Provided by St George's Online Research Archive

Network-Informed Gene Ranking Tackles Genetic
Heterogeneity in Exome-Sequencing Studies of Monogenic

Disease

Metadata, citation and similar papers at core.ac.uk

Human Mutation

OFFICIAL JOURNAL

HGVS

HUMAN GENOME
VARIATION SOCIETY

www.hgvs.org

Nick Dand,"* Reiner Schulz,' Michael E. Weale,' Laura Southgate,"> Rebecca J. Oakey,' Michael A. Simpson,'

and Thomas Schlitt!3 14

"Division of Genetics and Molecular Medicine, King’s College London, London, UK; ?Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London, UK; % Institute for Mathematical and Molecular Biomedicine, King’s College London, London, UK

Communicated by Mauno Vihinen
Received 24 September 2014; accepted revised manuscript 9 September 2015.

Published online 23 September 2015 in Wiley Online Library (www.wiley.com/humanmutation). DOI: 10.1002/humu.22906

ABSTRACT: Genetic heterogeneity presents a significant
challenge for the identification of monogenic disease genes.
Whole-exome sequencing generates a large number of can-
didate disease-causing variants and typical analyses rely on
deleterious variants being observed in the same gene across
several unrelated affected individuals. This is less likely
to occur for genetically heterogeneous diseases, making
more advanced analysis methods necessary. To address
this need, we present HetRank, a flexible gene-ranking
method that incorporates interaction network data. We
first show that different genes underlying the same mono-
genic disease are frequently connected in protein interac-
tion networks. This motivates the central premise of Het-
Rank: those genes carrying potentially pathogenic variants
and whose network neighbors do so in other affected in-
dividuals are strong candidates for follow-up study. By
simulating 1,000 exome sequencing studies (20,000 ex-
omes in total), we model varying degrees of genetic het-
erogeneity and show that HetRank consistently prioritizes
more disease-causing genes than existing analysis meth-
ods. We also demonstrate a proof-of-principle application
of the method to prioritize genes causing Adams-Oliver
syndrome, a genetically heterogeneous rare disease. An
implementation of HetRank in R is available via the Web-
site http://sourceforge.net/p/hetrank/.
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Introduction

It has become standard practice to employ whole-exome sequenc-
ing for the identification of genes causing rare monogenic diseases
[Ng et al.,, 2009; Rabbani et al., 2012]. An efficient and popular
strategy is “intersection filtering” [Robinson et al., 2011], in which
several unrelated affected individuals are whole-exome sequenced
and their sequence variants filtered and compared. Filtering is nec-
essary to reduce the large number of sequence variants identified
for each affected individual [Li et al., 2012], and is achieved by
discarding variants which fail to meet specific criteria based on an
a priori expectation of the genetic architecture of the disease un-
der study. Typically for rare monogenic diseases, discarded variants
could include those with minor allele frequencies exceeding a spec-
ified threshold, with a predicted mild functional impact, or which
have been observed in an unaffected control dataset [Bamshad et al.,
2011; Robinson et al., 2011; Li et al., 2012]. Subsequently, genes in
which a large proportion of the affected individuals carry a post-
filtering variant are strong candidates for disease causality and can
be validated (or rejected) by other methods [Hood et al., 2012; Jones
etal.,2012; Lines etal., 2012; Nakazawa et al., 2012; Polvi et al., 2012;
Simpson et al., 2012].

This approach can be applied to both rare inherited and sporadic
disorders, and does not require prior knowledge of the disease pro-
cess or a set of candidate genes. However, while the search is genome
wide, intersection filtering is attractive because the number of genes
in which several unrelated individuals carry post-filtering variants
will generally be small. Conversely, the effectiveness of the approach
can be limited by missing data, non-exonic causal variants, or ge-
netic (locus) heterogeneity [Robinson et al., 2011; Boycott et al.,
2013]. In this work, we focus in particular on genetic heterogene-
ity, that is, mutations occurring in different genes causing the same
phenotypic outcome in different patients—thus, intersection filter-
ing would likely fail to reveal those genes [Oti and Brunner, 2007;
McClellan and King, 2010].

We present here a flexible analysis approach (“HetRank”) that
addresses the problem of genetic heterogeneity in exome sequenc-
ing studies by incorporating information from biological networks
(such as protein interaction networks). Networks are ideally suited
to this purpose because biological function is hypothesized to arise
from systems of molecular interactions [Emmert-Streib and Glazko,
2011]. Networks that systematically describe these interactions can
therefore group together functionally related genes beyond existing
curated biological pathways [Lehne and Schlitt, 2012]. Finally, the
protein products of genes causing phenotypically similar diseases
are more likely to physically interact than those from non-disease
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genes [Goh et al., 2007; Feldman et al., 2008]. The use of interaction
data is also intuitively reasonable at a molecular level: each partner
in a molecular interaction is vulnerable to mutation and a disease
phenotype may result from a mutation disrupting the interaction
and thus, the cooperatively achieved function [Barabasi et al., 2011;
Vidal et al., 2011].

