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1 ABSTRACT 

 

Endogenous retroviruses (ERVs) are fossils of ancient retroviral infection in the 

germline. In primates they represent around 5% of the genome sequence. During time 

spent in the genome, being transmitted in a Mendelian fashion, copies of ERVs have 

accumulated mutations, which rendered them inactive. However, some of them (the 

most recently integrated ones) are still able to transcribe and produce viral proteins, 

although few are capable of re-infection. In the past often considered as unharmful 

‘junk DNA’, recent evidence link ERVs with cancer and several inflammatory diseases. 

For example, a few reports demonstrate that ERVs are involved in tumour development 

using shRNA knock-down and over-expression systems, and their overexpression tends 

to correlate with inflammation status, generating the hypothesis that they can act as 

pathogen-associated molecular patterns (PAMPs) and bind to innate sensors.  

 

Focusing on the Human (Homo sapiens) and the rhesus macaque (Macaca mulatta), 

the main aims of this thesis are to look for further evidence linking ERVs to tumour 

development, with possible implications for therapies, and test the hypothesis that 

ERVs are PAMPs by seeing if individuals with higher levels of ERV expression exhibit 

a higher innate immune response. The work on ERVs in cancer involved the human 

ERV type-K HML2 lineage (HERV-K (HML2)), an ERV lineage found in humans, in 

Merlin-deficient tumours. These are schwannomas that arise from Schwann cells and 

for which effective drug therapy is urgently needed. The work on ERVs in 

inflammation involved the Papio cynocephalus ERV (PcEV), in rhesus macaques 

infected with simian immunodeficiency virus (SIV) infection. 

 

The main outcomes are as follows: regarding HERV-K (HML2) in human 

schwannomas, (i) HERV-K (HML2) proteins are overexpressed in schwannoma 

compared to Schwann cells; (ii) these proteins are released from the tumour; (iii) 

regulation of HERV-K (HML2) expression in the tumour appears to involve the 

transcription factor TEAD; (iv) schwannomas are potentially treatable using anti-

HERV-K (HML2) monoclonal antibodies and antiretroviral drugs since both decreased 

proliferation in vitro. Regarding PcEV in SIV-infected macaques: (i) PcEV is 

transcriptionally active; (ii) PcEV can be retrieved at low levels in the blood of some 

macaque animals; (iii) the levels of PcEV in cells correlates strongly with the strength 
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of the innate response as measured by cellular levels of STAT1 transcripts – an 

interferon-stimulated gene (ISG).  

Other recent research has shown that human ERV lineages, namely HERV-W and 

HERV-H, have been co-opted and are involved in placentation and pluripotency during 

development, respectively. The present work suggests that ERVs are involved in a wide 

range of biological process and supports the need for further research into the biological 

significance of ERVs for their hosts. 
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5 INTRODUCTION 

 

5.1 Retroviridae 

 
The Retroviridae appears as a family of viruses just after 1970, the date of the discovery 

of the reverse transcriptase (Baltimore, 1970; Temin and Mizutani, 1970). To briefly 

present the context, it was known that some oncoviruses (an old name for viruses 

causing cell transformation and cancer) such as the prototypic Rous Sarcoma Virus 

(RSV), were RNA viruses (Crawford and Crawford, 1961). In the 1960s it was 

discovered that virus production, by such virus-transformed cells, was inhibited using 

inhibitors of DNA synthesis, implicating an unknown DNA intermediate in the viral 

cycle (Bader, 1964). Howard Temin suggested that the genome of an RNA virus could 

be converted into DNA. Ultimately, an RNA-dependent DNA polymerase, termed 

Reverse Transcriptase, was independently discovered by Temin and David Baltimore, 

who both looked for and found the enzyme activity in purified virions. This finding 

went against the central dogma of molecular biology that genetic information always 

flowed from DNA to RNA to protein (Baltimore, 1970; Telesnitsky and Goff, 1997; 

Temin and Mizutani, 1970). In fact, during viral replication, a retrovirus reverse 

transcribes RNA into DNA. The DNA intermediate is then integrated in the genome 

and is defined as provirus. Another feature which defines retroviruses, along with other 

retroelements, is integration into the host DNA. It may even be their most important 

feature, as only retroviruses can become part of the host genome through infection.  

 

5.1.1 Retrovirus viral particle 

 
Members of the Retroviridae family share the following common features: looking 

from inside to outside, the virion is presented as two positive sense single-stranded 

RNA molecules, protected by a core composed of the capsid proteins, all surrounded 

by an envelope made of bilayer lipid membrane harboring viral envelope glycoproteins 

(Figure 1).  

 

The viral RNA constitutes the viral genome. It is composed of an internal region coding 

for viral components (gag-pro-pol-env) flanked by 2 identical long terminal repeat 

(LTR) sequences: LTR-gag-pro-pol-env-LTR. 
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5.1.2 Genome of a member of the Retroviridae 

 
The LTRs in the RNA stage of the viral life cycle are composed of R-U5 sequences at 

the 5’ end, and U3-R at the 3’ end. In the provirus, at each end, there is a U3-R-U5 

sequence (Figure 2). U3 (Unique sequence 3) contains promoters such as the TATA 

box, and enhancers such as CAAT boxes along with responsive elements to 

transcription factors. Some responsive elements are shared among viruses, some are 

not. U3 also contains the polyadenylation signal (AATAAA). R (repeat sequence) 

usually contains transcription start and termination sites. U5 in some viruses possess 

responsive elements to transcription factors. The sequence that binds tRNA is used as 

a primer for the reverse transcription, and the sequence needed for genome packaging 

into the viral core is found between U5 and the first open reading frame (ORF) (Figure 

2).  

 

 

 

Figure 1: Schematic representation of a retroviral particle/virion.  

MA: matrix; CA: capsid; NC: nucleocapsid; PR: protease; RT: reverse transcriptase; 

IN: integrase; SU: surface unit of the envelope glycoprotein; TM: transmembrane unit 

of the envelope glycoprotein. The virion is composed of two genomic RNAs linked to 

NC. Attached to the genomic RNAs, there are RT, tRNA and IN. PR cleaves Gag into 

CA proteins that assemble to constitute the viral core. The viral core is surrounded by 

a lipid membrane that harbors envelope glycoproteins, constituted by two subunits 

bound together, the SU and the TM. The core is linked to envelope by the MA.  
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Figure 2: Structure of retroviral genome in virion and in the host. 

In the virion, RNA genome is organized as follows: a short repeat sequence at each end 

named R; U5 is a unique sequence element after R at the 5’ end; PBS is the primer 

binding site that bind the tRNA required to prime the reverse transcription, located 

between U5 and the beginning of the gag ORF; is the sequence required for RNA 

genome packaging into the viral core, then gag, pro-pol and env ORFs; and U3 which 

is a unique sequence element before R at the 3’ end. In the host genome, the provirus 

has the same organization with complete Long Terminal Repeats (LTRs) that 

correspond to U3, R and U5. U3 usually contains the TATA box where transcription 

initiation complex bind, and a polyadenylation signal, which initiates transcription 

termination. At the 5’ end, the start of R corresponds to the transcription start site (TSS), 

and the poly-A tail is added at the end of R at the 3’ end. 

 
 

The gag ORF generally encodes a polyprotein made of nucleocapsid (NC) which 

interacts with the genome, capsid protein (CA) which composed the core, and matrix 

protein (MA) which links the core to the envelope (Figure 1 and 2). 

 

The pro-pol ORFs encode for the viral enzymes: the protease (PR) which cleaves Gag 

polyprotein into all sub-mature components described above (NC, CA, MA). The 

reverse transcriptase (RT) which converts RNA into DNA during the viral cycle. The 

integrase (IN) which integrates the provirus into the host genome (Figure 1 and 2). 

 

The env ORF encodes for a glycoprotein present on the viral envelope (Env), which 

plays a role in viral entry. Env is composed by a surface unit (SU) which binds to 

surface receptors on host cells, linked to a transmembrane unit (TM) which mediates 

virion-host cell membrane fusion allowing the virus to enter into the cell (Figure 1, 2 

and 3).  
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5.1.3 Viral cycle 

 
The viral cycle can be presented in two phases: an early phase, which corresponds to 

events happening between the viral attachment to the cell and the integration of the 

provirus into the host genome; and a late phase during which the virus components are 

produced and packed to make new progeny viruses. 

 

During the early phase, the SU binds to a cellular receptor present at the surface of the 

plasma membrane, this step is known as the viral attachment. Such an event produces 

a conformational change of the TM which reveals a fusion peptide responsible for 

joining the viral membrane and the plasma membrane of the host cell together resulting 

in a fusion of the two lipid membranes, allowing the viral core to be released inside the 

host cell. Following viral entry, the viral genome undergoes reverse transcription. The 

R-U5-gag-pro-pol-env-U3-R genomic RNA is converted to the U3-R-U5-gag-pro-pol-

env-U3-R-U5 proviral DNA molecule. The Capsid with the newly formed DNA 

molecule migrates to the nuclear pore, where DNA is transported inside the nucleus. 

There, IN that is attached to the viral genome, enzymatically cuts the host genomic 

DNA and ligates the provirus in it. At the end of this phase, the provirus is part of the 

host cell genome. 

 

The provirus functions as a host gene. LTRs contain host-like promoter sequences 

allowing the provirus to be transcribed as capped and poly-adenylated messenger RNAs 

(mRNA), which: on one hand constitute a pool of newly formed viral genomes, and on 

the other hand, provide a source of mRNAs for producing viral proteins. Two major 

mRNAs are distinguished: - an unspliced mRNA encoding both Gag and Gag-pro-pol 

polyproteins. Later in the viral cycle, during virion release from the cell, PR cleaves the 

Gag polyprotein into NC, CA, MA, and the Pol polyprotein into RT, IN (Figure 3, 

reviewed in Konvalinka et al. (2015));  - a spliced mRNA which spans gag-pro-pol, 

linking the env ORF to the 5’end of mRNA (Figure 3). The spliced mRNAs encode for 

the envelope glycoprotein Env. Env contains a signal peptide necessary for entry into 

the endoplasmic reticulum (ER) and subsequent protein glycosylation. The 

glycoprotein is likely further glycosylated in the Golgi apparatus, before being 

transported to the cell surface.  
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After the Gag polyprotein is produced, it assembles with the viral genome. The MA 

from Gag makes the link between the viral genome-Gag polyprotein complex and the 

envelope glycoproteins. Finally, the new viruses bud from the plasma membrane which 

provides a lipid bilayer membrane to the virions. After budding, the protease cleaves 

Gag into mature NC, CA, and MA to raise mature and infectious retroviral particles. 

Inhibiting the protease results in non-infectious particles (Kohl et al., 1988). 

 

 

Figure 3 : Replication cycle of a prototype retrovirus 

The viral particle attaches to the cell through interaction between the SU and a cellular 

receptor. Such interaction is followed by a fusion of the virus and the cell membrane, 

and the entry of the core in the cytoplasm. The core is uncoated and the RT reverse 

transcribes the genomic RNA into DNA. The viral DNA is transported in the nucleus 

and integrated to the host genome by IN. The provirus contains transcription motifs on 

its LTRs, able to recruit cellular transcription machinery. LTR-driven transcription 

produces unspliced RNAs that serve as genomic RNA for new virions, and are used to 

produce Gag, Pro and Pol polyproteins; as well as a spliced RNAs that are translated 

into the Env. Gag and Gag-pro-pol polyproteins are synthesized by free cytoplasmic 

polysomes, they assemble with the genomic RNA in the cytoplasm to form an immature 

core structure. Env is synthesized in the ER and is modified by glycosylation and 

cleavage (to give the SU and the TM, joined together) by cellular furin proteases, it is 

then inserted into the cell membrane. The immature core is linked to Env glycoproteins 

by the MA. The core buds and is engulfed by a piece of the cell membrane. During the 

process, PR cleaves Gag and Gag-pro-pol polyproteins into MA, CA, NC, RT, and IN 
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to form mature virion. Inactivating the PR usually results in non-infectious virions. 

Adapted from The Retroviridae, p.160 (Luciw and Leung, 1992). 

 

 

5.2 Classification 

 
Over time, there have been three main ways of classifying retroviruses, each bearing 

witness to historical decisions within the virology community. Such changes in 

classification were due to the understanding that two viruses could cause a close-related 

disease, but, at the same time, be very distinct – e.g.  Both Avian leukosis virus (ALV) 

and Human T-cell lymphotropic virus type 1 (HTLV-1) cause blood malignancies in 

their respective hosts, but, in respect of the updated classification, ALV is a simple 

retrovirus belonging to the genus of Alpharetroviruses, while HTLV-1 is a complex 

retrovirus belonging to the Deltaretroviruses. Furthermore, it appears that the focus 

should be on the structure of the genome to define new and closely related viruses, 

rather than the clinical outcome.  

 

5.2.1 Classification based on virion morphology 

 
In total, six distinct morphologies of viral particles have been described: A-type, B-

type, C-type, D-type, lentiviral type, and spumaviral type particles (figure 4) (Luciw 

and Leung, 1992). Although, in the past, retroviruses used to be distinguished by the 

type of particles they produced, do note that this classification is still used in parallel 

sometimes, as morphological structure of retroviruses using electron microscopy 

provides additional information for describing the virus. 

 

A-type 

A-type particles are distinguishable from all the others as they are strictly intracellular. 

They resemble a condensed circular structure in cell cytoplasm and sometimes within 

the ER, which can be explained by the fact that such retroviruses lack the env ORF. 

Members of this type are usually endogenous – e.g. mouse Intracisternal A-type 

Particles (IAP).  

 

B-type 

B-type particles are present as an enveloped particle with a condensed hexagonal core, 

which is located at one side of the particle (eccentric). The intracellular phase resembles 
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that of A-type particles. Budding of B-type particles can occur once the core is fully 

assembled, something which occurs intracellularly. Both endogenous and exogenous 

viruses can produced B-type particles – e.g. Mouse mammary tumour virus (MMTV, 

both endogenous and exogenous). 

 

C-type 

C-type particles are produced as enveloped particles with a central, electron-dense core. 

They differ from A-type, B-type and D-type as the core appears to assemble during the 

budding process rather than beforehand. These viruses are both exogenous and 

endogenous. – e.g. HTLV-1 (exogenous), Murine leukemia Virus (MLV/MuLV) 

(endogenous and exogenous).  

 

D-type  

D-type particles are enveloped particles with a ‘rod-shaped’ core. The core is assembled 

before the budding event. These viruses are usually exogenous. – e.g. Mason-Pfizer 

monkey virus (MPMV); Simian retrovirus (SRV) 

 

Lentivirus 

Lentiviral particles resemble D-type particles. However, the shape of the core in the 

virion is more conical in structure, and the core assembles while the virus buds. The 

prototype virus here is the Human Immnunodeficiency Virus (HIV). Lentiviruses are 

exogenous only. 

 

Spumavirus 

Spumaviral particles resemble the structure of C-type particles. The core is central in 

the virion, but it assembles before the virus buds. Another difference is the virion 

membrane which appears denser, suggesting a higher glycosylation state of the 

envelope glycoproteins. The prototype virus is Human foamy virus/Human 

spumaretrovirus (HFV/HSRV). 

 

5.2.2 Old classification 

 
The old classification was based on the outcome of viral infection on the host, hence 

three main subfamilies were distinguished: the oncovirinae as causing malignancies, 
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the lentivirinae as causing chronic and long-lasting infections resulting in cytopathic 

diseases (‘lenti’ is latin for slow), and the spumavirinae, for which there is not a known 

disease condition (Coffin, 1992). 

 

5.2.3 New classification 

 
The new taxonomy builds links between viruses with similar genomic traits: 

organization of gag-pro-pol reading frames, presence of accessory proteins (that take 

part to the infection, but are not packed in the particle. Also, their existence sets the 

boundary between simple and complex retroviruses: simple retroviruses are devoid of 

accessory proteins, complex retroviruses possess some), and sequence similarity. Such 

classification is based mainly on building phylogenic trees from sequences of 

retroviruses. The new classification raised up seven genera of retroviruses: 

Alpharetroviruses – Avian leukosis virus (ALV)-related such as RSV; Betaretroviruses 

– MMTV-related as Human endogenous retrovirus type-K (HERV-K), Jaagsiekte 

sheep retrovirus (JSRV); Gammaretroviruses – MLV-related, Feline leukemia virus 

(FeLV), Human endogenous retrovirus type-W (HERV-W), Baboon endogenous 

retrovirus (BaEV), Simian endogenous retrovirus (SERV); Deltaretroviruses – Human 

T cell lymphotropic virus (HTLV), Bovine leukemia virus (BLV); Epsilonretroviruses 

– Walleye dermal sarcoma virus (WDSV), Walleye epidermal hyperplasia virus 

(WEHV); Lentiviruses – Human immunodeficiency virus (HIV), Simian 

immunodeficiency virus (SIV), Equine infectious anemia virus (EIAV), Feline 

immunodeficiency virus (FIV), Bovine immunodeficiency virus (BIV); Spumaviruses 

– Human foamy virus (HFV), also known as Human spumaretrovirus (HSRV), Bovine 

foamy virus (BFV), Simian foamy virus (SFV).   

 

Today, the Retroviridae family is classified under the order of Ortervirales which 

harbor all reverse-transcribing viruses except Hepadnaviridae (Hepatitis B viruses) 

(Krupovic et al., 2018). The Retroviridae include two subfamilies: (i) the 

Orthoretrovirinae which possesses six genera – Alpharetrovirus, Betaretrovirus, 

Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus and Lentivirus; and (ii) the 

Spumaretrovirinae which possesses five genera – Bovispumavirus, Equispumavirus, 

Felispumavirus, Prosimiispumavirus and Simiispumavirus (International Committee 

on Taxonomy of Viruses (ICTV)). 
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Table 1 : Comparison between ''old" and "new" taxonomy. 

Adapted from the Retroviridae, p.43 (Coffin, 1992). 
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Figure 4: Virion morphologies. 

Schematic representation of retroviral morphologies based on electron microscopy of 

mature virions and assembly intermediates in infected cells. Gray circle in cytoplasm 

or budding membranes depicted immature core. Viral-coded envelope glycoproteins 

are inserted in the membrane and appears as knobs on the external surface of cells where 

virions bud. A-type particles, are exclusively intracellular, found inside ER cisternae or 

free in the cytoplasm. B-type particles, show intracellular assembly of the core before 

budding, and mature virions possess an eccentric core that is tightly condensed. The 

intracellular form of C-type particles is an electron-dense crescent juxtaposed next to 

the cell membrane, and the mature virion presents a centrally located concentric core. 

D-type particles, show intracellular assembly of the core before budding, and mature 

virions possess an eccentric core in form of a cylinder with an electron-dense mass 

inside. The intracellular form of lentiviruses is an electron-dense crescent juxtaposed 

next to the cell membrane like C-type particles, and the mature virions present a core 

in shape of a truncated cone with an electron-dense mass inside. Spumaviruses show 

intracellular assembly of the core before budding, and mature virions possess a 

centrally located small concentric core, smaller in comparison to C-type, and highly 

prominent knobs. Adapted from The Retroviridae, p.170 (Luciw and Leung, 1992). 
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5.3 The discovery and classification of HERVs 

 

5.3.1 The discovery of HERVs 

 

The knowledge of Rous Sarcoma Virus (RSV), an RNA-based, cancer-causing virus in 

chickens was established in 1961 (Crawford and Crawford, 1961). Chickens were 

originally diagnosed for viral infection through the presence of viral antigens by the 

complement-fixation test for avian leukosis (COFAL) test. However, it was observed 

that some apparently healthy chickens were positive in these antigen detection tests. 

Payne and Chubb (1968) showed that the viral antigens in these chickens were possibly 

encoded by the genome. The authors showed inheritance of a viral antigen controlled 

by a single autosomal dominant gene, as chickens crossbred from an antigen-positive 

and -negative pure lines were positive. During the same period, it was common to 

culture chicken fibroblasts transformed with RSV. It is interesting to note the fact that 

the viral strain of RSV with that transforming capacity was the BRYAN-strain (Weiss, 

2006). This strain does not harbor a gene encoding the viral Env. It is replaced by a 

sequence encoding the Src protein, responsible for oncogenic cell transformation (Jong 

et al., 1992). Cells infected with the BRYAN-strain required co-infection with a helper 

virus, the Avian Leukosis virus (ALV), to release RSV viral particles capable of 

reinfection (Hidesaburo Hanafusa, Teruko Hanafusa, 1963). In theory fibroblasts 

transformed with RSV cannot release newly-formed viral particles without ALV co-

infection. However, viral particle release from transformed cells in culture, free of 

helper virus was described (Weiss, 1967) and ALV particles are indistinguishable from 

RSV when observed under an electron microscope (Dougherty and Di Stefano, 1965). 

Here came the second evidence of potentially endogenous retroviral sequence. The 

authors suggested that the Env necessary to release RSV particles could have an 

endogenous origin. This cryptic RSV released in culture free of helper virus was named 

RAV-0 (Vogt, 1967). It was in 1979-80, that the evidence proving the existence of 

retroviral-like sequences, responsible for the viral particles produced in healthy 

chickens, was finally produced by Astrin and colleagues (Astrin et al., 1980, 1979; 

Astrin and Robinson, 1979). They harvested DNA from many chickens, separated it 

using electrophoresis, and transferred DNA to nitrocellulose membrane for 

hybridization. They designed a probe from RSV sequence and detected endogenous 

viral loci (termed ev) in the chickens’ DNA. More interestingly, the chickens which 

harbor one specific ev, designated ev 2, produced viral particles. By this, the authors 
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conclude ev 2 codes for RAV-0. The discovery of endogenous retroviruses emerged 

from these virology and genetics experiments in chickens. 

 

Around the same time, similar findings were obtained in mice. Spontaneously-released 

viral particles were described in cultures of murine cells. In 1969 Aaronson et al. 

showed that some cell lines derived from BALB/c mouse embryos were able to release 

murine leukemia virus (MLV) (Aaronson et al., 1969). MLV is a retrovirus first 

discovered in 1951, associated with leukemias and lymphomas (Gross, 1951). The fact 

that MLV is spontaneously released in culture suggested MLV to be encoded by the 

genome, hence the genetic analysis of viral gene expression of endogenous MLV was 

studied in great details in the 1970s and 1980s (Weiss, 2006). Another retrovirus, the 

Mouse mammary tumour virus (MMTV), associated with breast cancer in mice, was 

also discovered to be endogenous. It was reported that several mice of the O20 strain, 

free of exogenous MMTV, treated with urethane (highly carcinogenic) and irradiated, 

contracted mammary tumours within a year; the tumours presented retroviral-like 

particles observed using electron microscopy (Timmermans et al., 1969). These 

findings highly suggested that the genome of the O20 mouse encoded a retrovirus, of 

which the production could be induced. The retrovirus released spontaneously was 

likely the MMTV, since tumour cell-free extracts from treated-mice and injected in 

BALB/c mice, induced mammary tumour development in the latter (Timmermans et 

al., 1969). 

 

Endogenous retroviruses have many times been linked with tumours. Taking that into 

account, humans were screened for endogenous retrovirus. The first evidence of human 

endogenous retroviruses (HERVs) was established by Callahan et al. (1982) in 1982 

and Ono (1986) in 1986. They detected HERV in humans by hybridization of human 

DNA using probes derived from MMTV and Hamster Intracisternal A particle (IAP), 

respectively. IAP is an A-type endogenous retrovirus present in rodents such as mice 

and Syrian hamsters. 
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5.3.2 The naming and classification of ERVs 

 

In general, ERVs have been named after the species in which they were discovered, by 

adding one or two letters referring to the species before “ERV” (Stoye and Coffin, 

1987). Examples are Human ERV (HERV), Mouse ERV (MERV or MuERV), and 

Rabbit ERV (RERV). An issue exists related to the fact that one name may refer to 

different species ERV, an example is the CERV that can refer to Chimpanzee ERV 

(Polavarapu et al., 2006) or Crocodilian ERV (Jaratlerdsiri et al., 2009). To over-come 

this problem, consideration are to be made towards the use of the scientific for each 

species, and a new nomenclature has been proposed (Gifford et al., 2018). 

 

Regarding the classification, it has been driven by the methodology and wet-lab 

techniques available over the last 30 years from their discovery. Initially, since they 

have been discovered using low stringent hybridization, ERVs were grouped with the 

virus they were similar too (reviewed in Escalera-Zamudio and Greenwood (2016); 

Gifford et al. (2018)). For example, MMTV-based probe can bind some HERV 

sequences (Callahan et al., 1982) and are part of the same “family”. In fact, “HML” 

stands for human MMTV-like.  

 

Next, a classification based on the complementary tRNA that serves as primer for the 

reverse transcription was attempted. Incidentally, HERV-K was named after the tRNA 

that correspond to the lysine. Today, this system of classification is obsolete and is 

rather unsuitable as it is clear now that retroviral members of the same “lineage” (e.g. 

HERV-Ws) does not necessarily use the same tRNA to prime the reverse transcription 

(Grandi et al., 2016).  

 

Within the genomic era which allows the sequencing of the genome and in silico 

sequence analysis, it is possible to realize phylogeny and evolution studies of ERVs, 

making for example a the relationship within a lineage more clear. In fact, by comparing 

sequences for retroviral genes it is possible to imply a parental relationship (link several 

retroviruses to a common ancestor) and predict all genomic proviruses that have 

possibly arisen from the same retroviral infection event in an ancestor (reviewed in 

Gifford et al. (2018)). There has been an attempt to classify ERVs as it is done for 

exogenous retroviruses: thus, all ERVs that are related to the Gammaretrovirus are 
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grouped in the “ERV class I” family; the ones related to the Betaretrovirus are grouped 

in the “ERV class II” family; and the ones related to the Spumaretrovirus are grouped 

in the “ERV class III” family (figure 5) (reviewed in Gifford et al. (2018)).  

 

 

Figure 5: ERV classification 

The main groups of ERVs are class I, II and III which are related to the 

Gammaretrovirus, Betaretrovirus and Spumaretrovirus, respectively. The figure is from 

Jern et al., (2005). 
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5.4 HERV-K (HML2) genome 

 
A total of 91 HERV-K (HML2) proviruses can be found in the human genome and are 

classified in two types: type 1 that represents 26% of all proviruses and possess a 290-

nucleotide (nt) deletion at the junction between pol and env ORF (nt 6501-6790); type 

2 represents 74% of all proviruses and lacks the deletion (Ono et al., 1986; Subramanian 

et al., 2011).  

 

A prototypic HERV-K (HML2) viral genome is 9469nt long and consists of a LTR 

sequence (nt 1-968); followed by an untranslated region from nt 969-1111 that contains 

the PBS (nt 971-988); gag-pro-pol ORFs (nt 1112-6701), with pro and pol being 

translated via two ribosomal frameshifts (Figure 6) ; env ORF (nt 6701-8790), and 

another LTR sequence (nt 8502-9469) (Ono et al., 1986; Turner et al., 2001). The LTRs 

possess promoter capacity, able to initiate transcription at the 5’ end of the viral 

genome. Multiple responsive elements were reported, such as binding sites for MITF-

M, NF-AT, NF-B, Oct4, Sp1 (GC boxes) and YY1 (Fuchs et al., 2011; Gonzalez-

Hernandez et al., 2012; Grow et al., 2015; Katoh et al., 2011; Knössl et al., 1999). The 

transcription start site was reported at position nt 793; and the transcription termination 

site at position nt 878, suggesting a length of 792nt for U3 (nt 1-792 at 5’; nt 8502-9294 

at 3’), 84nt for R region (nt 793-876 at 5’; nt 9295-9378 at 3’), 92nt for U5 (nt 877-968 

at 5’; nt 9379-9469 at 3’) (Fuchs et al., 2011).  

 

Altogether, HERV-K (HML2) proviruses produce four main transcripts (Figure 6):  

(a) An unspliced transcript which encodes for the polyproteins Gag and Gag-pro-pol. 

In Type 2, that transcript possesses a stop codon after pol and does not translate the env. 

In Type 1, it is ambiguous but there is a suggestion that it could produce a pol-env 

polyprotein (Chen et al., 2013).  

 

(b) A spliced transcript, which results from ‘(a)’ after splicing of the region 

corresponding to gag-pro-pol. The splice donor site 1 (SD1) and splice acceptor site 1 

(SA1) are at positions nt 1077 and 6433, respectively (Mayer et al., 2004). Type 1 

possess the 292nt deletion about 7nt after SA1, so it lacks the starting ATG of env 

located at 6451 and may not produce the full length Env glycoprotein through the 

spliced transcript ‘(b)’(Ono et al., 1986).  
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(c) A double-spliced transcript that encodes for an accessory protein named Rec. It is 

responsible for transcript export from the nucleus to the cytoplasm, in a similar fashion 

as HIV Rev and HTLV Rex proteins (Magin-Lachmann et al., 2001; Magin et al., 

1999). This transcript can be built from Type 2 proviruses only. It results from a second 

splicing of ‘(b)’ at positions nt 6711 and 8411, for the second SD/SA pair (SD2 and 

SA2) (Mayer et al., 2004).  

 

(d) A double-spliced transcript raised from Type 1 proviruses only encodes Np9, 

defined as a HERV-K (HML2) oncogenic protein (Chen et al., 2013). It is produced 

from ‘(b)’by a second splicing event that involves a SD (SD3) and SA at positions nt 

6494 and 8117, respectively (Armbruester et al., 2002).  Note that the SA at 8117 in 

type 1 HERV-K (HML2) proviruses corresponds to SA2 at 8411 (nt 8411) on type 2 

proviruses. 

 

Gag ORF encodes a 75kDa polyprotein, precursor of MA (15.3kDa), SP1 (1.5kDa), 

p15 (15kDa), CA (27.7kDa), NC (10kDa), QP1 (2.5kDa) and QP2 (2.1kDa), that 

shapes the core of the retroviral particle (George et al., 2011).  

 

Pro encodes the Protease (nt 2912-3914, which is equivalent to a 334 amino-acid length 

sequence, when separately considered from Gag) that processes Gag polyprotein.  

 

Pol encodes the viral enzymes that possess the RT activity (nt 3998-4624, which is 

equivalent to a 209 amino-acid sequence) responsible for the reverse transcription of 

the viral RNA into DNA upon viral entry into the host cell; and the integrase activity 

(nt 5630-6169, which is equivalent to a 180 amino-acid length sequence) that integrate 

the DNA synthetized by RT into the host genome (Ono et al., 1986).  

 

Env encodes a 70kDa polyprotein that consists of a signal peptide (SP) reported to be 

13kDa in size (Ruggieri et al., 2009), SU (44kDa) and TM (26kDa) domains. The signal 

peptide directs the Env polyprotein to the ER, where the latter undergoes glycosylation. 

Approximately 11 glycosylation sites can be reported using the rule N-X-S/T 

(Asparagine-any amino acid-Serine/Threonine) with X different of a P (Proline) (as 

reported in UniProtKB, Q69384, corresponding to HERV-K108 env, termed also 

ERVK6). Considering glycosylation, the size of Env range from 70-95kDa, with SU 
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ranging from 42-55kDa and TM from 26-38kDa (Hanke et al., 2009). A group also 

reported an over-glycosylated TM with a size of 55kDa (Kämmerer et al., 2011). 

 

Rec encodes a 14.5kDa protein and Np9 is approximately 9kDa. 

 

5.4.1 HERV-K (HML2) viral cycle/replication 

 
A retroviral cycle is described as follows: (a) attachment of envelope glycoproteins and 

viral entry in the host cell, (b) reverse transcription of the viral RNA genome by RT, 

(c) integration in host genome, (d) transcription driven by the LTRs and translation of 

new viral proteins, (e) assembly of the viral proteins, (f) budding and release of new 

virions from the host cell. 

 

HERV-K (HML2) has a very weak replication capability, defined here as the ability to 

produce viral particles able to infect and integrate the host genome and then repeat the 

process. Firstly, only one env sequence coming from HERV-K108 was demonstrated 

to be functional, meaning it can attach and allow cell-virus fusion (Dewannieux et al., 

2005). Secondly, few HERV-K (HML2) proviruses appear to encode a functional RT 

(HERV-K113; HERV-K10). Also, the RT activity was more than three times lower 

than that of the MLV and AMV (avian myeloblastosis virus), replication-competent 

retroviruses used as positive control in the studies (Berkhout et al., 1999; Contreras-

Galindo et al., 2017). Thirdly, even though a functional integrase encoded by HERV-

K10 (Kitamura et al., 1996) was described, a recent study suggest that HERV-K 

(HML2) viruses can be transmitted but do not integrate in the genome of newly 

infected-host cells (Contreras-Galindo et al., 2015). Finally, although there is 

transcription from LTRs (Hanke et al., 2016; Hohn et al., 2013), HERV-K (HML2) 

proteins could mainly be detected in human tumours, stressing that HERV-K (HML2) 

proteins can assemble and produce particles only in specific conditions. In fact, HERV-

K (HML2) virions were described in melanoma, breast cancer and lymphoma (Hohn et 

al., 2013). Also, there is no HERV-K (HML2) viremia, as no particles can be found in 

the blood of human donors (Bhardwaj et al., 2014). These findings correlate with the 

relatively low number of HERV-K (HML2) insertions in the modern human genome 

(Marchi et al., 2014). Despite the fact that viral-like particles have been observed in 
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specific conditions (Boller et al., 2008), HERV-K (HML2) is considered to be “extinct” 

as they have likely stopped replicating (Magiorkinis et al., 2015). 

