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The Dolgopyat inequality in bounded variation for non-Markov
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Henk Bruin and Dalia Terhesiu

December 2016

Abstract

LetF be a (non-Markov) countably piecewise expanding interval map satisfying certain reg-
ularity conditions, and̃L the corresponding transfer operator. We prove the Dolgopyat inequality
for the twisted operator̃Ls(v) = L̃s(e

sϕv) acting on the space BVof functions of bounded vari-
ation, whereϕ is a piecewiseC1 roof function.

1 Introduction

A crucial method (including what is now known as the Dolgopyat inequality) to prove exponential
decay of correlations for Anosov flows withC1 stable and unstable foliations was developed
by Dolgopyat [7]. Liverani [10] obtained exponential decay of correlations for Anosov flows
with contact structure (and hence geodesic flow on compact negatively curved manifolds of any
dimension).

Baladi & Vallée [4] further refined the method of [7] to prove exponential decay of correla-
tions for suspension semiflows over one-dimensional piecewiseC2 expanding Markov maps with
C1 roof functions. This was extended to the multidimensional setting by Avila et al. [3], to prove
exponential decay of correlations of Teichmüller flows. Araújo & Melbourne [1] showed that the
method can be adapted to suspension semiflows overC1+α maps withC1 roof functions, which
enabled them to prove that the classical Lorenz attractor has exponential decay of correlations.

In all of the above works, the results are applied toCα observables for someα > 0. In this
paper, we consider a class of non-Markov maps (see Section2), obtain a Dolgopyat inequality
on the space of bounded variation (BV) observables (Theorem2.3). The Dolgopyat inequality
obtained in this paper automatically allows us to obtain exponential decay of correlations for
skew-products onT2 as considered by Butterley and Eslami [6, 8], where the developed methods
do not exploit the presence of the Markov structure.

Most probably, a proof of exponential decay for BV observables for the class of non Markov
maps considered here is not the easiest route; one could, forinstance, think of inducing to a
Markov map for which exponential decay of correlation ofC2 observables is known and then use
approximation arguments to pass to BV observables. Instead, we believe that the benefit of the
Dolgopyat inequality in this setting is that it can be used tostudy perturbations of the flow (such
as inserting holes in the Poincaré map); it is not at all clear that this can be economically done via
inducing.

The main new ingredient of the proof is to locate and control the sizes of the jumps associated
with BV functions (see Section4).
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1.1 Specific Examples

Our results (i.e., the Dolgopyat type inequality given by Theorem2.3) apply to typical AFU maps
presented in Section2. By typical we mean the whole clas of AFU maps (studied by Zweimüller
[13, 14]) satisfying assumption (2.5) below. This assumption is very mild, see Remark2.2. In
particular, this class contains some standard families, such as the shiftedβ-transformationsF :
[0, 1] → [0, 1], x 7→ βx+ α (mod 1) for fixedα ∈ [0, 1) andβ > 1.

Another important example is the First Return Map of a (non-Markov) Manneville-Pomeau
map. That is,

F = f τ : [
1

2
, 1] → [

1

2
, 1] for τ(x) = min{n ≥ 1 : fn(x) ∈ [

1

2
, 1]},

where

f : [0, 1] → [0, 1], x 7→
{

x(1 + 2αxα) x ∈ [0, 12 );

γ(2x− 1) x ∈ [ 12 , 1],

is a non-Markov Manneville-Pomeau map with fixedα > 0 andγ ∈ (12 , 1].
The assumptions below apply to these to these examples, albeit that (2.5) holds for all param-

eters with the exception of a set of Hausdorff dimension< 1, see Remark2.2. The UNI condition
(2.9) is a generic condition on the roof function of the type previously considered in [4, 3].

2 Set-up, notation, assumptions and results.

We start this section by discussing the class of AFU maps studied by Zweimüller [13, 14]. We
present their conditions in Subsections2.1-2.6.

2.1 The AFU mapF .

Let Y be an interval andF : Y → Y a topologically mixing piecewiseC2 AFU map (i.e.,
uniformly expanding with finite image partition and satisfying Adler’s condition), preserving a
probability measureµ which is absolutely continuous w.r.t. Lebesgue measure Leb. Letα be the
partition ofY into domains of the branches ofF , andαn =

∨n−1
i=0 F

−iα. ThusFn : a→ Fn(a)
is a monotone diffeomorphism for eacha ∈ αn. The collection of inverse branches ofFn is
denoted asHn, and eachh ∈ Hn is associated to a uniquea ∈ αn such thath : Fn(a) → a is a
contracting diffeomorphism.

2.2 Uniform expansion.

Let
ρ0 = inf

x∈Y
|F ′(x)| and ρ = ρ

1/4
0 . (2.1)

SinceF is uniformly expanding,ρ0 > ρ > 1, but in fact, we will assume thatρ0 > 24/3, which
can be achieved by taking an iterate.

2.3 Adler’s condition.

This condition states thatsupa∈α supx∈a
|F ′′(x)|
|F ′(x)|2 <∞. AsF is expanding,|(F

n)′′(x)|
|(Fn)′(x)|2 is bounded

uniformly over the iteratesn ≥ 1, a ∈ αn andx ∈ a as well. Thus, there isC1 ≥ 0 such that

|(Fn)′′(h(x))|
|(Fn)′(h(x))|2 ≤ C1 and

h′(x)

h′(x′)
≤ eC1|x−x′| (2.2)

for all n ≥ 1, h ∈ Hn andx, x′ ∈ dom(h). The second inequality follows from the first by a
standard computation.
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2.4 Finite image partition.

The mapF need not preserve a Markov partition, but has the finite imageproperty. Therefore
K := min{|F (a)| : a ∈ α} is positive. We assume thatF is topologically mixing. This implies
that there isk1 ∈ N such thatF k1(J) ⊂ Y for all intervalsJ of length|J | ≥ δ0 := K(ρ0−2)

5eC1ρ0
(this

choice ofδ0 is used in LemmaB.1).
LetX1 = X ′

1 be the collection of boundary points ofF (a), a ∈ α, whereα is the partition
of Y into branches ofF . Due to the finite image property,X1 is a finite collection of points; we
denote its cardinality byN1. Inductively, letX ′

k = F (X ′
k−1), i.e., the set of “new” boundary

points of thek-th image partition, andXk = ∪j≤kX
′
j . Therefore#X ′

k ≤ kN1. Let {ξi}Mi=0 be a
collection of points containingXk, and put in increasing order, Then

Pk = {(ξi−1, ξi) : i = 1, . . . ,M}

is a partition ofY , refining theimage partition ofF k. In other words, the components ofY \
{ξi}Mi=0 are the atoms ofPk.

2.5 Roof function.

Letϕ : Y → R+ be a piecewiseC1 function, such thatϕ ≥ 1 and

C2 := sup
h∈H

sup
x∈dom(h)

|(ϕ ◦ h)′(x)| <∞. (2.3)

Since a main application is the decay of correlations of the vertical suspension semi-flow on
{(y, u) : y ∈ Y, 0 ≤ u ≤ ϕ(y)}/(y, ϕ(y)) ∼ (F (y), 0), see Subsection2.9, we will call ϕ the
roof function.

Also assume that there isε0 > 0 such that

C3 := sup
x∈Y

∑

h∈H,x∈dom(h)

|h′(x)|eε0ϕ◦h(x) <∞. (2.4)

2.6 Further assumption onF (relevant for the non-Markov case)

We first discuss some known properties of the transfer operator and twisted transfer operator.
Let Leb denote Lebesque measure. Define the BV-norm‖v‖BV of v : I → C, for an in-
terval I ⊂ R, as the sum of itsL1-norm (w.r.t. Leb)‖v‖1 and the total variation VarIv =

inf ṽ=v a.e.supx0<···<xN∈I

∑N
i=1 |ṽ(xi)− ṽ(xi−1)|.

Let L : L1(Y, Leb) → L1(Y, Leb) be the transfer operators associated to(Y, F ) given by
Lnv =

∑

h∈Hn
|h′|v ◦ h, n ≥ 1. Fors = σ + ib ∈ C, letLs be the twisted version ofL defined

viaLsv = L(esϕv) with iterates

Ln
s v =

∑

h∈Hn

esϕn◦h|h′|v ◦ h, n ≥ 1.

We first note that fors = σ ∈ R,

Proposition 2.1. There existε ∈ (0, 1) such that for all|σ| < ε, ‖Lσ‖BV <∞.

Proof. By RemarkA.1, there existc1, c2 > 0 andε ∈ (0, 1) such that VarY (Lσv) ≤ c1VarY v +
c2‖v‖∞, for all |σ| < ε. Note that for anyv ∈ BV(Y ), ‖v‖∞ ≤ VarY v + ‖v‖1. Hence,
VarY (Lσv) ≤ (c1 + c2)VarY v+ c2‖v‖1. Also,

∫

Y
|Lσv| dLeb≤ C2‖v‖∞ ≤ C2(VarY v+ ‖v‖1)

and the conclusion follows.

It is known thatL0 = L has a simple eigenvalueλ0 = 1 with eigenfunctionf0 ∈ BV, [13,
Lemma 4] (see also [12]), and 1

C4
≤ f0(x) ≤ C4 for all x ∈ Y , see [14, Lemma 7]. Hence,

f0 is bounded from above and below. This together with Proposition 2.1 implies that there exists
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ε ∈ (0, 1) such thatLσ has a family of simple eigenvaluesλσ for |σ| < ε with BV eigenfunctions
fσ.

We assumed above thatF has the finite image property, but not thatFn has the finite image
property uniformly overn ≥ 1. We put a condition onF as follows: the lengths of the atoms
p ∈ Pk, with k specified below, do not decrease faster thanρ−k:

min
p∈Pk

Leb(p) >
16C8

C9

sup fσ
inf fσ

ρ−k, (2.5)

whereC8 = 3C7/η0 with η0 := (
√
7 − 1)/2 andC7 ≥ 1 is as in Lemma5.1, andC9 is as in

Lemma5.2. Note thatsup fσ
inf fσ

<∞ for |σ| small (see Remark3.2).

Remark 2.2. Assumption(2.5) is trivially satisfied ifF is Markov. For many one-parameter
families of non-Markov AFU maps, one can show that(2.5) only fails at a parameter set of
Hausdorff dimension< 1. This follows from the shrinking targets results [2, Theorem 1 and
Corollary 1] and includes the family of shiftedβ-transformationsx 7→ βx+ α mod 1.

Throughout we fixk ≥ 2k1 sufficiently large to satisfy:

ρk(ρ− 1) > 12N1C8, (2.6)

(Inequality (2.6) will be used in estimates in Section5.) Furthermore, we assume that

ρ−2k(sup f0 + Varf0)
( 1

inf f0
+ Var

( 1

f0

))

< 1, (2.7)

wheref0 is the positive eigenfunction ofL0 associated to eigenvalueλ0 = 1.

2.7 UNI condition restricted to atoms of the image partitionPk

Fix k as in Subsection2.6. LetC′
2 := C2ρ0

ρ0−1 andC10 := (C1e
C1+2(1+ε0)e

ε0C
′
2C′

2+2C6)/(2η0−
4ρ−k

0 ), where it follows from (2.6) that the denominator2η0 − 4ρ−k
0 > 0. We assume that there

existD > 0 and a multiplen0 of k such that both

C10ρ
−n0
0

4π

D
≤ 1

4
(2 − 2 cos

π

12
)1/2, (2.8)

and the UNI (uniform non-integrability) condition holds:

∀ atomp ∈ Pk, ∃h1, h2 ∈ Hn0 such thatinf
x∈p

|ψ′(x)| ≥ D, (2.9)

for ψ = ϕn0 ◦ h1 − ϕn0 ◦ h2 : p→ R.

2.8 Main result

Let b ∈ R. For the class of BV functions we define

‖v‖b =
VarY v
1 + |b| + ‖v‖1. (2.10)

With the above specified, we can state our main result, a Dolgopyat type inequality.

Theorem 2.3. Suppose that all the above assumptions,(2.1) – (2.9), on the AFU mapF , onk
and on the roof functionϕ hold (in particular, we assume that UNI(2.9) hold for someD > 0).
Then there existsA ≥ n0 andε, γ < 1 such that for all|σ| < ε and |b| > max{4π/D, 2} and
for all n ≥ A log |b|,

‖Ln
s ‖b ≤ γn.

An immediate consequence of the above result (see, for instance, [4]) is
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Corollary 2.4. Suppose that all the above assumptions,(2.1) – (2.9), on the AFU mapF , onk
and on the roof functionϕ hold. For every0 < α < 1 there existsε ∈ (0, 1) andb0 > 0 such that
for all |b| ≥ b0 and for all |σ| < ε,

‖(I − Ls)
−1‖b ≤ |b|α.

Remark 2.5. A similar, but simplified, argument (obtained by takingσ = 0 throughout the
proof of Theorem2.3 in this paper) shows that without assuming condition(2.4) (that guaran-
tees exponential tail for the roof functionϕ) and with no restriction on the class of BV func-
tions, one obtains that for every0 < α < 1, there existsb0 > 0 such that for all|b| ≥ b0,
‖(I − Lib)

−1‖b ≤ |b|α. Of course, this type of inequality does not imply exponential decay of
correlation for suspension semiflows, but we believe it to beuseful when proving sharp mixing
rates for BV observables in the non exponential situation via renewal type arguments (such as
sharp bounds for polynomial decay of correlation).

2.9 Application to suspension semi-flows

Corollary2.4 can be used to obtain exponential decay of correlations in terms of BV functions
for suspension semiflows over AFU maps with aC1 roof function. LetY ϕ := {(y, u) ∈ Y ×R :
0 ≤ u ≤ R(y)}/∼, where(y, ϕ(y)) ∼ (Fy, 0), be the suspension overY . The suspension semi-
flow Ft : Y

ϕ → Y ϕ is defined byFt(y, u) = (y, u + t) computed modulo identifications. The
probability measureµϕ := (µ× Leb)/ϕ̄, whereϕ̄ :=

∫

Y ϕdµ is Ft-invariant.

Class of observables Let FBV,m(Y ϕ) be the class of observables consisting ofv(y, u) :

Y ϕ → C such thatv is BV(Y ) in y andCm in u, so‖v‖BV,m :=
∑m

j=0 ‖∂jt v‖BV <∞.
Forv ∈ L1(Y ϕ) andw ∈ L∞(Y ϕ) define the correlation function

ρt(v, w) :=

∫

Y ϕ

vw ◦ Ft dµ
ϕ −

∫

Y ϕ

v dµϕ

∫

Y ϕ

w dµϕ.

The result below gives exponential decay of correlation forv ∈ FBV,2(Y
ϕ) andw ∈ L∞(Y ϕ).

It is likely that this also follows by reinducingF to a Gibbs-Markov AFU map, to which [4, 1]
apply, together with an approximation argument of BV functions byC2 functions. However, it is
worthwhile to have the argument for the original mapF , for instance in situations where reinduc-
ing is problematic, such as for families of open AFU maps withshrinking holes.