We previously presented BioGranat-1G [Dand et al., 2013], a soft-
ware tool that searches biological networks for candidate disease-
causing pathways: small sets of genes whose connectedness in the
network implies a functional relationship, and which when taken
together carry a post-filtering sequence variant for all (or most)
of the patients in an exome-sequencing study. HetRank has several
advantages over BioGranat-IG. By incorporating network informa-
tion into a gene-ranking framework, HetRank retains the ability to
prioritize genes that are not included in the chosen input network.
It also deals explicitly with the problem caused by highly connected
(hub) genes in the network, which in practice can occur frequently
in BioGranat-IG results because of their connectivity rather than
true disease involvement. The flexible ranking framework allows
incorporation of diverse sources of information for variant prioriti-
zation, and limits the risk of excluding true disease-causing variants
due to hard filtering thresholds. Finally, HetRank can incorporate
healthy control exomes to address the overrepresentation of long
and variant-tolerating genes among prioritized variants, a common
problem in exome sequencing studies [Fuentes Fajardo et al., 2012;
Petrovski et al., 2013].

There exist several variant prioritization tools appropriate for the
study of rare monogenic diseases that integrate various sources of
evidence for causality [Li etal., 2012; Sifrim et al., 2012; Carter et al.,
2013; Frousios et al., 2013; Sifrim et al., 2013; Robinson et al., 2014].
However, where interaction data are used, it is generally either to
prioritize genes based on their proximity to known disease genes in
the interaction network, or to allow the user to explore genes which
interact with those prioritized. To our knowledge, HetRank is the
first approach to incorporate interaction network information di-
rectly into the gene-ranking procedure in a hypothesis-free manner
as a means of addressing genetic heterogeneity.

We test our new approach using a set of test data comprising
20,000 simulated exomes derived from real exomes and show here
that network information helps to rank disease-causing genes highly
even under conditions of high genetic heterogeneity. Further, we
have applied HetRank to the prioritization of known disease-causing
genes in Adams-Oliver syndrome (AOS; MIM# 100300), a rare de-
velopmental disorder that can be caused by variants in several dif-
ferent genes [Stittrich et al., 2014].

Materials and Methods

All data analysis is performed in the R programming language
[R Development Core Team, 2013], using the igraph [Csardi and
Nepusz, 2006] library for network analysis. We make available on-
line an implementation of HetRank in R (http://sourceforge.net/
p/hetrank).

Protein Interaction Networks and Disease Subnetworks

To justify the use of interaction networks to address genetic het-
erogeneity, we investigated the extent to which genes causing the
same disease interact in a protein interaction network. Protein—
protein interaction data were obtained from the Protein Inter-
action Network Analysis platform, a meta-database derived from
six manually curated interaction databases [Cowley et al., 2012]
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(downloaded 20th December 2012) and used to construct undi-
rected and unweighted networks of binary interactions. PINA is
the network containing all interactions (14,434 genes, 105,801 in-
teractions) and PINAmin2 is a high-confidence subnetwork con-
sisting of only those interactions that have two or more differ-
ent publication identifiers in the database (7,417 genes, 18,092
interactions).

Disease-gene mappings were obtained from OMIM’s Morbid
Map (downloaded 20th March 2013). Unconfirmed mappings and
mappings that either involve non-disease phenotypes or where the
gene is not directly causal (such as genes which contribute to sus-
ceptibility to a multifactorial disorder or infection) were excluded,
leaving 4,956 mappings. OMIM disease terms were replaced with
generalized disease terms by removing disease “type” or “group”
names, and any words consisting entirely of numbers. This resulted
in a set of 3,193 generalized disease terms, 541 of which displayed
genetic heterogeneity by mapping to more than one causal gene. In
each protein interaction network, disease subnetworks were found
by considering one generalized disease term at a time and identifying
direct interactions between causal genes.

To estimate the likelihood that disease subnetworks could arise
by chance due to the number of disease genes mapping into each
network, the same procedure was also performed for 10,000 ran-
domly permuted networks. In order to counter the potential bias in
curated interaction networks toward well-studied disease-causing
genes, we performed degree-constrained permutation tests for each
network to test the null hypothesis (H,) that the number of ob-
served disease subnetworks is a consequence of the number and
degree distribution of disease-causing genes in the network, against
the null hypothesis (H;) that we observe more disease subnetworks
than could result from number and degree distribution alone (Supp.
Methods).

HetRank Gene Prioritization Approach

We subsequently developed a method to prioritize genes for
follow-up analysis in exome sequencing studies of monogenic dis-
ease, using an interaction network to overcome genetic heterogene-
ity (Fig. 1). Briefly, sequence variants identified in the exomes of a
number of unrelated affected individuals are independently scored
(according to evidence supporting each variant’s disease involve-
ment), and a final prioritization of genes is produced by combining
scores across all exomes in the study. The final gene ranking takes
into account variants found in neighboring genes in the interac-
tion network, allowing genes which do not initially score highly in
a given individual to have their score improved based on evidence
for disease involvement from a neighboring gene; this preferentially
improves the final ranking of disease genes because the sharing of
evidence between any pair of interaction partners is more likely to
occur consistently across unrelated individuals as a result of true
genetic heterogeneity than due to chance. The four key phases are
as follows.

