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I d th is  thesis» the worst-case time complexity bounds on the algorithms 

for the problems mentioned below have been Improved.

A. Algorithms on abelian groups represented by a set of defining 

relations for computing:

( I )  a canonical basis fo r f in ite  abelian groups

( I I )  a canonical basis fo r In fin ite  abelian group

B. Algorithms for computing:

( I )  Hermlte normal form o f an Integer matrix

( I I )  The Smith normal form of an Integer matrix

( I I I )  The set of a ll  solutions of a system of Dlophantlne Equations

C. Algorithms on abelian groups represented by an e x p lic it set of 

generators for computing:

( I )  the order of an element (space complexity 1s only Improved)

( I I )  a complete basis fo r a f in ite  abelian group

( I I I )  membership-Inclusion testing

(1v) the union and Intersection of two fin ite  abelian groups

D. A c la ssifica tio n  of the re la tive  complexity of computational problems 

on abelian groups (as above)» factorization and p rim lllty  te stin g .

E. Algorithms on abelian subgroups of the symmetric group for 

computing:

( I )  the complete structure of a group

( I I )  membership-Indus Ion testing

( I I I )  the union of two abelian groups

(1v) the Intersection o f two abelian groups.

1. SUMMARY
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In  this thesis we Investigate a large class of computational 

problems 1n the theory of abelian groups. Abelian groups are studied 

In three forms of representation:

(1 ) represented by a set of defining re la tio n s, (11) represented by an 

e x p lic it  set of generators and (111) represented as subgroups of a 

permutation group.

The algorithms presented here are considered from the point of view 

of worst-case complexity; mostly we consider the worst-case time 

complexity and In few places the space complexity. A ll algorithms 

mentioned below have been shown to have better worst-case complexity 

upper bounds than the bounds already cited 1n the lite ra tu re . A b r ie f  

outline of the algorithms Included 1s given here; fo r a fu lle r  summary 

of the restuls see the Introduction of each chapter.

In the case which the group Is presented by a set of defining 

re la tion s, algorithms for computing the canonical structure of a 

f in ite  or In fin ite  abelian group 1s presented; algorithms fo r the 

closely related problems o f computing the Hermlte and Smith normal form 

of an Integer matrix are also given. Among the applications of the 

above algorithms are methods fo r solving systems of Linear D1ophant1ne 

Equations, for computing the characteristic polynomial o f a matrix and 

fo r the problem of Integer lin ear programming.

In  the case of an abelian group represented by an e x p lic it  generating 

set an algorithm for computing the complete structure 1s presented; 

algorithms for membership-inclusion testing and fo r computing the

2. MTRODUCTION
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Intersectlon of groups are also given. These algorithms have 

applications to factorization and public key cryptosystems. Further 

a cla ssificatio n  of the re lative  complexity o f  the factorization 

problem» prlm allty testing and several group-theoretic problems 1s 

given.

In the case o f abelian permutation groups, an algorithm fo r 

computing the complete structure together w ith  algorithms for member­

ship-inclusion testing are presented. Further an algorithm fo r 

computing the Intersection of two abelian groups 1s given; this 

problem Is related to the graph Isomorphism problem.

Most of the algorithms are presented In  an Informal computer-11ke 

language named PIDGIN-ALGOL Introduced by Aho, Hopcroft and Ullman 1n 

[ 2 ] .

By Proposition I I . 3.5 1s denoted the 5 -th  proposition of the 3rd 

section of Chapter I I .  I f  the chapter number (In  Roman) Is omitted, 

then we refer to the current chapter.

Coventry, August 1983

C .S .I .
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3. PREUMMARCS

A. W b rit-C a ta  Complexity Bounds For Numerical Algorithms

The computational complexity 1s measured 1n terms of elementary 

operations. An elementary operation 1s a Boolean operation on a single 

binary b it  or pa ir of bits or an input or s h ift  of a binary b it .

For ease 1n bounding operation counts the following convention 

is established throughout:

/•log n i f  n >  4
log n * < 2

l I f  n < 4

Moreover the card in ality  number of a set S 1s denoted by |S|.

THEOREM 3 .1 . (Schttnhage and Strassen p 5 ] )

There exists an algorithm for m ultiplying two Integers of length 

n bits in M(n) elementary operations, where

M(n) -  cn log n loglog n

for some positive constant c . a

THEOREM 3.2 (Cook [ 9  ] )

There exists an algorithm for d ivisio n  of n b it  Integers In M(n) 

elementary operations, o

The following theorem yields an upper bound on Knuth's algorithm 

(see [3 6 ]) for computing the greater common d iv iso r of two Integers.

The bound 1s due to SchOnhage [4 6 ].



THEOREM 3.3 (Extended Euclidean Algorithm-abbreviated EEA)

There exists an algorithm for computing the gcd r  of two Integers 

a1ta2 and two Integers x̂  and x2 such that

x1a 1 + x 2a 2 * r
with

Ix^| < | a  2(/2 | x2I < | a 11/2

in 0(H(n) log n) elementary operations, where n = log(max { ) a^|,|a2 |> ).

The following theorem due to Goppersm1th-Winograd (see [1 0 ])  yields the 

current upper bound on matrix m ultip licatio n.

THEOREM 3.4

There exists an algorithm for m ultiplying two n x n matrices, 

which requires 0(na ) m ultiplications, where

a = 2.495364... . a

In 1969 Strassen [51] gave the celebrated algorithm for matrix 

m ultiplication which requires 0(n^°® ■ 0(n^*®^) m ultiplications.

Since then a series of Improvements (Pan, B1n1, Winograd) have led to 

the bound of Theorem 3.4. I t  Is worth mentioning that these Improve­

ments are of theoretical rather than practical In terest, since the 

hidden constant o f the symbol 0 Is very large.

THEOREM 3.5 (Strassen [5 1 ])

The Inverse of a n x n matrix may be computed with 0(na) m ulti­

plications. o

A sorting algorithm and searching algorithm 1s presented below.
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THEOREM 3.6 (Heapsort, see Williams (5 3 ], Floyd [1 5 ])

There exists an algorithm sorting a l i s t  of n elements which 

requires 0(n log n) comparisons. □

THEOREM 3.7 (Binary search)

There exists an algorithm for searching fo r a pa rticu lar element 

1n a sorted 11st of n elements which requires 0(log  n) comparisons, o

B. Abelian Groups

A set {g 1tg2, . . . , g n} is  called a generating set for an abelian 

group G, i f  for every x € G there exists integers ai for 1 <  1 <  n 

such that

The g^'s are called generators.
a .i a .

