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Abstract

Pollution of the marine environment by large and microscopic plastic fragments and their

potential impacts on organisms has stimulated considerable research interest and has

received widespread publicity. However, relatively little attention has been paid to the fate

and effects of microplastic particles that are fibrous in shape, also referred as microfibres,

which are mostly shed from synthetic textiles during production or washing. Here we assess

composition and abundance of microfibres in seafloor sediments in southern European

seas, filling gaps in the limited understanding of the long-range transport and magnitude of

this type of microplastic pollution. We report abundances of 10–70 microfibres in 50 ml of

sediment, including both natural and regenerated cellulose, and synthetic plastic (polyester,

acrylic, polyamide, polyethylene, and polypropylene) fibres. Following a shelf-slope-deep

basin continuum approach, based on the relative abundance of fibres it would appear that

coastal seas retain around 33% of the sea floor microfibres, but greater quantities of the

fibres are exported to the open sea, where they accumulate in sediments. Submarine can-

yons act as preferential conduits for downslope transport of microfibres, with 29% of the

seafloor microfibres compared to 18% found on the open slope. Around 20% of the microfi-

bres found had accumulated in the deep open sea beyond 2000m of water depth. The

remoteness of the deep sea does not prevent the accumulation of microfibres, being avail-

able to become integrated into deep sea organisms.

Introduction

Although already mentioned in the published literature in the early 1990s [1], the term micro-

plastic has been increasingly used since 2004 to describe plastic particles of a few mm in size in

the marine environment [2]. Microplastics derive from fragmentation of larger plastic items

entering by rivers, sewage, beach littering, runoff, tides and winds [3, 4], and also by direct

release of small particles such as plastic pellets [5], cosmetic microbeads [6] and clothing

microfibres [7]. Plastic has been released to the marine environment since the 1930s, and is

now ubiquitous in the oceans. Plastic debris have been reported in surface and subsurface

waters [8, 9, 10], in the seafloor from the shoreline [11, 12] to the deep sea [13, 14] and in polar
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ice caps [15]. The accumulation of microplastics in the marine environment, and the many

questions concerning their distribution and implications for marine wildlife and human

health, has recently raised public awareness. Intensive research on this topic has resulted in a

rapidly increasing number of publications (see for instance [16]). Consequently, policy recom-

mendations have been provided too to tackle this emerging environmental problem (e.g. [17]).

Microfibres are among the most prevalent type of microplastics observed in the marine

environment [11, 18]. However, despite microfibres are highly visible, brightly colored and

stand out against fine grained sediments or marine aggregates, only a few studies dealing spe-

cifically on plastic microfibre pollution in the marine environment have been published to

date. Synthetic (polyester, acrylic, polypropylene, polyamide) microfibres may be entering the

ocean via wastewaters [11, 19, 20] and atmospheric fallout [21], and have been found in surface

waters [22, 23], sea ice [15] and in coastal [24, 25, 26] and deep water sediments [14, 27]. It has

been already shown that microfibres are ingested by pelagic [28, 29, 30] and benthic coastal

organisms [25, 31, 32, 33]. The recent discovery of microfibre ingestion and internalization by

deep-sea organisms in a natural setting by [34] has underlined the need to quantify of this

human waste in the deep marine environment.

Given the particularly high concentration of microplastics found in surface waters of the

Mediterranean Sea [35, 36], microfibre quantification in sediments is required to confirm or

dismiss the relative importance of the deep sea as a microplastics sink. Indeed the landlocked

character and limited outflow of surface waters of the Mediterranean Sea, its densely populated

coastline including seasonal tourist peaks and intensive fishing, shipping and other industrial

activities, made it candidate to be the sixth great floating microplastic accumulation zone after

the five subtropical gyres [35, 37]. Here we present new data on the distribution of plastic

microfibres after a widespread survey of seabed sediments in southern European seas includ-

ing the northeast Atlantic Ocean (Cantabrian Sea), the Mediterranean Sea (Alboran Sea, Cata-

lan Sea, Cretan Sea and Levantine Sea) and the Black Sea at depths from 42 m at the

continental shelf to 3,500 m in the abyssal plain (Fig 1). Such a wide depth range allowed inves-

tigating patterns of microfibre distribution along the coastal-deep sea continuum.