 

Nonetheless, despite having many defective loci, HERV-K (HML2) is unusual for a 

human ERV in that it is the only one that is less degraded and still possesses a full-

length ORF for all genes (taking all loci together). This is not the case in other species 

such as the mice which have lots of recently integrated elements in them (illustrated in 

Fig S4).  
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5.5 PcEV genome 

 

The following description is based on the work by Mang et al. (1999) as they discovered 

the Papio cynocephalus endogenous retrovirus (PcEV) from kidney tissue of a yellow 

baboon (Mang et al., 1999); and complementary information gathered from NCBI 

database using PcEV accession number AF142988. An estimate of ~38 to 50 proviruses 

were found in the genome from the baboon from which it was discovered. PcEV 

belongs to the Gammaretroviruses, its viral genome is 8572nt long and consists of a 

LTR sequence (nt 1-510); followed by an untranslated region from nt 510-962 that 

contains the PBS (nt 513-530); gag-pro-pol ORFs (nt 963-6165), with pro and pol 

being translated via a suppression of termination – i.e. the ribosome readthrough the 

stop codon – (Figure 6) (Yoshinaka et al., 1985); env ORF (nt 6111-8057), and another 

LTR sequence (nt 8084-8572). The LTRs possess promoter capacity and can initiate 

transcription at the 5’ end of the viral genome. On the 5’ LTR, four enhancer sequences 

of 21nt, termed direct repeats (DR) were reported (nt 45-65; nt 66-86; nt 87-107; nt 

108-123), with the fourth one being incomplete (16nt instead of 21). The 3’ LTR lacks 

the second DR (due to a deletion) and is therefore 21nt shorter. Such enhancers harbor 

binding sites for the transcription factor GATA-1. The LTRs also displayed four 

CCAAT boxes starting at positions nt 124, 161, 242, 281. CCAAT are potent enhancers 

for retroviral transcription (Lee, 2003). Some GC stretches can be found too suggesting 

potential binding sites for Sp1. The TATA box was found at position nt 351 and the 

polyadenylation signal AATAAA is at nt 8385. U3 was estimated from nt 1-377 and 

8084-8440; R from 378-443 and 8441-8506; and U5 from 444-510 and 8507-8572.  

 

As in other Gammaretroviruses, PcEV proviruses should produce two main transcripts 

(Figure 6B): (a) An unspliced transcript which encodes for the polyproteins Gag and 

Gag-pro-pol. (b) A spliced transcript, which results from ‘(a)’ after splicing of the 

region corresponding to gag-pro-pol, the splice donor site (SD) is at positions nt 619.  

 

Gag ORF (nt 863-2591) encodes a 60kDa polyprotein, precursor of MA, p12, CA, NC, 

that shape the core of the retroviral particle.  

 

Pro ORF encodes the protease (nt 2570-2955, which is equivalent to a 128 amino acid 

sequence, when separately considered from Gag) that process Gag polyprotein.  
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Pol ORF encodes the viral enzymes that possess the RT and endonuclease activities (nt 

2956-6165).  

 

Env ORF (nt 6111-8057) encodes a 648-amino acid glycoprotein of approximately 

70kDa. It consists of an SU (479 amino acids, ~50 kDa) and TM (166 amino acids, ~20 

kDa). The SU harbor five potential glycosylation sites at amino acid residue 60, 310, 

342, 345 and 381. The TM possesses a putative immunosuppressive peptide of 26 

amino acids (residues 521-546). 
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Figure 6 : Schematic representation of ORFs and transcripts from HERV-K 

(HML2) and PcEV 

(A) HERV-K (HML2) transcribes an unspliced RNA that harbor gag-pro-pol ORFs, 

with pro and pol enzymes being translated by ribosomal frameshifts at the end of gag 

and pro, respectively. Env is translated from a spliced transcript. HERV-K (HML2) 

also produce double-spliced RNAs encoding for Rec in type 2 loci, and Np9 in type 1 

loci (harboring 292nt deletion in env). (B) PcEV transcribes an unspliced RNA that 

harbor Gag-pro-pol ORFs, with pro and pol enzymes being translated by suppression 

of a stop codon, ribosome read through the stop codon and produce a Gag-pro-pol 

polyprotein that is cleaved into Gag, pro and pol enzymes by viral PR. Env is produced 

through a spliced RNA. For (A) and (B), Env subunit are separated by cellular 

proteases, cleavage site is indicated by a black arrow ( ). PR cleavage sites are indicated 

as blue arrows ( ). 
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5.6 HERV expression 

 
The expression of HERVs relies on the capacity of their LTR sequence to retain a viable 

promoter activity, such as possessing binding sites for RNA polymerase and 

transcription factors (TATA box and enhancers), as well as not being subject to 

methylation events (histone and DNA methylation). 

 

5.6.1 Methylation 

 
Methylations of DNA and a certain lysine (K) on H3 histone (H3K9 and H3K27) are 

mechanisms of gene silencing. Such mechanisms are responsible for the silencing of 

many ERV loci. It happens on an evolutionary time scale (inactivation of ERVs 

occurring throughout history) as the state of silencing generally increases with the 

amount of time ERVs have spent in the genome since infection and integration. In fact, 

retroviral sequences from HERV-L are older than those of HERV-K, and H3K9me3, 

that is H3 methylated on the 9th lysine, were showed to be associated with more 

sequences from HERV-L than HERV-K (Brattås et al., 2017). Methylations also 

happen within lifetime of individuals as each stage of the development is more or less 

permissive to the expression of ERVs (Fasching et al., 2015). Interestingly, the 

methylation of ERVs has been shown to be reversible, using cell reprogramming (Göke 

et al., 2015).  

 

The family of proteins that have been suggested to be involved in the methylation of 

ERVs, are the Krüppel-associated box domain zinc finger proteins (KRAB-ZFP). 

Throughout evolution, the genes encoding these proteins appeared in mammals in 

parallel to ERV integration events. It is likely that, in the past, infection by retroviruses 

that can become endogenized would have been harmful for the offspring. Silencing of 

ERVs would have been critical for surviving, as suggested by the acquisition, alongside 

integration events, of those transrepressor proteins (Hurst and Magiorkinis, 2017).  

 

Recently, KRAB-ZFP transrepressor activity was suggested to involve protein 

complexes with KAP1, also known as TRIM28. In fact, KAP1 interacts with KRAB-

ZFP and the latter binds to DNA (Hurst and Magiorkinis, 2017). KAP1 knock-out 

resulted in ERV reactivation and transcription in mouse and human neural progenitor 

cells (hNPCs) (Fasching et al., 2015; Rowe et al., 2010). Such complexes are believed 
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to bind directly to or close to the LTRs and mediate methylation of H3. In fact, 

chromatin-immunoprecipitation experiments that pull down a methylated form of H3 

(H3K9me3) revealed enrichments in sequences from HERV lineages (Brattås et al., 

2017).  

 

Regarding HERV-K (HML-2), it is highly likely that DNA methylation of LTRs and 

methylation of the lysines of H3 repress transcription. Cloning of LTR promoters from 

loci that are transcriptionally active in vitro, followed by bisulfide sequencing (CpG 

islands sequencing), revealed low levels of methylation (0-36%), while untranscribed 

loci in vitro showed higher levels of methylation (59-71%) (Lavie et al., 2005). Also, 

in the long term, the methylated promoters are suggested to undergo mutations which 

likely render it permanently inactive (Lavie et al., 2005). In addition, some sequences 

from HERV-K are enriched in ChIP experiments that pull down H3K9me3 in hNPCs 

(Brattås et al., 2017). 

 

HERVs were found to be associated with specific developmental stages during 

embryogenesis: LTR14B for 2-cell stage, LTR12c for 4-cell, HERV-L for 8-cell, 

HERV-K (HML2) for morula and HERV-H for blastocyst (Göke et al., 2015). HERV-

K (HML2) maintain higher levels of transcription in comparison to the others lineages 

in tissues from adults, even though the transcription at that stage is limited, as revealed 

by RNAseq analysis of tissues from adults (adipose, adrenal, brain, breast, colon, heart, 

kidney, liver, lung, lymph node, ovary, prostate, skeletal muscle, testes, thyroid, white 

blood cell) and several embryonic stages (oocyte, pronuclei, zygote, 2-cell, 4-cell, 8-

cell, Morula, blastocyst) (Göke et al., 2015). Altogether, the idea is that HERVs are 

repressed through development but are switched on at specific time point to possibly 

exert a function. Such function is clearer for some HERVs such as HERV-H in the 

pluripotency of embryonic stem cells (Lu et al., 2014), and HERV-W in the formation 

of the placenta (Lavialle et al., 2013). Scientists are still trying to determine whether 

HERV-K (HML2) is co-opted for a biological role or is on the process of being fully 

inactivated, since it is the most recently integrated in humans. The ratio between 

H3K9me3 and H3K4me3, linked to repressed transcription and active transcription 

state, respectively, was found to be higher for those HERVs most recently integrated 

(Brattås et al., 2017). They are also more likely to be able to replicate, a viral feature 

that needs to be repressed by the host.  
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The active profile of some HERV promoters, such as HERV-H and HERV-L that are 

older than HERV-K (HML2) and are activated at specific stages of embryogenesis, 

suggests that during evolution, endogenized retroviruses go through a step of repression 

first, followed by a step of co-option in case they can provide benefits. Even when co-

opted, their window of action seems narrowed in a lifetime for some sort of balance. 

 

5.6.2 HERV-K (HML2)-associated transcription factor 

 
Downstream of methylation, transcription factors are required to modulate 

transcription. Lines of evidence suggest the requirement of transcription factors, as 

unmethylated LTR promoters cloned in expressing vectors, introduced in different cell 

lines can show activity or high transcription levels in one, and no activity or low levels 

of transcription in the second (Fuchs et al., 2011; St Laurent et al., 2013). Also, while 

reprogramming or differentiation of cells in vitro, HERV-K (HML2) transcription is 

‘reactivated’ or lost, respectively, alongside with expression or loss of transcription 

factor such as OCT4, SOX2, NANOG (Fuchs et al., 2013). Furthermore, knock-out of 

OCT4 and SOX2 for HERV-K (HML2); and OCT4, NANOG, LBP9 for HERV-H 

results in the decrease transcription of the corresponding HERV lineage (Grow et al., 

2015; Wang et al., 2014). OCT4, SOX2, NANOG, LBP9 binding sites were found to 

belong to or to be close to LTR regions (Grow et al., 2015; Santoni et al., 2012; Wang 

et al., 2014).  

 

Regarding HERV-K (HML2), an exhaustive map of transcription factors potentially 

able to bind to LTRs was proposed by Manghera et al. (Manghera and Douville, 2013). 

Among all the transcription factors suggested, the only ones that have been tested 

experimentally to bind to LTR using chromatin immunoprecipitation (ChIP) and 

electrophoretic mobility shift assay (EMSA), are the following: OCT4 (Grow et al., 

2015), NF-B and NF-AT (Gonzalez-Hernandez et al., 2012), MITF-M (Katoh et al., 

2011), Sp1 and Sp3 (Fuchs et al., 2011), YY1 (Knössl et al., 1999). 
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5.7 Role in physiology 

 

5.7.1 LTRs fine-tune gene expression 

 
It is believed that LTRs accumulating across the genome provide a more complex gene 

control and may be involved in species evolution and differentiation, as LTRs provide 

promoters in genome regions that are non-conserved among species (Bourque et al., 

2008). It should also be noted that ERVs vary between animals, lineages can be specific 

to one species or shared between several species, e.g. HERV-K (HML2) is not human-

specific and is found in many primates (reviewed in Hanke et al. (2016)). LTRs could 

help dissemination of transcription factor binding sites across the genome, they are 

associated with transcriptional activity of genes in the vicinity (within 50-100kb); and 

knock-out of KAP1 results in an increase of their transcription (Brattås et al., 2017; St 

Laurent et al., 2013). Although, most transcripts within the vicinity of HERVs are long 

non-coding and very long non-coding RNA (lncRNA and vlncRNA), likely associated 

with epigenetic regulation (Lu et al., 2014; St Laurent et al., 2013). The high frequency 

of such RNAs in close vicinity of LTRs are likely due to their location, usually in region 

without genes known as “desert regions” (St Laurent et al., 2013). Furthermore, HERV-

H lncRNA was shown to be almost exclusively nuclear and to bind to proteins such as 

OCT4, p300, MED, CDK8. Also, the knock-down of HERV-H transcripts using 

shRNAs efficiently results in the loss of pluripotency. Altogether, it suggests that ERVs 

are involved in pluripotency and fine-tuning of gene expression (Figure 7) (Lu et al., 

2014).  

 

Regarding HERV-K (HML2), it is not clear whether LTRs are responsible for such cell 

pluripotency, even if levels of HERV-K (HML2) transcripts correlates with the 

expression of OCT4 and NANOG, along with the loss of LMNA expression, a marker 

of differentiated fibroblasts (Fuchs et al., 2013). The most recent study by Grow et al. 

(2015) suggests a role of HERV-K (HML2) in pluripotency, as they found high levels 

of transcription in human embryonic stem cells (hESC) (≥ 10 RKPM); along with 

binding to p300 complex, as for HERV-H (see Figure 7). HERV-K (HML2) 

transcription was previously reported at lower levels in hESC (0.5-2 RKPM), using 

RNAseq (Göke et al., 2015). Nonetheless, both studies found a significant increase of 

HERV-K (HML2) in hESC from the stage 8-cell, and morula of embryos, in 

comparison to the other stages (Göke et al., 2015; Grow et al., 2015). Further down the 
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line, the rise of HERV-K (HML2) expression was linked to the induction of anti-viral 

mechanisms that could limit potential in utero infection by exogenous viruses (Grow 

et al., 2015). 

 

5.7.2 HERV-derived syncytins play a role in placentation 

 
At least seven different syncytins have been discovered in mammals, each from 

independent endogenization of different ERVs in different species (Lavialle et al., 

2013). In human, syncytin-1 and syncytin-2 are derived from a member of the ERV 

lineages HERV-W and HERV-FRD, respectively (Blond et al., 2000; Mi et al., 2000). 

Each gene has spent a relatively long time in the host genome (more than 30 million 

years) since the retroviral integration, but exhibits an intact ORF with a low levels of 

polymorphism in the human population, in comparison to more recently integrated loci 

such as some HERV-K (HML2) env (less than 5 million years) (de Parseval et al., 

2005), suggestion that such retroviral env genes have been co-opted. The syncytins and 

their receptors are expressed in the placenta (Blond et al., 2000; Esnault et al., 2008; 

Malassiné et al., 2005; Muir et al., 2006). In addition, the involvement of syncytins in 

the development of the placenta was demonstrated in vitro as syncytin-1 and syncytin-

2 mediate cell-cell fusion (Blaise et al., 2003; Blond et al., 2000; Mi et al., 2000) and 

the knock-down of syncytins in trophoblast-derived cell lines abolishes such fusion 

(Frendo et al., 2003; Vargas et al., 2009). The ultimate line of evidence was produced 

in the mouse. The mouse genome possess two genes encoding retroviral Env proteins 

termed syncytin A and B that are distinct from the human syncytins, but share the same 

characteristics: their expression is placenta-specific and they promote cell-cell fusion 

(Dupressoir et al. 2005). in fact, all knock-out mice for the genes encoding syncytin-A 

die during gestation, while knock-out of syncytin-B results in growth retardation and a 

slight decrease in the number of neonates (Dupressoir et al., 2011, 2009).  

 

Regarding HERV-K (HML2), even though the Env is expressed in the placenta 

(Kämmerer et al., 2011) and possesses a fusogenic ability (Dewannieux et al., 2005), 

there is no evidence of HERV-K (HML2) Env being involved in placenta development. 

Moreover, HERV-K (HML2) env is more recently integrated but is more polymorphic 

in the human population, along with a higher rate of non-synonymous mutations, in 

comparison to the less recently integrated syncytin-1 and syncytin-2 (de Parseval et al., 
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2005). This suggests that, at this stage in evolution, HERV-K (HML2) env is likely not 

co-opted as the syncytins are. 

 

Figure 7 : HERV-driven gene fine-tuning. 

(A) TRIM28/KAP1 binds to ERV LTRs across the genome. TRIM28/KAP1 recruits 

enzymes with DNA methylation activity, resulting in a silencing of transcription from 

LTR and from genes in the vicinity. Knocking out TRIM28/KAP1 results in an 

activation of transcription from LTR and from genes in the vicinity. Adapted from 

(Brattås et al., 2017). (B) HERV-H loci are usually located in gene-free region. 

Transcription from HERV-H LTRs (LTR7) produces long-non-coding RNAs that 

remain in the nucleus and associate with chromatin-modulating and transcription 

complexes such as p300. Knocking down HERV-H RNAs in human embryonic stem 

cell (hESC) results in the loss of pluripotency. Adapted from (Lu et al., 2014).  
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5.8 HERV-K (HML2) in disease conditions 

 

5.8.1 HERV-K (HML2) in cancer 

 
The main link between HERV-K (HML2) and cancer is the fact that HERV-K (HML2) 

is generally up-regulated in the context of cancer. The first question to raise is whether 

HERV-K (HML2) up-regulation is exclusive to cancer. The second is whether HERV-

K (HML2) is a cause or a consequence of cancer. The third is whether HERV-K 

(HML2) proteins are targetable as tumour-associated antigens. 

 

5.8.1.1 HERV-K (HML2) expression in cancer 

 

To date, many reports described the expression of HERV-K (HML2) in cancers and 

tumours (Buscher, 2005; Contreras-Galindo et al., 2008; Goering et al., 2011; Ishida et 

al., 2008; Sauter et al., 1995; Wang-Johanning et al., 2008, 2007, 2001), with very few 

showing no expression of HERV-K (HML2) in the tumours (Kessler et al., 2014). Since 

HERV-K (HML2) sequences are mainly defective (Subramanian et al., 2011), the 

presence of HERV-K (HML) proteins appears to be a relevant readout. There is a clear 

protein overexpression for four types of cancer and tumours, at a significant frequency 

in patients: breast cancer (expression of HERV-K (HML2) Env was found in 102 of 

119 (85.7%) breast cancer tissues, whereas Env expression was found in 4 of 56 

(7.14%) normal breast tissues) (Wang-Johanning et al., 2001), melanomas (of the 

melanoma biopsies investigated, 7 of 15 (47%) were positive for HERV-K (HML2) 

Env expression and 16 of 23 (70%) were positive for Gag expression) (Buscher, 2005), 

ovarian cancers (all types of ovarian cancers pulled together, 467 out of 553 (84%) of 

ovarian tissues were positive for HERV-K (HML2) Env staining, whereas all normal 

ovarian tissues were negative (0/3)) (Wang-Johanning et al., 2007), and seminomas that 

affect testes (5 out of 8 (62.5%), as assayed by western blotting and 6 out of 11 (55%) 

biopsies, as assayed by immunohistochemistry. Tissues from healthy testes were stated 

by authors as negatives) (Sauter et al., 1995). The plasma of patients who developed 

tumours was also assessed for the expression of HERV-K (HML2) components. 

Contreras-Galindo et al. found HERV-K (HML2) viral particles in the plasma of 

lymphoma patients (Contreras-Galindo et al., 2008).  
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Regarding transcription, HERV-K (HML2) is not exclusive to cancer. Rec and Np9 

transcripts were found in the heart, the brain, the placenta, the lung, the liver, the skim 

muscle, the kidney, the pancreas, the spleen, the thymus, the prostate, the testis, the 

ovary, the small intestine, the colon and leukocytes (Schmitt et al., 2015). However, 

studies comparing expression of HERV-K (HML2) transcripts in tumours and healthy 

tissues showed an increased expression in cancerous biopsies. It is the case for breast 

cancer (Wang-Johanning et al., 2001), prostate cancer (Goering et al., 2011; Ishida et 

al., 2008) and some ovarian cancers (Wang-Johanning et al., 2007).  

 

5.8.1.2 HERV-K (HML2) role in cancer 

 
The main interest in HERV-K (HML-2) lies in cancer research. In fact, HERV-K 

(HML2) reactivation seems to be a feature of cancer. This is understandable as 

hypomethylation events and loss of tumour suppressors that usually control genes 

linked to pluripotency, commonly happen in tumour development (Ehrlich, 2009, 

2002). There is some evidence for HERV-K (HML2) playing a role in tumour growth. 

First, knocking-down of the HERV-K (HML2) Env in  breast cancer cell lines (MDA-

MB; SKBR3; MCF7; Hs578T) in vitro and inoculating them subcutaneously into the 

flank of immunodeficient nude mice resulted in decrease of the tumour size in the 

xenografts, with reduced metastasis to the lung (F. Zhou et al., 2016). Also, when 

HERV-K (HML2) env was overexpressed in those breast cancer cell lines and 

HEK293T, it activated ERK-MAPK pathway, likely contributing to oncogenesis, with 

increased metastasis to lung but no difference in the tumour size in the xenografts 

(Lemaître et al., 2017; F. Zhou et al., 2016). Second, accessory proteins Rec and Np9 

from HERV-K (HML-2), overexpressed in cell lines, showed an increase in the 

activation of signaling pathways such as Numb/Notch1; ERK1/2; c-myc/Akt; Wnt/-

catenin networks, along with increase of tumour growth when xenografted in mice 

(Chen et al., 2013).    

 

5.8.1.3 Anti-HERV-K (HML2)-specific responses in cancerous patients 

 
Some reports described HERV-K (HML2)-specific T-cell responses as well as antibody 

responses in cancer. Patients with breast cancer (Wang-Johanning et al., 2008), ovarian 

cancer (Wang-Johanning et al., 2007), prostate cancer (Ishida et al., 2008), 

teratocarcinomas and seminomas (Boller et al., 1997; Sauter et al., 1995) were shown 
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to exhibit higher antibody response to HERV-K (HML2) compared to healthy controls. 

Interestingly, in a patient with teratocarcinoma at the time of diagnosis, the HERV-K 

(HML2) Gag-specific antibody response was surprisingly stronger than the response 

recorded after tumour removal. Interestingly, there are more sera from patients that 

exhibited a positive response to HERV-K (HML2), compared to sera from healthy 

controls (62.5% vs 11.1%) (Boller et al., 1997). These findings suggested that tumours 

producing HERV-K (HML2) proteins as antigens, can stimulate antibody responses 

against HERV-K (HML2). More recently, Johanning et al. made a proof of concept of 

breast cancer immunotherapy using a HERV-K (HML2)-specific monoclonal antibody. 

In a mouse model, they showed tumour regression following treatment with the 

antibody (Wang-Johanning et al., 2012). However, antibody-mediated tumour 

regression remains to be understood.  Similarly, Kraus et al. showed that vaccination 

against HERV-K (HML2) proteins inhibits tumour growth in a mouse model (Kraus et 

al., 2014, 2013). Also, it is shown that the use of chimeric antigen receptor T cells 

(CAR-T cells) specific to HERV-K (HML2) antigens, can result in cancer cell killing 

in vitro and in vivo in a mouse model, which consisted of immunodeficient mice 

inoculated in the flank with breast cancer cell lines (MDA-MB) and that received 

intravenous infusion of HERV-K (HML2)-specific CAR-T cells days post-tumour 

injection (Zhou et al., 2015). 

 

5.8.2 HERV-K (HML2) and autoimmunity 

 
Autoimmune diseases are defined by immune reactions against self-components, 

leading to the damage and impairment of targeted tissues. Such diseases are usually 

characterized by the presence of antibody or T cell responses against self-antigens, 

termed autoantigens. The link between ERVs and autoimmunity has been of interest 

because some HERVs have been associated with autoimmune conditions, especially 

for multiple sclerosis (MS) (Christensen, 2016; Morandi et al., 2017) and systemic 

lupus erythematosus (SLE) (Nelson et al., 2014). How could HERV-K (HML2) 

contribute to autoimmunity? There are three main possibilities:  

 

1 – By promoting an inflammatory environment, necessary to induce an immune 

response against autoantigens. This is further developed in the next paragraph about 

stimulation of innate sensors by ERVs (section 5.8.6).  
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2 – By being an autoantigen itself. Some authors reported the possibility of HERV-K 

(HML2) being an autoantigen. Anti-HERV-K (HML2) antibodies have been reported 

in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus (Freimanis et 

al., 2010). But whether these antibodies are responsible for an autoimmune reaction is 

less plausible, since the level of antibodies are not significantly higher compared to 

antibodies level in healthy donors (Freimanis et al., 2010). Moreover, the titer of 

HERV-K (HML2) antibodies appeared to be decreased in patients with psoriasis 

compare to healthy controls. Also, the expression of HERV-K (HML2) gag, pol and 

env was lower in patients than in controls (Gupta et al., 2014).  

 

3 – By inducing cross reactivity to self-antigens through molecular mimicry. This is 

more plausible and discussed in the literature. Usually autoantigens are generated from 

proteins that should be sequestered in specific cellular compartments in homeostasis. 

Since HERV-K (HML2) can be expressed and potentially secreted outside of the cells, 

it is likely more targetable by the immune system and could possibly trigger an immune 

response by molecular mimicry. This phenomenon was described for some pathogens 

that harbor similar molecular patterns with autoantigens, which induce immune auto-

reactivity usually correlated with a history of infection (Oldstone, 2014). In fact, 

HTLV-related ERV (HRES-1) possesses a peptide (RPPRP) with an identical amino 

acid sequence to that of a small nuclear ribonucleoprotein (SnRNP), described as being 

an autoantigen for SLE. Also, HRES-1 possesses a peptide with a predicted structure 

that is homological to the ribonucleoprotein SmD (EAVAGRGR (HRES-1) – 

EAGAGRVR (SmD)), another autoantigen in SLE (Nelson et al., 2014). Molecular 

mimicry between HERV-R (ERV-3) Env and some SLE autoantigens have been 

demonstrated (Nelson et al., 2014). Do note that antibodies typically recognize a linear 

epitope of 5-8 amino acids (Elbakri et al., 2010).  

 

5.8.3 Stimulation of innate sensors by endogenous retroelements 

 
Innate sensors designate the cellular receptors that bind pathogen and danger associated 

molecular patterns (PAMPs and DAMPs), and trigger an inflammatory response. 

PAMPs and DAMPs can be of different nature. Nucleic acids (RNA, DNA) and 
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proteins can trigger an inflammatory response through innate receptor-associated cell 

signaling (Medzhitov, 2001).  

 

Many lines of evidence suggest a link between retroelements and innate sensing. 

Mutations in the gene TREX1 result in Aicardi-Goutières syndrome (AGS), a severe 

autoimmune disease (Crow et al., 2006). TREX1 is an exonuclease that metabolizes 

single-stranded DNA (ssDNA) (Lindahl et al., 1969). TREX1-deficient mice possess 

an accumulation of intracellular ssDNAs (Yang et al., 2007). The authors also showed 

that ssDNAs were associated with the endoplasmic reticulum (ER), since they co-

localized with calreticulin, an ER protein. Similar features were observed in primary 

fibroblasts derived from AGS patients (Yang et al., 2007). The study of ssDNAs 

revealed more DNA fragments from endogenous retroelements accumulating in 

TREX1-deficient mice compared to wild type mice (Stetson et al., 2008). Also, the 

authors demonstrated that TREX1-deficient mice exhibit a higher level of type I 

interferon (IFN) expression, autoantibodies, and was associated with a higher mortality 

(Stetson et al., 2008). Such ssDNAs seem to target IFN pathway and trigger 

autoimmunity with autoantibodies as a feature. However, it is unclear how ssDNAs 

from endogenous retroelements are accumulated in the cytoplasm. One explanation 

could be that RNA from ERVs is transcribed in the nucleus and is reverse transcribed 

into DNA in the cytoplasm, but retroviral RNA is usually converted into double-

stranded DNA (dsDNA) during reverse transcription. To investigate the role of 

retroelement-related RT in the accumulation of ssDNAs in cytoplasm, RT inhibitors 

could be used in TREX1-deficient mice, followed by ssDNA staining. Also, the 

transcription level of retroelements RNAs should be monitored since they could be 

substrates to create dsDNAs and ultimately ssDNAs. Such a concept appears to be 

plausible since TREX1-deficient mice treated with antiretroviral drugs (ART) 

nevirapine, emtricitabine and tenofovir exhibit a higher lifespan with a lower 

inflammation (Beck-Engeser et al., 2011). All three drugs are reverse transcriptase 

inhibitors used to treat HIV-infected patients.  

 

Also, ERV-derived transcripts were shown to be increased in B cells from mice 

immunized with a T-independent antigen, resulting in the activation of cGAS-cAMP-

GMP-STING pathway, through the binding of ERV transcripts to Retinoic Acid-

Induced Gene-1 (RIG-1), another innate sensor (Zeng et al., 2014). The stimulation of 
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cGAS-cAMP-GMP-STING pathway results in a pro-inflammatory response through 

the production of IFN, TNF, IL-6 and IL-12, leading to ERV-specific antibody 

secretion by B cells (Zeng et al., 2014). Also, an impairment of such antibody response 

was also observed in cGas- and Sting-deficient mice. Interestingly, TREX1-deficient 

mice exhibit autoantibodies responsible for an autoimmune-like phenotype (Zeng et al., 

2014). 

 

Regarding ERV-derived proteins, there are studies suggesting that HERV-W can 

trigger inflammatory response by stimulating TLRs via freely released envelope 

glycoproteins (Rolland et al., 2006; Perron et al., 2013, 2001; Saresella et al., 2009; 

reviewed in Küry et al., 2018). However, the stimulation of peripheral blood 

mononuclear cells (PBMCs) by a recombinant HERV-K (HML2) Env in vitro resulted 

in the secretion of IL-10, an anti-inflammatory cytokine (Morozov et al., 2013). 

 

More extensively, the fact that ERVs could be PAMPs for the immune system or up-

regulated during an immune response stresses their potential involvement during a 

pathogenic invasion. In this regard, as ERVs share features of other infectious 

retroviruses, the interest is put on whether there is a crosstalk between ERVs and 

incoming retroviruses. The next section presents the interactions that could exist 

between HERV-K (HML2) and HIV as they have been given the most interest during 

the last decades. In this thesis, we address related questions in a macaque model 

infected with SIV. 

 

5.8.4 HIV and HERV-K (HML2) 

 
HERV-K (HML2) was found to be upregulated in HIV-infected cells in vitro 

(Contreras-Galindo et al., 2007; Jones et al., 2012), and in PBMCs from seropositive 

patients (Bhardwaj et al., 2014). In addition, HERV-K (HML2)-specific antibody and 

T cell responses were observed in the blood from patients as compared to controls 

(Garrison et al., 2007; Michaud et al., 2014a). The main question is to understand how 

HIV could interact with HERV-K (HML2). Several aspects of the viral cycle should be 

considered: The first aspect is whether HERV-K (HML2) could interfere with or 

facilitate HIV entry. The second aspect concerns the potential involvement of HERV-

K (HML2) in the steps that lead to HIV integration, namely: reverse transcription and 
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integration. The third aspect concerns the potential of both viruses to modulate each 

other’s expression, transcriptionally and translationally. The fourth aspect is the 

possibility for HERV-K (HML2) PR being involved in the cleavage of HIV 

polyproteins into mature proteins that assemble into an infectious particle; this step is 

critical since a protease-defective virus loses infectivity (Kohl et al., 1988).  The last 

aspect concerns the possibility that the active virus (HIV) package the defective one 

(HERV-K (HML2)) and enable its transmission – i.e. whether HERV-K (HML2) RNA 

genome can be retrieved in HIV viral particles. 

 

5.8.4.1 HERV-K (HML2) proteins modulation of HIV infection 

 
It is not known whether the presence of HERV-K (HML2) in human cells modulates 

HIV infection (i.e. increase or decrease the susceptibility to HIV infection). There is no 

evidence of individuals harboring specific HERV-K (HML2) loci that correlate with 

higher or lower levels of HIV viremia.  

