacBean et al. [2016] considers the impact of

a correlated R matrix when simultaneously assimilating the data streams. Both studies

argue that given a robust framework and an adequate description of the error covariance

matrices, simultaneous and step-wise assimilation of data streams should be equivalent.

MacBean et al. [2016] found that the inclusion of correlation between data streams was

of increasing importance if the information content of the observations was too low, i.e.

highly uncertain or sparse.

Setting up R

In adJULES, R is set up to denote the error cross-product matrix produced by a JULES

run with a parameter value z. This choice of R allows for non-independent time-series.

The adJULES system has the ability to calibrate against different subsets of the multiple

observables integrated in the system by masking the observables not used in the optimi-

sation. Further to this, R is set up to scale the cost function to ν degrees of freedom,

where ν denotes the difference between the number of data points m and the number of

parameters optimised n. This choice of scaling is justified at the end of this section.

Given a parameter vector z, the errors between the modelled time series and the observed

time series, also known as residuals, can be generated as follows

et(z) = mt(z)− ot.

The errors in each data stream make up the columns of e, and the rows represent the

errors at each time point. The Gram matrix

E = eTe

can be used to represent the non-central second moment of errors. The central second

moment of errors would give the covariance centred at the mean. However, in this case

ellipses of cost around the origin are more informative since the best possible fit is when

the error is zero.

The errors between the different data streams can be correlated and of different magni-

tudes. The left-hand plot in Fig. 3.1 illustrates this. It considers the initial daily errors in

modelled LE against modelled GPP at the Harvard site (US-Ha1). The errors are clearly
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correlated and there is a notable difference in the magnitude of the scales of both data

streams.
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Figure 3.1.: Transformation of the errors at US-Ha1 in observation space. The crosses
represent the different errors in LE and GPP at daily time points and the ellipses represent
the covariance matrix. The original observation space (LHS) is transformed through a
rotation and scaling to an uncorrelated space (RHS).

By rotating and scaling the axes through a transformation, the errors can be decorrelated,

as shown in Fig. 3.1. In order to do this, it is necessary to find a basis w such that ê = ewT

has uncorrelated columns and therefore the resulting covariance matrix is diagonal. This

is done using the Cholesky decomposition of E−1.

In the adJULES system, E is multiplied by the number of observables no before taking

the Cholesky decomposition of its inverse.

[noE]−1 = UTU

This upper triangular U matrix becomes the basis for w. Now uncorrelated, the errors

can be scaled to represent the desired number of degrees of freedom. By further scaling U

by
√
ν, so that w =

√
νU , Jo(z) can be written as a χ2 objective function with ν degrees

of freedom

Jo(z) =
1

2

n∑
t=1

et(z)
TR−1et(z) (3.10)

=
1

2

n∑
t=1

(
êt(z)

σt

)2

≡ χ2 (3.11)

where σt denotes the standard deviations for each data point êt(z). Therefore, the obser-

vation correlation matrix R is set to be

R−1 = wTw = νUTU. (3.12)
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Updating R

The choice of R in this optimisation scheme is dependent on z. After minimising the cost

function once, the model can be run again with the new parameters to give new errors

and therefore a new covariance matrix R.

This updating of R can be considered to be a separate optimisation loop. Let R(ẑ)

denote the error covariance matrix for parameter vector ẑ. Initialised by the JULES

default parameter vector z0, the Jo part of the cost function J can be written as

Jo (z; ẑ) =
1

2

∑
t

(mt(z)− ot)
T R

(
ẑ)−1(mt(z)− ot

)
(3.13)

The full cost function is optimised using the BFGS algorithm (described in Sect. 2.3.4) to

give an optimal parameter vector ztemp. Next, ẑ is reset to the new parameter vector ztemp

and this new cost function is optimised. In the early versions of adJULES, this process

was repeated three times. In the newest version of adJULES, the number of iterations

allowed has been increased to let the process converge. The new termination criterion is

that the change in ẑ should be negligible (i.e. 1 × 10−5). Typically, five iterations are

needed. The final output parameter vector is saved as z1.

Figure 3.2 shows sequential optimisations performed on a site in Denmark (DK-Sor).

Successive parameter vectors were able to converge to z1 after eight optimisations. The

first optimisation can be seen to reduce the errors the most, especially for the summer

months which start with the largest errors. Some of the other months can be seen to get

slightly worse in order to allow more reduction in error at the summer months.

Each optimisation of the cost J takes approximately 15 iterations. The cost function

is then updated and a new optimisation takes place. This is repeated on average five

times, giving overall just under 100 iterations. In comparison, in Santaren et al. [2007]’s

ORCHIDEE parameter optimisation experiments, the model also took approximately 100

iterations to converge to a minimum of the cost function. Running an MCMC algorithm

on a similar experiment took over 1000 iterations to converge.

Chi-square fitting

The cost function Jo has been constructed in such a way that it can be written as a χ2

objective function on ν degrees of freedom. Theory taken from Press et al. [2007] (Chapter

15: Modelling of Data) is used in this section to explain this choice.

Consider the case with uncorrelated observations. Suppose that each data point ot has a

measurement error that is independently random and distributed as a normal (Gaussian)

distribution around the ‘true’ model m. If each point has its own, known standard devi-

ation σt, then the probability of the data set is the product of the probabilities of each
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Figure 3.2.: The monthly errors at the DK-Sor site shown at each step of the successive
optimisations performed. The ellipses illustrate the non-central second moment of errors
used in defining R. The different colours represent each iterative step and the points
represent the error in modelled GPP and LE of the given month at each step.

point.

P ∝
m∏
t=1

{
exp

[
−1

2

(
ot −mt(z)

σt

)2
]}

(3.14)

Maximising this is equivalent to minimising the negative of its logarithm[
m∑
t=1

[ot −mt(z)]
2

2σt

]
. (3.15)

This is the same as minimising the quantity

χ2 ≡
m∑
t=1

(
ot −mt(z)

σ2t

)2

. (3.16)

This is called ‘chi-square’ fitting. The quantity χ2 is a sum of m squares of normally

distributed quantities, each normalised to unit variance. Once the parameter vector z =

{z1, . . . , zn} has been adjusted to minimise the value of χ2, the terms in the sum are

not all statistically independent. For models linear in the parameters, the probability
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distribution for different values of χ2 at the optimum is a χ2 distribution on ν = m − n

degrees of freedom. The χ2 statistic can also be used to give a quantitative measure for

the goodness-of-fit of the model. The contours of constant ∆χ2 can be used as boundaries

for different confidence regions.

To summarise the above by highlighting the assumption made: if i) the measurement

errors are normally distributed and ii) the model is (locally) linear in its parameters, then

χ2 at the optimum is drawn from a χ2
ν distribution.

In cases where the uncertainties associated with the set of measurements are not known

in advance, considerations related to χ2 fitting are used to derive a value for σ. Assuming

that all measurements have the same standard deviation, σt = σ, and that the model does

fit well, then an arbitrary value for σ can be assigned to σ for the minimisation procedure.

The model parameters found by minimising χ2 with this arbitrary σ, denoted zopt, can

then be used to calculate the value of σ:

σ2 =
m∑
t=1

[ot −mt(zopt)]
2

ν
(3.17)

The optimal parameter values are insensitive to σ. However, it is important to assign

the correct value of σ since it controls the curvature at the optimum. The curvature at

the optimum is used to generate the posterior uncertainties associated with the optimal

parameter vector.

In this study, since the standard deviation of each error is not known, this method is

used. In the adJULES procedure, once an optimum has been reached, R is updated

and the optimisation is run again (as discussed above). At an optimum, χ2 is known to

be distributed on ν degree of freedom. At the initial step, the distribution is unknown,

however the function can be scaled arbitrarily through the first choice of σ. The choice is

made to scale this initial objective function to also be χ2 on ν degrees of freedom. This

choice of scaling and therefore definition of R was made by T. Jupp when first creating

the adJULES system.

3.1.3. Background covariance matrix B

The background covariance matrix B contains statistical information about the prior dis-

tribution of the parameters (or of the state variables if used). In most studies, this is

a diagonal matrix where the diagonal elements of B are the standard deviation of each

parameter.

The off-diagonal elements of B quantify the correlations between errors in the parameters.

Including correlations in the B matrix has been shown to improve data assimilation results

significantly in both numerical weather predictions [Bannister, 2008] and more recently in

carbon cycle assimilation [Pinnington et al., 2016]. In Pinnington et al. [2016], correlations

in the background error covariance matrix are included by running an ensemble through a
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set of ecological dynamical constraints based on expert judgement. Including off-diagonal

elements in the B matrix is beyond the scope of this study.

A background term is vital in numerical weather prediction studies where an initally state

is needed [Bouttier and Courtier, 2002]. In contrast, for parameter estimation studies, the

background term is not always implemented. Berger et al. [2012] argue that inclusion of

initial conditions or boundary conditions is what differentiates data assimilation studies

from parameter estimation ones. Though the background term is omitted in Berger et al.

[2012], the study performs a preliminary sensitivity test, starting at different initial condi-

tions, to see if the same optimum is reached. In Kaminski et al. [2002], the main pre-cursor

study to the CCDAS work, the background term is omitted since the knowledge it would

add was believed to be already embodied in the model. Other studies choose to leave out

Jb for simplicity or when unsure how to define the matrix.

There are many benefits to including a background term. Most importantly, it ensures

that the problem is well-posed, even when few observations are present [Bannister, 2004].

A mathematical problem is said to be well-posed if there exists a unique solution and if the

solution’s behaviour changes continuously with the initial conditions [Hadamard, 1902].

This term is therefore necessary whenever the information contained in the observations

is insufficient to guarantee a unique optimal solution.

In addition the background covariance matrix B serves as a penalisation term. This

means the optimisation never deviates too far from the initial guess. This is useful when

the expert guesses are thought to be close to the truth (e.g. when parameters can be

measured physically). The correct minimum of J is expected to be close the prior values.

Including the background term, however, means that its error characteristics need to be

determined. Defining the background error covariance matrix is not a trivial task and it

is important to determine these background errors correctly.

Setting up B

In adJULES, the definition of the background term Jb (Eq. 3.9) has been extended to

include a factor λ, called the constant of proportionality,

Jb(z, λ) =
λ2

2
(z− z0)

TB−1(z− z0). (3.18)

This can simply be set to zero in order to omit the background term. Otherwise, this

controls the relative importance of the term.

The role of λ can be best understood by reverting back to the PDF definition of the cost

function (Eq. 3.2),

p(z|o) ∝ exp [− (Jo(z) + Jb(z, λ))] = exp[−Jo(z)] · exp[−Jb(z, λ)]. (3.19)

By excluding the background term from the cost function, the prior is taken to be a top
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hat distribution, i.e. every value in the allowed range is equally likely. Adding the term

to the cost function is the same as multiplying by e−Jb(z,λ) where Jb(z, λ) is a quadratic

term centred at z0, the initial value of the parameter, and λ controls the shape of the

distribution. This is illustrated in Fig. 3.3.

Likelihood

zl zuz0 z

λ > 0

× e−Jb(z,λ)

Likelihood

zl zuz0 z

1

Figure 3.3.: The shape of the prior distribution of z for changing values of λ.

Increasing values of λ give a more pronounced bell curve. Note that the peak of this curve

is centred at z0, and the curves are cut off at the bounds given by the lowest value allowed

for z (zl) and the highest value allowed for z (zu). Larger values of λ help condition the

problem and force parameter values to be close to the initial value z0.

The B matrix is set to be a diagonal matrix whose diagonal elements are proportional

to the inverse square of the ranges allowed for each parameter. Therefore the larger the

bounds, the larger the error. This is also scaled by ν to ensure the Jb term is of equal

weight to the Jo term in the main cost function when λ = 1,

B = ν · diag
(

1

zu − zl

)2

. (3.20)

In previous multi-site studies, e.g. Kuppel et al. [2012, 2014], the prior range was also

used to define the background covariance matrix B. The range was further multiplied by

a factor of 40% [Kuppel et al., 2012] and one-sixth [Kuppel et al., 2014] respectively. This

factor is equivalent to the constant of proportionality λ discussed in this thesis.

In Sect. 3.2.3, the effect of λ on the optimisation is considered in greater depth. However,

without knowing the optimal value for this factor, λ is simply used as a switch taking values

of either 0 or 1 for the main experiments of this thesis. The addition of the background

term is a new feature in this thesis, previously it was simply omitted.

3.1.4. Alternative formulations

The cost function is the central focus of the data assimilation system. Its definition

determines what is to be minimised, and therefore which parameters are to be found. For

example, if the aim were to find the parameters that captured the peak of the seasonal

cycle, the cost function could be constructed to focus on that alonw.

In a study called OptIC (Optimisation InterComparison; Trudinger et al. [2007]), five dif-
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ferent parameter estimation methods were compared. The methods covered were adjoint,

Kalman filer, MCMC, Levenberg-Marquardt and genetic algorithm. The model tested

was a simple representation of carbon dynamics in a terrestrial biosphere model. The

choice of cost function was shown to be more important than the method in finding the

optimal parameters. In fact, the methods were equally successful, and variations arose

from different cost functions used [Trudinger et al., 2007]. This study highlights the fact

that careful consideration of the cost function is vital to any optimisation scheme.

The cost function chosen in this study is the one most commonly used in similar opti-

misations. However, it is worth considering the other possible formulations. Apart from

changing the choice of R and B, there are two other ways in which the cost function could

be changed.

Metric minimised

The first method is to change the metric minimised. The cost function in this study

minimises a weighted sum of squares. Other metrics that could be used as the cost

function include the correlation coefficient, root-mean square error (RMSE), bias, and

FVU (ϵ2 as described in Sect. 2.4.2). RMSE most closely resembles the metric used in the

current cost function, taking the form:

RMSE =

√∑m
t=1(ot −mt(z))2

m
(3.21)

Each of these metrics have their own advantages and disadvantages. For example, the cor-

relation coefficient indicates the precision of the model but is not robust and is insensitive

to additive differences. RMSE is sensitive to large errors and gives strong emphasis on fit-

ting peak values. Fischer et al. [2013] found that changing metrics for different timescales

was beneficial. Though not used in the optimisation, these metrics are considered when

assessing the improved model-data fit in this study.

Multi-objective optimisation

The second method is to use a multi-objective cost function instead of a single-objective

function as used in this thesis. This means minimising multiple metrics simultaneously,

where each metric defines a separate objective function. If the objective functions within

the multi-objective framework are conflicting, no single solution can simultaneously min-

imise all the objectives. There is, therefore, a set of solutions instead of one unique one.

Each solution is said to be Pareto optimal. Without additional subjective preference

information, all Pareto optimal solutions are considered equally good [Dehuri et al., 2015].

By removing the need to find one unique optimal solution, Gupta et al. [1998] argue

that a multi-objective cost function bypasses some of the statistical assumptions made

in setting up the cost function, namely assumptions made about model error. In some
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studies the model error component of the R covariance matrix can be assumed either to

be small, or to be ‘absorbed’ into the output error residual. Taking these assumption in

turn, the magnitude of model error for some portions of the model response may, in fact,

be substantially larger than the output measurement error [Gupta et al., 1998]. In the

other case, the model error component does not necessarily behave statistically in the same

manner as the output measurement error. In fact, model errors do not necessarily have

any inherent probabilistic properties that can be used to construct an objective function

[Gupta et al., 1998]. Therefore Gupta et al. [1998] conclude that there is no ‘statistically

correct’ choice for the objective function, and, in turn, no statistically correct ‘optimal’

choice for the parameters.

However, multi-objective methods tend to be complex and based on approaches using

random generation of parameter sets (e.g. Yapo et al. [1998]). These tend to be com-

putationally expensive and very few studies use gradient based methods. Those that

do, convert multi-objective optimisation problems into a single objective function using

different weights. In Izui et al. [2015], these weighting coefficients are then adaptively

determined by solving a linear programming problem. These techniques are used in engi-

neering and design optimisation problems which tend to be less complex than terrestrial

parameter estimation problems.

Though beyond the scope of this work, it is interesting to keep these ideas in mind. Multi-

objective functions can be a good way of bypassing some of the statistical assumptions

made and the problems encountered in optimisation problems.

3.2. Extending cost function to multiple sites

In its simplest form, adJULES runs at a single grid-point location and so the derived

optimal parameter vector is site-specific. On the other hand, multi-site optimisation aims

to find values for a common set of parameters using data from multiple locations. One of

the key accomplishments of this thesis has been to implement multi-site optimisations into

the adJULES system. The definition of the cost function (Eq. 2.55) has been extended

to include the observations from all S sites and its derivative found in order to use the

L-BFGS-B algorithm again. The extended cost function is the sum of the individual cost

functions for each site s. Similarly, the first and second derivatives of this new cost function

can be defined using the sum of the derivatives at the individual sites.

f(z; ẑ, z0) =
1

2

[∑
s

∑
t

(mt,s(z)− ot,s)
TRs(ẑ)

−1(mt,s(z)− ot,s) + Sλ(z− z0)
TB−1(z− z0)

]
(3.22)

An additive cost function, where the optimisation criterion is to minimise the total cost,

was chosen over a cost function where all individual cost functions are required to improve.
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All of the sites were used in finding the optimal parameter vector for each PFT, so that

sites that do not improve with the rest of the PFT suggest incorrect classification of the

site or issues with the PFT definitions.

3.2.1. Further extensions to the cost function

In moving to a multi-site framework, a few different ideas where implemented. These still

exist within the adJULES system as further extensions to the cost function, however they

are not throughly explored in this thesis.

A simple extra feature is the ability to apply different weights to each of the sites in the

cost function. Deciding how important each site should be in calculating the cost adds a

level of subjectivity, so in this study each site is equally weighted.

The other extensions implemented provide the multi-site optimisations with the ability to

vary extra parameters locally. This feature allows for the calibration of a common set of

parameters over multiple sites, while also allowing other parameters at the sites to improve

individually. Two methods were considered, though only the latter works in achieving this

properly.

The first idea involves an additive cost function where all parameters could vary with a

penalisation term forcing the parameters deemed common over sites to be as close together

as possible. The main issue with this implementation was that the common parameters

were never equal, the penalisation weighting needed to be too high. This showed that the

optimal parameters between sites were very different.

The second method involves creating a large parameter vector y where the first few ele-

ments are the common parameters and the rest of the local parameters are appended in

some site order.

Consider the parameter vector zi at site i ∈ {1, S} where S is the number of sites. This

vector can be broken down into two subsets, subset ci which contains the parameters to

be common over all sites, and subset ri, the rest of the parameters to be optimised at that

site. The cost function g(y) can be written as a sum of the individual cost functions at

each site:

g(y) =
S∑
i

f(zi).
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This is achieved by splitting the y back into its components to calculate the cost

y =



c

r1
...

ri
...

rm


7−→



z1 =

(
c

r1

)
−→ f(z1)

...

zi =

(
c

ri

)
−→ f(zi)

...

zS =

(
c

rS

)
−→ f(zS)

.

In turn the gradient of g(y) is calculated:

∇g(y) =



∑s
i ∇f(c)
∇f(r1)

...

∇f(ri)
...

∇f(rS)


.

Therefore the adJULES system has the ability not only to calibrate a common set of

parameters over different FluxNet sites but also to let the parameters vary locally. Due

to time constraints, and since the main aim of the project is to find a common set of

parameters, this extension was not explored further.

The results discussed in the rest of this thesis are derived from the additive function

described in Eq. 3.22. The local parameters, such as soil moisture, were read from

ancillary files and are not optimised. The optimisation concentrates on only one set of

parameters, all chosen to be common.

3.2.2. Testing the robustness of the multi-site technique

To test the robustness of the multi-site technique, random subsets of the broadleaf sites

were optimised. The optimal parameters were then tested at the remaining sites. Broadleaf

sites were used because this PFT is the best represented in the FluxNet network. Due to

time and computational constraints, only the deciduous broadleaf subset was considered.

Initially, five randomly selected sets of five sites were used in the optimisation stage. These

sets will be referred to as training sets. The optimal parameter vectors were then evaluated

at the rest of the sites, the validation sets. The training sets selected are shown in Table

3.1.

Four different setups were tested. First, two different data frequencies were used: daily

data and monthly data. Second, in both cases, the background term was either included
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Set 1 US-Bar US-MOz IT-Non IT-Ro1 US-MMS

Set 2 US-Ha1 FR-Hes DE-Hai IT-Ro2 UK-PL3

Set 3 US-MMS UK-PL3 US-Ha1 IT-Non IT-LMa

Set 4 IT-LMa FR-Hes DE-Hai IT-Non US-MOz

Set 5 IT-Ro1 US-MMS FR-Fon IT-PT1 US-MOz

Table 3.1.: The five subsets of deciduous FluxNet sites used to test the robustness of the
multi-site technique.