A set of re lations S «  {x^ . . .  xn * 1, fo r 1 <  1 <m .

xkx. = xj x^ .v  k» j )  s®1d t0 be a set defining relatione fo r an 

abelian group G i f  every relation holding 1n G can be derived from S. 

The matrix

*11 •• ••
•
Vi " *•* Vn

associated with S represents the group G.

Suppose that G 1s a group and x 1s an element of G. I f  h Is 

the smallest po sitive  Integer such that xh ■ 1 1s called the ondin of x 

denoted |x|. The least common multiple of the orders of a ll the elements of
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G 1s called exponent of G. The total number of elements of G Is called 

ottdVL of the group G denoted |G|.

The d O iic t product of two abelian groups H and K both 

subgroups of a group G with H n K * 1 Is said to be

A cyclic group of order n 1s denoted by C (n ).

Suppose that the abelian group G 1s decomposed 1n terms of c y c lic  

groups

I f  di divides d1+l for 1 <  1 < k , then the representation (1 .1 ) defines

the canonical structure of G.

THEOREM 3.8 (H .J .  Smith, [4 9 ])

The canonical structure of G 1s unique. o

Suppose that the abelian group G 1s decomposed 1n terms of 

cyclic  groups

where the p^'s are d is tin c t primes. The representation (3 .2 ) defines 

the complete structure  of G.

A set of elements B -  {b l t . . . , b n) 1n an abelian group G 1s 

independent 1f a f in ite  product n b®1 -  1 only when b®1 »  1 fo r  every 

I f  an Independent set B of an abelian group G also generates G, then I t  

1s said that B form a basis fo r G; I t  1s denoted by G ■ « b j . . . b n>>.

H x K -  (hk : H € H, k € K}

G = C (d .) x X C(d|^) x C(«») x . . .  x C(«o) (3 .1 )
m times

x C ( - )  (3 .2 )

m times



I f  the orders of the elements of a basis for an abelian group 

yie ld  the canonical structure of the group, then the basis Is called 

canonical basis. I f  the orders of the elements of a basis for an 

abelian group yie ld  the complete structure of the group then the basis 

Is called complete basis.

I f  G Is a group, then the set

Z(G) «  {x : xy » yx V y € G}

under the group operation of G forms a group called the centre of G.

The m ultip licative  group of Integers modulo n 1s denoted by Z*. 

(Integers moduloiirelatlve prime to n under m ultip lica tio n )

C . Rlemsnn Hypotheses

The function

00 ,
c (s ) = Z -V  . s complex number 

n»1 ns

Is called Riemann seta function.

The hypothesis that the zeros of c (s ) In the c r it ic a l s tr ip  

0 <  Re(s) <  1 (Re(s) denotes the real part of s) a ll 11e on the line 

Re(s) ■ i ,  Is called Riemann's Hypothesis.

D ir ia h le fe  L functions are defined by:

• s
L (s ,x ) ■ I  x (n)/n , with s complex number 

n-1

where x Is * character (we ca ll x * character. I f  x ‘ 1* • function over

a ll group elements of a group G -C a ^,.........ah> with properties (1 ) x(*j)
+ o( Vi and (11) x ( a ^  x (* j )  ■ X ( #i 4j ) | Vi» j )*  Two wel1 kno*n 

characters are



2
1 a = 1 mod p

( i )  | -1 a2 | 1 mod p and gcd (a ,p ) -  1, with p prime

0 gcd (a ,p ) i  1

(11) The Jacobi symbol Xpq = ( ^ )  defined by 

( ^ ) : -  (| )  ( | ) .  with p.q primes

where (^ )  and ( i )  are Legendre symbols.

The hypothesis that the zeros of L (s ,X ) in the c r it ic a l  s trip  

a <  Re(s) <  1 a ll l ie  on the Une Re(s) * where x 1s a Legendre or 

a Jacobi symbol with fixed denominators» 1s called Extended Riemann'e 

Hypothesis ( ERH) .

Some of the proofs of the propositionsof Section 9 of the second 

chapter depend on the truth of ERH.

(1 ) The Legendre symbol Xp ■ {jj) defined by





1. INTRODUCTION

In this section computational problems on abelian groups 

represented with a set of defining relations and closely related 

problems are Investigated. In p a rticu la r, the problem of computing 

the order and the canonical structure of a f in ite  or an In fin ite  

abelian group 1s examined. Consequently the closely related problems 

of computing the Hermite normal form and the Smith normal form of 

a non-singular integer matrix are considered. Moreover an effective 

way of solving systems of lin e a r Dlophantine equations is studied.

An algorithm for computing the order and the canonical structure
5 ?

of a f in ite  abelian group 1s presented; I t  requires 0(s M(s ) )  

elementary operations, where s is the size of the matrix associated 

with the set of defining re la tio n s. The most competitive algorithm 

for this problem is due to Chou-Collins (see [ 8 ] )  which requires 

0 (s 11) elementary operations.

An algorithm for computing the Hermite normal form of an Integer
3 2

matrix 1s given; 1t requires 0(s M(s ) )  elementary operations, where 

s 1s the size of the matrix. Also an algorithm fo r computing the 

Smith normal form of an Integer matrix of size 1s 1n 0(s M(s ) )  

elementary operation 1s presented. The upper bounds of the above two 

algorithms Improve the upper bounds given 1n [  8 J ;  the algorithm for 

Hermite normal form 1s shown to be optimal as d ire ct method. Moreover 

algorithms for computing the m ultiplier-m atrices M, B and C such that 

MA and BAC are the Hermite and Smith normal forms of the given matrix A 

are presented;the algorithm fo r  computing M requires 0 (s3M(s2) )  elementary 

operations and the algorithm fo r computing B and C requires 0(s5**9M(s2) )  

elementary operations.
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An algorithm fo r computing the canonical structure of an In fin ite  

abelian group 1n 0 (s 5M(s2) )  elementary operations, 1s presented here.