Phase 1: for each of N affected individuals in the study, generate
gene scores according to evidence for disease involvement. Scores
are derived from variant annotations thought to be informative re-
garding the likelihood of a variant causing the disease being studied.
Intersection filtering would remove variants from further consider-
ation by applying hard thresholds to these annotations; here they
are used as ranking criteria. Such criteria typically include the al-
ternative allele frequency (effectively set to zero for novel sequence
variants) and variant effect (e.g., synonymous, missense, nonsense).
As ranking criteria are specified by the user, functional prediction
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Figure 1. The HetRank analysis framework. Phase 1: Variants are ran

ked in each affected individual's exome sequence according to a set

of user-specified criteria and converted into gene scores. Phase 2: Gene scores are adjusted with respect to the scores achieved in a set of
healthy control exomes, allowing more accurate prioritization of long and variant-tolerating genes. Phase 3: An interaction network is used to share
score information between neighboring genes. Neighboring genes that score highly in different affected individuals improve the evidence for one
another’s involvement in the disease process. Phase 4: Scores are combined across all exomes in the study to give a final prioritized list of genes.

scores or quantification of disease-specific knowledge may also be
included. With respect to each annotation in turn, all variants in
an exome are ranked, with average rank being used to resolve ties.
User-supplied reference tables allow ranking of ordered categor-
ical criteria. This rank is transformed into a score by taking its

reciprocal and scaling: the reciprocal rank is a decaying function
which prevents overweighting of variants with little evidence for
disease involvement; the scaling ensures that when there are multi-
ple joint top-ranked variants, all are assigned the maximum score
of 1. To incorporate user expectations of plausible disease-causing
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variants, a “filter-equivalent” value for the annotation can be sup-
plied (the same value that would be used as a threshold for inter-
section filtering), and the scores are scaled so that variants ranking
better than this value score >0.5 (Supp. Fig. S1). A variant’s final
score is calculated by summing the scores it achieves across all m
ranking criteria. Finally, gene scores are calculated based on the
mode of inheritance assumed. In autosomal dominant (AD) mode
HetRank assumes one heterozygous variant is sufficient to cause the
disease, and gene scores equate to the maximum score of any het-
erozygous variant they contain. In autosomal recessive (AR) mode,
gene scores are either the highest score of a homozygous variant
or half the sum of the top two heterozygous variants, whichever is
greater (this accounts for the possibility of compound heterozygous
disease-causing mutations). In neutral mode, gene scores are set to
the maximum score of any variant they contain, regardless of zygos-
ity. At the end of phase 1, each gene has received a score for each of
the N exomes, the highest score achievable being m, and the lowest
being 0 (where no variant is found, corresponding to no evidence
for disease involvement).

Phase 2: use a set of unaffected control exomes to penalize long
and variant-tolerating genes that might otherwise receive an arti-
ficially high ranking. To facilitate this, the gene-scoring procedure
described in phase 1 is repeated for each control exome. For affected
individual i, suppose that gene g has a score of S, after phase 1.
Now this score is adjusted to S; =S,/ (1+ K), where Kis the num-
ber of control exomes in which gene g has a score > S,. Thus, the
adjustment reflects how frequently variants observed in gene g in
unaffected controls show evidence for disease causality that is at
least as great as that observed in the affected individual (based on
the ranking criteria used). This construction means that gene ¢’s
score for exome i remains unchanged if it is not matched or sur-
passed in any control exome, and that higher numbers of control ex-
omes should allow greater potential to eliminate frequently mutated
genes.

Phase 3: further adjust gene scores with respect to network in-
teractions for each of the N individuals. The key assumption of our
approach is that in the context of genetic heterogeneity, evidence for
the pathogenicity of a gene as part of a functional pathway encoded
by network interactions can arise from a plausible sequence variant
in the gene itself, or in a gene with which it interacts. This motivates
the network adjustment, in which a gene’s score can be superseded
by the higher score of a neighboring gene, provided the better score
is unlikely to have been observed by chance (e.g., because the gene
has many neighbors in the network). For a gene g, the network
d-neighborhood, N;(g), is the set of genes which can be reached
from gvia d interactions or fewer (that is, whose distance from gin
the network is <d this always includes gitself). Suppose that gene h
has the highest score (51;) of all genes in N, (g) after phase 2. By con-
sidering the distribution of scores among all genes in the network, we
can establish the probability p that a set of | N;(g)| randomly chosen
genes in the network includes a gene with score >S,.. If p < 0.1, we
consider that gene gis unlikely to have a neighbor score as highly as
gene h by chance, and propose the adjusted score Sé‘” =S,/ (1+d).
Note that the score is penalized via the denominator to reflect the
indirect nature of the evidence provided by h to support g being
disease causing. Conversely if p > 0.1, we propose no adjustment
to the score, so that Sé”” = 0. As disease subnetworks are generally
expected to be small and for reasons of computational feasibility we
consider d-neighborhoods up to d =2 and set the network-adjusted
score for gene g to be Sg = max (S;, Sé”, Séz)). For each affected
individual, gene scores still range between 0 and m at the end of
phase 3.
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Phase 4: sum network-adjusted gene scores across the N individ-
uals in the study. Each gene therefore has a final score between 0
and m x N. Genes can be prioritized for follow-up study by ranking
according to these final scores.

Simulation of Exome Sequencing Studies

To measure the performance of our approach, we simulated
1,000 exome sequencing studies for rare monogenic disease (Supp.
Fig. S2). Each study was “spiked” with disease-causing variants cho-
sen to model genetic heterogeneity, and we tested HetRank’s ability
to recover the spiked genes.