(i.e. prior distribution assumed to be proportional to one over the prescribed range for

each parameter) or ignored (i.e. use of a non-informative top-hat prior).

Let zoffs denote the locally optimised z vector found at sites when optimising without

a background term. Similarly let zons denote the case when the background term was

included. The default JULES parameters are denoted by z0. The parameter vectors

found by optimising over each subset of 5 sites is denoted by zm, with ‘on’ and ‘off’

superscript to indicate the use of a background term.

The first thing to highlight is the fact that each optimised zm vector is different from

the vector found by averaging all the zs from its set. It is also different from any of

the zs vectors in the set. This means that the multi-site optimisation has found a new

and different optimal parameter vector which cannot be found by a more straightforward

method.

The results for fitting over monthly data are shown in Fig. 3.4 and Fig. 3.5. Each plot

shows a different metric used to quantify improvement. Figure 3.4 uses fractional error as

described in section 2.4.2 and Fig. 3.5 uses reduction in average RMSE.

For each site, zoffs and zons give similar reductions in fractional error (Fig. 3.4), with zoffs

performing very slight better. The exception to this are IT-Non and UK-Ham, for which

zons performs noticeably worse than zoffs , and in the case of the IT-Non site, worse than

the default JULES parameters. In the case of IT-Non, this apparent decline in fit is due

to the choice of metric. The fractional error is different to the metric minimised in the

cost function. Figure 3.5 shows a different metric, the average reduction in RMSE at each

site. Using this metric, zs improves of all the sites.

The optimised parameter vectors zm generally perform well, both on the sites used in the

training sets and the sites used in the validations sets. For all sites, excluding UK-PL3,

at least three of the five zm parameter vectors improve the model-data fit. For two-thirds

of the sites, the model-data fit improves no matter what parameter vector is used to

generate the modelled time-series. For the UK-PL3 site, even when the site is included

in the training set, the new parameter vector does not improve the fit. This points to

UK-PL3’s incompatibility in this PFT.

Even though the fit can be seen to deteriorate the most for US-Bar and US-Ha1 in Fig.

3.5, Fig. 3.4 shows that these are sites that start off with relatively low errors.
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Figure 3.4.: The effect of parameter vectors z on the overall model-data fit at each of
the sites tested, using the metric described in section 2.4.2. The left-hand side in each
site panel contains runs without background term, the right-hand side contains runs with
background term included. Original default JULES parameters (∗), site-specific optimal
parameters (∗), and the multi-site parameters found by optimising over each set of five
sites (•◦,•◦,•◦,•◦,•◦), denoted set 1, set 2, set 3, set 4, set 5 respectively. Sites in the
training set (filled circles), sites in validation set (open circles).

In some cases, the 5-site optimised parameter vector zm outperforms the locally optimised

set zs, even for sites not uses in that particular training set. For example, the US-UMB

site shows this phenomena in both metrics. This shows the multi-site optimisation has

found a different local minimum that minimises the error to a greater extent (further

discussed in Sect. 3.2.4). Note that starting with a different first guess would also lead to

different results.

When optimising over the daily data, the results are even more robust. The optimised

parameter vectors zm improve 15/18 of the sites regardless of which parameter vector is
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Figure 3.5.: Same as Fig.3.4 but using average RMSE reduction as metric.

used. The UK-PL3 site still performs badly regardless of the zm vector used, however the

deterioration of fit is not so pronounced. US-Bar and US-Ha1 are the other two sites which

do not improve with any the zm. They do however improve for 3/5 vectors tested, the

other two parameter vectors giving a similar or slightly worse fit than the default JULES

parameters.

The reduction in error for the daily data is less than for the monthly data. This is due

to the fact the daily data have more points to fit. The zm vectors are also less likely to

outperform the locally optimised parameter vectors. Due to more data points constraining

the optimisation, it is possible that the problem is better posed and therefore the solutions

more likely to be unique.

Table 3.2 investigates a parameter vector’s ability to improve the model-data fit at a

different observation frequency than that over which it was calibrated. In all cases, zm

improves the majority of the sites regardless of the observation frequency used in either
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Parameter vector found by
Fit tested

at data

Fraction of sites improving

using the vector found at set

Average error

reduction using

calibrating over frequency 1 2 3 4 5 zs at each site

Daily

No background
Daily 0.94 0.94 0.94 0.78 0.83 23.6%

Monthly 0.89 0.83 0.89 0.78 0.78 34.4%

With background
Daily 0.94 0.94 0.94 0.83 0.83 18.5%

Monthly 0.94 0.89 0.94 0.83 0.83 27.0%

Monthly

No background
Monthly 0.89 0.83 0.94 0.78 0.78 35.6%

Daily 0.89 0.94 0.89 0.78 0.89 20.6%

With background
Monthly 0.89 0.89 0.94 0.78 0.72 27.8%

Daily 0.89 0.94 0.94 0.78 0.72 16.0%

Table 3.2.: Optimal parameter vectors calibrated over different observation frequencies are
tested at different timescales. Model-fit data quantified in each case using the ϵ metric
described in Sect. 2.4.2.

the calibration or validation. In each case, the level of improvement is comparable with

average error reductions in the range 5-15%.

In all cases, the UK-PL3 site does not improve. On closer inspection, this site has a very

different seasonality to the rest of the sites for this PFT. Interestingly, when this site is

included in the set (sets 2 and 3), the optimal parameter vector found is one of the best

performing in this experiment. This shows that the multi-site optimisation does have the

ability to find a best-fit set of the parameters even when there is an outlier included in the

set. This may be due to the outlier stopping overfitting occurring when optimising over a

subset of sites, helping keep the parameter vector more general.

The right-hand side of Table 3.2 considers the locally optimised parameter vectors. The

vectors found by calibrating over daily data perform even better when transposed to the

monthly data. The reduction in error is similar between the experiments.

Overall the results are promising, showing that the optimised parameters, even when

calibrated from a small subset of sites, can be generalised over the rest of the set. The

technique has also been found to be robust with respect to outliers and when optimising

over different timescales.

3.2.3. Exploring the background term in a multi-site framework

As described previously, the matrix B describes the prior covariances assigned to the

parameters, and is here chosen to be a diagonal matrix proportional to the inverse square

of the ranges allowed for each parameter. The prior uncertainties are assumed to be

uncorrelated between the parameters, and the constant of proportionality λ controls the

relative importance of Jb and Jo.

Moving to a multi-site framework, it became apparent that including the background term
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in some of the experiments returned very narrow posterior uncertainties, as illustrated in

Fig. 3.6. In these cases, the background term was found to dominate the cost function.

For Jb to be as small as possible, the optimal parameter vector needs to be as close as

possible to the initial one. Hence the optimisation never moves too far from the original

value and the posterior bounds are extremely narrow.

In Fig. 3.6, the optimisation performed without Jb returns mostly uncertain parameter

values, with over half of them having posterior uncertainties spanning the whole box.

These are all seen to collapse to a very narrow cloud when Jb is included in the optimisation.

Note that there are some cases where this very narrow posterior range does not include

the prior value within its bounds. This is apparent for the f0 parameter.

This collapse was found to be especially apparent when calibrating over daily data. The

optimisation is already constrained by the increased number of data points i.e. 365 data

points for the eight parameters. Adding the extra Jb constraint only limits the optimisation

further. It follows that adding more sites to the optimisation will also restrain it.

A possible explanation for the difference between the results found with/without the

Bayesian term could be due to the choice of R matrix. Since the choice of R is based

on the prior model-data RMS, very large misfit in this prior model-data RMSE could

deweight the Jo term so that the Jb becomes too dominant. The prior misfit in the daily

data will be much larger than monthly data with more outliers.

Condition number

In order to understand the role of λ on the posterior distributions, the Hessian matrix

at the optimum, C, is investigated. One of the arguments for including a background,

and hence having λ > 0, was to ensure that the problem was well-posed (see Sect. 3.1.3).

A problem is said to be well-posed if there exists a unique solution and if the solution’s

behaviour changes continuously with the initial conditions.

Another argument for including a background term is that it helps condition the problem.

While solutions may be continuous with respect to the initial conditions, when solved with

finite precision, or with errors in the data, they may suffer from numerical instability.

A small perturbation in the initial data can result in much larger errors in the answer

[Trefethen and Bau, 1997]. Such problems are said to be ill-conditioned. Even if a problem

is well-posed, it may still be ill-conditioned. An ill-conditioned problem is indicated by a

large condition number.

The condition number associated with the linear system

Ax = b (3.23)

gives a bound on how inaccurate the solution x will be after approximation. It is defined

as the maximum ratio of the relative error in x divided by the relative error in b. Given
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Figure 3.6.: The correlations between parameters calibrated over daily data at all the
C3 grass sites. The parameter vector found in experiments excluding the background
term (top) and including the background term (bottom). Each subfigure shows a 2-D
correlation map, within which each box is a 2-D marginal plot. Bar graphs show 1-D
marginal distributions for individual parameters. The dimensions of the boxes represent
the prior range of each parameter. Red points/dashed lines represent initial parameter
values. Blue points/dashed lines represent optimised parameter values. Blue contours
illustrate the posterior distribution.
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a perturbation δ, the equation becomes

A(x+ δx) = b+ δb. (3.24)

Using matrix norms and the submultiplicative property they satisfy, the two following

expressions can be generated:

∥δx∥ ≤ ∥A−1∥∥δb∥

∥b∥ ≤ ∥A∥∥x∥.

In turn these can be used to generate the relative error of the solution:

∥δx∥
∥x∥

≤ ∥A∥∥A−1∥∥δb∥
∥b∥

(3.25)

which shows that the error is determined by the constant κ(A) = ∥A∥∥A−1∥. This

constant is the condition number of the system (matrix).

Note that

κ(A) =
∥∥A−1

∥∥ · ∥A∥ ≥
∥∥A−1 ·A

∥∥ = 1. (3.26)

If the condition number is O(1), the matrix is well conditioned which means its inverse can

be computed with good accuracy. If the condition number is very large, then the matrix

is said to be ill-conditioned. Such a matrix is almost singular, and the computation of

its inverse, or solution of a linear system of equations is prone to large numerical errors.

Generally, if the condition number κ(A) = O(10k), then in addition to accuracy lost to

numerical precision, an extra k digits of accuracy could also be lost [Cheney and Kincaid,

2012].

The condition number may also be infinite. This implies however that the problem is

ill-posed; it does not have a unique, well-defined solution. In such cases, the matrix is not

invertible.

Since the Hessian is symmetric and positive definite, the condition number of C can be

calculated using its eigenvalues,

κ(C) =
|µmax(C)|
|µmin(C)|

, (3.27)

where µmax(C) and µmin(C) are maximal and minimal eigenvalues of C respectively (see

Lewis et al. [2006] for proof). As well as the sensitivity of the solution to perturbations,

the speed of convergence of the optimisation scheme is also dependent on κ(C).

One solution in addressing ill-conditioned problems is to change the system to one with a

lower condition number and solve that equivalent problem. This is called preconditioning.

For example, Haben [2011] preconditions a system similar to Eq. 3.23 with a symmetric

positive definite matrix P to give the system

Âw = b̂, (3.28)
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where Â = P
1
2SP

1
2 is the preconditioned matrix, w = P

1
2x and b̂ = P

1
2 . Preconditioning

is beyond the scope of this thesis, however it could provide an interesting avenue for further

work.

Tuning λ

To understand better the role of λ on optimisation procedure, multi-site calibrations were

conducted over the daily data for different values of λ. Daily data were used since this is

where the collapse of posterior distribution was most obvious. The posterior uncertainties

were found to be highly unconstrained for λ = 0 and extremely tight for λ = 1, therefore

investigations were carried out over this range.

In a perfect optimisation, at the optimum, the gradient is zero and for a non-zero Hessian,

the curvature matrix is positive definite (if the Hessian is zero, the optimum is ensured

if the least non-zero derivative is even-numbered and positive). However, since the opti-

misations are performed on a computer with limited numerical precision, the termination

criterion for the optimisation is when the gradient reaches a very low threshold and so the

Hessian is not guaranteed to be positive definite.

The Hessian describes the curvature of a locally fitted quadratic at the optimum. If the

Hessian is not positive definite at the optimum, it is likely that one or more slices of the cost

function through parameter space will be flat or have a slight negative curvature. These

are the parameters that are ill-constrained. When generating the posterior uncertainties

using this Hessian, these directions of non-positive curvature through parameter space

are made slightly positive, in order to make the Hessian positive definite. This does not

change the uncertainty associated with these parameters very much since they will still be

seen to be highly unconstrained.

For low values of λ, the majority of parameters were found to be hitting the boundaries of

the prescribed ranges and the Hessian was found not to be positive definite at the optimum.

When λ was increased, the optimal parameters would move away from the bounds, and

for high enough λ, the numerical Hessian would be positive definite. A non positive

definite Hessian could also be made to become positive definite by removing the offending

parameters from the matrix. The number of parameters that needed to be removed in

order to achieve this also decreased as λ increased. In both cases, the relationship was

linear; once the Hessian became positive definite at the optimum it remained so.

When considering the condition number of the Hessian at the optimum, for low values of

λ, κ(C) = O(1013). The lowest value of λ for which Hessian was found the positive definite

gave κ(C) = O(105). In the range tested, once the condition number had dropped down,

increasing λ did not lower this order of magnitude any further. Though the condition

number is improved, it remains high.

For each of the daily multi-site experiments, the lowest value of λ such that the Hessian

is positive definite at the optimal parameter value was selected, denoted λopt. This allows
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uncertainties to be generated around each parameter (albeit some relatively tight) but

prevents the gradient descent algorithm from reaching the boundaries of the prescribed

prior range and also ensures a (relatively) low condition number. The values of λopt were

found to be lower for multi-site optimisations with many sites than those performed over

fewer sites. This means that only a low weighting of the background term was needed to

condition the problem. Given more time, this would have been an interesting relationship

to investigate further.

In Raoult et al. [2016], λ was manually tuned in this manner for each of the multi-site

optimisation in order to prevent the strong collapse in posterior distributions discussed

above. Due to improvements and corrections made to the code since, these results have

been updated for this thesis. These are presented in Chapter 4. The main change is from

bi-monthly data used in the paper to monthly data presented in this thesis. The updated

calibrations are performed over fewer data points, and as such the posterior collapse is less

pronounced. Due to time constraints and a lack of understanding of how best to weight

the background term, Chapter 4 only considers λ values 0 and 1.

3.2.4. Extra comments on the multi-site implementation

The two experiments described above point to a ‘smoothing’ hypothesis. In Sect. 3.2.2,

the parameter vectors found over multiple sites were sometimes found to outperform the

locally optimised parameter vectors. In these cases, a different and better minimum had

been discovered. In Sect. 3.2.3, the addition of more sites to the optimisation meant that

only a low-weighted background term was needed to help condition the problem. The

additional data provided by the extra sites replaced the extra constraints given by the

background term.

The idea of ‘smoothing’ was first suggested in Kuppel et al. [2014]. This is the idea that

the added constraints placed on the parameters by increasing the number of sites causes

the cost function to become ‘smoother’. As a result, this may render the optimisation

scheme less likely to become trapped in local minima. One of the motivations for the next

section is to test this hypothesis.

3.3. Testing the sensitivity to initial conditions

In this section, adJULES is initialised with different parameter vectors to test the sensi-

tivity of the system. In these experiments, Latin hypercube sampling (LHS) is used to

generate different starting parameter vectors. LHS is a statistical method for generating

near-random samples of parameter values from a multidimensional distribution. It aims to

spread the sample of points as evenly as it can across all possible values. This is achieved

by partitioning each input distribution into a given number of intervals of equal probabil-

ity and selecting one sample from each interval. This ensures that the whole of parameter

space is sampled.
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3.3.1. Initial cost

Using LHS, 100 different starting parameter vectors were selected. The initial cost using

each of these vectors was calculated at each of the broadleaf sites and compared to the

cost at the local optimum.

For 22/28 of the sites tested, each locally optimised parameter vector performed better

than any of the 100 randomly sampled parameter vectors. For a further two sites, only

1/100 randomly sampled parameter vectors was found to give a lower error. For site PT-

Esp, this number was increased to 2/100. In each of these cases, the random parameter

vector was different.

For the last three sites, a larger number of random parameter vectors outperforms the

locally optimised ones. Two of the these sites, BR-Sa1 and ID-Pag, have extremely high

and unrealistic initial fractional errors ϵ. These sites are seen to change very little when

parameter vectors are changed. These sites do not truly improve when confronted by new

parameter vectors, therefore the locally optimised vector and the randomly generated set

of parameter vectors are comparable. For these sites to improve, structural changes need

to be made to the model.

The final site to discuss in this experiment is US-UMB, for which 11% of the randomly

generated parameter vectors outperform the locally optimised one. It is not clear why

this site is anomalous. These 11 parameter vectors were found to give similar reduction

in errors to that of the optimised one, on average adding an extra reduction of 3% to the

15% reduction achieved by the locally optimised parameter vector.

This result gives confidence in the adJULES system. If it were possible to sample randomly

in parameter space and perform better than with an optimisation scheme, the system

would quickly become obsolete.

3.3.2. Sensitivity tests

For this experiment, LHS was used to select 25 different starting parameter vectors. These

were used to generate the initial monthly JULES run at each of the 18 deciduous broadleaf

tree sites. The difference between these runs and the observations at each site was used

as the basis of the cost functions minimised.

Calibrations using each of these 25 different starting parameter vectors, along with the

default JULES starting parameter vector, were performed both locally at each of the sites

and over the whole of the 18 site subset. This resulted in 26 optimal parameter vectors at

each of the 18 sites. These calibrations were performed twice, once without a background

term in the cost function and once with.

Figure 3.7 shows the overall RMSE reduction for which all of the optimised parameter

vectors are responsible. The spread of reductions is much larger for the experiments con-

ducted with the background term than without. This may seem counterintuitive since
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Figure 3.7.: Averaged model-data RMSE reduction of the GPP and LE fluxes. Calibrations
ran both without a background term (upper panel) and with it (lower panel). Results are
shown both for the locally optimised parameter vectors (on the left) and for the multi-
site parameter vectors (on the right). The parameter vectors optimised starting from
the default JULES parameter vectors are highlighted (coloured box; blue-single, purple-
multi) as is the mean reduction at each site (horizontal bar; blue-single, purple-multi).
Average column corresponds to the total average reduction for which each starting vector
is responsible. 89
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including the background term is thought to ensure uniqueness. However, since the back-

ground term also acts as a penalisation term, it stops the optimisations from straying too

far from the initial parameter values, which in this experiment are all different.

For the λ = 0 experiment, the locally optimised parameter vectors starting from the default

JULES parameter vector perform the best for the majority of the sites. This is not the

case for the λ = 1 experiment. For the majority of the sites however, the parameter vector

optimised by starting from the original JULES parameters does give RMSE reductions

below the average.

The multi-site parameter vector optimised from the default JULES starting values does

not appear to be performing the best of the multi-site parameter vectors. Indeed, for most

sites this value is higher than the average of all reductions. However, since the multi-site

parameter vector was found over multiple sites, it makes more sense to consider the overall

RMSE reduction across all the sites. This is shown in the average column of the figure.

In both experiments, this has a small spread.

If the addition of more sites tended to smooth the cost function, the spread in the possible

multi-site RMSE values would be smaller than the spread from the single-site RMSE

values. When considering the individual sites, this is true for 10/18 of the sites shown

for λ = 0, and 8/18 of the sites when λ = 1. When considering the overall average, the

multi-site spread is smaller than the local one.

Figure 3.8 considers the optimal parameter values themselves. When the background term

is excluded, many of the parameters hit the bounds. This happens consistently regardless

of the initial parameter vector. The α parameter can be seen to hit the upper bound

when locally optimised, whereas when part of the multi-site optimisation, this parameter

is found near the lower bound.

For both experiments, the Tlow parameter seems to opt for a value just under 20 for the

majority of starting vectors. The δc
δL parameter hits the lower bound when the background

term is excluded. When the background term is added to the cost function, this parameter

does not move far from its starting value.

