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Abstract 21 

Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects 22 

this has on the delivery of ecosystem services, and especially on the long-term store of carbon and 23 

the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; 24 

comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This 25 

study examines water quality (DOC, Abs400, pH, E4/E6 and C/C) during rainfall events from such 26 

environments in the south west UK, in order to both quantify DOC losses, and understand their 27 

potential for restoration. Water samples were taken over a 19 month period from a range of drains 28 

within two different experimental catchments in Exmoor National Park; data were analysed on an 29 

event basis. DOC concentrations ranging between 4 and 21 mg L-1 are substantially lower than 30 

measurements in deep peat, but still remain problematic for the water treatment process. Dryness 31 

plays a critical role in controlling DOC concentrations and water quality, as observed through both 32 

spatial and seasonal differences. Long-term changes in depth to water table (30 days before the 33 

event) are likely to impact on DOC production, whereas discharge becomes the main control over 34 

DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is 35 

attributed to an increase in the solubility of DOC. Humification ratios (E4/E6) consistently below 5 36 

indicate a predominance of complex humic acids, but increased decomposition during warmer 37 

summer months leads to a comparatively higher losses of fulvic acids. This work represents a 38 

significant contribution to the scientific understanding of the behaviour and functioning of shallow 39 

damaged peatlands in climatically marginal locations. The findings also provide a sound baseline 40 

knowledge, which can support research into the effects of landscape restoration in the future.    41 
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1. Introduction 42 

Peatlands and carbon-rich soils have been shown to be an important contributor of Dissolved 43 

Organic Carbon (DOC) in watercourses (e.g. Aitkenhead et al., 1999; Hope et al., 2004). Over the past 44 

three decades, large scale increases in DOC loss from peaty catchments has been observed in 45 

northern Europe (e.g. Evans et al., 2005; Freeman et al., 2001a; Hejzlar et al., 2003; Skjelkvåle et al., 46 

2001) and North America (Driscoll et al., 2003). This general trend suggests a systematic response to 47 

a combination of external drivers acting over large areas (Evans et al., 2005), such as a general 48 

increase in atmospheric CO2 (Freeman et al., 2004), a decrease in acidic deposition (Clark et al., 49 

2005; Evans et al., 2005), or the influence of climate change (Freeman et al., 2001a). However, fine-50 

scale or local factors (i.e. land use) can have an additional effect on the general trend, and therefore 51 

may help to enhance or mitigate DOC export in the short-term (Worrall et al., 2007b). In the UK, 52 

DOC losses from peaty catchments have come under particular scrutiny in recent years, partly 53 

because of the heavy damage peatlands have sustained since the nineteenth century due to 54 

drainage for agricultural reclamation and peat cutting (Holden et al., 2006), or from erosion (Evans 55 

et al., 2006). By lowering the water table, management practices have changed the hydrological 56 

functioning of peatlands, further affecting the provision of several ecosystem services (ES), such as 57 

the support of specific habitats, the provision of water or the storage of carbon (C) (Hubacek et al., 58 

2009). DOC is of particular interest, firstly because it represents an important pathway for C losses to 59 

the ocean from what is usually considered to be a long-term terrestrial C sink; in-stream processes 60 

leading to evasion of CO2, however, mean that DOC will also have an impact on the radiative balance 61 

(Dinsmore et al., 2010). Secondly, DOC has been shown to have a strong effect on water quality and 62 

pollutant transport downstream (Thurman, 1985). 63 

Water companies supplying drinking water from rivers or reservoirs that are fed by damaged upland 64 

catchments have to deal with the costly and complicated process of removing C from increasingly 65 

discoloured water supplies (Wallage et al., 2006), whilst ensuring that they meet environmental 66 

standards and regulations (e.g. EU Water Framework Directive 2000/60/EC). They also need to pre-67 

empt the expected effects of upstream changes in land use, catchment characteristics and climate 68 

on both DOC concentrations and water quality, all of which are known to impact the treatability of 69 

water and the formation of carcinogen disinfection by-products (Ritson et al., 2014; Watts et al., 70 

2001).  As a result, water utilities in the UK (e.g. Severn Trent, United Utilities or South West Water) 71 

have been investing in long-term catchment management through the funding of peatland 72 

restoration projects, in order to avoid more costly, and relatively short-term, solutions downstream 73 

(Parry et al., 2014).  74 

DOC losses from degraded peatlands have been widely investigated in order to  estimate C budgets 75 

at the catchment scale (e.g. Dinsmore et al., 2010; Gibson et al., 2009; Worrall et al., 2009) or for 76 

modelling C losses at larger scales (e.g. Worrall et al., 2005). However, the processes controlling DOC 77 

losses in degraded peatlands, over both short- and long-terms, are still debated. A great body of 78 

work points towards the importance of dryness on DOC production in soils. DOC losses are 79 

significantly higher in drained, and therefore dry, peatlands compared to pristine sites (e.g. Glatzel et 80 

al. 2006; Holden et al., 2004; Holden, 2005a,b; Jones & Mulholland, 1998; Wallage et al., 2006; 81 

Worrall et al., 2006a; Worrall et al.,2007a,b). Water table drawdown and the consequent increased 82 

aeration of the peat soil, has been observed to stimulate soil respiration (Bubier et al., 2003). 83 
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Humification products are then released to pore water (Glatzel et al. 2006; Strack et al. 2008), or 84 

adsorbed and released during the subsequent rainfall event (Clark et al. 2009; Mitchell and 85 

McDonald 1992; Scott et al. 1998; Tipping et al. 1999; Watts et al. 2001).  Air or stream temperature 86 

also seems to be a key factor in stimulating the biological productivity (Billett et al., 2006; Dinsmore 87 

et al., 2013), and in regulating the seasonal variations in DOC concentrations (Bonnett et al., 2006; 88 

Koehler et al., 2009), but also in controlling general long-term trends (Freeman et al., 2001a; Evans 89 

et al., 2005). In other cases, however, DOC concentrations have decreased in drought conditions 90 

(e.g. Clark et al. 2005; Fenner et al. 2005; Pastor et al. 2003; Scott et al. 1998). This has been 91 

explained by a higher consumption of DOC through heterotrophic respiration compared to 92 

production (Fenner et al., 2005, Pastor et al., 2003).  93 

Other research points towards a control of DOC mobility by soil acidity that prevails over biotic 94 

factors, where drought induced acidity could inhibit DOC mobility, either through a sulphate 95 

increase affecting the ionic strength (Clark et al., 2005), or more generally, through a change in the 96 

acid neutralising capacity (Clark et al., 2012).  Discharge was mostly shown not to have a significant 97 

control on DOC in peaty catchments (Billett et al., 2006; Hinton et al., 1997; Schiff et al., 1998), 98 

although fewer studies, have observed some influence of discharge part of the year, i.e. in the 99 

autumn (Clark et al., 2007; Koehler et al., 2009).  Moreover, little is known about the importance of 100 

the condition of the peat, its depth, or the surrounding vegetation patterns (Lindsay, 2010) on DOC 101 

losses. Most research has focused on drainage occurring in deep peat in northern England (e.g. 102 