Chromosome-wise random selection (without replacement) of
sequence data from 388 exomes obtained through the rare disease
programme at King’s College London (KCL) was used to generate
200 test exomes. These were partitioned into 10 sets of 20 exomes so
that when each set was used to simulate an exome sequencing study
the other 180 exomes were available to represent healthy controls.
This process was repeated 100 times to generate 1,000 simulated ex-
ome sequencing studies (20,000 random exomes in total). The KCL
exomes were ascertained from unrelated individuals and include
some small groups of patients sharing a rare disease phenotype,
although the randomization used should be sufficient to overcome
any disease-specific bias in the test data set. Exome variants were
annotated using ANNOVAR [Wang et al., 2010] to give the follow-
ing variant-ranking criteria: variant effect (e.g., “nonsynonymous
SNV?, “stopgain SNV”), Exome Variant Server (EVS) alternative
allele frequency, 1000 Genomes Project alternative allele frequency
(Supp. Fig. $3).

To simulate exome sequencing studies, a disease-causing muta-
tion was added to each of the 20 exomes in a set. These were ran-
domly selected from 13,413 pathogenic variants in dbSNP [Sherry
et al,, 2001] (build 138, downloaded 19th July 2013) that corre-
sponded to monogenic diseases in OMIM’s Morbid Map [Amberger
etal,, 2009] and were annotated using the same pipeline as the KCL
exome data. As dbSNP variants did not include zygosity this was as-
signed according to the mode of inheritance being simulated. Thus,
when testing an AR disease model, with probability 0.9 case exomes
were equally likely to be spiked with one homozygous variant or two
heterozygous variants (corresponding to a compound heterozygous
disease-causing mutation); with probability 0.1 they would be as-
signed one heterozygous variant. Under an AD disease model the
probabilities are switched so that a single heterozygous variant is
added with probability 0.9. The small “error” probability of 0.1 is
a modest allowance accounting for real-world uncertainties such
as zygosity-calling errors during sequencing or incorrectly inferred
modes of inheritance in sequenced affected individuals.

Gene names for the disease-causing variants were replaced in or-
der to model genetic heterogeneity. For this purpose, OMIM disease
subnetworks were randomly selected from those identified in PINA
and PINAmin2 (Supp. Table S1). PINA contains 305 unique disease
subnetworks of two genes (including gene pairs drawn from larger
disease subnetworks), 248 of three genes and 280 of four genes;
PINAmin2 contains 150 of two genes, 108 of three genes and 111 of
four genes. The spiked disease-causing variants were assigned gene
names from the disease subnetwork with probability 1-u (captured
heterogeneity) or a gene name selected uniformly at random from
the whole exome with probability u (uncaptured heterogeneity).
Uncaptured heterogeneity was modeled to account for any propor-
tion of disease cases explained by reasons other than a mutation
in the disease subnetwork. To simulate balanced captured hetero-
geneity gene names from the disease subnetwork were randomly



selected with equal probability. To simulate unbalanced captured
heterogeneity gene names from the disease subnetwork were used
with probabilities p; = 3(1 - u)/4, p, = (1 - u)/4 for two-gene disease
subnetworks; p; = (1 -u)/2, p, = ps = (1 - u)/4 for three-gene disease
subnetworks, and p; = (1-u)/2, p, = ps = ps = (1 - u)/6 for four-gene
disease subnetworks.

HetRank Parameters for Testing

All testing of the simulated exome sequencing studies was per-
formed using PINAmin2 as the input network for HetRank. The
three ranking criteria used were EVS and 1000 Genomes alternative
allele frequencies, and variant effect (truncating or splicing vari-
ants > protein-altering variants > synonymous variants). The filter-
equivalent threshold values used were 0.1% for the allele frequencies
and protein-altering for variant effect.

Ranking Based on Intersection Filtering

HetRank results were compared against those achieved by in-
tersection filtering, obtained as follows. For each simulated exome
sequencing study, gene lists for intersection filtering were generated
for each individual by excluding synonymous variants and vari-
ants with EVS or 1000 Genomes alternative allele frequency >0.1%.
Analogous to HetRank’s AD, AR and neutral modes, gene lists could
be further filtered by zygosity (by excluding homozygous variants
in AD mode; by requiring genes to contain one homozygous or
two heterozygous variants after filtering in AR mode). An addi-
tional gene-wise filtering step was performed by excluding genes
which contain post-filtering sequence variants for five or more of
180 healthy control exomes. These filtering steps were determined
to give the best performance for the intersection filtering method
through testing on simulated data (Supp. Methods and Supp.
Table S2).

To obtain a ranking for potential disease involvement based on
intersection filtering, genes were ranked according to the number
of filtered gene lists in which they appear, with average rank being
used to resolve ties. Genes that are excluded or carry no post-filtering
variants in a study were assigned a default rank of 10,000.

BioGranat-1G Comparison

To test whether our new approach improves upon BioGranat-IG
[Dand et al., 2013], BioGranat-IG was run using the same gene
lists as derived for intersection filtering, described above. The best-
performing BioGranat-IG settings were determined through test-
ing on simulated data (Supp. Methods and Supp. Table S3). Thus,
BioGranat-IG triplet search was run using default settings (results
flexibility parameters set to zero) and with a hub-free version of
PINAmin2 as the input network (obtained by excluding genes with
50 or more interaction partners).