Due to the distribution of possible optimal parameter vectors, especially when λ = 1, the

system is seen to be sensitive to initial conditions. Though the parameter values shown

were taken at one specific site, the results are similar across the different sites. In this

experiment, it is not possible to conclude whether the addition of the multiple sites to the

optimisation scheme is ‘smoothing’ the cost function as the distribution of the multi-site

parameters are as varied as the single-site parameter values.

3.4. Closing remarks

The multi-site framework developed in this chapter is shown to be successful and robust.

It has the ability to calibrate over multiple sites simultaneously, and a parameter vector
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(a) Optimisation performed without a background term (λ = 0)

+

+

+

+

+
+

++

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+0.
05

0.
10

0.
15

0.
20

n0

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

+

+

+

+

+

+

+
+

+

+

+

+

+

++

++

+

+

+

+

+

+

+
+

+

0.
2

0.
4

0.
6

0.
8

α

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

+

+

+
+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

0.
5

0.
6

0.
7

0.
8

0.
9

f0

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● +
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−
40

−
20

0
20

40

Tlow

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

25
30

35
40

45
50

Tupp

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

1
2

3
4

dr

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

+ +

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

0.
02

0.
04

0.
06

0.
08

0.
10

δc

δL

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

0.
05

0.
10

0.
15

0.
20

dqc

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

(b) Optimisation performed with a background term (λ = 1)

Figure 3.8.: The optimal parameter values found after performing optimisations over Ger-
man site DE-Hai, starting with the default JULES parameters (left-hand side separated
by the vertical line) and the 25 randomly generated vectors in order along the x-axis. Re-
sults for single-site optimisations (blue) and multi-site optimisations are shown (purple)
vertically lined up with the initial value for each parameter (red crosses). The y-axis span
the prescribed parameter ranges.
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found over a small subset of sites can be generalised to bigger sets.

The development of the multi-site framework has, however, opened up more research

questions around the weighting and definition of the background matrix B. The addition

of more sites to the cost function is seen to add more constraints, on top of the ones

controlled by the number of data points in the optimisation and the relative strength of

this background term. More work is needed to understand the relationship between these

three factors and the constraints they place on the cost function.

In Chapter 4, the multi-site framework developed in this chapter is used to find new PFT-

generic parameter vectors for the JULES model. The locally-optimised parameter vectors

generated at each site are also used to re-examine the PFT groupings and to consider

other ways in which vegetation could be partitioned.
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in JULES

In this chapter the main results of the adJULES optimisations are considered. As described

in Chapter 2, the parameters optimised in this thesis relate to the plant functional types

(PFTs) in JULES. The parameters are optimised with the aim of improving the PFTs’

representations within the model.

In Sect. 4.1, the ability of the adJULES system to calibrate at specific FluxNet sites is

investigated. Referred to as single-site optimisations, these are shown to perform well.

The main improvement trends for each PFT are discussed. The potential to generalise the

parameter vectors found at each single-site over each of the PFT is explored in Sect. 4.2.

One way this is achieved is by averaging the single-site results, the other is by choosing

one representative vector to describe the whole PFT.

In Sect. 4.3, multi-site optimisations are performed over each PFT. This gives a more

robust and objective way of finding a new parameter vector for a given PFT. The uncer-

tainties associated with each parameter and the correlations between parameter pairs are

discussed, as well as assessing the improvement in model-data fit at each site (Sect. 4.3.1

and 4.3.2).

The chapter concludes by considering other ways to improve the PFTs in JULES. First,

this is done by looking at some of the structural changes in Sect. 4.4, namely changes

in the canopy representation and the recent work by Harper et al. [2016]. Second, the

PFT groupings are reconsidered in Sect. 4.5. Considering the single-site optimisations,

clustering algorithms are used to see if the sites fall into natural groupings.

The experiments in the first half of this chapter are an updated version of the published re-

sults in Raoult et al. [2016]. Some of the results differ slightly due to minor improvements

made to inconsistencies found in the code; the averaging window was not quite monthly

and the atmospheric carbon concentrations were too low. Different background weight-

ings (λ) are considered in this chapter compared to those in the paper for the multi-site

optimisations, as discussed in Sec. 3.2.3. Unless stated otherwise, the background term

is included in the following optimisations, i.e. λ = 1, in order to give equal weighting to

both terms in Eq. 2.55.
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4.1. Single-site optimisations

First, each site was optimised individually in order to find site-specific parameter vectors.

Typically, this required about 150 function evaluations to find a local optimum. In these

experiments, 1-year runs at the different sites were optimised against monthly averaged

latent heat (LE) and GPP. A site dominated by each PFT was picked to represent the

general improvements made. The main seasonal cycles of LE and GPP for the different

sites are shown in Fig. 4.1. The rest of the sites can be found in B

Most broadleaf sites follow the pattern illustrated (Fig. 4.1, top row). Normally, for

broadleaf sites, a standard JULES run will underestimate GPP. The optimisation does a

good job in correcting this, bringing the modelled time-series closer to the observations.

In contrast, LE does not improve as much.

Similarly, for the needleleaf sites (Fig. 4.1, second row) the JULES model output tends to

overestimate LE and underestimate GPP. The parameter vector found in the optimisation

improves the fit of both data streams, most notably for GPP. At sites in which a double

peak seasonality is apparent, the optimised model captures this better than the original

model.

GPP is also underestimated for the C3 grass sites (Fig. 4.1, middle row) and, for the

majority of the sites, the optimisation does a good job of correcting this. The LE flux

tends to have the right magnitude before optimisation, unlike the GPP flux, but adJULES

does not manage to improve this output significantly. In the example shown, the JULES

model using the default parameter vector already performs very well, so little improvement

is possible, but this is not always the case. The new set of parameters is also good at

simulating multiple peaks in the LE and GPP fluxes, when they are observed.

There are only two C4 grass sites in the set and JULES does not perform very well on these

before or after optimisation (Fig. 4.1, fourth row). The original stomatal conductance–

photosynthesis model within JULES was developed based on fluxes measured over C4

grass as part of the FIFE field experiment [Cox et al., 1998]. However, there are relatively

few FluxNet sites over C4-dominated landscapes, and only two in the extended data set

used here. As a result, the sensitivity of stomatal conductance and photosynthesis to

environmental factors has been less well tested for C4 grasses. These results highlight the

need to reassess JULES and other land-surface models for predominantly C4 landscapes.

The shrub sites show no general pattern (Fig. 4.1, fifth row). Some sites overestimate LE,

whilst others underestimate it, and similarly for GPP. The level of improvement varies

over sites. For some, the magnitude of GPP fails to get close to the magnitude of the

observations, both before and after optimisation. However, it is hard to pick out a general

pattern for this PFT, since there are only five sites in this set.

Overall, the adJULES system works well in finding optimal parameter vectors, which

improve the performance of JULES at individual sites, regardless of PFT. The systematic

underestimation of GPP in default JULES improves the most. This larger improvement
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Figure 4.1.: Time-series plots for illustrative site-specific evaluations showing LE (left) and
GPP (right) for each of the different PFTs. Observations (black) are compared to JULES
runs using default parameters (red) and site-specific optimal parameters (blue).
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in the GPP fit reflects the larger set of optimised parameters that are exclusively related

to the carbon cycle. Different parameters may need to be incorporated, for example some

relating to soil, in order for the LE flux to improve further. In fact, calibrating against LE

and GPP fluxes without a full set of parameters controlling LE risks changing the results

compared to a GPP only calibration in a non-meaningful way.

4.2. Moving towards a generic parameter vector to describe

each PFT

One of the motivations for this work is to generate an optimal parameter vector to best

describe each PFT. This improved parameter vector can be found in several ways. One

approach is to transpose optimal parameter vectors found at one site to other sites with the

same plant functional type. Another is to average all the optimal parameter vectors from

the whole PFT. Finally, a generic parameter vector can be found by performing a multi-

site optimisation for the PFT. Note that the averaged parameter vector is different to that

found by performing a multi-site optimisation (as discussed in Sect. 3.2.2). A multi-site

calibration of the model is more involved, and so the hope is that this parameter vector

is the most efficient at reducing errors in the model-data fit. The experiments conducted

in this section are similar to those found in Kuppel et al. [2012].

Due to time and computational constraints, this section focuses on the deciduous broadleaf

subset. Figure 4.2 shows the model-data RMSEs for LE and GPP at each of these sites.

The bars shown at each site result from applying different parameter vectors. First, the

default JULES parameters are used to run the model (shown in red). This is compared

to runs using the multi-site parameter vector and the average parameter vector (shown in

green). The average parameter vector is calculated by taking the mean of the single-site

optimisation vectors. Finally, the optimal single-site parameters are applied (shown in

grey, and highlighted blue when the parameters were optimised at that particular site).

Note that even though only the deciduous subset of the broadleaf sites is considered in

this figure, the multi-site parameter vector was calculated over all of the broadleaf sites.

Similarly, for the average parameter vector, the mean was taken over all the broadleaf

sites.

The single-site parameter vector found at each site is expected to perform the best, how-

ever, this is only the case for 3/18 of the sites in Figure 4.2a. With the exception of

US-UMB which has a relatively high LE RMSE, the multi-site parameter consistently

improves the model fit to the LE flux. In contrast, the averaged parameter vector gives a

similar or worse fit when compared to the default parameters.

For a few sites, most notably IT-Non, the single-site parameter vector optimised at that

site worsens the model’s fit to the LE flux but significantly improves the model’s fit to the

GPP flux. This, and the relatively low overall reduction seen in the LE fluxes, is due to

the small number of LE-related parameters optimised in this study. When several fluxes
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Figure 4.2.: Monthly model-data RMSEs for LE and GPP. For each site, the prior model
(red) is compared to runs found using the parameters from single-site optimisations per-
formed locally (blue) and at the other sites (grey). These grey bars are ordered in the site
order (as listed in Table. A.1), highlighted blue when at the corresponding site. Two fur-
ther vectors are considered: the parameters found from optimising over all the broadleaf
sites simultaneously (purple) and the parameter vector found by averaging all of the single
sites (green). The arrows highlight the parameter vectors resulting in the largest RMSE
reduction.
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4. Improving the Plant Functional Types in JULES

are being optimised simultaneously, it is possible to improve the fit to one flux whilst

degrading the fit to another and still have an overall reduction in total RMSE.

For the GPP flux shown in Fig. 4.2b, over half of the sites now perform best with their

locally optimised parameter vector. Transposing the single-site parameter vectors most

often results in significantly higher GPP RMSE values than the site-corresponding pa-

rameter vector. In general, the single-site parameter vectors are not generic enough to

be transposed to other sites. The multi-site parameter set tends to improve the fit at

each site (improves the fit for 15/18 of the sites) though to a much lesser extent than the

site-specific set. The averaged parameter vector performs very well for some sites, in fact

it improves 11/18 of the sites to a greater extend than the multi-site vector. For a few

of the sites however, e.g. US-MSS and US-MOz, the averaged parameter vector performs

very poorly.

Using the FVU metric described in Sect. 2.4.2, the total improvement at each site can

be quantified. These values can be used to compare the average FVU for which each

parameter vector is responsible. The parameter vector calibrated at site US-MMS performs

the best overall, closely followed by the multi-site parameter vector. On closer inspection,

the US-MSS parameter vector gives a lower average FVU value, but improves fewer of

the sites overall. Of the 21 parameter vectors tested (i.e. 18 single-site, one default, one

average, and one multi-site), ten perform worse than the default parameters. The average

parameter vector performs seventh best.

Therefore, with this metric the multi-site parameter vector performs better than the av-

eraged parameter vector. Even though a single-site parameter vector is seen to perform

slightly better using the average FVU metric, the multi-site parameter vector is more con-

sistent in improving all sites. The multi-site parameter vector has been found in a robust

and reproducible manner.

An argument for the averaged parameter vector could also be made since it is seen to

perform reasonably well. The two sites it performs worse at warp the average FVU metric.

These two sites do start off with relatively low errors compared to the other sites. The

advantage of the averaged parameter vector that it is simpler to calculate, however, given

the non-linearity of the Earth System, it is possibly less mathematically robust. With

the averaged parameter vector, it is also harder to calculate the posterior distributions

associated with each parameter. The posterior distributions calculated when using the

multi-site parameter vector are found by used the second derivative of the multi-site cost

function. The averaged parameter vector however does not have one total cost function

- the posterior distributions are calculated at each site. Some mechanism for combining

these individual posterior distributions would be needed to find the error of the averaged

parameter vector. This could be an avenue for future work, however, in this thesis, the

multi-site optimisation is used.
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4.3. Multi-site optimisations

Optimisations were performed over all available sites for each of the PFTs. The optimised

model parameters for each of the PFTs are presented in Fig. 4.3, both for experiments

with a background term and experiments without a background term. The background

term refers to the prior distribution used in the cost function: the prior distribution is

assumed to be proportional to one over the prescribed range for each parameter when

the term is included, and a non-informative top-hat prior is assumed when the term is

excluded (discussed at length in Sect. 3.1.3).

Generally, the parameters found when optimising without the background tend to have

larger uncertainties than those found in the experiments with the background term. The

clearest example of this is found in the δc
δL parameter. This parameter, which determines

the efficiency of rainfall interception by the plant canopy, is completely unconstrained

when λ = 0. The 80% confidence interval spans the whole box and, for the broadleaf

vector, this parameter hits the bounds. However, when the background term is included,

this parameter does not change significantly from its original value for any of the PFTs.

The uncertainty bounds are relatively tight and symmetrical. The rest of the parameters

show more variation.

As described in Sect. 2.4.1, the optimal values need not be in the centre of the uncertainty

range, the probability density function can be skewed. This can be seen for most of the

parameters in the needleleaf parameter vector (λ = 1); the optimal parameters tend to be

at the lower end of the confidence interval.

Most of the time the background term, acting as a penalising term, causes the optimal

parameters to remain closer to the prior value than in experiments without the term.

However, there are some where this is not the case; for example the dqc parameter for

the needleleaf trees and C4 grasses. This is due to the fact that the parameter belongs

to a vector of parameters which is changing during the optimisation and therefore some

parameters will end up contributing more to the penalisation term than others.

Even for the penalised experiments (i.e. with λ = 1), the PFTs display high uncertainty in

at least one of the parameters optimised; for the optimised broadleaf set for example, Tlow

is noticeably unconstrained. For C4 grasses, dr is so unconstrained that the optimal value

found lies outside the 80% confidence interval. Needleleaf trees show large uncertainty

in dqc, whereas the C3 grasses show large uncertainty in n0 and Tupp. For shrubs, the

parameter with the largest uncertainty is n0.

Some of these uncertainties can be explained by referring back to the JULES equations

found in Sect. 2.1.2. Consider Vcmax (Eq. 2.5), one of the main components for calculating

photosynthesis rates. This is controlled by Tlow, Tupp and n0. Vcmax curves for a variety

of Tlow values are shown in Fig. 4.4. Tlow only affects the left hand slope of the Vcmax

functional graph. Increasing the value of Tlow causes the lower end of the curve to become

steeper. In temperate and tropical regions where temperatures do not go very low, the

bottom half of the curve is not sampled. Without knowing the shape of the bottom
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Figure 4.3.: The new parameter values found by optimising over each PFT using a cost function
without background term i.e. λ = 0 (light purple), and a cost function with the manually weighted
background term (dark purple). The new parameter values hitting the prescribed ranges are
highlighted with an asterisk (∗). The prior value for each parameter is found on top, † denotes
cases were the initial value is outside both of the new uncertainty bounds. The error bars show the
uncertainty ranges given as an 80% confidence interval. The range of each box is the prescribed
range the parameters were allowed to vary over and the vertical lines show the initial value for
each parameter.
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4. Improving the Plant Functional Types in JULES

of the curve, the value of Tlow cannot be determined. This could explain why Tlow is

unconstrained for the broadleaf trees, whereas for needleleaf sites, which exist in much

colder climates, the parameter is highly constrained.
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Figure 4.4.: Functional graph of Vcmax against temperature (T). Black line shows the
broadleaf default curve with Tlow = 10,Tupp = 36◦C and n0 = 0.46. The blue lines show
varying values of Tlow ranging from -20◦C to 10◦C increasing in increments of 5◦C, and
the red lines show varying values of Tupp ranging from 25◦C to 40◦C. Decreasing values of
Tlow flatten the LHS of the curve, increasing values of Tupp push up the peak of the curve.

The new PFT-generic parameters are taken from the experiments with the background

term. Overall, α is constrained for all of the PFT, opting for a low value. The root depth

parameter (dr) remains high for trees and low for shrubs and grasses. Note that for some

of the parameters, the prior value lies outside the posterior uncertainty bounds.

These results can be used to improve the JULES model. The results suggest for example

that f0 needs to be set lower than currently in the model. The fact that the parameter

is hitting the lower bound for more the PFT may also highlight the need to reexamine

the equations it is found in. Similarly for Tupp in broadleaf trees, when the experiment

is unconstrained, the parameter hits the top bound. From Fig. 4.4, Tupp can be seen to

control the peak of the curve. Tupp is increased in the optimisation the fix the underes-

timation in GPP. To keep Tupp within the realistic range, moving from the big-leaf light

saturated model to a multi canopy model could help constrain Tupp by more often pushing

the system into light-limited regimes.

The parameters found during the constrained experiments when be recommended for

future runs - the model-data fit for GPP is improved but the parameters are still within the

expected ranges. However more experiments are also recommended against more fluxes

and with different parameter vectors before became permanent changes in the JULES

model.
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(a) BT (b) NT

(c) C3 (d) C4

(e) Sh

Figure 4.5.: The correlations between
parameters for PFT-specific param-
eter optimisations found in experi-
ments excluding the background term
(λ = 0). Each subfigure shows a
2-D correlation map, within which
each box is a 2-D marginal plot.
Bar graphs show 1-D marginal dis-
tributions for individual parameters.
The dimensions of the boxes repre-
sent the prior range of each param-
eter. Red points/dashed lines repre-
sent initial parameter values. Blue
points/dashed lines represent opti-
mised parameter values. Blue con-
tours illustrate the posterior distribu-
tion.
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(a) BT (b) NT

(c) C3 (d) C4

(e) Sh

Figure 4.6.: As in Fig. 4.5 but for ex-
periments with the background term,
i.e. λ = 1
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The uncertainties shown in Fig. 4.3 are 1-D marginal distributions. To understand further

how the parameters are correlated, consider the 2-D representation in Fig. 4.5 and Fig. 4.6.

In Fig. 4.5, when the background is excluded, the parameters can be seen to be uncon-

strained with little or no correlation between parameters. This is especially apparent in

the case of the grasses and shrubs. The tree sites show more structure. As discussed in

Sect. 3.2.3, this could be linked to the fact that there are more sites in these PFTs placing

more constraints on the optimisation than for the non-tree PFTs.

Now consider Fig. 4.6, when the background is included. For all of the PFTs, the posterior

parameter uncertainties exclude a large part of the prior ranges. The cloud of plausible

points tends to be restrictive and tight for most parameters.

Figures 4.5 and 4.6 show clear correlation of some parameters, especially between n0, f0

and dqc. Correlations are most notable for tree sites when λ = 0, and for needleleaf and

C3 grass sites when λ = 1. Interestingly, the correlation between n0 and dqc changes

sign depending on whether the background is used in the optimisation. This is still not

understood.

In the case where the background term is excluded (or with a low weighting as is the

case in Raoult et al. [2016]), many of these correlations can be understood in terms of the

underlying structure of the JULES model (Sect. 2.1.2). For example, the correlations be-

tween these three parameters are consistent with adJULES attempting to fit the stomatal

conductance g, which controls the transpiration flux from taller vegetation. The stomatal

conductance has the approximate form

g ≈ 1.6
A

ca

(
1

(1− f0) + f0
dq
dqc

)
(4.1)

= 1.6
A

ca

1

(1− f0)

 1

1 +
(

f0
1−f0

)
dq
dqc

 (4.2)

if it is assumed that c∗ ≪ ci and c∗ ≪ ca (this is a combination of Eq. 2.4 and 2.10 using

the parameters defined in Table. 2.1).

The maximum rate of leaf photosynthesis (A) is controlled largely by the leaf nitrogen

content n0, especially in this big-leaf version of JULES (Cox et al., 1999). The best-fit

parameters for tree PFTs seem to imply f0 is close to the lower bound set at 0.5. This

value eliminates the f0/(1−f0) term in Eq. 4.2. As a result, maintaining a realistic g value,

and therefore a realistic LE flux, will require that n0 and f0 vary proportionally, and that

n0 and dqc values are negatively correlated. This negative correlation can be seen in Fig.