Theorem 2.6. Suppose that all the above assumptions,(2.1) – (2.9), on the AFU mapF and the
roof functionϕ hold. Then there exist constantsa0, a1 > 0 such that

|ρt(v, w)| ≤ a0e
−a1t‖v‖BV,2‖w‖∞,

for all v ∈ FBV,2(Y
ϕ) andw ∈ L∞(Y ϕ).

The proof of Theorem2.6 is given in AppendixD. Corollary2.4 also implies exponential
decay of correlations in terms of BV functions for skew products onT2 as considered in [6, 8].
We note, however, that the strength of Corollary2.4 is not needed in the set-up of [6, 8] as, in
those works, the roof function is bounded and one can restrict the calculations to the imaginary
axis.

3 Twisted and normalized twisted transfer operators

We start with the continuty of operatorLs in BV.

Proposition 3.1. Letε0 > 0 andC3 <∞ be as in (2.4). Then there existsC > 0 andε ∈ (0, ε0)
such that for all|σ1|, |σ2| < ε and for all |b1|, |b2| ≤ 1, ‖Lσ1+ib1−Lσ2+ib2‖BV ≤ Cε−1

0 |σ1−σ2|.
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The proof of Proposition3.1is deferred to the end of AppendixA.

Remark 3.2. An immediate consequence of Proposition3.1is that for anyδ ∈ (0, 1), there exists
ε ∈ (0, 1) such that

sup
|σ|<ε

|λσ − 1| < δ, sup
|σ|<ε

‖fσ
f0

− 1‖BV < δ, sup
|σ|<ε

‖fσ
f0

− 1‖∞ < δ

for all |σ| < ε. Recall that 1
C4

≤ f0(x) ≤ C4 for all x ∈ Y . It follows that fσ(x)
fσ(y)

=
fσ(x)
f0(x)

f0(x)
f0(y)

f0(y)
fσ(y)

≤ (1 + δ)C2(1 − δ)−1 < ∞ for all x, y ∈ Y . Hence, sup fσ
inf fσ

≤ C5 for

C5 := 1+δ
1−δC

2
4 and|σ| < ε.

Sinceλ0 = 1 andf0 is strictly positive, due to the continuity ofλσ andfσ in σ, we can ensure
that forε > 0 sufficiently small

ρ−1/4 < λσ andfσ is strictly positive for all|σ| < ε. (3.1)

By assumption (2.7) and Remark3.2, we can chooseε small enough such that for all|σ| < ε,

ρ−2k(sup fσ + Varfσ)
( 1

inf fσ
+ Var

( 1

fσ

))

< 1. (3.2)

(The above formula will be used in the proof of Proposition3.5.)

Lemma 3.3. There existsε ∈ (0, 1) so small that for all|σ| < ε and for alln ≥ 1,

1

λnσ
sup
h∈Hn

sup
x∈dom(h)

|h′(x)|eσϕn◦h(x) ≤ ρ−3n. (3.3)

Remark 3.4. Without assumption(2.4) (i.e., without the exponential tail assumption), we still
have

sup
h∈Hn

sup
x∈dom(h)

|h′(x)|eσϕn◦h(x) ≤ ρ−3n

for −ε < σ ≤ 0.

Proof. We start withn = 1. By continuity ofλσ, we can takeε so small thatλ4uσ ρu−1
0 > C3 for

u = ⌊ε0/(4ε)⌋ with ε0 ∈ (0, 1) andC3 such that (2.4) hold. Forh ∈ H1 assume by contradiction
thatλ−1

σ |h′(x)|eσϕ◦h(x) > ρ−3 for somex ∈ dom(h). Since|h′| ≤ ρ−1
0 = ρ−4 we have

λ−1
σ eσϕ◦h(x) ≥ λ−1

σ ρ4|h′|eσϕ◦h(x) > ρ = ρ
1/4
0 ≥ |h′|−1/4.

Therefore,

|h′|eε0ϕ◦h > |h′|e4uεϕ◦h ≥ |h′|e4uσϕ◦h ≥ |h′|(λ−1
σ eσϕ◦h)4uλ4uσ

≥ |h′|1−uλ4uσ ≥ ρu−1
0 λ4uσ ≥ C3

contradicting (2.4). The statement forn ≥ 1 follows immediately.

Let

L̃sv =
1

λσfσ
Ls(fσv) and L̃σv =

1

λσfσ
Lσ(fσv)

be thenormalizedversions ofLs andLσ.

Proposition 3.5 (Lasota-Yorke type inequality). Choosek andε1 ∈ (0, 1) such that(3.2) and

(3.3) hold. DefineΛσ = λ
1/2
2σ /λσ. Then, there existε ≤ ε1, ρ > 1 andc > 0 such that for all

s = σ + ib with |σ| < ε andb ∈ R,

VarY (L̃nk
s v) ≤ ρ−nkVarY v + c(1 + |b|)Λnk

σ (‖v‖∞‖v‖1)1/2.

for all v ∈ BV(Y ) and alln ≥ 1.
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Proposition3.5would be meaningless ifΛσ < 1, but one can check that1 ≤ Λσ = 1+O(σ2).
The proof of Proposition3.5 is deferred to AppendixA.

In what follows we focus on the controlling the term containing(‖v‖∞‖v‖1)1/2 and proceed
as in [4]: we estimate theL2 norm ofL̃n

s for n large enough. Once we obtain a good estimate for
theL2 norm, we combine it with the estimate in Proposition3.5(following the pattern in [1, 3, 4])
to prove Theorem2.3.

4 New ingredients of the proof

The basic strategy of the proof using the cancellation lemmafollows [1, 3, 4]. For the non-Markov
AFU maps, we use the space BV, and hence observablesu, v ∈ BV can have jumps. The task is
to locate and control the sizes of these jumps. Given a discontinuity pointx for a functionv, we
define thesize of the jumpatx as

Sizev(x) = lim
δ→0

sup
ξ,ξ′∈(x−δ,x+δ)

|v(ξ) − v(ξ′)|. (4.1)

Recall that the oscillation of a functionv : I → C on a subintervalI ⊂ Y is defined as

OscIv = sup
ξ,ξ′∈I

|v(ξ)− v(ξ′)|.

It follows that
OscIv ≤ OscI◦v + Sizev(x) + Sizev(y) (4.2)

for I = [x, y] with interiorI◦. For positive functions, (4.1) reduces to

Sizeu(x) = lim sup
ξ→x

u(ξ)− lim inf
ξ→x

u(ξ) = | lim
ξ↑x

u(ξ)− lim
ξ↓x

u(ξ)|. (4.3)

We adopt the conventionu(x) = lim supξ→x u(ξ) at discontinuity points, so we always have the
trivial inequality Sizeu(x) ≤ u(x).

Definition 4.1. Letk ≥ 1 such that(2.5) holds and takeC7 as in Lemma5.1. We say that a pair
of functionsu, v ∈ BV(Y ) with |v| ≤ u andu > 0 hasexponentially decreasing jump-sizes,
if the discontinuities ofu andv belong toX∞ = ∪j≥1X

′
j and if x ∈ X ′

j for j > k is such a
discontinuity, then

Sizev(x),Sizeu(x) ≤ C7ρ
−ju(x). (4.4)

Example 4.2. For the reader’s convenience, we provide a simple example offunctions(u, v)
with exponentially decreasing jump-sizes. Assume thatY = [p, q]. Let{ai}i≥1 be a sequence in
C such that|ai| → 0 exponentially fast, and{xi}i≥1 ⊂ [p, q]. Then

v =
∑

i≥1

ai1[xi,q] u =
∑

i≥1

|ai|1[xi,q]

is a pair of functions having exponentially decreasing jump-sizes whenX ′
j = {xj}. Indeed, let

δ′ > 0 be arbitrary and letN ∈ N be such that
∑

i>N |ai| ≤ δ′. Assuming for simplicity that the
xi are distinct, we have

Sizev(xj) = lim
δ→0

sup
ξ,ξ′∈(xj−δ,xj+δ)

∣

∣

∣

∣

∣

∣

∑

i≥1

ai

(

1[xi,q](ξ) − 1[xi,q](ξ
′)
)

∣

∣

∣

∣

∣

∣

≤ lim
δ→0

sup
ξ,ξ′∈(xj−δ,xj+δ)

∣

∣

∣

∣

∣

N
∑

i=1

ai

(

1[xi,q](ξ) − 1[xi,q](ξ
′)
)

∣

∣

∣

∣

∣

+ δ′ = |aj |+ δ′.

Sinceδ′ was arbitrary, Sizev(xj) ≤ |aj |. So, Sizev(xj) is exponentially small inj. On the other
hand, ifx /∈ {xi}i∈N, thenv is continuous atx, so Sizev(x) = 0. A similar computation holds
for Sizeu(xj).
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Definition4.1states that the discontinuities of(u, v) can only appear inX∞ := ∪j≥1X
′
j , and

we will see in Proposition5.3 that this property is preserved under(u, v) 7→ (L̃n
σu, L̃n

s v). For a
givenn, we will distinguish between two types of discontinuities of L̃n

σu.
(i) Createddiscontinuities. In this casex ∈ ∂dom(h) for someh ∈ Hn andx ∈ X ′

j for some

1 ≤ j ≤ n. The discontinuity is created because the sum
∑

h∈H,ξ∈dom(h) involved in L̃n
σu runs

over a different collection of inverse branches depending on whetherξ is close to the left or close
to the right ofx: in only one of the casesh is part of this collection. It is not important whether
the functionu is continuous aty = h(x).
(ii) Propagateddiscontinuities. Here the functionu : Y → R+ has discontinuities. Hence, it is
discontinuous aty = h(x) for someh ∈ Hn. In this casey ∈ X ′

j for somej ≥ 1 and hence
x ∈ X ′

j+n.
Consequently, we define a coneCb of BV functions with discontinuities of the type prescribed

in Definition 4.1. In AppendixB, we prove that the eigenfunctionfσ and1/fσ belong toCb.
This argument is independent of Section7 where the invariance ofCb under the transformation
(u, v) 7→ (L̃n

σ(χu), L̃n
s v) is proved. This invariance depends crucially on Proposition 5.3, which

together with an inductive bound onsupu|p
inf u|p for p ∈ Pk and assumption (2.5) imply that disconti-

nuities indeed behave as outlined in this section. To deal with BV observablesv /∈ Cb, we exploit
the fact that the size of discontinuities at pointsx /∈ X∞ decrease exponentially under iteration of
L̃s. This means that̃Ln

s v converges exponentially fast toCb and this suffices to prove the results
for arbitrary BV observables.

5 Towards the cone condition: discontinuities and jump-sizes

Recall the setsX ′
j from Section2.4 and letk satisfy the conditions in Subsection2.6. To deal

with the discontinuities of(u, v), we introduce the “extra term” for intervalsI ⊂ Y :

EI(u) :=
∑

j>k

ρ−j
∑

x∈X′
j∩I◦

lim sup
ξ→x

u(ξ), (5.1)

where we recall that#X ′
j ≤ N1 for all j ≥ 1. The choice ofk in (2.6) implies thatC8EI(u) ≤

1
12 supI u for everyI contained in a single atom ofPk.

Throughout this and the next section we setn = 2k. We start with two lemmas on the proper-
ties of the eigenfunctionfσ, which will be proved in SectionB. We recall (see Remark 1.4) that
fσ is the positive eigenfunction ofLσ with eigenvalueλσ.

Lemma 5.1. There areC6, C7 ≥ 1 such that for allσ with |σ| < ε the following holds:

1. fσ has discontinuities only inX∞, and ifxj ∈ X ′
j , then Sizefσ(xj) ≤ C7ρ

−3j sup fσ.

2. For every intervalI ⊂ Y we have

OscI◦(fσ) ≤ C6Leb(I) inf
I
fσ+C7EI(fσ) and OscI◦

( 1

fσ

)

≤ C6Leb(I) inf
I

1

fσ
+C7EI

( 1

fσ

)

.

Lemma 5.2. Choosek such that(2.5) holds and setn = 2k. Then there existsε ∈ (0, 1) and
C9 ∈ (0, 1) such that

λ−n
σ inf

x∈Y

∑

h∈Hn,x∈dom(h)

range(h)⊂p

|h′(x)|eσϕn◦h(x) ≥ C9Leb(p)

for all p ∈ Pk and|σ| < ε.

The main result in this section is the following.

Proposition 5.3. Choosek such that(2.5) holds and setn = 2k. If the pair (u, v) with |v| ≤ u
has exponentially decreasing jump-sizes(4.4), then for eachx ∈ X ′

j with j > k, we have

SizeL̃n
σu(x) , SizeL̃n

s v(x) ≤
1

4
max
p∈Pk

supu|p
inf u|p

C7ρ
−jL̃n

σu(x).



The Dolgopyat inequality in BV for non-Markov maps 9

Remark 5.4. It is possible thatx belongs to differentX ′
j ’s at the same time. This means that the

discontinuity atx is propagated by different branches ofF (or x ∈ X ′
1 ∩ X ′

j for somej ≥ 2,
and the discontinuity atx is generated inP1 as well as propagated from another discontinuity
at some point inX ′

j−1). In this case, we add the jump-sizes atx but the proof remains the same,
i.e.,writing x = xj = xj′ for xj ∈ X ′

j andxj′ ∈ X ′
j′ , Sizev(x) = Sizev(xj) + Sizev(xj′ ) ≤

C7(ρ
−j + ρ−j′ )‖u‖∞.

Proof of Proposition5.3. By Lemma5.1, we know thatfσ and1/fσ have exponentially decreas-
ing jump-sizes with parametersC7 andρ3.

Let y = h̃(x) for someh̃ ∈ Hr andr > k to be determined below. Letp ∈ Pk such that
y ∈ p. Then

L̃r
σu(x) ≥ 1

λrσfσ(x)

∑

h∈Hr
range(h)⊂p

|h′|eσϕr◦h(x)(fσu) ◦ h(x)

≥ inf fσ
fσ(x)

inf u|p
supu|p

u(y)λ−r
σ

∑

h∈Hr,x∈dom(h)

range(h)⊂p

|h′(x)|eσϕr◦h(x)

≥ inf fσ
fσ(x)

inf u|p
supu|p

C9Leb(p)u(y) (5.2)

by Lemma5.2.
First takej > n andx ∈ X ′

j , sox is a discontinuity propagated from somey ∈ X ′
j−n. Let

h̃ ∈ Hn such that̃h(x) = y be the corresponding inverse branch. This is the only inverse branch
that contributes to SizẽLn

s v(x). We compute using (3.3) and Lemma5.1,

Size L̃n
s v(x) = Size

(

|h̃′|esϕn◦h̃ (fσv) ◦ h̃
λnσfσ

)

(x)

≤ 1

λnσ
|h̃′(x)|eσϕn◦h̃(x)

( |v(y)|
fσ(x)

Sizefσ(y) + fσ(y)|v(y)|Size
1

fσ
(x) +

fσ(y)

fσ(x)
Sizev(y)

)

≤ 4ρ−3n sup fσ
fσ(x)

u(y)×
{

C7ρ
−(j−n) if j − n > k,

1 if j − n ≤ k.
(5.3)

This distinction is because (4.4) only holds forj − n > k; for j − n ≤ k we only have the trivial
bound Sizev(y) ≤ u(y). The factor4 is to account for the three terms in the penultimate line
above; in particular, Sizev(y) ≤ 2u(y), so the factor4 appears despite the presence of just three
terms. Sinceρ−2n ≤ ρ−4k, we have

SizeL̃n
s v(x) ≤

4 sup fσ
ρ3kfσ(x)

C7ρ
−ju(y) (5.4)

in either case.
Combining (5.4) and (5.2) for y = h̃(x) andr = n, and using the bound on Leb(p) from

(2.5) we obtain

SizeL̃n
s v(x) ≤

4C7

C9ρ3kLeb(p)
supu|p
inf u|p

sup fσ
inf fσ

ρ−jL̃n
σu(x) ≤

1

4

supu|p
inf u|p

C7ρ
−jL̃n

σu(x).