Application to AOS Exomes

To test the ability of HetRank to prioritize the AOS-causing genes
NOTCHI and DLL4, whole-exome sequencing data was used from
13 probands affected with an AD form of AOS. Sequencing was
performed at KCL and has been described previously [Meester et al.,
2015; Southgate et al., 2015]. Within this cohort, two cases harbor
truncating NOTCH1I mutations (1-II-1 and 2-II-1) and one has a
missense DLL4 variant (case 6-1I-1), respectively. For unaffected

Table1. OMIM Disease Subnetworks

Number of disease subnetworks

PINA network PINAmin2 network

Size of disease Permutation Permutation
subnetwork Observed average Observed average

2 124 12.54 £3.35 61 3.46 +1.93
3 27 1.65 £ 1.25 11 0.44+0.73
4 11 0.40 £ 0.60 7 0.06 £0.25
5+ 10 0.28 £0.49 5 0.07 £0.26
Total 172 14.87 £ 3.46 84 4.03+2.13

Observed = number of disease subnetworks of given size induced by a single disease
term in the original network; Permutation average = average number of disease subnet-
works of given size induced by a single disease term across 10,000 randomly permuted
networks (mean + standard deviation).

control exomes, we used 346 of the 388 KCL exomes, which do
not have an AOS phenotype. HetRank was run in AD mode with
parameters as previously described.

Results

Interacting Genes Cause the Same Monogenic Diseases

We found 172 connected subnetworks in the PINA network, and
84 in the PINAmin2 network, each of which is causal for a single dis-
ease (Table 1; Supp. Table S1). Using a degree-constrained method
of permutation to test the null (H,) versus alternative hypothesis
(H;) of whether the number and degree distribution of disease-
causing genes account for the number of disease subnetworks, in
each case the observed number of disease subnetworks is highly sig-
nificant (P < 10™; Supp. Fig. S4), leading us to reject the null (H,)
and supporting previous assertions that interacting genes are more
likely to have similar phenotypic consequences [Goh et al., 2007;
Feldman et al., 2008]. This makes a compelling case for the use of
interaction networks as a means to identify new sources of genetic
heterogeneity, particularly given that high-throughput methods are
continually improving network coverage [Yu et al., 2011].

Network Information Can Improve Ranking of Disease
Genes

For each mode of operation (AD, AR, or neutral), HetRank was
tested using 1,000 simulated exome sequencing studies. To model ge-
netic heterogeneity, each study was “spiked” with a disease-causing
variant in a gene from an OMIM disease-specific subnetwork of
fixed size (selected at random from those identified in Table 1). For
a disease subnetwork of three genes, g, &, and g, each exome in the
study would be assigned gene g; with probability p;, or a uniformly
selected gene from outside the disease subnetwork with probability
u that represents uncaptured heterogeneity (such that p; + p, + p; +
u = 1). For each study of 20 exomes there are 180 exomes available
to act as healthy controls, with which no sequence data is shared.

Tables 2a and 2b show the results of testing our approach us-
ing disease subnetworks of three genes with u = 0.5 and balanced
captured heterogeneity (p, = p, = p3). HetRank’s AD and neutral
modes were tested with data that simulated an AD mode of in-
heritance, whereas AR mode was tested with data simulating an
AR mode of inheritance. All testing was performed using the high-
confidence PINAmin?2 interaction network to inform gene rankings.
We measure the performance of our approach by its ability to assign
high ranks to the three disease subnetwork genes. This is compared
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Table 2. Ability to Recover Disease Subnetworks Comprising Three Genes

Intersection filtering HetRank
Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3

(a) Number of 1000 simulations achieving given ranking using high-coverage disease subnetworks
Autosomal dominant mode

Ranked #1 293 402

Ranked #1-2 l------ 42 ------ | [------ 201 ------ |

Ranked #1-3 R R | R R |

Ranked <10 590 156 16 649 447 214

Ranked <100 787 345 58 838 711 506

Median rank 3 189 10,000 3 16 95.5
Autosomal recessive mode

Ranked #1 500 901

Ranked #1-2 l------ 124 ------ | [------ 769 ------ |

Ranked #1-3 B 10------------- | B 398 ------------- I

Ranked <10 905 504 82 964 911 733

Ranked <100 985 830 317 993 976 925

Median rank 1.25 8 243 1 2 4
Neutral mode

Ranked #1 342 425

Ranked #1-2 R 54------ | l------ 229------ |

Ranked #1-3 R R | o - 83 -----om oo |

Ranked <10 618 168 20 664 468 236

Ranked <100 804 361 73 845 725 523

Median rank 2.5 188.5 10,000 2 13 88
(b) Number of 1000 simulations achieving given ranking using low-coverage disease subnetworks
Autosomal dominant mode