4.5 for the tree PFTs. This correlation of parameters is less obvious for the grass PFTs

because evapotranspiration is controlled less by stomatal conductance and more by the

smaller aerodynamic conductances associated with shorter vegetation.
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4.3.1. Assessment of PFT-specific optimal parameters

The performance of the PFT-specific parameters is now compared to the default JULES

values and to the parameters found by optimising independently at each measurement

site. For each site, the fractional error in both the calibration year and the evaluation

year is displayed Fig. 4.7.

For all sites, the fractional error in calibration years decreases when moving from default

to site-specific optimal parameters in the calibration years (with the exception of the IT-

Non and UK-Ham sites, which improve when a different metric is applied). Remarkably,

the site-specific optimal parameters also improve the model–data fit in evaluation years

for 54/64 (84%) of sites. Similarly, the PFT-specific optimal parameter vector improves

the fit (in both calibration and evaluation years) for 85% of the sites; 76/79 sites for the

calibration years and 55/64 sites for the evaluation years.

Consider first the broadleaf sites (Fig. 4.7, top two rows). For the majority of sites

displayed in the top broadleaf panel, the reduction in fractional error in moving from

default to site-specific optimal parameters is substantial and sometimes as much as a factor

of 2. In the calibration year, the PFT-specific optimal parameter vector improves 26 of the

27 broadleaf sites shown, although at one of the sites, IT-Lec, the fit shows no change. The

improvement is typically about half as good (on a log scale) as the improvement using the

site-specific optimal parameters. In other words, the reduction in fractional error moving

from default to PFT-specific optimal parameters is sometimes as much as a factor of
√
2.

Amongst broadleaf sites, only UK-PL3 gets notably worse. Investigation shows that this

site behaves differently from the rest of the sites in the set, both in the magnitude of

the fluxes and seasonality. This UK site is in the Pang–Lambourn catchment, which has

chalk soil with macropores that permit significant lateral subsurface flows of soil moisture.

These horizontal flows cannot be captured in a model like JULES, which is essentially 1-D

in the vertical below the soil surface.

Similar levels of fit and error reduction can be seen in the evaluation years in the broadleaf

set. Only IT-Col shows no improvement for either vector, the PFT-specific optimal param-

eter vector does not worsen the fit at this location. For IT-Non, US-UMB, and IT-Cpz,

the PFT-specific parameter vector outperforms the site-specific vector. This illustrates

that the PFT-specific vector can be robust, whereas the locally optimised vectors might

over-tune to the specific behaviour of the calibration year.

Results are similar for the needleleaf sites, the majority of the sites show noticeable im-

provements in both the calibration and evaluation years when using site-specific optimal

parameter vectors. For some of the sites in this PFT, the improvement when using the

PFT-specific parameter vector is similar to, or outperforms, that obtained with the site-

specific parameter vector for the evaluation year. This illustrates that this subset of sites

fits together well as a single PFT. Some sites in the needleleaf PFT remain unchanged

regardless of the parameter vector used. Anomalous sites that should be noted are CA-

Qcu, CA-SF3 and US-Blo. The CA-Qcu site is the only one in this PFT that does not
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Figure 4.7.: Calibration and evaluation of site-specific and PFT-specific parameter opti-
misation at FLUXNET sites, using the metric described in Sect. 2.4.2. Fractional error
shown for default JULES parameters (red), site-specific optimal parameters (blue), PFT-
specific optimal parameters (violet). Results are shown both for the calibration year (×,
on left) and for the evaluation year (∗, on right). No evaluation year was available for
some sites (broadleaf: FR-Fon, UK-Ham, UK-PL3, US-Bar, ID-Pag, IT-Lec, PT-Mi1;
needleleaf: SE-Sk2, UK-Gri, US-Me4, US-SP1; shrubs: DE-Gri, DK-Lva, PL-wet). Sites
with very large initial errors have been removed from the plot (broadleaf: BR-Sa1; shrubs:
IT-Pia).
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Figure 4.7.: (continued)
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improve when using the PFT-specific vector, for either the calibration or evaluation years.

This site has a lower annual cycle of GPP than the rest in this set. The CA-SF3 site

improves when using the site-specific parameter vector in the evaluation year, but not

using the PFT-specific vector. The US-Blo site improves in the calibration year, but when

confronted with the evaluation year, both the site-specific vector and PFT-specific vector

worsen the fit. This evaluation year has unusually high LE, which might be causing this

discrepancy.

The last panel of Fig. 4.7 shows the C3 grass sites, the C4 grass sites and the shrub sites.

For the C3 grass sites, half of the evaluation years either have a better fit with the PFT-

specific parameter vector than with site-specific parameter vector or with the unoptimised

default parameter vector. This suggests that the seasonal cycle differs over the different

years at these sites. For the C4 grass sites, which started with relatively high errors, the

new parameter vectors improve the sites slightly for the calibration year but hardly at all

for the evaluation year. This set of two sites is too small to draw any proper conclusion

about the C4 grass parameters. There is a clear need for more data from C4 grass sites.

Finally, the shrubs can be seen to improve for all the sites. For the shrub sites, both the

site-specific and the PFT-specific provide a better fit of the model to the observations of

the calibration year. The improvement is minor for these sites, except for CA-Mer, which

halves its fractional error. When confronted with observations from the evaluation years,

the model also improves the fit of half of the sites for both site-specific and PFT-specific

parameters. For the other two sites, the site-specific optimal vector increases error but the

PFT-specific vector reduces it. In fact, for all of the sites in this PFT, the PFT-specific

parameters outperform the site-specific optimal vectors over evaluation years. This is

another example of the PFT-specific parameter vector being more robust.

For some sites, e.g. IT-Cpz and US-Bo1, the PFT-specific optimum outperforms the

site-specific optimum in the calibration year. This is even the case when considering a

different metric to fractional error ϵ used in this figure. This phenomenon was also noted

by Kuppel et al. [2014], who suggest that the added constraints placed on the parameters

by increasing the number of sites causes the cost function to become “smoother”. This

may render the optimisation scheme less likely to become trapped in local minima.

4.3.2. Analysis of improvement in fit

As discussed in Sect. 2.4.2, the fractional error is a good tool for cross-site comparison,

however, it does not give much information about the way in which the optimised pa-

rameter vectors improve the fit at each site. Taylor diagrams (Taylor, 2001) provide

more insight into how the fit has been improved by considering the relationship between

observed variance var(ot), modelled variance var(mt), error variance var(ot − mt) and

model–observation correlation cor(ot, mt).

The Taylor diagrams in Fig. 4.8 illustrate the improvement in performance of the optimised

model for both the site-specific and PFT-generic parameters during calibration years for
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Taylor diagram for LE improvements at NT sites
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Figure 4.8.: Improvements in fit represented by “Taylor diagrams”. Observed time-series
(black dot) can be compared with modelled time-series for default parameters (red dots),
site-specific optimal parameters (blue dots) and PFT-generic optimal parameters (purple
dots). Radial distance from the origin (dotted lines) represents normalised standard de-
viation

√
var(mt)/var(ot), and so a modelled time-series with the correct variance lies on

the thick black line. Angular position represents the correlation between modelled and
observed time-series. The distance from the black dot (dotted green lines) represents the
normalised standard deviation in the errors

√
var(ot −mt)/var(ot).

the needleleaf sites (plots for evaluation years are very similar).

For latent heat at needleleaf sites (left), the improvement is minimal. The underestimated

seasonal cycle is seen to improve very slightly. The correlation between the modelled

time-series and observation time-series does not improve much but for the majority of the

sites this starts off relatively high (over 0.6). Other PFTs also show small improvements

for latent heat.

For GPP at needleleaf sites (right), the seasonal cycle is typically underestimated and

improves noticeably for both the single-site parameter vectors and the PFT-generic pa-

rameter vectors. The correlation between model and observed time-series does not change

greatly. The Taylor diagram for GPP at broadleaf sites is very similar. For grasses and

shrubs, the change is less drastic, though some of the sites have a more notable increase

in correlation.

In addition to Taylor diagrams, the normalised bias b (Eq. 2.54) can be used to assess the

fit. This metric has the ability to highlight any systematic offset in the model. Calculating

this statistic separately shows a reduction in bias in either the latent heat or GPP flux

for 97.5% of the sites and both for two-thirds of the sites. The bias reduction in GPP at

90% of the sites was most notable. Sites where the LE bias was not reduced, tended to

have larger reductions in GPP bias. This again highlights the fact that the parameters

optimised are mainly related to this flux.
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Taken together, these measures show that the observed improvements in model fit are due

mainly to the adjustment of the magnitude of the annual cycle and a reduction in bias.

4.4. Structural changes to the model

The adJULES system produces the (locally) best possible fit to observations, given the

existing model physics and prescribed driving data. If the fit is still inadequate, this may

be due to the model and data themselves, rather than the parameter values. This section

considers a couple of structurally different configurations of the JULES model to that used

in the calibrating experiments.

4.4.1. Change in canopy model

As described in Sect. 2.1.2, these experiments use the ‘big-leaf’ canopy model. In JULES,

there are several more options available for the treatment of radiation interception and

scaling up to the canopy scale. The big-leaf canopy model is the simplest, and the most

complicated includes a multi-layer canopy with sunlit and shaded leaves in each layer,

two-stream radiation with sunflecks penetrating below the top layer, and light-inhibition

of leaf respiration [Clark et al., 2011].

JULES was evaluated using the multi-layer approach for a temperature coniferous forest

site in the Netherlands (Loobos, Jogireddy et al. [2006]) and a tropical broadleaf rainforest

site in the Brazilian Amazon (BR-Ma2, Mercado et al. [2007]). Two of the German sites,

DE-Hai and DE-Wet, a broadleaf and needleleaf site respectively, were also covered in

Clark et al. [2011]. These studies all focused on the diurnal cycle of GPP, which was

found to improve with the more complex canopy representation.

When using the same experimental set up used through-out this thesis, the change to the

multi-layered canopy slightly improved LE but did not improve the GPP seasonal cycle.

4.4.2. Alternative PFT definitions

Conducted in parallel to the majority of the work found in this thesis, Harper et al. [2016]

also tackles the task of improving the PFT representations in JULES. The study suggests

a move from a five-PFT representation to a nine-PFT representation. This is achieved

by first splitting the broadleaf and shrubs sites into deciduous and evergreen subsets, and

then by further partitioning the evergreen broadleaf sites into tropical and temperature.

The first split of broadleaf tree sites and shrub sites into deciduous and evergreen serves to

represent better the range of leaf life spans and metabolic capacities that exist in nature

[Harper et al., 2016]. The difference between deciduous and evergreen plants is modelled

mainly by the way the plants use nitrogen. Nitrogen is not only used in photosynthesis,

but also in the growth and maintenance of the leaf structures. Since evergreen species have
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less access to nutrients, they allocate a lower fraction of leaf nitrogen to photosynthesis

and more to structure, defence and tolerance mechanisms than deciduous species [Harper

et al., 2016]. As a result, evergreen plants tend to have longer life spans and a higher leaf

mass per unit area [Takashima et al., 2004; Poorter et al., 2009].

In order to model these differences, Harper et al. [2016] introduce two new parameters

into the JULES model: leaf mass per unit area (LMA, kgm−2) and leaf nitrogen per unit

mass (Nm, kgN kg−1). The latter parameter replaces the n0 parameter used in this thesis.

These new parameters are used to update the Vcmax equation (Eq. 2.5) and the equations

calculating the nitrogen concentration of the roots, stem, and leaves.

The second separation of evergreen broadleaf sites into tropical and temperate sites also

effects Vcmax. Tropical evergreen trees tend to have a lower measured Vcmax per leaf N

per unit area (NA = Nm · LMA) than temperate evergreen trees, resulting in maximum

assimilation rates [Kattge et al., 2011].

The land cover at each FluxNet site is coded by one of the IGBP classes (IGBP: Interna-

tional Geosphere-Biosphere Programme). Excluding the non-vegetated land classes, these

include; five types of forests: evergreen needleleaf (ENF), deciduous needleleaf (ENF), de-

ciduous broadleaf (DBF), evergreen broadleaf (EBF), and mixed (MF); grasslands (GRA);

two types of cropland: crops (CRO) and mosaicked cover (CVM); wetlands (WET); two

types of shrubland: open (OSH) and closed (CSH); and two types of savanna: normal

(SAV) and woody (WSA). The classification of a FluxNet site depends on the criteria

found in Table A.2.

Note that while Harper et al. [2016] suggest increasing the number PFTs in JULES, these

do not follow the extra categories found in the IGBP classes. The nine new PFT in JULES

are denoted: tropical broadleaf evergreen trees (BET-Tr), temperate broadleaf evergreen

trees (BET-Te), broadleaf deciduous (BDT), needleleaf evergreen trees (NET), needleleaf

deciduous trees (NDT), C3 grasses, C4 grasses, evergreen shrubs (ESh), and deciduous

shrubs (DSh). The original parameters from Clark et al. [2011] (Table. 2.2) have been

adjusted to account for the new PFTs and new parameter values have been taken from

the TRY database [Kattge et al., 2011].

Generated with the help of A. Harper, Fig. 4.9 and Fig. 4.10 compare the improvement

made to model-data fit by adJULES and Harper et al. [2016]’s structural changes. The

changes made in Harper et al. [2016] are not purely structural - it also includes some

parameter adjustment through trail and error (different to an adJULES optimisation). The

runs are generated using slightly different data and an updated version of JULES (version

4.2), into which the changes discussed in Harper et al. [2016] have been implemented. As

discussed in Sect. 2.1.1, there have been very few changes to the main science between

versions. This is also a good way to check whether the changes suggested by adJULES

work on later versions of the model.

The sites displayed in these figures are the ones shown in Harper et al. [2016]’s study.

These consist of the nine sites found in Blyth et al. [2011]’s benchmarking study, and five
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Figure 4.9.: Monthly mean fluxes of latent heat. Observations ± standard deviation from
FluxNet are shown with triangles and vertical lines. The three JULES simulations are
JULES with five PFTs and default parameters (red); JULES with five PFTs and the
PFT-generic parameter vectors found in this study using adJULES (purple); and JULES
with nine PFTs and the changes described in Harper et al. [2016] (orange).

JULES 5 PFT − uncalibrated
JULES 5 PFT − calibrated 
JULES 9 PFT
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JULES 5 PFT − uncalibrated
JULES 5 PFT − calibrated 
JULES 9 PFT

Figure 4.10.: As in Fig. 4.9 but for monthly GPP values.
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additional sites chosen to represent more diversity in land cover types and climate [Harper

et al., 2016]. The figures show the average seasonal cycle calculated at each site over a

minimum of three continuous years (up to ten years when the data were available). The

error bars represent the variation in these years.

First, consider the latent heat flux shown in Fig. 4.9. Using the RMSE metric, the param-

eters generated from adJULES can be seen to improve 9/14 of the sites compared to the

default parameters. For eight of these sites, the adJULES changes give lower RMSE than

the Harper changes. In contrast, the Harper runs have high correlations for the majority

of the sites, the highest for 10/14 of the sites.

For the GPP flux (Fig. 4.10), the adJULES changes tend to give too great a seasonal cycle.

The default runs in this configuration do not tend to underestimate the seasonal cycle to

the same extent as the default runs used in the calibration. The correlation between

the observations and the adJULES run however is high (over 85%) for 8/13 of the sites.

This means that even though the cycle might have too high a magnitude, there can be

confidence in the shape of the season cycle. The adJULES runs do well at optimising

the deciduous broadleaf sites and the crop site, less well at the grass sites and evergreen

broadleaf sites.

For the Harper runs, the GPP RMSE at half of the sites is reduced compared to the

default runs. The correlation between the Harper runs and the observation is also over

85% for eight sites, however some of these sites differ from ones over which the adJULES

runs fulfil the same criterion.

In this section, the ‘big-leaf’ canopy model has been utilised. However, Harper et al.

[2016]’s changes pertain to a multi-layered canopy setup. The new adJULES parameter

vectors and Harper et al. [2016]’s structural changes are responsible for different improve-

ments in the model-data fit, highlighting the fact that both types of change are needed

to advance model development. Due to TAF licensing issues, Harper et al. [2016] changes

have not been integrated into the adJULES system. This is one of the main goals for fu-

ture work, along with calibrating a multi-layered canopy version of JULES. Harper et al.

[2016] also presents a new set of initial parameters for each of the PFTs. These values

could be used to update z0 in the current adJULES system.

4.5. Redefining the PFTs through cluster analysis

In the experiments conducted so far, it has been assumed that all the sites belong to

five predetermined PFT groups. This section challenges this assumption by attempting

to reverse engineer the groupings using the single-site optimisation data. The optimised

site-specific parameter vectors are used to group the sites through statistical clustering in

a similar manner to Groenendijk et al. [2011].

In this section, two different experiments are considered. In the first instance, the param-

eter vectors themselves are clustered. This is done using two setups; first, the parameter
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vectors found previously in the single-site optimisation are used, then new single-site op-

timisations are performed using the same starting vector z0 for all sites. For the second

experiment, the clustering focuses on model-data fit improvement; sites are grouped if

parameter vectors optimised at one site improve the fit at another.

4.5.1. Clustering techniques

Cluster analysis seeks to divide data into groups, known as clusters, in such a way that the

data within each group are similar to one another (in some respect) and different from the

data in the other groups. The greater the similarity (or homogeneity) within a group and

the greater the difference between groups, the better the clustering. The clusters aim to

capture the natural structure of the data and can be used to understand the relationship

between the objects.

There are a number of different clustering algorithms, each differing depending on the type

of clustering desired. For example, sets of clusters can be nested or distinct. This is the

difference between hierarchical and partitional clustering [Tan et al., 2006]. In partitional

clustering, the data are separated into distinct, non-overlapping groups. Each data point

belongs to exactly one group. Hierarchical clustering, on the other hand, allows for subsets

and groups data by creating a tree or dendrogram. The tree is a multilevel hierarchy, where

clusters at one level are joined to clusters at the next level. Hierarchical clustering can be

viewed as a sequence of partitional clustering. Similarly, a partitional clustering can be

obtained by taking any member of that sequence i.e. by cutting the hierarchical tree at a

particular level [Tan et al., 2006].

Cluster algorithms can also differ based on how strictly the group boundaries are defined.

Exclusive clusters allow the data to belong to one cluster only, whereas overlapping clusters

allow for multiple memberships. Fuzzy clustering lets every object belong to every cluster

with a membership weight between 0 and 1. Some cluster algorithms also allow for partial

clustering, i.e. can have outliers that do not belong to any group. Complete clustering

algorithms on the other hand assign all the data to the groupings.

Cluster analysis is a wide and extensive field, with many different approaches and algo-

rithms available. In this work, for simplicity, only complete exclusive partitional clustering

is considered. However, there is a lot of potential for future work in this field.

The algorithm considered in this work is a version of k-means clustering (Hartigan and

Wong [1979], kmeans: R Development Core Team [2015]) . This algorithm aims to parti-

tion the observations into k clusters so that the within-cluster sum of squares (variance) is

minimised. For a set of data (x1, . . . ,xd) where each observation is a vector of dimension

n, the algorithm aims to partition the d observations into sets S = {S1, S2, . . . , Sk} such

that

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||2 = argmin
S

k∑
i=1

|Si| Var Si (4.3)
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where µi is the mean of points in Si. This is equivalent to minimising the pairwise square

deviations of the points in the same cluster [Kriegel et al., 2016].

The classic k-means algorithm is that of Lloyd [1982] (first proposed in 1957). Hartigan

and Wong [1979] suggest an updated version of this algorithm, which is generally faster

and has the ability to escape local optima by swapping points between clusters. The

clusters found using k-means algorithms are as compact and well-separated as possible.

Choosing the number of clusters k

The number of clusters k in the k-means algorithm is an input parameter. Determining its

value can be a challenging problem, and the correct choice is often ambiguous. One way

is to use external information or assumptions about the properties of the data set. For

example, given that currently five PFTs exists in the JULES model, k could be chosen to

be five in clustering these data. Similarly, k could be set to nine to mimic the nine PFT

setup in Harper et al. [2016].

A more robust way to chose k is to infer its value from the data. There are a number of

methods to do this, however, if the data do not cluster in any obvious way, it is likely that

the different methods will give different values of k. The Bayesian information criterion

(BIC) is used in this thesis [Fraley and Raftery, 2002; Fraley et al., 2012].