 

5.8.4.2 HERV-K (HML2) complementing HIV reverse transcription and integration 

 
There is no evidence concerning HERV-K (HML2) complementing HIV reverse 

transcription. We do not know whether HERV-K (HML2) RT can convert HIV RNA 

into DNA during HIV infection. On another hand, one group was interested in the 

possible complementation of HIV integration by HERV-K (HML2) integrase (Ogata et 

al., 1999). The use of IN-defective HIV supplemented with HERV-K (HML2) IN 

resulted in a massive loss of infectivity. This finding suggests HERV-K (HML2) cannot 

efficiently complement HIV integration. 

 

 

5.8.4.3 HIV modulates HERV-K (HML2) expression 

 
The third part concerns the ability of HIV to modulate HERV-K (HML2) virus 

expression and vice versa. Whether, HERV-K (HML2) can upregulate HIV expression 

has never been investigated. It is probably because such experiment would require 

infectious HERV-K (HML2) particles and latently HIV-infected cells. However, 

HERV-K (HML2) is mostly defective and infectious particles are affordable only by 

the reconstitution of a viable HERV-K (HML2) replication-competent provirus 
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sequence (Dewannieux et al., 2006; Young and Bieniasz, 2007), which could happen 

theoretically by a recombination of loci harboring intact and functional ORFs, but it is 

not the case in vivo as such HERV-K (HML2) recombinant has never been reported 

(Subramanian et al., 2011). On the contrary, several groups were able to show HERV-

K (HML2) upregulation both in vivo and in vitro during HIV infection (Bhardwaj et 

al., 2014; Contreras-Galindo et al., 2012, 2007; Jones et al., 2012). Even if there is a 

debate about the magnitude on such phenomenon, more transcripts from HERV-K 

(HML2) were found in PBMC of HIV seropositive patients compared to uninfected 

individuals (Bhardwaj et al., 2014). Also, seropositive patients exhibited a higher 

specific immune response to HERV-K (HML2) compared to uninfected controls 

(Michaud et al., 2014a). Such HERV-K (HML2)-specific immune response underlies 

the possible production of HERV-K (HML2) proteins to provide antigens. 

Furthermore, HIV Tat activates the NF-B pathway that can lead to the binding of the 

transcription factor on HERV-K (HML2) LTR and promote transcription (Gonzalez-

Hernandez et al., 2012), this result suggests a mechanism for HIV-driven HERV-K 

(HML2) transactivation.  

 

5.8.4.4 Cleavage of viral polyproteins 

 
HERV-K (HML2) protease (PR) was shown to cleave HIV Gag polyprotein. However, 

it appeared to happen on non-canonical cleavage sites, leading to different sub-

products; and PR-defective HIV supplemented with HERV-K (HML2) PR loses its 

infectivity (Padow et al., 2000). 

 

5.8.4.5 Viral packaging and pseudotyped HIV-HERV-K (HML2) viruses 

 
The last part concerns the possibility of co-packaging of HIV and HERV-K (HML2), 

and whether HERV-K (HML2) facilitates the release of HIV viral particles. Firstly, the 

co-packaging of viral genome is a fundamental question to address, since it could be a 

proof of concept of HERV-K (HML2) dissemination in the human genome. If HERV-

K (HML2) is packaged in HIV virions, it could be passed more efficiently from cell to 

cell, since HERV-K (HML2) is not infectious. Zeilfelder et al. addressed that question, 

and succeeded artificial packaging of HERV-K (HML2) into HIV particles (Zeilfelder 

et al., 2007).Whether this HERV-K (HML2) sequences are further integrated in the 

target cells and the relevance in vivo need to be assessed. It would be interesting to 
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specifically immunoprecipitate HIV virions from the plasma of seropositive patients 

using an anti-HIV antibody, and perform a reverse transcriptase PCR to identify 

HERV-K (HML2) genomic RNA, then confirm whether HERV-K (HML2) is packaged 

in HIV particles in vivo. 

 

Secondly, regarding the possibility of HERV-K (HML2) facilitating HIV virion 

release, the viral release is limited by the activity of Tetherin, which retains newly 

formed virions on the cell surface (Kuhl et al., 2011). It was recently shown that HERV-

K (HML2) can antagonize the antiviral activity of Tetherin (Lemaitre et al., 2014). Such 

finding underlines the possibility of HERV-K (HML2) to facilitate HIV virion release.   

 

5.8.4.6 Anti-HERV-K (HML2)-specific responses in HIV-positive patients 

 
Our immune system involves both innate and adaptive responses against pathogens. 

Innate responses are triggered early during a pathogen invasion. The role of innate 

immunity is to recognize the danger through Pathogen Recognition Receptors (PRR, 

innate sensing), and fight against the early burden of the pathogen through soluble 

factors (complement, cytokines, chemokines, inflammation), innate immune cells 

(Macrophages, Dendritic cells, Polynuclear Neutrophils, Eosinophils, NK cells), and 

the ultimate triggering of the adaptive immune response (antibodies, B cells, T cells).  

 

The adaptive immune response is mainly composed by a humoral response through 

antigen-specific antibodies, and a cellular response mediated by antigen-specific T 

lymphocytes. There are evidence of HERV-K (HML2)-specific T cell responses in 

PBMCs from HIV-positive individuals (Garrison et al., 2007). In addition, HERV-K 

(HML2)-specific CD8+ T cell clones can kill HIV-infected cells in vitro (Jones et al., 

2012). A significant higher antibody titer against HERV-K (HML2) TM were shown 

to be present in seropositive patients compared to uninfected individuals (Michaud et 

al., 2014a). Interestingly, there was not a significant difference between the titer of anti-

HERV-K (HML2) SU antibodies titer between the seropositive and the seronegative 

groups. Such anti-HERV-K (HML2) TM-specific antibody can induce HIV-infected 

cell killing through Antibody Dependent Cell-mediated Cytotoxicity (ADCC) 

(Michaud et al., 2014b). All together, these findings suggested that HERV-K (HML2) 

antigens (protein or polypeptides) are generated during HIV infection. In this case, 
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HERV-K (HML2) provides targeted antigens on HIV-infected cells, indirectly 

sustaining an anti-HIV immune response. 

 

Similarly, in the macaque, we are asking whether SIV can modulate ERV expression, 

and whether such expression of ERVs could be involved in the immune response to 

SIV. 
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5.9 Merlin-deficient tumours: the schwannomas. 

 

Merlin is a protein from the family of Ezrin Radixin Moesin superfamily and is encoded 

by the NF2 gene located on chromosome 22 (reviewed in Bretscher et al., 2002). The 

alteration of the NF2 gene causes neurofibromatosis type 2 (NF2) (Rouleau et al., 1993; 

Trofatter et al., 1993), a condition defined by the presence of schwannomas; they are 

benign tumours arising from Schwann cells that myelinated nerve fibers in the nerves 

(Bhatheja and Field, 2006). In fact the presence of bilateral vestibular schwannomas 

(found in the vestibular nerve linking the inner ear to the brain) is a criteria for the 

diagnostic of NF2. Such genetic condition can be inherited in an autosomal dominant 

fashion, or arise spontaneously (sporadic cases). Recently, it has been observed that an 

alteration of the NF2 gene encoding Merlin account for 70% of schwannomas that 

occur sporadically (Agnihotri et al., 2016).  

 

At the cellular and molecular level, schwannomas are characterised by an increased cell 

division linked to a high expression of cyclin D1, many growth factor receptors and the 

constitutive activation of pathways such as the Ras-Mek-Erk and Pi3K-Akt pathways 

marked by the constitutive phosphorylation of  the signal proteins ERK (p-ERK), AKT 

(p-AKT) and FAK (p-FAK) (Figure 8) (reviewed in Ammoun and Hanemann, 2011; 

Hilton and Hanemann, 2014). 
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Figure 8: Merlin loss-induced pathways in schwannomas. 

In the absence of Merlin, the CRL4–DCAF1 complex is active, resulting in increased 

expression of a number of genes, including integrins and growth factor receptors. 

Merlin-deficient schwannomas are hence more sensible to growth factor-induced 

proliferation and survival linked to an activation of the ERK and AKT pathways. EGF 

= epidermal growth factor; ErbB2 = epidermal growth factor receptor 2; Gas 6 = growth 

arrest specific 6; IGFR = insulin-like growth factor receptor; NRG = neuregulin; 

PDGFR = platelet-derived growth factor receptor; VEGFR = vascular endothelial 

growth factor receptor. Figure from Hilton and Hanneman (2014). 
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5.10 The Hippo pathway 

 

The Hippo pathway was first described in Drosophila. Later, homolog proteins of the 

core cascade of the pathway were validated in mammals (mainly using mice) (Pan, 

2010). Such signal cascade is composed by the following effectors: MST1 and 2, 

SAV1, LATS1 and 2, MOB1A and 1B, YAP and TAZ, the transcription factors 

TEAD1-4. Physiologically, MST1/2 phosphorylates LATS1/2, which phosphorylates 

YAP/TAZ, which in a phosphorylated form cannot bind to TEAD. If not in complex 

with YAP/TAZ, TEAD does not bind to DNA, avoiding the transactivation of genes 

that are anti-apoptotic and pro-proliferation (Figure 9) (Juan and Hong, 2016).  The 

Hippo pathway is then relevant to control organ size, in fact over-expression of YAP 

in mouse liver induced an increase in the organ size with similar features to human 

colon cancers (Camargo et al., 2007).  

 

 

Figure 9: The core signaling cascade of the Hippo pathway. 

When the hippo pathway is on: MST1/2-SAV1 complex phosphorylates LATS1/2-

MOB1 complex, which phosphorylates YAP/TAZ, such phosphorylation prevent 

YAP/TAZ translocation and binding to TEAD. When the pathway is off: YAP/TAZ is 

not repressed by phosphorylation and can translocate inside the nucleus where it binds 

to TEAD, the YAP/TAZ-TEAD transcription complex induce the expression of many 

target genes. The figure is from Juan and Hong (2016). 
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The alteration of the Hippo pathway has been linked to the loss of Merlin and the 

development of schwannoma, involving a new regulator of the pathway: CTLR4-

DCAF1. CTLR4-DCAF1 is an E3 ubiquitin ligase that is inhibited by Merlin. It is 

suggested that in the absence of Merlin, CRL4-DCAF1 inhibits LATS 1/2 that normally 

phosphorylates YAP/TAZ. When dephosphorylated, YAP/TAZ binds to TEAD and 

activate the transcription of oncogenic genes (Figure 10) (reviewed in W. Li et al., 

2014). 

 

 

 

Figure 10: The role of Merlin and CRL4-DCFA1 on the Hippo pathway. 

Merlin represses CRL4-DCAF1 activity. CRL4-DCAF1 inhibits LATS1/2 via 

ubiquitination. LATS1/2 inhibits YAP/TAZ via its phosphorylation. YAP/TAZ binds 

to TEAD to promote transcription of target genes. Hence, in the absence of Merlin, 

CRL4-DCAF1 can repress LATS1/2 activity on YAP/TAZ, the latter is free to bind to 

TEAD and induce expression of oncogenic gene. The figure is from Wei et al. (2014). 
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5.11 Research challenge 

 
Regarding knowledge on ERVs and diseases, three main points need to be addressed:  

 

First, the need to assess HERV-K (HML2) expression in a wider range of tumours and 

compared to their healthy counterpart. This could build an exhaustive list of tumours 

which sustainably express HERV-K (HML2), especially at the protein level. It is well 

admitted that HERV-K (HML2) is expressed in tumours, however, there is still a need 

to investigate other tumours, for example, HERV-K (HML2) transcripts could not be 

detected in astrocytoma and glioblastoma (Kessler et al., 2014). Also, measuring 

expression on the “healthy” tissues will be very fundamentally useful and could provide 

a basic knowledge of tissues that would unwittingly be targeted in potential monoclonal 

antibody-based therapy.  

 

The second point concerns ERV-based therapies. Indeed, as HERV-K (HML2) is 

expressed in many tumours, the idea of targeting specific tumours by HERV-K 

(HML2)-specific antibodies could be an appealing strategy. So, it is imperative to test 

whether ERV-based therapies (monoclonal antibodies, antiretroviral drugs) affect 

tumours but not healthy tissues. 

 

The third point concerns the role played by ERVs in human and other species. More 

precisely, LTRs, viral proteins and transcripts need to be assessed for their requirements 

or not in biological processes, such as cell division, pluripotency, immunity, and 

tumorigenesis. Lately, scientists gained some insights about it, however, the knowledge 

mainly concerns the study of HERV-W and HERV-H families in humans.  

 

Finally, on a fundamental basis, transcription factors that drive HERV-K (HML2) 

expression are to be unraveled. Few of them are shown to bind to the LTRs, but still 

need to be clearly and further addressed. Indeed, Sp1 binding to GC boxes is believed 

to promote transcription, however Gonzalez-Hernandez et al. showed it has no effect 

on transcription using site mutagenesis (Gonzalez-Hernandez et al., 2012). 
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6 OBJECTIVES 

 
Regarding the research challenges and the materials available in our laboratory, I 

proposed the following points as objectives to reach in this thesis and beyond.  

 

Objective 1 

To test up-regulation of HERV-K (HML2) in our tumour of interest (Section 8.1), along 

with their healthy counterpart – schwannomas, which arise from Schwann cells. 

 

Objective 2 

To test potential therapies, such as anti-HERV-K (HML2) monoclonal antibodies and 

antiretroviral drugs modelled by the ritonavir – an inhibitor of retroviral proteases 

(Section 8.1).  

 

Objective 3 

To determine whether HERV-K (HML2) contributes to tumour development (Section 

8.2). The knock down of HERV-K (HML2) was attempted using RNA interference. 

Also, because I observed that anti-HERV-K (HML2) monoclonal antibodies could 

reduce tumour cell proliferation (Objective 2), mechanisms for HERV-K (HML2) 

release and the possibility of pro-tumoral effect of HERV-K (HML2)-secreted proteins 

were explored. 

 

Objective 4 

To investigate possible mechanics for HERV-K (HML2) up-regulation (Section 8.3). I 

am particularly interested in TEAD as novel potential transcription factor driving 

HERV-K (HML2) transcription from LTRs.  

 

Objective 5 

To investigate the correlation between a recently integrated ERV in macaques and 

interferon stimulated genes (ISGs) during viral insult modeled by SIV infection 

(Section 8.4). My hypothesis is that SIV-infected individuals that harbor higher levels 

of ERVs should trigger higher interferon response as measured by ISGs. 
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7 MATERIAL & METHODS 

 

7.1 Ethical approval 

 

Schwann cells and schwannomas were obtained from patients and donors in agreement 

with an informed consent. The study was granted full national ethics approval by the 

South West research ethics committee (REC No: 14/SW/0119; IRAS project ID: 

153351) and local research and development approval (Plymouth Hospitals NHS Trust: 

R&D No: 14/P/056 and North Bristol NHS Trust: R&D No: 3458). 

 

Samples from macaques used in the study are archived materials from past vaccine 

studies for which the NIBSC obtained ethical approval. 

 

7.2 Cell Culture 

 
MCF-7 (Breast adenocarcinoma cell line), HEK 293T were grown in Dulbecco’s 

modified Eagle medium (DMEM, Thermofisher, Cat # 41965062) containing 10% 

foetal bovine serum (FBS), penicillin/streptomycin (100U/ml) (Thermofisher, Cat # 

15140122). HIB (Human Malignant Mesothelioma cell line, Merlin positive), TRA 

(Human Malignant Mesothelioma cell line, Merlin negative) was cultured in RPMI 

containing 10% foetal bovine serum (FBS), penicillin/streptomycin (100U/ml) 

(Utermark et al., 2003). All cell lines were culture in a humidified atmosphere with 5% 

CO2. 

Human primary schwannoma cells (NF2-/-) were isolated as previously described 

(Rosenbaum et al., 1998). Briefly, after surgical removal of the tumour from patient, 

Schwannomas were pre-incubated upon arrival for 1-2 days in DMEM with 10% FBS 

and 100U/ml penicillin/streptomycin (Gibco) in a humidified atmosphere with 10% 

CO2 and then dissected into small pieces in DMEM with 10% FBS containing 50U/ml 

penicillin/streptomycin, 160U/ml collagenase type I (Sigma), and 1.25U/ml dispase 

grade I. Tissue pieces were incubated in proteolytic enzymes for 24 h before they were 

completely dissociated by trituration with a narrowed Pasteur pipette. Cell suspension 

was harvested and resuspended in culture medium. 

Human primary Schwann cells (NF2+/+) were isolated based on a method described 

previously (Hanemann et al., 1998) with few adjustments. Briefly, peripheral nerves 
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were obtained from donor. Upon arrival, the nerve was stripped and individual fascicles 

were removed. Fascicles were incubated in DMEM with 10% FBS and 100U/ml 

Penicillin/Streptomycin in a humidified atmosphere with 10% CO2 for 1-2 days. Then 

fascicles were trimmed into 1-mm-long pieces in DMEM with 10%FBS containing 

160U/ml collagenase type IIA and 0.8 U/ml dispase grade I. Fascicles were incubated 

in proteolytic enzymes overnight before they were completely dissociated by trituration 

with a narrowed Pasteur pipette. Cells were harvested and resuspended in culture 

medium. 

Human primary schwannoma (NF2-/-) and Schwann cells (NF2+/+) were grown in 6-

well plates or 8-chamber Lab-Teks pre-coated with 1 mg/ml poly-L-lysine (Sigma, Cat 

# P9155) and mouse laminin (Gibco, Cat # 23017015) in a humidified atmosphere with 

10% CO2.  The culture medium was made of DMEM containing 10% FBS, 

penicillin/streptomycin (100U/ml), amphotericin B (2.5g/ml, Thermofisher, Cat # 

15290026), insulin (2.5g/ml, Thermofisher, Cat # A11382II), forskolin (0.5M, 

Tocris, Cat # 1099), -Heregulin (10nM, Bio-Techne, Cat # 396-HB), without 

(schwannoma) or with (Schwann cells) 3-isobutyl-1-methylxanthine (0.5mM, IBMX, 

Sigma, Cat # I5879-1G), respectively.  

 

7.3 Antibodies 

 
Mouse anti-HERV-K (HML2) Env (AMSBio, Cat # HERM-1811-5), anti-HERV-K 

(HML2) capsid (AMSBio, Cat # HERM-1831-5), anti-HERV-K (HML2) Gag 

(AMSBio, Cat # HERM-1841-5) was used at a dilution of 1:250; 1:500 or 1:1000. 

Rabbit anti-phospho ERK (Promega, Cat # V803A) was used at a dilution of 1:5000. 

Rabbit anti-phospho AKT (New England Bioloabs, Cat # 9271) at a dilution of 1:500. 

Rabbit anti-phospho FAKY397 (New England Bioloabs, Cat # 3283) was used at a 

dilution of 1:500. Rabbit anti-ERK (New England Biolabs, Cat # 4695), anti-AKT 

(New England Biolabs, Cat # 4691), anti-FAK (New England Biolabs, Cat # 3285), 

anti-Cyclin D1 (New England Biolabs, Cat # 2922) were used at a dilution of 1:500. 

Rabbit anti-DCAF1 (also known as VPRBP, Proteintech, Cat #11612-1-AP) and anti-

CTGF (Abcam, Cat # ab6992) were used at a dilution of 1:1000. Secondary Goat anti-

mouse and anti-rabbit coupled to HRP were used at dilution 1:20 000 or 1:10 000. 

Mouse anti-CD63 (Thermofisher, Cat # 10628D) was used at a dilution of 1:500. 
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Secondary HRP-conjugated goat anti-mouse (Biorad, Cat # 172-1011) and goat anti-

rabbit (Biorad, Cat # 172-1019) were both used at a dilution of 1:10 000. 

Rabbit anti-c-Jun (New England Biolabs, Cat # 9165), mouse anti-Ki67 (Agilent 

Technologies, Cat # M7240) was used at a concentration of 1:100. Secondary goat anti-

mouse coupled to Alexafluor 488 (Thermofisher, Cat # A11001) and 594 

(Thermofisher, Cat # A11005); and goat anti-rabbit coupled with Alexafluor 488 

(Thermofisher, Cat # A11008) and 568 (Thermofisher, Cat # A11011) were prepared 

in 1% BSA in PBS at a dilution of 1:500. (Table provided in section 12.5, Table S2). 

 

7.4 Drug treatment 

 
Cells were plated in 6-well plate or 8-chamber Lab-Tek. Ritonavir (Sigma, Cat # 

SML0491) was used at 0.1 and 1M for 24-72 hours. The cells were incubated in 

growth medium with the appropriate concentration of ritonavir for 72 hours. Then the 

cells were lysed and run in SDS-PAGE. Verteporfin (Tocris, Cat # 5305), inhibitor of 

YAP-TEAD interaction, was used at a final concentration of 4g/ml, 4g were added 

once, each day for 48 hours until lysis, in a culture volume 2ml of medium. Anti-

HERV-K (HML2) capsid and Env were used at 1g/ml in culture, normal mouse IgG 

control (Santa Cruz, Cat # SC-2025) were used at 1g/ml dilution in culture. 

 

7.5 HERV-K 9-mer peptides 

 
The peptides used in schwannoma culture were HERV-K (HML2) Env-derived 

QIFEASKAHL peptide (IBA Lifesciences, Cat # 6-7072-901) and HERV-K (HML2) 

Gag-derived VMAQSTQNV peptide (IBA Lifesciences, Cat # 6-7073-901). Both were 

used at a concentration of 5g/ml for 72 hours in non-supplemented DMEM. Cells were 

starved in non-supplemented DMEM for 24 hours, prior to the incubation with HERV-

K (HML2) peptides.   

 

7.6 Plasmids 

 
pBluescript II SK+ (pBS, 3.0kb) was purchased from Stratagene (Cat # 212205; 

1g/L). pBS-PcEV, was obtained separately by inserting PcEV pol amplicon into the 

multiple cloning site (MCS) of a pBS vector. PcEV pol amplicon was inserted into ApaI 

(nt 604) restriction sites. This was achieved by GENEWIZ, Inc. Briefly, the amplicon 
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was synthtised (as part of their gene synthesis service), cloned into the vector purchased 

pBS vector (Stratagene), and the resulting vector was sequenced as a quality control 

(the sequence of the entire vector + amplicon is provided in supplementary information, 

section 12.5). 

pGFP-V-RS (7584bp) and pGFP-C-shLenti (8.7kb) was purchased from Origene. 

HERV-K shRNAs were inserted as following: HERV-K (HML2) target sequence-

TCAAGAG loop-target sequence reverse complement, by Origene as part of the 

customer service.  

pLenti-H1-shRNA-Rsv was purchased from AMSBio, and HERV-K (HML2) shRNAs 

were inserted as following: HERV-K (HML2) target sequence-CGAG loop-target 

sequence reverse complement, by AMSBio as part of the customer service. Each target 

sequence is provided in a table in paragraph shRNA target sequences (section 7.7). 
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7.7 shRNA target sequences 

 
Table 2 : shRNA target sequences 

target position 

(nt) 

target sequence ID # ORF location Origin (Company) Reference 

provirus 

Negative control GTCTCCACGCGCAGTACATTT scr - AMSBio - 

65-87 GACTCCATTTTGTTATGTATTAA 1 HERV-K (HML2) LTR AMSBio K113 

69-91 CCATTTTGTTATGTATTAAGAAA 2 HERV-K (HML2) LTR AMSBio K113 

75-97 TGTTATGTATTAAGAAAAATTCT 3 HERV-K (HML2) LTR AMSBio K113 

350-372 CCATGTGATAGTCTGAAATATGG 4 HERV-K (HML2) LTR AMSBio K113 

604-626 GGCAGCAATACTGCTTTGTAAAG 5 HERV-K (HML2) LTR AMSBio K113 

861-883 CCTTATTTCTTTCTCTATACTTT 6 HERV-K (HML2) LTR AMSBio K113 

878-900 TACTTTGTCTCTGTGTCTTTTTC 7 HERV-K (HML2) LTR AMSBio K113 

888-910 CTGTGTCTTTTTCTTTTCCAAAT 8 HERV-K (HML2) LTR AMSBio K113 

890-912 GTGTCTTTTTCTTTTCCAAATCT 9 HERV-K (HML2) LTR AMSBio K113 

892-914 GTCTTTTTCTTTTCCAAATCTCT 10 HERV-K (HML2) LTR AMSBio K113 

1114-1136 GGGCAAACTAAAAGTAAAATTAA 11 HERV-K (HML2) Gag AMSBio K113 

1115-1137 GGCAAACTAAAAGTAAAATTAAA 12 HERV-K (HML2) Gag AMSBio K113 

1190-1212 GAGTTAAAGTATCTACAAAAAAT 13 HERV-K (HML2) Gag AMSBio K113 

2306-2328 GTCAAAATTGGAGTACTATTAGT 14 HERV-K (HML2) Gag AMSBio K113 

2536-2558 GTGGAGTTAATGGCATATGAAAA 15 HERV-K (HML2) Gag AMSBio K113 

7027-7049 CAGAAGTATATGTTAATGATAGT 16 HERV-K (HML2) Env AMSBio K108 

7295-7317 TTCTTATCAAAGATCATTAAAAT 17 HERV-K (HML2) Env AMSBio K108 

7353-7375 CCCAAAGAATCAAAAAATACAGA 18 HERV-K (HML2) Env AMSBio K108 

7557-7579 GACAAACATAAGCATAAAAAATT 19 HERV-K (HML2) Env AMSBio K108 

8313-8335 GACTGGAATACGTCAGATTTTTG 20 HERV-K (HML2) Env AMSBio K108 

Not found GACACACTGGAGCAGATGTCTTCTACATTGC e - Origene K108 

4905-4933 GCCACTGCACATTCTCCAACAGGCATCAT f HERV-K (HML2) Pol Origene K108 

3329-3354 CCAGTCCAAGAGACAGGATTGCTCAAT g HERV-K (HML2) Pro Origene K108 

6174-6202 AGGAGTGTACCACTCCTCAGATGCAACTT d HERV-K (HML2) Pol Origene K108 

1020-1050 TGGTCATTGAGGACAAGTCGACGAGAGAT a HERV-K (HML2) LTR Origene K113 

949-973 AGGGGCAACCCACCCCTACATCTGG b HERV-K (HML2) LTR Origene K113 

1065-1076//6434-

6448** 

GTCAGCCTTACGACATTTGAAGTTCTA c HERV-K (HML2) 

LTR/Env** 

Origene K113 

**: Spanning splicing sites. 

##: Negative control scramble (scr) sequence from Origene is not available. 

AY037928.1 and AC072054 are accession numbers for K113 and K108, respectively  
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For shRNA 1-20, HERV-K113 gag and LTR and HERV-K108 env were used as query 

sequences submitted to RNA interference online tool (siDirect version 2.0) which 

predicted best candidates of siRNA, based on an algorithms designed by (Ui-Tei et al., 

2008; Reynolds et al., 2004; Amarzguioui et al., 2004). 5 for each 5 for gag, 5 for env 

and 10 for LTRs (5 downstream of the transcription start site, and 5 before upstream of 

the transcription termination site) were chosen. Each target sequence was synthetised 

as a shRNA and inserted in lentiviral-expressing vectors (pGFP-C-shLenti) by 

AMSBio, as a custom service. 

shRNAs e,f,g,d was purchased from Origene (Cat # TL313165V) as shRNA-expressing 

lentiviral vectors using pGFP-C-shLenti vector. 

shRNAs a,b,c were chose manually on K113 sequence, and were synthetised and 

inserted in a pGFP-V-RS shRNA-expressing lentiviral vector by Origene, as a custom 

service. 

 

7.8 Transfection 

 
On day 1, MCF7 or HEK293T cells were plated in a 6-well plate prior to transfection. 

On day 2, DNA and MegaTran 1.0 transfection reagent (Origene, Cat # TT200005) was 

mixed in 200µL of Opti-MEM™ (Thermofisher, Cat # 31985062), and incubate for 15-

25 minutes. After that, the mix was added drop by drop in the appropriate well, 

homogenized by swilling, and the cells were incubated overnight at 37°C. On day 3, 

the transfecting medium was replaced by normal growth medium. The cells were 

checked on fluorescent microscope to confirm the transfected state. The cells were then 

cultured for 3-5 days until lysis and SDS-PAGE. 

 

7.9 Lentiviral production 

 
Origene lentiviruses were provided by the company with an indication of the titer 

(TU/ml). shDCAF1 lentiviruses was produced and kindly provided by J. L. Rimmer, 

briefly, on day 1, HEK 293T cells were plated into 100mm dishes. On day 2, cells were 

transfected with a set of 3 plasmids DNA: shRNA vector, a mix of packaging plasmids 

that contains pCMV-DR8.2 plasmid encoding for lentiviral core and pVSV-G plasmid 

encoding for lentiviral Env. On day 3 the medium was replaced with a high-serum 

medium. On day 4 the medium was collected, replaced with another set of high-serum 

medium. Harvested medium was centrifuged to remove cellular debris, and the 
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supernatant containing viral particles was stored at -80°C. On day 5, medium was 

collected and centrifuged to remove cellular debris, and the supernatant containing viral 

particles was stored as 2-ml aliquot in cryotubes at -80°C.  

 

7.10 Adenovirus stock production 

 
Merlin (NF2) wild type and control GFP-containing vector adenoviruses (AdV-NF2 

and AdV-GFP, respectively) obtained from J. Testa (Xiao et al., 2005) were amplified 

in 293T cells as previously described (He et al., 1998). Cells were plated in a 500mm 

dish and culture to a confluence of 80%, then 50µl of previous stock of AdV-NF2 or 

AdV-GFP were added to the culture. 1-2 days post-infection, medium was removed 

cautiously. Cells were scraped, harvested in a 15-ml tube and centrifuge for 5 minutes 

at 2000rpm to discard any remaining medium. Cells were resuspended in 500l cold 

PBS and transfer into a 1.5ml Eppendorf tube. A small amount of Liquid Nitrogen was 

poured into an appropriate container. Using a long pair of tweezers, the small tube was 

frozen in Liquid Nitrogen and thawed in water bath at 37°C three times, to release AdV 

virions. The small tube was centrifuge in a bench microfuge to pellet cellular debris. 

The supernatant containing AdV virions was aliquoted, 50l per aliquot. Aliquots were 

stored at -80°C until use.   

 

7.11 Viral Infection 

 
For AdV infection, schwannoma cells were plated and culture to high percentage 

(~90%) of confluence since AdV produce a lytic infection that induces cell death. 50l 

of viral aliquot was introduced in the culture medium. Cells were kept with viruses for 

72 hours, or infected medium was changed for fresh medium and kept until day 5 of 

infection. Then they were lysed for further analysis. 

For lentivirus infection, schwannoma and HEK293T cells were plated and cultured to 

~70% confluence. Then 2ml of homemade aliquot or the equivalent of 400 000 TU for 

purchased lentiviruses (Origene, Cat # TL313165V) were introduced in medium, with 

the addition of 8g/ml of Polybrene for cell lines or Protamine Sulphate for 

schwannomas. Cells were kept with viruses for 72 hours, then selected in puromycin 

(Sigma, Cat # P9620) selection medium (4g/ml) until desired confluence (>80%).   
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7.12 Protein lysates 

 
Cells in 6-well plate from culture were washed with PBS two times. Then 50l of lysing 

buffer was added in each well. The lysing buffer was RIPA buffer (1mM EDTA: 0.5% 

sodium deoxycholate (Sigma, Cat # D6750); 0.1% Sodium Dodecyl Sulphate (SDS); 

1% Nonidet P40 (Sigma, Cat # 11332473001); 150mM NaCl (Sigma, Cat # S7653); 

50mM Tris-HCl pH8)) supplemented with inhibitors of protease (Thermofisher, Cat # 

87786), phosphatase B (Santa Cruz, Cat # SC-45045) and C (Santa Cruz, cat # SC-

45065). Cell scraper (Fisherbrand, Cat # 11597692) was used to scrape the cells down 

into the lysing buffer. The cells suspension was collected in 1.5ml Eppendorf tube and 

incubate on ice for at least 5 minutes. Then the solution was centrifuged at 13 000 rpm 

for 15 minutes to remove any cellular debris. The supernatant (protein lysate) was 

collected and stored at -20°C until further use. 