Now takek < j ≤ n, so the discontinuity atx ∈ X ′
j is created by non-onto branches ofFn,

and there existy ∈ X ′
1 and an inverse branch̃h ∈ Hj−1 such thaty = h̃(x). Then, analogous to

(5.3),

SizeL̃n
s v(x) = Size

(

|h̃′|esϕj−1◦h̃ (fσv) ◦ h̃
λnσfσ

)

(x)

≤ 1

λnσ
|h̃′(x)|eσϕj−1◦h̃(x) 4 sup fσ

fσ(x)
u(y)

≤ ρ−3(j−1)

λn−j+1
σ

4 sup fσ
fσ(x)

u(y) ≤ 4C7 sup fσ
ρkfσ(x)

ρ−ju(y)



10 Henk Bruin and Dalia Terhesiu

becauseC7 ≥ 1, k < j ≤ n andλ−4
σ ≤ ρ by (3.1). Combining this with (5.2) to boundu(y) (but

applied tor = j) and (2.5) gives

SizeL̃n
s v(x) ≤

4C7

C9ρkLeb(p)
supu|p
inf u|p

sup fσ
inf fσ

ρ−jL̃n
σu(x) ≤

1

4

supu|p
inf u|p

C7ρ
−jL̃n

σu(x),

as before. The computations forL̃n
σu are the same.

6 Cancellation lemma

We define a cone of function pairs(u, v):

Cb =
{

(u, v) : 0 < u , 0 ≤ |v| ≤ u , (u, v) has exponentially decreasing

jump-sizes (4.4) and OscIv ≤ C10|b|Leb(I) supu|I + C8EI(u), (6.1)

for all intervalsI contained in a single atom ofPk

}

.

Recall that the choice ofk in (2.6) implies thatC8EI(u) ≤ 1
12 supI u for everyI contained in a

single atom ofPk. In Section7 we show thatCb is ’invariant’ in the sense of [4]: see Lemma7.1.
In this section we provide a cancellation lemma for pairs of functions inCb similar to the one

in [4]. The statement and proof of Lemma6.1below follows closely the pattern of the statements
and proofs of [4, Lemma 2.4] and [1, Lemma 2.9]. In this section, we abbreviate

As,h,n = esϕn◦h|h′|v ◦ h

for h ∈ Hn andϕn =
∑n−1

j=0 ϕ ◦ F j .

Lemma 6.1. Fix k such that(2.5) holds. Recall thatη0 =
√
7−1
2 ∈ (2/3, 1). Assume that the UNI

condition in Subsection2.7holds (with constantD > 0, k fixed andn0 ≥ 1).
Set∆ = 2π

D . There existsδ ∈ (0,∆) such that the following hold for all|σ| < ε, |b| > 2∆
and for all (u, v) ∈ Cb:

Let p ∈ Pk and leth1, h2 ∈ Hn0 be the branches from UNI. For everyy0 ∈ p there exists
y1 ∈ B∆/|b|(y0) such that one of the following inequalities holds onBδ/|b|(y1):

Caseh1. |As,h1,n0(fσv) +As,h2,n0(fσv)| ≤ η0Aσ,h1,n0(fσu) +Aσ,h2,n0(fσu).

Caseh2. |As,h1,n0(fσv) +As,h2,n0(fσv)| ≤ Aσ,h1,n0(fσu) + η0Aσ,h2,n0(fσu).

Proof. Chooseδ ∈ (0,∆) sufficiently small such that

δ
D

16π
<

1

12
, C0δ <

π

6
. (6.2)

Let y0 ∈ Y . Note that form = 1, 2,

sup
Bδ/|b|(y0)

|v ◦ hm| ≤ OscBδ/|b|(y0)(v ◦ hm) + inf
Bδ/|b|(y0)

|v ◦ hm|+ Sizev(Bδ/|b|(y0)).

Since(u, v) ∈ Cb,

sup
Bδ/|b|(y0)

|v ◦ hm| ≤ C10Leb(hm(Bδ/|b|(y0)))|b| sup
Bδ/|b|(y0)

(u ◦ hm) + inf
Bδ/|b|(y0)

|v ◦ hm|

+ C8EBδ/|b|(y0)(u).

But

C10Leb(hm(Bδ/|b|(y0))) ≤ C10ρ
−n0
0 Leb(Bδ/|b|(y0)) = C10ρ

−n0
0

δ

|b| ≤
D

16π

δ

|b| ,
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where in the last inequality we have used (2.8). Putting the above together with the estimate on
EI(u) below equation (5.1) and using the choice ofδ andk,

sup
Bδ/|b|(y0)

|v ◦ hm| ≤ 1

6
sup

Bδ/|b|(y0)

(u ◦ hm) + inf
Bδ/|b|(y0)

|v ◦ hm|. (6.3)

Case 1.Suppose thatinfBδ/|b|(y0) |v ◦ hm| ≤ 1
2 supBδ/|b|(y0)(u ◦ hm) for m = 1, 2. Then (6.3)

implies that

sup
Bδ/|b|(y0)

|v ◦ hm| ≤ (
1

2
+

1

6
) sup
Bδ/|b|(y0)

(u ◦ hm) =
2

3
sup

Bδ/|b|(y0)

(u ◦ hm) < η0 sup
Bδ/|b|(y0)

(u ◦ hm).

Thus, form = 1, 2, |As,hm,n0(fσv)(y)| ≤ η0Aσ,hm,n0(fσu)(y) for all y ∈ Bδ/|b|(y0). So, Case
hm holds withy1 = y0.

Case 2.Suppose the reverse; that is, suppose thatinfBδ/|b|(y0) |v ◦hm| > 1
2 supBδ/|b|(y0)(u◦hm)

for m = 1, 2.
Form = 1, 2, writeAs,hm,n0(fσv)(y) = rm(y)eiθm(y). Let θ(y) = θ1(y) − θ2(y). Choose

δ as in (6.2) and recall∆ = 2π
D . A calculation [4, Lemma 2.3] shows that ifcos θ ≤ 1/2

then r1eiθ1 + r2e
iθ2 ≤ max{η0r1 + r2, r1 + η0r2}. Thus, the conclusion follows once we

show thatcos θ(y) ≤ 1/2, or equivalently|θ(y) − π| < 2π/3, for all y ∈ Bδ/|b|(y1) for
somey1 ∈ B∆/|b|(y0). In what follows we show that| supBδ/|b|(y1) θ − π| < 2π/3, for some
y1 ∈ B∆/|b|(y0).

We start by restricting toBξ/|b|(y0), whereξ = δ + ∆. Note thatθ = V − bψ, where
ψ = ψh1,h2 is the quantity defined in UNI andV = arg(v ◦ h1)− arg(v ◦ h2). We first estimate
OscBξ/|b|(y0)V . For this purpose, we recall a basic trigonometry result (also used in in [4] and [1]):

if |z1|, |z2| ≥ c and|z1−z2| ≤ c(2−2 cosω)1/2 for c > 0 and|ω| < π then| arg(z1)−arg(z2)| ≤
ω.

Since(u, v) ∈ Cb andξ < 4π/D for m = 1, 2, we have by (2.8)

OscBξ/|b|(y0)(v ◦ hm) ≤ C10ρ
−n0

0

4π

D
sup

Bξ/|b|(y0)

(u ◦ hm)

≤ 1

4
(2− 2 cos

π

12
)1/2 sup

Bξ/|b|(y0)

(u ◦ hm). (6.4)

Recalling the assumption of Case 2,

sup
Bξ/|b|(y0)

|v ◦ hm| ≥
∣

∣

∣ sup
Bξ/|b|(y0)

|v ◦ hm| − OscBξ/|b|(y0)(v ◦ hm)
∣

∣

∣

≥ 1

2
sup

Bδ/|b|(y0)

(u ◦ hm)− 1

4
sup

Bξ/|b|(y0)

(u ◦ hm) =
1

4
sup

Bξ/|b|(y0)

(u ◦ hm). (6.5)

By equations (6.4) and (6.5),

sup
z1,z2∈Bδ/|b|(y0)

∣

∣

∣ arg(v ◦ hm(z1))− arg(v ◦ hm(z2))
∣

∣

∣ ≤ π

12
,

and thus

OscBξ/|b|(y0)V ≤ π

6
. (6.6)

Next, recall the UNI assumption in Subsection2.7. Note that for anyz ∈ B∆/|b|(y0),

|b(ψ(z)− ψ(y))| ≥ |b||z − y0| inf |ψ′| ≥ D|b||z − y0| =
2π

∆
|b||z − y0|.
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Since|b| > 2∆, the ballB∆/|b|(y0) ⊂ Y contains an interval of length at least∆/|b|. Hence, as
z varies inB∆/|b|(y0), it fills out an interval around0 of length at least2π b(ψ(z)− ψ(y)). This
means that we can choosey1 ∈ B∆/|b|(y0) such that

b(ψ(y1)− ψ(y)) = θ(y0)− π mod 2π.

Note thatθ(y0)− V (y0) + bψ(y0) = 0. Using the above displayed equation,

θ(y1)− π = V (y1)− bψ(y1)− π + θ(y0)− V (y0) + bψ(y0) = V (y1)− V (y0).

Together with (6.6), the above equation implies that|θ(y1)−π| ≤ π/6. RecallingsupY |ψ′| ≤ C0

and our choice ofδ,
∣

∣

∣ sup
Bδ/|b|(y1)

θ − π
∣

∣

∣ ≤ π

6
+ sup

Bδ/|b|(y1)

∣

∣

∣θ − θ(y1)
∣

∣

∣

≤ π

6
+ |b| sup

Bδ/|b|(y1)

∣

∣

∣ψ − ψ(y1)
∣

∣

∣+ OscBδ/|b|(y1)V + OscB∆/|b|(y0)V

≤ π

6
+ C0δ + 2OscBξ/|b|(y0)V ≤ 4π

6
=

2π

3
,

which ends the proof.

Let Ip be a closed interval contained in an atom ofPk such that if Lemma6.1 holds on
Bδ/|b|(y1), we also haveBδ/|b|(y1) ⊂ Ip. Write type(Ip) = hm if we are in casehm. Then we
can find finitely many disjoint intervalsIpj = [aj , bj+1], j = 0, . . . , N − 1 (with 0 = b0 ≤ a0 <
b1 < a1 < . . . < bN ≤ an = 1) of type(Ipj ) ∈ {h1, h2} with diam(Ipj ) ∈ [δ/|b|, 2δ/|b|] and
gapsJp

j = [bj, aj ], j = 0, . . . , N with diam(Jp
j ) ∈ (0, 2∆/|b|].

Letχ : Y → [η, 1], with η ∈ [η0, 1) be aC1 function as constructed below (as in [1, 4]):

• Letp ∈ Pk, h ∈ Hn for n ∈ N and writeh|p : p→ h(p). Setχ ≡ 1 onY \(h1(p)∪h2(p)).
• Onh1(p) we require thatχ(h1(y)) = η for all y lying in the middle third of an interval of

typeh1 and thatχ(h1(y)) = 1 for all y not lying in an interval of typeh1.

• Onh2(p) we require thatχ(h2(y)) = η for all y lying in the middle third of an interval of
typeh2 and thatχ(h2(y)) = 1 for all y not lying in an interval of typeh2.

Since diam(Ipj ) ≥ δ/|b|, we can chooseχ to beC1 with |χ′| ≤ 3(1−η)|b|
δP whereP =

minm=1,2{inf |h′m|}. From here on we chooseη ∈ [η0, 1) sufficiently close to1 so that|χ′| ≤ |b|.
Sincep ∈ Pk is arbitrary in the statement of Lemma6.1and the construction ofχ above, we

obtain

Corollary 6.2. Letδ,∆ be as in Lemma6.1. Let |b| ≥ 4π/D and(u, v) ∈ Cb. Letχ = χ(b, u, v)
be theC1 function described above. Then|L̃n0

s v(y)| ≤ L̃n0
σ (χu)(y), for all s = σ + ib, |σ| < ε

and ally ∈ Y .

The following intervalsÎp andĴp are constructed as in [1, 4]. Let Îp = ∪N−1
j=0 Î

p
j , whereÎpj

denotes the middle third ofIpj . Let Ĵj be the interval consisting ofJj together with the rightmost

third of Ipj−1 and the leftmost third ofIpj . Define Ĵp
0 and ĴN

p with the obvious modifications.

By construction, diam(Îpj ) ≥ 1
3

δ
|b| and diam(Ĵp

j ) ≥ (43 + 2∆) δ
|b| . Hence, there is a constant

δ′ = δ/(4δ+6∆) > 0 (independent ofb) such that diam(Îpj ) ≥ δ′diam(Ĵp
j ) for j = 0, . . . , N−1.

Proposition 6.3. Suppose thatw is a positive function with
supp w

infp w ≤ M for someM > 0. Then
∫

Îp w dLeb≥ δ′′
∫

Ĵp w dLeb, whereδ′′ = (2M)−1δ′.

Proof. Compute that
∫

Îp

w dLeb ≥ Leb(Îpj ) infp
w ≥M−1δ′Leb(Ĵp

j ) sup
p
w

= 2δ′′Leb(Ĵp
j ) infp

w ≥ 2δ′′
∫

Ĵp
j

w dLeb.
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Here the factor2 takes care of the intervalŝJp
0 andĴN

p .

7 Invariance of the cone

Recall that the coneCb was defined in (6.1). The main result of this section is:

Lemma 7.1. Assume|b| ≥ 2. ThenCb is invariant under(u, v) 7→ (L̃n0
σ (χu), L̃n0

s v), where
χ = χ(b, u, v) ∈ C1(Y ) comes from Corollary6.2.

Proof. Sinceχu ≥ ηu > 0 and L̃σ is a positive operator we havẽLn0
σ (χu) > 0. The condi-

tion |L̃n0
s v| ≤ L̃n0

σ (χu) follows from Corollary6.2. In what follows we check the other cone
conditions for the pair(L̃n0

σ (χu), L̃n0
s v).