4.5.2. Clustering the single-site parameter vectors

A look at the parameter values

In Sect. 4.1, single-site optimisations were performed at all sites and the improvement

in model-data fit discussed. In this section, the parameter vectors themselves are con-

sidered. Figure 4.11 shows the pairwise relationship between the different optimised pa-

rameters. Since there are eight parameters in each vector, this is a representation of an

eight dimensional space. This figure shows the results from two experiments, one where

the background is included in the cost function, the other where the background term is

omitted.

First, consider the parameter vectors found whilst including a background term (top part

of Fig. 4.11). This means there is a belief placed in the prior values. For all sites,

the optimised α values are found at the lower end of the prescribed range. The δc/δL

parameter on the other hand stays at the centre of the range, taking a value similar to its

initial one.

From this first experiment, there are two parameters seen to separate the different PFTs;

Tupp and dr. Tupp is the parameter controlling the highest temperature at which pho-

tosynthesis can occur. This takes on low values for the needleleaf sites. These sites are

found in the northern latitudes in colder climates. In contrast, the C4 grass sites opt
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Figure 4.11.: Two-dimensional representation of the single-site parameter vectors. Opti-
mised vectors found when λ = 1 are shown in the upper right-hand side triangle, and for
λ = 0, the results are shown in lower left-hand side triangle. The dimensions of the boxes
represent the prior range of each parameter.
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4. Improving the Plant Functional Types in JULES

for high values of Tupp. The two C4 grass sites are African sites where the weather is

much warmer all year round. The dr parameter represents the root depth. Deep roots are

needed for the tree sites, especially broadleaf trees, while shallow roots are needed for the

grasses. Finally the dqc parameter takes on low values for needleleaf and C4 grass sites,

whereas for C3 grass sites, the optimal value for this parameter tends to be higher. These

optimised values do not differ too much from the initial PFT values given the parameters

in Table 2.2, especially for these two defining parameters.

Now consider the lower half of Fig. 4.11. These are the results when the background term

is omitted from the cost function. There are no obvious parameter clusters. The optimised

values spread over most of the ranges with many parameters reaching the upper or lower

limits of the boxes.

Figure 4.11 considers 2-D slices of parameter space. In order to visualise the eight dimen-

sions more accurately, tools such as multidimensional scaling can be used. Classical mul-

tidimensional scaling, also known as principal coordinates analysis (PCoA; Gower [1966]),

is used to generate the figures in Fig. 4.12. This algorithm maps a matrix of Euclidean

distances between objects in a high-dimensional space to a lower-dimension coordinate

matrix preserving the distances as well as possible.
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Figure 4.12.: Classical multidimensional scaling used to scale the eight dimensions shown
in Fig. 4.11 into two dimensional figures. The larger shapse represent the PFT-generic
parameter vectors for each PFT: default shown in red and new multi-site values shown in
purple.

In Fig. 4.12, the groupings identified in Fig. 4.11 for λ = 1 have been preserved. Similarly,

when λ = 0, there are no visible groups. The initial parameter vector and the new PFT-

generic parameter vectors have been added to these figures. The optimised parameters,

both for the single-site and the PFT-generic cases, have not moved too far from the prior
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4. Improving the Plant Functional Types in JULES

in Fig. 4.12a. In contrast, the single-site optimised parameters in Fig. 4.12b spread far.

Generally in both cases, the new PFT-generic vector remains closer to the prior than the

majority of the single-site parameters.

So far the groupings, or lack of, have mainly been identified visually. There may still be

some underlying structure that cannot be found with the human eye.

Cluster analysis of the parameter vectors

In this section, k-means clustering has been performed on the set of all normalised single-

site parameter vectors. The clusters were then compared to other methods of partitioning

the sites. First, with k = 5 to mimic the five JULES PFT groups, the results for experi-

ments using the background term are shown in Fig. 4.13. The first row looks at clusters

colour-coded by vegetation groups: PFT and IGBP classes. In Fig. 4.13a, it is clear that

the k-mean clusters are partitioned in such a way that broadleaf sites find themselves sep-

arate to the other JULES PFTs. Clusters 3 and 5 mainly consist of the needleleaf sites,

and cluster 4 contains a mix of all PFTs bar broadleaf sites. Figure 4.13b shows that even

though the broadleaf sites have been put into two distinct clusters, these are not divided

by deciduous and evergreen sites.

Figure 4.13c considers a different clustering to the rest of the plots in this figure. To run

the k-means algorithm two input can be given, either the number of clusters k or a set

k of initial (distinct) cluster centres. In the former case, these initial centres are then

chosen at random from the data. In Fig. 4.13c, the five initial cluster centres have been

set to the new PFT-generic values. Centering the clusters on these values as resulted in a

clear broadleaf cluster and a clear needleleaf. This clustering is much closer to the PFT

groupings defined in JULES.

Using the original clustering found by setting k = 5, the bottom row in Fig. 4.13 considers

some of the physical features which can be used to distinguish between the different sites.

Figure 4.13d shows the clustering coloured by the different climates and Fig. 4.13e shows

the clustering coloured by the latitude of the site (rounded to the nearest ten degrees).

No obvious pattern can be picked up in either plot. Each cluster covers a range of values

in each case.

Different soil properties can be seen at each of the FluxNet sites. In running JULES, these

have been read into the model from ancillary files to create soil parameter vectors of length

nine. These in turn have been normalised and clustered with the k-means algorithm, BIC

has been used to pick out the number of natural clusters. The eight soil clusters provide

the colouring for Fig. 4.13f. Again, no trend can be picked out. The clustering cannot be

explained by any of these three physical properties.

Using the BIC algorithm, the optimal value of k for the vegetation parameter vectors was

found to be five. Although not shown here, the optimised vegetation parameters in this

experiment were also clustered with different k values corresponding to the number of
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Figure 4.13.: FluxNet sites grouped into 5 clusters using k-means algorithm. The y-
axis corresponds to the number of sites in each group. The first row shows the clusters
further partitioned by vegetation groups: PFT and IGBP. The second row considers other
physical features which could be used to distinguish between the different sites. For (d),
the climate descriptions are shortened from subtropical-mediterranean (Med), temperate
(Temp1), temperate-continental with hot/warm summers (Temp2), tropical (Trop).

different IGBP classes (9), climate types (6), latitudes (12), and soil clusters (8) covered

by the FluxNet sites of this study. Similarly, with the exception of the broadleaf sites

which separate into different clusters to the rest of the sites, no clear patterns could be

picked out.

This experiment was run again for the parameter vectors found in the optimisations per-

formed without the background term. When partitioned into five clusters, no patterns

were identified in the clusters; vegetation or otherwise. Whereas previously the broadleaf

sites were separate from the rest, the sites from each PFTs were now spread across the

five clusters. The BIC algorithm suggests two clusters for these data, however, on closer

inspection, this clustering consists of one main cluster and a second, much smaller cluster

containing outliers.
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4.5.3. Starting with the same initial conditions

When performing the single-site optimisations, each PFT has a slightly different starting

z0 (see Table 2.2). To perform the experiments completely blind, i.e. with no knowledge

about the PFT classification of the sites, the optimisations need to start from the same

point in parameter space. This starting point is chosen to be the average of all the PFT

z0 vectors.

The equations in JULES are programmed slightly differently for each PFT, however, this

difference is minimal. The main difference is between C3 and C4 vegetation (trees and

shrubs fall under the C3 photosynthetic equations), as such, the C4 grass sites were omitted

from the analysis.

For both λ = 0 and λ = 1 experiments, no patterns in the clusterings could be found.

The BIC algorithm suggests four and five clusters for each experiment respectively, but

these clusters do not follow any of the potential classifications tested. There is too much

variability within each PFT and too many similarities across all of the sites to be able to

find any grouping resembling something meaningful.

It has been argued that roughness length is one of the most important parameters in

distinguishing different PFTs. The canht parameter in adJULES can be used to measure

this. However, adding this parameter to the optimisation did not help to partition the

data in any meaningful way.

4.5.4. Grouping sites by parameter vector improvement

In one final clustering experiment, the parameter vectors found at each site in the original

single-site experiments were transposed to the other sites. Let si denote site i and zi the

parameter vector locally optimised at that site. Recorded as a binary ‘yes’ or ‘no’, the

experiment asks whether the model-data fit at site i improves with the parameter vector

found at site j, i.e. if si improves with zj . This is displayed in Fig. 4.14 as a grid, with

sites i down the side and sites j across the top.

No clear blocks can be identified in Fig. 4.14. If the optimised parameter vectors found at

a given site improved only sites found in the same PFT, the coloured blocks alone would

show. Instead, the majority of needleleaf sites can be seen to improve regardless what

parameter vector is applied. The C3 grass sites show more sparsity, even when parameter

vectors are transposed from the same PFT, these sites do not tend to improve.

These results are further summarised in Table 4.1. The fractional cover of each area shown

in Fig. 4.14 is tabulated numerically as a conditional probability. The lowest probability

shown is when the C3 grass sites use parameter vectors optimised over shrubs sites. The

highest probability is when the C4 grass parameter vectors are transposed onto themselves.

However this PFT only contains two sites so this probability is expected to be high (at

least 0.5). The second highest probability is for the needleleaf sites using the parameter
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Sites from which the optimised parameter vector was found
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Figure 4.14.: Grid showing the successful transposing of parameter vectors. Parameter
vectors found at the sites listed across the top are transposed to the sites listed downwards.
The box is filled if the model-data fit is improved at the site compared to the default JULES
parameters. Colours correspond to the PFT subsets.

vectors optimised at the broadleaf sites.

Surprisingly, the diagonal value for the needleleaf sites, i.e. the probability that a pa-

rameter vector optimised at a needleleaf site improves another needleleaf, is not the best

- though it is still high. This shows that the default needleleaf parameters need to be

reconsidered since the model-data fit at these sites is easily improved, especially when

using parameter values optimised at the broadleaf sites.

Overall, half of the all sites improve regardless of where the transposed parameter vector

was optimised.
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A

B
BT NT C3 C4 Sh All

BT 0.542 0.340 0.458 0.357 0.229 0.419

NT 0.706 0.615 0.621 0.457 0.389 0.629

C3 0.351 0.221 0.380 0.136 0.036 0.274

C4 0.268 0.400 0.182 0.750 0.300 0.327

Sh 0.536 0.434 0.436 0.500 0.360 0.467

All 0.580 0.450 0.51 0.389 0.281 0.491

Table 4.1.: The probability that a site in subset A improves given that the parameter
vector used was optimised at a site in subset B, i.e. P(si ∈ A improves | zj used where
sj ∈ B).

The lack of symmetry in the grid means the relationship is not always bi-directional; zj

might improve the model-data fit at si, but optimal parameter vector zi might not improve

sj . This is most apparent between the broadleaf and needleleaf subsets. The needleleaf

sites are likely to improve when run with a parameter vector optimised at a broadleaf site,

however, the broadleaf sites are much less likely to improve when using a locally optimised

needleleaf parameter vector.

To filter these results down even further, sites were grouped only if they mutually improve

each other. Each group S is such that

si ∈ S ⇐⇒ ∀sj ∈ S, zj improves si

When considering the whole 81 site set, 63 such S groups were found with multiple over-

laps. Similarly, 19 S groups were found for the 28 broadleaf sites, again with multiple

overlaps. Attempts to understand these grouping using graphs have not been informative.

There is no apparent structure. There are many links within and between the different

PFTs. Grouping sites in this manner has been unsuccessful. Instead sites, especially

needleleaf ones, can be seen to improve for a number of parameter vectors, questioning

the validity of the default parameter values in JULES.

In this section, the results from the λ = 1 experiments have been considered. The results

are very similar for λ = 0.

4.6. Closing remarks

There is an apparent contradiction in this chapter. When PFTs are assumed, it is pos-

sible to find new generic parameter vectors which improve the majority of sites in each

PFT. Indeed, for over 85% of the sites, PFT-specific optimal parameters perform better

than default parameters when confronted with independent evaluation data. However,

when sites are treated blindly, it is impossible to find such PFT groupings, or indeed any

meaningful clusters. This lack of clustering was also found in Groenendijk et al. [2011].
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4. Improving the Plant Functional Types in JULES

As commented previously, there are many more clustering approaches that could be used.

This chapter has only scratched the surface. For example, the optimised parameter vectors

found at each site belong to multivariate probability distributions. One potential further

avenue would be to cluster these distributions, perhaps by creating a similarity matrix

between the distributions at sites i and j.

The lack of informative clusters could be due to many other factors. For one, the choice

of parameters used in the optimisation might not sufficiently represent the PFT. There

may be other PFT specific parameters that need to be included. The fact that most

of the needleleaf sites improve regardless of the parameter vector applied highlights the

possibility that some of the parameters optimised in this study are not PFT specific at

all.

The optimisation length of one year for each site might be too short. One year of obser-

vational data at each site was chosen for the optimisations. This was in order to include

as many sites as possible in the analysis. However, an optimisation over multiple years

might capture a general seasonal trend at each site, rather than just specifics of that year.

These averaged seasonal cycles might be more similar over the PFTs and hence lead to

clearer clustering.

Another reason for so much variability within each PFT might be down to the variability

in the quality of the observation data. All sites were included in the analysis. However,

some of the sites are better than others, for example having more complete time-series.

The multi-site optimisation is able to improve the majority of sites in a set even if the

set includes outliers. In contrast, the clustering algorithm used in this study will be more

sensitive to these outliers.

The validity of each optimised parameter vector may also affect the clusterings. In single-

site optimisations, it is possible that there are numerous local minima. These would result

in a range of different optimal parameters within each PFT. The argument that multi-site

optimisations are less susceptible to local minima might explain why a generic parameter

vector can be found.

The single-site parameters may be too site-specific to be generalised or to be used in

clustering experiments. The multi-site optimisations, on the other hand, offer different

parameter vectors which can be used to better describe the PFTs. Most LSMs use PFT

groups to describe vegetation and the number of PFTs is much less than the actually

variation seen in nature. These PFTs are used to efficiently run the model globally or

as part of climate simulations. Therefore, it is important to be able to improve these

effectively. However, since the PFTs don’t emerge naturally from the selection of observa-

tions and parameters used in these experiments, it is also possible the ecosystem modellers

need to reconsider the use of PFTs and potentially look for alternative ways to represent

vegetation in LSMs.

In the following chapter, land surface models (LSMs) are discussed as components of wider

climate models. The responses of both the calibrated and uncalibrated JULES model to
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atmospheric CO2 and temperature changes are considered, in order to understand the

effect of parameter changes on the sensitivities of the model.
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5. Using adJULES to constrain future

predictions

This chapter examines the effect that calibrating JULES has on the model’s sensitivity

to increases in atmospheric CO2 and associated greenhouse warming. In Sect. 5.1, the

responses of JULES to changing temperature and atmospheric CO2 are considered; first,

by focusing on photosynthesis in Sect. 5.1.1, and then by looking at Water Use Efficiency

(WUE), which is the ratio of carbon gain from photosynthesis to water loss from transpi-

ration, in Sect. 5.1.2.

5.1. The effects of calibration on CO2-driven climate change

ESMs are computationally extremely expensive to run due to their highly complex nature.

As a result, it is difficult to determine quickly the impacts of model changes on future

predictions. Tools do exist to emulate the processes involved. For example, in Huntingford

et al. [2010] a pattern-scaling approach to climate change is used to drive the JULES

land-surface model. This computationally efficient model developed in Huntingford et al.

[2010] (IMOGEN: Integrated Model Of Global Effects of climatic aNomalies) incorporates

an analogue of the climatic response of the Hadley Centre GCM.

Here, in order to simulate CO2 driven climate change, a simpler and more transparent

approach is used to understand the effects of co-varying values of CO2 and temperature.

In very simple experiments, JULES runs were conducted at each of the FluxNet site with

increasing atmospheric CO2 concentrations (ca) and temperatures (T ) values. The same

year at each site was repeated for ten years back-to-back in order to let the system spin

up to the new atmospheric conditions. The different outputs of the JULES runs were

averaged to find annual means for each quantity considered. This was done in order to

create a grid in ca − T space from which contours could be interpolated (e.g. Fig. 5.1).

All of the sites start with the same ca value of 400ppm, fixed constant over the whole year.

This value is treated like a parameter in the JULES code. Increasing values of ca were

calculated by using different multiplication factors ranging from one (no change) to four.

In contrast, the temperatures at each site are taken from the FluxNet database. These

temperature data are driving data (see Sect. 2.1.3). The temperatures differ between

sites in magnitude and season cycle. The increased temperature values were calculated by

adding ∆T to the each data point in the driving data so that the annual temperature at
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5. Using adJULES to constrain future predictions

each site keeps its variability during the year run. As in previous experiments, the main

focus is on the broadleaf sites.

5.1.1. Gross Primary Productivity

First consider the effects of changing atmospheric CO2 concentration and annual temper-

ature on the GPP flux. Since the GPP fluxes are calculated as part of the FluxNet data,

the runs can be directly compared to the observations for present-day conditions: i.e. no

CO2 increase and no temperature increase. To measure sensitivity of the model to the

atmospheric changes, A and B values are calculated where

A =
GPP(2× ca)−GPP(ca)

GPP(ca)
, B =

GPP(T + 2)−GPP(T )

GPP(T )
. (5.1)

These measure the rate of the change of GPP in response to changing ca and ∆T . The

A value measures the sensitivity to doubled ca, and the B value measures the sensitivity

to 2 degrees of warming. These limits were chosen since they are commonly used in the

literature.

Two broadleaf sites are shown in Fig. 5.1. In both cases, three contours plots are shown:

one generated from the uncalibrated model (denoted ‘old’) and two generated from the

calibrated models (denoted ‘single’ when locally-optimised at the single site and ‘multi’

when calibrated as part of the multisite experiments). Let GPP0 denote the initial value

of GPP found at the current climate (∆T = 0, CO2 multiplication factor = 1). For both

sites, this value is closest to the observed value for the single case, followed by the multi

case, and furthest away in the old case. This mirrors the results of the calibrations at

these sites, where GPP is similarly underestimated for the uncalibrated runs.

In Fig. 5.1(a) and (b), the rate at which GPP changes is greatly increased in the calibrated

runs. For the runs using the locally optimised parameters, the increase in GPP is the most

notable. This can be observed both visually, with the increase in the steepness of the colour

gradient, and numerically by considering the A and B values.

For DK-Sor shown in Fig. 5.1(a), the A value, which measures the sensitivity of GPP to

doubled ca, is over double for the runs with the locally optimised parameters than the

unoptimised runs. The B value, which measures the sensitivity of the GPP to 2 degrees

of warming also increases for the calibrated runs. This value is highest for the runs in the

multi case. Since A > B in all cases, GPP is more sensitive to the doubling of atmospheric

CO2 concentrations than to a temperature increase of two degrees.

For US-MSS shown in Fig. 5.1(b), A also increases for the calibrated runs, with the

highest A again for the contour plot generated from the locally-optimised parameter vector.

Similarly, |A| > |B|. In contrast, this site has negative B values for all parameter settings.

This means that the rate of photosynthesis decreases with increasing temperature anomaly.

These negative B values are responsible for the different slopes of the contours seen at
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Figure 5.1.: The changes in GPP with increasing CO2 and increasing temperature for
different parameter settings at two different broadleaf sites: (a) DK-Sor and (b) US-MMS.
The three panels in each case show the runs using different parameter settings: default
JULES parameters (left), the parameters found optimising locally (middle) and the new
PFT-generic parameters (right). The observed GPP value is indicated by the arrow on
the colour scale. A and B represent the initial rate of change along the x- and y-axis
respectively (taken over doubled CO2 and a 2 degree increase in temperature). Below the
panels is the colour scale for the contour plots and a box-plot representing the variation
of the initial annual temperature cycle (K). T0 refers to the mean annual value.
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both sites.

The values of A correspond to a doubling of CO2 but with no temperature. In the FACE

experiment results (Free-air CO2 enrichment; Ainsworth and Long [2005]) the increase

was found to be around 30%. The uncalibrated and multi-site values are similar to this

value, whereas the single-site calibrated values suggest a higher increase. The negative

sensitivity of the model to temperature, B, seen at sites that do not have a very high mean

annual temperature is surprising. This may due in part the experiment design: there are

other parts of the system responding to the atmospheric changes not considered here, for

example the soil moisture at these sites.

Optimal atmospheric temperature for photosynthesis

The contours shown in Fig. 5.1 are shaped as different sections of right-facing semicir-

cles. These contours can also be thought as the left-hand side of inlaid circles. For

DK-Sor (Fig. 5.1(a)), the bottom left quadrant of the circles is shown and for US-MMS

(Fig. 5.1(b)), the middle to top left-hand quadrant of the circles is shown.