Armstrong et al., 2010; Clark et al., 2007; Turner et al., 2013), and the restoration of these peatlands 103 

appears to reduce DOC losses, at least in the long-term (Wallage et al., 2006), if not more rapidly 104 

(e.g. Wilson et al., 2011a). 105 

The processes outlined above highlight several points: (1) management practices, such as drainage 106 

or burning, can affect DOC production at the catchment scale (Clutterbuck and Yallop, 2010; Yallop 107 

and Clutterbuck, 2009; Yallop et al., 2010); (2) external forcing mechanisms (i.e. acid deposition or 108 

temperature) might reverse or increase this trend, and; (3) both the decomposition process and 109 

movement of water through the peat are likely to control the export of previously produced DOC. 110 

The first aim of this study was therefore to understand both the quantity and quality of DOC losses 111 

from two heavily damaged and shallow peatlands in the south west of England using an event-based 112 

approach over a two year period, prior to restoration. A secondary aim was to go beyond the 113 

exclusive quantification of DOC losses and explore the influence of environmental factors controlling 114 

DOC loss, alongside other water quality parameters. This research was critical in order to establish a 115 

baseline understanding of the way in which such marginal peatlands function, and to support their 116 

proposed restoration. Our working hypotheses were as follows: 117 

1. The heavily damaged upland peatlands of Exmoor National Park support poor water quality, 118 

which varies significantly between experimental catchments.  119 

2. First order variables, including rainfall, air temperature and discharge, exert a strong control 120 

on DOC concentrations, which results in significant seasonal variability. 121 

3. During rainfall events, DOC concentrations in catchment runoff are controlled by antecedent 122 

conditions (i.e. air temperature, total rainfall, depth to water table and total discharge) in 123 

the short-term, i.e. that of the duration of the rainfall/runoff event. 124 
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4. Quality of DOC, represented by the E4/E6 ratio, is directly related to DOC concentrations in 125 

runoff water, with higher DOC concentrations in the drains being characterised by a greater 126 

loss of fulvic acids (FAs).  127 

 128 

2. Material and methods 129 

2.1. Study sites 130 

The study was conducted in two headwater catchments of the river Barle within Exmoor National 131 

Park, UK (51°9’N; 3°34’W), referred to here as ‘Aclands’ and ‘Spooners’ (1). These catchments are 4 132 

km apart and are taken to be representative of the general peatland conditions found in the area. 133 

The altitude of the two catchments range between 380 to 450 m a.s.l., with an 30 year average daily 134 

temperature of 10-12°C and 4.5-5.5°C for summer and winter respectively, and an average annual 135 

precipitation between 1800 and 2600 mm yr-1 (Met Office, 2012). Peat depths on Exmoor are 136 

shallow, on average ca. 33 cm (Bowes, 2006), but surveys in these catchments have shown that peat 137 

depths frequently range between 50 cm and 1 m (Smith, 2010). The vegetation comprises numerous 138 

mire and wet heath communities, such as Sphagnum spp. and Eriophorum spp., but Molinia caerulea 139 

(Purple Moor Grass) is by far the most extensive (Drewit and Manley, 1997). The area is 140 

characterised by very little bare peat, but has been heavily damaged by intensive drainage for 141 

agricultural reclamation during the 19th and 20th century. This has left a very dense network of small 142 

ditches (about 0.5m wide by 0.5m deep) located approximately every 20 m, in a herringbone pattern 143 

(Figure 1). Peat cutting by hand has also been practiced on Exmoor since medieval times, and 144 

features indicate that large amounts of peat have been removed for domestic use (Riley, 2014).  145 

 146 

Figure 1. Map showing the location of the two catchments studied (a and b), and sampling locations with details of the 147 
drainage network for Aclands (c) and Spooners (d), covering an area of 19.5 ha and 46.5 ha respectively. 148 

A monitoring experiment was set up to study three drainage ditches in each catchment, 149 

representative of a small, medium and large ditch (and referred to herein as Experimental Pools 150 
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(EP)), as well as the outlet of each catchment (Flume), giving a total number of sampling points of 151 

eight. The characteristics of each monitoring location are presented in Table 1. Data collection for 152 

water quality parameters started in October 2011 and is ongoing; results are however reported up 153 

to the period of restoration (April 2013). 154 

Table 1. Details of each location monitored as part of this study, with ditch depth and width measured at the sampling 155 
location, and peat depth averaged along the entire ditch. 156 

Site EP 
Drain 

class 

Peat depth 

(m) 

Ditch depth 

(m) 

Ditch 

width (m) 

Contributing 

area (m
2
) 

Aclands 

1 Small 0.36 0.14 0.40 1,430 

2 Medium 0.35 0.34 1.30 11,220 

3 Large 0.33 0.55 1.80 53,160 

Flume Outlet 0.40 1.30 2 195,030 

Spooners 

1 Small 0.50 0.31 0.30 1,770 

2 Medium 1 0.49 1 500 

3 Large 0.70 0.86 0.50 5,340 

Flume Outlet 0.70 0.90 1 464,830 

2.2. Water quality analysis 157 

Storm-based, flow-integrated, water sampling was carried out across all sites using automatic pump 158 

samplers (Teledyne ISCO, USA) linked to pressure transducers located in the channel (Impress 159 

Sensors and Systems Ltd, UK), and a telemetry system (Adcon telemetry GmbH, Germany). Each 160 

pump sampler allowed the collection of up to 24 samples on a flow proportional basis. Samples were 161 

then collected as soon as practical, and subsequently stored at <4 °C in the dark prior to analysis 162 

within one week.  163 

For DOC and colour analyses, samples were filtered using syringe filters housing Whatman WCN 0.45 164 

μm filter papers (Wallage and Holden, 2010) and transferred to 30 ml screw cap amber glass bottles. 165 

All equipment was acid washed in 10% HCl solution. Additionally, glass bottles were heated in the 166 

furnace at 450 °C for 4 h. Each analytical batch contained two blanks and one set of triplicates in 167 

order to check for potential contamination and check instrument variability. 168 

DOC analyses were undertaken using UV spectrometry for chemical free substance analysis (TriOS 169 

ProPS analyser, TriOS GmbH, Germany), as this enabled rapid and cost effective analysis of a large 170 

number of samples (Glendell and Brazier, 2014; Sandford et al., 2010). The sensor was fitted with a 171 

deuterium lamp and measured absorption spectra in the range 190-360 nm. The path lengths used 172 

varied between 10 to 50 mm, depending on the colour of the samples. The spectra are used to 173 

distinguish various chemical species and their concentration in the natural sample, and further 174 
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converted to DOC concentrations (mg L-1) using a multivariate software algorithm based on principal 175 

component analysis.   176 

Colour was measured by UV-Vis spectrometry (Unicam UV4-100 analyser, Thermo-Fisher scientific, 177 