An algorithm fo r computing the set of a ll solutions (o r a pa rticu la r 

solution) or establishing that there Is none, of systems of lin e a r 

D1ophant1ne equations 1s given; I t  requires 0(sJ *,s M(s ) ♦ s M (s*)) 

elementary operations where s is the size of the matrix A and s* the 

size of vector b (The system is Ax »  b ), This upper bound Improves the 

Chou-Collins upper bound in [ 8 ]  by at least a factor of 0(s ) .  More­

over, 1t is better than the Frumkin's upper bounds on the computation 

of a pa rticu lar solution and on solving a homogeneous system of lin ear 

Oiophantine equations.

A sim plified algorithm fo r computing the canonical structure of 

an abelian group having asymptotically the same complexity with 

algorithm mentioned above 1s given; Its  main difference 1s that 1t 1s not a 

d ire ct method.

The chapter closes with a discussion about applications of the

algorithms refered to above.



A.Prelim inari««

Suppose that A Is an m x n m atrix. I f  the entries of A are 

Integers, then the norm ||A|| of the matrix 1s said to be the Integer

||A|| = max { |a1J| >.
1»J

I f  the matrix A 1s over the fie ld  of rationals (denoted by <|), then the 

norm ||A|| 1s defined to be the Integer

"*!' ■ Ttj l|r‘J1, |s<i|:

DEFINITION 1.2

The size  s of an m x n matrix A with entries from Z or (| 1s defined 

to be the number

s ■ m ♦ n ♦ log ||A|| . o 

DEFINITION 1.3

A square matrix A Is called aingular 1f Its  determinant (denoted 

det (A ))  1s zero, otherwise 1s called non-singular.

A square matrix A over the Integers, whose determinant 1s of 

absolute value 1, 1s called unimodular. a

DEFINITION 1.1

NOTATION 1.4

I f  A 1s an m x n matrix, then the n x m matrix
t

A defined..by

t
CA 3 lj "  aJ1 *

Is said to be the transpose matrix of A. a
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NOTATION 1.4a.

An n x n Identity matrix 1s denoted by I n and an n x n zero 

matrix 1s denoted by 0n. □

NOTATION 1.5

Let A be an m x n matrix. For 1 <  1 <  n, the 1-th column of 

A w ill be denoted by C0LA(1) and fo r  1 <  j  <  m, the j -th  row of A 

w ill be denoted by R0WA( j ) .  When there 1s no ambiguity the subscript 

A 1s omitted. a

DEFINITION 1.6

An elementary row-column operation (abbreviated ERC operation) 

on a matrix with entries from a ring  (R, ♦, •) is :

(1 ) The m ultiplication of a l l  entries of a row (column) by -1 • 

or (11) The Interchange of two rows (columns)« 

or (111) The addition of a m ultiple (over R) of a row (column) to a

An IRC operation over the rin g  of Integers Is called an integer 

raw-column operation (abbreviated IRC operation). a

DEFINITION 1.7

The square matrices

different row (column)

0 0
a

0

♦
j - t h  column

t
k-th  column 
1-th row



are called elementary matrices, a

THEOREM 1.8 (see Gantmacher [19J ).

Every matrix can be w ritten as a product of elementary matrices.

PROPOSITION 1.9

An ERC operation on a matrix corresponds to a m ultiplication of 

the matrix by an elementary matrix. □

DEFINITION 1.10

An algorithm fo r transforming a matrix A to another matrix A* Is 

called a direct method 1f the transformation is  performed by means of®  

sequence of linear combinations of rows and columns of the matrix A. a 

The above de fin ition  was Introduced by Klyuyen and

Kokovkln-Shchebak In C34]s
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2. R C OPERATIONS-FINITENESS OP AN ABELIAN GROUP -T H E  ORDER OP AN

ABELIAN GROUP

Suppose that an m x n matrix A represents the abelian group G.

The m u ltip lica tio n  of a row by -1 substitutes the relation
”®1s| x .  * 1 for the relation n ■ 1. The addition of an Integer

m ultiple of a row to a different row substitutes the relations

{II x.is « 1, n x . 1 = 1} for the relations {n x .1 ■ 1, n x . 1 s « 1 }.
1 1 1 1 1 1 1 1

The Interchange o f rows corresponds to the renaming of generators. The

m ultiplication of a column by -1 substitutes the generator x“ 1 for the

generator x. The addition of an Integer multiple of a column to a

different column changes the generators by substituting {x yp,y }  for

{ x ,y } .  Hence the following lemma Is shown:

LEMMA 2.1

The IRC operations on a matrix A respect the structure of the 

group G represented by A. o

Let A and G be as above and suppose that rank (A ) ■ r  < n. Then 

there exists a sequence of IRC operations to transform A to the matrix 

A ': «  CA*,0], where A* 1s an m x r  matrix? Therefore the generators 

xr4. j , . . . , x n corresponding to the r  ♦ 1 , . . . ,n - t h  column of A 1 respectively 

are free and thus G Is In fin ite . Hence the following lemma Is proved:

LEMMA 2.2 \

Suppose that an m * n matrix A represents the abelian group G*-----------

Then G Is f in ite  1f and only 1f rank (A) ■ n.

+See £4$).

a
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One can compute the order or a m ultip le  of the order of an 

abelian group G ( I f  G Is In fin ite  group, then one can compute the 

order or a m ultiple of the order of the f in i t e  component^ of G) 1n the 

following way:

( I )  Case rank (A) ■ m -  n. In th is  case G Is f in ite  and 1t 1s not 

d if f ic u lt  to show that the determinant of A 1s equal to the order |G|

of G.

( I I )  Case rank (A) ■ n < m. In this case G 1s f in ite . Moreover I t  

1s not d if f ic u lt  to show that

|G| ■ gcd {det (M ): M Is an n x n non-singular submatrix o f A)

(Using Gaussian elim ination, one can transform A to the m a trlx ^ j^ j, where

I f  Is an n x n matrix. Then |G| ■ det (M*) and In £19} one can see that

det (M*) -  gcd (det(M ), M as above})

Since the number of n x n non-singular submatrlces of A Is (JJ) (see £¿93 )»

the above formula does not y ie ld  an e ffic ie n t way of computing |G|. By 

computing the determinant of n x n non-singular submatrix M one can 

compute a m ultiple of the order |G|. ,

( I I I )  Case of rank (A ) < n. In this case G Is In f in ite . Let 6 ■ H x K 

where H Is a subgroup containing a ll the f in i t e  order elements of G.