Ranked #1 299 368

Ranked #1-2 R 31------ | [------ 124 ------ |

Ranked #1-3 B I | B K I

Ranked <10 601 150 5 595 312 115

Ranked <100 772 348 52 803 573 293

Median rank 3.5 195 10,000 4 56 456
Autosomal recessive mode

Ranked #1 496 852

Ranked #1-2 l------ 138 ------ | [------ 567 - ----- |

Ranked #1-3 R 11-----ecceaeam | R 209------------- |

Ranked <10 896 492 78 945 791 473

Ranked <100 987 817 333 989 931 700

Median rank 1.5 16 237 1 2 14
Neutral mode

Ranked #1 329 377

Ranked #1-2 l--mm o 37------ | [------ 139 ------ |

Ranked #1-3 B R | B L I

Ranked <10 632 173 11 620 343 128

Ranked <100 779 366 64 822 597 312

Median rank 3 188.75 10,000 3 43.5 424.5

For all tests: uncaptured heterogeneity u = 0.5; captured heterogeneity split equally between the three genes (p; = p, = p3).
Intersection filtering = results obtained using ranking based on intersection filtering; HetRank = results obtained using HetRank
approach with interaction data from PINAmin2 network; Gene 1 = highest-ranked of three disease genes in results; Gene 2 = second-
highest ranked; Gene 3 = lowest ranked. (a) Results using high-coverage disease subnetworks (identified in PINAmin2 network).
(b) Results using low-coverage disease subnetworks (identified in PINA network).

against the performance achieved using a simple intersection filter-
ing approach, using appropriate variant- and gene-filtering criteria
and in each study ranking genes according to the number of indi-
viduals in which they carry a post-filtering variant.

When disease-causing variants were assigned to OMIM disease
subnetworks identified in PINAmin2, corresponding to high net-
work coverage, our approach after network information was incor-
porated showed a consistent improvement in all modes compared to
the ranking achieved using simple intersection filtering (Table 2a).
We observed increases in the number of tests in which disease genes
achieve high rankings (including all three genes being ranked in the
top three places), as well as improved median ranks. In subsequent
tests, we considered ranking in the top 10 genes as a successful test
as we believe 10 prioritized genes to be a reasonable number for a
researcher to study further in practice. The number of tests in which
all three disease genes were ranked in the top 10 increased from 16 to
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214 when our network-informed approach was used in AD mode,
from 82 to 733 in AR mode, and from 20 to 236 in neutral mode.

Of note, both HetRank and intersection filtering are slightly more
effective in neutral mode than AD mode, despite being tested on
the same simulated data designed to model an AD rare disease. This
is most likely due to the fact that there is a small probability of
homozygous variants being spiked into the simulated data (which
arerecognized by HetRank and intersection filtering in neutral mode
but not AD mode). Nonetheless, the performance benefits of recog-
nizing these spiked variants outweigh the costs of also recognizing
additional homozygous background variation.

Table 2b shows the results obtained when disease-causing variants
were assigned to OMIM disease subnetworks with lower network
coverage, this time identified in PINA (in this case, interactions used
to model genetic heterogeneity may not be covered by the PINAmin2
network we use for ranking). Although the performance is slightly



reduced, our approach still broadly improved the number of tests in
which disease genes are ranked in the top positions compared with
intersection filtering. In AD and neutral modes, the number of tests
in which any disease gene ranks in the top 10 fell slightly, from 601
to 595 (AD) and from 632 to 620 (neutral). However, the number
in which all three disease genes rank in the top 10 still showed
substantial improvement, from 5 to 115 (AD) and from 11 to 128
(neutral). We therefore conclude that although the power to recover
the top-ranked disease gene may be slightly reduced, our approach
can clearly boost the power to recover multiple genes involved in
the disease process.

Network Information Becomes More Beneficial With
Increased Heterogeneity

Having demonstrated that our new approach can be a valuable
additional analysis tool in exome sequencing studies we examined
its performance in the presence of different levels of genetic het-
erogeneity. In each scenario and for each mode of operation (AD,
AR, or neutral) we simulated 1,000 exome sequencing studies us-
ing randomly selected OMIM disease subnetworks of a fixed size
(two, three, or four genes) to simulate captured heterogeneity, and
a fixed level of uncaptured heterogeneity, u (20%, 40%, 60%, or
80%). Further, the captured heterogeneity could be balanced (each
gene in the disease subnetwork being equally likely to be spiked
into each exome) or unbalanced (one gene in the disease subnet-
work being more likely to be spiked in than the others) giving a
total of 24 scenarios per mode. As before, AD and neutral modes
were tested with data that simulated an AD mode of inheritance,
whereas AR mode was tested with data simulating an AR mode of
inheritance.

All tests were performed using the high-confidence PINAmin2
interaction network to inform gene rankings, using low coverage
disease subnetworks (those identified in the PINA network mean-
ing that some interactions may not be covered by PINAmin2). We
measure the performance of our network-informed HetRank ap-
proach by its improved ability to assign a rank of 10 or less to
disease subnetwork genes relative to a ranking based on simple in-
tersection filtering. Performance is also compared against the results
achieved by HetRank without incorporating network information
(i.e., omitting phase 3 in Fig. 1), and against the results achieved
by BioGranat-IG. As BioGranat-IG will return all optimal subnet-
works detected the user cannot specify the number of genes that will
be returned. Therefore, a spiked gene was considered successfully
prioritized if it was in the list of genes returned by BioGranat-1G
and the total number of genes returned by BioGranat-IG was 10 or
fewer.