For simplicity of exposition, we assume thatn0 = 2qk for someq ≥ 1. We will start with
invariance of the exponential jump-size and oscillation conditions under(u, v) 7→ (L̃n

σu, L̃n
s v)

for a smaller exponentn = 2k. Iterating this, we get to the required exponentn0. Hence define

(u1, v1) = (L̃n
σu, L̃n

s v)

(u2, v2) = (L̃n
σu1, L̃n

s v1)

...
...

...

(uq−1, vq−1) = (L̃n
σuq−2, L̃n

s vq−2)

(uq, vq) = (L̃n
σuq−1, L̃n

s vq−1) = (L̃n0
σ u, L̃n0

s v).

Since |v| ≤ u, this construction shows that|v| ≤ u for all 1 ≤ i ≤ q. We will now show
by induction that(ui, vi) satisfies (4.4) and OscIvi ≤ C10|b|Leb(I) supI ui + C8EI(ui) for all
1 ≤ i ≤ q.

The ‘exponential decrease of jump-sizes’ condition inCb. Without loss of generality we
can refine (if needed) the partitionPk such that

C10|b|Leb([ξi−1, ξi]) ≤ 2
3 , (7.1)

for all i. Then the oscillation condition applied to(u, v = u) combined with (7.1) and the fact that
EI(u) ≤ 1

12 supp u givesupp u− infp u = Oscpu ≤ (23 +
1
12 ) supp u. Thereforesupu|p

inf u|p ≤ 4 for
eachp ∈ Pk. The invariance of the exponential jump-size condition follows by Proposition5.3,
that is: the pair(L̃n

σu, L̃n
s v) satisfies (4.4) as well.

The ‘oscillation’ condition in Cb. For the invariance of the oscillation condition, we need to
verify

OscI(L̃n
s v) ≤ C10|b|Leb(I) sup

x∈I
(L̃n

σu)(x) + C8EI(L̃n
σu).

For this purpose, we split OscI(L̃n
s v) into a sum of jump-sizes at non-onto branches (i.e.,∂dom(h)∩

I◦ 6= ∅, corresponding to the “created” discontinuities), and a sum of onto branches (which in-
cludes “propagated” discontinuities). Because of (4.2), this gives the following:

OscI(L̃n
s v) ≤

∑

h∈Hn,∂dom(h)∩I◦ 6=∅
Size

(

|h′|esϕn◦h(x) (fσv) ◦ h
λnσfσ

)

(∂dom(h) ∩ I◦)

+
∑

h∈Hn,dom(h)∩I◦ 6=∅
OscI

(

|h′|esϕn◦h (fσv) ◦ h
λnσfσ

)

= O1 +O2.

For the termO1 we use Proposition5.3, and recall thatI ⊂ p, so each created discontinuityx in
this sum belong toX ′

j for somek < j ≤ n. We obtain

O1 ≤ C7

n
∑

j=k+1

ρ−j
∑

x∈X′
j∩I◦

L̃n
σu(x), (7.2)
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which contributes toEI(L̃n
σ(χu)).

Now for the sumO2 (concerning the interiors of dom(h), h ∈ Hn), we decompose the
summands into five parts, according to the five factors|h′|, esϕn◦h, fσ ◦ h, 1/fσ andv ◦ h of
which the oscillations have to be estimated. The estimates for this five parts are as follows.
The term with |h′|. For eachh ∈ Hn we have1 = h′ ◦Fn · (Fn)′ and0 = h′′ ◦Fn · ((Fn)′)2+
h′ ◦ Fn · (Fn)′′. Using Adler’s condition (2.2) for the branches ofFn,

|h′′(ξ)| = |(Fn)′′ ◦ h(ξ)|
|(Fn)′ ◦ h(ξ)|2 · |h′(ξ)| ≤ C1|h′(ξ)| (7.3)

for eachn ≥ 1 andξ ∈ a ∈ αn. Hence by the Mean Value Theorem,

OscI◦(|h′|) ≤ Leb(I)|h′′(ξ)| ≤ C1Leb(I)|h′(ξ)| ≤ C1e
C1Leb(I) inf

x∈dom(h)∩I
|h′(x)|.

Summing over allh ∈ Hn with dom(h) ∩ I◦ 6= ∅, we get

∑

h∈Hn
dom(h)∩I◦ 6=∅

OscI◦(|h′|) sup
x∈dom(h)∩I◦

eσϕn◦h(x) (fσ|v|) ◦ h(x)
λnσfσ(x)

≤ C1e
C1Leb(I) sup

x∈I
(L̃n

σu)(x).

(7.4)
The term with esϕn◦h. Write ϕn(x) =

∑m−1
i=0 ϕ ◦ F i(x) andh = hn ◦ hn−1 ◦ · · · ◦ h1 ∈ Hn

wherehj ∈ H1 for 1 ≤ j ≤ n. Then by (2.3)

|(ϕn ◦ h)′| ≤
n−1
∑

j=0

|(ϕ ◦ hn−j ◦ F j+1 ◦ h)′| =
n−1
∑

j=0

|(ϕ ◦ hn−j)
′| · |(F j+1 ◦ h)′|

≤ C2

n−1
∑

j=0

ρ
−(n−(j+1))
0 ≤ C2ρ0

ρ0 − 1
=: C′

2. (7.5)

By the Mean Value Theoremsupx∈I eσϕn◦h(x)

infx∈I eσϕn◦h(x) ≤ eσ(ϕn◦h)′(ξ)Leb(I) ≤ eεC
′
2 . Therefore

OscI◦(esϕn◦h) = |s|eσϕn◦h(ξ)|(ϕn ◦ h)′(ξ)|Leb(I)

≤ (1 + ε)|b| supx∈I e
σϕn◦h(x)

infx∈I eσϕn◦h(x) inf
x∈I

eσϕn◦h(x) sup
x∈I

(ϕn ◦ h)′(x)

≤ (1 + ε)eεC
′
2C′

2|b|Leb(I) inf
x∈I

eσϕn◦h(x).

Summing over allh ∈ Hn with dom(h) ∩ I◦ 6= ∅, this gives

∑

h∈Hn
dom(h)∩I◦ 6=∅

OscI◦(esϕn◦h) sup
x∈dom(h)∩I◦

|h′(x)| (fσ |v|) ◦ h(x)
λnσfσ(x)

≤ (1 + ε)eεC
′
2C′

2|b|Leb(I) sup
x∈I

(L̃n
σu)(x). (7.6)

The term with fσ ◦ h. Applying Lemma5.1, part 2 tofσ ◦ h we find

OscI◦(fσ ◦ h) ≤ C6Leb(h(I)) inf
x∈h(I)

fσ(x) + C7Eh(I)(fσ). (7.7)

For an arbitraryh ∈ Hn, the first term in (7.7), multiplied bysupx∈dom(h)∩I◦ |h′(x)| |esϕn◦h(x)| |v|◦h(x)
λn
σfσ(x)

is bounded by

C6Leb(h(I)) sup
x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

.
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Summing over allh ∈ Hn with dom(h) ∩ I◦ 6= ∅ gives

∑

h∈Hn
dom(h)∩I◦ 6=∅

C6Leb(h(I)) sup
x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

≤ C6ρ
−n
0 Leb(I) sup

x∈I
(L̃n

σu)(x).

(7.8)
The second term in (7.7) is a sum over propagated discontinuitiesx ∈ I◦, and for eachx we let
h̃ ∈ Hn be the inverse branch such thatfσ has a discontinuity aty = h̃(x), andj > k is such
thatx ∈ X ′

j . By Lemma5.1the term inEh(I)(fσ) related toy is bounded byC7ρ
−3(j−n)fσ(y).

Multiplied by |h̃′(x)| |esϕn◦h̃(x)| |v|◦h̃(x)
λn
σfσ(x)

, and using (5.2) to obtain an upper bound foru◦h̃(x) =
u(y), this gives

C7

ρ3(j−n)
fσ(y)|h̃′(x)| eσϕn◦h̃(x) |v| ◦ h̃(x)

λnσfσ(x)
≤ C7

ρ3(j−n)
ρ−3n (fσu) ◦ h̃(x)

λnσfσ(x)

≤ C7ρ
−j sup fσ

inf fσ

supu|p
inf u|p

1

ρkC9Leb(p)
L̃n
σu(x).

Since supu|p
inf u|p ≤ 4, the bound on Leb(p) in (2.5) gives sup fσ

inf fσ

supu|p
inf u|p

1
ρkC9Leb(p) ≤ 1. Hence,

summing over all propagated discontinuitiesx ∈ I◦ and corresponding branches, we get

C7

∑

j>n

∑

x∈X′
j∩I◦

ρ−3(j−n)fσ(y)|h′(x)| eσϕn◦h(x) |v| ◦ h(x)
λnσfσ(x)

≤ C7

∑

j>n

ρ−j
∑

x∈X′
j∩I◦

L̃n
σu(x).

(7.9)
which contributes toEI(L̃n

σu).
The term with 1/fσ. Applying Lemma5.1, part 2. tofσ ◦ h we find

OscI◦(1/fσ) ≤ C6Leb(I) inf
x∈h(I)

1/fσ(x) + C7EI(1/fσ). (7.10)

Forh ∈ Hn, the first term of (7.10), multiplied bysupx∈dom(h)∩I◦ |h′(x)| |esϕn◦h(x)| (fσ |v|)◦h(x)
λn
σ

is bounded by

C6Leb(I) sup
x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

.

Summing over allh ∈ Hn with dom(h) ∩ I◦ 6= ∅ gives

∑

h∈Hn
dom(h)∩I◦ 6=∅

C6Leb(I) sup
x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

≤ C6Leb(I) sup
x∈I

(L̃n
σu)(x).

(7.11)
The second term of (7.10) is a sum over propagated discontinuitiesx ∈ I◦. Takej > k such
thatx ∈ X ′

j . Lemma5.1 gives that the term inEI related tox is bounded byC7ρ
−3j/fσ(x).

Multiplying with |h′(x)| |eσϕn◦h(x)| (fσu)◦h(x)
λn
σ

and then summing over allx ∈ ∪j>kX
′
j ∩I◦ and

h ∈ Hn with x ∈ dom(h) gives

C7

∑

j>k

ρ−3j
∑

x∈X′
j∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

≤ C7

∑

j>k

ρ−j
∑

x∈X′
j∩I◦

(L̃n
σu)(x), (7.12)

which contributes toEI(L̃n
σu).

The term with v. Using the cone condition forv, we obtain

OscI◦(v ◦ h) ≤ C10Leb(h(I))|b| sup
x∈h(I)

u(x) + C8Eh(I)(u)

≤ ρ−n
0

supu|h(I)
inf u|h(I)

C10Leb(I) |b| inf
x∈h(I)

u(x) + C8Eh(I)(u). (7.13)
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Forh ∈ Hn, the first term of (7.13), multiplied bysupx∈dom(h)∩I◦ |h′(x)| |esϕn◦h(x)| fσ◦h(x)
λn
σfσ(x)

, is
bounded by

4ρ−n
0 C10|b|Leb(I) sup

x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

.

Summing over allh ∈ Hn with dom(h) ∩ I◦ 6= ∅ gives

∑

h∈Hn
dom(h)∩I◦ 6=∅

4C10

ρn0
|b|Leb(I) sup

x∈dom(h)∩I◦

|h′(x)|eσϕn◦h(x) (fσu) ◦ h(x)
λnσfσ(x)

≤ 4C10

ρn0
|b|Leb(I) sup

x∈I
(L̃n

σu)(x).

(7.14)
The second term of (7.13) is a sum over propagated discontinuitiesx ∈ I◦. For each suchx we
let h̃ ∈ Hn be the inverse branch such thatv has a discontinuity aty = h̃(x), andj is such that
x ∈ X ′

j .
Case a:Assume thatj−n > k. Sinceu has exponentially decreasing jump-sizes, we get that the

term inEh(I) related toy is bounded byC7ρ
−(j−n)u(y). After multiplying by|h̃′(x)| |esϕn◦h̃(x)| fσ◦h̃(x)

λn
σfσ(x)

,

and using (5.2) for an upper bound ofu ◦ h̃(x) = u(y), we have

C7ρ
−(j−n)u(y)|h′(x)| eσϕn◦h(x) fσ ◦ h(x)

λnσfσ(x)
≤ C7ρ

−(j−n)ρ−3n (fσu) ◦ h̃(x)
fσ(x)

≤ C7ρ
−j sup fσ

inf fσ

supu|p
inf u|p

1

ρkC9Leb(p)
L̃n
σu(x)

≤ C7

C8
ρ−jL̃n

σu(x),

becausesupu|p
inf u|p ≤ 4, and using the bound on Leb(p) from (2.5).

Case b:Assume thatj − n ≤ k. Then (4.1) doesn’t apply to the term inEh(I) related toy, so

it can only be bounded byu(y). Multiplied by |h̃′(x)| |esϕn◦h̃(x)| fσ◦h̃(x)
λn
σfσ(x)

, and using (5.2) for

obtaining an upper bound ofu ◦ h̃(x) = u(y), we have

u(y)|h′(x)| eσϕn◦h(x) fσ ◦ h(x)
λnσfσ(x)

≤ ρ−3n (fσu) ◦ h̃(x)
fσ(x)

≤ ρ−2(n−k) sup fσ
inf fσ

supu|p
inf u|p

1

ρkC9Leb(p)
ρ−jL̃n

σu(x)

≤ 1

C8
ρ−jL̃n

σu(x),

becausesupu|p
inf u|p ≤ 4, and using the bound on Leb(p) from (2.5). Hence, summing over all propa-

gated discontinuitiesx ∈ I◦ and corresponding branches, we get

C7

∑

j>n

∑

x∈X′
j∩I◦

ρ−(j−n)fσ(y)|h′(x)| eσϕn◦h(x) |v| ◦ h(x)
λnσfσ(x)

≤ C7

C8

∑

j>n

ρ−j
∑

x∈X′
j∩I◦

L̃n
σu(x),

(7.15)
which contributes toEI(L̃n

σu). This completes the treatment of the five terms.
Combining terms (7.4), (7.6), (7.8), (7.11) and (7.14), the oscillation part is bounded by

(

C1e
C1 + (1 + ε)|b|eεC′

2C′
2 + (1 + ρ−n

0 )C6 + 4C10ρ
−n
0

)

Leb(I) sup
I
(L̃n

σu)

and by the choice ofC10 in Subsection2.7, this is less thanC10|b|Leb(I)η0 supI(Ln
σu) whenever

|b| ≥ 2.
RecallC8 = 3C7/η0. Combining (7.2), (7.9), (7.12) and (7.15), the jump part is bounded by

3C7EI(L̃nu) ≤ C8η0EI(L̃nu).
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This concludes the induction step, proving that

OscI◦(L̃n0
s v) ≤ C10η0|b|Leb(I) sup

I
(L̃n0

σ u) + C8η0EI(L̃n0
σ u)

≤ C10|b|Leb(I) sup
I
(L̃n0

σ (χu)) + C8EI(L̃n0
σ (χu))

as required.