Then

|H| ■ gcd (det(M ): M 1s an r  x r  non-singular submatrix of A ). 

Since the number of r  x r  submatrices of A 1s ( " )  ( " )  (see t l 9 l ) ,  the 

above formula does not y ie ld  an e ffic ie n t wpy of computing |H| but by 

computing the determinant of such a matrix M one can compute a multiple 

of the order o f H.

*The subgroup of an abelian group containing all the f in ite  order elements 
of G 1s called, the f in ite  component of G.
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Papad1m1tr1ou and S te lg lltz  [4 3 ] refer to the existence of a 

polynomial time upper bound on Gaussian elimination over the rationals. 

Strassen 1n [5 1 ] yields a polynomial time upper bound on the number of 

m ultiplications needed fo r Gaussian elimination over a f ie ld  but this 

does not Imply necessarily a polynomial time upper bound 1n terms of 

elementary operations. The author knows of no reference to an e x p lic it 

upper bound on the number of elementary operations required for 

Gaussian elimination which 1s shown below:

ALGORITHM 2.3 (Gauss)

INPUT: An m x n matrix A with entries from ratlonals (W J.o.g.

assume m >  n)

OUTPUT: The rank r  of A and the determinant d of an r  x r  non-singular

submatrix of A

begin 

1 «- 0

1. repeat

1 ♦ l e i :

U L a ^  * 0 then

Interchange R0W(1) and ROW(k), COL(1 ) and COL(A), where a ^  t  0,

k, A a 1;

2. a ^ / a ^  fo r 1 < J <  m;

3. ROW(J) 4- ROW(J) -  Vij R0W( 1) for 1 < j  <  m;

4. until ROW(j) -  (0 .........0) fo r a ll  J > 1;

r  ♦ 1; 
r

5. d n «.44;1-1 11
end. a
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PROPOSITION 2.4

Algorithm 2.3 correctly computes r  and d 1n 0(nmr M(log|d*|)) 

elementary operations, where |d*| «  max {|det(M)|:M Is  an r  x r  non­

singular submatrix o f A ).

Proof

Let A ^  denote A at the beginning of the 1-th Iteration of 

loop 1-4. Step 2 requires at most m divisions comprising 0(mM(log ||A^|| ) )  

elementary operations. Step 3 requires at most mn m ultiplications 

comprising 0(mnM(log ||A^|| ) )  elementary operations. Hence algorithm 

2.3 requires

O i l  "in M(log ||A( i )  || ) 

elementary operations.

I t  1s known (see [1 9 ], p.26 formula (1 2 )) that ||A^|| 1s at most 

the largest 1n absolute value determinant of an 1x1 submatrix of A.

Therefore the algorithm requires 0(mnr M(log |d*|)) elementary 

operations, a

THEOREM 2.5 (Hadamard)

Suppose that A 1s an n x n square matrix and d Its  determinant.

Then

|d| <
n
n

l - l

n 
( L 
s-1

a2 ) V 2  a1s' a

COROLLARY 2.6
3 2

Algorithm 2.3 terminates In 0(s M(s ) )  elementary operations.

where s Is the size  of A. a
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3. A DIRECT METHOD FOR COMPUTING THE STRUCTURE OF FNHTE ABELIAN

GROUPS

The classical algorithm (see Smith [4 8 ], S1ms [5 0 ]) for trans­

forming a matrix via IRC operations to a diagonal one may produce 

very large entries In the matrix at the Intermediate steps. This 

effect is called intermediate expression swell (abbreviated IES), 

see McClellan [3 9 ]. Frumkln In [17 ] observed that the IES of Bradley's 

algorithm (see [5  ] ,  i t  is a s lig h tly  improved version of the classical 

algorithm) denoted IES(BA) can be higher than 22V, where v = max {m ,n }, 

where the In it ia l  matrix Is an m x n matrix. In [1 6 ] Frumkin using 

heuristic arguments Indicated that:

(1 ) IES(BA) >  ||A|| i1+e)n for some e > o (3 . , )

under the assumption that the entries of the matrix Increase after a 

step. The two diagrams below Illu s tra te  the assumed and the empirical 

growth of the entries

*The largest In absolute value entry of the martlx throughout the 
computation Is the IES of the algorithm
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(11) IES(BA) <  (n ||A|| ) n (3 .2 )

under the assumption that there exist Integers x1 ( . . . , x n such that

Z xi ai = gcd(a1...... aR) and ||x11| -  0( ||ai ||1/n)
1 »1

with ai € Z , 1 <  i <  n

But empirical tests (see Bradley [ 5 ] )  show that

||xi | | -0 (| | a 1||). (3.3)

Also one using that Fn-1 end Fn_2 are the smallest 1n absolute value 

coefficients of Fn and FR+1 respectively In the equation

FnFn-1 -  Fn-2 Fn.1 ’  Scd (Fn*Fo*1> '  '*

where Fi is  the 1-th Fibonacci number, one can show that there exists 

an in fin ite  sequence of numbers satisfying ( 3. 3) .

Therefore (3.3)  suggests that Frumkln's upper bound 1s In va lid . 

The author 1n [29] proved that

IES(BA) <  ||A|| 3<r with r  ■ rank (A ) (3.4)

Hence the bounds (3.1)  and (3.4)  almost match and suggest that the 

classical algorithm 1s In e ffic ie n t and non-polynomial. An upper bound 

on the complexity time of the classical algorithm o f 0(9r s®) elementary 

operations, where s Is the size of the m atrix. Is given by the author 

1n [2 9 ].
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The f i r s t  polynomial time algorithm for the problem mentioned

above was given by Kannan and Bachem in 0 3 ] .  Chou and Col 11ns in

[ 8 ]  improved the complexity bounds of the Kannan-Bachem algorithm

given in 0 3 ] ,  and, by s l i g h t l y  modifying th e ir algorithm Improved

the upper bound on the magnitude on the entries over the transformation.

From [ d ]  one can derive an upper bound of 0 ( s 11) elementary operations

on analgorlthm for transforming a matrix A of size s to a diagonal

one. Moreover the growth of the entries at a ll steps of the Chou-
2

Col 11ns algorithm 1s bounded by 0(s ) .