UK) set at 254, 400, 465 and 665 nm, using a 40 mm cell. In order to take into account the variability 178 

in cell path lengths between spectrophotometric instruments and studies, the absorbance readings 179 

(au) were converted to standardised absorbance units per m (au m−1) by multiplying the liquid cell 180 

width by the appropriate factor (Mitchell and McDonald, 1992).   181 

For each sample, the colour per C unit (C/C ratio) was calculated by dividing the absorbance values 182 

at 400 nm (Abs400) by the corresponding DOC concentrations (Wallage et al., 2006); the E4/E6 ratio 183 

was determined by dividing the absorbance at 465 nm (Abs465) by that at 665 nm (Abs665) for the 184 

individual samples (Thurman, 1985). pH was measured in the remaining unfiltered solution using an 185 

Accumet AB15/15+ pH meter calibrated (Fisher Scientific, UK) with buffer solutions at pH 4 and 7.  186 

DOC composition is known to have an impact on spectral absorption properties (Dilling and Kaiser, 187 

2002), and the correlation between colour and chemical methods for measuring DOC has been 188 

shown to vary between sites and seasons (Wallage and Holden, 2010). Therefore, a selected number 189 

of samples from each rainfall/runoff event were sent to the South West Water (SWW) analytical 190 

facilities, where samples were analysed for DOC by thermal oxidation (Hach Lange TOC Analyser, 191 

USA) and colour (Segmented Flow Analysis, Skalar, The Netherlands). Spearman’s Rank (rs) was used 192 

to investigate correlations between techniques. Coefficient correlations between DOC measured by 193 

spectrometry and thermal oxidation were 0.89 (P < 0.01, n = 149) and 0.83 (P < 0.01, n = 182) for 194 

Aclands and Spooners respectively; correlations between colour measurements (SWW and in-house 195 

UV-Vis spectrometry) varied between 0.98 (P < 0.01, n =149) for Aclands, and 0.99 (P < 0.01, n = 140) 196 

for Spooners, whilst coefficient correlations between in house absorbance and DOC concentrations 197 

(thermal oxidation method) ranged between 0.95 (Aclands, P < 0.01 and n = 863) and 0.98 198 

(Spooners, P < 0.01, n = 780). A significant overestimation of DOC measured by spectroscopy over 199 

chemical method was observed (Wilcoxon test, P < 0.01, n = 376). To address this issue, 200 

spectroscopic concentrations were recalculated using linear calibration curves between the two 201 

methods established for each rain event. For some events, this calibration was not considered 202 

adequate (i.e. when rs
 < 0.85); colour results, and the correlation between absorbance and DOC 203 

concentrations, were used instead. The linear correlation between recalculated DOC concentrations 204 

and results from thermal oxidation (SWW) showed an overall value of rs = 0.94 and 0.98 for Aclands 205 

(P < 0.01, n = 149) and Spooners (P < 0.01, n = 182) respectively. 206 

2.3. Other data collected 207 

Details on the water quantity monitoring set up, rating curves and discharge calculations are found 208 

in Luscombe et al. (forthcoming, b). Briefly, flow in the channel was measured in each drain using an 209 

in-situ pressure transducer placed in a polypropylene stilling well. On each of the small, medium and 210 

large drains, depth to water table and overland flow along and also perpendicular to the drain were 211 

measured using a high density of 16 instrumented dip wells. All equipment was linked to an ADCON 212 

telemetry system, and data recorded on a 15 minute time step. The outlet of each catchment was 213 

instrumented by a trapezoidal and h-flume for Aclands and Spooners respectively, and equipped 214 

with an ISCO 2150 area-velocity meter (Teledyne ISCO, USA) to measure flow. Each catchment was 215 

equipped with a NOMAD Portable Weather station (Casella, USA), recording temperature and 216 
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rainfall data at 15 minute intervals. Rainfall data were collected using a 0.2 mm tipping-bucket rain 217 

gauge in each catchment. 218 

2.4. Data analysis 219 

A wide range of rainfall/runoff events of magnitudes were sampled across all drains at both sites. To 220 

account for this temporal variability, data were summarized and analysed on an event basis. Event 221 

based data analysis has been widely undertaken at other peatland sites in the past (e.g. Austnes et 222 

al., 2010; Glendell et al., 2014; Worrall et al., 2008), however, no standard technique to define what 223 

constitutes a rainfall/runoff event has yet been developed for upland hydrology. Here, events were 224 

separated using the following criteria, based on Luscombe et al. (forthcoming, b) and Glendell et al. 225 

(2014). The start of a flow event was identified as the start of rainfall lasting over 15 minutes and 226 

with breaks of less than 60 minutes. In order to account for baseflow discharge and existing flow 227 

levels within each ditch, the instantaneous discharge at the start of the event was used as the 228 

baseflow level and subtracted from all discharges during the event. The event ended when the 229 

discharge returned to the initial, pre-event level. If the discharge did not return to its initial value, 230 

the event ended when flow reached its lowest value before the next increase in response to rainfall. 231 

Any rainfall break of over 3 hours marked the start of a new event.  232 

For each flow event, the following hydrological parameters were calculated: total precipitation (P in 233 

mm), peak rainfall (Pp mm h-1), total event discharge (Q in m3), peak Q (m3 s-1), event duration (D in 234 

hours), and lag from peak rainfall to peak Q (Lp in min).  235 

Sample collection did not always cover the whole duration of the event, and the number of samples 236 

and their spacing also varied between events and sites. In order to ensure a good representation of 237 

water quality during flow events, events with more than three samples collected, and covering over 238 

75% of the total discharge of the event were selected; other events were discarded from the 239 

analysis. The total number of events ranged between 5 and 13, for Aclands, and 9 and 13 for 240 

Spooners (Table 2). To account for variations in flow and number of samples between events, flow 241 

weighted mean concentrations (FWMC) were calculated for DOC (expressed in mg L-1) using 242 

equation (1) (Dinsmore et al., 2013), with Ci the instantaneous concentration, Qi the instantaneous 243 

discharge, and ti the time step between subsequent measurements. 244 

      
∑           

∑       
        

Other parameters, i.e. Abs400, pH, C/C and E5/E6 ratios, were averaged per event. 245 

Instantaneous loads were calculated by multiplying concentration of each sample (Ci) by discharge 246 

(Qi), and further averaged over the time period of the event. For each event, total loads over the 247 

time sampled were calculated using Equation 2 (Walling and Webb, 1985; Littlewood, 1992): 248 

          (
∑         

   