 

7.13 Western Blot Analysis 

 
Cell lysates were mixed with reducing buffer (250mM Tris-HCl pH6.8, 8% SDS, 40% 

glycerol (Sigma, Cat # G9012) , 200mM dithiothreitol (DTT, Sigma, Cat # 43816) and 

0.4% bromophenol blue (Sigma, Cat # B0126)), boiled at 95°C for 5 minutes, and then 

proteins were separates through a Sodium Dodecyl Sulphate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) (SDS, Sigma, Cat # L4509). After running, the proteins 

were transferred from the gel to a PDVF nitrocellulose membrane for 90 minutes 

(250mA) or overnight (175mA). The membrane was then blocked with Tris Buffer 

Saline (TBS) containing 1% Tween 20 (Sigma, Cat # P2287) (TBS-T) 5% skim milk 

powder (Sigma, Cat # 70166), for 60 minutes, to limit non-specific binding. The 

membrane was then washed 3 times (5 minutes per wash) and incubated with 

appropriate primary antibody overnight. Visualization of the proteins was achieved 

using secondary antibodies coupled to horseradish peroxidise (HRP), for 60 minutes 

incubated at room temperature with enhanced chemiluminescence reagents (ECL™ 

Western Blotting Detection Reagents, GE Healthcare Life Sciences, Cat # RPN2106)  

and manual development using autoradiographic Amersham Hyperfilm ECL (GE 

Healthcare Life Sciences, Cat # 28-9068-36). 
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7.14 RNA preparation 

 
For studying HERV-K (HML2) transcription, RNA was extracted from cultured cells 

(MCF7), using an RNEasy kit according to the manufacturer instructions (Qiagen, 

Cat#74104). RNA was eluted in 50l and quantitated using a nanodrop (NanoDrop 

2000, Thermo Scientific). After DNAse treatment (DNA-free kit, Ambion, Cat # 

AM1907), each RNA preparation was diluted to 10ng/l, so that 25ng (2.5l per 

reaction) was added in each 25l qPCR reaction. 

For study on macaque PcEV, We analysed acutely SIV-infected macaques from 

different SIV challenges in historical studies of SIV pathogenesis and vaccination 

(Berry et al., 2011; Ferguson et al., 2014; Mattiuzzo et al., 2013).  

 

RNA was extracted from 140l to 1ml of plasmas using a QiaAmp (Qiagen, Cat# 

52904) according to the manufacturer’s instruction. Each RNA preparation went 

through DNAse step to remove contaminant DNA. 5l of DNAse-treated RNA 

preparation was used per qPCR reaction. 

 

For quantification of cellular-associated transcripts, RNA was extracted from frozen 

cells, washed once in PBS, and then lysed with guanidine isothiocyanate (Sigma, Cat # 

50983). Then 200l of chloroform was added followed by centrifugation step at 13000 

rpm for 2 minutes. The aqueous phase was collected and 1 volume of 100% Ethanol 

was added, and the samples were loaded onto RNEasy silica column (Qiagen, Cat # 

74204). The column was washed and RNA was eluted according to the manufacturer’s 

instruction. RNA was eluted in 50l and quantitated using nanodrop. Each RNA 

preparation was diluted to 10ng/l, so that 50ng (5l) was added in each qPCR reaction. 

 

7.15 DNAse treatment 

 
Removal of DNA contaminants was conducted using a DNA-free kit (Ambion, Cat # 

AM1907). 5l of 10X DNAse Buffer was added to 50l RNA preparation. Then 1-2l 

of TURBO DNAse was added and the solution was incubated for a total of 1 hour at 

37°C. Then 10l Inactivation Reagents were added, and the solution was incubated for 

5 minutes flicking the tubes sometimes. The solution was centrifuged at 10 000 x g for 
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2 minutes to pellet Inactivation Reagents. The supernatant containing RNA was 

harvested, and used or stored at -80°C for further analysis.  

 

7.16 Primers and probes sequences 

 
Primer sequences for qPCR in human samples were the following, given in 5’-3’ 

orientation:  

Table 3 : Primers and probes. 

Sequence Forward Reverse Probe 

HERV-
K(HML2) 

pol* 

4505AATTGACTGTTATACATTTCTGC CCGAATCCAATTAATATCTCC4695  

HERV-
K(HML2) env 

1017GCGTGGTCATTGAGGACAAGTC GGTGCTCGATTGCGGTGTCT6496  

Human 

GAPDH 

3059CTTTTGCAGACCACAGTCCATG TTTTCTAGACGGCAGGTCAGG3274  

PcEV pol 3122CCGTGTCTATCAAGCAATATCC GGCAGAAGAGGAGTGTTCCAGG3227 3197AACTCGGAGTGTTGCGAC3214 

Rhesus 
GAPDH 

2268GGCTGAGAACGGGAAGCTC AGGGATCTCGCTCCTGGAA2314 2288TCATCAATGGAAGCCCCATCACCA2311 

STAT-1 443CAATACCTCGCACAGTGGTTAGAAAA CGGATGGTGGCAAATGAAAC497  

SIV ltr** 641CTCCACGCTTGCTTGCTTAA AGGGTCCTAACAGACCAGGG761 707TCCCATATCTCTCCTAGYCGCCGC728 

SIV gag** 511AGTGCCAACAGGCTCAGAAAA TGCGTGAATGCACCAGATG562 533TTAAAAAGCCTTTATAATACTGTCTGCG560 

*: pol primers from Karamitros et al. (2016). 

**: SIV primers are based on conserved regions in gag (Berry et al., 2008), and in LTR 

for SIVsmE660 (Berry et al., 2011). 

Reference sequences used are: HERV-K (HML2) (K113; NC_022518), human 

GAPDH (NC_000012.12), PcEV (AF142988.1), rhesus GAPDH (NC_027903.1), 

STAT-1 (NM_001261614.1), SIVsmE660 ltr (JQ864087.1), SIVmac251 gag 

(KC522253.1). The positions of the nucleotide on the reference sequence annealing 

with the first nucleotide of the forward primer, the last nucleotide of the reverse primer 

in the given orientation, the first and the last nucleotides of the probe, are provided.  

 

 

7.17 qPCR and qRT-PCR 

 
For quantification of cellular-associated HERV-K (HML2) transcripts, each RNA 

preparation was diluted to 40ng/l, so that 100ng (2.5l) was added in each qPCR 

reaction (20l). For HERV-K (HML2) pol, env and human gapdh, Sybr green-based 

qPCR was used. The kit used was RNA-to-Ct Power Sybr green (Applied Biosystem, 

Cat #4389986). The mix consisted of 6.86l of nuclease-free water, 1.2l of each 

forward and reverse primers (5M each, final concentration: 300nM), 10l of 2X 
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Master Mix (containing SYBR green and polymerase), and 0.16l of RT-enzyme mix 

(for reverse transcription).  

The qPCR programs were adapted from manufacturer’s instructions and were set as 

follows. The qPCR program for HERV-K (HML2) pol (Karamitros et al., 2016) and 

gapdh was as following: 48°C for 30 minutes (reverse transcription step), 95°C for 5 

minutes (Holding), 35 cycles of 95°C for 30 seconds, 47°C for 30 seconds and 72°C 

for 1 minute; and Melt curve as 95°C for 30 seconds, 47°C for 30 seconds and 95°C 

for 30 seconds. The qPCR program for HERV-K (HML2) env and gapdh was as 

following: 48°C for 30 minutes (reverse transcription step), 95°C for 10 minutes 

(Holding), 35 cycles of 95°C for 15 seconds, 60°C for 1 minute; and Melt curve as 

95°C for 15 seconds, 60°C for 30 seconds and 95°C for 15 seconds. RNA preparations 

were confirmed to lack detectable DNA or contained very low quantity by performing 

a quantitative PCR lacking reverse transcriptase in SYBR green system, RT-enzyme 

mix was replaced by 0.16l of nuclease-free water. RT-qPCR was conducted using a 

StepOnePlus™ Real-Time PCR System (Applied Biosystem, Cat # 4376600). Results 

was analysed by the 2-Ct method. 

 

For quantification of PcEV pol and SIV gag and ltr transcripts in plasma, 5l of 

DNAse-treated RNA preparation was used per qPCR reaction. The qPCR reaction was 

performed in one-step using RNA Ultrasense one-step quantitative RT-PCR kit 

(Invitrogen, Cat # 11732927). For PcEV pol, the qPCR reaction consisted of 25.9l of 

nuclease-free water, 1l of each forward and reverse primers (5M each, final 

concentration: 100nM), 2.5l of PcEV-specific Taqman probe (10M), 10l of 5X 

Master mix, 0.1l of ROX reference dye, and 2.5l of enzyme mix (superscript III 

Reverse Transcriptase and Platinum Taq polymerase). The qPCR program was 48°C 

for 30 minutes reverse transcription step, 95°C for 5 minutes hold step, 40 cycles of 

95°C for 15seconds and 61°C for 1minute. For SIV gag and ltr, the mix contained 

25.9l of nuclease-free water, 1l of each forward and reverse primers (5M each, final 

concentration: 100nM), 2.5l of SIV-specific probe (10M). The qPCR program was 

52°C for 60 minutes reverse transcription step, 95°C for 10 minutes hold step, 40 cycles 

of 95°C for 30 seconds and 61°C for 90 seconds. RT-qPCR was conducted on Mx3005P 

QPCR System (Agilent Technologies, Cat # 401456). PcEV pol and SIV gag/ltr in the 

plasma were represented as a number of copies of PcEV and SIV per ml of plasma. 
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For quantification of cellular-associated transcripts, each RNA preparation was diluted 

to 10ng/l, so that 50ng (5l) was added in each qPCR reaction. For PcEV pol and SIV 

gag/ltr, the qPCR was conducted as stated above. For GAPDH, the mix contained 

25.9l of nuclease-free water, 1l of each forward and reverse primers (5M each, final 

concentration: 100nM), 2.5l of GAPDH-specific probe (10M). The qPCR program 

was 52°C for 60 minutes reverse transcription step, 95°C for 10 minutes hold step, 40 

cycles of  95°C for 30 seconds and 61°C for 90 seconds. For STAT1, Sybr green-based 

qPCR was used. The kit used was RNA-to-Ct Power Sybr green (Applied Biosystem, 

Cat# 4389986). The mix consisted of 15.6l of nuclease-free water, 4l of each forward 

and reverse primers (10M each, final concentration: 400nM), 25l of 2X Master Mix 

(containing Sybr green and polymerase), and 0.4l of RT-enzyme mix (for reverse 

transcription). The qPCR program was as following: 48°C for 30 minutes (reverse 

transcription step), 95°C for 10 minutes (Holding), 40 cycles of 95°C for 15 seconds, 

and 60°C for 1 minute; and Melt curve as 95°C for 15 seconds, 60°C for 15 seconds 

and 95°C for 15 seconds. RNA preparations were confirmed to lack detectable DNA or 

contained very low quantity by performing a quantitative PCR lacking reverse 

transcriptase for PcEV, SIV and GAPDH, systematically. In RNA Ultrasense system, 

enzyme mix was replaced by 0.2l of Platinum Taq polymerase (10U/l) (Invitrogen, 

Cat# 10966), while in Sybr green system, RT-enzyme mix was replaced by 0.4l of 

nuclease-free water. RT-qPCR was conducted on Mx3005P QPCR System. PcEV pol 

and SIV gag/ltr in tissues were represented as a number of copies of PcEV or SIV per 

1000 copies GAPDH 

GAPDH was picked as a housekeeping gene as its expression is relatively stable in the 

same tissues from different individual in human (intra-tissue comparison) (Barber et 

al., 2005), and as previously used housekeeping gene in the macaque for comparing 

gene expression in tissues (Ferguson et al., 2014). The comparison of GAPDH 

expression revealed that it differs significantly in PBMC only (inter-tissue comparison, 

supplementary information, Fig S5). Also, the variation of expression across the same 

tissue taken from different individuals (intra-tissue comparison) was estimated by the 

coefficient of variation (supplementary information, Fig S5). 
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7.18 In vitro transcription.  

 
pBS-PcEV was linearized by Hind III which restriction site is located 16nt downstream 

PcEV sequence. The reaction mix included 1g of pBS-PcEV plasmid (0.2g/l), 

2U/l final concentration of enzyme and 15l of water/enzyme buffer. The 

linearization was carried at 37°C for an hour. In vitro transcription was carried using 

MAXIscript kit (Ambion, Cat # AM1312) following manufacturer’s instructions. The 

reaction was prepared as following: 5l of linearized pBS-PcEV (0.2g/l), 2l of 10X 

transcription Buffer, 1l of each nucleotide solutions (10mM) ATP, GTP, CTP and 

UTP, 2l (1.5U/l final concentration) of T7 enzyme mix (15U/l stock), and finally 

7l of nuclease-free water. The tube was gently flicked and incubate for 1h at 37°C. 

The reaction was treated with 1l of TURBO DNAse I (2U/l) for 15 min at 37°C to 

remove DNA. Transcripts were purified as followed: 30l water was added to the 

DNase I-treated transcription reaction to bring the volume to 50l. 5l of 5 M 

Ammonium Acetate was added to the mix and vortexed. 3 volumes of 100% ethanol 

(150l) was added. The reaction mix was chilled at –20°C for 30 minutes, spun for 20 

minutes at maximum speed (14800rpm). Supernatant was discarded and the pellet was 

washed with 50l of 70% Ethanol, then spun for 20 minutes at maximum speed again. 

For complete removal of unincorporated NTPs, the transcripts went through an 

additional purification step which consisted of adding 5l of 5M Ammonium Acetate 

to the mix and vortex. 3 volumes of 100% ethanol (150l) was added. The reaction mix 

was chilled at –20°C for 30 minutes, spun for 20 minutes at maximum speed (14800 

rpm). The supernatant was discarded and the pellet was washed with 50l of 70% 

Ethanol, then spun for 20 minutes at maximum speed again. The pellet was finally 

resuspended in 20l of nuclease-free water, followed by nanodrop measurements. The 

nanodrop indicated 432.5ng/l with ratios 260/280 = 2.12 and 260/230 = 2.29 for pBS-

PcEV transcripts.  

 

7.19 Standard curves.  

 
The PcEV transcripts preparation was DNAse-treated and subjected to 10-fold serial 

dilutions. The copy number of PcEV for each dilution was estimated as followed: 2l 

of the lowest point of the standard curve was further diluted in 2400l of RT-qPCR 

mix, corresponding 48 reactions of 50l. After amplification, the frequency of positive 
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reactions was determined (f = 8/48) and the copy number per reaction (for 5l template 

of each standard) was estimated by the formula: copy number = - ln f (= - ln (8/48) = 

1.79), multiplied by 2.5 as frequency obtained correspond to 2l of the lowest standard. 

The copy number per reaction was 4.475. 

   

The Ct value obtained for each plasma sample was reported to the standard curve to 

estimate the PcEV copies per reaction (for 5l of plasma RNA preparation). The PcEV 

copies per ml for each plasma sample was obtained taking into account the extraction 

procedure. As RNA from 140l or 1ml of plasma was extracted via RNEAsy column, 

and eluted in 50l or 100 l, respectively, the copy number per reaction was multiplied 

by an enrichment factor of 71.43 (1ml/140ul x 50/5ul) or 20 (1ml/1ml x 100/5), 

respectively. In further details, the copy number n in 5ul should be multiply by 10 to 

get the copy number in 50ul (10 x n). The amount of RNA eluted in 50ul was extracted 

from 140ul, so there are 10 x n copies in 140ul of plasma. So, in 1ml of plasma, there 

are (1000ul/140ul) x 10 x n copies = 71.43n copies. Similarly, the copy number n in 

5ul should be multiply by 20 to get the copy number in 100ul (20 x n). The amount of 

RNA eluted in 100ul was extracted from 1ml, so there are 20 x n copies in 1ml of 

plasma. So, in 1ml of plasma, there are (1000ul/1000ul) x 20 x n copies = 20n copies. 

 

Similarly, the lowest standard for SIV possess a copy number of 2.74. As above, the 

copy number per reaction obtained through standard curve was multiplied by an 

enrichment factor of 71.43 or 20. SIV standards used were from SIVmac251 RNA 

plasma series (Berry et al., 2008; Ham et al., 2010). 

 

Standards for GAPDH and STAT1 are kind gifts from Giada Mattiuzzo (NIBSC) 

(Ferguson et al. 2014). They are made of GAPDH and STAT1 amplicon cloned in a 

plasmid, separately. 

 

7.20 Immunohistochemistry 

 
Case slides were kindly provided by Derriford hospital Neuropathology department (Dr 

David Hilton and Dr Phil Edwards). Each slide contains a section from normal nerves 

or schwannoma. Slides were baked at 60°C for 1 hour. Dewaxing step: The slides were 

dewaxed by 2 washes in 100% xylene (5 minutes per wash), followed by two washes 
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in 100% ethanol (5 minutes per wash). The slides were then washed in running tap 

water for 5 minutes. The samples were then blocked in methanol containing 3% 

hydrogen peroxide (H2O2) for 30 minutes, followed by washing in running tap water 

for 10 minutes. Pre-treatment to reveal antigens was performed in Tris/EDTA buffer 

(2.4mg/ml Tris, 0.2mg/ml EDTA, 2mM HCl pH9.0) for HERV-K Gag and in Citrate 

buffer (2.1mg/ml citric acid, 10mM NaOH, pH6.0) for HERV-K Env, heated in 

microwave, full power, for 30 minutes. Each antibody was tested on tonsils in different 

conditions and pre-treatments, the one that reveal a better stain of the antigen per 

antibody was chosen. After a quick cooling in water, a hydrophobic ring surrounding 

the tissue was drawn with an ImmEdge pen, to avoid leakage during incubation time 

with blocking serum or antibodies, before the slides were immersed in 0.05M Tris-HCl 

buffer (6.05mg/ml Tris, 8mg/ml sodium chloride, 1:1000 Tween 20, pH7.6) for 5 

minutes. The slides were laid out on incubation trays with piece of damp tissue beneath 

the slides for humidity. Normal Horse Serum from Vectastain kit (Vector, Cat # PK-

6200) was diluted in 0.05M Tris-HCl buffer (1 drop in 5ml) and was used to cover the 

tissue section within the ring for 30 minutes. This step blocked non-specific binding 

sites. Then, liquid on slides was drained onto disposable absorbent tissue, followed by 

incubation with primary anti-HERV-K (HML2) Gag or Env antibody at a dilution of 

1:100, overnight at 4°C. After overnight incubation, the primary antibodies were 

drained on absorbent tissue and slides were washed 2 times by immersion in 0.05M 

Tris-HCl buffer for 5 minutes per wash. Then sections were incubated for 30 minutes 

with secondary antibody solution. The secondary antibody solution is made of normal 

horse serum and biotinylated universal antibody (Vectastain, 2 drops each in 5ml 0.05M 

Tris-HCl buffer). Then secondary antibody was washed off by immersion in 0.05M 

Tris-HCl buffer, 2 times for 5 minutes. Then Streptavidin/Biotin Complex-ABC 

(Vectastain, 2 drops of both reagent A and reagent B in 5ml of 0.05M Tris-HCl buffer) 

was applied on slides for 30 minutes. Then the slides were washed two times by 

immersion in 0.05M Tris-HCl buffer 2 times for 5 minutes per wash. The slides were 

then laid out on the trays and 3,3′-Diaminobenzidine tetrahydrochloride (DAB) (Sigma, 

Cat # D5905), dissolved in 5 ml of distilled water and filtered, was applied on the tissue 

sections for 5 minutes. Excess was taped off onto an absorbent tissue and slides were 

washed in running tap water for 10 minutes. Then when necessary, the slides were 

immersed in DAB enhancer solution (4g of copper sulphate and 7.2g sodium chloride 

in 1l of distilled water) for 2 minutes to increase the signal when needed, followed by 
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a 5-minutes wash in running water. The tissue sections were then counterstained using 

haematoxylin for 1-2 minutes followed by a 10-minute wash in running water. Next, 

the slides were quickly washed 2 times in 100% ethanol and 2 times in 100% xylene, 

then a coverslip was mounted on top of the section on the slide using DPX mounting 

solution. Staining is presented as brown and intensity was scored unblinded by a third-

party neuropathologist, David Hilton, NHS, Plymouth Hospital. Results are presented 

as: -, no staining; -/+, equivocal; +, positive; ++, strong positive; +++, very strong 

positive.  

 

7.21 Immunofluorescence 

 
Cells were seeded at a concentration of 3000 cells/well on a Lab-Tek, and grown until 

they were confluent. After drug treatment, cells were washed with PBS, fix with 4% 

PFA in PBS for 10 minutes at room temperature. Cells were washed with PBS again 

and permeabilised with 0.2% Triton X100 in PBS for 60 minutes. After 

permeabilisation, cells were washed three times with PBS for 5 minutes each. Cells 

were blocked using 10% serum 1% BSA in PBS for an hour at room temperature. Then 

blocking solution was washed with PBS for 5 minutes at room temperature. Cells were 

incubated in a primary antibody solution made by diluting antibody in 1% BSA in PBS 

overnight, the primary antibodies were against: Ki67, a maker of cell proliferation, used 

at 1:100; c-Jun, a protein associated to proliferation and demyelination, used at  1:100; 

HERV-K Env at 1:50 and HERV-K Gag at 1:50. Secondary fluorescent antibody 

(section 7.3) were prepared in 1% BSA in PBS at a dilution of 1:500 and applied for an 

hour at room temperature and sheltered from light. Cells were then washed three times 

in PBS for 5 minutes each. DAPI nuclear staining was applied at a concentration of 

1:500 in PBS and incubated for 10-15 minutes. Cells were then washed three times for 

5 minutes each. The Lab-Tek chambers were removed and Vectashield was used to 

apply a coverslip on top of the cells. The edges of coverslip were sealed using clear nail 

polish and the slide was stored at 4°C in the dark until microscopy. Confocal 

Microscopy was performed by Dr Sylwia Ammoun. 

 

7.22 Exosome isolation 

 
Whilst the cells were still in culture, the standard media was removed and replaced with 

media made with exosome-depleted FBS (System Biosciences, Cat # EXO-FBS-250A-
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1), as preliminary trials indicated that the exosomes present in standard FBS were 

affecting our results. The cells were cultured in the exosome-depleted medium for 

72hours at which point the media was removed for exosome isolation. The exosomes 

were extracted using Total Exosome Isolation Reagent (Thermofisher, Cat # 4478359) 

and Exoquick Exosome Isolation (System Biosciences, Cat # EXOQ5A-1) according 

to the manufacturer’s instructions. Briefly, exosome-depleted medium from cultures 

was collected in a 15ml or 50ml tube (depending on volume of medium available in 

culture) and centrifuged at 3000 x g for 15 minutes to remove cellular debris. The 

supernatant was transferred to in a separate tube, 63l of ExoQuick Exosome 

Precipitation Solution (ExoQuickTM, Cat # EXOQ_A-1) was added for each 250l of 

culture medium, mixed by flicking and refrigerate overnight at 4°C. Then, the mixture 

was centrifuged at 1500 x g for 30 minutes. The supernatant was discarded (or kept for 

exosome-free control) and the pellet was further centrifuged at 1500 x g for 5 minutes 

to remove residual fluids. The pellet containing exosomes was resuspended in RIPA 

lysis buffer and stored at -20°C until required.  

Total Exosome Isolation Reagent was also used to pellet exosomes from schwannoma’s 

culture medium, according to the manufacturer’s instructions. The method was similar 

and no specific differences in exosome fractions obtained among the project, was 

observed. 

CD63 is a tetraspanin present on the membrane of exosomes and intracellular vesicles. 

CD63 was included in the western blotting panel as a positive control for exosome 

isolation (Thery et al., 2006). 

Exosomes isolations were mainly performed by Shona Reeves, Undergraduate student 

from University of Bath, supervised by the thesis author.  

 

7.23 FACS 

 
FACS was used to determine the proportion of transfected cells (GFP+). Transfected 

cells were trypsinised and washed 3 times in buffer made of 1% FBS in PBS. Then cells 

were resuspended in 300l of the same buffer. Non-transfected cells were used as 

control. Cells suspensions were analysed on FACS Accuri C6 flow cytometer (BD 

Biosciences) 
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7.24 HERV-K (HML2) LTR mapping 

 
Alignments were build using MEGA6 software. LTRs from the following full length 

HERV-K (HML2) loci sequences were aligned: HERV-K113 (19p12b), HERV-K116 

(1p13.1), HERV-K102 (1q22), HERV-K106 (3q13.2), HERV-K117 (3q27.2), HERV-

K107 (5q33.3), HERV-K109 (6q14.1), HERV-K108 (7p22.1), HERV-K118 

(11q22.1), HERV-K119 (12q14.1), HERV-K 12q13, HERV-K103 (10p22.1), HERV-

K101 (22q11.21), ERVK4 (3q21.2), HERV-K115 (8p23.1a), HERV-K60 

(21q21.1),  HERV-K104 (5p13.3), ERVK19 (19q11), HERV-K 2q21.1. HERV-K 

(HML2) was annotated manually based on previous studies: only 7 TFs motifs have 

been tested experimentally: OCT4 (Grow et al., 2015), NF-B and NF-AT (Gonzalez-

Hernandez et al., 2012), MITF-M (Katoh et al., 2011), Sp1 and Sp3 (Fuchs et al., 2011), 

YY1 (Knössl et al., 1999). TEAD binding motif TGGAAT from (Vassilev et al., 2001) 

binding motifs was searched and annotated manually. 

 

7.25 Overview of the macaque genome.  

 
A more detailed analysis of data presented in Magiorkinis et al. (2015) suggested that 

PcEV is one of the 3 recently active ERV lineages in the macaque, with two other 

lineages (SERV, CERV) that have shown similar levels of copying over the last few 

million years (Fig. S2). The relative youth of these lineages among the entire 

complement of macaque ERVs is shown in Fig. S3. This type of analysis also shows 

the macaque to be intermediate between the mouse and human genomes in the number 

of recently integrated ERV loci (Fig. S4).  

 

7.26 Extraction and alignment of macaque ERV locus sequences 

 
Bioinformatic analyses used UCSC's Genome Browser website and its BLAT tool 

(Kent, 2002). We worked primarily with the most recent and reportedly best reference 

genome sequence of the rhesus macaque, rheMac8 (Mmul_8.0.1). This assembly 

derives from Zimin et al.'s (2014) (short-read) Illumina whole genome sequencing 

(MacaM) with later closing of some gaps using (long-read) PacBio sequencing of the 

same individual animal (comment in GenBank accession GCA_000772875.3) 
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We compared the sequences of loci with those from an earlier build of the rhesus 

macaque genome, rheMac2 (Richard A. Gibbs, 2007) (GenBank accession 

GCA_000002255.2). This is an earlier (short-read) whole genome sequencing project 

but it is largely from the same (female) individual (ID 17573) plus some sequencing of 

an unrelated male used in finishing and in providing a Y chromosome. We also 

compared the sequences to those in another species of macaque, the cynomolgus (crab-

eating or long-tailed) macaque. These two species are very closely related and so have 

a very similar genome sequences: they are estimated to share a common ancestor only 

0.91 ± 0.11 million years ago, which is more recent than the common ancestor of all 

rhesus macaques (Osada et al., 2008). The reference genome sequence of the 

cynomolgus macaque, macFas5, appears to have been built independently of the rhesus 

genome using a range of short-read technologies (comment in GenGank accession 

GCA_000364345.1). The other rhesus build available on the UCSC website, rheMac3, 

is very fragmentary.  

 

PcEV was described initially from the baboon (Mang et al., 1999) (with GenBank 

reference AF142988) and was erroneously referred to as BaEV in (Magiorkinis et al. 

(2015) (see SI). We initially used this GenBank sequence to find and download the 

sequences of several PcEV loci in the macaque using the UCSC Genome Browser. A 

multiple alignment was then made of the downloaded sequences using MEGA (Tamura 

et al., 2013, 2011) and a new consensus reference sequence built that had full-length 

ORFs (Open Reading Frames) in all genes (sequences from different loci differed only 

by a few percent so alignments were unambiguous). This macaque reference was then 

used to re-search the macaque genome as above.  Multiple alignments were then made 

manually from downloaded sequences, and the individual loci examined visually for 

full-length ORFs and other motifs. 

 

7.27 Dating integrations 

 
We dated integrations using the nucleotide divergence between the LTRs of the 

proviruses. These LTRs form the flanks of a provirus (the complete integrated DNA 

form of a retrovirus) and are identical at the time of integration, accumulating 

substitutions at the host background rate. 

We used the following equation to calculate locus age:  
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Estimated age = (a/b)/r*2 where 

a = number of mismatches between the two LTRs 

b = length of the LTR 

r = estimated rate of nucleotide substitution. We need to in effect divide the final age 

by two to find the integration date because substitutions will have occurred along the 

two branches leading to the 5' and the 3' LTRs (alternatively, we could multiple the 

LTR length by two to reflect this). Our rate of nucleotide substitution is taken to be 

1.0x10-9/nucleotide/year based on analyses of primate ERV sequences (Magiorkinis et 

al., 2015). This value is about half the rate estimated for mammals generally but close 

to estimates for the rate of neutral molecular evolution in Old Word Monkeys and Apes 

(Subramanian and Kumar, 2003; Yi et al., 2002) and was also used by Osada et al. 

(2008) to date the divergence of the two macaque species. 

 

7.28 Prediction of Transcription factor binding sites on PcEV LTRs 

 
Transcription factor binding motifs was predicted with ALGGEN-PROMO online tool 

(Farré et al., 2003; Messeguer et al., 2002) (http://alggen.lsi.upc.es/cgi-

bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3). The transcription factors and 

binding sites were select for primates only. The following primate-specific transcription 

factor binding sites were searched for ([Accession number in TRANSFAC public 

database]): AP-1 [T00029]; NFI/CTF [T00094]; C/EBPalpha [T00105]; NF-Y 

[T00150]; CREB [T00163]; c-Rel [T00168]; CTF [T00174]; GATA-1 

[T00306]; GATA-2 [T00308]; GATA-3 [T00311]; GR-alpha [T00337]; NF-1 

[T00539]; NF-AT1 [T00550]; C/EBPbeta [T00581]; C/EBPdelta [T00583]; NF-

kappaB [T00590]; NF-kappaB1 [T00593]; RelA [T00594]; POU2F1 [T00641]; Sp1 

[T00759]; TBP [T00794]; YY1 [T00915]; STAT1alpha [T01492]; STAT3 

[T01493]; STAT1beta [T01573]; NF-YA [T01804]; GR-beta [T01920]; NF-AT2 

[T01945]; NF-AT1 [T01948]; STAT1 [T04759]; GR [T05076]. The dissimilarity 

between the query and the binding site matrixes from the database was fixed at a 

threshold of 5%. The sequence submitted as a query was PcEV LTR consensus. It was 

obtained as a sequence made with the most represented nucleotide for each position 

from an alignment built from LTRs of all PcEV loci gathered. The alignment includes 

PcEV LTR sequences from NC_022517.1 (Kato et al., 1987) and AF142988.1 (Mang 

et al., 1999).  
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The list of transcription factors to predicted was based on motifs described in human 

HERV-W LTRs and experimentally tested CCAAT box, TATA box, POU2F1 (Oct1) 

(Lee, 2003); on previous in silico analysis of PcEV LTR (GATA-1/-2,  CCAAT box, 

Sp1) (Mang et al., 1999); Enhancer sequences in MuLV (NF1, GRs) (Speck and 

Baltimore, 1987); transcription factors suggested to be involved in inflammation-

stimulated retroviruses (NF-B/NF-AT1-induced HERV-K(HML2) (Gonzalez-

Hernandez et al., 2014) and Tax-induced HERV-W (Toufaily et al., 2011); NF-B-

induced HERV-W (Uleri et al., 2014); STAT3 activation and CREB recruitment in HIV 

infection (Marzio et al., 1998)). The sequence submitted as a query was PcEV LTR 

consensus, first sequence in Figure 31. The alignment includes PcEV LTR sequences 

from NC_022517.1 (Kato et al., 1987) and AF142988.1 (Mang et al., 1999). The 

dissimilarity threshold was fixed at 5%. They could be a bias as most of the TF motifs 

from primates are from human. The database is poor on motifs from other primate 

species, as there was not any selection for binding sites corresponding to haplorrhini 

and catarrhini for example.  This is likely due to the lack of experimental test for 

transcription factors in species from those groups. However, the macaque and human 

genome are almost 97% similar, so we suspect that transcription factor binding sites 

are likely conserved.   

 

Transcription factor binding sites based on matrix provided on ALGGEN-PROMO 

online tool: Core sequence is underlined. 