An algorithm running asymptotically faster than the algorithms 

mentioned above 1s given below .Knowing that the computation of a 

multiple of the order 1s not hard, a modified form of the classical 

algorithm 1s applied to the matrix given by the proposition below.

PROPOSITION 3.1

Suppose that A Is an m x n matrix over Z  representing a f in ite  

abelIan group G. I f  B Is  an n «  n submatrix of A with rank (B) ■ n , 

then the (m+n) x n matrix

with d ■ det (B) 

represents a group Isomorphic to G.

Proof

The matrix K merely represents a group with defining relations 

R u {x^ ■ 1, 1 <  1 <  n>
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Isomorphic to 6, where R 1s the set of defining relations of G and 

d 1s a multiple of the order |G|. a

Kamman-Bachem in [3 3 ] refer that Wolsey, Hu, Frumkln e t a l . ,  

suggested the use of arithmetic modulo d in order to avoid IES; they 

gave an example of a group represented by the matrix

whose determinant 1s 3. Taking the entries of A modulo 3, one can see 

that the matrix

represents an In fin ite  abelian group non-Isomorphic to the group 

represented by A. Despite the Kannan-Bachem worries that working modulo 

d over the matrix A 1s not always v a lid , this arithmetic modulo d has 

been employed and formulated In a correct way, 1n the procedures of the 

new algorithm.

ALGORITHM 3.2

INPUT : The matrix K of Proposition 3.1 and an Integer p , 1 <  p <  n

OUTPUT: A (m+n) * n matrix whose p-column Is of the form

(k 1p, . . . , k pp, 0 , . . . , 0 ) t ; this matrix Is a transformation 

of K via IRC operations.



Procedure ELIMINATECOL (K ,d«p)

begin

1f k * 0 then 
—  pp --------

1.

2.

3.

4.

5.

begin

'• ‘ Sci < V V l . P h

compute Integers Xj.Xg: x^kpp ♦ x2kp+1,p* r  with

lxll  <  lkp+1,p^2* Ix21 <  Ikppl^2»

*1 *  V « . p / r ‘

»2  *  -  V r i

V i i 0
i 0!ii y i y 2 Ì

»  ! 
------------L - x i 1111

O
 

1 1
lr T " J 

CMI 
X 1 1 .  K ;

! ® ! *m+n-p-1

comment The re sult of step 5 1s a matrix K having kpp * 0

and k . »  r .
p+l»p

Note the (m+n) * (m+n) matrix 1s unlmodular

end

6. s -  « c d flc ^  p. k ^ ........ k .p.d )i
m

7. compute Integers t j  fo r p+1 <  j  <  m+1s J * , ‘ j kJo * W  ■ *» 

t j  «- t j  (mod d) for p+1 <  J <  m:
m

t _ . .  +- S -  E t ,  k , a m+1 J-p+1 J Jp
8. ROW(p) ♦ ROW(p) ♦ Z t jR0W(j) ♦ t  , ROW(m+P) ;J-p+1 1 "H'1

comment The entry kpp of K Is  equal to s. Note that the computation 

of t m+1 Is not necessary .since one can merely assign kpp ■ s



9. ROW( 1) «- R0W(1) -  (k . /s) ROW(i), for p+1 <  1 <  m;
P + 

comment Now COL(p) * (k jp, . . . , k pp, 0 , . . . , 0 )

10. R0W( 1) «- R0W( 1) -  ( U«i j/ «U ) ROH(m+J), 1 <  1 <  m, 1 <  j  ■< n;

comment At this step a ll the entries of K are reduced mod d.

return K;

end. □

REMARK 3.3

One may speed up (1n practice) the above procedure by making 

the following modifications :

( I )  At the beginning of the procedure ELIMINATECOL one can chedk I f  

there exists a k1p for some p <  1 <  m such that k1p divides k jp for 

every p <  j  <  m+p and 1f I t  e x is ts , then Interchange R0W(1) and ROW(p) 

and go to step 9.

( I I )  At the beginning of the procedure one may check whether or not 

there exists a k. for some p <  1 <  m such that k. = 0 and 1f 1tIp <p
exists then Interchange R0W(1) and ROW(p) and go to step 6.

An amount of computation may be saved with the above modifications 

but one can observe that the worst-case complexity w ill remain 

asymptotically the same, a

REMARK 3.5

Suppose that the matrix K of Proposition 3.1 1s transformed to 

* after an application of the procedure ELIMINATECOL (K ,d ,p ). Since 

every IRC operation can be expressed as matrix m ultip lication  of K by a 

unlmodular matrix (Proposition 1 .9 ), I t  1s not d if f ic u lt  to. modify the 

procedure to compute a unlmodular square matrix L such that
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3.6 A WORKED EXAMPLE 

Let

* 26 38 601
12 18 30
36 54 102
22 12 48

144 0 0
0 144 0
0 0 144

with |d | =|det(B) | -  |det(^2
38 601 
18 30 
54 102j

)| -  144

Now we apply ELIMINATECOL (K, 144, 1).

F irs t one computes x  ̂ * 1, x2 = - 2 such that 1.26 ♦ (-2 )12 * gcd(26,12).

Moreover y 1 * 6 and y2 * -13

At step 5 we have that

K 4-

6 -13 
1 -2

: o • e e
0

» 5*5•

At step 6 we have that s*2 and

and t 4 > 0 such that

1.2 ♦ 0.36 ♦ 0.22 +

At step 8 we have

2 -4 -301
2 2 0

K - 36 54 102

22 12 48

-  ' " h  J

* 0 -6 -30'
2 2 0

36 54 102
22 12 48

0 1441,o J



¿b

At step 9 we have

At step 10 we have

K »

*
0
0
0

-4 -30'
6 30

126 642
56 378

144I3 «

-4 -30*
6 30

126 66
56 90

14413 •

which is the output m atrix. □

PROPOSITION 3.7

The procedure ELIMINATECOL terminates 1n

0(mnM(log(m ||K|| ) )  ♦ m M(log ||K|| )loglog ||K|| )

elementary operations in  the worst-case and the size of the output 

matrix is 0(m+n+log ||K|| ) .