∑    
   

)           

with F the total DOC load carried over a time period, K the number of seconds in the time between 249 

samples, Qr the mean discharge from the continuous record throughout the event, Qi the 250 

instantaneous discharge, Ci the instantaneous concentration, and n the number of samples. Two 251 
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events in October 2011 were removed from the load analysis at Spooners’ flume, as discharge 252 

calculations were shown to be unreliable for this time period, further affecting load calculations.  253 

Where data are grouped per season, the hydrological year was used, with winter covering the period 254 

from the 1st October to 31st March, and summer running from 1st April to 30th September (Gordon et 255 

al., 2004).  256 

To investigate the influence of climatic parameters and hydrological changes on decomposition and 257 

DOC losses, and address hypothesis 3, antecedent conditions were calculated for the 1, 2, 5, 14 and 258 

30 days prior to the sampling time. These time ranges were chosen to explore the effects of 259 

hydrological changes occurring immediately before the event (1 and 2 days), or at longer timescales 260 

(5 to 30 days prior). For each sample taken, total rainfall and mean temperature were calculated 261 

over these time periods. Depth to water table (DWT) was averaged across all 16 dip wells at each 262 

ditch for the various time periods considered up to the start of the event, and normalised by ditch 263 

depth. This variable will be referred to as normalised DWT. 264 

2.5. Statistical analysis 265 

Data processing and statistical analysis was performed using MS Excel 2010 and SPSS v.21. All 266 

variables included in the analysis were tested for normality (One-sample Kolmogorov-Smirnov test), 267 

and transformed using a natural logarithm or square root where appropriate. One way ANOVA tests 268 

were used to investigate differences of water quality between catchments and drains (Hypothesis 1). 269 

The non-parametric Kruskall-Wallis test was used to investigate the difference between ditches for 270 

non-normally distributed variables (i.e. E4/E6). The relationship between water quality parameters 271 

and transformed hydrological and climatic variable (Hypothesis 2) was examined using Pearson’s 272 

correlation. Differences between winter and summer were tested with a generalised linear mixed 273 

model (GLMM) using ‘R’ (version 2.15.0), as this kind of model can cope with nested and repeated 274 

measurements, but also with uneven number of observations across the different treatments 275 

(Glendell et al., 2014). In order to eliminate co-linearity between climatic variables, Z scores were 276 

calculated.  The control of antecedent conditions over DOC and colour (Hypothesis 3) was examined 277 

by building a stepwise multiple linear regression model considering pH, and all climatic variables 278 

prior and during the event. Both sites were considered simultaneously. 279 

When boxplot diagrams are presented, the top box represents the third quartile and the bottom of 280 

the box represents the first quartile. Both boxes are separated by the median. The whiskers extend 281 

to the highest and lowest values within 1.5 interquartile ranges. Values outside the whiskers are the 282 

outliers in the distribution. 283 

3. Results 284 

3.1. Differences in hydrological response and water quality.  285 

General climatic factors are likely to impact on water quality during the period sampled, and were 286 

therefore investigated for the sampling period (2012). Figure 2 represents monthly climatic 287 

variations during the year sampled, as well as the resulting depth to water table measured across all 288 

EPs. The total rainfall measured in 2012 was 2,462 mm. The sampling year was characterised by an 289 
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unusually wet summer, with total monthly rainfall during the warmer summer months (June to 290 

August) ranging between 291 mm and 171 mm in June and August respectively. This largely 291 

impacted on water storage, with average depth to water table for all EPs being substantially higher 292 

during usually drier times of the year (Figure 2). However, water table levels during the wet but 293 

warm summers remained lower than during the winter months (i.e. November to January). 294 

 295 

Figure 2. Monthly variations of total rainfall (mm), mean temperature (°C) and average depth to water table for each EP 296 
in 2012.  297 

In this general climatic context, the hydrological response of each catchment to rainfall events was 298 

examined to understand if they were behaving in the same way (Hypothesis 1). The summary of the 299 

hydrological statistics of the events analysed for each of the eight sites is presented in Table 2. The 300 

number of events considered in the analysis was similar for all drains, apart from Aclands EP2 301 

(medium size drain) where only 5 events were adequately sampled (i.e. with at least 3 samples taken 302 

over 75% of the total event discharge). For the events sampled, neither the range of triggering 303 

rainfall, nor the time variables (i.e. event duration and lag time between peak rainfall and peak Q) 304 

were significantly different for both catchments. However, the overall response of the two 305 

catchments was very different, with median total discharge values at Spooners being up to four 306 

times larger than Aclands (P < 0.01). Similarly, peak discharge at Spooners was significantly higher 307 

than Aclands (P < 0.01).   308 
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Table 2. Summary statistics of hydrological events monitored for each drain on Aclands and Spooners between 309 
November 2011 and March 2013, with N the number of events,  P the total precipitation, Pp the peak rainfall, Q the 310 
total event discharge, D the event duration, and Lp the lag from peak rainfall to peak Q. 311 

Catchment EP N   
P 

(mm) 

Pp 

(mm h
-1

) 

Q 

(m
3
) 

Peak Q 

(m
3
 s

-1
) 

D 

(h) 

Lp 

(min) 

Event 

sampled 

(%) 

Aclands 

1 

 Median 16.0 5.6 132.2 0.005 26.2 60.0 93 

13 Min 2.0 1.6 15.4 0.001 10.2 15.0 79 

 Max 68.8 21.6 504.3 0.013 40.7 285.0 100 

2 

 Median 19.0 5.6 569.5 0.011 32.7 195.0 95 

5 Min 9.0 4.0 266.6 0.008 18.0 15.0 80 

 Max 61.8 8.0 1553.9 0.036 33.0 1365.0 99 

3 

 Median 19.0 5.6 2270.1 0.031 41.0 135.0 87 

13 Min 8.6 3.2 445.4 0.010 12.5 30.0 77 

 Max 68.8 21.6 8672.7 0.176 85.0 1095.0 99 

Flume 

 Median 22.3 4.8 1617.3 0.030 37.4 180.0 93 

10 Min 3.6 1.6 32.9 0.001 12.2 30.0 77 

 Max 61.8 8.0 7266.0 0.238 60.0 1155.0 98 

Spooners 

1 

 Median 25.4 6.4 566.9 0.013 39.2 105.0 86 

9 Min 3.4 3.2 76.8 0.004 11.7 15.0 76 

 Max 74.6 11.2 2772.5 0.038 74.0 735.0 99 

2 

 Median 25.1 6.4 1689.1 0.047 32.4 112.5 84 

12 Min 12.2 3.2 861.0 0.030 17.2 15.0 75 

 Max 73.8 11.2 6162.1 0.097 72.5 615.0 99 

3 

 Median 24.6 6.4 1026.1 0.033 23.7 195.0 81 

13 Min 9.4 3.2 225.7 0.009 12.0 15.0 75 

 Max 74.6 11.2 3148.7 0.051 46.7 1470.00 98 

Flume 

 Median 20.4 5.2 5698.4 0.164 23.5 97.5 89 

10 Min 8.0 3.2 734.7 0.032 17.2 30.0 81 

 Max 67.8 11.2 24474.2 1.089 53.7 300.0 100 

  312 
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The DOC concentrations measured for all EPs (Figure 3) ranged between 5 and 20.5 mg L-1  for 313 