Each arc has a peak which represents the optimal temperature at a given CO2 concen-

tration for the maximum rate of photosynthesis. The value of ∆T at the peak of a given

CO2 concentration, denoted ∆T †, can be added to the annual mean temperature (T0) to

give a value for this optimal temperature (Topt).

Topt = T0 +∆T † (5.2)

For DK-Sor, the peak is positioned at relatively high temperature anomalies. For US-

MMS, this peak is positioned for low (or even negative) values of ∆T .

The different initial temperatures at each site shown in Fig. 5.1 could explain the differ-

ence in the contour maps and Topt trends. Unperturbed, DK-Sor has an annual mean

temperature four degrees lower than US-MMS. When starting the contour plots for DK-

Sor (Fig. 5.1(a)) at ∆T = 4, a different section of the circles would be shown. In fact,

the contours would have a similar shape to the contours shown in Fig. 5.1(b) for the US-

MMS site. This is especially apparent when considering the contours generated using the

locally optimised parameter values. Therefore, it is possible that the values of Topt will be

comparable between sites.

A value of Topt can be calculated for all the sites. The position of each peak for a set of

given CO2 concentrations, calculated to the nearest half degree, is added to the respective

mean temperature of each site. Due to time constraints, only values of ∆T ∈ {−10, 10}
were tested. Figure 5.2 shows boxplots of the broadleaf Topt values.

The value of Topt can be seen to increase with increasing ca. This means that with

increasing CO2 concentration, the optimal temperature for which photosynthesis can occur

is pushed up. The median value (and the mean) can be seen to increase by at least two

degrees for every doubling of atmospheric CO2 concentration.

129



5. Using adJULES to constrain future predictions

●

●

● ●

●

1 2 4 1 2 4 1 2 4

27
5

28
0

28
5

29
0

29
5

CO2 multiplication factor

Te
m

pe
ra

tu
re

 (
K

)

Original Single−site Multi−site Canopy change

Figure 5.2.: Boxplots representing Topt values for the broadleaf sites.

The spread of Topt values found at the locally-optimised runs is larger than the range of

Topt values found at run conducted with the PFT-generic parameter vectors, both old and

new. This variability between sites means that the value of Topt is sensitive to one or more

of the parameters used in the optimisation.

For the needleleaf sites (not shown), the values of Topt also increase with increasing ca.

On the other hand, the spread of Topt values remains more consistent across parameter

settings. It is possible that the values of Topt for needleleaf sites are not sensitive to the

same parameters as in the broadleaf case. Alternatively, the parameters responsible for

the range of Topt values might not change to the same extent when calibrating over the

needleleaf sites as when calibrating over the broadleaf sites. For C3 grass, the spread of

Topt values increases with increasing ca. The C4 grass and shrubs sites were excluded from

the analysis due to the small sample size.

There is also an optimal temperature for photosynthesis that can be derived from the

underlying equations. This value corresponds to the maximum of the Vcmax curve (seen
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in Fig. 4.4) and will be denoted Tmax.

In order to find the value of this optimum, the equation for Vcmax (Eq. 2.5) has to be

differentiated, and with the use of the quadratic formula, the following expression for

Tmax is found:

Tmax = −10

3
ln

(
ln 2 · (ab)−1

6 + ln 4

[√
36

(ln 2)2
ab+ (a− b)2 − (a+ b)

])
(5.3)

where a = e
3
10

Tlow and b = e
3
10

Tupp are used to simplify the notation. Without loss of

generality, let Tupp > Tlow so that

Tupp = Tlow + ξ and Tupp = Tmax + ψ

for some positive ψ, ξ ∈ R. After substituting these relationships into Eq. 5.3 and rear-

ranging, the following expression between ψ and ξ is obtained:

ψ =
10

3
ln

 ln 2

6 + ln 4

√( 6

ln 2

)2

e
3
10

ξ + (e
3
10

ξ − 1)2 − (e
3
10

ξ + 1)

 . (5.4)

Taking the limit of this expression, the following value is found:

lim
ξ→∞

ψ(ξ) =
10

3
ln

(
3

ln 2
− 1

)
(5.5)

≈ 4.00799. (5.6)

This means that for a large enough difference between Tupp and Tlow, the maximum of the

Vcmax curve will be approximately four degrees lower than Tupp. A difference of 20◦C is

enough to ensure this relationship holds.

Using these formulae and the values of Tupp and Tlow from the default and multisite

parameter vectors, Tmax values can be calculated for each PFT. For the tree PFTs, the

value of Tmax is increased by two degrees after the multisite calibration, whereas for the

grass and shrub PFTs, the value of Tmax is decreased by one degree. The needleleaf PFT

has the lowest value of Tmax which is consistent with these sites existing in colder parts of

the planet. Similarly, the C4 grass PFT has the highest value of Tmax and these sites are

found in the hotter parts of the planet.

In addition, using the results from the single-site optimisations, each individual site has

a different value of Tmax. These values of Tmax are compared to the values of Topt found

from the contour plots.

The correlation between Tmax and Topt is found to be negligible, and the values of Tmax

are found to be much higher than the values of Topt for any of the parameter settings. The

magnitude of Tmax is much closer to the maximum temperature value of each site. Topt has

been calculated by adding the position of the peak to mean annual temperature (Eq. 5.2).

By changing the definition of T0 to describe a different feature of the annual temperature
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cycle at each site, such as its variability or magnitude, another value of Topt can be

derived. Definitions of T0 tested include: the maximum annual temperature, the average

temperature when photosynthesis is occurring (values found between Tupp and Tlow), the

average temperature ± standard derivation of the temperature, and the maximum annual

temperature ± standard derivation of the temperature. Even with these alternative Topt

values, no relationship between Topt and Tmax could be identified. The only link found

was that both values increased by a couple of degrees for the tree sites after calibration.

In conclusion, the optimal temperature for photosynthesis derived from the equations is

higher and seemingly unrelated to the optimal temperature for photosynthesis observed

by changing the atmospheric temperature in the model. The value of Tmax is derived

from the Vcmax equation (Eq. 2.5). However, this equation is only one part of the limiting

processes used to calculate photosynthesis. It is possible that the value of Topt is more

sensitive to these other constraining factors, hence its lower value. The lack of relationship

between the two values might also be due to the design of the experiment. For example a

change in annual mean temperature would not happen in such a uniform manner.

With increasing atmospheric CO2 concentrations, Topt is found to increase, whereas Tmax

is insensitive to ca in its derivation. Therefore Topt is probably a better indicator of the

relationship between photosynthesis and temperature at high temperatures and different

atmospheric CO2 concentrations. Calibration of the model at tree sites suggests that

Topt for different ca is one or two degrees higher than in the uncalibrated model. With

increased values of Topt, global simulation of the carbon cycle will suggest a stronger carbon

sink by trees, especially the broadleaf ones. Booth et al. [2012] found that sensitivity of

photosynthetic metabolism to temperature is one of the most important uncertainties in

understanding the magnitude of future change. There remain open questions about the

potential role of plant acclimation to increasing temperatures [Booth et al., 2012].

Using RCPs for context

The RCPs described in Sect. 1.3.3 can be plotted over the contour maps to add context

to the changes in the GPP (Fig. 5.3). It is important to remember that the pathways

represent global averages, whereas the experiments here are all conducted at a site level.

Nevertheless, they can still be informative.

The shape of the contours strongly influences how photosynthesis changes along the dif-

ferent trajectories. In Fig. 5.3(a), the pathways can be seen to cross multiple contours,

whereas in Fig. 5.3(b), the trajectories are parallel to the contours. This means that the

rate of change of GPP at the DK-Sor site is increased significantly as the years progress,

whereas, at the FR-Fon site, the GPP value does not change much from its initial annual

value. The temperature and CO2 effect almost completely cancel each other out. This

highlights the fact that at site level, there are very different responses possible to CO2

induced climate change.

For DK-Sor in Fig. 5.3(a), the number of contours crossed can be seen to increase when the
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Figure 5.3.: Four RCPs plotted on contour plots of GPP at (a) DK-Sor and (b) FR-Fon.
Each pathway, taken from the HadGEM2ES runs shown in Fig. 1.1, is represented by a
different coloured line. The shapes are placed every 25 years, starting from 2025 till 2100.
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site is calibrated compared to the uncalibrated experiment. For the experiment run with

the locally optimised parameters, the GPP values for the different trajectories at the year

2100 are approximately 1.5 times the corresponding values for the uncalibrated experiment.

Note that not only is this factor similar between trajectories, but the underlying pattern

of the contour plots remains consistent regardless of parameter setting. This is because

whilst the calibration has greatly changed the magnitude of the GPP flux, the fractional

response of GPP to changing atmospheric conditions, i.e. GPP/GPP0, does not change

as much between the different parameter settings

The effect of individual parameters

To better understand the role of the calibration on GPP predictions, this section con-

siders the effect of each individual parameter on both the magnitude of the GPP, and

fractional change in GPP when confronted with changing atmospheric temperatures and

CO2 concentrations.

First consider the broadleaf site shown in Fig. 5.4(a). This site is representative of most of

the broadleaf set. At each of the atmospheric perturbations, the spread of GPP values for

the different parameter settings tested is much larger than the spread of fractional change.

This means that the magnitude of the flux varies greatly for different parameter settings.

The rate of change of GPP to atmospheric changes, however, is more stable between

parameter settings; large changes in atmospheric temperature and CO2 concentration are

needed to see the effects of the difference in parameter vectors.

In this example, the magnitude of the GPP is mainly influenced by the n0 and Tlow

parameters, and to a lesser extent, α and dqc. The n0 parameter inflates the GPP value

by a factor of 1.5 when it is the only parameter changed in the parameter vector. This is

to be expected as this parameter controls the height of the Vcmax curve (Eq. 2.5), which

is use to calculate photosynthesis. When changed as part of the full set of parameters, its

effect on the magnitude of the flux is lessened by Tlow which acts in the opposite direction.

Similarly, the effects of α and dqc cancel each other out. Across the different atmospheric

changes, the effect of the alternative parameter vectors on the GPP value relative to its

default position appears to be consistent.

If the actually values of each parameter are considered, the α parameter doubles its values

in the optimisation, compared to n0 which changes by a factor of 1.3. However, the n0

parameter can be seen to change the GPP magnitude significantly more than α.

The fractional change in GPP (right-hand side of Fig. 5.4) shows the sensitivity of the site

to temperature and ca changes. Tlow can be seen to be the most important parameter,

followed by dqc. Fractional changes are largest for the most pronounced atmospheric

changes. Considering the right-hand columns of the plot were only ca or T change, Tlow

is seen to change mainly as a response to increasing temperature.

For this site, Tlow increases significantly compared to its uncalibrated value. As discussed
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Figure 5.4.: Values of GPP (left), fractional change of GPP (middle), and absolute change
of GPP (right) for different parameter settings and atmospheric perturbations. Runs using
the default JULES parameter vector (horizontal red) are compared to runs using locally-
optimised parameter vector (horizontal blue) and the multisite parameter vector (purple).
JULES is run eight more times where each parameter is individually changed from the
default JULES parameter vector to its locally optimised value (shapes). Six atmospheric
changes are covered. In the first four cases, ca and ∆T are covaried to represent the RCP
atmospheric state at year 2100. In the next case, ca is doubled with fixed temperature and
finally ∆T = 2 with ca fixed. Note the change of scales for the GPP flux (left) between
(a) and (b).
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previously, Tlow controls the steepness of the lower end of the Vcmax curve (Fig. 4.4).

By increasing Tlow, the lower-end of the curve has become steeper. In order to fix the

underestimation of the GPP flux, photosynthesis rates need to increase. By steepening

the lower part of the curve, the model is more likely to be in the nitrogen-limited regime

control by Vcmax, where n0 can be used to increase the magnitude of the flux. The steeper

the lower end of the Vcmax curve, the more sensitive the model is to temperature changes.

The big-leaf model used in these experiments tends to be light-saturated which is why the

light-limited regime is less explored.

The final figure shown in Fig. 5.4(a) illustrates the absolute change in GPP. When only

the dqc parameter is changed from the default vector, the additional GPP saturates with

increasing atmospheric perturbations. The n0 parameter in responsible for the increased

GPP in response to the ca changes. Overall, the update of GPP increased with calibration

suggests the site is storing more carbon, i.e. is becoming a stronger sink.

Figure 5.4(b) shows the same results but for a needleleaf site. The magnitude of the

GPP does not change very much between parameter settings and atmospheric conditions.

In a similar manner to the broadleaf site, n0 can be seen to be responsible for the GPP

increase when the locally-optimised parameters are used. In contrast, the fractional change

in GPP is much more sensitive to the different parameters. The fractional change in GPP

is especially sensitive to n0 for carbon changes and dr for temperature changes. Combined,

dr and dqc decrease the GPP response to these climate changes, whereas, to a lesser extent,

Tupp and n0 increase the fractional change. At some of the other needleleaf sites, Tupp is

found also to influence the magnitude of the flux.

When looking at the fractional change of the parameter values between the default JULES

vector and the locally-optimised set for this site, n0 nearly triples, as does α. The dr and

dqc parameters change by a factor of 0.65 and 0.79 respectively. These do not translate

into the sensitivity seen in the figure; parameters that change the most are not responsible

for the most change.

The absolute change in GPP for the needleleaf site is minimal between atmospheric per-

turbations. The slight increase in the flux resulting from increased ca is cancelled by the

decrease of the flux in response to increasing ∆T .

Finally, note that the optimised parameter values used in this experiment were taken from

multivariate distributions. Therefore, it would be possible to test a much larger range of

parameter vectors generated from these distributions.

5.1.2. Water Use Efficiency

Definition

Plants assimilate atmospheric CO2 through photosynthesis and, in doing so, lose water

vapour through stomata, the small pores on leaf surfaces that regulate the diffusion of
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these two gases between the leaf and the atmosphere. The rate of carbon uptake per unit

of water lost is called the water-use efficiency (WUE) and is measured by the ratio

WUE =
GPP

ET
(5.7)

where ET is the transpiration flux, one of the fluxes that contributes to the latent heat flux.

Since the calibrations performed in this study were against latent heat and GPP observa-

tions, WUE is of particular relevance to this thesis. Given ongoing global environmental

issues, such as climatic change and ecosystem degradation, an improved understanding of

WUE will help to model and predict the carbon and water cycles better, and to refine

water management [Tang et al., 2014].

The question of how much water a plant uses relative to carbon gained is key in under-

standing the metabolism of terrestrial ecosystems. This closely relates to the interactions

between the carbon and water cycles both at the leaf scale and watershed scale [Ito and

Inatomi, 2012]. At leaf-level, WUE is controlled by the stomatal exchange of CO2 and

water vapour [Cowan, 1972]. At an ecosystem-level, WUE varies among PFTs and envi-

ronmental conditions [Jarvis and McNaughton, 1986; Schulze et al., 1987]. This section

focuses on the former.

Increasing carbon dioxide in the atmosphere tends to increase the rate of photosynthesis

(GPP) in the absence of severe nutrient limitations. This process is known as the CO2

fertilisation effect. Under elevated CO2, stomata also tend to close partially [Field et al.,

1995], which can lead to reductions in transpiration (ET) and increases in runoff [Gedney

et al., 2006].

However, other factors can influence these two rates. For example, CO2 fertilisation of

photosynthesis is often found to be limited by nutrient availability [Norby et al., 2010], and

large-scale transpiration does not necessarily reduce with CO2-induced stomatal closure if

the plant leaf area index increases to counteract this effect [Piao et al., 2007].

Plant photosynthesis and transpiration are coupled through the behaviour of leaf stomatal

pores [Dekker et al., 2016]. Both GPP and ET can be written as the product of a canopy

conductance and a concentration gradient. For GPP, the concentration gradient is the

difference between the atmospheric CO2 concentration at the leaf surface (ca) and the

internal CO2 concentration within plant leaves (ci):

GPP = gc(ca − ci) (5.8)

where gc is the canopy conductance for CO2. This expression is similar to stomatal

conductance for water vapour described in Eq. 2.10.

For ET , the concentration gradient is the difference between the specific humidity of the

atmosphere at the leaf surface (qa) and the specific humidity inside the plant leaves, which

is saturated at the leaf temperature (qsat). The canopy conductances for GPP and ET arise

from diffusion through the leaf stomatal pores, and therefore, only differ by a constant
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factor 1.6 [Dekker et al., 2016]. This is the square root of the ratio of the molecular masses

of CO2 and H2O.

ET = 1.6gc(qsat − qa) (5.9)

By combining these two expressions, the following equation for WUE is derived:

WUE =
(ca − ci)

1.6(qsat − qa)
=

(ca − ci)

1.6 dq
=
ca(1− f)

1.6 dq
(5.10)

where dq is the atmospheric humidity deficit (qsat − qa) and f is the ratio of the internal

to the external CO2 concentration (ci/ca). Hence WUE is written in terms of atmospheric

variables, ca and dq (which itself depends on relative humidity and temperature), along

with the factor f . From Eq. 2.4, f is seen to take the following form.

f ≈ f0

(
1− dq

dqc

)
. (5.11)

Changes in stomatal opening in response to changes in sunlight, atmospheric temperature

and humidity, soil moisture, and CO2 are complex and uncertain [Berry et al., 2010].

By deriving the equation for WUE in this manner, the canopy conductance term gs is

eliminated. This means that WUE is insensitive to this term, and the uncertainties linked

to stomatal opening changes are lessened.

Fractional change

The definition of WUE in Eq. 5.10 relies predominately on ca and dq. Following the

example of Dekker et al. [2016], in this section the fractional changes in WUE in response

to fractional changes in ca and dq are considered. The following expression is used

WUE

WUE(0)
=

(
ca
ca(0)

)a( dq

dq(0)

)b

, (5.12)

where (0) denotes the initial state of each variable, and a and b are dimensionless coeffi-

cients. This holds by assuming f from Eq. 5.11 remains constant. By using the logarithmic

form of this equation, the coefficients a and b can be calculated:

ln

(
1 +

∆WUE

WUE(0)

)
= a ln

(
1 +

∆ca
ca(0)

)
+ b ln

(
1 +

∆dq

dq(0)

)
. (5.13)

Further to this, the fractional change in humidity deficit can be partitioned into a de-

pendence on temperature change and relative humidity (RH) change. The equations for

humidity deficit and change in humidity deficit are as follows:

dq = qsat(1−RH) (5.14)

∆dq =
∂qsat
∂T

(1−RH)∆T − qsat∆RH (5.15)
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where RH is the relative humidity. These two expressions combine to give the following:

∆dq

dq
=

1

qsat

∂qsat
∂T

∆T − ∆RH

(1−RH)
. (5.16)

Using the Clausius-Clapeyron Equation, which states that:

1

qsat

∂qsat
∂T

=
Lmw

RT 2
≈ 0.07K−1 (5.17)

for latent heat of vaporisation of water L = 2.5 × 106 J kg−1, molecular mass of water

mw = 0.018 kg mol−1 and perfect gas constant R = 8.31 J K−1 mol−1, Eq. 5.16 can be

written as
∆dq

dq
≈ 0.07∆T − ∆RH

(1−RH)
(5.18)

In the following experiments, RH is kept constant so that

∆dq

dq
≈ 0.07∆T. (5.19)

Values of a and b

The dimensionless parameters a and b in Eq. 5.10 measure the sensitivity of WUE to

ca and dq respectively. Though working with different underlying assumptions, stomatal

optimisation theories from Katul et al. [2010] and Medlyn et al. [2011] suggest that a = 1

and b = −0.5 (see Dekker et al. [2016] for derivation).

In contrast, experiments using observational data found that these values are higher than

predicted (e.g. Keenan et al. [2013]; Dekker et al. [2016]). Dekker et al. [2016] found

a = 0.79 ± 0.79 when considering eddy covariance data, and a = 1.61 ± 0.54 when using

tree-ring records. The latter is more robust due to the longer length of tree-ring records.

Overall, by combining these two experiments, Dekker et al. [2016] found a = 1.51±0.57 and

b = −0.72±0.16. These values are about 50% larger than predicted by these optimisation

theories [Dekker et al., 2016].

Using the GPP runs from Sect. 5.8 and the transpiration, which is calculated by the

JULES model in parallel, values of WUE for changes in ca and T are found (Fig. 5.5).