TBP [T00794] – RRKRTATAAA  

GR-beta [T01920] – AATKD  

GR-alpha [T00337] – WNAGG  

C/EBPbeta [T00581] – TTGN  

NF-1 [T00539] – TTGGSMYR  

C/EBPalpha [T00105] – DATTGNB  

STAT3 [T01493] – YKVYTTCCCSGMAV  

GATA-2 [T00308] – DCHYTATCD  

GATA-1 [T00306] – TATCNN  

NF-Y [T00150] – ATTGGYYH 

YY1 [T00915] – CCAT 
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7.29 Statistical Analysis 

 
For the HERV-K (HML2) study in sections 8.1, 8.2 and 8.3, student’s two-tailed t-tests 

and one-way ANOVA with post-hoc Tukey honestly significant difference (HSD) test 

were used for statistical analysis of the data. On graphs, ns represents not significant, a 

p-value < 0.05 was represented as *; a p-value < 0.01 as **; and a p-value < 0.001 as 

***. In the graphs, mean +/- standard error of the mean are given. 

 

For the PcEV study in section 8.4, Graphpad Prism version 6.01 was used for statistical 

analysis: Mann-Whitney test was carried for comparing non-paired samples in SIV- vs 

SIV+ groups; Kruskal-Walis test was used to compare PcEV levels in tissues 

altogether; Shapiro-Wilk test for normality distribution of cell associated STAT1, SIV, 

PcEV and plasma SIV values; since most data set presented distributions of values that 

were significantly different from normal according to Shapiro-Wilk test, we present the 

correlation coefficients r and p-values from non-parametric Spearman test; where 

logarithmic transformation (base 10) of values were not significantly different from 

normal, we also present r and p-value from parametric Pearson test; Fisher’s exact test 

to assess whether PcEV released in the plasma is commoner in infected compared to 

animals; Wilcoxon matched-pairs signed rank test to compare cellular and plasma 

expressions of SIV to cellular PcEV and STAT1. 
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8 RESULTS 

 

8.1 HERV-K (HML2) protein up-regulation in schwannomas and potential 

therapies 

 

 

8.1.1 Background 

Schwannomas are tumours from the peripheral nerve system, developed from Schwann 

cells. The loss of Merlin, a tumour suppressor, is observed in 100% of 

neurofibromatosis type-2-related schwannomas (Evans, 2000; Hanemann and Evans, 

2006) and approximately 70% of sporadic schwannomas (Agnihotri et al., 2016). 

Merlin deficiency is the key event which likely drives tumour formation (Evans, 2000; 

Hanemann, 2008; Hanemann and Evans, 2006; Hilton and Hanemann, 2014). In fact, 

Merlin loss in schwannomas induces overexpression of many receptors involved in cell 

proliferation and survival such as PDGFR (platelet-derived growth factor receptor), 

IGF-1R (insulin-like growth factor receptor), ErbB2 (epidermal growth factor receptor 

2), VEGFR (vascular endothelial growth factor receptor) and Axl (Hilton and 

Hanemann, 2014). Interestingly, re-introducing Merlin into schwannoma primary cells 

decreases tumours' features as high proliferative level, survival and cell death inhibition 

(Ammoun et al., 2014; Schulze et al., 2002).  

 

To date, therapies for schwannomas include surgery and radiosurgery. Such methods 

can be limited when the tumours are present in multiple sites in the body. Also, surgery 

presents risks because of the invasiveness that can cause further damage, and 

radiosurgery can induce undesirable effects such as additional mutations. 

Unfortunately, current chemotherapy is not effective for those tumours, stressing the 

need for new therapeutics.  

 

HERV-K (HML2) expression is considered to be a common feature in cancers 

including melanoma, germ cell tumours, seminomas, breast cancer, ovarian 

carcinomas, prostate cancer and lymphoma (Hohn et al., 2013). For that reason, HERV-

K (HML2) proteins are interesting tumour associated antigens. In fact, monoclonal 

antibody binding to HERV-K (HML2) Env has been suggested to reduce proliferation 

(Wang-Johanning et al., 2012).  



85 
 

 

In the present section, measuring HERV-K (HML2) protein expression in these 

tumours is part of the objectives as it has never been assayed before in this tumour. 

Also, I explored the possibilities of HERV-K (HML2) proteins to be targeted as an 

antigen for monoclonal antibody therapy, and the potential of an antiretroviral drug, 

ritonavir, to be used as treatment for schwannomas. 

 

8.1.2 HERV-K (HML2) expression in schwannomas and normal nerves 

 
Immunohistochemistry was used to find tissues that harbor HERV-K (HML2) Env and 

Gag antigens among tumours and normal nerves. Ten and 15 cases were assayed for 

the presence of HERV-K (HML2) Env and Gag, respectively. The general picture was 

that staining in normal nerves were weaker than schwannomas (Figure 11A and B), 

suggesting a general overexpression of HERV-K (HML2) proteins in tumour. 

Regarding the presence of Env in tumours, 8/10 (80%) cases were positive with varying 

intensities, from weakly to very strongly positive. 1 in 10 (10%) was equivocal (hard 

to state whether it is positive or negative), and 1/10 (10%) was negative. In normal 

nerves, 3/10 (30%) cases were positive. 2/10 (20%) were equivocal, and 5/10 (50%) 

were negative. Env is also expressed in the normal nerves, but to a lesser frequency 

than in schwannomas (table in Figure 11A).  

 

Regarding HERV-K (HML2) Gag in schwannomas, 13/15 (87%) were positive, and 

2/10 (13%) were equivocal. In normal nerves, 9/15 (60%) were negative, 3/15 (20%) 

were equivocal, and 3/15 (20%) were positive. The frequency of schwannomas 

expressing Gag was higher than normal nerves. Also, the intensity of the staining was 

generally higher in schwannoma tissues (Figure 11B). Interestingly, there were no 

negative schwannomas, suggesting Gag is found more often than Env in tumours (table 

in Figure 11B).  
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Figure 11 : Immunohistochemistry analysis of biopsies from schwannomas and 

normal nerves. 

Sections of paraffin-embedded tissues were incubated overnight with (A) an anti-

HERV-K (HML2) Env or (B) an anti-HERV-K (HML2) Gag after pre-treatment in 

heated Citrate or EDTA buffer for 30 minutes, respectively; followed by biotin-

conjugated universal secondary antibody (Vectastain) and streptavidin-biotin complex 

ABC (Vectastain). The immunostaining was revealed with 3,3′-Diaminobenzidine 

tetrahydrochloride. Staining of HERV-K (HML2) Env and Gag was denser in biopsies 

from schwannomas than from normal nerves. The frequency of individual expressing 

HERV-K (HML2) Env and Gag is higher in biopsies from patients (Env: 9/10; Gag: 

15/15) than in healthy controls (Env: 5/10; Gag: 6/15). 
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8.1.3 HERV-K (HML2) expression in primary cultures of schwannomas and 

Schwann cells 

 
Human primary schwannoma and Schwann cells can be isolated and cultured ex vivo. 

It provides a model for testing the effects of a drug on the proliferation of tumour cells. 

Cells from cultures were assessed for HERV-K (HML2) expression using western 

blotting (n=4) and immunofluorescence (n=3). After cell lysis and separation by 

electrophoresis, proteins were transferred onto PVDF membranes and probed with 

HERV-K (HML2) Env and HERV-K (HML2) capsid-specific antibodies, respectively. 

MCF-7 cell lysate was used as a positive control for Env detection, as they have been 

previously shown to express HERV-K (HML2) Env (Wang-Johanning et al., 2012). 

The blots were imaged and densities of the bands obtained from antibodies binding to 

the target were quantified. The in silico analysis of HERV-K (HML2) Env sequence 

and a previous report (Kämmerer et al., 2011) suggested that the commercial antibody 

used reacts against the transmembrane-unit (TM, 27 kDa un-glycosylated). Env is 

produced as a poly-protein, formed by a transmembrane and a surface unit (SU, 60 kDa 

un-glycosylated), that is cleaved by cellular furin or furin-like proteases (Moulard and 

Decroly, 2000), they form a heterodimer at surface by protein-protein interaction. Env 

possesses a total of 11 N-glycosylation sites, 4 on the TM and 7 on the SU. The size of 

an N-glycosylation in mammal cells is between 3-4 kDa (estimated by the addition of 

the molecular weight of glycans that constitute a group of N-glycosylation) (Varki et 

al., 1999). The TM should be 40 kDa and 36 kDa when 4 and 3 sites are glycosylated, 

respectively. Interestingly, Kämmerer et al. (2011) reported that the antibody recognise 

a 55 kDa product, this was suggested to be an overglycosylated TM by the 

corresponding author (J. Denner, personal communication, 02/2017). The Env-specific 

antibody used cannot detected SU alone. SU and TM together (SU+TM) should be 

detectable at a size of 70 kDa un-glycosylated. When fully glycosylated, Env should be 

of a size slightly above 100 kDa, 103-114 kDa. The highest band described for the full 

length Env (SU+TM) is approximately 90 kDa (Henzy and Coffin, 2013; Tönjes et al., 

1997). That corresponds to 5-8 N-glycosylations (3-4 kDa per group of N-glycosylation 

added). Env blots in MCF-7 lysate exhibited a set of 5 bands mainly: 98 (that would 

harbor 7-9 N-glycosylations); 70; 55; 40; 38 kDa. The same pattern was generally 

observed for primary schwannomas (Figure 12A) and Schwann cells, with the 70 kDa 

band usually being weakly dense. Schwannomas and Schwann cells in culture express 

Env as a 7-9 N-glycosylated SU+TM, a un-glycosylated SU+TM, a full-glycosylated 
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(4 times) TM and a 3 N-glycosylated TM. Those are the bands that were quantitated. 

Density analysis revealed a higher mean intensity for each band in schwannomas than 

in Schwann cells (Figure 12C). Immunofluorescence applied to Schwann and 

schwannoma cells confirmed the result above. HERV-K (HML2) Env-specific 

antibody exhibit a stronger fluorescence in schwannoma than in Schwann cells in 

culture (Figure 12E), suggesting a higher expression of HERV-K (HML2) Env in the 

primary schwannomas.  

 

HERV-K (HML2) capsid is produced as part of the Gag polyprotein, which is 

sequentially made of: Matrix-p15-Capsid-Nucelocapsid (MA-p15-CA-NC). It is 

emphasized that the bands observed using an anti-capsid antibody are theoretically CA 

(27 kDa), p15-CA (36 kDa), CA-NC (44 kDa), MA-p15-CA (60 kDa), and Gag full 

length MA-p15-CA-NC (74 kDa). Schwannoma blots revealed 5 bands mainly (Figure 

12B). The bands corresponded to the sizes of MA-p15-CA-NC, MA-p15-CA, p15-CA, 

CA-NC, CA. Mean intensity for each band was higher in schwannomas than in 

Schwann cells tested (Figure 12D). Along with this, an immunofluorescence assay 

performed using HERV-K (HML2) Gag-specific antibody resulted in a stronger 

labelling in schwannomas than in Schwann cells (Figure 12F). Altogether, our data 

suggested that primary human schwannoma cells express more HERV-K (HML2) 

proteins than primary human Schwann cells.    
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Figure 12 : Primary cultures of schwannoma (NF2-/-) expresses more HERV-K 

Env and Gag than Schwann cells (NF2+/+). 

Tissues from patients and nerves from donors were digested and schwannoma cells 

(NF2-/-) and Schwann cells (NF2+/+) were put into culture. At convenient confluence 

(>80%), cells were lysed in RIPA buffer and centrifuged at 13 000rpm for 15 minutes 

to remove cellular debris. Protein lysates were run on separating gels and transferred 

onto PVDF membranes. Membranes were incubated overnight (A) and anti-HERV-K 

(HML2) Env or (B) an anti-HERV-K (HML2) CA. GAPDH was used as loading 

control for western blot. (A) and (B) show western blot of a representative experiment. 

(C) and (D) represent mean intensities per HERV-K (HML2) Env and Gag band 

normalized to GAPDH band intensity, respectively, as a percentage of normalized band 

intensities observed for NF2+/+ cell lysates. Means are from 4 independent 

experiments. (E) and (F): Immunofluorescence analysis of schwannoma cells (NF2-/-) 

and Schwann cells (NF2+/+). Both were seeded in Lab-Tek chambers and culture to a 

convenient confluence (>80%). Then they were fixed in 4% PFA, blocked, and 

incubated with anti-HERV-K (HML2) Env or Gag antibodies. A fluorescent-

conjugated secondary anti-mouse antibody was used to reveal staining. DAPI was used 

to mark cell nuclei. The figures (E) and (F) are representative of 3 independent 

experiments each. 
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8.1.4 HERV-K (HML2)-specific antibodies reduced proliferation in schwannoma 

cells but not in Schwann cells 

 
Commercially available anti-HERV-K (HML2) Env and capsid were tested in primary 

cultures of schwannomas and Schwann cells; a normal mouse IgG was used as a control 

for “background” effect of antibody treatment. A 3-day incubation with both HERV-K 

(HML2) specific antibodies resulted in decreased proliferation of schwannoma cells 

and not in Schwann cells in culture, as measured by ki67 immunofluorescent staining 

(Figure 13). The experiment was done with Schwann cells (Figure 13B and D) and 

schwannoma cells (Figure 13A and C) from separate donors (n=3 for Schwann cells; 

n=4 for schwannomas). The anti-tumour effect of HERV-K (HML2)-specific 

antibodies seemed specific as incubation with normal mouse IgG control had no 

significant effect on ki67 staining. 

 

Merlin loss results in dysregulation of cellular pathways in schwannomas. Features are 

increases in proliferative and survival signals, as monitored by activation and levels of 

p-ERK, p-FAK, p-AKT using antibodies specific to the phosphorylated form of the 

proteins, and Cyclin D1 (Ammoun et al., 2008; Ammoun and Hanemann, 2011; Hilton 

and Hanemann, 2014). The level of those molecules was checked by western blot for 

primary cultures of schwannoma cells incubated with HERV-K (HML2) Env and 

capsid-specific antibodies; control cultures were incubated with control mouse IgG. 

Also, the levels of ERK, FAK, and AKT in total, were monitored using antibodies that 

recognise both phosphorylated and unphosphorylated forms of these proteins, for 

checking whether the antibodies added in culture impact the overall levels of each 

protein. It means that an activation of a pathway is considered when the amount of 

phospho-proteins increases while the level of total proteins remains stable. In these 

conditions, we recorded a significant decrease in p-ERK (n=10) and p-AKT (n=9) for 

cultures incubated with HERV-K (HML2)-specific antibody, in comparison to cultures 

with control mouse IgG (Figure 14A, B, C and D). The decrease was about 2 times for 

p-ERK and less than 2 times (~1.5-1.8 times) for p-AKT. Control mouse IgG by itself, 

when introduced in culture, did not significantly affect the levels of p-ERK and p-AKT. 

All the antibodies did not affect significantly the levels of cellular total ERK and AKT. 

On the contrary, control mouse IgG decreased the levels of p-FAK. In comparison to 

control mouse IgG condition, HERV-K (HML2) Env-specific antibody did not 

significantly affect p-FAK. Only HERV-K (HML2) capsid-specific antibody further 
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decreased p-FAK levels. All antibodies did not significantly affect cellular levels of 

total FAK (Figure 14E and F, n=3). The general picture is then a decrease of pathways 

involved in proliferation (ERK pathway) and survival (AKT pathway). In concordance 

to that, Cyclin D1 level was significantly decreased with HERV-K (HML2)-specific 

antibody in comparison to control mouse IgG (Figure 14G and H, n=4). Though, control 

mouse IgG reduced significantly Cyclin D1. Our data strongly suggested that HERV-

K (HML2)-specific antibodies can reduce schwannoma proliferation. It correlates with 

data by Wang-Johanning in a breast cancer model (Wang-Johanning et al., 2012).  

 

  
 

Figure 13 : Effect of anti-HERV-K (HML2) Env and Gag antibodies on the 

proliferation of schwannoma cells (NF2-/-) and Schwann cells (NF2+/+). 

Effect of anti-HERV-K (HML2) Env and Gag antibodies on the proliferation of 

schwannoma cells (NF2-/-) and Schwann cells (NF2+/+). (A) and (B) show 

immunofluorescence analysis of a representative experiment. Both cell types were 

seeded in Lab-Tek chambers and culture to a convenient confluency. Then they were 

incubated for 72 hours with anti-HERV-K (HML2) Env and Gag at a concentration of 

1g/ml. Normal mouse IgG was used as a control for “background” effect of antibody 
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treatment. Untreated cells were used as control for all antibody effects. After 

incubation, cells were fixed in 4% PFA, blocked, and incubated with anti-Ki67 

antibody. A fluorescent-conjugated secondary anti-mouse antibody was used to reveal 

staining. DAPI was used to mark cell nuclei. (C) and (D) represent the percentage of 

Ki67+ cells per total counted cells (DAPI), normalized to the condition without any 

treatment. Means of Ki67+ cells for each condition (IgG, anti-HERV-K (HML2) Env, 

anti-HERV-K (HML2) Gag) were obtained from n=4 and n=3 independent 

experiments, for schwannomas and Schwann cells, respectively. 
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Figure 14 : Effect of anti-HERV-K Env and Gag antibodies on key pathways of 

schwannoma cells (NF2-/-). 

Schwannoma cells were seeded onto 6-well plate. The cells were incubated for 72 hours 

with anti-HERV-K (HML2) Env or Gag at a concentration of 1g/ml. Normal mouse 

IgG was used as a control for “background” effect of antibody treatment. Untreated 

cells were used as control for all antibody effects. After 72 hours, cells were lysed in 

RIPA buffer and centrifuged at 13 000rpm for 15 minutes to remove cellular debris. 

Protein lysates were run on separating gels and transferred onto PVDF membranes. 

Membranes were incubated overnight with (A-B) an anti-pERK, (C-D) an anti-pAKT, 

(E-F) an anti-pFAKY397, or (G-H) an anti-Cyclin D1. GAPDH was used as loading 

control for western blot. (A, C, E, G) show western blot analysis of a representative 

experiment. (B, D, F, H) represent mean band intensities normalized to GAPDH band 

intensity, as a percentage of normalized band intensities observed for untreated NF2-/- 

cell lysates. Means are from n=10, n=9, n=3, n=4 independent experiments, for p-ERK, 

p-AKT, p-FAK and Cyclin D1, respectively, using different cell batches from a 

minimum of four different patients. 

 

 

8.1.5 Ritonavir reduced proliferation in schwannoma cells but not in Schwann cells 

 
Ritonavir is an antiretroviral drug, used for the treatment of HIV-seropositive 

individuals. It inhibits HIV protease which cleaves Gag into MA, CA, and NC. Without 

such cleavage, HIV viral particles released are immature and not infectious (Kohl et al., 
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1988). Ritonavir was also shown to inhibit HERV-K (HML2) protease activity, but 

with a lower efficiency as the dose required to block HERV-K (HML2) protease is 

more than 6000 times higher than the one that inhibit HIV protease (Kuhelj et al., 2001). 

In general, the blockade of a retroviral protease in immunoblots experiments shows a 

decrease in the intensity of products lighter than the full length 74 kDa–Gag, with an 

increase of the latter. Ritonavir tested on schwannoma cells for 24 hours at 1M induces 

a low decrease of the band intensity of the 38 kDa–CA+NC, along with a slight increase 

of 74 kDa–Gag (Figure 15A and B, n=4). This confirm that HERV-K (HML2) protease 

is mildly affected by ritonavir. At 1M, the measured inhibition is incomplete and 

weak. When added in primary cultures of schwannomas for 72 hours, ritonavir 

decreased the levels of p-FAK (n=4), p-AKT (n=2), p-ERK (n=3) and Cyclin D1 (n=2) 

as measured by mean intensity of the blots (Figure 15C and D). Furthermore, ritonavir 

was tested at 0.1 and 1M for 72 hours in primary cultures of schwannoma cells from 

different donors. Untreated cultures were used as controls. Ki67 monitoring revealed a 

decrease in signal by 30% at 0.1M already, and by 50% at 1M (Figure 15E and G, 

n=4). Interestingly, the same experiment conducted in primary cultures of Schwann 

cells showed no significant difference in Ki67 levels for both concentration compared 

to untreated condition (Figure 15F and H, n=3). The decrease of proliferation cannot 

be attributable to HERV-K (HML2) blockade by ritonavir. All together our findings 

strongly support the use of ritonavir as a potential drug for schwannomas.  
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Figure 15 : Effect of Ritonavir on HERV-K (HML2) Gag cleavage, key pathways 

and proliferation of schwannoma cells (NF2-/-). 
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Schwannoma cells were seeded onto 6-well plate. The cells were incubated for 24-72 

hours with ritonavir at a concentration of 1M. Untreated cells were used as control. 

After treatment period, cells were lysed in RIPA buffer and centrifuged at 13 000rpm 

for 15 minutes to remove cellular debris. Protein lysates were run on separating gels 

and transferred on PVDF membranes. Membranes were incubated overnight with (A-

B) an anti-HERV-K (HML2) Gag to assess ritonavir effect after 24 hours on Gag 

cleavage. GAPDH was used as loading control for western blot. (B) is a western blot 

analysis of a representative experiment. Ritonavir at 1M increase 74 kDa uncleaved 

Gag, while decreasing 36 kDa cleaved Gag (p15+CA). (A) Represents means of n=4 

independent experiments. Membranes were incubated overnight with (C-D) an anti-

pERK, an anti-pAKT, an anti-pFAKY397, or an anti-Cyclin D1. GAPDH was used as 

loading control for western blot. (D) shows blots of representative experiments for each 

pathway. Ritonavir at 1M for 72 hours decreased pERK, pAKT, pFAKY397 and cyclin 

D1 in comparison to untreated cells. (C) Represents mean band intensities normalized 

to GAPDH band intensity, as a percentage of normalized band intensities observed for 

untreated schwannoma cell (NF2-/-) lysates. Means are from at least n=3, n=2, n=4 and 

n=2 independent experiments on cells from different patients, for pERK, pAKT, 

pFAKY397 and cyclin D1, respectively. (E-H) Effect of Ritonavir at 1M for 72 hours 

on the proliferation of schwannoma cells (NF2-/-) and Schwann cells (NF2+/+). (E-F) 

shows immunofluorescence analysis of a representative experiment. (E-F) Both were 

seeded in Lab-Tek chambers and cultured to a convenient confluence (>80%). Then 

they were incubated for 72 hours with ritonavir at a concentration of 1M. After 

incubation, cells were fixed in 4% PFA, blocked, and incubated with anti-Ki67 

antibody. A fluorescent-conjugated secondary anti-mouse antibody was used to reveal 

staining. DAPI was used to mark cell nuclei. (G) and (H) represent the percentage of 

Ki67+ cells per total counted cells (DAPI), normalized to the condition without any 

treatment. Means of Ki67+ cells for each condition (Untreated control, ritonavir 0.1 

and 1M) were obtained from n=4 and n=3 independent experiments, for schwannoma 

and Schwann cells, respectively.  

 

 

8.1.6 Discussion 

 
We found that HERV-K (HML2) is overexpressed in our tumours of interest, the 

schwannomas. However, we found a few schwannomas being negative for HERV-K 

(HML2) Env expression. Having a negative staining possibly reflects inactivity of 

HERV-K (HML2) in part of the population. However, Gag seem to be detectable in all 

patients (no negative staining). Without patients’ genomic sequences, which HERV-K 

(HML2) sequence is responsible for protein synthesis in each patient cannot be 

predicted. In this context it cannot represent a universal tumour antigen. Even if HERV-

K (HML2) seems present in many different tumours, usually at higher levels than 
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healthy controls, new tumours need to be checked for HERV-K (HML2) ORFs 

expression before thinking of using it as a general tumour-associated antigen. 

 

Commercial HERV-K (HML2)-specific antibodies decreased proliferation as measured 

by ki67 staining, it is in accordance with a previous in vivo and in vitro studies on breast 

cancer by Wang-Johanning et al. (2012) who suggested apoptosis to be induced by their 

HERV-K (HML2) Env-specific antibody. Using commercial antibodies, we observed 

a decrease in some proliferative pathways as measured by immunoblots of p-ERK, p-

AKT and Cyclin D1. Caspase 3 cleavage needs to be assayed in schwannomas treated 

with HERV-K (HML2)-specific antibodies, as an increase in the cleavage of caspase 3 

would denote an engagement in apoptosis processes (Porter and Jänicke, 1999). 

Interestingly, HERV-K (HML2)-specific antibodies appeared to affect only 

schwannoma and not Schwann cells, with schwannomas harboring more HERV-K 

(HML2) proteins than their healthy counterparts as measured by western blots, 

immunohistological and immunofluorescent staining. This finding suggests the effect 

of HERV-K (HML2)-specific antibodies to be specific to the tumour, and so potentially 

a therapy targeting the tumour only.   

 

Antiretroviral therapy has been considered for the treatment of some tumours in the 

past (Batchu et al., 2014; Gaedicke et al., 2002; Kumar et al., 2009). Here, we provide 

more supporting evidence to that idea. In addition to that, the lowest concentration 

tested in vitro that affected cell proliferation (0.1M) as measured by Ki67 staining 72 

hours post-treatment, is 2 times lower than the trough concentration in plasma from 

individual assessed 12 hours after drug administration (mean~0.21M; range 0.17–

0.26M); the regimen consisted of the equivalent of 100mg ritonavir administrated 

twice daily for 7 days in pills formats that also contain lopinavir, another retroviral 

protease inhibitor (at a quantity equivalent to 400mg). Adverse effects were reported as 

being lower than grade 3 and 4, involving diarrhea, fatigue, nausea and headache; still 

the drugs were considered as well tolerated (Jackson et al., 2011). Also, in a previous 

study on HIV-infected patients conducted to improve drug uptake associated with less 

adverse effects, the group of patients that did not experience adverse effects, exhibited 

a trough concentration of 10.4M (5.7–11.9M), in the plasma, assayed 6 hours after 

a full regimen involving the administration of the following dosing scheme: 300mg 
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twice a day for 3 days, 400mg twice a day for 4 days, 500mg twice a day for 5 days and 

600mg twice a day in combination with two nucleoside analogues, until the blood test 

(Gatti et al., 1999). In this case, the lowest concentration tested in vitro that affected 

cell proliferation (0.1M) is 104 times lower than the trough concentration in the 

plasma. Deliver ritonavir in such a way could prevent or relevantly reduce adverse 

effects, while improving the life quality for patients contracting schwannomas. 

 

In addition, HERV-K (HML2) protease was shown to resist ritonavir (very high 

inhibition constant (Ki) in comparison to HIV protease) (Kuhelj et al., 2001). The effect 

of the drug is unlikely related to HERV-K (HML2) inhibition, as the effect on 

proliferation measured through ki67 staining (~60% decrease) were really high in 

comparison to HERV-K protease activity measured by unprocessed gag polyprotein 

blotting (~30% increase of uncleaved Gag). In addition, ritonavir is known to affect the 

AKT pathway (Batchu et al., 2014) and the proteasome (Gaedicke et al., 2002), 

inhibitors to the latter are known to be anti-proliferative and induce apoptosis in tumor 

cells and have been used for cancer therapy (Crawford et al., 2011). 
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8.2 HERV-K (HML2) contribution to tumour development 

 

 

8.2.1 Background 

We found that HERV-K (HML2) is overexpressed in our tumours of interest, the 

schwannomas. However, we found a few schwannomas being negative for HERV-K 

(HML2) Env expression. Having a negative staining possibly reflects inactivity of 

HERV-K (HML2) in part of the population. However, Gag seem to be detectable in all 

patients (no negative staining). Without patients’ genomic sequences, which HERV-K 

(HML2) sequence is responsible for protein synthesis in each patient cannot be 

predicted. In this context it cannot represent a universal tumour antigen. Even if HERV-

K (HML2) seems present in many different tumours, usually at higher levels than 

healthy controls, new tumours need to be checked for HERV-K (HML2) ORFs 

expression before thinking of using it as a general tumour-associated antigen. 

 

It is unknown whether HERV-K (HML2) is involved in schwannomas growth. A few 

lines of evidence suggest HERV-K (HML2) to contribute to tumour growth, as using 

RNA interference that knocks down HERV-K (HML2) env in breast cancer cell lines 

resulted in a decrease of cell proliferation and signaling protein activation such as p-

ERK and Ras in vitro; the same observation was made in vivo in mouse engrafted with 

tumourigenic melanoma and breast cancer cell lines in which HERV-K (HML2) env 

was knocked down (Oricchio et al., 2007; F. Zhou et al., 2016). In addition, HERV-K 

(HML2) env overexpression resulted in activation of the signaling proteins p-ERK and 

Ras, but not in an increased proliferation in vivo in mice engrafted with breast cancer 

cell lines modified to overexpress HERV-K (HML2) env (F. Zhou et al., 2016). Also, 

HERV-K (HML2) env overexpression in vitro in HEK293T resulted in activation of p-

ERK and several downstream transcription factors associated with cell transformation, 

although  noticeable transforming activity could not be observed, in comparison to the 

JSRV env that induced both (Lemaître et al., 2017). Although, the full mechanism 

which could explain such effect remains unclear, the main signaling network involved 

have been suggested to be the Ras-MEK-ERK pathway, since that is affected by the 

HERV-K (HML2) knock-down and overexpression, and even if HERV-K env cannot 

cause tumour formation, it may contribute to the process.  
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Another example of a mechanism exists for Betaretroviruses (HERV-K (HML2) 

belongs to that genus of retroviruses) such as JSRV in the sheep. In fact, overexpressed 

JSRV Env is able to transform cells in vitro (Alberti et al., 2002; Liu and Miller, 2007, 

2005). JSRV Env was shown to interact with the surface receptor HYAL2 and block 

the interaction between Hyaluronidase-2 (HYAL2) and the ‘Recepteur d'Origine 

Nantais’ (RON, also known as Macrophage-stimulating protein receptor – MST1R). 

Unblocked RON can freely stimulate the AKT pathway, likely driving cell 

transformation (Danilkovitch-Miagkova et al., 2003; Liu and Miller, 2007). Another 

mechanism, more speculative would involve a capacity observed for 

Gammaretroviruses. HERV-W Env possesses fusogenic ability and is transported with 

exosome, significantly increasing their uptake (Tolosa et al., 2012; Vargas et al., 2014). 

Exosomes are showed to be involved in tumours as they usually transport growth 

factors that are massively released, enabling cell interactions in the tumour (Azmi et 

al., 2014). 

 

We tried to knock down HERV-K (HML2) for assessing whether HERV-K (HML2) 

plays a role in schwannoma biology, and design sequences to test whether it is feasible 

to specifically knock down each ORF for defining the precise involvement for each 

protein. Although we did not identify a functional shRNA sequence, we tested whether 

HERV-K (HML2) proteins could be released from schwannomas and potentially 

sustain main pathways involved in schwannoma biology. 

 

8.2.2 Knock-down using manually designed sequences 

 
Four shRNAs targeting HERV-K (HML2) LTRs, gag and env were designed manually, 

following some key rules. Two sequences, a and b, were design for position nt 949-973 

and position nt 1020-1048 in the LTRs. The positions were chosen downstream of the 

transcription starting site at position nt 793 (Fuchs et al., 2011). One sequence, c, was 

chosen as spanning the transcription splicing sites which give rise to the HERV-K 

(HML2) env sub-genomic RNA, from genomic unspliced gag-pro-pol transcript. The 

last sequence, d, was from Origene, purchased from a set of four shRNAs designed 

against ERVK6, which is the locus HERV-K108. All the sequences were chosen as 

matching 100% of most HERV-K (HML2) sequences on a prepared alignment of 20 

HERV-K (HML2) loci. Usually about 16-20 out of 20 were matched at 100%. The 
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alignments included the following loci: HERV-K113 (19p12b), HERV-K116 

(1p13.1), HERV-K102 (1q22), HERV-K106 (3q13.2), HERV-K117 (3q27.2), HERV-

K107 (5q33.3), HERV-K109 (6q14.1), HERV-K108 (7p22.1), HERV-K118 

(11q22.1),HERV-K119 (12q14.1), HERV-K 12q13, HERV-K103 (10p22.1), HERV-

K101 (22q11.21), ERVK4 (3q21.2), HERV-K115 (8p23.1a), HERV-K60 

(21q21.1),  HERV-K104 (5p13.3), ERVK19 (19q11), HERV-K 2q21.1. The free 

energy –G for annealing, were calculated and the sequences a, b, and c were chosen 

so that they have a low G (high in negative) when possible, along with less secondary 

structure as predicted by a tool predicting RNA secondary structures  

(http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html). 

MCF-7 was chosen to test the 4 shRNAs as they express HERV-K (HML2) (F. Zhou 

et al., 2016). Transfected MCF-7 where checked under fluorescent microscope 2 days 

post transfection to assess whether transfection was successful (Figure 16B). Non-

transfected MCF-7 cells were used as negative control. The cells were lysed 3 days 

post-transfection and HERV-K (HML2) knock-down was assayed by western blot 

using HERV-K (HML2) Env and capsid-specific antibodies. Out of the four sequences, 

the sequence targeting Gag-pol transcript, d, was the only one showing a slight decrease 

for both Env and capsid, in comparison to the non-transfected condition (Figure 16C 

and D). However, that effect was not reproducible as knock-down was seen once out 

of two replicates. So, none of the sequences a, b, c or d could consistently knock-down 

HERV-K (HML2) proteins after being introduced in cells for 3 days in culture.  