Aclands, and 4 and 21 mg L-1 for Spooners, with means of 13 mg L-1 (SD = 4.5, n = 41) and 9 mg L-1 (SD 314 

= 4.8, n = 44) respectively. The difference between the two sites was statistically significant (P < 315 

0.05). A similar trend was observed for Abs400, where concentrations were significantly higher at 316 

Aclands compared to Spooners (P < 0.05), with means of 8.15 au m-1 (SD = 3.13, n = 41) and 6.9 au m-317 
1 (SD = 2.63, n = 44) respectively. pH measurements (Figure 3 e) were significantly higher at Spooners 318 

(mean = 4.9) compared to Aclands (mean = 4.7). The difference between both catchments was also 319 

highly significant for instantaneous loads (means of 0.3 g and 0.2 g per event for Spooners and 320 

Aclands respectively, P < 0.01), but not for total loads during the sampling period (means of 14.9 kg 321 

for Aclands, 15.3 kg for Spooners, F = 1.905, P = 0.171). 322 

 323 

Figure 3. Boxplot diagrams of DOC - FWMC (a), Abs
400

 (b), average instantaneous load per event (c), total load per event 324 
sampled (d), pH (e), E4/E6 ratios (f) and, C/C ratio (g), for all events considered on Aclands (n = 41) and Spooners (n= 42).  325 

The characteristics of the DOC lost during events were also significantly different between the two 326 

catchments: although both sites have E4/E6 ratios < 5, which indicates a predominance of humic 327 

acid (HAs) in DOC, significantly higher ratios at Aclands show that this site is losing DOC containing 328 

comparatively more FAs compared to Spooners. The mean E4/E6 ratios across all events were 329 

measured at 2.35 (SD = 0.46) for Aclands and 2.14 (SD = 0.51) for Spooners. However, although 330 

Aclands is losing more DOC and has higher colour concentrations (Abs400), the C/C ratios showed that 331 

the DOC lost at Spooners was significantly more discoloured (P < 0.001, Figure 3 c). 332 

Differences in water quality were also noticeable within catchments, as presented in Figure 4. Both 333 

sites showed a scaling effect with drain size, with DOC, Abs400 and E4/E6 decreasing with increasing 334 

drain size. At Aclands, the highest concentrations were measured in the smallest drain (EP1), and 335 
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lowest concentrations occurred in the main channel (e.g. DOC ranging between 17.3 and 8 mg L-1; 336 

mean Abs400 decreasing between 10.5 and 5.4 au m-1). The difference between sites was statistically 337 

significant for DOC (F = 16.38, df = 3, P < 0.01), Abs400 (F = 13.42, df = 3, P < 0.01), and E4/E6 (Kruskall 338 

Wallis test, P < 0.01). A similar trend was also observed at Spooners, although the lowest 339 

concentrations for all variables studied occurred on the main channel (EP3). Differences between 340 

sites were statistically different for DOC (F = 4.96, df = 3, P < 0.01), Abs400 (F = 5.48, df = 3, P < 0.05) 341 

and E4/E6 ratio (Kruskall Wallis, P < 0.01). Despite higher concentrations, the small drains on both 342 

catchments experienced lowest DOC loads due to lower discharge (Figure 4 c and d), whilst most 343 

export of DOC was measured at the outlet of the catchment. Loads for the events sampled were 344 

especially high at Spooners’ outlet (mean of 37 kg and maximum 97 kg). The difference at the EP 345 

scale was statistically significant for both Aclands (F = 8.1, P < 0.01) and Spooners (F = 21.7, P < 0.01) 346 

for instantaneous loads, and total loads during the time period sampled (F = 9.2, P < 0.01 and F = 7.1, 347 

P < 0.01 for Aclands and Spooners respectively). 348 

 349 

Figure 4. Boxplots summarizing water quality measurements on Exmoor for each drain sampled within the two studied 350 
catchments (Aclands and Spooners):  DOC concentrations (FWMC) (a), Abs

400
 (b), average instantaneous load (c), total 351 

loads per event during sampling times (d), pH (e), E4/E6 index (f) and C/C (g). 352 

Differences between pH levels at the catchment and EP scale were also evident, with Aclands 353 

showing low pH on small to large drains (mean pH between 4.1 and 4.3 for drain 2 and 3 354 

respectively), whereas pH at the outlet of the catchment ranged between 4.6 and 5.8.  For Spooners, 355 
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the lowest pH was measured on EP1 (3.7 to 4.8), whereas values from all three other sampling 356 

locations ranged between 4.5 and 5.7. Clear differences between catchments in terms of C/C were 357 

consistent at the EP level, with more coloured DOC lost consistently at Spooners (C/C between 0.6 358 

and 0.9) compared to all EPs at Aclands (mean of 0.65 across EP1, 2 and 3), whereas greater 359 

variability was measured at the outlet of the catchment.  360 

3.2. First order control of water quality variables  361 

To address Hypothesis 2, Table 3 describes the relationships between water quality parameters and 362 

first order controls. There was a strong positive correlation between Ln DOC and temperature (r = 363 

0.53, P < 0.01), and a strong negative correlation between Ln DOC and Ln Total Q per event (r = -364 

0.33, P < 0.01), but no relationship between DOC and Ln total rainfall during the event. Because of 365 

close inter-correlation between DOC, Abs400 and C/C, similar relationships were found between first 366 

order control parameters and colour and C/C. This analysis also showed that the type of DOC 367 

correlated strongly with all three water quantity variables, as indicated by the E4/E6 ratio. Finally, 368 

there was a good correlation between pH and other water quality parameters (i.e. r = -0.58 for DOC, 369 

r = -0.53 for E4/E6, and r = 0.4 for C/C, with P < 0.01), and with rainfall (r = -0.25, P < 0.05) but not 370 

with temperature or discharge. 371 

Broad seasonal trends of DOC and Abs400 were observed on both sites (Figure 5). Generally, DOC and 372 

Abs400 values on each catchment increased between April and August, coinciding with higher 373 

temperature and lower water tables (Figure 2). However, a drop in concentrations occurred at 374 

Spooners in July, a substantially wetter month. The evolution of E4/E6 throughout the year (Figure 5 375 

d) showed that the humification index follows DOC and Abs400 very closely. Both sites tended to 376 

release comparatively more FAs during the summer months. Finally, the marked difference in C/C 377 

between both catchments was also visible throughout the year, with DOC being more discoloured at 378 