Parameters a and b are only calculated over a doubling ca and a temperature anomaly

of ∆T = 2. In Fig. 5.5, the values of a found in each of the configurations are slightly

lower than expected (theory suggests a = 1). The values of b are much more negative

than expected, with an absolute value three times larger than the theory suggests. There

is also a saturating effect at high temperature anomalies. This saturating effect can be

understood by considering the definition of WUE more closely. Equations 5.10 and 5.11

combine to give

WUE =
ca
1.6

[
1− f0
dq

+
f0
dqc

]
. (5.20)

Under low T , and therefore low dq conditions since RH is assumed to be fixed, WUE

drops in a manner inversely proportional to dq. In contrast, under high T (high dq)
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conditions, the first term becomes negligible, and so WUE saturates at a low value of

WUEmin ∼ caf0/dqc.

When considering other sites, a is found to be in a similar range of 0.8-0.9. For b, values

range from −0.4 to −1.7. Half of the broadleaf sites give a value of b around −0.5 (as the

theory suggests). The other half have a much lower value of b, as illustrated in Fig. 5.5.

The a values found at the different configurations shown in Fig. 5.5 are nearly identical,

this is the case for all of the sites. The b values do show more variation. The configuration

using the single-site parameters tend to have b values closest to −0.5.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

ln(∆Ca/Ca(0)+1)

ln
(∆

W
U

E
/W

U
E

(0
)+

1)

0.8442
0.8545
0.8602
0.8903

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

ln(0.07∆T+1) ≈ log(∆dq/dq+1)

ln
(∆

W
U

E
/W

U
E

(0
)+

1)

−1.4048
−1.252
−1.4215
−1.2677

Original Single−site Multi−site Canopy change

Figure 5.5.: The sensitivity of four different run configurations at broadleaf site US-UMB.
The first three are runs with original parameters, locally-optimised parameters and generic-
PFT optimised parameter (red, blue, purple). The fourth configuration is a change in
canopy representation, moving from a big leaf model to a more complex light limited
model (orange). For this configuration, the original parameters are used. Values shown
in the left-hand plot are sensitivities to change in carbon a, and the values shown in the
right-hand plot show the sensitivities to change in temperature b.

In trying to understand these trends, it was found that even when the atmospheric tem-

peratures were fixed, increases in the atmospheric CO2 concentration result in an increase

of surface temperature (T ∗). This happens in response to stomatal closure at high ca,

since less evaporation means less cooling. Since qsat is temperature dependent, to take

this increase into account, the equation for ET can be updated as follows:

ET = gs(qsat(Ta)− qa︸ ︷︷ ︸
dq

+
∂qsat
∂T

(T ∗ − Ta)) (5.21)

The definition of WUE described in Eq. 5.10 is the WUE at the atmospheric temperature

Ta, WUE(Ta). To calculate WUE when the surface temperature has warmed due to

increases in ca, i.e. when T ∗ > Ta, GPP (Eq. 5.8) is divided by surface temperature
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dependent value of ET (Eq. 5.21) to obtain

WUE(T ∗) = WUE(Ta)

[
dq

dq + ∂qsat
∂T (T ∗ − Ta)

]
. (5.22)

Using the definition of dq in Eq. 5.15 and the qsat relationship in Eq. 5.17,

WUE(T ∗) = WUE(Ta)
qsat(Ta)(1−RH)

qsat(Ta)(1−RH) + 0.07qsat(Ta)(T ∗ − Ta)
(5.23)

= WUE(Ta)

[
1

1 + 0.07(T ∗−Ta)
1−RH

]
. (5.24)

Let ∆T ∗ = T ∗ − Ta and γ = 0.07
1−RH

,

WUE(T ∗) = WUE(Ta)

[
1

1 + γ∆T ∗

]
. (5.25)

This additional factor on the right-side hand of the equation when T ∗ > Ta may explain

the underestimation in the value of a.

For a doubling of ca, using this equation, the fractional change in WUE is expected to

give
2

1 + γ∆T ∗ − 1 =
1− γ∆T ∗

1 + γ∆T ∗ (5.26)

Calculated over the broadleaf sites, this new theoretical value predicts value between

0.85 and 0.95, is approximately the same as the values calculated at the sites by manual

increasing ca. This calculation highlights the need to better understand the role of stomatal

closure at high CO2 concentrations.

Note that the calibration of the model barely changes a compared to the default JULES

model. Calibration of the model has not increased this sensitivity to that observed by

Keenan et al. [2013] and Dekker et al. [2016]. This may be due to experimental design.

Calibration of the model only used one year of data for each site compared to the minimum

of six years per site used in Dekker et al. [2016]. Different parameters may be needed in

the calibration, or the relevant parameters (i.e. f0 and dqc) might not be changing enough.

However, the main reason the model gives a low value of a is probably due to structural

error.

In this example, calibration of the model has been insufficient in correcting a known fault

of model sensitivity. Calibration can only do so much, the underlying model processes

need to be changed in order to achieve a high value of a.

Comparing structural and parameter changes

In a final experiment, structural changes are compared to parameter changes, in order to

see which effect changes climate sensitivities the most.
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To represent structural uncertainty, runs with the different parameter settings are also

compared to a run with a different representation of the canopy (with default parameter

settings). The two representations considered are the big leaf model and a light-limited

canopy model [Mercado et al., 2009]. The default canopy setting is the big leaf model.
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Figure 5.6.: Fractional change of sites at RCP8.5 year 2100. Each PFT is shown, and
each site is run with four different JULES configurations: runs with original parameters,
locally-optimised parameters and generic-PFT optimised parameters (red, blue, purple)
and a fourth configuration where the canopy representation in the model has changes,
moving from a big leaf model to a more complex light limited model (orange). For this
‘canopy-change’ configuration, the original parameters are used.

Figure 5.6 shows the fractional change of three different variables; GPP and latent heat

which were used to calibrate the model, and WUE which is a ratio of the two fluxes, at the

maximum atmospheric perturbations investigated in this study: RCP 8.5 at year 2100,

i.e. ca = 2.5 and ∆T = 4.8. The spread of sites in each PFT is comparable between

run configurations. This means that whilst calibration has improved the fit of the model

to observations, it has not changed the sensitivity of these three fluxes to changes in

the atmospheric temperature and CO2 concentrations. Similarly, the change of canopy

representation to a more sophisticated and complex one has not changed the sensitivity

of the model.

It therefore seems that different structural changes are needed to change the fractional

sensitivity of the model significantly. Since the canopy conductance term was eliminated

in formulating WUE, it is possible that this variable is now relatively insensitive to a

change in canopy representation.

5.2. Closing remarks

This chapter has presented simple sensitivity studies to assess how the calibration of

JULES has affected the sensitivity of the model to CO2-induced climate change.
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In general, calibration was found to change the absolute size of the fluxes, but had a

weaker impact on the fractional sensitivity of those fluxes to CO2 and greenhouse warm-

ing. For some sites, GPP increases significantly upon calibration, which would imply

larger feedbacks under CO2-induced climate change (e.g. a larger carbon sink due to CO2

fertilisation, a larger carbon source at very high warming levels).

The sensitivity of Water Use Efficiency (WUE) to CO2-increase and warming was also

assessed as a useful measure of the changing functioning of plants, which is less dependent

on the uncertain behaviour of stomatal pores. Again, calibration was found to have little

effect on the fractional sensitivity of WUE to CO2 and warming, although for many sites

the absolute value of WUE is changed significantly by the calibration. The calibrated

and uncalibrated versions of JULES are less sensitive to CO2 than has been suggested by

recent observation-based estimates [Keenan et al., 2013; Dekker et al., 2016].

In the absence of surface temperature increases, JULES should give an increase in WUE

that is proportional to CO2, which is consistent with recent stomatal optimisation theories

[Medlyn et al., 2011; Prentice et al., 2014]. However, a slightly weaker dependence is found

due to increases in surface temperature (and therefore humidity deficit) associated with

stomatal closure. A formula has been derived to estimate this slight suppression of WUE

increase due to CO2-induced stomatal closure. The humidity deficit dependence of WUE

in JULES seems stronger than stomatal optimisation theories. The lower sensitivity of

WUE to CO2 than predicted means that in an Earth System simulation, the photosynthesis

increase is slightly less than expected or the reductions in transpiration are slightly more.

Finally, the changes in JULES sensitivity due to calibration were compared to the changes

in JULES sensitivity due to a major structural code change. The significantly more com-

plex two-stream light-fleck canopy model [Mercado et al., 2009] was used for the latter

structural change. In general, calibration was found to improve the performance of the

model against observations much more effectively than the structural change, but has a

weaker effect on the model’s sensitivities. Therefore improvements in process representa-

tion are vital to produce more reliable projections, but better calibration is also required

for credible models that reproduce contemporary observations reasonably well. Structural

and parameter uncertainties therefore need to be reduced in parallel.

The following chapter concludes this thesis by providing discussion of the key findings and

suggestions for future work.
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This chapter describes how the analyses throughout this thesis have addressed the key

research questions outlined in Chapter 1. Starting with Sect. 6.1, the key findings are

summarised and given in response to the key questions. In Sect. 6.2, the results from each

chapter are considered in greater depth, and in each case future work is suggested.

Section 6.3 concludes this thesis with a few closing remarks about the future of adJULES.

6.1. Key findings

In this section, a brief response is given to each of the key questions outlined in Chapter

1. These highlight the main achievements of this thesis.

KQ1: Can a (locally) optimal vector of generic parameters for each of the JULES PFT

classes be found in a robust and repeatable manner?

Yes. The adJULES system now includes the option of calibrating over multiple sites

simultaneously. This was shown to be robust over different timescales; parameters

optimised over a small subset of sites could be generalised to a larger set and param-

eters found at different observation frequencies could be successfully transposed. In

order to be robust and repeatable in the main experiments, optimisations included

all available sites in a given set, instead of randomly choosing a subset or select-

ing the best ones. The multi-site extension was also shown to be necessary; the

data from single-site optimisations did not improve as many sites as the data from

multi-site optimisations.

KQ2: Are the PFT-definitions in JULES robust or do the observations suggest a different

partitioning of the vegetation?

Yes and no. The multi-site optimisations over the different PFT groupings were

extremely successful. For each PFT, it was possible to find an optimum vector

that improved the model-data fit at the majority of the sites. 85% of all sites were

improved by the new PFT-generic parameter vectors. Sites that did not improve

were found to be outliers in the PFTs. However, using the single-site results in

different clustering experiments, as it was not possible to find any sort of natural

grouping. Similarly, given a single site parameter vector, it was not possible to

determine to which PFT that site belonged.
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KQ3: How do the parameter changes in JULES affect the model’s response to CO2 driven

climate change?

Parameter changes affect the model’s response under climate change mainly by

changing the magnitude of each flux, but not the sensitivity. In this context, model

sensitivity refers to the rate of change of each flux with respect to changes in at-

mospheric CO2 concentrations and atmospheric temperature. The change in model

sensitivity is negligible after calibration. Similarly, it is also negligible when chang-

ing the canopy representation in the model. This was done to illustrate a reduction

in structural uncertainty. Changing this sensitivity requires a different structural

change. A few individual parameters do affect the model’s sensitivities, but their

effects were dulled when part of a larger set. The absolute magnitude of the GPP

flux at broadleaf sites is increased through calibration. This strengthens the carbon

sinks found at these locations. For needleleaf sites, the absolute change in GPP was

minimal.

Data assimilation is primarily used to improve models and so it is worth considering the

main implication of the thesis on ecosystem modelling - especially related to JULES. The

suggested changes to some of the parameters (primarily in the broadleaf case) highlighted

the light-saturated nature of the big-leaf model. This is a known structural simplification

- better more realistic results will be achieved using a multi-canopy model. The clustering

experiments suggested that there is a need to possibly reexamine the PFT definitions in

JULES, maybe consider alternative ways to group and model the different vegetation.

Whilst the parameter did improve the fit, a few more experiments are probably needed

before the optimised parameters become an integral part of JULES. A few parameters,

e.g. f0, were found to be too high in the default model - these could be tweaked to lower

values initially. Working in parallel with model development, such as the 9 PFTs, is the

most desirable. Also when working with model developer, a set of coding standards could

be set up to facilitate the development of the adjoint.

6.2. Discussion and future work

In this section, each chapter is considered more throughly along with suggestions for future

work.

6.2.1. Chapter 2

In Chapter 2, the different components of the adJULES system were introduced. Starting

with the JULES model itself, one of the things highlighted was the fact that the version of

JULES used is out-dated. Before it can become an integral part of the JULES distribution,

the adJULES system needs to catch up to the newest version. In order to make sure the

system then keeps up to date with the new releases of JULES, coding standards need to
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be introduced so that the JULES model is built in a differentiable manner. Nevertheless,

the framework created in this thesis remains relevant and informative.

The FluxNet eddy-covariance data used to constrain the experiments in this thesis were

introduced in Sect. 2.2. There is a growing amount of different data available which could

be used to constrain the carbon cycle, each spanning different temporal and spatial scales

as illustrated in Fig. 6.1. This increased range of data offers many different avenues and

possibilities. Each type of observation brings new information to calibrate against and

opens up questions about how best to assimilate multiple data streams (see Peylin et al.

[2016]).
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Figure 1.2.: Temporal and spatial scales spanned by available carbon cycle observations.

1.2. Carbon cycle observations

The need to predict future changes in the carbon cycle necessitates knowledge on how the terrestrial
biosphere reacts to changing climate. Observations of the system are indispensable to quantify these
reactions in forms of functional relationships to be able to project them to the future. Raupach et al.
(2005) identify four essential kinds of data for terrestrial carbon observations: remote sensing of land
surface properties, atmospheric composition measurements, measurements of the carbon stocks, and
direct flux measurements. Integrating all the different observations and identifying consistency or rea-
sons for inconsistency will challenge future research. These observations span a wide range of temporal
and spatial scales (Fig. 1.2) and allow because of this to address different aspects of the carbon cycle
and to constrain different parts of carbon cycle models. Atmospheric concentration observations inte-
grate information of all carbon fluxes between atmosphere, biosphere and ocean, they are an important
constraint for the regional patterns and the overall interannual response of the system (Bousquet et al.,
2000). Carbon stock estimates are an important source of information for processes acting on longer
time scales, e.g. the turnover of slow carbon pools or lagged effects on tree growth. The strength of
remote sensing data are the spatial patterns and the global coverage, while flux data are important to ad-
dress the direct influence of the meteorology (Friend et al., 2007) due to their high temporal resolution.
The following paragraphs describe the eddy covariance flux data and remote sensing data used in this
study in detail.

Figure 6.1.: Temporal and spatial scales spanned by available carbon cycle observations.
Figure taken from Lasslop [2010].

In Sect. 2.3, data assimilation methods were discussed, focusing in particular on the adjoint

method used in this study. There is always a risk of becoming stuck in local minima

when optimising within a high-dimensional parameter space by gradient descent. When

an optimisation finds a local minimum, the final optimised state depends on the initial

conditions. Alternative methods, including ensemble methods, could avoid this issue, but

are more computationally costly.

Chapter 2 concluded by discussing the inherited version of the adJULES system. The

updated list is as follows, where changes are highlighted (∗). The adJULES system is set

up to optimise

• 94 of the physical JULES parameters covering five PFTs and four soil layers

∗ simultaneously over a subset of 81 FluxNet sites
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• simultaneously over a subset of the 6 different data streams (NEE, H, LE, T, GPP,

Resp)

∗ following the cost function:

J (z; ẑ, z0) =
1

2

[∑
t

(mt(z)− ot)
T R

(
ẑ)−1(mt(z)− ot) + λ(z− z0)

TB−1(z− z0
)]

(6.1)

∗ by iteratively looping until ẑ converges

• using the adjoint generated from JULES version 2.2

• using the BFGS optimisation scheme

This chapter leads to the following suggestions for further work:

- Update the adJULES system to the newest version of JULES.

- Integrate new observations, such as satellite data, in the adJULES system.

6.2.2. Chapter 3

Chapter 3 discussed the cost function used in the adJULES system at great length. The

mathematical theory used to define the R and B covariance matrices was covered, and

alternative definitions of the cost function discussed.

In this chapter, the adJULES system is successfully extended to calibrate over multiple

sites simultaneously. This multi-site optimisation is a relatively new feature in terrestrial

data assimilation. The multi-site extension of adJULES was shown to be robust: a cali-

bration performed over a subset of the sites can be generalised over a larger set of sites.

Even with a clear outlier as part of the training set, the multi-site optimisation is able to

find a best-fit set of parameters for the other sites.

When extending the cost function to optimise over multiple sites in Sect. 3.2, other imple-

mentations were also considered. One such feature allows for the calibration of a common

set of parameters over multiple sites, while also allowing other parameters at the sites to

improve individually.

The main challenge of this chapter was trying to understand the effect of a penalisation

(background) term in the cost function on the calibration results, especially in a multi-site

framework where the additional sites also add constraints to the cost function. The idea of

conditioning was introduced and the addition of the background term was shown to reduce

the condition number significantly from O(1013) to O(105). However, in most cases, the

penalisation term was then found to dominate the cost function and the parameter values

did not significantly change from their initial values, particularly when the model was

calibrated with daily observations (i.e. with many data points). The question of how best

to weight this background term remains open.
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The two experiments in this chapter suggest a possible ‘smoothing’ of the cost function;

an idea first proposed in Kuppel et al. [2014]. This is the idea that increasing the number

of sites adds constraints on the parameters, thereby causing the cost function to become

‘smoother’ and thus the optimisation scheme may be less likely to become trapped in local

minima. First, the parameter vectors found over multiple sites were sometimes found to

outperform the locally optimised parameter vectors. In these cases, a different and better

minimum had been discovered. Second, the addition of more sites to the optimisation

meant that only a low-weighted background term was needed to help condition the prob-

lem. The additional data provided by the extra sites replaced the extra constraints given

by the background term. However, a sensitivity experiment used to test this ‘smoothing’

hypothesis was inconclusive.

Finally, the adJULES system was found to be more successful in finding an optimal pa-

rameter vector than randomly sampling parameter space. However, the system was shown

to be sensitive to the initial conditions.

This chapter leads to the following suggestions for further work:

- Explore different formulations of the cost function, potentially consider allowing

additional parameters to vary locally in parallel to the main optimisation.

- Investigate the relative importance of the background term, number of sites, and

observation frequency in conditioning the problem.

6.2.3. Chapter 4

In Chapter 4, the main results of the optimisations were covered. For individual FluxNet

sites, adJULES was shown to have the ability to find local (site-specific) optimal parameter

vectors that significantly improve the performance of the JULES model compared to runs

generated using the default parameters. The data streams used in the calibration, LE and

GPP, are both modelled more accurately with the optimal parameter vectors, with the

GPP flux improving the most. The greater improvement in the GPP flux is largely due to

the fact that the parameters considered in this study are mainly related to photosynthesis.

For the LE flux to improve more significantly, more water and energy-related parameters

would need to be considered in the optimisation.

When optimised locally to find site-specific parameters, all of the sites in this study were

seen to improve the model-data fit for the calibration year. In addition, when confronted

with independent data from an evaluation year, the locally optimised parameter vectors

decreased the error in model-data fit for 84% of the sites. This evaluation of the site-

specific parameter vectors is promising, and suggests that the adJULES system is robust.

It also gives confidence that the parameter vectors found can be generalised over different

locations.

Although the PFT-specific optimal parameters do not always fit the data as well as site-

specific optimal parameters, they still offer significant improvements over the default
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JULES parameters. For over 85% of the sites, PFT-specific optimal parameters per-

form better than default parameters when confronted with independent evaluation data.

For some of the sites, the PFT-specific optimal parameters perform at least as well as

site-specific optimal parameters. This implies that the multi-site methodology is less sus-

ceptible to over-tuning, both in terms of variability across sites (e.g. different overground

biomass and tree ranges), and in terms of variability through time (e.g. unusually high

rainfall in the calibration year).

The PFT-specific parameters found in this study represent a significant improvement on

the default ones. That such parameters could be found implies robust parameterisations

independent of geography, supporting the idea that it is possible to represent global veg-

etation with a relatively small number of PFTs.

A successful and robust multi-site optimisation assumes that sites can be grouped and

parameter values can be applied to several sites at once. Whilst the PFT-specific param-

eters show great improvement, agreeing with the use of five PFTs in JULES, the latter

half of the chapter challenged these groupings.

The alternative PFT definitions presented in Harper et al. [2016] were compared to the

calibrated JULES model from this study. Both were shown to improve fluxes in different

ways, highlighting the need for both calibration and improved process representation in

the JULES model.