Figures 2A and B present the results of these tests for the 24
scenarios in AD mode and AR mode, respectively. No substantial
difference was detected between HetRank tests in AD and neutral
mode; because of their material similarity to the AD mode results,
the neutral mode results are shown in Supp. Figure S5. Indicators
of performance for all scenarios are summarized in Supp. Tables S4
and S5.

In AD mode, network-informed HetRank outperformed inter-
section filtering in all scenarios (Fig. 2A). Most of this improvement
resulted from the addition of network information: when the net-
work step was omitted, HetRank performed similarly to intersection
filtering (in some cases being slightly outperformed, notably when
captured heterogeneity is balanced across three- or four-gene sub-
networks). HetRank’s performance also compared favorably against
BioGranat-IG, which struggles particularly at low levels of hetero-
geneity (for example, when captured heterogeneity is modeled by

two genes and uncaptured heterogeneity is 40% or less). In such in-
stances, each disease gene has sufficient signal that the other methods
can perform reasonably well, even in the absence of network infor-
mation. Conversely, BioGranat-IG is unable to prioritize any genes
not present or connected in the PINAmin2 input network (recall
that captured heterogeneity is modeled by genes from PINA). At
higher levels of heterogeneity, BioGranat-IG performs better, in-
deed outperforming HetRank (although not substantially) in a few
scenarios.

HetRank was also relatively robust to whether or not heterogene-
ity is balanced across disease genes compared to the other methods.
Unbalanced heterogeneity leads to more signal for one of the genes
in the disease subnetwork (making it theoretically easier to priori-
tize) at the expense of the others (making these harder to find). In
nine of the 12 scenarios, there was a smaller drop (or larger increase,
which tends to happen at higher levels of heterogeneity) relative to
intersection filtering when comparing the number of disease genes
found in unbalanced versus balanced captured heterogeneity scenar-
ios. We also noted that HetRank was outperformed by BioGranat-IG
in fewer scenarios when captured heterogeneity is unbalanced than
when it is balanced.

In AR mode, all methods performed better than in AD mode
(Fig. 2B) because of the lower number of plausible AR disease-
causing variants in a typical exome (Supp. Table S2). However, Het-
Rank showed a substantial advantage relative to the other methods,
particularly at higher levels of heterogeneity (captured heterogene-
ity modeled by three or four disease genes). Relative to intersection
filtering, most of the improved performance was again due to the
incorporation of network information; however, HetRank also out-
performed intersection filtering in all scenarios even when network
information was not used. Further, network-informed HetRank also
performed better than BioGranat-IG across all scenarios, suggesting
that the variant-ranking framework employed by HetRank can be
particularly effective in the study of rare AR disease.

HetRank Prioritizes Disease Genes in a Real Exome
Sequencing Study

Finally, we tested HetRanKk’s ability to prioritize the genes respon-
sible for AOS using whole exome sequence data from 13 probands.
It is known in advance that novel heterozygous truncating variants
in NOTCHI cause AOS in two cases [Southgate et al., 2015] and
a third harbors a novel heterozygous non-synonymous variant in
DLL4 [Meester et al., 2015]. D14 is a member of the Delta family
of Notch ligands [Shutter et al., 2000], and indeed the two genes
are directly connected in the PINA network. However, DLL4 is not
present in the PINAmin2 network because of a lack of additional
independent publications supporting interactions.

When PINAmin2 was used as the input network, HetRank as-
signed NOTCHI a rank of 3, demonstrating its ability to prioritize
the true causal gene in the top three places. However, with just
a single novel missense variant in one case exome (and in one
control), and having no interactions in the network, DLL4 was
harder to prioritize and was ranked 1,047th (Supp. Table S6).

Using PINA as the input network, the rank of NOTCHI fell to
12. Although it achieved the same final score as when PINAmin2
was used (its relatively high degree of 65 in PINA prevents NOTCHI
benefitting from evidence in neighboring genes), the additional in-
teractions in the PINA network caused other genes to have their
scores boosted ahead of NOTCH]I. Conversely, the direct connec-
tion between DLL4 and NOTCH] in PINA substantially improved
the DLL4 rank to (joint) 187th. The extent of genetic heterogeneity
makes it challenging to prioritize DLL4: a single missense variant
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Figure 2. Performance of our approach at varying levels of genetic heterogeneity. Plots show the average number of spiked disease genes that
could be prioritized (assigned a rank of 10 or less) across 1,000 simulated exome sequencing studies by the four methods tested (HetRank, HetRank
excluding the network-bhased step, BioGranat-1G and simple intersection filtering). Different genetic heterogeneity scenarios are represented by
the columns (number of genes in disease subnetworks modeling genetic heterogeneity), rows (whether this captured heterogeneity is balanced
or unbalanced across disease subnetwork genes), and plot x-axes (degree of genetic heterogeneity not captured by disease subnetwork genes).
Results are also tabulated in Supp. Table S4. (a) Autosomal dominant mode results. (b) Autosomal recessive mode results.

in one out of 13 case exomes provides a very limited evidence Discussion
base. However, we subsequently showed that if just two additional

case exomes carried a similar variant in DLL4 then it would be Genetic heterogeneity reduces the power of exome-sequencing
prioritized in the top 10 by HetRank (Supp. Results and Supp. ~studies to identify the molecular basis of a monogenic disease be-
Table S7). cause it limits the expected overlap of genes carrying deleterious

1 142 HUMAN MUTATION, Vol. 36, No. 12, 1135-1144, 2015



mutations in unrelated affected individuals. This heterogeneity
presents a challenging problem but in this study, we have shown
that we can improve the prioritization of disease genes by incorpo-
rating information from an interaction network in a hypothesis-free
manner; that is, without specifying a set of candidate or “seed” genes.