8 Proof of Theorem2.3

Given Lemma6.1and Lemma7.1, the proof of theL2 contraction for functions inCb goes almost
word by word as the proof of [1, Theorem 2.16] with some obvious modifications. We sketch the
argument in Subsection8.1. In Subsection8.2 we deal with arbitrary BV observables satisfying
a mild condition via the‖ ‖b norm. In Subsection8.3, we complete the argument required for the
proof of Theorem2.3.

8.1 L
2 contraction for functions in Cb

Lemma 8.1. There existε ∈ (0, 1) andβ ∈ (0, 1) such that for allm ≥ 1, s = σ + ib, |σ| < ε,
|b| ≥ max{4π/D, 2},

∫

|L̃mn0
s v|2 dLeb≤ βm‖v‖2∞,

for all v ∈ BV such that(u, v) for u = cst satisfy condition(4.4) in Definition4.1.

Proof. Setu0 ≡ ‖v‖∞, v0 = v and form ≥ 0, define

um+1 = L̃n0
σ (χmum), vm+1 = L̃s(vm),

whereχm is a function depending onb, um, vm. Since by definition(u0, v0) ∈ Cb, it follows
from Lemma7.1 that (um, vm) ∈ Cb, for all m. Thus, we can constructχm := χ(b, um, vm)
inductively as in Corollary6.2.

As in [1, 4], it is enough to show that there existsβ ∈ (0, 1) such that
∫

u2m+1 dLeb ≤
β
∫

u2m dLeb for allm ≥ 0. Then|L̃mn0
s v| = |L̃mn0

s v0| = |vm| ≤ um and thus,
∫

|L̃mn0
s v|2 dLeb≤

∫

u2mdLeb≤ βm

∫

u20 dLeb= βm‖v‖2∞,

as required.
Let Îp, Ĵp be as constructed before the statement of Proposition6.3 and note thatY =

(∪pÎ
p) ∪ (∪pĴ

p). Proceeding as in the proof of [1, Lemma 2.13] (which relies on the use of
the Cauchy-Schwartz inequality), we obtain that there existsη1 < 1 such that for anyp ∈ Pk,

u2m+1(y) ≤
{

ξ(σ)η1(L̃n0
0 u2m)(y) if y ∈ Îp,

ξ(σ)(L̃n0
0 u2m)(y) if y ∈ Ĵp,

whereξ(σ) = λ−2n0
σ supp(f0/fσ) supp(f2σ/fσ) supp(fσ/f0) supp(fσ/f2σ).

Since(um, vm) ∈ Cb, we have, in particular, that for anyp ∈ Pk, supp um − infp um ≤
Oscpu ≤ (23 + 1

12 ) supp um and thus,
supp um

infp um
≤ 4. Similarly,

supp u2
m

infp u2
m

≤ 16. Hence,

supp L̃n0
0 (u2m)

infp L̃n0
0 (u2m)

=
supp

∑

h∈Hn0
|h′|(f0 ◦ h)(u2m ◦ h)/f0

infp
∑

h∈Hn0
|h′|(f0 ◦ h)(u2m ◦ h)/f0

≤ 16
(supp f0

infp f0

)2 supp
∑

h∈Hn0
|h′|

infp
∑

h∈Hn0
|h′| <∞.
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Letw := L̃(u2m), setM := 16
(

supp f0
infp f0

)2 supp

∑
h∈Hn0

|h′|
infp

∑
h∈Hn0

|h′| and note thatw satisfies the conditions

of Proposition6.3 for suchM . For anyp ∈ Pk, it follows that
∫

Îp w dLeb≥ δ′′
∫

Ĵp w dLeb and
thus,

∫

∪pÎp

w dLeb≥ δ′′
∫

∪pĴp

w dLeb.

From here on the argument goes word by word as the argument used at the end of the proof of [1,
Theorem 2.16]. We provide it here for completeness. Letβ′ = 1+η1δ

′′

1+δ′′ < 1. Thenδ′′ = 1−β′

β′−η1

and thus,(β′ − η1)
∫

∪pÎp w dLeb ≥ (1 − β′)
∫

∪pĴp w dLeb. Since alsoY = (∪pÎ
p) ∪ (∪pĴ

p),

we obtainη1
∫

∪pÎp w dLeb+
∫

∪pĴp w dLeb≤ β′ ∫
Y
w dLeb. Putting the above together,

∫

Y

u2m+1 dLeb≤ ξ(σ)
(

η1

∫

∪pÎp

w dLeb+
∫

∪pĴp

w dLeb
)

≤ ξ(σ)β′
∫

Y

L̃n0
0 (u2m+1) dLeb= ξ(σ)β′

∫

Y

u2m dLeb.

To conclude, recall that by Remark3.2, if necessary, we can shrinkε such thatβ := ξ(σ)β′ < 1
for all |σ| < ε.

8.2 Dealing with arbitrary BV observables via the‖ ‖b norm

The coneCb represents only a specific class of BV observables, namely with discontinuities
of prescribed size and location. It is, in fact, the smallestBanach space that is invariant under
(u, v) 7→ (L̃σu, L̃sv) and contains all continuous BV functions.

In this section we are concerned with the behaviour ofL̃r
s acting on BV functions satisfying

a certain mild condition (less restrictive than belonging to Cb). To phrase such a condition we let
C11 be a positive constant such that

C11 = 64(1 + c)2
( sup fσ
inf fσ

)2 sup f2σ
inf f2σ

(

sup fσ
inf fσ

sup f0
inf f0

)2

, (8.1)

wherec is the constant in the statement of Proposition3.5. We use the following hypothesis:

{

VarY v ≤ C11|b|2ρmn0‖v‖1 if σ ≥ 0,

VarY (eσϕmn0v) ≤ C11|b|2ρmn0‖eσϕmn0v‖1 if σ < 0.
(Hσ,m)

The next result, Proposition8.2, says that forv ∈ BV(Y ) such that if (Hσ,m), then L̃r
sv is

exponentially close to the coneCb in ‖ ‖∞, because jumps-sizes of discontinuities ofv outside
X∞ die out at an exponential rate and are not newly created by thedynamics ofF .

Proposition 8.2. There existsε ∈ (0, 1) such that for alls = σ+ib, |σ| < ε, |b| ≥ max{4π/D, 2},
and allv ∈ BV(Y ) such that(Hσ,m) holds for somem ≥ 1, there exists a pair(umn0 , wmn0) ∈
Cb such that

‖L̃mn0
s v − wmn0‖∞ ≤ 2C10 ρ

−mn0 |b|‖v‖∞ and ‖wmn0‖∞ ≤ ‖v‖∞.

The above result will allow us to prove

Lemma 8.3. There existε ∈ (0, 1) and β ∈ (0, 1) such that for alls = σ + ib, |σ| < ε,
|b| ≥ max{4π/D, 1} and for allm ≥ 1,

‖L̃3mn0
s v‖b ≤ (1 + |b|)−1VarY (L̃3mn0

s v) + (2C10ρ
−mn0 |b|+ βm)‖v‖∞.

for all v ∈ BV(Y ) satisfying(Hσ,m).



The Dolgopyat inequality in BV for non-Markov maps 19

Proof of Proposition8.2. Let v ∈ BV(Y ) be arbitrary and taker = mn0 (this is a multiple ofk
becausen0 is). Writegr = L̃r

sv andḡr = L̃r
σ|v|; for every fixedb ∈ R, they belong to BV(Y ) as

well by Proposition3.5. Thereforegr has at most countably many discontinuity points, which we
denote by{xi}i∈N. Assume throughout this proof thatgr is continuous from the right; this can
be achieved by adjustinggr at{xi}i∈N, so it has no effect on theLp-norm for anyp ∈ [1,∞].

To estimate the jump-size|ai| of gr atxi ∈ X ′
j for somej ≤ r, we note that this discontinuity

is created by non-onto branches ofF r, and there existy ∈ X ′
1 and an inverse branch̃h ∈ Hj−1

such thatyi = h̃(xi). The jump-size ofL̃r
sv at xi can be expressed as a sum ofh ∈ Hr−(j−1)

which in the summand is composed withh̃. Then

SizeL̃r
sv(xi) ≤

∑

h∈Hr−(j−1)

|(h ◦ h̃)′(xi)| |esϕr−(j−1)◦h◦h̃(xi)+sϕj−1◦h̃(xi)| (fσv) ◦ h ◦ h̃(xi)
λrσfσ(xi)

=
∑

h∈Hr−(j−1)

|h′(yi)| eσϕr−(j−1)◦h(yi)
(fσv) ◦ h(yi)
λ
r−(j−1)
σ fσ(yi)

|h̃′(xi)| eσϕj−1◦h̃(xi)
fσ(yi)

λj−1
σ fσ(xi)

≤
(

∑

h∈Hn−(j−1)

|h′(yi)| eσϕr−(j−1)◦h(yi) fσ ◦ h(yi)
λ
r−(j−1)
σ fσ(yi)

)

‖v‖∞ ρ−3(j−1) sup fσ
inf fσ

≤ ‖v‖∞ ρ3
sup fσ
inf fσ

ρ−3j . (8.2)

where the sum in brackets in the penultimate line is1 becausefσ is an eigenfunction ofLσ.
Forr > k, letQr be an interval partition ofY refiningPr such that12ρ

−r < Leb(Ir) < 2ρ−r

for everyIr ∈ Qr. In fact, by adjustingQr by an arbitrary small amount if necessary, we can
assume thatgr andḡr are continuous at every point in∂Ir \Xr, Ir ∈ Qr. Constructwr andur
to be affine on each(p, q) = Ir ∈ Qr such that

lim
x↓p

wr(x) = lim
x↓p

gr(x) and lim
x↑q

wr(x) = lim
x↑q

gr(x)

and similarly
lim
x↓p

ur(x) = lim
x↓p

ḡr(x) and lim
x↑q

ur(x) = lim
x↑q

ḡr(x).

Thenwr andur are continuous onY \Xr and as̄gr ≥ |gr|, it is immediate thatur ≥ |wr | onY .
The main estimate now concerns the oscillation

OscIrgr = OscIr





∑

h∈Hr,Ir⊂dom(h)

esϕr◦h|h′|
λrσfσ

(fσv) ◦ h



 for Ir ∈ Qr,

which we will split into five terms similar to the proof of the invariance of the cone.

The term with |h′| is bounded above byC1e
C1Leb(Ir) supx∈Ir L̃r

σ|v| as in (7.4).

The term with esϕn◦h is bounded above by(1+ |σ|)eσC′
2C′

2|b|Leb(Ir) supx∈Ir L̃r
σ|v| as in (7.6).

The term with 1/fσ is bounded above, by combining (7.11) and (7.12), by

C6Leb(Ir) sup
x∈Ir

L̃r
σ|v|+ C7Leb(Ir)

∑

j>r

ρ−j
∑

x∈X′
j∩Ir

L̃r
σ|v|(x).

Here the second term is bounded byC7N1
ρ−r

ρ−1 supx∈Ir L̃r
σ|v| ≤ 2C7

N1

ρ−1Leb(Ir) supx∈Ir L̃r
σ|v|,

where we recall that#X ′
j ≤ N1 for all j ≥ 1.

The term with fσ ◦ h is bounded above, by combining (7.8) and (7.9) and arguing as in the
previous case, by

C6ρ
−r
0 Leb(Ir) sup

x∈Ir

L̃r
σ|v|+C7

∑

j>r

ρ−j
∑

x∈X′
j∩Ir

L̃r
σ|v|(x) ≤ (C6ρ

−r
0 +2C7

N

ρ− 1
)Leb(Ir) sup

x∈Ir

L̃r
σ|v|.
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The term with v ◦ h: First we treat the caseσ ≥ 0. By LemmaC.2 (which also gives a lower
boundr0 for r)

‖v‖1 ≤
K1

Leb(Ir)

∫

F−r(Ir)

|v| dLeb for all Ir ∈ Qr,

whereK1 = 6eC1/η. Recall that (Hσ,m) holds withC11 > 1 as defined in (8.1). Compute that

∑

h∈Hr
Ir⊂dom(h)

(

sup
x∈Ir

|esϕr◦h| |h′|
λrσfσ

fσ ◦ h
)

OscIr (v ◦ h) ≤ ρ−3r sup fσ
inf fσ

∑

h∈Hr
Ir⊂dom(h)

Osch(Ir)v

≤ ρ−3r sup fσ
inf fσ

VarF−r(Ir)v ≤ 2ρ−2rLeb(Ir)
sup fσ
inf fσ

VarY v

≤ 2ρ−2rLeb(Ir)
sup fσ
inf fσ

C11|b|2ρr
∫

Y

|v| dLeb

≤ 2C11|b|2K1ρ
−r sup fσ

inf fσ

∫

F−r(Ir)

|v| dLeb

≤ 2C11|b|2K1ρ
−r

(

sup fσ
inf fσ

)2
∑

h∈Hr
Ir⊂dom(h)

∫

Ir

|h′|
fσ

(fσ|v|) ◦ h dLeb.

Becauseσ ≥ 0, we can continue as

∑

h∈Hr
Ir⊂dom(h)

(

sup
x∈Ir

|esϕr◦h| |h′|
λrσfσ

fσ ◦ h
)

OscIr (v ◦ h)

≤ 2C11|b|2K1ρ
−rλrσ

(

sup fσ
inf fσ

)2
∑

h∈Hr
Ir⊂dom(h)

∫

Ir

eσϕr◦h|h′|
λrσfσ

(fσ|v|) ◦ h dLeb

≤ 2C11|b|2K1ρ
−rλrσ

(

sup fσ
inf fσ

)2

Leb(Ir) sup
x∈Ir

L̃r
σ|v|.

Sinceρ > λσ, we obtain the upper bound Leb(Ir) supx∈Ir L̃r
σ|v| by takingr sufficiently large.

Now we treat the caseσ < 0. By LemmaC.2 applied toeσϕrv (and with the same lower
boundr0 for r as before)

‖eσϕrv‖1 ≤ K1

Leb(Ir)

∫

F−r(Ir)

|eσϕrv| dLeb for all Ir ∈ Qr.

Note that

∑

h∈Hr
Ir⊂dom(h)

(

sup
x∈Ir

|esϕr◦h| |h′|
λrσfσ

fσ ◦ h
)

OscIr (v ◦ h)

≤ eεC
′
2

∑

h∈Hr
Ir⊂dom(h)

(

sup
x∈Ir

|h′|
λrσfσ

fσ ◦ h
)

OscIr ((e
σϕrv) ◦ h)

≤ eεC
′
2λ−r

σ

sup fσ
inf fσ

ρ−r
0 OscIr ((e

σϕrv) ◦ h).
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Estimating the oscillation as in the caseσ ≥ 0, and using (Hσ,m), we find the upper bound

∑

h∈Hr
Ir⊂dom(h)

(

sup
x∈Ir

|esϕr◦h| |h′|
λrσfσ

fσ ◦ h
)

OscIr (v ◦ h)

≤ 2eεC
′
2C11|b|2K1ρ

−3r

(

sup fσ
inf fσ

)2
∑

h∈Hr
Ir⊂dom(h)

∫

Ir

eσϕr◦h|h′|
λrσfσ

(fσ|v|) ◦ h dLeb

≤ 2eεC
′
2C11|b|2K1ρ

−3r

(

sup fσ
inf fσ

)2

Leb(Ir) sup
x∈Ir

L̃r
σ|v|.