Materials and methods

Seabed sediment samples were obtained using either a multicorer or a Van Veen grab at 29 sta-

tions in the southern European seas (Fig 1) during 10 oceanographic cruises, from 2009 to

2015. Once on deck, the first cm of each core/grab sample was immediately subsampled to

minimize exposure to the air and stored in a clean aluminium container or a polyethylene zip-

lock plastic bag and kept in a cold dry place. No specific permission was required for collecting

the sediment samples for this study, as most of the activities were carried out in waters beyond

national jurisdiction, except for some shallower continental shelf stations, where appropriate

permissions were inherent to research projects funded by the Greek and Spanish governments.

None of the field studies involved endangered or protected species.

Microfibre extraction was performed in the designated clean Microplastic Laboratory at the

University of Plymouth. The laboratory was thoroughly cleaned daily, access restricted and

100% cotton muslin placed as a flap over the door opening. All precautions were taken to

avoid contamination of samples, including repeatedly rinsing the used equipment with ultra-

pure water, using only glass material covered with aluminium foil, wearing 100% natural fibre

laboratory coat and clothing, and scrubbing hands and nails regularly. Daily records of air pol-

lution were made and no synthetic microfibres were seen.

Plastic microfibres were extracted from 10 ml of sediment using 200 ml of saturated sodium

chloride (NaCl) solution (1.2 g cm-3) [2]. Three sequential extractions were performed using a

The imprint of microfibres in the deep sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0207033 November 5, 2018 2 / 12

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207033


glass fibre filter to separate suspended debris from settled sediment components after shaking

for 30 seconds and settling for 5 minutes. This process was repeated 3 times for every sample.

Blanks were run every 2 samples and did not indicate any source of potential contamination.

As expected due to the low volume of sample used [38], all microplastics found were

microfibers.

We report on plastic microfibres in 50 ml of sediment (MF50 from here onwards) for ease

of comparison with other environmental matrices (e.g. ice and water) and other studies [14].

MF50 converts to microfibres per 50 grams of dry weight assuming an average sediment dry

density of 1 g cm-3 (based on own data) and to microfibres per unit of area assuming a 1cm-

thick sediment layer.

Since the density of the saturated NaCl solution is only 1.2 g ml-1, high-density fibres such

as polyester or cellulose, and regenerated cellulose, may not float. However, we found that

those fibres were efficiently extracted from the sediments. Fibre adherence to air bubbles

formed when vigorously shaking the saturated NaCl solution with the sediment sample may

have subsequently conveyed the fibres to the surface of the supernatant, according to the

Stoke’s Law, from where they were then filtrated. Indeed dense fibre separation by flotation

due to the action of air microbubbles have been widely used in mining and paper and pulp

Fig 1. General map of the southern European seas. The location of surface sediment sampling stations for the analysis of plastic fibres is shown as red open circles.

Black boxes mark areas that are shown as zoom-ins below. The map was generated using the GEBCO_2014 grid (http://www.gebco.net/data_and_products/gridded_

bathymetry_data/) and ArcGIS version 10.3 (http://desktop.arcgis.com/en/arcmap/).

https://doi.org/10.1371/journal.pone.0207033.g001
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industries. Air flotation as a tertiary treatment in wastewater effluents has also been proven to

efficiently remove 95% of the microfibers [39].

All filters were examined under a binocular microscope, and any debris that was of unnatu-

ral appearance was transferred to sealed containers and subsequently identified by spectrome-

try. A Vertex 70 Fourier transform infrared (FT-IR) spectrometer at the University of

Plymouth was used for polymer identification of each microfibre found. The spectra obtained

were compared to a spectral database of synthetic polymer (Bruker I26933 Synthetic fibres

ATR library). Bruker’s Opus spectroscopy software was used for measurement, processing and

evaluation of the IR spectra. All data generated during this study are included in S1 Table.