 

http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
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Figure 16 : HERV-K (HML2) knock-down experiments using Origene custom 

shRNAs. 
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Three home-designed and one company-designed shRNAs sequences were inserted in 

an expressing vector, each, possessing a GFP ORF as marker. MCF-7 cells were 

transfected in vitro using Fugene transfection reagent, followed by 3 days of culture 

and cell lysis for western blot. (A) a schematic representation of the experiment. Each 

shRNA sequence and the overall sequence of the vector are also indicated. At day 2, 

transfection efficiency was checked using fluorescent microscope (B). Cells were 

efficiently transfected. (C) and (D) represent duplicate runs of western blot, with 

membrane incubated with the commercial anti-HERV-K (HML2) Env (C) and anti-

HERV-K (HML2) CA (D), respectively. GAPDH was used as a loading control for 

western blot. No reproducible decrease of HERV-K (HML2) bands was depicted. Blots 

are from duplicates from n=1 independent experiment. 

 

 

8.2.3 Knock-down using a set of 4 sequences designed by the company – Origene 

 
Home-designed sequences did not affect HERV-K (HML2) protein expression. 

Company-made lentiviruses expressing HERV-K (HML2) shRNAs (e, f, g, d) was used 

to perform a stable transduction of 293T cells. The lentiviral vector harbors puromycin 

resistance and GFP genes (Figure 17A). 293T cells transduced with lentivirus 

delivering scramble shRNA sequence was used as a control. After transduction, the 

cells were checked for GFP using a fluorescent microscope, and a day later, they were 

selected using puromycin at 4g/ml. 5 days post-selection, a fraction of cells was lysed 

for western blot and the other fraction was counted and seeded at the same density into 

a bigger culture dish. 11 days post-selection, they were further counted. The same 

experiment was done on MCF-7, but transduction failed as no GFP was recorded and 

they did not survive puromycin selection at 4g/ml (Figure 17B). Non-transduced 

MCF-7 lysate was included as a positive control as expressing HERV-K (HML2) Env. 

It is to be noted that MCF-7 lysate did not exhibit a band at 75kDa for the full-length 

Gag, which was present in 293T cell lysate (Figure 17C). Env and Gag blots showed a 

decrease only for the shRNA e in comparison to the scramble control, for the bands 

matching with MCF-7 lysate (Figure 17C). However, GAPDH blots used as a loading 

control revealed an uneven loading. Normalized to GAPDH, the decrease was not 

significantly different in Gag or Env for all shRNAs compared to the scramble control 

(data not shown). Interestingly, the 293T cells transduced with shRNA e seemed to 

proliferate less than the others as measured by the cell ratio between cell counts at day 

11 and day 0 (Figure 17D). Also, cells transduced with shRNA f exhibit a higher cell 

proliferation (Figure 17D), along with a slight increase in HERV-K (HML2) Gag and 

Env expression, in comparison to the scramble control (Figure 17C). We noted that the 
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shRNA d had not affected HERV-K (HML2) expression in stably transduced 293T 

cells, questioning the observations made regarding transiently transfected MCF-7 

(section 8.2.1). HERV-K (HML2) knock-down was not affordable using those 

sequences. Results are from n=1 independent experiment. 
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Figure 17 : HERV-K (HML2) knock-down experiments using Origene ready-

made shRNA-expressing lentiviruses. 
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Company-made lentiviral particles expressing Origene-designed shRNAs sequences 

were used to transduce 293T and MCF-7 cells. The lentiviral vector possessed a GFP 

ORF as marker for assessing successful transduction. 293T and MCF-7 cells were 

incubated with the equivalence of 400 000 TU of lentiviruses in 2ml of culture medium, 

in presence of 8g/ml of polybrene. 2 days post-transduction, GFP status was checked 

for each cell line. 3 days post-transduction, cells were selected using puromycin at a 

concentration of 4g/ml. They were further cultured in selective-medium for 5 days, at 

that time they were counted and a fraction was used for western blot analysis; then 

further cultured for 11 days, when they were counted again. (A) Schematic 

representation of the experiment. Each shRNA sequence and the overall sequence of 

the lentiviral vector are indicated. (B) table summering the GFP status (transduced +, 

not-transduced -) and success of puromycin selection (survived selection +, did not 

survive -). (C) Represents western blot analysis using the commercial anti-HERV-K 

(HML2) Gag and anti-HERV-K (HML2) Env, respectively. GAPDH was used as a 

loading control for western blot. shRNA sequence e seems to decrease the amount of 

HERV-K (HML2) Gag but GAPDH is not even; and seems to decrease HERV-K 

(HML2) Env. (D) Graph that represents cell growth through cell ratios of cell number 

for day 5 and 11 of puromycin selection, in comparison to the number of cells seeded 

at day 0. shRNA sequence e showed the lowest cell ratio at day 11. Results are from 

n=1 independent experiment. 

  

 

8.2.4 Knock-down using a set of 20 sequences designed using RNAi tool – Ui-Tei  

 
Successful knock-down experiments from the literature described a siRNA and shRNA 

sequence targeting gag and env, respectively (Oricchio et al., 2007; F. Zhou et al., 

2016). Interestingly, the design targeting gag knocked down pol and env transcripts, 

and ultimately decreased Env protein levels. As stated above, HERV-K (HML2) Env 

is produced from the splicing of gag-pro-pol genomic transcript. So, there is a caveat 

on understanding how env sub-genomic transcripts are triggered by shRNA targeting 

gag region. Because of this concern, I have designed 20 sequences targeting specific 

sites of HERV-K (HML2) genomic sequence using Ui-Tei RNAi tool: 5 sequences 

were selected in LTR downstream the TSS at position nt 793, 5 sequences were selected 

in the LTR upstream the transcription termination site at position nt 876 (Fuchs et al., 

2011), by this mean all spliced forms are targeted; 5 sequences were selected in gag 

ORF and 5 sequences were selected in env ORF, this time not spanning the splicing 

site. Each LTR, gag or env sequence was submitted individually as query on the 

bioinformatics tools. 5 sequences were chosen randomly from the proposed sequences. 

Only the Tm was taken into consideration, as it is suggested that lower Tm, below 21°C, 

is associated with less off-target (Ui-Tei et al., 2008). All the sequences were introduced 

into 293T and MCF-7 cell lines through transient transfection. The cells were cultured 
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for 5 days after transfection, and the levels of effectively transfected cells were 

monitored via GFP signal using flow cytometry, alongside of that, a fraction of cells 

were lysed and knock-down was assayed using western blot (Figure 18A). For 293T, 

the transfection range was 33–47% GFP+ cells as compared to 13–22% GFP+ cells for 

MCF-7 (Figure 18B and C). Non-transfected 293T and MCF-7 cells were used as 

negative control. The samples corresponding to LTR targets (1-10) and env targets (16-

20) were blotted with HERV-K (HML2) Env-specific antibody. The ones 

corresponding to gag targets were blotted with HERV-K (HML2) Gag-specific 

antibody.  

Regarding 293T, among the sequences 1-10, the sequence 2 seemed to have decreased 

the amount of Env blotted on the membrane, as every bands seemed to decrease (Figure 

18C). However, analysis of bands intensity normalised to the band of the loading 

control (GAPDH) revealed a non-significant change (data not shown). Among the 

sequences 16-20, the sequence 16 seemed to have slightly decreased the band at 55 

kDa, but not the one at 38kDa. Analysis of bands intensity normalised to the loading 

control was in concordance with the observation (data not shown). Among the 

sequences 11-15, the sequences 12 and 13 seemed to have slightly decreased the bands 

from Gag at 45 and 50kDa, compared to the control (Figure 18B). However, this was 

not reliable as the band below (27-36 kDa) were denser than the ones in the control. 

Western blots from transfected-MCF-7 were not reliable (due to technical issues, not 

shown). Altogether, the observed patterns suggested that no sequence was functionally 

interfering with the expression of HERV-K (HML2) Gag, or Env, or both. Also, the 

little number of transfected cells (less than 50%) makes it harder to estimate a decrease 

in HERV-K (HML2) proteins as less than 50% decrease in bands intensity would be 

expected if the shRNA was able to remove 100% of HERV-K (HML2) proteins in the 

transfected-cells. Results are from n=1 independent experiment. 
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D 

 

Figure 18 : HERV-K knock-out experiments using custom shRNAs from 

AMSBio. 

LTR-specific (1-10; potentially knocking down both Gag and Env), Gag-specific (11-

15) and Env-specific (16-20) shRNA sequences were introduced in lentiviral vectors 

by AMSBio. Each vector was used to transfect 293T cells, cultured for 5 days after 

transfection. A fraction of cells was used to monitor transfection efficiency by GFP 

expression using FACS, and another fraction of cells was used for western blot analysis. 

(A) Schematic representation of the experiment. (B) Shows western blot analysis of 

HERV-K (HML2) Gag expression in cells transfected with vector expressing shRNA 

11-15, and not transfected as control. % of transfected cells (% of GFP+ cells) is 

indicated (Transf.%). (C) Shows western blot analysis of HERV-K (HML2) Env 

expression in cells transfected with vector expressing shRNA 1-7, and shRNA 8-10 and 

16-20, and not transfected as control. % of transfected cells (% of GFP+ cells) is 
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indicated (Transf.%). (D) FACS gating strategy. Results are from n=2 independent 

experiment. 

 

8.2.5 HERV-K (HML2) are released from schwannomas 

 
HERV-K (HML2) proteins are overexpressed in schwannomas. Whether they play a 

role in the schwannomas remains unknown as designed shRNAs were not functional to 

address that fundamental question. Data from section 8.1 suggested that antibodies 

made against HERV-K (HML2) capsid and Env affect signalling pathways that are 

associated with proliferation and survival of schwannomas in culture. Since the main 

function of antibodies is to bind to their targets, it appeared reasonable to look whether 

HERV-K (HML2) proteins are present in the culture environment. Gag does not harbor 

any domain that could suggest that it locates at the membrane, so it should be accessible 

only if secreted. Env, by definition, should be found on the surface of the cells (Wang-

Johanning et al., 2012). The hypothesis was that HERV-K (HML2) Gag and Env can 

be secreted. To test whether Gag and Env are freely released, cell-free medium from 

cultures of schwannoma (n=3) and Schwann cells (n=3) was harvested routinely and 

stored at -20°C. Medium were loaded on a gel for western blot purpose. HERV-K 

(HML2) Env and Gag-specific antibodies were used to detect the presence of Env or 

Gag in the medium. Culture medium that has not been in contact with any cells was 

used as a negative control, and cultures from MCF7 was used as this cell line is known 

in the literature to express HERV-K (HML2) (positive control). Gold staining was used 

as loading control, to assess the presence of proteins on the membrane. Env blots 

revealed a band arond 150 kDa, present in the negative control, and densely higher in 

schwannomas and Schwann cells (Figure 19A). Medium meant for cultures contained 

FBS, insulin, forskolin, -heregulin, needed for the culture of schwannoma and 

Schwann cells. The antibody likely cross-react with components from medium 

preparation. The presence of the band at a very low density in the negative control could 

suggest that the HERV-K (HML2) Env-specific antibody cross-react with a ~150 kDa 

protein that is over produced in cultures. Part of that product, produced in culture, is 

possibly a full-length Env completely glycosylated (110-120 kDa), contributing to the 

band being denser. Also, Chen et al. reported detecting a 160 kDa protein in lysates 

from leukemia cell lines using a home-made HERV-K (HML2) Env-specific antibody, 

and suggested it to be the product from pol-env translation (Chen et al., 2013). 

Interestingly, that band was faint in medium from MCF7 culture. More specifically, a 
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band of ~38 kDa could be spotted in lanes of culture media of Schwann cells, not 

present in the negative control (Figure 19A). The band corresponds to the size of the 

glycosylated TM. That band were not found or less visible in the lanes of culture media 

from schwannomas and MCF7 cells. 

 

Gag blots revealed a band at 150 kDa too, that is present at low density in the negative 

control, and in the media from Schwann cell cultures, but denser in media from 

schwannoma and MCF7 cultures (Figure 19B). The presence of the band at a high 

density in schwannomas’ media suggest that the HERV-K (HML2) Gag-specific 

antibody recognised a ~150 kDa protein that may be further produced in culture, as 

previously with Env. The nature of that band would correspond to the Gag-pro-pol 

precursor protein (~160 kDa, see Figure 6, section 5.5). More interestingly, Gag blots 

also revealed band around 45 kDa, present in MCF-7 medium, likely corresponding to 

the p15+CA product, and only present in media from schwannoma cultures. This 

suggested that Gag can be found in medium from Schwannomas and not from Schwann 

cell cultures. Altogether, despite having a weak cross-reaction of the antibodies with 

protein from the medium preparation, these findings support the idea that HERV-K 

(HML2) proteins can be released from schwannomas and Schwann cells. 

 

8.2.6 HERV-K (HML2) proteins are released in exosomes from schwannomas 

 

Previous studies reported the secretion of HERV-W Env through exosomes (Tolosa et 

al., 2012; Vargas et al., 2014), guiding our work into checking whether HERV-K 

(HML2) proteins could be transported by exosomes. To this purpose, schwannoma 

primary cells were cultured into medium which had FBS replaced by commercially 

available exosome-free FBS. Medium from cultures was stored at -20°C and further 

processed when needed. Exosome processing consisted of mixing medium thawed from 

-20°C to exosome extraction reagent (see section 7.22), incubated overnight at 4°C and 

centrifuged at 10 000 x g for an hour. Pellets were resuspended in lysing buffer, ready 

to be run in a gel for western blot (Figure 19C, D and E). Anti-CD63 was used on blots 

as exosome-positive marker in the pelleted fraction from the medium. CD63 was 

presents on blots from the exosome fraction from schwannomas (lane 2, Figure 19C). 

It suggested exosomes are released from schwannoma cells. Alongside, schwannoma 

cell lysate obtained from the same cultures was used as cellular fraction, and as control 
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for band comparison between exosome and cellular fractions. It revealed a pattern for 

CD63 which was different but located around the same size, likely suggesting different 

levels of translational modification between the cellular and the exosome version of the 

protein. Envelop blots (Figure 19D) showed two dense bands at 55 kDa and 70 kDa 

and two faint bands at 38 kDa and 40 kDa, likely corresponding to glycosylated TM 

(38-55 kDa) and SU+TM (70 kDa). In comparison to the cellular fraction, the 98 kDa-

glycosylated SU+TM band is missing. Gag blots (Figure 19E) revealed the 75 kDa-full 

length Gag, 57 kDa-p15+CA+NC, 38 kDa-CA+NC (weakly present in exosome 

fraction) and 27 kDa-CA (stronger in exosome fraction) bands, in both fractions. A 

band present between 75 and 57 kDa in exosome fraction, is absent in the cellular 

fraction. It may be an unspecific cross-reaction of Gag-specific antibody. Altogether, 

our data support the presence of HERV-K (HML2) Gag and Env in exosomes released 

by schwannoma cells as some of the HERV-K (HML2)-specific bands could be 

detected.   
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Figure 19 : Release of HERV-K (HML2) proteins from schwannomas and 

Schwann cells. 

 

(A-B) Shows western blot analysis of HERV-K (HML2) Env and Gag expression in 

culture media collected from 3 separated primary Schwann and 3 separated primary 

schwannoma cell cultures. Gold staining is used as a loading control. Culture-free 

medium is used as negative control (Lane ‘ctrl’). The presence of a weak band denoted 

a weak cross-reactivity of the anti-HERV-K (HML2) Env and Gag with a compound 

in medium composition at ~150 kDa. (C-D) represent western blot analysis of cellular 

(lane 1) and exosome (lane 2) fractions obtained from schwannomas from one out of 

n=3 independent experiments. (C) CD63 was blotted. (D) HERV-K (HML2) Env is 

blotted. Exosomes transport unglycosylated full length Env (70 kDa) and glycosylated 

TM (55 kDa, 40 kDa, 38 kDa). (E) HERV-K (HML2) Gag is blotted. Exosomes 

transport full length Gag (74 kDa), MA-p15-CA (60 kDa), CA-NC (44 kDa), p15-CA 

(38 kDa), CA (27 kDa). 

 

 

 

 



113 
 

8.2.7 HERV-K (HML2)-derived 9-mer peptides induced proliferation along with p-

ERK, p-FAK, p-AKT, Cyclin D1, c-Jun 

 
Schwannomas over-produce HERV-K (HML2) proteins and the use of HERV-K 

(HML2) capsid and Env-specific antibodies interfered with cell growth. Following the 

idea that antibodies cannot freely access intracellular space, the way by which HERV-

K (HML2) proteins could be specifically targeted is by binding to proteins accessible 

in the extracellular environment. Two scenarios could be visualised: 1 - The antibodies 

bind to surface proteins which impact cell proliferation (Wang-Johanning et al., 2012). 

2 – The proteins are released in the medium of cultures and high levels of proteins in 

medium stimulate cell proliferation, so that the use of antibodies binding to them 

neutralise such effect. To test whether it is plausible that proteins released in the 

extracellular space can impact cell proliferation, two commercially available 9-mer 

peptides from gag and env ORFs, respectively, were spiked at a concentration of 

5g/ml in growth factor-free medium after 24 hours of starvation. The cells were 

further kept for 72 hours to 6 days, then they underwent Ki67 and c-Jun staining for 

immunofluorescence or were lysed for western blot to look for Cyclin D1, p-ERK, p-

FAK and p-AKT levels. Cells kept in growth factor-free medium free of peptides was 

used as a control. Both Gag and Env 9-mer peptides induced a significant increase of 

Cyclin D1, p-ERK, p-FAK and p-AKT levels measured 72 hours after peptide 

introduction into culture, in comparison with the control (Figure 20A, B, C and D). In 

addition to that, the number of cells stained positive for Ki67 and c-Jun, 6 days after 

peptide introduction into culture, was significantly increased (Figure 20E, F and G). 

This observation suggests that peptides from HERV-K (HML2) present in culture could 

have an impact on cell proliferation. Nonetheless, scrambled peptides designed using 

the amino acid composition from both Gag and Env peptide was not available, and 

would be critical in checking whether this effect is HERV-K (HML2)-specific. 
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Figure 20 : HERV-K (HML2)-derived 9-mer peptides induced proliferation 

along with p-ERK, p-FAKY397, p-AKT, Cyclin D1, c-Jun. 

Primary schwannomas (NF2-/-) or Schwann cells (NF2+/+) were starved for 24 hours. 

Then HERV-K (HML2) Gag-specific peptide, or Env-specific peptide, was introduced 

in culture at the concentration of 5g/ml, and the cells were further kept for 72 hours 

and were lysed for western blot to look for Cyclin D1, p-ERK, p-FAKY397 and p-AKT 

levels (A-D); or cells were kept with peptides for 6 days, then underwent Ki67 (red), c-

Jun (green) and DAPI (blue) staining for immunofluorescence (G). Culture without 

adding any peptide was used as negative control. (A-D) show a significant increase of 

mean intensities of p-ERK, p-AKT, p-FAKY397 and Cyclin D1, obtained from at least 

n=3 independent experiments. (E-F) represent the percentage of Ki67+ (E) and c-Jun+ 

(F) cells per total counted cells (DAPI), normalized to the condition without any peptide 

added. Means of Ki67+ and c-Jun+ cells for each condition were obtained from at least 

n=3 independent experiments using cells from three different patients and donors. 
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8.2.8 Discussion 

 
I failed to identify a functional knock-down sequence for HERV-K (HML2), as none 

of the ones tested could confidently decrease HERV-K (HML2) proteins in cells. The 

sequences a, b and c were designed manually. None of them showed efficiency in 

HERV-K (HML2) knock-down. The sequences 1 to 20 were designed using RNAi tool 

which algorithm is based on the characteristics of functional siRNAs experimentally 

tested. None of them could knock HERV-K (HML2) down, suggesting that tool may 

not be powerful in RNAi design. Considering a range of available free RNAi tools to 

get sequence with the highest score in each of them could be a way forward.  

 

One of sequences used in the past that successfully knock-down HERV-K (HML2) 

Env, had their target sequences in gag-pro-pol region (Oricchio et al., 2007), which is 

produced from a splicing of gag-pro-pol genomic transcript. These findings suggest 

interference could happen during splicing in the nucleus. In case the Env could be 

produced from genomic unspliced transcripts, knocking the genomic RNA down could 

reduce the expression of the Env. But it is unlikely. Our shRNA design was ambitious 

but would have been useful to confirm whether targeting gag-pro-pol knocks down the 

Env (Gag-pro-pol and Env protein knock-downs are somehow inter-connected), and 

decipher which proteins are involved or not in tumour growth, in case specific knock-

down of each ORF is feasible.  

 

HERV-K (HML2) Env appears to be released as HERV-K (HNL2) Env-specific 

antibody reacted with media from schwannoma and Schwann cell cultures. 

Interestingly, SK-N-SH neuron cell lines transfected with a DNA vector expressing 

HERV-K (HML2) env showed upregulation of Brain-Derived Neurotrophic Factor 

(BDNF) and Nerve Growth Factor (NGF) in the cells, and supernatant from those 

cultures, applied on another cell line (HFN cell line), induced BDNF and NGF in the 

latter cell line (Bhat et al., 2014). In addition to that, neural stem cells expressing 

HERV-K (HML2) env protects mice against neuro-inflammation. The mechanism is 

completely unknown, and other experiments showing similar results are highly needed. 

Also, whether HERV-K (HML2) Env is released and can stimulate cells, through a 

surface receptor, is to be tested. In our case, the band observed at a size of 150kDa 

seems too high to represent Env, because predicted size of fully N-glycosylated Env 



116 
 

would be approximately 120 kDa; while the band observed at a size of 38 kDa suggests 

that TM from Env can be released. The use of a 9-mer peptide derived from HERV-K 

(HML2) env in schwannomas culture after starvation induced pathways such as p-ERK, 

p-AKT, p-FAK and cyclin D1, and cell proliferation as measured by ki67 staining. This 

would suggest env-derived fragments has potentials in stimulating tumour pathways. 

Whether such effect is specific is to be tested by adding a scramble peptide with the 

same amino acid composition to the experiment. Also, HERV-K (HML2) env encodes 

a 699 amino acids protein, it would be very lucky that the 9-mer peptide used is in a 

functional domain of the protein. Interestingly the HERV-K (HML2) 9-mer peptides 

also induced c-Jun expression as measured by immunofluorescent staining. c-Jun is 

involved in demyelination, and is induced in Schwann cells in cases of injury, a 

condition that involves neuroinflammation (Parkinson et al., 2008). c-Jun is induced to 

avoid differentiation of Schwann cells, needed for proliferation which is required for 

nerve repair. In this manner, HERV-K (HML2) seems protective for neurons as suggest 

by (Bhat et al., 2014).  

 

Regarding exosome-associated release of HERV-K (HML2) Env, it may be speculative 

to hypothesize that HERV-K (HML2) Env increase the uptake of exosome potentially 

produced by schwannoma cells. In fact, we do not have the tools to look for exosome 

uptake. However, such possibility is not to be ruled out, as it is the case for the Env of 

other HERV lineages, HERV-W and HERV-FRD that were shown to increase exosome 

uptake. In fact, knocking down HERV-W and HERV-FRD Env (syncytin-1 and 

syncytin-2) results in a decrease of exosome uptake (Vargas et al., 2014). Also, one 

HERV-K (HML2) locus, K108 (7p22.1), is estimated to be present in 100% of the 

population, and to date is the only one shown to possess a fusogenic capacity, as 

observed by ability of HIV particles pseudotyped with HERV-K108 env to enter into 

cells infected in vitro (Dewannieux et al., 2005). If HERV-K (HML2) facilitate 

exosome transactions, it would be a way of sustaining tumour development, since 

exosomes are involved in tumourigenesis (Azmi et al., 2014). 
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8.3 Possible mechanics for HERV-K (HML2) up-regulation  

 
 

8.3.1 Background 

During the time spent in the host genome, HERV-K (HML2) accumulated several 

mutations in its ORFs and LTR sequences, along with methylations, resulting in limited 

expression (Subramanian et al., 2011). Hypomethylation is the first requirement for 

HERV-K (HML2) transactivation (Hurst and Magiorkinis, 2017). In fact, the use of 

azacytidine, a drug that demethylates DNA, induces HERV-K (HML2) transcription 

(Depil et al., 2002). However, in some cell lines, demethylation is not sufficient to 

induce HERV-K (HML2) transcription (Fuchs et al., 2011; St Laurent et al., 2013), 

stressing that transcription factors need to be considered in HERV-K (HML2) 

transactivation. In fact, cell lines with similar genetic background, which differ by the 

expression of particular transcription factors would exhibit different levels of HERV-

K (HML2) transcription (Fuchs et al., 2011). A list of transcription factors predicted in 

silico is available (Manghera and Douville, 2013). Only seven of them have 

experimental evidence for their involvement in HERV-K (HML2) transcription: OCT4 

(Grow et al., 2015), NF-B and NF-AT (Gonzalez-Hernandez et al., 2012), MITF-M 

(Katoh et al., 2011), Sp1 and Sp3 (Fuchs et al., 2011), YY1 (Knössl et al., 1999). 

 

The hippo pathway regulates cell proliferation, death and differentiation. The core 

signaling cascade of the hippo pathway involves the phosphorylation of large tumour 

suppressor kinases 1/2 (LATS 1/2), which then phosphorylates Yes-associated protein 

(YAP) and transcriptional coactivator with PDZ-binding motif (TAZ); and 

phosphorylated YAP/TAZ interacts with the protein 14-3-3 that results in YAP/TAZ 

cytoplasmic retention. Moreover, YAP and TAZ phosphorylation leads to their 

degradation. When dephosphorylated, YAP/TAZ enters the nucleus and induce gene 

transcription by interacting with transcription factor TEAD (Yu and Guan, 2013). 

 

CRL4-DCAF-1 is a protein ubiquitin ligase that get activated when Merlin is lost (L. 

Zhou et al., 2016), and which was recently identified as one of the regulators involved 

in the hippo pathway (W. Li et al., 2014). In the absence of Merlin, CRL4-DCAF1 

inhibits LATS 1/2 that normally phosphorylates YAP/TAZ. When dephosphorylated, 

YAP/TAZ binds to TEAD and activate the transcription of oncogenic genes (W. Li et 
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al., 2014). In the present work, the objective is to test whether Merlin can influence 

HERV-K (HML2) transcription and whether CRL4-DCAF-1 and ultimately TEAD is 

involved in driving HERV-K (HML2) transcription when Merlin is lost. Also, for the 

first time, I propose TEAD as a potential transcription factor binding to HERV-K 

(HML2) LTR by in silico analysis of LTR sequences. The hypothesis was that Merlin 

loss induces the formation of YAP-TEAD transcription factor complex that can 

transactivate HERV-K (HML2) by binding to its LTR. 

 

8.3.2 Merlin re-introduction influences HERV-K (HML2) proteins levels 

 
Merlin loss is a key feature for schwannoma development, so we asked whether Merlin 

keeps HERV-K (HML2) expression under control. To gain some insights, Merlin was 

re-introduced into the tumour using adenovirus harboring the ORF that encodes for a 

functional Merlin, and HERV-K (HML2) protein levels were monitored in lysates from 

schwannoma cells collected after 3 to 5 days post-infection. Lysates from cells infected 

with an adenovirus harboring GFP only were used as control. An additional lane with 

lysates from non-infected cells was included in the experiment, in case of unwilled 

cross-reaction of HERV-K (HML2)-specific antibodies with adenoviral products 

massively introduced in the cell. In fact, a dense band sometimes appeared only in 

infected conditions, around 26 kDa (Figure 21B and D). For that reason, 27 kDa-TM 

for Env and 27 kDa CA for Gag were not assessed in the density analysis. In all 

experiments, Merlin was re-introduced successfully (Figure 21B and D, bottom panel). 

Merlin-Adenoviruses significantly reduced HERV-K (HML2) Gag and Env proteins in 

comparison to GFP-Adenoviruses, as measured by band densities (Figure 21C and E). 

All bands from 38-98 kDa for the Env and 38-75 kDa for Gag were significantly 

reduced in lysates from Merlin-Adenovirus-infected cells (Figure 21C and E). The 

densities plotted on the diagrams are means from n=6 and n=4 experiments with 

samples from different individuals, for Gag and Env, respectively. These observations 

strongly support the idea that Merlin keeps HERV-K (HML2) protein synthesis under 

control, at least partially, as HERV-K (HML2) was still detectable to level that 

represent more than half of the levels observed in lysates from GFP-adenovirus-

infected cells (Figure 21C and E). However, whether it is direct or indirect remains to 

determine. 
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Figure 21 : Introduce a recombinant Merlin in schwannomas through AdV 

system results in a significant decrease of the amount of HERV-K (HML2) Gag 

and Env proteins. 

AdV-GFP or AdV-GFP-NF2 were used to infect schwannoma primary cells. A non-

infected condition was added to experiment. Cells were kept in culture for 3-5 days for 

analysis of Env and Gag by western blot. GAPDH was used as loading control for 

western blot. Merlin levels were assessed to ensure Merlin introduction. (A) Represents 

the experimental procedure. (B) and (D) show a representative western blot analysis for 

Env and Gag, respectively. A band around 27kDa appeared only in infected conditions, 

and so denoted a possible cross-reaction between anti-HERV-K (HML2) Env and Gag 

and components of AdV. (C) and (E) show mean intensities for each HERV-K (HML2) 

Env or Gag band normalized to GAPDH, normalized and represent as a percentage of 
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the mean intensities for each HERV-K (HML2) Env or Gag band in the condition 

infected with AdV-GFP. Mean intensities were obtained from n=4 and n=6 independent 

experiments using cells from different patients, for Env and Gag, respectively. 

 

8.3.3 CRL4-DCAF-1 is unlikely involved in HERV-K (HML2) activation 

 
Since CRL4-DCAF-1 was recently described as one regulator of the hippo pathway, 

downstream of Merlin (L. Zhou et al., 2016), we investigated whether CRL4-DCAF-1 

take part in HERV-K (HML2) protein over-expression in the absence of Merlin. To this 

goal, schwannoma cells in cultures were transduced with lentiviruses expressing CRL4-

DCAF-1-specific shRNA. Cells transduced with lentiviruses expressing scramble 

shRNA was used as control. CRL4-DCAF-1 was successfully knock down in 

schwannomas transduced with CRL4-DCAF-1-specific shRNA (Figure 22A). 

However, western blot analysis of HERV-K (HML2) Env was inconclusive as 98 kDa-

glycosylated SU+TM band was decreased, 70 kDa-SU+TM was increased, 55 kDa-

over-glycosylated TM was reduced, and 40 kDa and 38 kDa-glycosylated TM bands 

were not significantly affected (Figure 22B). The results are from n=3 independent 

experiments using cells from different patients. This observation suggested that CRL4-

DCAF-1 is not involved in HERV-K (HML2) over-expression as products from Env, 

altogether, did not decreased significantly.  

 

Figure 22 : Knock-down of CRL4-DCAF1 does not consistently affect HERV-K 

Env protein levels. 

Primary schwannomas were transduced with lentiviral particles expressing DCAF1 

shRNA. 72 hours post-transduction, the cells were selected in puromycin for 6 days, 

after what they were lysed to analyse HERV-K (HML2) Env expression through 

western blot. Infection with lentiviral particles expressing a scramble shRNA sequence 

was used as control. (A) shows a representative western blot analysis. GAPDH was 

used as a loading control. DCAF1 was blotted to assess successful knock-down. The 

intensity of each HERV-K (HML2) Env band was monitor in both infected conditions, 

lentiviruses expressing scramble and DCAF1 shRNA. (B) represents mean intensities 

for each band normalized to GAPDH, and presented as a percentage to the mean 

intensities obtained with the scramble control. 
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8.3.4 TEAD as a potential, novel transcription factors for HERV-K (HML2) LTR 

 
HERV-K (HML2) LTR represents a land for several transcription factors. Binding 

motifs for 39 transcription factors have been predicted (Manghera and Douville, 2013). 