By takingr sufficiently large, we obtain again the upper bound Leb(Ir) supx∈Ir L̃r
σ|v|, and this

finishes the caseσ < 0.
Putting all terms together,

OscIrgr ≤ C10|b| Leb(Ir) sup
Ir

L̃r
σ|v|, (8.3)

and sincewr is an affine interpolation ofgr, with the same limit values at all pointsxi ∈ Xr,

‖gr − wr‖∞ ≤ C10|b| Leb(Ir) sup
Ir

L̃r
σ|v| ≤ 2C10|b|ρ−r‖v‖∞.

Also, sincewr is an affine interpolation ofgr, we have‖wr‖ ≤ ‖gr‖∞ ≤ ‖v‖∞.
We still need to complete the argument why(ur, wr) ∈ Cb. By (8.3), the affine functionwr|Ir

has slopeC10|b| supIr L̃r
σ|v| = C10|b| supIr |ur|. This means that for every subintervalI ⊂ Ir,

we also have
OscIwr ≤ C10|b|Leb(I) sup

I
ur.

If on the other hand,I intersects several contiguousIr ∈ Qr (but is contained in an atom ofPk),
then we have to include the jump-sizes of discontinuity points at∂Ir as well. But sinceQr refines
Pr andgq is continuous at all boundary pointsq ∈ ∂Ir \ Xr, and the jump-sizes ofgr andwr

coincide at everyxi ∈ X ′
j (and decrease exponentially inj by (8.2)) we conclude that

OscIwr ≤ C10|b|Leb(I) sup
I
ur + C8EI(ur).

This shows that(ur, wr) ∈ Cb, as required.

Proof of Lemma8.3. Form ≥ 1 let (wmn0 , umn0) ∈ Cb be as in the statement of Proposition8.2.
Let v ∈ BV. Using the definition of‖ ‖b norm,

‖L̃3mn0
s v‖b = (1 + |b|)−1VarY (L̃3mn0

s v) + ‖L̃3mn0
s v‖1

≤ (1 + |b|)−1VarY (L̃3mn0
s v) + ‖L̃2mn0

s (L̃mn0
s v − wmn0)‖1 + ‖L̃2mn0

s wn‖1
≤ (1 + |b|)−1VarY (L̃3mn0

s v) + 2C10ρ
−mn0 |b|‖v‖∞ + βm‖wmn0‖∞,

where in the last inequality we have used Proposition8.2and Lemma8.1. The conclusion follows
since‖wmn0‖∞ ≤ ‖v‖∞ (as in the statement of Proposition8.2).

8.3 Completing the argument

In this section we complete the proof of Theorem2.3via a couple of lemmas.

Lemma 8.4. There existε ∈ (0, 1),A > 0 andγ1 ∈ (0, 1) such that for alls = σ + ib, |σ| < ε,
|b| ≥ max{4π/D, 2} and for allm ≥ A log(1 + |b|),

‖L̃3mn0
s v‖b ≤ γ3m1 ‖v‖b

for all v ∈ BV(Y ) satisfying(Hσ,m).
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Proof. First, we estimate(1+ |b|)−1VarY (L̃3mn0
s v). Form ∈ N, recall from Proposition8.2and

Lemma8.1that

‖L̃2mn0
s v‖1 ≤ ‖L̃mn0

s (L̃mn0
s v − wmn0)‖1 + ‖L̃mn0

s wmn0‖1
≤ ‖L̃mn0

s (L̃mn0
s v − wmn0)‖∞ + βm‖wmn0‖∞

≤ 2C10ρ
−mn0‖v‖∞ + βm‖v‖∞ ≤ 4βm‖v‖∞

where we usedC10ρ
−mn0 ≤ 2βm. By Proposition3.5 (which is allowed sincen0 is a multiple

of k) and recalling thatΛσ := λ
1/2
2σ /λσ ≥ 1, we compute

VarY (L̃3mn0
s v) ≤ ρ−mn0VarY (L̃2mn0

s v) + c(1 + |b|)Λmn0
σ (‖L̃2mn0

s v‖1 ‖L̃2mn0
s v‖∞)1/2

≤ ρ−mn0VarY (L̃2mn0
s v) + 2c(1 + |b|)Λmn0

σ βm/2‖v‖∞
≤ ρ−mn0VarY (L̃2mn0

s v) + 2c(1 + |b|)Λmn0
σ βm/2(VarY v + ‖v‖1). (8.4)

where in the last inequality we have used‖v‖∞ ≤ VarY v + ‖v‖1. Also by Proposition3.5,

VarY (L̃2mn0
s v) ≤ ρ−2mn0VarY v + c(1 + |b|)Λ2mn0

σ ‖v‖∞
≤ ρ−2mn0VarY v + c(1 + |b|)Λ2mn0

σ (VarY v + ‖v‖1).

Plugging the above inequality into (8.4) we get

VarY (L̃3mn0
s v) ≤ ρ−3mn0VarY v + c(1 + |b|)(ρ−mn0Λ2mn0

σ + 2Λmn0
σ βm/2)(VarY v + ‖v‖1).

Multiplying this (1+|b|)−1 and inserting it in Lemma8.3(which relies on the assumption (Hσ,m))
gives

‖L̃3mn0
s v‖b ≤ (1 + |b|)−1ρ−3mn0VarY v + c(ρ−mn0Λ2mn0

σ + 2Λmn0
σ βm/2)(VarY v + ‖v‖1)

+ (2C10ρ
−mn0 |b|+ βm)(VarY v + ‖v‖1).

Hence,

‖L̃3mn0
s v‖b ≤ (1 + |b|)−1

(

ρ−3mn0 + (1 + |b|)(cΛ2mn0
σ ρ−mn0

+ 2cΛmn0
σ βm/2 + 2C10|b|ρ−mn0 + βm)

)

VarY v

+ (cΛ2mn0
σ ρ−mn0 + 2cΛmn0

σ βm/2 + 2C10|b|ρ−mn0 + βm)‖v‖1
≤ (1 + |b|)2(2C10 + c)(Λ2mn0

σ ρ−mn0 + Λmn0
σ βm/2)‖v‖b.

Let A > 0 be so large thatγ1 := max{Λ2n0
σ ρ−1,Λn0

σ β1/2} exp(6 log(2C0+c)
A ) < 1. Then(1 +

|b|)2(2C10+c)(Λ
2mn0
σ ρ−mn0+Λmn0

σ βm/2) < γm1 for allm > A log(1+|b|), and the conclusion
follows.

To complete the proof of Theorem2.3 we still need to deal with BV functions violating
(Hσ,m).

Lemma 8.5. There existε ∈ (0, 1) and γ2 ∈ (0, 1) such that for alls = σ + ib, |σ| < ε,
|b| ≥ max{4π/D, 2} and for allm ≥ 1,

‖L̃mn0
s v‖b ≤ γm2 ‖v‖b

for all v ∈ BV(Y ) violating (Hσ,m).

Proof. By continuity inσ, 1 ≤ Λσ < ρ1/2 for all |σ| sufficiently small. Then clearly alsoγ2 :=
Λn0
σ ρ−n0/2 < 1. We first treat the caseσ ≥ 0, so by assumption, VarY v > C11|b|2ρmn0‖v‖1.
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Using Proposition3.5(which is allowed sincen0 is a multiple ofk), we compute that

VarY (L̃mn0
s v) ≤ ρ−mn0VarY v + c(1 + |b|)Λmn0

σ (‖v‖1‖v‖∞)1/2

≤ ρ−mn0VarY (v) + c(1 + |b|)Λmn0
σ (‖v‖1(VarY v + ‖v‖1)1/2

≤ ρ−mn0VarY (v) + c(1 + |b|)Λmn0
σ

( ρ−mn0

C11|b|2
VarY v

(

VarY v +
ρ−mn0

C11|b|2
VarY v

))1/2

≤ ρ−mn0VarY v +
c

C
1/2
11

√
65

8

1 + |b|
|b| Λmn0

σ ρ−mn0/2VarY v

≤ (ρ−mn0 +
1

8K2

3
√
65

16
Λmn0
σ ρ−mn0/2)VarY v,

where we have usedC11|b|2 > 64 and abbreviatedK2 :=
sup fσ
inf fσ

sup f0
inf f0

. Therefore

(1 + |b|)−1VarY (L̃mn0
s v) ≤ (1 + |b|)−1 1

4K2
γm2 VarY v

for m sufficiently large. By (A.4) at the end of the proof of Proposition3.5,

‖L̃mn0
σ |v| ‖1 ≤ Λmn0

σ

sup fσ
inf fσ

(sup f2σ
inf f2σ

)1/2

(‖v‖∞‖v‖1)1/2.

Note that‖L̃mn0
s v‖1 ≤ ‖L̃mn0

σ |v|‖1. so we have

‖L̃mn0
s v‖1 ≤ Λmn0

σ

sup fσ
inf fσ

( sup f2σ
inf f2σ

)1/2(

(VarY v + ‖v‖1)‖v‖1
)1/2

≤ Λmn0
σ

sup fσ
inf fσ

( sup f2σ
inf f2σ

)1/2(

(1 +
ρ−mn0

C11|b|2
)
ρ−mn0

C11|b|2
)1/2

VarY v

≤ sup fσ
inf fσ

( sup f2σ
inf f2σ

)1/2
√
65

8
C

−1/2
11 |b|−1Λmn0

σ ρ−mn0/2 VarY v.

The choice ofC11 gives thatsup fσ
inf fσ

(

sup f2σ
inf f2σ

)1/2

< C
1/2
11 /8K2. Hence, the choice ofγ2 gives

‖L̃mn0
s v‖1 ≤ 1

4K2
(1 + |b|)−1γm2 VarY v. Together,‖L̃mn0

s ‖b ≤ 1
2K2

(1 + |b|)−1γm2 VarY v.
Now if σ < 0, then the assumption is VarY (e

σϕmn0 v) > C11|b|2ρmn0‖eσϕmn0v‖1. The
above computation gives

‖L̃mn0
s v‖b ≤

sup fσ
inf fσ

sup f0
inf f0

‖L̃mn0

ib (eσϕmn0 v)‖b ≤
1

2
(1 + |b|)−1 γm2 (2VarY v + ‖v‖1),

where we have used (sinceσ < 0) that VarY (eσϕmn0v) ≤ VarY v + ‖v‖∞ ≤ 2VarY v + ‖v‖1.
Therefore‖L̃mn0

s ‖b ≤ (1 + |b|)−1γm2 ‖v‖b and this proves the lemma.

Proof of Theorem2.3. Let ε ∈ (0, 1) be such that the conclusion of Lemmas8.4, 8.5and Propo-

sition 3.5hold, and takeγ = max{γ1/21 , γ
1/2
2 }. Let |σ| < ε, n ∈ N andv ∈ BV(Y ) be arbitrary.

Recall that|b| ≥ max{4π/D, 2}. LetA be the constant used in Lemma8.4; without loss of gener-
ality, we can assume thatA log |b| > 3n0. By the proof of Proposition3.5(see also RemarkA.1),
there isA′ such that the operator norm

‖L̃n′

s ‖b ≤ A′(1 + |b|) for all |σ| < ε, b ∈ R, n′ ∈ N. (8.5)

Take

n ≥ 2max

{

A

n0
log(1 + |b|) , log(Λ−1

σ

sup fσ
inf fσ

A′(1 + |b|))
}

. (8.6)

Because the contraction in Lemmas8.4 and8.5 happen at different time steps, we carry out the
following algorithm:
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1. Letm0 ∈ N be maximal such that3m0n0 ≤ n. If m0 < A log(1 + |b|), then continue with
Step 4, otherwise continue with Step 2.

2. If v satisfies (Hσ,m0), then‖L̃3m0n0
s v‖b ≤ γ6m0‖v‖b by Lemma8.4, and we continue with

Step 4.
If v does not satisfy (Hσ,m0), then‖L̃m0n0

s v‖b ≤ γ2m0‖v‖b by Lemma8.5. Let v1 =

L̃m0n0
s v and letm1 ∈ N be maximal such that3m1n0 ≤ n−m0n0.

If m1 < A log |b|, then continue with Step 4, otherwise continue with Step 3.

3. If v1 satisfies (Hσ,m1), then‖L̃3m1n0
s v1‖b ≤ γ6m0‖v‖b by Lemma8.4. Therefore

‖L̃(3m1+m0)n0
s v‖b = ‖L̃3m1n0

s v1‖b ≤ γ6m1‖v1‖b = γ3m1‖L̃3m1n0
s v‖b ≤ γ6m1+2m0‖v‖b,

and we continue with Step 4.
If v1 does not satisfies (Hσ,m1), then‖L̃m1n0

s v1‖b ≤ γ2m0‖v1‖b by Lemma8.5. Let v2 =

L̃m1n0
s v1 and letm2 ∈ N be maximal such that3m2n0 ≤ n−(m0+m1)n0 and repeat Step

3. Each time we pass through Step 3, we introduce the next integermi andvi = L̃mi−1
s vi−1.

As soon asmi < A log(1 + |b|) we continue with Step 4.

4. Letp = p(v) be the number of times that this algorithm passes through Step 3. Note that
p < ∞ because each time Step 3 is taken,n − (m0 +m1 + · · · +mi)n0 decreases by a
factor2/3. Thus we find a sequence(mi)

p
i=0 and we can define

Mp =Mp(v) =

{

m0 + · · ·+mp−1 + 3mp, or

m0 + · · ·+mp−1 +mp,

depending on whethervp−1 = L̃(m0+···+mp−1)n0
s v satisfies (Hσ,mp−1) or not. In either case

we haven−Mpn0 < A log(1 + |b|) and‖L̃Mpn0
s v‖b ≤ γ2Mp‖v‖b.

By (8.5), we have for allv ∈ BV(Y )

‖L̃n
s v‖b = ‖L̃n−Mpn0

s (L̃Mpn0
s v)‖b ≤ ‖L̃n−Mpn0

s ‖b ‖L̃Mpn0
s v‖b ≤ A′(1 + |b|)γ2Mp‖v‖b.

Also ‖Ln
s v‖b ≤ λ−1

σ
sup fσ
inf fσ

‖L̃n
s v‖b. Therefore, usingn−Mpn0 < A log |b|,

‖Ln
s v‖b ≤ λ−1

σ

sup fσ
inf fσ

A′(1 + |b|)γ2Mp‖v‖b

≤ λ−1
σ

sup fσ
inf fσ

A′(1 + |b|)γ(−A log |b|)/n0γ2n‖v‖b

≤ λ−1
σ

sup fσ
inf fσ

A′(1 + |b|)γn/2 γ(−A log |b|)/n0γn/2 γn‖v‖b ≤ γn‖v‖b,

sincen is chosen large enough as in (8.6). This completes the proof.