Proof

Steps 1-2 require 0(M(log ||A|| )loglog ||A|| ) elementary operations 

fo r an application of the E.E.A . and by Theorem U.3.3 .

IX11 *lkp .1 .P | / l ’ |x2l I1» * '2 ( 1 . 1 )
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Steps 3-4 require 0(M(log ||A|| ) elementary operations for 

divisions.

In view of (1 .1 ) step 5 requires a t  most 2n m ultiplications 

comprising 0(nM(1og ||A|| ) elementary operations. I f  A* denotes the 

matrix after step 5, then

ii**ii < ii*ii2
Steps 6-7 require 0(mM(log ||K|| ) loglog ||K|| ) elementary operations 

for 0(m) applications of E .E .A . and

11*1 II - -  t l^ i I > < IIM I •

Step 8 requires at most mn m ultiplications comprising 

0(mnM(log ||K|| ) elementary operations fo r  div1s1ons/mult1p11cat1ons.

Step 10 requires 0(mn M(1og(m ||K|| ) )  elementary operations.

The bound of the output matrix follows from step 10. □

REMARK 3.8

The dominant complexity of the procedure ELIMINATECOL 1s 

0(mn M(log(m ||K|| ) ) ,  except 1n the case of enormous ||K||i

l l* l l> 2
gnlogm ♦ e

o

REMARK 3.9

One can show that a modification o f the procedure ELIMINATECOL for 

computing the matrix L defined In Remark 3.5 can be done 1n such a way 

that the worst-case complexity Is Increased only by a constant factor and



ALGORITHM 3.10

INPUT : The integer matrix K of Proposition 3.1 and an integer

p: 1 <  p <  m

OUTPUT: An (m+n) x n matrix whose p-row is of the form

log ||L|| »  0(log ||K|| ) .  □

(Note that procedure ELIMINATEROW is almost symmetric with the procedure 

ELIMINATECOL; steps 9 and 11 are the only non-symmetries)

Procedure ELIMINATEROW ( K,d.p) 

begin

i f  k * 0 then

(k , .........k , 0 , . . . , 0 ) ;  this matrix
pi pp

of the matrix K via IRC operations.

t • • • • • • • • *0 ) ;  this matrix is  a transformation

—  PP 
begin

K «- K

W p .p "  di “m+p+l.p+l -  d i km+p+1,p"- 0l kei+p,p+1 * 0î
comment The above operation can be expressed as a sequence 

of row operations. See comment below.

end
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6. s «- gcd ( kpfp+i»***»,cpn) l
n

7. Compute t .  for p +1 <  j  <  n: £ t .k  * s »
J j*>+1 J w

t j  +■ t j  mod d fo r p+1 <  j  <  n;

n
8. COL(p) «• COL(p) + £ t .  C O L (j);

j-P+1 J

9. ROW(m+j) +- R0W(m+j) -  tjROW(m+1), fo r p+1 <  J <  n; 

comment This step 1s not necessarily executed, since one can

merely assign km+p+Up « . . .  -  km+n>p «  0.

10. COL(j) +• COL(j) -  (k p j/s) COL(p), p + 1 <  j  <  n;

11. R0W(m+p) +■ R0W(m+p) -  £ (k ,/s ) ROW(m+j);
j«P+1 PJ

comment This step 1s not necessarily executed, since one can 

merely assign km+pp+1 -  . . .  -  km+pn -  0

12. R0W( 1) +- R0W(1) -  (L k^j/dJ)ROW (m +j),pSl <  n, p <  j  <  m; 

return K; 

end, a 

Comment

I f  M 1s the Inverse of X^J . then one can see that

. K 1s equivalent to step 51 and thus I t  can be 

expressed as a sequence of row operations, a

: 0 : 0 m+p-1 • .
0

‘ o'
: m : o
: o : im+n .. . m+n-p-i
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REMARK 3.11

One may speed up the above procedure by modifying I t  1n a 

sim ilar way as procedure ELIMINATECOL was suggested to be modified 

at Remark 3.3 . o

REMARK 3.12

Suppose that K* 1s the output matrix of ELIMINATEROW (K ,d ,p ).

Then 1t 1s not d if f ic u lt  to modify ELIMINATEROW In  order to compute 

two unlmodular matrices L and R such that

LKR «  K*. a

PROPOSITION 3.13

The procedure ELIMINATEROW terminates 1n

0(mn M(log(m ||K|| ) )  ♦ n M(log ||K || )log1og ||k||) 

elementary operations and the size of the output matrix Is 0(m+n ♦ log ||K|| ) .

Proof

I t  1s sim ilar to Proposition 3.7 . o 

REMARK 3.14

One can show that the computation of the matrices L and R of 

Remark 3.12 can be done without any asymptotic Increase In the w orst- 

case complexity of the procedure ELIMINATEROW and 

1og(max { ||L|| . ||R|| »  -  0 (log  ||K|| ) .  a



3.15 A WORKED EXAMPLE

Let

"26 38 60”
12 18 30 26 38 60"

36 54 102 with |d * det( 12 18 30

22 12 48 36 54 102_

14413 -

In order to elim inate the 1-st row of K one can apply ELIMINATEROW (K ,d , l ) .  

Then at step 2 one can find -  -16 and x«, ■ 11 such 

(-1 6 ).2 6  ♦ 11.38 * gcd(26,38). Moreover y 1 -  19 y 2 -  -13.

At step 5 we have

which is equivalent to the matrix

' 0 2 60*
-6 6 30

-18 18 102
262 -220 48

.  144I3

Now at step 6 one can compute t j  -  1, t 2 ■ 0 such that

1.2 ♦ 0.60 -  gcd(2,60)
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At step 7 we have

[  2 2 60‘ '2  2 60T

0 6 30 0 6 30

0 18 102 0 1« 102

42 -220 48 step 8
. —-, V

42 -220 48

144 0 0 
144 144 0 
144 0 144

L 144I3 J

At step 10 we have

’ 2 0 0 " * 2 0 0‘

0 6 30 0 6 30

0 18 102 step 11 0 18 102

42 -262 -1212 1 ^ 42 -262 - 1212

144 -144.2 -144.30 - 144I 3 -

0 144 0
0 0 144

and at step 12 we have

'2 0 or

0 6 30
0 18 102

42 -118 -60
144I3 J

which the output m atrix . a
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INPUT : An m x n matrix representing a f in ite  abelian group G

OUTPUT; The canonical structure of the group G

begin

1. d *- the determinant of an n x n non-singular submatrix of A;

AL60RITHM 3.16

2 .