But, only seven have been tested experimentally: OCT4 (Grow et al., 2015), NF-B 

and NF-AT (Gonzalez-Hernandez et al., 2012), MITF-M (Katoh et al., 2011), Sp1 and 

Sp3 (Fuchs et al., 2011), YY1 (Knössl et al., 1999). The figure 23 represents the binding 

sites predicted by Manghera et al. that were shown to bind to LTRs using ChIP and 

EMSA. Some NF-AT and NF-B sites shown to be bound by their respective 

transcription factors (Gonzalez-Hernandez et al., 2012) are not depicted on the LTR 

map here as neither I, nor Manghera et al. found them. Oct4 has been introduced more 

recently as a result from extensive study of HERV activity in embryonic cells (Grow et 

al. 2015), and is depicted on the map. By mapping the binding sites proposed by 

Gonzalez-Hernandez et al. (2012) (using ALGGEN-PROMO and TRANSFAC 

software tools), Manghera and Douville (2013) (using ALGGEN-PROMO software) 

and I (checking manually the sequences on proviruses alignment based on putative 

binding motifs described in the literature), I hope to provide the reader with a synthetic 

and comprehensive mapping of transcription factors for HERV-K (HML2) LTRs.  

 

In this work, a focus on conservation was also attempted. To this purpose, alignments 

of 19 HERV-K (HML2) provirus was used to find how conserved are the binding sites 

among LTR sequences (the number of LTR sequences that do not possess a single 

mutation in the binding motif). It came up that binding motifs in figure 23 were 100% 

conserved as following: (1) NF-B in 17/19, (2) YY1 in 15/19, (3) NF-B in 17/19, (4-

5) NF-B in 16/19, (5) GC box 1 in 16/19, (6) GC box 2 in 17/19, (8) GC box 3 in 

18/19, (9) GC box 4 in 15/19, and (7) Oct4 in 12/19. In this context, I have been 

interested in TEAD as a potential transcription factor for HERV-K (HML2) LTR. 

TEAD binds to DNA consensus sequence TGGAAT (Vassilev et al., 2001). Looking 

manually for that canonical sequence on LTR, I found only one site, conserved at 100% 

(not a single nucleotide difference among LTR sequence queries) in 17/19 LTR 

sequences. Interestingly, TEAD binding motifs clashes with NF-B on site (3) as they 

share 5 nucleotides in common out of 6 from TEAD (GGAAT). Based on this, testing 

whether TEAD could influence HERV-K (HML2) transcription was suggested. As 
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CRL4-DCAF-1 knock down did not relevantly affect the expression of HERV-K 

(HML2) Env, the use of YAP-TEAD inhibitors appeared to be a good way to further 

clear whether HERV-K (HML2) transcription in tumour could be driven by hippo-

pathway via YAP-TEAD, independently of CLR4-DCAF1 (see section 8.3.4).   

 

 

 

 

Figure 23 : The presence of TEAD binding motif on HERV-K (HML2) LTR in 

silico. 

The transcription factor TEAD that binds to DNA consensus sequence TGGAAT 

(Vassilev et al., 2001), was manually searched and marked, it is fully conserved in 17/ 

19 of the sequences aligned. 
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8.3.5 The effect of verteporfin, YAP-TEAD inhibitor, on HERV-K (HML2) 

transcription 

 
MCF-7 cells were used to investigate the relation between YAP-TEAD pathway and 

HERV-K (HML2) expression. Verteporfin, a drug that disrupt the interaction between 

YAP and TEAD (Brodowska et al., 2014) was used at a final concentration of 4g/ml. 

Both RNA and proteins were extracted after 48 hours incubation with both drugs. 

Primers against HERV-K (HML2) pol and env were used to measure HERV-K (HML2) 

transcription, relative to GAPDH. CTGF-specific antibody was used on western blot to 

assess the decrease of the amount of CTGF as a measure for drug efficacy (Figure 24, 

bottom panel). In fact, CTGF (connective tissue growth factor) is a target gene of the 

YAP-TEAD transcription factor complex. The expression of HERV-K (HML2) pol 

was not significantly affected, whereas env was reduced by third (three times less 

compare to DMSO control condition) following 48-hour treatment (Figure 24, top and 

middle panel). The data suggest that HERV-K (HML2) transcription can be regulated 

by YAP-TEAD transcriptional complex. 

 

Figure 24 : YAP-TEAD inhibitor affects HERV-K (HML2) transcription. 

MCF-7 cells were treated with verteporfin (VP, 4g/ml), (DMSO as vehicle, negative 

controls), or left untreated for 48 hours, after what a fraction of cells were used for 

either western blot or RT-qPCR. Top panel represent pol and middle panel represent 

env expression as assayed by RT-qPCR. Bottom panel shows a representative blot of 
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CTGF (assessed for drug efficacy) and GAPDH (loading control). The data were 

gathered from n=3 independent experiments. 

 

8.3.6 Discussion 

 

A lot of pathways are dysregulated downstream of Merlin. One is CRL4-DCAF-1 along 

with the Hippo pathway. Our results suggested that CRL4-DCAF-1 is not the main 

partner by which Merlin could indirectly affect HERV-K (HML2). In fact, knocking 

down CRL4-DCAF-1 resulted in a non-significant decrease of HERV-K (HML2) Env, 

if any.  

 

I also addressed whether inhibiting Hippo pathway using inhibitors for YAP-TEAD 

interaction, could impact HERV-K (HML2) expression. The use of verteporfin 

significantly affected HERV-K (HML2) env transcription. However, for all three 

experiments, the expression of GAPDH was also decreased by the treatment: in env 

RT-qPCR, Ct values were 26.4, 25.0, 25.8 for verteporfin condition compared to 22.2, 

22.9, 22.4 for DMSO control condition. The same amount of total RNA (100ng) was 

used per condition. It suggests that verteporfin generally affects the intracellular levels 

transcription (mRNA). Similar observations were made for the loading control using 

western blot. In vitro, verteporfin was shown to induce a decrease of the expression of 

Cyclin D1, D3, A2, E1, Oct4, VEGFA, c-myc, Survivin, along with decreasing 

proliferation post-treatment (Brodowska et al., 2014). The knock-down of YAP and 

TEAD is required to further assess whether HERV-K (HML2) transcription is 

specifically driven by YAP-TEAD complex.  

 

HERV-K (HML2) pol was increased (by half) post-treatment, not significantly. TEAD 

was described to be involved in gene repression when associated with co-repressor 

complex NuRD (Kim et al., 2015). Interestingly, NuRD is part of the machinery 

complex that could possibly limit HERV-K (HML2) transcription, as KAP1, a potent 

repressor of ERV expression, may recruit NuRD complex (Rowe and Trono, 2011). In 

this manner, TEAD could be a transcription factor for repressing HERV-K (HML2) 

transcription, and disrupting YAP-TEAD complex could indirectly release inhibition, 

promoting HERV-K (HML2) expression.  
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Finally, TEAD and NF-B are sharing binding sites. NF-B at that position has been 

shown experimentally to induce HERV-K (HML2) transcription. It is hard to predict 

whether there is a competition between both transcription factors to bind to the LTR. 

But, if it is the case, then NF-B is likely the one which accesses the site as suggested 

by the literature. However, in schwannomas, the use of NF-B inhibitor SN50 did not 

affect the expression of HERV-K (HML2) Gag (data not shown). NF-B knock-down 

experiments in schwannomas are needed to test whether NF-B is involved in HERV-

K (HML2) transcription in schwannomas. Ultimately, Chromatin-immunoprecipitation 

need to be performed to find whether TEAD physically binds to the LTR of HERV-K 

(HML2).   



126 
 

8.4 The correlation between a recently integrated ERV in macaques and interferon 

stimulated genes (ISGs) during viral insult modeled by SIV infection 

 

 

8.4.1 Background 

Endogenous Retroviruses (ERVs) are descendants of ancient retroviral infections 

which have become established in the germline and proliferated so they now represent 

~5% of the genome of humans and other mammals (more if we include the older group 

called MaLRs, Mammalian apparent LTR-Retrotransposons). Individual proviruses are 

termed loci and during their Mendelian transmission they have accumulated mutations 

over time which have rendered most of them replication-defective, with few loci 

retaining full-length Open Reading Frames (ORFs) for all genes and thereby the 

possibility of yielding infectious, cell-free progeny virions (Jern and Coffin, 2008; 

Stoye, 2012). ERVs, and associated retroelements such as LINES (Long Interspersed 

Nuclear Elements), are increasingly no longer regarded simply as ‘junk DNA’ given 

their abundance in host genomes (Kim et al., 2012). For example ERVs have been 

implicated in epigenetic gene regulation (Brattås et al., 2017; Fasching et al., 2015; 

Lavie et al., 2005; Rowe et al., 2010), and there are many examples of individual ERV 

loci being co-opted by the host, e.g.  HERV-E LTR-driven tissue-specific expression 

of a human salivary amylase gene (Ting et al., 1992), ERV-derived syncytins that play 

a role in placentation (Lavialle et al., 2013) and the promoter-containing  Long 

Terminal Repeats (LTRs) of ERVs that play a role in gene control (Lu et al., 2014).  

 

Recently, ERVs and other retroelements have also been implicated in innate sensing 

and PAMP (Pathogen Associated Molecular Patterns) recognition (Chuong et al., 2016; 

Hung et al., 2015; Stetson et al., 2008). Indeed, Volkman and Stetson (2014) have 

suggested that retroelements themselves are a source of PAMPs, such as cytosolic DNA 

resulting from reverse transcription, that influence the activation threshold required for 

triggering the innate immune response. They speculate that the level at which activation 

occurs is an evolutionary trade-off between avoidance of tolerance of exogenous 

pathogens on one hand and the need to avoid constant triggering by endogenous 

elements on the other. The latter appears to occur in Aicardi-Goutieres Syndrome, 

where a defective enzyme that metabolizes endogenous nucleic acid leads to a build-
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up of retroelement PAMPs such as cytosolic DNA that may trigger an inappropriate 

innate response (Stetson et al., 2008).   

 

To evaluate the biological significance of ERV expression in an in vivo situation we 

have employed the macaque model, examining how an ERV and a key gene of the 

interferon signaling pathway behave under the pressure of an exogenous agent, in this 

case pathogenic variants of simian immunodeficiency virus (SIV).  We hypothesized 

that individuals with elevated ERV transcription would have a higher interferon 

response in the presence of an exogenous, infectious agent. Differences in ERV 

expression levels between individual macaques are likely because recently integrated 

loci will exist in the host population in three states: full-length proviruses, solo LTRs 

(a relict, non-coding recombinant form) and 'empty' pre-integration sites, e.g. as shown 

in humans with the recently integrated HERV-K loci (Subramanian et al., 2011). 

Macaques represent a suitable model to study ERV expression in vivo in a number of 

key respects, e.g. their evolutionary and anatomical relationship to humans, having 

diverged about 25 million years (Richard A. Gibbs, 2007; Stocking and Kozak, 2008), 

has made them an established model to study human infectious disease and pathogens, 

including HIV/AIDS. The study of primates such as macaques also broadens out the 

wealth of data generated from mouse studies, which show innate signaling responses 

to ERV activity in some strains (Hurst and Magiorkinis, 2015). For example, there is 

no conclusive evidence that any human ERVs are replicating today (Bhardwaj et al., 

2014; Jern and Coffin, 2008; Karamitros et al., 2016; Stoye, 2012), whilst some mouse 

ERVs are definitely replication-competent.  

 

We selected PcEV (Papio cynocephalus Endogenous Retrovirus), one of only three 

ERV lineages that have been copying within the macaque genome in the last 5 million 

years (Magiorkinis et al., 2015), and STAT1, which is both an essential component in 

the type I interferon signaling pathway and is itself an Interferon Stimulated Gene (ISG) 

(Gough et al., 2012), and whose expression is elevated (Ferguson et al., 2014). In fact, 

one of the major targeted ISG is STAT1 (Der et al. 1998; Lanford et al. 2006) and its 

abundance, which is set by the basal level of IFN, defines the susceptibility towards 

infections (reviewed in Gough et al. (2012)). Therefore, monitoring the expression of 

STAT1 provides a good read-out of type I IFN response. We measured gene expression 
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levels in tissues that are key targets of infection by SIV during the acute period of 

infection, when SIV plasma levels are at their highest, (Ferguson et al., 2014), reasoning 

that this is where and when de novo innate signaling responses are likely to be 

stimulated.  

 

We also examined the macaque reference genomes sequences to assess the 

transcriptional, translational and replicational capacity of its PcEV loci. ERVs do not 

need to produce full-length proteins to be detected by the immune system, e.g. 

antibodies to two defective HERV-K loci were found in 29% of healthy individuals 

(Hervé et al., 2002) and a CTL response to a pseudogene derived from another ERV 

lineage – HERVK (HML6) – was found in a melanoma patient (Schiavetti et al., 2002). 

However, the likelihood of an ERV locus being biologically relevant increases if its 

sequence is free of obvious inactivating mutations. 

 

Here, we show the presence of multiple protein-coding but not replication-competent 

PcEV loci in the macaque reference genomes and describe the presence of PcEV RNA 

at low levels in the plasma in some infected macaques, which possibly represents 

circulating virus. Critically, we find that tissue-associated PcEV and STAT1 expression 

are strongly positively correlated, and this occurs almost irrespective of the level of SIV 

replication in the same tissue or in the plasma. The significance of this novel finding of 

a correlation between ERV activity and innate signaling are discussed.  

 

8.4.2 Bioinformatic analysis suggests PcEV protein production but not replication.  

 

An online search of the most recent rhesus macaque genome assembly (rheMac8) using 

our constructed PcEV reference sequence found 72 PcEV loci (plus another 76 matches 

in unassembled regions), most of which are represented only by fragments. In figure 25 

we show the only 10 loci that do not have large regions (more than several hundred 

nucleotides) missing in the reference sequence. Among these loci we find examples of 

full-length ORFs for all genes but no single locus that has full-length ORFs in all genes. 

Examination the LTRs of the above loci (excluding the two older ones), showed them 

all to have unmutated TATA boxes (TBP binding sites) plus several transcription factor 

binding sites (table 4) suggesting transcription of these loci. 
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From these observations, we might therefore predict expression of all ERV proteins but 

not ERV replication. However, replication-competent loci might have been missed for 

several reasons. Firstly, there are many problems with the assembly of the macaque 

reference genomes. Four of the 10 most intact loci contain scaffold gaps, where 

sequenced regions either side have not been joined up. Locus chr9:50301533-10531 

provides a good example of these problems. In the rheMac8 assembly, this locus 

appears to have its pro-pol reading frame interrupted by a single premature stop codon 

and a long insertion. This insertion consists of a tandem duplication at a region marked 

as a scaffolding break on the UCSC Genome Browser. Actually, neither the premature 

stop codon nor the insertion derive from this locus. We were able to determine this by 

examining the locus sequence from the earlier assembly of the rhesus genome, which 

comes from the same individual animal, and that of the homologous locus in the 

cynomolgus macaque genome, a species which diverged from the rhesus macaque ~1 

million years ago (mya) (Jiang et al., 2016). By searching for the unique chimaeric 

sequences consisting of the end of the LTR and the contiguous host flanking region, we 

were able to find and extract the sequences of this locus in the rheMac2 build 

(chr9:56546894-55724) and in the macFas5 build of the cynomolgus macaque 

(chr9:55063875-78763). These three pro-pol sequences are not homologous along their 

entire length with a readily visible transition – a 'breakpoint' (near to position 3937 in 

our reference genome): the first ~40% of the rheMac8 pro-pol sequence before this 

breakpoint is no more similar to the other two sequences than it is to a range of other 

PcEV loci, while the sequences of all three downstream are very similar. We can show 

this phylogenetically (Fig. S1), where a tree of pro-pol sequences before the breakpoint 

shows that the rheMac8 sequence is not recovered in the same (well-supported) clade 

as the rheMac2 and macFas5 sequences, while a tree of the pro-pol sequences after this 

break-point shows all three sequences recovered together in a well-supported clade (as 

you would expect and as seen in the other loci). This represents a clear assembly error: 

indeed, the locus in the earlier rhesus build and in the cynomolgus macaque are in the 

antisense direction while the locus in the later rhesus build is in the sense direction. 

Consistent with widespread assembly problems, only around half of the 'intact' loci in 

the rhesus genome are intact in the cynomolgus genome, and vice versa. We also see 

much more fragmentation in PcEV than in the human HERVK loci (Subramanian et 

al., 2011), which belong to an ERV lineage that is older than PcEV (Belshaw et al., 

2004). The sequencing of ERVs in the human genome benefited from them being put  
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within individual BACs (Bacterial Artificial Chromosomes) (Lander et al., 2001), 

which avoided the problem of trying to assemble simultaneously the sequences of 

multiple, but very similar, ERV loci from short NGS reads. 

  

We thus fear that these assembly problems may be obscuring the presence of more 

recently integrated, and hence potentially active, loci. The intact loci we have recovered 

are all several millions of years old (Figure 25), with the most recently integrated being 

locus chr9:50301699-10531 discussed above. The two LTRs of this locus differ by two 

substitutions that are common to both builds (substitutions not in both builds are treated 

as sequencing errors). Given an estimated rate of nucleotide substitution of ~1x10-

9/nucleotide/year (Magiorkinis et al., 2015) the presence of two substitutions within the 

512nt long LTRs suggests an age of ~1.9 million years (see Methods in section 7.27). 

Such loci may therefore have accrued inactivating missense substitutions even in the 

absence of nonsense substitutions or frameshifting indels. We found one locus that had 

identical LTRs, and which also appeared to be heterozygous (as expected from a young 

locus), chr1:55452680-60247, but this locus was fragmentary and also clearly 

misassembled as with chr9:50301699-10531 above (detailed in supplementary 

information in section 12). 
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Figure 25 : Bioinformatic analysis suggests PcEV protein production but not 

replication. 

PcEV loci for which we have complete sequences in the rhesus macaque genome with 

all interruptions to the reading frames indicated. Premature stop codons are shown as 

asterisks and frame-shifting (or large in-frame) indels are shown by the number of 

nucleotides involved ("H" marks an indel within a homopolymer, which we assume are 

likely to be sequencing errors). Results are from the rheMac8 build with all 

interruptions either confirmed or corrected using the earlier rheMac2 build from the 

same animal, i.e. interruptions were treated as sequencing errors if they are present only 

in one build (exceptions are the loci on the X and Y chromosomes – see below). Details 

of any assembly problems in these loci are in SI, which also contains multiple 

alignments for the three genes, the LTR alignments used for dating, the flanking regions 

used to determine locus homology across genomes, and reference (consensus) 

sequences both for the complete provirus and for individual genes. Our pro-pol 

alignment starts from the position suggested in Mang et al. (Mang et al., 1999). The 

reference coordinates here include a one nucleotide gap inserted at the end of pro-pol 

to incorporate the frameshift in env. Unusually for a retrovirus, gag and pro-pol are 

translated in the same frame with suppression of the gag stop codon (Kato et al., 1987).  
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8.4.3 PcEV is transcriptionally active in multiple lymphoid tissues of the macaque. 

 

Next, we sought to determine levels of detectable cellular PcEV transcripts taken 

mostly at post-mortem by isolating RNA from PBMCs (Peripheral blood Mononuclear 

Cells), spleen, thymus, PLN (Peripheral Lymph Node), and MLN (Mesenteric Lymph 

Node). Co-amplification of GAPDH with PcEV provided a measure of cell-associated 

PcEV transcriptional activity in each cell preparation (Figure 26). From a total of 36 

tissues preparations analysed, we determined a mean level of 36 copies PcEV RNA 

/1000 copies of GAPDH (range = 6-112). PcEV therefore appears to be effectively 

transcribed in tissues, with transcription levels lowest in the thymus and MLN (in both, 

mean = 25 PcEV copies per 1000 copies GAPDH). Values were higher in the Spleen 

(mean = 43) and PBMCs (mean = 47), and highest in the PLN (mean = 71). However, 

these differences of expression across tissues are not statistically significant (Kruskal-

Walis test, p-value=0.08).  

 

Interestingly, the level of tissue PcEV transcription was not significantly higher in 

infected compared to uninfected individuals (Figure 27A), although this may reflect the 

small sample size. In addition, within infected animal there is not a significant 

relationship between both cellular and plasma levels of SIV and PcEV (Spearman test: 

cellular SIV vs PcEV, r=0.14, p-value=0.46; plasma SIV vs PcEV, r=-0.17, p-

value=0.41) (Figure 27B and C). Overall, our observations show PcEV to be 

transcriptionally active in all tissues tested, with SIV infection having no influence.   
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Figure 26 : PcEV is transcriptionally active in multiple lymphoid tissues of the 

macaque. 

RNA was extracted from the tissues of non-infected or infected animals with one of 4 

different SIV strains, followed by DNAse treatment. The absence of DNA contaminant 

was confirmed by RT-qPCR without RT enzyme. In each group, each open symbol 

denotes PcEV RNA copies from a single uninfected individual and each closed symbol 

denotes PcEV RNA copies from a single SIV-positive individual. Means for each tissue 

are indicated as horizontal bars and include PcEV copy number from infected & 

uninfected tissues. The dashed line represents the mean for all tissues (~36 copies per 

1000 copies GAPDH). 
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Figure 27 : SIV infection does not affect significantly PcEV expression. 

(A) Each open symbol denotes PcEV RNA copies from a single uninfected individual, 

and each closed symbol denotes PcEV RNA copies from a single SIV-positive 

individual. This figure shows data in figure 26, but with SIV-infected and non-infected 

individuals per tissue type. P-values from a Mann-Whitney comparison of PcEV values 

from SIV- and SIV+ individuals is shown for each tissue. (B-C) Spearman correlation 

tests with coefficient and p-values indicated on each graph. Within infected animal, 

there is not a significant relationship between both cellular and plasma levels of SIV 

and PcEV.  

 

8.4.4 Low levels of PcEV RNA present in the plasma of some infected individuals. 

 

Assuming that free retroviral RNA transcripts in plasma must come from circulating 

viral particles (Bhardwaj et al., 2014; Karamitros et al., 2016), we measured PcEV RNA 

levels by RT-qPCR in macaque plasmas previously challenged with four different 

strains of SIV at or around the time of peak SIV viremia. These were SIVmac239 (n 

=5), SIVmac251 (n=5), SIVmacC8 (n= 6) and SIVsmE660 (n=6) with 5 plasmas from 

non-infected animals as controls. SIVmacC8 is an attenuated nef-disrupted variant of 

wild-type SIVmac251/32H (Jiang et al., 2016) As shown in figure 28A, only 7/27 

plasmas exhibited detectable levels of PcEV (39; 84; 94; 139; 70; 35; 165 copies per 

ml plasma) and these 7 were distributed across all 4 SIV strains. PcEV was undetectable 

in all 5 control plasmas. All RNA preparations from plasma were subjected to DNAse 
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treatment and were negative for the RT- reaction, which controls for the potential co-

amplification of contaminating genomic DNA, hence the PcEV molecules detected 

were definitely from an RNA template (see supplemental table S1 in supplementary 

information). However, PcEV levels in the 7 plasmas were low, in comparison with the 

profoundly viremic SIVs, the lowest SIV level was > 103 (5.14 x 103 SIV RNA 

copies/ml).  

 

As PcEV RNA was only detected in SIV-infected individuals, we assessed whether 

SIV infection could explain the production, even at low level, of PcEV in the plasma. 

However, when the presence or absence of PcEV RNA in the plasma of individuals 

was compared between pooled data from non-infected and SIV-infected individuals, no 

significant difference was found (Figure 28B). Samples before and after infection were 

available for 3 individuals but PcEV RNA could not be detected in those individuals 

either before or after SIV challenge (E79, E80, E81, see supplemental table S1 in 

supplementary information). 
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Figure 28 : Low levels of PcEV RNA present in the plasma of some infected 

individuals. 

(A) RNA was extracted from the plasmas of animals, non-infected or infected with one 

of four different SIV strains (SIVmac239, SIVmacC8, SIVmac251 and SIVsmE660) 

followed by DNAse treatment. The absence of DNA contamination was confirmed in 

all experiments by simultaneous RT-qPCR without the RT enzyme. Only results from 

RT+ reactions are shown in the graph. The same SIV standards were used for all SIVs 

qPCR. Open circles denote PcEV RNA copies, and closed circles denote SIV RNA 

copies, from a single individual. (B) Statistical comparison of presence versus absence 

of PcEV in the plasma, pooling the data from non-infected individuals and SIV-infected 

individuals. Each open circle denotes PcEV RNA copies from a single individual. 

Using a Fisher’s Exact Test, no significant difference was found. 
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8.4.5 STAT1 transcription levels correlate strongly with cell-associated PcEV but 

not with plasma or cell-associated SIV.  

 

To determine any relationship between PcEV expression and IFN-1 responses after SIV 

challenge we measured STAT1 by RT-qPCR in all tissue samples and plotted against 

PcEV copies in the same tissues. A robust non-parametric test showed PcEV and 

STAT1 to be significantly correlated (Spearman Test, r=0.47; p=0.0091). Logarithmic 

transformation (base 10) of PcEV and STAT1 values produced distributions not 

significantly different from normal, so we also used a Pearson Test to measure the 

strength of the association. This showed a strong positive correlation between PcEV 

and STAT1 copy number per 1000 copies GAPDH (Pearson factor, r=0.48, p-value = 

0.0075) (Figure 29). 

 

In contrast, as also shown in figure 29, STAT1 levels were not strongly correlated to 

either cellular or plasma SIV levels in infected animals. We carried out a Spearman test 

which showed no relationship with STAT1 (Spearman Test: cellular SIV vs STAT1, 

r=0.13; p-value=0.49; plasma SIV vs STAT1, r=0.25; p-value=0.22). 

 

It is to be noted that, as expected, STAT1 is upregulated by SIV infection compared to 

non-infected individuals (Figure 30). PBMCs from infected individuals showed cellular 

levels of STAT1 that were higher than that in naïve individuals. The small sample sizes 

prevent extrapolation from the non-significant results in the other tissues, but a previous 

study showed a drastic increase in STAT1 levels in the blood only (Ferguson et al., 

2014). 
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Figure 29 : STAT1 transcription levels correlate strongly with cell-associated 

PcEV but not plasma or cell-associated SIV. 

 

Spearman correlation tests with coefficient and p-values indicated on each graph. 

Pearson correlation test after logarithmic transformation of cellular PcEV and STAT1 

revealed the following: Log PcEV vs Log STAT1, r=0.48, p-value=0.0075. 
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Figure 30 : STAT1 is significantly increased in the PBMCs of SIV-infected 

animals. 

Each open symbol denotes PcEV RNA copies from a single uninfected individual, and 

each closed symbol denotes PcEV RNA copies from a single SIV-positive individual. 

Means for each SIV-infected or non-infected tissue are indicated as horizontal bars with 

p-values given for a Mann-Whitney comparison of the mean expression level in SIV- 

and SIV+ individuals for each tissue.  

 

8.4.6 At least eight examined PcEV loci are likely to be currently transcribing. 

 

As the in vivo analyses appeared to strongly infer that PcEV is transcriptionally active 

at some level, we sought to understand further which loci found in the genome may be 

implicated in PcEV transcription. Hence, we predicted the location of general 

transcription features, such as TATA box, CCAAT boxes, and direct repeat (DR) 

regions based on previous reports (see next paragraph), and transcription factors 

specific for those regions. Based on whether the core of main landing sites is disrupted, 

we inferred whether or not the individual PcEV locus was likely to be transcribed. Also, 

since there we found an association between PcEV and STAT1 transcription levels, we 

also sought to identify transcription factors linked to inflammation which could 

transactivate the PcEV LTR during infection, potentially explaining the link between 

PcEV and an ISG. For this purpose we also included some transcription factors 

suggested to induce ERVs like NF-kB members during inflammation (Uleri et al., 



140 
 

2014), or activated during HIV infection such as the STAT1 (Ferguson et al., 2014) and 

STAT3 (Fan et al., 2015) (see methods in section 7.28). 

 

A consensus of PcEV LTR sequence was built based on an alignment LTR sequences 

from eight loci analysed (Figure 25), excluding only the two very old loci. The LTR 

consensus was submit as a query on ALGGEN-PROMO online tool (see methods in 

section 7.28). We then searched for a list of transcription factors selected based on 

studies in Gammaretroviruses, namely MuLV (Speck and Baltimore, 1987), PcEV 

(Mang et al., 1999) and HERV-W. The list is enumerated in the main Materials and 

Methods section. Only primate-specific binding sites were searched for. From the list 

submitted, only sites for TBP [T00794]; GR-beta [T01920]; GR-alpha [T00337]; 

C/EBPbeta [T00581]; YY1 [T00915]; NF-1 [T00539]; C/EBPalpha [T00105]; NF-Y 

[T00150]; STAT3 [T01493]; GATA-2 [T00308]; GATA-1 [T00306] were found. TBP 

revealed the position of TATA box at position nt 349 on the LTR consensus (382 on 

Figure 31) which correlated with the one described by Mang et al. Since TATA box 

usually has a minimal promoting activity (Lee, 2003), loci without disruption in the 

core sequence of TBP binding sequence ((A/G)(A/G)(G/T)(A/G)TATAAA) was 

considered to take part to transcription. The core sequence of TBP binding site 

(TATAAA) is not disrupted in all 8 loci. Another TBP was predicted at position 34 (51 

on Figure 31), but is unlikely real, since it is not well conserved among loci and in other 

Gammaretroviruses, TATA box is not found in that position (HERV-W, MuLV) (Lee, 

2003; Luciw and Leung, 1992). Transcription factors such as GR-alpha, GR-beta and 

C/EBPbeta from ALGGEN-PROMO possess a very short core sequence (only 3 

nucleotides; see methods in section 7.28) and so were predicted to be present in high 

frequency in the sequence. Enhancers usually harbor binding sites for many 

transcription factors (Speck and Baltimore, 1987). We therefore focused on regions that 

were predicted to bind many transcription factors. Interestingly, the depicted regions 

corresponded with description by Mang et al. (1999), and so were named in accordance 

with that study. We found GR-alpha, GATA1 and GATA2 sharing binding regions 

(DR1, DR2, DR3); GR-beta, C/EBPbeta, NF-Y, sharing CCAAT box-associated 

binding regions (CCAAT box 1, 2, and 3). One CCAAT box region had up to 4 binding 

sites, including GR-beta, C/EBPbeta, NF-Y and C/EBPalpha (CCAAT box 4). 

Interestingly, such CCAAT box directly upstream TATA box was shown to efficiently 

promote transcription activity of HERV-W LTR (Lee, 2003). As a result of this finding, 
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we considered that loci without mutation in the core sequence CCAAT efficiently 

transcribe (a “+” per non-disrupted CCAAT in table 4). Finally, in the DR regions, we 

considered the GATAGGG as core sequence (compilation of GR-alpha, GATA1 and 

GATA2 core taken together; a “+” per non-disrupted GATAGGG in table 4). The table 

4 summarized our analysis.  

 

Regarding inflammation-related transcription factors, only STAT3 at position 127 (149 

on Figure 31) was predicted and thus we cannot easily explain our observed relationship 

between STAT1 and PcEV by STAT1 upregulating PcEV during 

inflammation/infection. 

 

Table 4 : Summary of transcription factor binding domains 

All 8 loci of PcEV are likely actively transcribed. Some of them harbor many enhancers 

and so are suspect to contribute more to transcription. Yes: no mutation in the TATA 

box core (TATAAA); + or -: no mutation or at least one mutation, in the DR1 core 

(GATAGGG), CCAAT box core (CCAAT). 
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Figure 31 : Prediction of transcription factors binding sites along with enhancers region and TATA box, in LTRs from 8 PcEV loci 

found in macaque genome.  

LTRs from NC_022517.1 and AF142988 was added to the analysis. 
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8.4.7 Discussion 

 

To investigate a possible role for ERVs in innate signalling, we exploited the 

SIV/macaque model where the timing and nature of the exogenous infecting agent is 

well-defined and controlled for, and complements insights from the mouse and human. 

We find good evidence for PcEV RNA at low levels in the plasma of some infected 

macaques. The positive relationship between PcEV expression and STAT1 transcript 

levels – much stronger than the relationship between SIV and STAT1 – is highly 

suggestive of a relationship between ERV transcriptional activity, at the cellular level, 

and induction of the interferon response.  

 

Modelling the role of ERVs in non-human primate models is dependent on defining the 

relevant ERV species in the non-human primate species studied. How comparable are 

our findings to what may be happening in humans? Earlier studies reported the presence 

of HERVK (HML2) RNA in human plasma from HIV patients (Contreras-Galindo et 

al., 2012) but more recent studies have failed to replicate this (Bhardwaj et al., 2014; 

Karamitros et al., 2016).  We have yet to resolve whether PcEV RNA in the plasma 

results from replicationally active (infective) loci.  

 

Although the macaque may differ from humans in possibly having – as yet unrecovered 

– replication-competent PcEV loci, the level of cell-associated transcription is very 

similar to that found in the most active human ERV lineage, HERV-K (HML2): namely 

~30 copies per 1000 copies GAPDH in the PBMCs of non-acute HIV infection cases, 

and ~15 RNA copies in PBMCs from uninfected individuals (Bhardwaj et al., 2014).  