Finally, a cluster analysis in parameter space was performed in order to identify PFTs

empirically. The data retrieved from the single-site optimisation did not suggest clustering

of any kind.

This chapter leads to the following suggestions for further work:

- Consider a different parameter vector in the optimisation with the addition of LE-

based parameters.

- Calibrate over the updated PFT groupings suggested by Harper et al. [2016].

6.2.4. Chapter 5

In Chapter 5, simple sensitivity studies were used to assess how the calibration of JULES

affects the sensitivity of the model to CO2-induced climate change. In general, calibration

was found especially to change the absolute size of the quantities considered, but had a

weaker impact on the fractional sensitivity of those quantities to CO2 fertilisation and

warming.

Two quantities were discussed in this chapter: GPP and WUE. For some sites, the GPP

flux was found to increase significantly upon calibration, implying larger feedbacks under

CO2-induced climate change (e.g. a larger carbon sink due to CO2 fertilisation, a larger

carbon source at very high warming levels). An optimal temperature for photosynthesis
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was derived at each site. This was different to the optimal temperature derived from the

underlying equations and was found to increase with increasing CO2.

WUE was considered since it provides a useful measure of the changing functioning of

plants, and related to the two fluxes, GPP and LE, used in the calibration. Calibration

was found little effect on the fractional sensitivity of WUE to CO2 and warming, and the

calibrated and uncalibrated versions of JULES are less sensitive to CO2 than has been

suggested by recent observation-based estimates [Keenan et al., 2013; Dekker et al., 2016].

JULES was found to give a slightly weaker dependence of WUE on CO2 increase than

expected; the increase in WUE is suggested to be proportional to CO2 in recent stomatal

optimisation theories [Medlyn et al., 2011]. This weaker dependence was found to be

due to increases in surface temperature, and therefore humidity deficit, associated with

stomatal closure.

JULES allows for different representation of the canopy, ranging from the simple big

leaf model which is used throughout this thesis, to the the significantly more complex

two-stream light-fleck canopy model [Mercado et al., 2009]. This difference in represen-

tation allowed for the changes in JULES sensitivity due to calibration to be compared

to the changes in JULES sensitivity due to a major structural code change. Calibration

was found to reduce errors in model-data more effectively than the structural change.

However, calibration did not change the model’s sensitivities. Improvements in process

representation are needed to capture these sensitivities and therefore produce reliable cli-

mate projects. Calibration is still important to ensure credible models. This highlights

the need for simultaneous reductions in both structural and parameter uncertainties.

Limitations of this study are linked to its simplicity. For one, the temperature anomaly

was applied uniformly across the time-series at all sites. The global temperatures changes

derived from the RCPs were assumed to mirror the local temperature changes. How-

ever, temperature response will differ spatially and temporally. Using IMOGEN patterns

[Huntingford et al., 2010], localised temperature response can be derived and used to

better understand CO2 induced climate change at different locations.

The second simplification is due to optimal values themselves. These optimal values belong

to the multivariate normal distribution and as such have uncertainties associated with

them. In order for the experiments to be more informative, not only do the optimal values

need to be considered but their associated uncertainties need to be also feed-through.

This chapter leads to the following suggestions for further work:

- Use IMOGEN patterns to find the localised temperature responses to CO2 induced

climate change.

- Run similar sensitivity studies including the uncertainties associated with each pa-

rameter.

150



6. Conclusions

6.3. The future of adJULES

The adJULES system is an extremely powerful tool with great potential. It provides a

much needed framework to confront the JULES model with observational data. In addition

to the future work discussed throughout this chapter, the adJULES system could also be

used in identification of model structural errors and this presents opportunities to make

real improvements to model parameterisation.
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A. Description of the FluxNet Data

Table A.1.: FluxNet sites used in this study, labelled by a country code (first two letters)
and site name (last three letters). The period corresponds to the available years of data
for each of the sites. See Groenendijk et al. [2011] for the site references.

Site Period Calibration year Evaluation year Latitude Longitude

Broadleaf sites (BT)

DE-Hai (2000, 2006) 2005 2004 51.079 10.452

DK-Sor (1996, 2006) 2006 2004 55.487 11.646

FR-Fon (2005, 2006) 2006 − 48.476 2.780

FR-Hes (1997, 2006) 2003 1998 48.674 7.065

IT-Col (1996, 2006) 2005 2001 41.849 13.588

IT-LMa (2003, 2006) 2006 2004 45.581 7.155

IT-Non (2001, 2006) 2002 2003 44.690 11.089

IT-PT1 (2002, 2004) 2003 2004 45.201 9.061

IT-Ro1 (2000, 2006) 2006 2005 42.408 11.930

IT-Ro2 (2002, 2006) 2004 2006 42.390 11.921

UK-Ham (2004, 2005) 2005 − 51.121 −0.861

UK-PL3 (2005, 2006) 2006 − 51.450 −1.267

US-Bar (2004, 2005) 2005 − 44.065 −71.288

US-Ha1 (1991, 2006) 1996 1998 42.538 −72.171

US-MMS (1999, 2005) 2002 2003 39.323 −86.413

US-MOz (2004, 2006) 2006 2005 38.744 −92.200

US-UMB (1999, 2003) 2003 2002 45.560 −84.714

US-WCr (1999, 2006) 2005 2000 45.806 −90.080

AU-Tum (2001, 2006) 2003 2005 −35.656 148.152

AU-Wac (2005, 2007) 2006 − −37.429 145.187

BR-Sa1 (2002, 2004) 2003 2004 −2.857 −54.959

BR-Sa3 (2000, 2003) 2002 2003 −3.018 −54.971

FR-Pue (2000, 2006) 2006 2005 43.741 3.596

ID-Pag (2002, 2003) 2003 − 2.345 114.036

IT-Cpz (1997, 2006) 2004 2006 41.705 12.376

IT-Lec (2005, 2006) 2006 − 43.305 11.271

PT-Esp (2002, 2004) 2004 2003 38.639 −8.602

PT-Mi1 (2003, 2005) 2005 − 38.541 −8.000

C3 grasses sites (C3G)

DE-Gri (2005, 2006) 2006 − 50.950 13.512

DK-Lva (2005, 2006) 2006 − 55.683 12.083

ES-LMa (2004, 2006) 2006 2005 39.941 −5.773

HU-Bug (2002, 2006) 2006 2005 46.691 19.601

HU-Mat (2004, 2006) 2006 2005 47.847 19.726

IT-Amp (2002, 2006) 2006 2005 41.904 13.605

PL-wet (2004, 2005) 2005 − 52.762 16.309

PT-Mi2 (2004, 2006) 2006 2005 38.477 −8.025

US-Bkg (2004, 2006) 2006 2005 44.345 −96.836

US-FPe (2000, 2006) 2002 2004 48.308 −105.101

US-Goo (2002, 2006) 2006 2004 34.250 −89.970
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A. Description of the FluxNet Data

Table A.1.: Continued.

Site Period Calibration year Evaluation year Latitude Longitude

Needleleaf sites (NT)

CA-Man (1997, 2003) 2001 2002 55.880 −98.481

CA-NS1 (2002, 2005) 2004 2003 55.879 −98.484

CA-NS2 (2001, 2005) 2002 2004 55.906 −98.525

CA-NS3 (2001, 2005) 2004 2002 55.912 −98.382

CA-NS4 (2002, 2004) 2004 2003 55.912 −98.382

CA-NS5 (2001, 2005) 2004 2002 55.863 −98.485

CA-Qcu (2001, 2006) 2005 2006 49.267 −74.037

CA-Qfo (2003, 2006) 2006 2005 49.693 −74.342

CA-SF1 (2003, 2005) 2004 2005 54.485 −105.818

CA-SF2 (2003, 2005) 2004 2005 54.254 −105.878

CA-SF3 (2003, 2005) 2005 2004 54.092 −106.005

DE-Bay (1996,1999) 1999 1998 50.142 11.867

DE-Har (2005, 2006) 2006 − 47.934 7.601

DE-Tha (1996, 2006) 2005 2004 50.964 13.567

DE-Wet (2002, 2006) 2006 2004 50.453 11.457

ES-ES1 (1999, 2006) 2005 2000 39.346 −0.319

FI-Hyy (1996, 2006) 2006 2004 61.847 24.295

FR-LBr (2003, 2006) 2006 2005 44.717 −0.769

IL-Yat (2001, 2006) 2005 2006 31.345 35.051

IT-Lav (2000, 2002) 2001 2002 45.955 11.281

IT-Ren (1999, 2006) 2005 2006 46.588 11.435

IT-SRo (1999, 2006) 2006 2005 43.728 10.284

NL-Loo (1996, 2006) 2006 2003 52.168 5.744

RU-Fyo (1998, 2006) 2005 2006 56.462 32.924

RU-Zot (2002, 2004) 2003 2004 60.801 89.351

SE-Fla (1996,1998) 1998 1997 64.113 19.457

SE-Nor (1996,1999) 1997 1999 60.086 17.480

SE-Sk2 (2004, 2005) 2005 − 60.130 17.840

UK-Gri (1997,1998) 1998 − 56.607 −3.798

US-Blo (1997, 2006) 2006 2000 38.895 −120.633

US-Ho1 (1996, 2004) 2004 2003 45.204 −68.740

US-Me4 (1996, 2000) 2000 − 44.499 −121.622

US-SP1 (2000, 2001) 2001 − 29.738 −82.219

US-SP2 (1998, 2004) 2001 2004 29.765 −82.245

US-SP3 (1999, 2004) 2001 2002 29.755 −82.163

Shrubs sites (Sh)

CA-Mer (1998, 2005) 2004 2005 45.409 −75.519

CA-NS6 (2001, 2005) 2003 2004 55.917 −98.964

CA-NS7 (2002, 2005) 2003 2004 56.636 −99.948

IT-Pia (2002, 2005) 2003 2004 42.584 10.078

US-Los (2001, 2005) 2005 2003 46.083 −89.979

C4 grasses sites (C4G)

BW-Ma1 (1999, 2001) 2000 2001 −19.916 23.561

ZA-Kru (2001, 2003) 2002 2003 −25.020 31.497
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A. Description of the FluxNet Data

Table A.2.: IGBP land cover classification system. Table retrieved from
www.eomf.ou.edu/static/IGBP.pdf

Class name Description

1 Evergreen needleleaf

forests

Lands dominated by needleleaf woody vegetation with a percent cover

60% and height exceeding 2m. Almost all trees remain green all year.

Canopy is never without green foliage.

2 Evergreen broadleaf

forests

Lands dominated by broadleaf woody vegetation with a percent cover 60%

and height exceeding 2m. Almost all trees and shrubs remain green year

round. Canopy is never without green foliage.

3 Deciduous needleleaf

forests

Lands dominated by woody vegetation with a percent cover 60% and

height exceeding 2m. Consists of seasonal needleleaf tree communities

with an annual cycle of leaf-on and leaf-off periods.

4 Deciduous broadleaf

forests

Lands dominated by woody vegetation with a percent cover 60% and

height exceeding 2m. Consists of broadleaf tree communities with an

annual cycle of leaf-on and leaf-off periods.

5 Mixed forests Lands dominated by trees with a percent cover 60% and height exceeding

2m. Consists of tree communities with interspersed mixtures or mosaics

of the other four forest types. None of the forest types exceeds 60% of

landscape.

6 Closed shrublands Lands with woody vegetation less than 2m tall and with shrub canopy

cover 60%. The shrub foliage can be either evergreen or deciduous.

7 Open shrublands Lands with woody vegetation less than 2m tall and with shrub canopy

cover between 10% and 60%. The shrub foliage can be either evergreen

or deciduous.

8 Woody savannas Lands with herbaceous and other understory systems, and with forest

canopy cover between 30% and 60%. The forest cover height exceeds 2m.

9 Savannas Lands with herbaceous and other understory systems, and with forest

canopy cover between 10% and 30%. The forest cover height exceeds 2m.

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than

10%.

11 Permanent wetlands Lands with a permanent mixture of water and herbaceous or woody veg-

etation. The vegetation can be present either in salt, brackish, or fresh

water.

12 Croplands Lands covered with temporary crops followed by harvest and a bare soil

period (e.g., single and multiple cropping systems). Note that perennial

woody crops will be classified as the appropriate forest or shrub land cover

type.

13 Urban and built-up

lands

Land covered by buildings and other man-made structures.

14 Cropland/natural

vegetation mosaics

Lands with a mosaic of croplands, forests, shrubland, and grasslands in

which no one component comprises more than 60% of the landscape.

15 Snow and ice Lands under snow/ice cover throughout the year.

16 Barren Lands with exposed soil, sand, rocks, or snow and never have more than

10% vegetated cover during any time of the year.

17 Water bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or saltwater

bodies.
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B. Optimised time-series

Time-series plots for the different site-specific evaluations showing LE (left) and GPP (right) for each of

the different PFTs. Observations (black) are compared to JULES runs using default parameters (red) and

site-specific optimal parameters (blue).
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B. Optimised time-series

B.1. Broadleaf sites
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B. Optimised time-series

B.2. C3 grass sites
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B. Optimised time-series

B.4. Needleleaf sites
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B. Optimised time-series
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B. Optimised time-series
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B. Optimised time-series
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B. Optimised time-series
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B. Optimised time-series

B.5. Shrub sites
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Dehuri, S., Jagadev, A. K., and Panda, M. (2015). Multi-objective Swarm Intelligence:

Theoretical Advances and Applications, volume 592. Springer.

Dekker, S. C., Booth, B. B., and Cox, P. M. (2016). Spatial and temporal variations

in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric

observations. Earth System Dynamics, 7(2):525.

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E.,

Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., et al. (2007). Climate Change 2007:

The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment

Report of the Intergovernmental Panel on Climate Change. Couplings Between Changes

in the Climate System and Biogeochemistry. Cambridge University Press, Cambridge,

United Kingdom and New York, NY, USA.

Deser, C., Phillips, A., Bourdette, V., and Teng, H. (2012). Uncertainty in climate change

projections: the role of internal variability. Climate Dynamics, 38(3-4):527–546.

172



Bibliography

Errico, R. (1997). What is an adjoint model? Bulletin of the American Meteorological

Society, 78(11):2577–2591.

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba,

G., Ceulemans, R., Clement, R., Dolman, H., et al. (2001). Gap filling strategies for

defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology,

107(1):43–69.

FastOpt (2010). Transformation of Algorithms in Fortran. Manual,

http://www.FastOpt.com. Hamburg, Germany.

Field, C. B., Jackson, R. B., and Mooney, H. A. (1995). Stomatal responses to in-

creased co2: implications from the plant to the global scale. Plant, Cell & Environment,

18(10):1214–1225.

Fischer, G. R., Costa, M. H., Murta, F. Z., Malhado, A. C., Aguiar, L. J., and Ladle,

R. J. (2013). Multi-site land surface model optimization: An exploration of objective

functions. Agricultural and Forest Meteorology, 182–183:168 – 176.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and

density estimation. Journal of the American Statistical Association, 97(458):611–631.

Fraley, C., Raftery, A. E., Murphy, T. B., and Scrucca, L. (2012). mclust Version 4 for

R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density

Estimation. Technical report, No. 597, Department of Statistics, University of Wash-

ington.

Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J.-L., Fairhead, L., LeTreut, H., Monfray,

P., and Orr, J. (2001). Positive feedback between future climate change and the carbon

cycle. Geophysical Research Letters, 28(8):1543–1546.

Friedlingstein, P., Bopp, L., Rayner, P., Cox, P. M., Betts, R., Jones, C., Von Bloh, W.,

Brovkin, V., Cadule, P., Doney, S., et al. (2006). Climate–carbon cycle feedback analysis:

results from the C4MIP model intercomparison. Journal of Climate, 19:3337–3353.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat,

S. K., and Knutti, R. (2013). Uncertainties in cmip5 climate projections due to carbon

cycle feedbacks. Journal of Climate, 27(2):511–526.

Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y. (2006). Multi-gas miti-

gation analysis on stabilization scenarios using AIM global model. The Energy Journal,

pages 343–353.

Gedney, N., Cox, P., Betts, R., Boucher, O., Huntingford, C., and Stott, P. (2006). De-

tection of a direct carbon dioxide effect in continental river runoff records. Nature,

439(7078):835–838.

Geman, S. and Geman, D. (1984). Pattern Analysis and Machine Intelligence, IEEE Trans-

173



Bibliography

actions on. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of

Images.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T.

(2015). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-

5. https://CRAN.R-project.org/package=mvtnorm.
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tent assimilation of multiple data streams in a carbon cycle data assimilation system.

Geoscientific Model Development, 9(10):3569.

Madsen, H. (2003). Parameter estimation in distributed hydrological catchment modelling

using automatic calibration with multiple objectives. Advances in Water Resources,

26(2):205 – 216.

Manabe, S. (1969). Climate and the Ocean Circulation 1. Monthly Weather Review,

97(11):739–774.

McGuffie, K. and Henderson-Sellers, A. (2001). Forty years of numerical climate modelling.

International Journal of Climatology, 21(9):1067–1109.

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V.,

177



Bibliography

Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L. (2011). Reconciling the

optimal and empirical approaches to modelling stomatal conductance. Global Change

Biology, 17(6):2134–2144.

Medvigy, D. and Moorcroft, P. R. (2011). Predicting ecosystem dynamics at regional

scales: an evaluation of a terrestrial biosphere model for the forests of northeastern

North America. Philosophical Transactions of the Royal Society of London B: Biological

Sciences, 367(1586):222–235.

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R. (2009).

Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosys-

tem Demography model version 2. Journal of Geophysical Research: Biogeosciences,

114(G1).

Mercado, L., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and Cox, P.

(2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature,

458(7241):1014–1017.

Mercado, L., Huntingford, C., Gash, J. H., Cox, P. M., and Jogireddy, V. (2007). Improv-

ing the representation of radiation interception and photosynthesis for climate model

applications. Tellus B, 59(3):553–565.

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr,

A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove,

J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.

(2007). Comprehensive comparison of gap-filling techniques for eddy covariance net

carbon fluxes. Agricultural and Forest Meteorology, 147(3–4):209 – 232.

Moncrieff, J., Malhi, Y., and Leuning, R. (1996). The propagation of errors in long-term

measurements of land-atmosphere fluxes of carbon and water. Global Change Biology,

2(3):231–240.

Monsi, M. and Saeki, T. (1953). The light factor in plant communities and its significance

for dry matter production. Japanese Journal of Botany, 14(1):22–52.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren,

D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B.,

Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P.,

and Wilbanks, T. J. (2010). The next generation of scenarios for climate change research

and assessment. Nature, 463(7282):747–756.

Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian, Y., Wang, Y.,

Song, X., Zhang, Y., Smith, G., et al. (2002). Global products of vegetation leaf area and

fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment,

83(1):214–231.

Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H.-H., and Victor,

N. (2000). Special Report on Emissions Scenarios (SRES), A Special Report of Working

178



Bibliography

Group III of the Intergovernmental Panel on Climate Change. Cambridge University

Press.

Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models part I

— A discussion of principles. Journal of Hydrology, 10(3):282 – 290.

Naumann, U. (2011). The art of differentiating computer programs: an introduction to

algorithmic differentiation. SIAM.

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie, R. E. (2010).

CO2 enhancement of forest productivity constrained by limited nitrogen availability.

Proceedings of the National Academy of Sciences, 107(45):19368–19373.

Papale, D. (2012). Data Gap Filling, pages 159–172. Springer Netherlands, Dordrecht.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz,

B., Rambal, S., Valentini, R., Vesala, T., et al. (2006). Towards a standardized process-

ing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms

and uncertainty estimation. Biogeosciences, 3(4):571–583.

Pearson, D., Jones, C. D., and Hughes, J. K. (2009). Estimation of car-

bon cycle parameters in jules. Presentation at JULES Science Meeting,

https://jules.jchmr.org/community/meetings/january-2009/Pearson.pdf.

Peng, C., Guilot, J., Wu, H., Jiang, H., and Luo, Y. (2011). Integrating models with data

in ecology and palaeoecology advances towards a model-data fusion approach. Ecology

Letters, 14:522–536.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E.,

Kane, A., Maignan, F., Chevallier, F., et al. (2016). A new stepwise carbon cycle data

assimilation system using multiple data streams to constrain the simulated land surface

carbon cycle. Geoscientific Model Development, 9(9):3321.

Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat, D., and Zaehle,
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