Such an approach is particularly valuable when there is a high
level of heterogeneity. There are currently many known sets of two
to three interacting and disease-causing genes (Table 1), but we ex-
pect to see larger connected sets in future as new disease-causing
genes are identified and as more comprehensive interaction net-
works are developed [Yu et al., 2011]. Gilissen et al. (2011) suggest
that there is a scale of genetic heterogeneity broadly corresponding
to disease prevalence, and our results support the use of HetRank
in sequencing studies at the higher end of this scale. This could
include studies of groups of patients with the same or very similar
clinical phenotypes having unknown and potentially diverse molec-
ular causes. A recent study of AR hereditary spastic paraplegias,
for example, proposed eighteen novel candidate genes where a sin-
gle variant in each was thought to be disease-causing in different
families [Novarino et al., 2014].

Our approach performs well in the presence of heterogeneity
not captured by an interaction network (which we tested using
the parameter ). This might include missing interaction data, dis-
ease variants that are not protein-coding (intronic or intergenic
variants), as well as potential non-genetic disease causes such as
epigenetic or environmental causes. As might be expected, though,
Table 2 shows that better network coverage of interactions between
disease-causing genes improves HetRank results, as we also demon-
strated when we applied HetRank to AOS data. Our approach does
not specifically require a protein interaction network be used and
as such it may be beneficial to seek increased coverage of the inter-
actome by using networks which integrate different types of gene
relationships [Lee et al., 2011; Vidal et al., 2011; Khurana et al.,
2013].

Network information will not improve performance in every ex-
ome sequencing study. Even at higher levels of genetic heterogene-
ity there were examples in our simulated data where more disease
genes are ranked in the top 10 using the simple intersection filtering
method. This demonstrates what we already know: it is important
that a researcher also considers the evidence for a gene’s involvement
in a disease independently of the genes with which it interacts. One
way to do this could be to consider HetRank gene prioritizations
alongside those obtained by intersection filtering when analyzing
exome sequencing results.

On a similar note, users of HetRank should understand the limi-
tations of the tool. At higher levels of genetic heterogeneity, we saw
many simulated studies in which no disease genes could be ranked
in the top 10 and when applied to real AOS exomes HetRank could
prioritize only one of the two causal genes. Furthermore, for any
given monogenic disease, the model underlying HetRank (that ge-
netic heterogeneity can be at least partially explained by interacting
genes) may be inappropriate; the tool itself cannot determine if this
is the case. Even for an exome sequencing study in which disease-
causing genes are ranked in the top 10 by HetRank (our measure
of success in performance tests), those 10 will also include non-
causal genes. A thorough examination of the top-ranked genes is
likely to be required in order to pick out the genes of interest. How-
ever, HetRank is able to provide the user with a starting point; by
studying the high-ranking genes and the variants contained within
those and their interaction partners, and combining this with exist-
ing functional annotation or disease-specific knowledge, hypotheses
can emerge concerning putative disease mechanisms which can be
taken forward for further testing.

An important point to note is that the use of the HetRank frame-
work does not preclude the use of other tools designed for gene
or variant prioritization, but can be considered complementary to
existing approaches. Variant effect prediction tools such as SIFT
[Kumar et al., 2009] and PolyPhen [Adzhubei et al., 2010] can be
incorporated into HetRank by including their prediction scores as
variant-ranking criteria, and nothing prevents the same approach
being taken for existing tools such as eXtasy [Sifrim et al., 2013],
Exomiser [Robinson et al., 2014], or CADD [Kircher et al., 2014],
which themselves integrate diverse sources of evidence for dele-
teriousness or disease involvement. Even if a user relies entirely
on an existing tool to integrate evidence sources, HetRank can
still make a valuable contribution to addressing genetic hetero-
geneity by adjusting this evidence with reference to an interaction
network.

The assumption that proximal genes in an interaction network
can account for similar biological phenomena in different individ-
uals suggests that implicit functional pathways underlie network
structure. HetRank seeks to benefit from such pathways through
the joint analysis of several affected individuals, for each of whom
only one of the pathway genes may be implicated. Similar ap-
proaches have previously been suggested in related fields, such as
gene expression [Ulitsky et al., 2010] and cancer genomics [Vandin
et al., 2011]. Our results demonstrate that with methods adapted
to the particular challenges of whole exome sequence analysis, in-
teraction networks can also be profitably exploited in this way
when the biological phenomenon of interest is a rare monogenic
disease.

In summary, we have presented HetRank, a flexible analysis
method which uses variant-ranking in unrelated exomes to combine
several sources of evidence for involvement in a monogenic disease.
In an interaction network, neighboring genes that score highly in
different affected individuals improve the evidence for one another’s
involvement in the disease process. The final prioritization is ob-
tained by combining adjusted gene scores across all exomes in the
study, and we have demonstrated that this can effectively deal with
a considerable degree of genetic heterogeneity.
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