 

There are examples of human ERVs for which the expression is enhanced in presence 

of IFN or viral infection. HERV-K18 env expression is increased after IFN treatment 

in vitro (Stauffer et al., 2001). HERV-K (HML2) is increased in PBMCs from HIV-1-

infected individuals (Bhardwaj et al., 2014; Contreras-Galindo et al., 2012, 2007). The 

expression of HERV-W, a gammaretrovirus, is increased by influenza infection in vitro 

(F. Li et al., 2014; Nellåker et al., 2006).  

 

Not only human ERVs seem to respond to viral insults, some were suggested to take 

part to the triggering of the immune response. Recombinant Env from HERV-W 
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activates immune cells in vitro through TLR4 (Rolland et al., 2006). In addition, 

HERV-K18 (Stauffer et al., 2001) and HERV-W (Perron et al., 2001) Envs were 

proposed to act as superantigens and activate T cells in a polyclonal fashion in vitro.  

 

In our study, although it may be due to the sample size, SIV failed to significantly 

induce PcEV transcription and no correlation between levels of SIV and PcEV 

transcripts was found in infected individuals. Also, paired samples from individuals 

before and after infection were not available but would have provide a better measure 

of the impact of SIV on PcEV, if any. In addition, the apparent absence of STAT1 and 

NF-B binding motifs on LTRs of PcEV loci analysed, means it is unlikely that those 

proteins are directly binding to the LTRs, then driving PcEV transcription. If it is right, 

this leaves the possibility of PcEV being involved in triggering the immune response. 

 

Two main mechanisms can be imagined (Hurst and Magiorkinis, 2015). The first 

implies binding of ERV particles to innate receptors such as TLRs (the exogenous 

route). The second implies potential conversion of ERV cytoplasmic transcripts into 

cDNA that trigger innate sensors linked to the RIG-I–cGAS pathways (the endogenous 

route). In our study, we could not find PcEV transcripts in the sera from all individuals, 

suggesting PcEV is unlikely to produce a relevant number of virions. In this scenario, 

we would not expect PcEV to use the exogenous route to trigger innate receptors. 

Nevertheless, PcEV might perhaps trigger TLRs through released viral components, 

such as Env, as it is the case for HERV-W for which Env was shown to activate immune 

cells in vitro through TLR4 (Rolland et al., 2006). Antibodies responses to such Env 

are found elevated in sera from MS patients, as compared to healthy controls (reviewed 

in Christensen (2016)). In this case, it could be interesting to look for PcEV structural 

proteins into sera, using ELISA. 

 

Regarding the endogenous route, we found that PcEV actively transcribes in primates. 

Endogenous retroviral RT was suggested to reverse transcribe viral RNA intracellularly 

in Human (Contreras-Galindo et al., 2017; Dube et al., 2014). In autoimmune Trex-1-

deficient mouse, ERVs DNA accumulate in the cytoplasm and are associated with 

inflammatory phenotypes (Stetson et al., 2008); which can be treated using reverse 

transcriptase inhibitors (Beck-Engeser et al., 2011). In addition, mouse ERVs were 
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shown to bind to the RNA sensor RIG-I (Zeng et al., 2014). So, in primate, the 

remaining caveat concern ERV binding to innate sensors; but it is highly plausible. 

 

Finding RNA in the plasma suggests that viral particles are present in the cell-free 

plasma of some but not all individuals. Although we did not find any potentially 

replication-competent PcEV in the reference macaque genome sequences, this may 

reflect a combination of (a) genome assembly problems and (b) the likelihood that such 

loci would be unfixed, i.e. present only in the genomes of some individual macaques 

(Marchi et al., 2014). We therefore speculate that macaques with very low levels of 

circulating PcEV may harbor a replication-competent PcEV locus responsible for the 

RNA found in the plasma. Alternatively, it has been shown in the mouse model that 

recombination between replication-defective loci can reconstitute replication-

competent loci with resulting infective virions (Young et al., 2012).  

 

Regarding a previous report in the baboon (Mang et al., 1999), the relatively low 

presence of PcEV viral particles could have been expected as PcEV 3’LTR lacks a DR1 

repeat that is critical for viral packaging. However this way of viral packaging concerns 

Alpharetroviruses (Aschoff et al., 1999), and we are aware that Gammaretroviruses 

usually harbor a packaging signal  involved in viral packaging, upstream of gag ORF 

(Maetzig et al., 2011).    

 

Our observation is purely correlative. Whether ERV are directly implicated in innate 

response to an exogenous viral infection in primates needs to be assessed: (a) by looking 

for the binding of ERV nucleic acids to innate sensors (Zeng et al., 2014), (b) by knock-

down of ERV transcription followed by a measurement of the innate response.    

 

In addition, we could also analyse more retroviral lineages, namely the other two 

recently active ERVs, CERV and SERV (Magiorkinis et al., 2015). Our preliminary 

analysis suggests they are similar: we find single examples in each of single loci with 

full-length ORFs in both lineages. Also, we could expand the bioinformatic analysis to 

look for novel loci in the other macaque genomes that are available as unassembled 

datasets.  

 



148 
 

We could also look at LINEs, which unlike ERVs are known to be copying in the human 

population and which have potentially replication-competent loci in the rhesus 

macaque reference sequence (Han et al., 2007). Considering both ERVs and LINEs 

together may be more relevant and provide a wider angle to answer the question of 

whether retroelements are involved in innate response.  

 

We suggest that the current study suggests a role for ERVs in line with the model 

proposed by Volkman and Stetson, and that this could be tested by further study. Even 

if ERVs do not play a role but are responsive to ISG induction, this requires 

clarification.  
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9 GENERAL DISCUSSION & PERSPECTIVES 

 

9.1 Tissues and tumours permissive to HERV-K (HML2) expression 

 

9.1.1 HERV-K (HML2) expression in ‘healthy’ tissues 

 
There are studies reporting HERV-K (HML2) expression in human tissues in healthy 

conditions. The general picture is that HERV-K (HML2) expression seems to be limited 

in all healthy tissues, except from those that are permissive: mainly testis, placenta, 

prostate, embryonic tissues (Kämmerer et al., 2011; Pérot et al., 2012). To better define 

permissive tissues for HERV-K (HML2), standard curve-associated qPCR or RNAseq 

should be used, so that we could more accurately define the levels of expression per 

tissue. Also, not every healthy tissue is available. If such challenges are addressed 

accurately, it could give clues on potential involvements of those retroelements in 

‘normal’ state. In fact, it could be easier to determine, or speculate on a role when a 

tissue-specific expression has been assessed. Even though there are many studies 

checking for expression, it is hard today to draw a list of tissues that express HERV-K 

(HML2) in their healthy conditions. In my thesis, even if we could check for HERV-K 

(HML2) expression in the nerves, we did not have a tool to accurately measure the 

levels of HERV-K (HML2) via qPCR. I observed that HERV-K (HML2) proteins can 

be found in the nerves. There were more nerves without HERV-K (HML2) staining, 

however the amount of nerves that were positive to the staining was non- negligible. 

Also, we expect a polymorphism of HERV-K (HML2) loci among individuals (Marchi 

et al., 2014), it means that some people that are screened could harbor an active locus, 

which is still fully capable of producing HERV-K (HML2) proteins that results in a 

positive staining. 

 

Another use of an exhaustive analysis of tissues that express HERV-K (HML2) in a 

healthy state, is an appreciation of tissues that may be targeted by side effects of HERV-

K-specific therapy. In fact, if HERV-K (HML2) appear to be highly expressed in a 

tissue, at comparable levels than in targeted tumours, we can suspect the apparition of 

secondary effects, especially if the monoclonal antibody induces cell death. It is then 

imperative to test the effects of monoclonal antibody in healthy tissue. In our case, the 
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use of commercial antibody did not significantly affect the proliferation of primary 

Schwann cells in culture. 

 

9.1.2 HERV-K (HML2) expression in tumours 

 
Regarding tumours, the list of HERV-K (HML2)-positive tumours is long. It is 

understandable, knowing that tumours undergo demethylation and HERV-K (HML2) 

expression, like other mammals’ ERVs, is inhibit by methylation (Depil et al., 2002; 

Götzinger et al., 1996; Ma et al., 2011; Niwa and Sugahara, 1981). However, the list is 

not exhaustive, as there are still tumours in which HERV-K (HML2) expression have 

not been investigated. My thesis proposes to add schwannomas to the list of HERV-K 

(HML2)-expressing tumours. It is interesting to enumerate how many tumours express 

such retroelements because novel therapeutics based on monoclonal antibodies are 

targeting HERV-K (HML2) Env (Wang-Johanning et al., 2012). Thus, it could be a 

universal anti-tumour treatment, especially for tumours that do not have any current 

therapeutics. 

 

9.2 Transcription factors and motifs for PcEV and HERV-K (HML2) transcription 

 

9.2.1 PcEV transcription 

 
To date, only very few in silico study had predicted TFs on PcEV LTRs (Mang et al., 

1999). Also, to my knowledge, there is not a study that experimentally tested TFs 

binding sites. Analogy to related Gammaretroviruses suggest a minimal promoter that 

consist of a TATA box, along with enhancer sequences that contain a CCAAT box or 

that consist of DRs (directed repeats). The ablation of CCAAT box motif resulted in a 

significant decrease of promoting activity of HERV-W, an ERV part of the 

Gammaretroviruses, suggesting that it highly promote transcription driven by the 

TATA box (Lee, 2003). Study of DRs in MuLV suggested a decrease of replication 

ability when one DR is removed (Hanecak et al., 1986; Li et al., 1987). Including our 

study, there are very few studies that focus on transcription factors that could drive 

PcEV transcription. Also, we are the first to report active transcription of PcEV in the 

macaque. However, we could not link TFs to transcription activity, as at the time, we 

did not have the tool to investigate transcription of mutated PcEV LTRs. Another point 

is the prediction of STAT3 as binding to PcEV LTR. We found a strong positive 
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association between PcEV transcription and STAT1 transcription. It is speculative to 

infer that PcEV transcription is driven by members of the STAT family landing on 

PcEV LTRs, especially when STAT3 is found instead of STAT1. However, when the 

prediction software is run with a higher dissimilarity margin of 15%, the same site is 

predicted to be bound by STAT1 and NF-B. To assess the veracity of this, chromatin 

immunoprecipitation should be performed.  

 

9.2.2 HERV-K (HML2) transcription 

 

Regarding HERV-K (HML2), there are MITF-M, Oct1, NF-B, NF-AT, YY1, Sp1 and 

Sp3 which were experimentally tested to land on LTRs out of 20 predicted (Manghera 

and Douville, 2013). Many more could be tested; however, it could be challenging. 

Another approach could require a general pull down of TFs using ERV-derived DNA 

baits, and try to determine candidate through mass spectrometry (Wierer and Mann, 

2016). It is relevant to determine TF-associated transcription of HERV-K (HML2), as 

it would help understand how HERV-K is reactivated in tumours, in a detailed manner. 

Demethylation of HERV-K (HML2) LTRs is not the only event that drive transcription, 

as reports suggested that the presence of some TFs in the cell is required (Fuchs et al., 

2011; St Laurent et al., 2013). In our case, we investigate the possibility that TEAD, 

TF at the end point of Hippo-pathway, is involved in HERV-K (HML2) transcription. 

It was to be tested as Hippo-pathway is upregulated in schwannoma (L. Zhou et al., 

2016). It could have provided a link to HERV-K (HML2) proteins production in 

schwannoma. Our test revealed a significant decrease of HERV-K (HML2) env 

transcription only. But, the verteporfin seemed to produce an effect that was not only 

targeting YAP-TEAD complex-driven transcription. One NF-B binding site tested by 

chromatin immunoprecipitation (Gonzalez-Hernandez et al., 2012) overlaps with the 

identified binding site for TEAD, hence it seems that it is not physically allocated to 

TEAD. However, it is to be noted that the use of an NF-B inhibitor, that prevents NF-

B from translocating into the nucleus, did not show any effect on HERV-K (HML2) 

Env protein level in schwannoma, as assessed by western blotting (data not shown). To 

clear address the possibility of TEAD binding on HERV-K (HML2) LTRs, a 

chromatin-immunoprecipitation of TEAD followed by HERV-K (HML2) LTR-

specific PCR should be performed. 
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9.3 Role of ERVs in diseases 

 
ERVs are suggested to play a role in placentation, e.g. in the case of the syncytins in 

mammals that have been co-opted in many species (Lavialle et al., 2013). A role in 

gene fine-tuning has also been suggested, e.g. HERV-H LTRs appear to allow silencing 

of neighboring genes or transcribe long non-coding RNA involved in pluripotency (Lu 

et al., 2014; St Laurent et al., 2013). When a sequence retains intact ORFs, it can also 

be involved in interfering with new infections by the same or related viruses. Few 

examples are: HERV-P in primates, whose extinction is suggested to have happened 

with the aid of an endogenized HERV-P viral Env, such Env experimentally diminishes 

infection by reconstituted viral particles (Blanco-Melo et al., 2017); and enJSRV (a 

JSRV-related ERV) gag in ovins which is suggested to limit the replication of 

exogenous JSRV (reviewed in Arnaud et al. (2008)). More recently, the role of ERVs 

in immunity have been investigated. ERVs ssDNA accumulate in the cytoplasm of 

Trex1-deficient mice, possibly leading to autoimmune disease development (Stetson et 

al., 2008). In human, HERV-W is reported to stimulate inflammation through binding 

to TLR4 (Rolland et al., 2006), and it is suggested to be one mechanism associated with 

multiple sclerosis. However, very few reports investigate whether ERVs in humans or 

other primates are physiologically linked to the function of triggering of innate 

immunity. Here we propose that in the macaque, there is an association between a 

primate ERV lineage, PcEV, and the innate response that arises during SIV infection, 

as measured by STAT1 expression. However, whether the expression of ERVs are part 

of innate response triggering or just a consequence is still a mystery. When considering 

SIV infected-animals only, such association was stronger than that between STAT1 and 

both cellular and plasma SIV expression. Physiologically, it looks like the more ERVs 

are transcribed in individuals, the higher their innate response will be, as measured by 

an ISG; for this reason, we stressed that in primates too, ERVs could take part to the 

innate response process. There exist other lineages of ERVs in the macaque; also, the 

LINEs need to be looked at. We need to test for a wider correlation between all 

retroelements (mainly ERVs + LINEs) and innate response triggering. Another 

perspective is to unravel the causality between ERVs and innate response, meaning that 

ERVs in primate need to be assessed for potential binding to innate sensors, i.e. TLRs, 

RIG-I, NLRs.  
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10 CONCLUSION 

 

The main findings of this thesis are as follow: (i) HERV-K (HML2) is overexpressed 

in schwannomas in comparison to Schwann cells; (ii) Such overexpression possibly 

involve YAP-TEAD-driven transactivation of HERV-K (HML2) transcription; (iii) 

Potential therapeutics for schwannomas involved HERV-K (HML2)-specific 

monoclonal antibodies and ritonavir, an antiretroviral; (iv) PcEV is not viraemic in 

macaques as not consistently retrieved in sera; (v) PcEV is actively transcribing; (vi) 

High levels of PcEV transcripts in cells correlate with high levels of STAT1, an ISG, 

validating our hypothesis (see section 6, objective 5). 
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12 SUPPLEMENTARY INFORMATION 

 

 

12.1 Details of analyzed PcEV loci 

 

 Chr1:55452680-60247 (+ve sense). This is the only locus that appears to have 

integrated very recently. The LTRs in this locus are identical, suggesting it 

integrated at least within the last million years (a single substitution would date 

it to ~1my using our molecular clock). Consistent with being a relatively recent 

integration, this locus also appears to be heterozygous: we find an identical 

match to the reconstructed pre-integration site (extending 100nts either side of 

the TSD) in an unassembled part of the same genome 

(chrUn_NW_014907418v1), and the earlier rheMac2 assembly from the same 

animal contains only an identical match to the same reconstructed pre-

integration site. Determining homology at this locus is slightly complicated 

because the locus is within an older ERV integration (designated HERV-17-int 

in RepeatMasker). Fortunately, this older ERV locus into which PcEv has 

integrated has diverged markedly from other members of the same HERV-17-

int family such that the second best match is only 91% similar, so we can be 

confident we are comparing the same integration in different builds and in 

different animals. Unfortunately, the internal region of this locus is both 

incomplete and possibly even comes from more than one locus: the gag is 

highly degenerate with many frameshifting indels while the (incomplete) pro-

pol has a potential full-length ORF. As expected from their estimated age, the 

other intact loci in the rhesus were all also found in the cynomolgus macaque. 

 Chr1:121693612-70205 (-ve sense). The gag and pro-pol sequences in 

rheMac2 are identical. The earlier rhesus build also shares the16 amino acid 

insertion near the start of env (as does the cynomolgus genome) and has the 

same four mismatches between the two LTRs. 

 Chr1:223875631-67155 (-ve sense). We find a full-length locus in the 

rhe2Mac2 build, except the latter is +sense. This allowed confirmation of all 

premature stop codons and frameshifting indels in figure 25 and correction of 

some sequencing errors, e.g. in pro-pol a frameshifting loss of one nucleotide 

from a run of three G in rheMac8 does not occur in rheMac2. 
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 Chr2: 120398819-411598 (-ve sense). The gag in rheMac8 has many 

frameshifting indels, none of which are in rheMac2, and the one stop codon in 

rheMac2 is not in rheMac8 (this sequence does not appear to be in the 

cynomolgus genome). The pro-pol gene has multiple assembly errors, leading 

to both builds appearing to have long tandem duplications, but neither of these 

tandem duplications appear in both builds (and neither do any of the premature 

stop codons or other frameshifting indels); however, the premature stop codon 

in the centre of the rheMac2 pro-pol is also in the cynomologus genome, so we 

assume that one is real. 

 Chr3:28091955-100392 (-ve sense). The first are 47nts are missing from gag 

in both rhesus builds but the ORF is intact in cynomolgus. Other indels are 

found only in one of the two rhesus builds. 

 Chr3:28106593-15637 (+ve sense). Contains the only full-length pro-pol ORF 

recovered, although there is a frameshifing indel near the end of gag that would 

throw pro-pol out of frame. Scaffold gaps are not repeated in both builds. 

 Chr5:123585628-123593787 (-ve sense) Gaps are not repeated in both rhesus 

builds. 

 Chr8:14596826-605415 (+ve sense). An old but complete locus with multiple 

premature stop codons. 

 Chr9:50301699-10531 (+ve sense). This locus is also discussed at length in the 

main text. It is only the upstream part of pro-pol in rheMac8 that is a problem: 

both (a) the region containing the 5' LTR plus the start of gag and (b) env plus 

the 3' LTR were very similar in the three builds. In addition, the macFas5 build 

has a break in the scaffold near the end of pro-pol (which appears to involve 

some sequence duplication). In the reconstruction of this locus shown in figure 

25, we chose not to infer a second a second premature stop codon and a frame-

shifting indel in the homologous region of pro-pol, although these are present 

in both rheMac2 and macFas5. We are unable to explain why these substitutions 

are not also be in the pro-pol region of rheMac8 that our phylogenetic analysis 

suggests is homologous. We suggest a much more detailed analysis of ERVs 

the macaque genome sequences is required to resolve this. The two LTRs of 

this locus in rheMac8 differ by a total of 4 substitutions. In the earlier build they 

differ by 3 substitutions, only 2 of which are shared in both builds.  
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 ChrX:88958264-866804 (-ve sense). We could not find this old locus in the 

rheMac2 build, although it is in macFas5. 

 ChrY:10651278-9714 (-ve sense). The rheMac2 build and the cynomolgus 

genome are both from females so we cannot check the rheMac8 sequences of 

this locus (although the rheMac8 build is from a female it includes the Y 

chromosome from another individual). 

 

 

12.2 Interesting observation comparing CA-PcEV ad CA-SIV levels 

 

We might expect to find lower levels of PcEV transcription than SIV, an exogenous 

retrovirus, since ERVs expression is commonly limited by methylation as shown by the 

increase in transcription after treatment with the hypomethylating agent 5-azaCytidine, 

(Depil et al., 2002; Götzinger et al., 1996; Ma et al., 2011; Niwa and Sugahara, 1981). 

In contrast, we would not expect the exogenous retrovirus to be methylated. However, 

in our study although the mean number of PcEV copies per 1000 copies GAPDH is 

lower than that for SIV (37 vs 92), the difference is not statistically significant 

(Wilcoxon matched-pairs signed rank test, p-value = 0.16).  

 

 

12.3 Overview of the macaque genome 

 

Our reanalysis of the data presented in (Magiorkinis et al., 2015) show the three ERV 

lineage that have been copying within the macaque genome in the last 5 million to have 

similar levels of integration, and thus we assume current activity (Fig. S2). An 

important discovery here was that Magiorkinis et al. (2015) had erroneously referred to 

BaEV (Baboon Endogenous Retrovirus) rather than PcEV in the macaque. A 

recombination event in the baboon gave rise to BaEV, which was first described from 

several baboon species (Antoinette C. van der Kuyll; John T. Dekker; Jaap Goudsmit, 

1995). This recombination event led to BaEV containing the gag and pro-pol of PcEV 

and the env of SERV (van der Kuyl et al., 1997). We confirmed that BaEV is not 

actually in the macaque by BLATing the complete BaEV reference sequence 

(NC_022517) to the macaque genome. The top matches were to PcEV loci shown in 

figure 25 but only the first ~5000nts of the 8507nts were matched. BLATing the 
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unmatched 3' region recovered loci we had identified as SERV. Thus, we conclude that 

while the baboon has both PcEV and BaEV lineages, only the former is present in the 

macaque. 

 

In humans, the most recently active ERV lineage is HERVK, or more accurately 

HERVK(HML2), which appears to have been copying in humans at least until 250,000 

years ago (Marchi et al., 2014). However, Magiorkinis et al. (2015) concluded that the 

sister lineage of HERVK in the macaque ceased copying ~5mya and we found the loci 

to be much more degraded than either HERVK in humans or PcEV in the macaque with 

could find only a couple of full-length ORFs. 

 

In Fig. S4 we show the three ERV lineages (plus HERVK) among a dendrogram of all 

macaque ERV loci that integrated roughly since the platyrrhine/catarrhine split. Their 

relative youth is shown by the number of short branches near the tip (bottom) of the 

tree. As mentioned in the Introduction, larger-bodied animals tend to have has fewer 

ERV integrations within the last 10mya (Katzourakis et al., 2014) and in this study the 

macaque is intermediate between the mouse and humans. Indeed, in that study while 

the macaque and humans are on the regression line, the mouse has even more recently 

integrated loci than predicted for its small size. We can further support this closer 

resemblance of the macaque to the human genome in this respect by comparing 

dendrograms of the mouse, macaque and human (Fig. S4). The macaque thus appears 

to offer a model system closer to the human than is the mouse in this respect. 

 

12.4 Note on rheMac8 genome assembly 

 

Rhesus macaque genome assembly rheMac8(Mmul_8.0.1) is from same (female) 

animal  as rheMac2, namely animal 17573 (Zimin et al., 2014). This papers states that 

the bulk of the sequencing was from a female but that they used an unrelated male for 

the BAC-end sequencing and to 'aid in selective finishing'. We assume this individual 

gave the Y chromosome. 
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12.5 Supplementary figures and tables  

 

 

 

 

 
 

Fig. S1. Reconstruction of the locus chr9:50301699-10531 using homologous 

sequences in the two rhesus macaque genome assemblies (rheMac2 and rheMac8) and 

in the cynomolgus macaque genome (macFas5). Phylogenetic trees were built from the 

501-1397 and the 1398-2607 regions of the pro-pol alignment, with sequences from 

this locus shown in red.  
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Fig. S2. Histogram showing number of ERV integrations in the rhesus macaque 

genome (build rheMac2) in 2 million year periods, with integrations dated using LTR 

divergence. Data re-analysed from Magiorkinis et al. (Magiorkinis et al., 2015). 
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Fig. S3. Dendrogram showing abundance of recently integrated ERV loci in mouse 

compared to rhesus macaque and human genomes (Magiorkinis et al., 2015). UPGMA 

dendrogram using pairwise similarity of pol gene with very old (>35my) loci excluded. 

The pair-wise dissimilarity matrix included all having at least 300nt long pol match in 

a region of at least 90% sequence identity with at least one other locus (thus removing 

loci that would have integrated before the platyrrhine/catarrhine split). The four most 

recently integrated ERV lineages in the macaque are labelled. We see SERV with short 

branches in the class II clade (related to alpha and beta exogenous viruses) and a sister 

group relationship between PcEV and CERV in the class I clade (related to gamma 

exogenous virsus). CERV shows a long relationship with the macaque genome and 

probably multiple invasions (there appear to have been multiple invasions of this ERV 

in the Great Apes. 
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Fig. S4. Dendrogram comparing relative abundance of ERV lineages, shown in red, 

that contain loci integrating within the last few million years, in the mouse, macaque 

and human genomes. Details of how the dendrogram were built and their interpretation 

are given in the legend of fig. S4 
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GAPDH copies per individual per tissues 

 PBMC spleen thymus MLN PLN 

 400000 46600 120000 142000 164000 

 472000 182000 43500 229000 139000 

 686000 279000 21300 116000 139000 

 578000 292000 249000 72700 30000 

 452000 294000 246000 89500 99200 

 269000 127000 338000 88300   

 396000 318000 652000 115000   

 557000 24800 202000 69400   

 506000 1130000 397000 122000   

 343000 546000 93800 61400   

 300000 121000 78900     

 281000 117000 116000     

 303000 52200 108000     

 185000 64000 109000     

 284000 65200       

Mean 400800 243920 198179 110530 114240 

SD 139110 283432 170791 49080 52499 

Coef. Var. (%) 34,70808 116,1988 86,18017 44,40423 45,95501 

 

Fig. S5. Comparison of mean copy number of GAPDH among tissues. Kruskal-Wallis 

followed by Dunn’s multiple comparison test revealed that PBMC is the only tissue 

that display a significantly higher expression of GAPDH compared to spleen, thymus, 

MLN and PLN that similar expression (non-significantly different). This indicates that 

inter-tissue comparison is possible between spleen, thymus, MLN and PLN but not 

PBMC. The table below indicate values per individual per tissues. Mean, standard 

deviation (SD), coefficient of variation (Coef. Var. (%)) per tissue are provided. 
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Table S1. PcEV and SIV levels in plasma. Results from RT+ and RT- reactions for 

each macaque individual are displayed. 

 

  PcEV copies per mL** SIV copies per ml  

SIV strains Individuals RT+ RT- RT+ RT-  

Naive E79 No Ct No Ct No Ct No Ct 

Extracted from 

140uL plasma 

into 50uL 

nuclease-free 

water 

  E80 No Ct No Ct No Ct No Ct 

  E81 No Ct No Ct No Ct No Ct 

SIVmac239 E79 No Ct No Ct 2.60E+06 No Ct 

  E80 No Ct No Ct 7.24E+05 No Ct 

  E81 No Ct No Ct 4.23E+06 No Ct 

SIVmacC8 E5 No Ct No Ct 1.04E+05 No Ct 

  E6 No Ct No Ct 2.03E+04 No Ct 

  G3 39 No Ct 4.01E+04 No Ct 

  G4 No Ct No Ct 4.75E+04 No Ct 

  G5 No Ct No Ct 5.14E+03 No Ct 

  G6 No Ct No Ct 2.31E+04 No Ct 

SIVmac251 J41 No Ct No Ct 1.42E+05 No Ct 

  J42 No Ct No Ct 9.35E+04 No Ct 

  J44 84 No Ct 4.29E+05 No Ct 

  J17 No Ct No Ct 7.22E+03 No Ct 

  J18 94 No Ct 1.29E+04 No Ct 

SIVsmE660 G25 No Ct No Ct 2.25E+07 No Ct 

  G26 139 No Ct 3.13E+05 No Ct 

  G27 No Ct No Ct 2.12E+07 No Ct 

  G28 No Ct No Ct 3.97E+07 No Ct 

  G7 70 No Ct 9.91E+07 No Ct 

  G8 No Ct No Ct 2.89E+07 No Ct 

Naive H17 No Ct No Ct No Ct No Ct Extracted from 

1mL plasma into 

100uL nuclease-

free water 

  H18 No Ct No Ct No Ct No Ct 

SIVmac239 H19 37 No Ct 1,82E+04 No Ct 

  H20 165 No Ct 1,26E+04 No Ct 

**: In a test using plasmas from individuals H17,18,19,20, in the absence of DNAse 

treatment, we found similar copy numbers between RT+ and RT- reactions: 

H17(RT+:1.18E+04; RT-:1.27E+04); H18(RT+:7.06E+03; RT-:9.12E+03); 

H19(RT+:2.39E+04; RT-:2.37E+04); H20(6.96E+03; RT-:8.99E+03). Our observed 

level of DNA contamination is consistent with our theoretical expectations: assuming 

the macaque is similar to humans in the level of cell free DNA in the plasma, and given 

that there are at least 50 intact PcEV copies in each macaque cell, we expected to find 

at least 5 x 104 (5E+04) DNA copies in the plasma. 
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pBS-PcEV vector. 

 
Legend 
PcEV - ApaI highlighted in Turquoise 
Insert in lower case and underlined 
T7 promoter GTAATACGACTCACTATAGGGC 

Hind III restriction site CGATAA 

 
 
 
The reference sequence of the final construct  
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGG

CAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGT

GGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTC

GAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAA

GGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCT

TAATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATT

ACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC

GGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACCGGTACCGGGCCccaagccccaatcataattgatctaaa

gcccacggcagtgcccgtgtctatcaagcaatatcccatgagccgagaggctcatataggaattcagcagcacattaacaaatttct

agaactcggagtgttgcgaccttgtcgctcgccctggaacactcctcttctgccagtaaaaaagcccggcactcaggattacaggcc

tgtccaagggccCCCCCTCGAGGTCGACGTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCACTAGTTC

TAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGC

TGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAAT

GAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCG

GCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGC

GGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAG

GCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATC

GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTG

TTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATC

TCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT

ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAG

GCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAG

TTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGA

TTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG

GGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATAT

ATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG

CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCT

CACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCC

AGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCG

TGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCA

AAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGC

ATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGC

GGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC

GTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAG

CATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAAT

GTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTA

TTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC 
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Table S2. Antibodies used in the thesis 

 

Antibody Company Cat# dilution 

Mouse anti-HERV-K (HML2) Env  AMSBio HERM-1811-5 
1:250-1:1000 (WB) 1:50 

(IF) 1:100 (IHC) 

Mouse anti-HERV-K (HML2) capsid AMSBio HERM-1831-5 1:250-1:1000 (WB)  

Mouse anti-HERV-K (HML2) Gag AMSBio HERM-1841-5 
1:250-1:1000 (WB) 1:50 

(IF) 1:100 (IHC) 

Rabbit anti-phospho ERK Promega V803A 1:5000 (WB) 

Rabbit anti-phospho AKT  
New England 

Bioloabs 
9271 1:500 (WB) 

Rabbit anti-phospho FAKY397  
New England 

Bioloabs 
3283 1:500 (WB) 

Rabbit anti-ERK  
New England 

Bioloabs 
4695 1:500 (WB) 

Rabbit anti-AKT 
New England 

Bioloabs 
4691 1:500 (WB) 

Rabbit anti-FAK  
New England 

Bioloabs 
3285 1:500 (WB) 

Rabbit anti-Cyclin D1 
New England 

Bioloabs 
2922 1:500 (WB) 

Rabbit anti-DCAF1/VPRBP  Proteintech 11612-1-AP 1:1000 (WB) 

Rabbit anti-CTGF Abcam ab6992 1:1000 (WB) 

Goat Anti-Mouse IgG (H+L)-HRP Conjugate  Biorad 172-1011 1:10 000-1:20 000 (WB) 

Goat Anti-Rabbit IgG (H+L)-HRP Conjugate  Biorad 172-1019 1:10 000-1:20 000 (WB) 

Rabbit anti-c-Jun  
New England 

Biolabs 
9165 1:100 (IF) 

mouse anti-Ki67  Agilent Technologies M7240 1:100 (IF) 

Mouse anti-CD63  Thermofisher 10628D 1:500 (WB) 

Goat anti-Mouse IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Alexa Fluor 488 
Thermofisher A11001 1:500 (IF) 

Goat anti-Mouse IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Alexa Fluor 594 
Thermofisher A11005 1:500 (IF) 

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Alexa Fluor 488 
Thermofisher A11008 1:500 (IF) 

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Alexa Fluor 568 
Thermofisher A11011 1:500 (IF) 

 

 