The normality of the data was tested using the Kolmogorov-Smirnov test before performing

a one-way ANOVA to explain the differences between number of microfibres in the investi-

gated seas (i.e. Cantabrian Sea, Alboran Sea, Catalan Sea, Cretan Sea, Levantine Sea and Black

Sea) and geomorphic environments (i.e. continental shelf, open continental slope, submarine

canyons and deep basin). Statistical significance of the data was assumed when p< 0.05.

The grain size distribution of surface sediments was determined using a Coulter LS230

Laser Diffraction Particle Size Analyzer. Organic matter in the samples was first oxidized with

10% H2O2.

Results and discussion

A total of 202 microfibres were found in the 29 surface sediment samples analysed. Fibres

length varied between 3 and 8 mm, and the most abundant colours were red (27%), white

(23%), blue (21%) and black (19%). Fibre abundance ranged between 10 and 70 MF50 and

averaged 34.8 ± 18.3 MF50, which is equivalent to 6,965 ± 3,669 microfibres m-2. Microfibres

abundances are of the same order of magnitude as those reported in deep-sea sediments in the

subpolar North Atlantic, the NE Atlantic and the SW Indian oceans [14], and significantly

more abundant (2 to 8 orders of magnitude larger) than floating fibres in ocean surface and

subsurface waters [22, 23, 40]. Even though low floating microfibre abundances may be

directly related to the relatively large (usually 330 μm) mesh size of the net [41], this is new evi-

dence, after [14], confirming deep-sea sediments as a major sink for microfibres. The fibres

identified by spectrometry included cellulose (79.7%), polyester (polyethylene terephthalate)

(12.9%), acrylic (polymethyl methacrylate) (4.5%), polyamide (1.0%), polyethylene (1.0%), and

polypropylene (1.0%) (S1 Table).

The main type of microfibre found in seafloor sediments was thus essentially not plastic but

cellulose fibres, that consisted of both dyed natural cellulose (cotton, linen) and manufactured

fibres composed of regenerated cellulose, e.g. rayon. Rayon is a man-made fibre produced

from dissolving cellulose-based raw material, an industrial process that requires an intensive

use of water and energy, and extensive insidious toxic chemical treatment [42]. Because the

chemical composition and properties of the natural polymer is significantly modified during

the manufacturing process, rayon has been generally considered when reporting man-made

microfibres [14, 22, 43]. The main uses of both natural and regenerated cellulose fibre are

clothing and apparel, industrial textiles such as mechanical rubber goods, and feminine

hygiene products. Natural and regenerated cellulose fibres have been recently found in atmo-

spheric fallout [21], rivers [44], macrofauna [45] and fish [46, 47, 48].

The second most abundant fibre was polyester, which is the most used synthetic fibre

worldwide [49]. Because of its high resistance, polyester is utilized in all types of clothing, espe-

cially high-performance outdoor wear and home furnishings. The third most abundant fibre

was acrylic, which is usually blended with wool and mostly used in clothing and home furnish-

ings too. Then we found polyamide (i.e. nylon), which is used in clothing, home furnishing
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and industrial products such as fishing gear because of its lightness and resilience, and polyeth-

ylene and polypropylene, which are the lightest fibres, often used in sportswear due to their

high resistance and moisture repellence.

These extremely thin (less than 0.1 mm in diameter) but resilient fibres are mostly dis-

charged into wastewater from domestic washing machines [11, 18], each garment producing

between 1,900 and 700,000 fibres [19, 18]. In the last decades, the use of synthetic polymer

fibres by the clothing industry has overtaken that of natural cotton. Declining cotton produc-

tion year-on-year, the price and properties of synthetic fibres (i.e. resistance, moisture-wick-

ing), and the growing demand for clothing, have made plastic fibres more desirable to

manufacturers. Accordingly, a direct link between washing clothes and marine pollution can

be established based on the similar proportions of the plastic polymer found in textiles

(polyester > polyamide > polypropylene > acrylic) [49], sewage (polyester > polyamide >

acrylic) [18, 50], coastal habitats (polyester > acrylic > polyamide > polypropylene) [51], and

the deep sea floor (polyester > acrylic > polyamide) (this study). Furthermore, the atmo-

spheric compartment should not be neglected as an additional mode of microfibre spreading,

as a similar proportion of cellulose and polyester fibres have been recently observed in the

atmospheric fallout in an urban environment [21].