5.

6. 

7.

K * [dij *
3. for p * 1 to n do 

begin 

repeat

ELIMINATEROW (K .d .p );

ELIMINATECOL (K .d .p );

u n til either kpp |kpi for a ll p ♦ 1 <  1 <  n or kpp « 0 

kpi 0 f o r  P ♦ 1 <  t <  n »

8. end

j f  k ^  «  0 fo r some 1 then Interchange R0W(1) and R0W(m*1);

A ♦ the n top rows of K ;

comment The only non-zero elements of A are the diagonal entries.

9. fo r p ■ 1 to n do

tea)"

10. for q ■ p+1 to n do 

begin

" * v
*pp * a e d l .^ .h ) !

a„„ a^..h/a__iqq qq pp

11. end
12. end 
end. o
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PROPOSITION 3.17

Algorithm 3.16 correctly computes a canonical basis for the 

abelian group 6 in

0(mn(n ♦ loglog ||K|| )log ||K|| M(log ||K|| ) ♦ mn2M(log|d*|) )

elementary operations, where d* = max (|d*| :d* determinant of an n * n 

submatrix of A }.

Proof

The computation of a m ultiple of the order of the group (steps 

1-2) requires 0(mn2 M(log |d*|) elementary operations using Gaussian 

elim inatlon.

Steps 5 and 6 require.O(m(n+loglog ||k|| )M(log ||k|| ) )  elementary 

operations from Propositions 3.7 and 3.13 and using the facts that

m >  n and || d <  ||K|| Vi

where denotes the matrix K at the 1-th Iteration  of the loop 4 -7 .

The number of Iterations required by loop 4-7 Is at most log |d|, 

since

1‘ S ’ i < ikJi‘ ,>|/2

Hence loop 3-8 requires nlog |d| ■ n log |[K|| Iterations. (3 .1 )

Loop 9-12 required 0(n2) applications of EEA and 0(n2) m ultiplications/ 

divisions comprising 0(n2M(log|d|) loglog|d|) »  0(n2M(log ||K|| )log1og ||K|| ) 

elementary operations.

From the above analysis the proposition follows, a
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COROLLARY 3.18

Algorithm 3.16 terminates In

0(mn2[n ♦ login login  ||A|| ) ) J  login ||A||) M(n login ||A||))) 

elementary operations.

Proof

The result follows from Proposition 3.17 and using the fact

that

max {d*, ||K|| } <  max {||A|| ,|d|,|d*|} <  (n ||A|| ) .  a 

COROLLARY 3.19

I f  a f in ite  abelian group 1s represented by a matrix of size s,
5 2then one can compute Its  canonical structure 1n 0(s M(s ) )  elementary 

operations. a

Chou and Collins In [ b  ]  propose an algorithm for computing

the canonical structure of a f in ite  (o r  In fin ite ) abelian group by

means of the ir LDSMKB algorithm and the algorithm SNF given by

Kannan-Bachem [3 3 ]. The Chou-ColUns LDSMKB algorithm for
3 2

triangular!zatlon of an Integer matrix requires 0(mn [n+n logn ||A|| ) ]  

elementary operations. The Kannan-Bachem algorithm (named SNF) 

requires n2log(n ||A|| ) applications of a trlangularlzatlon algorithm. 

Hence the computations of the steucture can be done fo r the proposed 

Chou-ColHns algorithm 1n

0(mn5log(n ||A|| ) [n  ♦ n log (n  ||A|| ) ] 2 -  Ois11) (3 .2 )

elementary operations. Therefore the upper bound (3 .2 ) has been 

Improved by a factor of 0 (s3 ) .
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This section closes by computing the canonical structure of 

the group represented by the matrix

[ *  " ]

(Kannan-Bachem example -  see below Proposition 3 .1 ).

[5 261 '1 O' '1 O'

2 11 
3 0 ELIMINATEROW

N.

1 0 
3 0 ELIMINATECOL

N-

0 0 
3 0

0 3 0 3 0 3

Therefore the group 1s c y c lic  of order 3.
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4. THE computation op the her mite and smtth normal forms of an

MTEGER MATRIX

A. HarmK* Normal Form

THEOREM 4.1 (Hermlte, see [¿ 3 ])

Given a non-singular n x n Integer matrix A, there exists an 

n x n unimodular matrix M such that MA = T 1s upper triangular with 

positive diagonal elements. Furthermore, each off-diagonal element 

of T  1s non-pos1t1ve and s t r ic t ly  less In absolute value than the 

diagonal element In Its  row. a

DEFINITION 4.2

The matrix T  of Theorem 4.1 1s called the Hermite normal form 

(abbreviated HNF) of the matrix A. a

I t  1s not d if f ic u lt  to modify ELIMINATECOL (K ,d ,p ) to obtain a 

procedure ELIMINATECOL* (K ,d ,p ) of the same asymptotic complexity, 

fo r eliminating a l l  entries below the diagonal element of the 

column of K.

ALGORITHM 4.3

INPUT : An n x n non-singular matrix

OUTPUT: The HNF matrix T  of A and a unimodular matrix M such that

MA -  T
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begin

1. d *■ d e t(A );

3. fo r 1 * 1 to n do

begin

ELIMINATECOL* (K ,d ,1 );

4. end

T * « - ^ . ]  fo r 1 <  1, j  <  ns

comnent The matrix T* 1s upper tria n g u la r. Note that det (T* ) * d.

5. R0W( 1 ) «- -ROW( 1 ) for each < 0 ;

comment The diagonal entries are p o sitive . In the next loop the 

entries to the rig h t of the diagonal w i l l  be reduced .

6. for 1 * 1 to n do

begin

7. for j  -  1 to 1-1 do

begin

ROW(j)«- ROM(J) “ L ki j / kn J  W M 1)* 
end J

8. end

T «- [k i j ]  for 1 <  1, J <  n

10. solve the system X*T ■ A;

comment I t  1s not hard to solve the above system, since T  1s 

tr ia n g u la r.