Spooners compared to Aclands, but also more variable during the summer. Seasonal DOC loads 379 

variations showed relatively high values in the autumn, but also the impact of a particularly wet June 380 

2012 (mean total DOC load during the sampling period of 33.9 kg for Aclands and 29.7 kg for 381 

Spooners) in contrast with drier periods in the rest of the summer.   382 
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Table 3. Pearson’s correlation between water quality parameters and first order climatic variables based on events for 383 
both sites (n between 77 and 85). 384 

  Ln DOC Abs
400 E4/E6 C/C pH 

Ln tot Q 

event 

Temp 

Start 

Ln Rain 

event 

Ln DOC 

 

Pearson 

Correlation 
1        

n 85        

Abs
400 

Pearson 

Correlation 
0.936

b 1       

n 83 83       

E4/E6 

 

Pearson 

Correlation 
0.938

b 0.987
b 1      

n 83 83 83      

C/C 

 

Pearson 

Correlation 
-0.726

b -0.509
b -0.516

b 1     

n 83 83 83 83     

pH 

Pearson 

Correlation 
-0.578

b -0.506
b -0.529

b 0.400
b 1    

n 77 76 76 76 77    

Ln tot Q 

event 

 

Pearson 

Correlation 
-0.327

b -0.305
b -0.301

b 0.269
a 0.068 1   

n 85 83 83 83 77 85   

Temp 

Start 

 

Pearson 

Correlation 
0.530

b 0.558
b 0.562

b -0.297
b -0.147 -0.158 1  

n 85 83 83 83 77 85 85  

Ln Rain 

event 

Pearson 

Correlation 
-0.176 -0.238

a -0.220
a 0.142 -0.249

a 0.679
b -0.135 1 

n 85 83 83 83 77 85 85 85 

a
 P < 0.05 385 

b
 P < 0.01 386 



16 
 

 387 

Figure 5. Temporal variations of DOC FWMC (a), Abs
400

 (b), total loads per event sampled (c), E4/E5 (d) and C/C (e), for 388 
Aclands (n = 41) and Spooners (n= 44). 389 

The direct comparison between hydrological winter and summer across all sites (Figure 6) further 390 

confirmed these general trends. Overall, DOC concentrations, Abs400 and E4/E6 were significantly 391 

higher in the summer months (GLMM, P < 0.01), whereas the C/C was significantly lower in the 392 

summer, showing increased losses of less complex and less coloured DOC in the generally drier and 393 

warmer months. Mean loads during the events sampled for all sites ranged between 17.6 kg in the 394 

summer, and 11.6 kg in the winter. This difference was statistically significant (GLMM, P < 0.05).  395 
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 396 

Figure 6. Comparison of winter and summer DOC FWMC (a), Abs
400

 (b), total loads per sampling periods (c), E4/E6 (d) 397 
and C/C (e) during rainfall/runoff events across both catchments (n= 37 for winter, n =48 for summer). 398 

3.3. Importance of antecedent conditions in the control of DOC concentrations in runoff 399 

The results of the stepwise regression conducted to address Hypothesis 3 and gain a better 400 

understanding of the importance of antecedent conditions controlling DOC, are presented in Figure 401 

7. Overall, amongst all variables considered in the model (temperature, rainfall, Q and depth to 402 

water table during the event and at various time scales before the event), 68% of the variance of 403 

DOC was explained by a range of factors (F = 33.2, P < 0.01): total Q during event, the temperature 404 

at the start of each event, and the depth to water table during the 30 days prior to the event.  405 

Amongst the three variables included, depth to water table presented the best partial correlation (r 406 

= 0.73, P < 0.01), followed by total Q during the event (r = -0.52, P < 0.01), and current air 407 

temperature (r = 0.46, P < 0.01).  It is worth noticing that neither pH nor any of the rainfall 408 

parameters were included in the model. Residuals were normally distributed (P = 0.20), and using Z 409 

scores for all variables successfully dealt with co-linearity (VIF between 1 and 1.08). 410 

 411 

Figure 7. Ln DOC determined by multiple regressions, including Ln total Q per event, temperature at the start, and Ln 412 
depth to water table during the 30 days prior to the event as predicting factors (r

2
=0.68).  413 



18 
 

3.4. Variations of fulvic to humic acid ratio with DOC concentrations 414 

The relationship between DOC and the E4/E6 ratio was considered to understand the connection 415 

between DOC lost during rainfall/runoff events and its characteristics (Hypothesis 4). Figure 8 shows 416 

a close relationship between DOC concentrations and E4/E6 ratios (r = 0.92 for both Aclands and 417 

Spooners), indicating that increased DOC concentrations led to more FAs being lost (higher E4/E6). 418 

Nonetheless, these values remained below 5, which means that overall, most of the DOC being lost 419 

was composed of HAs. 420 

 421 

Figure 8. Fulvic to humic ratio (E4/E6) variations with DOC concentrations (FWMC); n = 41 and n = 44 for Aclands and 422 
Spooners respectively. 423 

4. Discussion 424 

4.1. Impact of local spatial differences on DOC losses. 425 

Runoff from damaged deep peat in the north of the UK has been observed to cause low water 426 

quality downstream (e.g. Armstrong et al., 2010), but little is known about the impact of such 427 

damage on shallow peatlands. In this study, two experimental sites were monitored to understand 428 

the spatial and temporal variability of water quality sourced from damaged marginal and shallow 429 

peatlands in Exmoor National Park in the south west of the UK. The work presented here is distinct 430 

from other studies because it takes an event-based analysis approach to understand the influence of 431 

several environmental factors and their interaction on water quality, rather than solely quantify C 432 

fluxes at the single catchment scale. 433 

The first hypothesis tested in this work addressed the effect of spatial variability between 434 

catchments on water quality. Average DOC concentrations during events ranging between 4 mg L-1 435 

and 21 mg L-1 across both catchments were slightly under the national average of 31 mg L-1 436 

measured by Armstrong et al. (2010), and substantially lower than concentrations measured in deep 437 

peat further north, i.e. between 20 and 62 mg L-1 (Wallage et al., 2006), or even reaching 80 mg L-1 438 

(Upper Teesdale; Turner et al., 2013). Similarly, colour values reported for the two Exmoor sites 439 

were significantly lower than measurements elsewhere, e.g. Abs400 reaching 30 Au m-1 (Grayson and 440 

Holden, 2012), but remained over 10 times the EC maximum colour standard for treated water 441 
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(Abs400 of 1.5 Au m-1) (DWI, 2010). Differences between catchments were statistically significant, 442 

Aclands experiencing higher DOC concentrations and colour, more acidic waters and lower C/C. The 443 

two catchments also showed very different hydrological behaviour: for equivalent rainfall events 444 