A Proof of Proposition 3.5

Proof of Proposition3.5. Fix k andε such that the assumptions of the proposition hold. First, we
provide the argument forn = k; the conclusion forn a multiple ofk will follow by a standard
iteration argument. We note that for eacha ∈ αk the intervalF k(a) = [pa, qa] is the domain of
an inverse branchh ∈ Hk, which is a contracting diffeomorphism.

Compute that

VarY L̃k
sv ≤ 1

λkσ

1

inf fσ
Var

(

∑

h∈Hk

esϕk◦h|h′|(fσv) ◦ h
)

+
1

λkσ
Var

( 1

fσ

)∥

∥

∥

∑

h∈Hk

esϕk◦h|h′|(fσv) ◦ h
∥

∥

∥

∞

≤ Q

λkσ
Var

(

∑

h∈Hk

esϕk◦h|h′|(fσv) ◦ h
)

+ Var
( 1

fσ

)∥

∥

∥

1

λkσ

∑

h∈Hk

esϕk◦h|h′|(fσv) ◦ h
∥

∥

∥

1

≤ Q

λkσ
Var

(

Lk
s (fσv)

)

+ Var
( 1

fσ

)

sup fσ

∫

L̃k
σ|v|dLeb, (A.1)
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where we abbreviatedQ := 1
inf fσ

+ Var
(

1
fσ

)

.

We estimate the first term in the above equation. Sincev ∈ BV(Y ), v is differentiable
Lebesgue-a.e. onY and we letdv denote the generalized derivative; so, for[p, q] ⊂ Y , we have
VarY (1[p,q]v) ≤

∫ q

p
|dv|+ |v(p)|+ |v(q)| (see, for instance, [9]).

1

λkσ
Var

(

Lk
s (fσv)

)

≤
∑

h∈Hk

(

∫

dom(h)

∣

∣

∣d
(

esϕk◦h|h′|(fσv) ◦ h
)∣

∣

∣

λkσ

+
|esϕk◦h| |h′|(fσ|v|) ◦ h

λkσ
(pa) +

|esϕk◦h| |h′|(fσ|v|) ◦ h
λkσ

(qa)
)

≤ 2
∑

h∈Hk

∫

dom(h)

∣

∣

∣d
(esϕk◦h|h′|(fσv) ◦ h

λkσ

)∣

∣

∣

+ 2
∑

h∈Hk

inf
[pa,qa]

∣

∣

∣

esϕk◦h(x)|h′(x)|(fσv) ◦ h(x)
λkσ

∣

∣

∣ =: J1 + J2. (A.2)

First, by the finite image property,c0 := mina∈αk(qa − pa) > 0 for our fixedk. Therefore

J2 ≤ 2

mina∈αk(qa − pa)

∑

h∈Hk

∫

Fk(a)

eσϕk◦h(x)|h′(x)|(fσ|v|) ◦ h(x)
λkσ

≤ 2 sup fσ
c0

∫

Y

L̃k
σ|v| dLeb.

We split the termJ1 in (A.2) into three terms

∑

h∈Hk

∫

dom(h)

∣

∣

∣d
(esϕk◦h|h′|(fσv) ◦ h

λkσ

)∣

∣

∣ ≤ I1 + I2 + I3

corresponding to which factor ofe
sϕk◦h|h′|(fσv)◦h

λk
σ

the derivative is taken of.
For I1: Takingm = k in (7.5)

I1 :=|σ + ib|
∑

h∈Hk

∫

dom(h)

eσϕk◦h(ϕk ◦ h)′|h′|(fσ|v|) ◦ h
λkσ

dLeb

≤C′
2|ε+ b| sup fσ

∫

Y

L̃k
σ|v| dLeb.

For I2: Takingn = k in (7.3),

I2 =
∑

h∈Hk

∫

dom(h)

eσϕk◦h|h′′|(fσ|v|) ◦ h
λkσ

dLeb≤ C1 sup fσ

∫

Y

L̃k
σ|v| dLeb.

For I3: Due to (3.3) and using a change of coordinates,

I3 =
∑

h∈Hk

∫

dom(h)

∣

∣

∣

eσϕk◦h|h′|2d(fσv) ◦ h
λkσ

∣

∣

∣ dLeb≤ ρ−3k
∑

h∈Hk

∫

a

|d(fσv)| dLeb

≤ ρ−3k

∫

Y

|d(fσv)| dLeb= ρ−3kVarY (fσv) ≤ ρ−3k sup fσVarY v + ρ−3kVarY fσ‖v‖∞

≤ ρ−3k(sup fσ + VarY fσ)VarY v + ρ−3kVarY fσ

∫

Y

|v|dLeb,

where in the last inequality we have used‖v‖∞ ≤ VarY v +
∫

|v|dLeb. Putting these together,

1

λkσ
Var

(

Lk
s (fσv)

)

≤ ρ−3k(sup fσ + VarY fσ)VarY v

+ ρ−3kVarY fσ

∫

Y

|v|dLeb+ (c1 + C′
2|b|) sup fσ

∫

Y

L̃k
σ|v|dLeb,
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wherec1 = 2c−1
0 + C1 + C′

2ε andC′
2 is as in (7.5). This together with (A.1) implies that

VarY L̃k
sv ≤ ρ−3kQ(sup fσ + VarY fσ)VarY v + ρ−3kVarY fσ

∫

Y

|v| dLeb

+ (c1 + Var
( 1

fσ

)

+ C′
2|b|) sup fσ

∫

Y

L̃k
σ|v|dLeb.

Given our choice ofε, c2 := Var
(

1
fσ

)

< ∞. By (2.7), c := ρ−2kQ(sup fσ + VarY fσ) < 1 and

ρ−3kVarY fσ < 1. Therefore

VarY L̃k
sv ≤ ρ−kVarY v +

∫

Y

|v|dLeb+ (c1 + c2 + C′
2|b|) sup fσ

∫

Y

L̃k
σ|v|dLeb. (A.3)

Forn ≥ 1 arbitrary, we estimate
∫

Y L̃nk
σ |v|dLeb applying Cauchy-Schwartz. First, note that

∫

Y

L̃nk
σ |v|dLeb≤

(

∫

Y

(L̃nk
σ |v|)2dLeb

)1/2

.

Recall thatΛσ =
λ
1/2
2σ

λσ
. Then

∫

(L̃nk
σ |v|)2dLeb=

∫

(λnkσ fσ)
−2

(

∑

h∈Hnk

eσϕnk◦h|h′|(fσ|v|) ◦ h
)2

dLeb

=

∫

(λnkσ fσ)
−2

(

∑

h∈Hnk

(eσϕnk◦h|h′|1/2(fσ|v|)1/2 ◦ h)(|h′|1/2(fσ|v|)1/2 ◦ h)
)2

dLeb

≤ λ−2nk
σ (inf f2

σ)
−1

∫

(

∑

h∈Hnk

e2σϕnk◦h|h′|(fσ|v|) ◦ h
)(

∑

h∈Hnk

|h′|(fσ|v|) ◦ h
)

dLeb

≤ Λ2nk
σ

(sup fσ
inf fσ

)2 sup f2σ
inf f2σ

‖v‖∞
∫

(

∑

h∈Hnk

e2σϕnk◦h

Λnk
2σf2σ

|h′|f2σ ◦ h
) (

∑

h∈Hnk

|h′||v| ◦ h
)

dLeb

≤ Λ2nk
σ

(sup fσ
inf fσ

)2 sup f2σ
inf f2σ

‖v‖∞‖v‖1.

Thus,
∫

Y

L̃nk
σ |v|dLeb≤ Λnk

σ

sup fσ
inf fσ

(sup f2σ
inf f2σ

)1/2

(‖v‖∞‖v‖1)1/2. (A.4)

The above together with (A.3) implies that

VarY L̃nk
s v ≤ ρ−kVarY L̃(n−1)k

s v + (1 + c1 + c2 + C′
2|b|)Λnk

σ

sup fσ
inf fσ

(sup f2σ
inf f2σ

)1/2

(‖v‖∞‖v‖1)1/2

≤ ρ−kVarY L̃(n−1)k
σ v + c3(1 + |b|)Λnk

σ (‖v‖∞‖v‖1)1/2, (A.5)

for c3 := max{1 + c1 + c2, C
′
2} sup fσ

inf fσ

(

sup f2σ
inf f2σ

)1/2

. Iterating (A.5), we obtain that

VarY L̃nk
s v ≤ ρ−nkVarY v + c(1 + |b|)Λnk

σ (‖v‖∞‖v‖1)1/2,

for anyn ≥ 1, wherec := c3 sup fσ
∑n−1

j=0 (ρΛσ)
−jk. This ends the proof.

Remark A.1. A similar, but much more simplified, argument to the one used in the proof of
Proposition3.5shows that the non-normalized twisted transfer operator satisfies VarY (Ln

s v) ≤
c1ρ

−n
0 VarY v + c2(1 + |b|)‖v‖∞, for all n ≥ 1, someρ0 > 1, c1, c2 > 0, for all b ∈ R and all

|σ| < ε, for anyε ∈ (0, 1).

Remark A.2. If σ = 0, so when working on the imaginary axis, we can get the standard Lasota-
Yorke inequality VarY Ln

ibv ≤ ρ−nVarY v + c4(1 + |b|)‖v‖1.
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Proof of Proposition3.1. Takeε = ε20. Without loss of generality, set0 ≤ |σ2| ≤ |σ1| < ε and
takeb ∈ R,

‖Ls(σ1+ib1v − L(σ2+ib2v‖1 =

∫

Y

∣

∣

∣

∣

∣

∑

h∈H

(

e(σ1+ib1)ϕ◦h − e(σ2+ib2)ϕ◦h
)

|h′|v ◦ h
∣

∣

∣

∣

∣

dLeb

≤ ‖v‖∞
∫

Y

∑

h∈H
eσ1ϕ◦h|h′|

(

1− e(σ2−σ2)ϕ◦h
)

dLeb.

Because the functionx 7→ e−(ε0−σ1)xx assumes its maximum valuee−1(ε0 − σ)−1 at x =
(ε0 − σ)−1, we have

eσ1ϕ◦h
(

1− e(σ2−σ2)ϕ◦h
)

≤ eε0ϕ◦h|σ1 − σ2|e−(ε0−σ1)ϕ◦hϕ ◦ h ≤ eε0ϕ◦h

e(ε0 − σ)
.

Plugging this into the above, we find
∫

Y

∑

h∈H

(

eσ1ϕ◦h − eσ2ϕ◦h
)

|h′|v ◦ h dLeb≤ ‖v‖∞
e(ε0 − σ)

∫

Y

∑

h∈H
eε0ϕ◦h|h′| dLeb≤ C3‖v‖∞

e(ε0 − σ)
.

To estimate VarY (Ls(σ1+ib1v − L(σ2+ib2v), we work as in the Proof of Proposition3.5, and use
the above estimate on theL1-norm. As such we obtain

VarY (Ls(σ1+ib1v − L(σ2+ib2v) ≤ |σ1 − σ2|ε−1
0 (C′VarY v + C′′‖v‖∞) ≤ C|σ1 − σ2|ε−1

0 ‖v‖BV

for someC > 0 as required.

B Proofs of Lemmas5.1and 5.2

Proof of Lemma5.1. Recall thatfσ is an eigenfunction for the non-normalized twisted transfer
operatorLσ, so 1

λσ
Lr
σfσ(x) = fσ(x) for everyr ∈ N andx ∈ Y . Therefore, forr ∈ N arbitrary,

we have

1

λrσ
Lr
σ1(x) =

1

λrσ

∑

h∈Hr,x∈dom(h)

|h′(x)| eσϕr◦h(x)

≤
∑

h∈Hr,x∈dom(h)

|h′(x)| eσϕr◦h(x)fσ ◦ h(x)
λrσfσ(x)

sup fσ
inf fσ

≤ sup fσ
inf fσ

(B.1)

for all x ∈ Y , and similarly 1
λr
σ
Lr
σ1(x) ≥ inf fσ

sup fσ
. Hence the Cesaro means converge to the fixed

point with unitL1-norm:

lim
n→∞

1

n

n−1
∑

r=0

Lr
σ1 =

fσ
∫

Y fσ dLeb
.

If x /∈ X∞, thenLr
σ1 is continuous atx for all r ∈ N, and so isfσ. Now for x ∈ X ′

j take
r ≥ j. The discontinuity ofLr

σ1 atx ∈ X ′
j is created by non-onto branches ofF r, and there exist

y ∈ X ′
1 and an inverse branch̃h ∈ Hj−1 such thaty = h̃(x). The jump-size ofL̃r

σ1 at x can
be expressed as a sum ofh ∈ Hr−(j−1) which in the summand is composed withh̃. Then, using
(3.3) and also (B.1) for iterater − (j − 1) to estimate the sum in brackets below:

Size
1

λrσ
Lr
σ1(x) ≤ 1

λrσ

∑

h∈Hr−(j−1),y∈dom(h)

|(h ◦ h̃)′(x)| eσϕr−(j−1)◦h◦h̃(x)+σϕj−1◦h̃(x)

=
(

∑

h∈Hr−(j−1),y∈dom(h)

|h′(y)| eσϕr−(j−1)◦h(y)

λ
r−(j−1)
σ

) |h̃′(x)| eσϕj−1◦h̃(x)

λj−1
σ

≤ sup fσ
inf fσ

ρ−3(j−1).
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By taking the Cesaro limit we obtain statement 1. of the lemmafor C7 = ρ3 sup fσ
inf fσ

.
Now for statement 2. letI ⊂ Y be an arbitrary interval, and letJ denote a component of

I \ Xr. Note that ifh ∈ Hr is such thatJ ∩ dom(h) 6= ∅, then dom(h) ⊃ J . The oscillation
OscI( 1

λr
σ
Lr
σ1) is bounded by the sum of jump-sizes of discontinuities inI added to the sum of the

oscillations OscJ( 1
λr
σ
Lr
σ1) on the componentsJ of I \Xr. For the latter, we have using formulas

(7.5), (7.3) and (B.1):

OscJ (
1

λrσ
Lr
σ1) ≤ 1

λrσ

∑

h∈Hr

∫

J∩dom(h)
|(eσϕr◦h(ξ)|h′(ξ)|)′| dξ

≤ 1

λrσ

∑

h∈Hr

∫

J∩dom(h)

(

|σ| |(ϕr ◦ h)′(ξ)|eσϕr◦h(ξ) + eσϕr◦h(ξ)|h′′(ξ)|
)

dξ

≤
∫

J

∑

h∈Hr,J∩dom(h) 6=∅

eσϕr◦h(ξ)|h′(ξ)|
λrσ

(|σ|C′
2 + C1) dξ

≤ (εC′
2 + C1)

∫

J

sup fσ
inf fσ

dξ = (εC′
2 + C1)

sup fσ
inf fσ

Leb(J).

Recall from Remark3.2that sup fσ
inf fσ

≤ C5. Summing over all componentsJ of I \Xr gives

OscI(
1

λrσ
Lr
σ1) ≤ (εC′

2 + C1)C5 Leb(I) + ρ3C5

∑

j≤r

∑

x∈X′
j∩I

ρ−3j .