Our results show the dominance of cellulosic fibres over synthetic polymers. In contrast,

synthetic fibres dominate the global fibre market, with 65% of the share, while natural and

man-made cellulosic fibres altogether comprise only a 35% [52]. Shedding of fibres is a rela-

tively new concept in textile development [53], and, to our knowledge, no studies have yet

investigated microfibre shedding from cellulose vs. plastic textiles. Assuming a roughly equiva-

lent release of fibres of each polymer to the aquatic environment, data suggest that polymer

density is the key component controlling the spreading of microfibres to the deep.

Despite sedimentation of nonspherical particles such as fibres is still poorly understood,

and may depend on drag forces on the different shapes and curvature of the fibres [54], cellu-

losic fibres are significantly denser than seawater and are thus more likely to sink. Accordingly,

cellulose is found in large quantities in deep-sea sediments, reaching up to 27.9 MF50

(Table 1). Polyester is also denser than seawater and, consequently, is also found in high quan-

tities in the deep sea, with up to 4.5 MF50 ml. After being injected into the marine

Table 1. Densities and abundances of microfibres.

Microfibre polymer, and natural and laboratory solutions Density

(g cm-3)

Abundance

(MF50)

Polypropylene 0.90 0.3

Polyethylene 0.95 0.3

Seawater 1.02 —

Polyamide 1.16 0.3

Acrylic 1.20 1.6

Saturated NaCl solution 1.20 —

Polyester 1.37 4.5

Regenerated cellulose 1.44 27.9

Natural cellulose 1.50

Densities of the different types of polymers extracted from surface sediment layers of the southern European seas,

along with those of seawater and the hypersaline (saturated) solution used for microfibre extraction, and abundance

of each polymer in the analysed sediments. Fibres denser than the saturated NaCl solution were recovered because

they attach to raising air bubbles formed when shaking the solution in the laboratory (see Methods section). MF50:

microfibres in 50 ml of sediment.

https://doi.org/10.1371/journal.pone.0207033.t001
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environment from sewage disposal sites and wastewater treatment plants [55], suspended

high-density microfibres may be able to settle out from the freshwater plume when the flow

rate decreases and microfibre buoyancy becomes negative. Then, fibres may behave as very

fine grained sediments, being repeatedly resuspended and transported towards the shelf edge

and downslope by storm-induced turbidity currents, dense shelf water cascading, hyperpycnal

flows or internal waves [56, 57]. In contrast, low-density microfibres such as polyethylene and

polypropylene may float and sink only when negative buoyancy is reached due to ballast effect

by e.g. colonization by organisms, adherence to phytoplankton and/or aggregation with

organic debris [14, 58]. Accordingly, polyethylene and polypropylene are the most abundant

compounds found afloat in Mediterranean Sea waters (68% of all particles [36]). Very low

abundances of these two low-density polymers (<2%) in the deep sea support our view

(Table 1), which, by the way, would have settled due to biofouling [58].

Very little is known about the fate of plastic debris in the marine environment. The degra-

dation of polyester, polyamide, polyethylene and polypropylene occurs primarily through

thermo- and UV-induced reactions [59, 60, 61]. Therefore, once microfibres sink in the deep

sea the rate of degradation may decrease dramatically [60]. However, there are some evidences

that microbes may also play a role via physical or metabolic means [62, 63]. The time required

to completely degrade to CO2 plastics is estimated to be on the order of hundreds to thousands

of years [64]. Even less is known about the degradation of natural and regenerated cellulose in

the marine environment. It has been shown that biodegradability of regenerated cellulose is

higher than that of natural cellulose [65], or that dyed fibres are somehow protected from to

microbial degradation [66]. However it is currently unknown the durability of cellulosic mate-

rial in the deep sea.