(i.e. amount of triggering rainfall), although the response time of the two catchments was similar 445 

(i.e. lag and event duration), the total discharge was significantly lower at Aclands. This indicates 446 

that less water is moving in a much shallower peat system (Table 2). These results are also confirmed 447 

by the analysis of Luscombe et al. (Forthcoming, a), who show that, with poorly maintained baseflow 448 

and a significantly flashier hydrological regime, Aclands is generally drier than Spooners. Drier 449 

conditions could subsequently lead to increased decomposition in the peat surface at Aclands 450 

compared to Spooners, as observed in situations of extreme drought by Glatzel et al. (2006). 451 

However, differences in DOC concentrations were cancelled out by variations in discharge, causing 452 

similar losses of DOC export for the two catchments during the sampling period (Figure 3).  453 

4.2. Importance of first order controls on water quality. 454 

Several bodies of work point towards the importance of first order factors (e.g. temperature, pH, 455 

discharge) on DOC production or transport in northern peatlands (Clark et al., 2007, 2012; Dinsmore 456 

et al., 2013; Koehler et al., 2009). Therefore, it was hypothesised that such parameters would also 457 

influence the shallow, marginal peatlands in the south west of the UK (Hypothesis 2). Results 458 

presented here have shown that, amongst all factors considered, temperature had a strong 459 

correlation with DOC concentrations (r = 0.53, P<0.01), as observed elsewhere (e.g; Billett et al., 460 

2006; Freeman et al., 2001a; 2001b; Kirschbaum, 1995), most likely because increased temperature 461 

stimulates microbial activity, which in turn can lead to increased decomposition. This finding also 462 

explains seasonal variations observed across the two catchments, with DOC concentrations being 463 

higher during summer months, as water table levels are drawn deeper compared to winter months 464 

(Figures 2, 5 and 6), and the microbial activity is stimulated by warm conditions (Bonnett et al., 2006; 465 

Dinsmore et al., 2013; Koehler et al., 2009; Scott et al., 1998). Similar conclusions were drawn in 466 

modelling work by Lumsdon et al. (2006) who found that temperature, used as a proxy for microbial 467 

activity, increases the solubility and hydrophilicity of DOC. 468 

Discharge was found to be negatively related to DOC concentrations (r = -0.33, P < 0.01), as observed 469 

in Clark et al. (2008) and Billett et al. (2006) for catchments in Northern England and Scotland 470 

respectively. However, this relationship was weaker than that of temperature and DOC. This finding 471 

implies that DOC production has perhaps more importance than transport in controlling DOC 472 

concentrations. The negative relationship also confirmed that DOC concentrations decreased as the 473 

flow of water in the drain increased, caused by a dilution of peat water enriched in DOC with rainfall 474 

(Clark et al., 2007, 2008; Worrall et al., 2002).  475 

Finally, there was a significant negative relationship between pH and DOC concentrations (r = -0.58, 476 

P < 0.01), which indicates that more acidic waters led to higher DOC concentrations. This negative 477 

correlation is in disagreement with the findings of Clark et al. (2005) who showed that DOC tends to 478 

increase at high flow because of its increased solubility as pH increases during rewetting after 479 

droughts. However, acidity has also been shown to be an indicator of the origin of water during flow 480 

events, with storm runoff from peaty water being more acidic compared to relatively alkaline water 481 

of groundwater origin (Soulsby et al. 2003). It could therefore be hypothesised that Aclands had a 482 

generally higher contribution of peaty water during storm events compared to Spooners, as found 483 
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by Grocott (2011) in the same catchments, because of differences in peat properties and 484 

hydrological functioning. This would further suggest that DOC concentrations are related to water 485 

movements in the peat rather than changes in soil water chemistry. However, this assumption will 486 

be tested in further analysis (Grand-Clement et al., forthcoming). 487 

4.3. Control of antecedent conditions over DOC concentrations 488 

Antecedent conditions (depth to water table, temperature, discharge and rainfall) were considered 489 

here, both over short- (1 to 5 days) and long- (14 and 30 days) time-scales, in order to try to 490 

understand how environmental factors impacted on DOC concentrations (Hypothesis 3). These 491 

parameters were explored because they have been observed to influence either DOC production in 492 

soils or transport during rainfall events (e.g. Clark et al., 2009; Tipping et al., 1999; Wilson et al., 493 

2011b) in deeper peat. The results from the stepwise linear regression model showed that both 494 

long-term (i.e. depth to water table in the 30 days prior to the event) and immediate changes (i.e. 495 

both temperature and discharge during the event) simultaneously affected DOC concentrations. This 496 

finding indicates that overall, long-term aeration due to low water table levels, was an important 497 

control on DOC concentrations (r = 0.73), confirming the idea that it stimulates microbial activity and 498 

aerobic production of DOC in shallow peatlands as well as deep peat (Glatzel et al., 2006). This also 499 

explains the higher concentrations of DOC measured at Aclands compared to Spooners, as Aclands 500 

was shown to be a significantly drier catchment, and seasonal variations with higher concentrations 501 

at times of deeper water table. Although neither pre-existing temperature, discharge nor rainfall 502 

were direct contributing variables to the model, water tables are generally influenced by water input 503 

(rainfall), temperature (controlling evapotranspiration), and movement through the peat; these 504 

factors are therefore likely to be indirectly considered in the model. pH was not included in the 505 

results of the stepwise regression either, which indicates that it did not exert a significant control 506 

over DOC concentrations in the peatlands of Exmoor, unlike findings by Clark et al. (2005; 2012) in 507 

conditions of flow recovery from drought. However, the lack of baseflow results in the present study 508 

prevents the inclusion of a pre-existing water pH variable in the statistical analysis, and therefore the 509 

full understanding of the role of pH in conditions of drought recovery.  510 

The other two parameters included in the stepwise regression, temperature (r = 0.46) and discharge 511 

(r = -0.52), were considered over much shorter time scales, i.e. that of the storm event. The findings 512 

confirmed previous conclusions estimating that transport of the DOC available through the 513 

movement of water is essential, but also highlighted the impact of temperature at the time of the 514 

event. Water table drawdown has been shown to increase the temperature sensitivity of DOC 515 

production (Clark et al., 2007), therefore linking decomposition and transport processes. Moreover, 516 

Worrall et al. (2008) also state that physical processes forcing the movements of DOC within the soil 517 

profile, i.e. diffusion and sorption, are influenced by temperature. This would mean that, in the 518 

present case and at the timescale considered, temperature would be influencing DOC diffusion, and 519 

therefore transport, rather than DOC production. Therefore, the interaction between both 520 

production and transport of DOC also helped to explain the difference in the variability in DOC 521 

concentrations between summer and winter. In the winter, when water tables are higher, DOC 522 

concentrations are generally low across all sites. In the summer however, drier and warmer 523 

conditions will allow increased production of DOC, but DOC concentrations tend to be limited by 524 

production, i.e. how much is available to transport since the last rainfall event. This especially 525 

explains variations in DOC during the summer of the sampling period (Figure 5): exceptionally wet 526 
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June and July have led to increased water table and a subsequent drop in concentrations in July. 527 