For the Cesaro limit, we get OscI(fσ) ≤ C6µ(I) + C7EI(fσ) for C6 = (εC′
2 + C1)C5 and

C7 = ρ3C5 as required. This implies also the formula for Osc(1/fσ), adjusting the constantsC6

andC7 if necessary.

Before stating the next lemma, we recall thatK = min{Leb(F (a)) : a ∈ α} and that
δ0 = K(ρ0−2)

5eC1ρ0
. SinceF is topologically mixing, there isk1 ∈ N such thatF k1(I) ⊃ Y for all

intervalsI of length Leb(I) ≥ δ0.

Lemma B.1. There isη1 ∈ (0, 1) such that for everyz ∈ Y andτ > 0 the following property

holds: For everyn ≥ k1 +
log(2K(ρ0−2)/(eC1ρ0τ))

log(ρ0/2)
and every intervalJ of length Leb(J) > τ ,

Leb(
⋃

ã∈Jz

ã) ≥ η1Leb(J) for Jz = {ã ∈ αn : ã ⊂ J andz ∈ Fn(ã)}.

Proof. By the choice ofk1, there is a finite collectionΩ of k1-cylinders such that for eachz ∈ Y
and eachI with Leb(I) ≥ δ0, there isω ∈ Ω, ω ⊂ I, such thatz ∈ F k1(ω). Let γ0 :=

min{ Leb(ω)
2δ0

: ω ∈ Ω} > 0.

For y ∈ Y , definerj(y) = d(F j(y), ∂F j(a)), wherea ∈ αj is thej-cylinder containing
y. TakeJ an arbitrary interval of length Leb(J) ≥ τ , and defineZj

δ = {y ∈ J : rj(y) ≤ δ}.
We derive Leb(Zj+1

δ ) from Leb(Zj
δ ) as follows. Ifa ∈ αj , W = F j(a) anda′ ∈ α are such

that∂W ∩ a′ 6= ∅, then the points{z ∈ F (W ∩ a′) : d(z, ∂F (W ∩ a′)) ≤ δ} pull back to at
most two intervals inW ∩ a′ of combined length≤ 2δ/ρ0, and this contributes2Leb(Zj

δ/ρ0
) to

Leb(Zj+1
δ ). For the cylindersa′ ∈ α that are contained inW , we recall that Leb(F (a′)) ≥ K.

By the distortion bound from (2.2) we find Leb(Zj+1
δ ∩ F−j(a′)) ≤ 2eC1 δ

K Leb(a). Combining
this (and summing over all sucha), we get the recursive relation Leb(Zj+1

δ ) ≤ 2Leb(Zj
δ/ρ0

) +

2eC1 δ
K Leb(J). This gives

Leb(Zj
δ ) ≤ 2jLeb(Z0

δ/ρj
0

) +
2eC1δ

K

j−1
∑

i=0

( 2

ρ0

)i

≤
(( 2

ρ0

)j δ

Leb(J)
+

2eC1ρ0
K(ρ0 − 2)

δ
)

Leb(J).
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Takeδ = δ0 andj ≥ log(10δ0/Leb(J))
log(ρ0/2)

= log(2K(ρ0−2)/(eC1ρ0τ))
log(ρ0/2)

(so that( 2
ρ0
)j δ0

Leb(J) ≤ 1
10 ). Then

Leb(y ∈ J : rj(y) ≥ δ0) = Leb(J)− Leb(Zj
δ0
) ≥ Leb(J)− 1

2
Leb(J) =

1

2
Leb(J). (B.2)

LetBj,J be the collection ofa ∈ αj , a ⊂ J such that there isy ∈ a with rj(y) ≥ δ0. This means
by (B.2) that Leb(∪a∈Bj,Ja) ≥ 1

2Leb(J) and1 ≥ Leb(F j(a)) ≥ 2δ0 for eacha ∈ Bj,J . Take
z ∈ Y andn = j + k1. It follows that there is ann-cylinderã ⊂ a such thatF j(ã) = ω ∈ Ω and
z ∈ F k1(ω). By boundedness of distortion

Leb(ã)
Leb(a)

≥ e−C1
Leb(F j(ã)

Leb(F j(a))
≥ e−C1

Leb(ω)
2δ0

≥ γ0e
−C1 .

Hence Leb(∪a∈Jza) ≥ γ0e
−C1Leb(∪a∈Bn,Ja) ≥ γ0

2eC1
Leb(J), proving the lemma forη1 :=

γ0

2eC1
.

Now we are ready for the proof of Lemma5.2, which uses assumption (2.5).

Proof of Lemma5.2. We will apply LemmaB.1 for J = p, an arbitrary element ofPk. Set for
C9 = η1e

−C1/2. Assumption (2.5) gives Leb(p) ≥ 12ρ−k. Sincen = 2k, we havej := n−k1 ≥
k. Therefore( 2

ρ0
)j δ0

Leb(p) ≤ 2kρ−3kδ0
12 < 1

12 , and hence (B.2) implies that Leb(y ∈ p : rj(y) ≥
δ0) ≥ 1

2Leb(p).
Recall thatBj,p ⊃ {a ∈ αj : a ⊂ p, rj(y) ≥ δ0 for somey ∈ a}, soF j(a) ≥ 2δ0 for each

a ∈ Bj,p. In particular, sucha contains aña ∈ αn such thatz ∈ Fn(ã), and Leb(∪a∈Bj,p ã) ≥
η1Leb(p)with η1 as in LemmaB.1. LetB∗

j,p be a finite subcollection ofBj,p such that Leb(∪a∈B∗
j,p
ã) ≥

2
3η1Leb(p), and lethã : Fn(ã) → ã denote the corresponding inverse branches.

Using the continuity ofσ 7→ λσ andσ 7→ eσϕn◦hã(z) for all a ∈ B∗
j,p, j ≤ 4k − k1 and

p ∈ Pk, we can chooseε so small that 1λn
σ
|h′ã(z)|eσϕn◦hã(z) ≥ 3

4 |h′ã(z)| for all a ∈ B∗
j,p and all

|σ| < ε. Therefore

1

λnσ

∑

h∈Hn,z∈dom(h)

range(h)⊂p

|h′(z)|eσϕn◦h(z) ≥ 1

λnσ

∑

a∈B∗
j,p

|h′ã(z)|eσϕn◦hã(z) ≥ 3

4

∑

a∈B∗
j,p

|h′ã(z)|

≥ 3

4

∑

a∈B∗
j,p

e−C1
Leb(ã)

Leb(Fn(ã))
≥ η1Leb(p)

2eC1
.

This finishes the proof.

C A technical result for the proof of Proposition 8.2

In this subsection we will use the generalised BV seminormvarY v introduced by Keller [11]
because it compares more easily with‖ ‖1 than VarY does. To be precise, we define

varY v = sup
0<κ<1

1

κ

∫

Y

Osc(v,Bκ(x)) dLeb,

where Osc(v,Bκ(x)) = supy,y′∈Bκ(x) |v(y)− v(y′)| (also for complex-valued functions).

Lemma C.1. In dimension one, VarY andvarY are equivalent seminorms. More precisely, for
all v ∈ BV(Y ) we have

1

2
VarY v ≤ varY v ≤ 3VarY v. (C.1)
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Proof. [5, Lemma 1] states that VarY v ≤ 2varY v. For the other inequality, chooseκ ∈ (0, 1) and
partitionY into half-open intervalsJ of length|J | ≤ κ. For each suchJ , letJ ′ andJ ′′ denote its
left and right neighbour. Then

1

κ

∫

Y

Osc(v,Bκ(x)) dLeb =
1

κ

∑

J

∫

J

Osc(v,Bκ(x)) dLeb≤ 1

κ

∑

J

Leb(J)OscJ∪J′∪J′′v

≤
∑

J

OscJ∪J′∪J′′v ≤ 3VarY v.

Both inequalities together prove (C.1).

Recall thatK := min{|F (a)| : a ∈ α}.

Lemma C.2. Letv ∈ BV(Y ) such that VarY v ≤ K0‖v‖1 for someK0 > 1. Chooseη1 ∈ (0, 1)
such that LemmaB.1holds and takeK1 = 6eC1/η1. Let

r0 := max
{

k, k1 +
(

log
108K0K(ρ0 − 2)

eC1 ρ0

)

/ log
ρ0
2

}

.

Then for everyr > r0 and allIr ∈ Qr,

‖v‖1 ≤ K1

Leb(Ir)

∫

F−r(Ir)

|v| dLeb.

Proof of LemmaC.2. Fix κ1 := (18K0)
−1. Since we assumed thatK1 > 6eC1/η1 we have

(1 − 4eC1

η1K1
) ≥ 6K0κ1. Let E be a partition ofY into half-open intervalsJ = [p, q) of length

κ1

3 ≤ Leb(J) ≤ κ1

2 . Next recall thatK := min{|F (a)| : a ∈ α} and taker > r0. Note that this
r0 is the bound from LemmaB.1 with τ = κ1/3 = 1/(54K0).

We prove the lemma by contradiction, so assume that there existsIr ∈ Qr such that‖v‖1 >
K1

Leb(Ir)

∫

F−r(Ir)
|v| dLeb. Define

M(Ir) =
{

J ∈ E :

∫

F−r(Ir)∩J

|v| dLeb≤ 2Leb(Ir)
K1

∫

J

|v| dLeb
}

.

If
∑

J∈M(Ir)

∫

J
|v| dLeb< 1

2‖v‖1 (so
∑

J /∈M(Ir)

∫

J
|v| dLeb> 1

2‖v‖1), then we have
∫

F−r(Ir)

|v| dLeb ≥
∑

J /∈M(Ir)

∫

F−r(Ir)∩J

|v| dLeb

>
2Leb(Ir)
K1

∑

J /∈M(Ir)

∫

J

|v| dLeb>
2Leb(Ir)
K1

1

2

∫

Y

|v| dLeb,

contradicting our choice ofIr. Therefore, it remains to deal with the case

∑

J∈M(Ir)

∫

J

|v| dLeb>
1

2
‖v‖1. (C.2)

Recall thateC1 is a uniform distortion bound for the inverse branches ofF r. Let z be the middle
point of Ir andJz = {a ∈ αr : a ⊂ J, z ∈ F r(a)}. This means in particular thatLeb(F r(a)∩Ir

Leb(F r(a)) ≥
1
2Leb(Ir) for eacha ∈ Jz. By LemmaB.1, Leb(∪a∈Jza) ≥ η1Leb(J). This gives

∫

F−r(Ir)∩J

|v| dLeb ≥ inf
J

|v|Leb(F−r(Ir) ∩ J) ≥ inf
J

|v|
∑

a∈Jz

Leb(F−r(Ir) ∩ a)

≥ inf
J

|v|
∑

a∈Jz

e−C1
Leb(F r(a) ∩ Ir)

Leb(F r(a))
Leb(a)

≥ infJ |v|
2eC1

∑

a∈Jz

Leb(a)Leb(Ir) ≥
η1 infJ |v|

2eC1
Leb(J)Leb(Ir).
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Hence for eachJ ∈M(Ir),

Leb(J)Leb(Ir) inf
J

|v| ≤ 2eC1

γ

∫

F−r(Ir)∩J

|v| dLeb

≤ 4eC1

η1K1
Leb(Ir)

∫

J

|v| dLeb≤ 4eC1

η1K1
Leb(J)Leb(Ir) sup

J
|v|

and thereforeinfJ |v| ≤ 4eC1

η1K1
supJ |v| and

OscJv ≥ OscJ |v| ≥ (1− 4eC1

η1K1
) sup

J
|v|. (C.3)

Recall that by the choice ofκ1, κ−1
1 (1 − 2eC1

η1K1
) ≥ 6K0. Bounding thesup from below using

(C.3), we obtain

sup
0<κ<1

1

κ

∫

J

Osc(v,Bε(x)) dLeb≥ Leb(J)κ−1
1 (1− 4eC1

η1K1
) sup

J
|v| ≥ 6K0Leb(J) sup

J
|v|.

By the second inequality in (C.1),

VarY v ≥ 1

3
varY v ≥ 1

3κ

∑

J∈E

∫

J

Osc(v,Bκ(x)) dLeb

≥ 1

3

∑

J∈M(Ir)

6K0Leb(J) sup
J

|v| ≥ 2K0

∑

J∈M(Ir)

∫

J

|v| dLeb.

Finally (C.2) gives VarY v > K0

∫

Y |v| dLeb = K0‖v‖1. This contradicts the assumption of the
lemma, completing the proof.

D Proof of Theorem2.6

The proof of Theorem2.6 follows closely the argument used in [1, Proof of Theorem 2.1] with
obvious required modifications. As in [1], the conclusion follows once we show that the Laplace
transformρ̂(s) := ρ̂(s)(v, w) :=

∫∞
0
estρt(v, w) dt behaves as described in the result below.

Lemma D.1. There existsε > 0 such thatρ̂(s) is analytic on{ℜs > ε} for all v ∈ FBV,2(Y
ϕ)

andw ∈ L∞(Y ϕ). Moreover, there existsC > 0 such that|ρ̂(s)| ≤ C(1 + |b|1/2)‖v‖BV,2‖w‖∞,
for all s = σ + ib with σ ∈ [0, 12ε].

The proof of Theorem2.6 given LemmaD.1 is standard, relying on the formulaρt(v, w) =
∫

Γ
e−stρ̂(s) ds, whereΓ = {ℜs = ε/2}; it goes, for instance, exactly the same as [1, Proof of

Theorem 2.1] given [1, Lemma 2.17], so we omit this.
The proof of LemmaD.1 uses three ranges ofn andb: i) n ≤ A log |b|, |b| ≥ 2 with A as in

Theorem2.3, ii) |b| ≥ max{4π/D, 2} and iii) 0 < |b| < max{4π/D, 2}. The first two regions
go almost word by word as in [1, Lemma 2.17]. For the third region, the part of the proof in
[1] where the standard form of Lasota-Yorke inequality ofL̃s is used doesn’t apply (in our case
‖L̃σ+ib‖1 with σ > 0 is not bounded). Instead, we use quasi-compactness ofL̃ib (i.e.,σ = 0)
given by RemarkA.2 and the continuity estimate of Proposition3.1. These together ensure that
the essential spectral radius ofL̃s is strictly less than1, and that the spectrum in a neighbourhood
of 1 contains only isolated eigenvalues. The rest of the argument goes exactly as [1, Proof of
Lemma 2.22], distinguishing betweenb 6= 0 the andb = 0. In particular, proceeding as in [1,
Proof of Lemma 2.22], we obtain the aperiodicity property and analyticity of the operatorQib in
the notation of [1, Proof of Lemma 2.22] in a neighborhood ofb for eachb 6= 0. Also, in a neigh-
borhood ofb = 0 we speak of the isolated eigenvalueλib (for the operator̃Lib) and corresponding
spectral projectionPib. Using again the continuity property of̃Ls given by Proposition3.1, we
can continueλs andPs in a neighborhood ofs = 0.
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