Relative abundance of fibres in different marine environments (i.e. continental shelf, open

continental slope, submarine canyons and deep basin) and region (i.e. Cantabrian Sea,

Alboran Sea, Catalan Sea, Cretan Sea, Levantine Sea and Black Sea) have been quantified (Fig

2, S1 Table).

There were no statistically significant differences among geomorphic environments (F(3,

25) = 1.87, p = 0.16) or seas (F(5, 23) = 2.17, p = 0.09) as determined by one-way ANOVA,

which illustrate the ubiquitous distribution of fibres in the marine environment. However, not

achieving a statistically significant result does not mean that there is no spatial variation of

microfibre abundance at all. Abundance of microfibres in each marine environment relative to

the total abundance in the sea floor show that continental shelf sediments retain 33% of micro-

fibres found in the sea floor. Beyond the shelf edge fibres are found in significantly different

proportions in submarine canyons (29%) and open slopes (18%). Predominance of coarse sur-

face sediments in shelf and, to a lesser extent, submarine canyon environments, show the pref-

erential dispersal pathway for the sand-sized material that moves from the shelf and that

ultimately may end up in the deep sea (Fig 2). Supported by many references on the important

role of submarine canyons as main conduits for sediment transport to the deep sea [56, 68,

69], this would suggest that are also preferential conduits for microfibres transport. Further-

more, the role of canyons in carrying microfibres and other pollutants to the deep is tremen-

dously reinforced when they are the loci of highly dynamic shelf to basin export processes as

those occurring in the NW Mediterranean Sea, which result from intense coastal storms and

dense shelf water cascading [70, 71]. These oceanographic processes cause concentrations of

organochlorine compounds, polybrominated diphenyl ethers, perfluoroalkyl substances and

anthropogenic metals in deep-water sediments of the NW Mediterranean Sea that are amongst

the highest recorded in the marine environment [72, 73, 74, 75]. Finally, 20% of the microfi-

bres accumulate in the deep sea beyond 2,000 m of water depth.
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The highest fibre densities are found in the Cantabrian Sea, followed by the Catalan Sea and

the Alboran Sea in the NW and SW Mediterranean Sea, respectively, while the lowest densities

are found in the Eastern Mediterranean Sea and the Black Sea. Despite reasonable fit to human

population density in the adjacent continental landmass (Fig 2), accumulation of microfibers

in the deep sea may be mainly related to the prevailing oceanographic conditions and the pres-

ence of active sediment transport processes.

A recent study has provided for the first time evidence of microfibres being ingested by

deep-sea organisms in a natural setting [34]. Microfibres of acrylic, polypropylene, rayon and

polyester were found inside benthic organisms of a wide range of taxa from phyla Cnidaria,

Echinodermata and Arthropoda at 334 to 1795 m of water depth in the Equatorial mid-Atlan-

tic and the SW Indian oceans. However, the long-term impact of microfibre ingestion on

deep-sea organisms is yet to be determined and probably depends on many factors including

type of polymer and abundance of microfibres in the deep-sea floor [14], capacity to adsorb

harmful chemical substances [76, 77], as well as organism physiology and ecology [34]. This

applies not only to plastic microfibres but also to cellulose fibres, which associated dyes or

additives could also be potentially harmful for the biota [45]. In any case, the persistent nature

of microfibres [60] makes evident the need to design effective management strategies for

reducing emissions to the environment, such as changes in textile composition, washing con-

ditions or filtration of effluents [19].

Fig 2. Boxplot showing microfibres found per 50 ml of sediment (MF50) per marine environment (a) and region (b). Volume percentage of sediments> 63 μm

and human population per square kilometer in the adjacent continental landmass [67] are also shown. The caps at the end of each box indicate the extreme values. The

box is defined by the lower and upper quartiles, and the line in the center of the box is the median. The dotted line shows mean microfibre abundance. Number in

brackets show the number of samples.

https://doi.org/10.1371/journal.pone.0207033.g002
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Supporting information

S1 Table. Details of sampling location and quantity (microfibres per 50 ml of sediment,

MF50) and type (polymer) of fibres found.
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