Loads following high rainfall in June were high due to the large availability of decomposition product, 528 

but became limited by production in the following month (July 2012). The unusually wet summer 529 

during the year considered (2012) also means that DOC exports were not higher in the winter, but 530 

during the unusually wetter summer months.  531 

Results presented herein underline the importance of the long-term production stage in DOC export 532 

in shallow peatlands. During the rainfall/runoff event, the effect of temperature on physical 533 

processes, such as hydrophilicity (Lumsdon et al., 2005) can facilitate this export. Finally, transport is 534 

the dominant control of DOC over short time scales, operating over the duration of a rainfall/runoff 535 

event. These factors are also likely to be relevant to deeper peat soils, with the drained layer 536 

promoting decomposition. As restoration has generally been observed to successfully increase water 537 

table levels and to decrease discharge (e.g. Wilson et al., 2010), there is potential for reducing, in the 538 

long-term, both DOC productions and export.  539 

4.4. Changes in DOC characteristics 540 

Hypothesis 4 addressed the quality of DOC, investigating whether greater DOC losses from increased 541 

decomposition would be characterised by a greater loss of less complex FAs. Overall, with 542 

humification ratios (E4/E6) consistently below 5 throughout the year, the DOC from Exmoor was 543 

predominantly composed of HAs. Similar results were measured in DOC from the geographically 544 

close (and also maritime) peatlands of Wales, albeit from deeper, restored environments (e.g. E4/E6 545 

ranging between 1.5 and 4 immediately after restoration) (Wilson et al., 2011a). Further North in 546 

deeper peatlands, results from Moor House National Nature Reserve showed a predominance of FAs 547 

at low flow (E4/E6 between 5.5 and 7) only shifting towards  HAs (E4/E6 ratios of about 3) during 548 

rainfall events (Worrall et al., 2002). This shift was explained by an exhaustion of the stock available 549 

for export. The samples in the present study were taken at high flow only, which prevents 550 

understanding of whether this process is important in shallow peatlands.  However, the analysis of 551 

pore water by Wallage et al. (2006) in northern England showed significantly lower ratios in drained 552 

peatlands compared to pristine ones (medians of 5.56 and 6.67 respectively). If the values measured 553 

in stream water in the present study give an indication of the humification of the peat, the 554 

consistently low values (HAs dominated) and comparatively low proportion of FAs show that the 555 

peat studied here were perhaps more humified than other sites. This could suggest an influence of 556 

the dense drainage network on the humification process on Exmoor.  557 

Results from Exmoor also showed a clear positive and linear relationship between DOC and E4/E6 (r2 558 

= 0.92 for both Aclands and Spooners), as well as seasonal variations and site differences. All this 559 

evidence points towards the products of increased microbial activity and decomposition (occurring 560 

both temporally and spatially) containing, comparatively, a higher proportion of more labile and less 561 

degraded FAs, despite being still predominantly composed of HAs. Our results agree with those of 562 

Worrall et al. (2002) in the deep blanket peat of Moor House NNR, where peaks in E4/E6 occur after 563 

the longest dry period and decrease as they are progressively flushed during storm events, whilst  564 

Clark et al. (2012) observed that drought produced more fractions that were less coloured. Results 565 

by Wallage et al. (2006) also showed significantly higher E4/E6 ratios in pore water at the surface 566 

(median = 6.23, range: 1.5-14) compared to deeper layers, explained by the presence of an upper 567 

layer of high microbial activity dominated by FAs from newly decomposed plant and litter, whereas 568 
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deeper, the decreased decomposition process is producing more mature and coloured HAs. Overall 569 

the findings presented here indicate that the DOC on Exmoor is mostly composed of complex HAs 570 

compounds, but that dryness increases the input of less complex compounds due to increased 571 

decomposition. 572 

4.5. Potential for restoration 573 

A general trend of increasing DOC losses throughout the Northern Hemisphere has been observed 574 

(Evans et al., 2005; Freeman et al., 2001a). Recent modelling work has also shown that peatlands in 575 

the south west are likely to be affected by climate change, and could be outside their bioclimatic 576 

envelope as early as 2050 (Gallego-Sala et al., 2010), thereby compromising their ability to  577 

accumulate carbon. The direct impact of increased temperature on decomposition has generally 578 

been shown (Kirschbaum et al., 1995; Ritson et al. in review), and could affect both deep and 579 

shallow peatlands. However, the effect could be even greater in shallow and already dry peatlands, 580 

as temperature and long-term dryness were identified here to have a critical influence over water 581 

quality and the release of DOC. The greater proportion of the drained peat mass is also likely to 582 

make shallow peatlands less resilient to future climate change, compared to their deeper 583 

counterparts. 584 

Moreover, temperature increase was shown to enhance the decomposition of more recalcitrant C 585 

compounds (Hilasvuori et al., 2013), and could therefore have an increased effect in the south west, 586 

with shallow peatlands already losing predominantly HAs. Restoration has generally been found to 587 

be a successful method to raise water table and increase water storage (Wilson et al., 2010; Worrall 588 

et al., 2007a). On Exmoor, it has also been shown to have the potential to improve a wide range of 589 

ecosystem services (Grand-Clement et al., 2013). However, the effects of higher water tables on 590 

changes in DOC concentrations are unclear (e.g. Wilson et al., 2011b; Worrall et al., 2007a). 591 

Maintaining consistently high water tables seems nonetheless key to increase water storage, and 592 

therefore decrease the export of fluvial C from these environments (Gibson et al., 2009).  593 

5. Conclusion 594 

The results presented here constitute a significant contribution to the understanding of DOC losses 595 

in shallow, damaged peatlands. More precisely, this work has shown that dryness is a critical factor 596 

controlling DOC concentrations, both through time and space. Long-term dryness, as seen here 597 

through the depth to water table 30 days before the storm event, impacted on DOC production, 598 

whilst discharge was the main control over transport at the time scale of the rainfall/runoff event. 599 

Temperature during events significantly affected concentrations, possibly acting on the solubility of 600 

DOC. Finally, DOC concentrations on Exmoor were overall dominated by complex HAs, but 601 

decomposition products led to an increased input of less complex and coloured FAs in summer 602 

months.  603 

Considering the predicted impact of future climate change, it is likely that restoration of shallow 604 

peatland can, in the long-term, prevent increased peat decomposition, or at least in the short-term 605 

decrease the total fluvial flux of C from these environments. The results presented here will be a 606 

solid and invaluable base to understand how these shallow, marginal peatlands respond to 607 

restoration and then behave under changing climates.  608 
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