11. H «- X“ 1;

comment Use the algorithm given by Proposition 0 .3 .5 .

end. o
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PROPOSITION 4.4
Algorithm 4.3 correctly computes the HNF the matrix A and the 

unlmodular matrix M.

Proof

Th«*e exists an n x n Integer matrix W such that

Using Remark 3.5 there exists a 2n x 2n matrix l 2 such that

From Proposition 1.9 there exists a 2n x 2n unlmodular matrix L3 

such that

Hence A^a  -  T .  The determinant of T 1s d , since T has the same

UA « dl n

( 4. 1)

( 4. 2)

( 4. 3)

Let L -  L3L2L1. Let ^  be a pa rtitio n  of L , where A. for
a3 a 4 . 1

1 <  1 <  4 Is an n x n matrix.

Then from (4 .1 ) ,  (4 .2 ) and (4 .3 ) follows that

diagonal elements •* T  and de t(T ) ■ d. Hence det (A j) ■ 1.



PROPOSITION 4.4
Algorithm 4.3  correctly computes the HNF the matrix A and the 

unlmodular matrix M.

Proof

The*e exists an n x n Integer matrix W such that

UA -  dl

Let L

n

, then
• - M

H [o* ] - K (4-’ >
Using Remark 3.5 there exists a 2n x 2n matrix L2 such that

[o'] (,-2>L2K

From Proposition 1.9 there exists a 2n x 2n unlmodular matrix L3 

such that

L3’[ p ]  " [ d l j  (4 ,3 )

Let L -  L3L2Lr  Let £ be a partition  of L . where Ai for

1 <  1 <  4 Is an n x n matrix.

Then from ( 4 .1 ) ,  (4 .2 ) and (4 .3 ) follows that

^ E d  ■ [<l„]

Hence AfA -  T .  The determinant of T  is d, since T has the same 

diagonal elements •* T* and de t(T* ) -  d. Hence det (Ax) -  1.
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Moreover one can see that the matrix T satisfies a ll the conditions 

of Theorem 4.1 and thus T  1s the HNF of the matrix A. a

PROPOSITION 4.5

Algorithm 4.3 computes the NHF of A and the matrix M 1n

0(n2[n ♦ login login ||A|| ))]M (nlog(n ||A|| ) ) )  

elementary operations. Moreover log ||M|| -  0 (n log (n ||A|| ) ) .

Proof

The computation of the determinant requires 0(n3M{log d ))
2

elementary operations.Loop 3-4 require 0(n (n ♦ loglog ||K|| )M(log ||K|| ) )  

elementary operations using Proposition 3.7. (See Remark above 

algorithm 4 .3 ).
3

One can show easily  that loop 6-9 requires 0(n ) m ultiplications 

comprising 0(n M(1og d) elementary operations.

The computation of X Is not d if f ic u lt ,  since T Is triangular.

I t  requires 0(n2) divisions comprising 0(n2M(log d )) elementary 

operations.

The computation of the Inverse of X requires 0(n3M(log d ) ) 

elementary operations by Proposition 3.5 .

Hence using that

II K|| <  max {||A|| |d|>< (n ||A|| ) n

the proposition follow s, o
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Chou-Col11ns in [ t o ]  gave an algorithm computing the HNF of a

matrix A which requires 0(n4[n ♦ n log(n ||A|| ) ] 2) elementary operations.
2

Hence the upper bound is Improved by a factor of 0(n ) .

COROLLARY 4.6

There exists an algorithm computing the HNF of a matrix A of
3 2

sizes and the unimodular M of Theorem 4.1 in 0(s M(s ) )  elementary 

operations. a

The following corollary 1s given in order to show the optim ality 

of algorithm 4.3 as d ire ct method.

COROLLARY 4.7
o

Algorithm 4.3 Is a direct method and i t  requires 0(n ) m ulti­

plications in order to compute the HNF of an n * n matrix A. □

In (34 ]  Klyuyev and Kokovkln-Shchebak proved that Gaussian 

elimination 1s an optimal direct method. Note that 1n general 

Gaussian elimination Is not optimal (see [5 1 ] ) .  The 

lower bound on the number of m ultiplications necessary to transform 

a matrix with entries from a f ie ld  to a triangular m atrix, is  given 

below.

THEOREM 4.8 (Klyuyen-Kokovkln-Shchebak)

A d ire ct method fo r trlangularizing  an n * n matrix with entries 

from a f ie ld  requires exactly ^  n(n+1)(2n+1)-n m ultiplications. o 

D irectly from Corollary 4.7 and Theorem 4.8 follows that
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PROPOSITION 4.9

Algorithm 4.3 1s optimal w ithin a constant factor as direct 

method. a

B. Smith Normal Form

THEOREM 4.10 (H .J . Smith, see [4 9 ])

Given a non-singular n * n Integer matrix A, there exists n x n 

uni modular matrices B and G such that D * BAC 1s a diagonal matrix 

with positive diagonal elements such that d ^  | d22 I ••• I dnn* °

DEFINITION 4.11

The matrix D of Theorem 4.10 Is called the Smith normal form 

(abbreviated SNF) of the matrix A. o

PROPOSITION 4.12

The SNF of an n x n matrix A can be computed 1n

0(n3log(n ||A ||)[n ♦ lo g(n  log(n ||A|| ))]M (n  login ||A|| ) ) )  

elementary operations.

Proof

I t  readily follows from Corollary 3.18. o



REMARK

Using Proposition 3.17 one can have a expression of the 

upper bound of Proposition 4.12 1n terms of || K|| ■ max { ||A|| ,det(A )>  

the upper bound 1s the same as that of Proposition 3.17. a

An upper bound of 0(n®1og(n ||A|| ) [n ♦ n log(n ||A|| ) ] 2) on the 

computational complexity of SNF was given by Chou-ColUns 1n [8  ]

(see (3 .2 ) ) .  Therefore th is  upper bound is  Improved by at least a
3factor of 0(n ) .

In order to give an algorithm computing the matrices B and C 

of Theorem 4.10, the following problem is considered:

FROBLEM 4.13

Suppose that A Is an n * n non-singular Integer matrix with 

determinant d. Compute an integral solution of the system

XA -  d ln (4 .4 )

where X is an n x n matrix of unknown variables. □

PROPOSITION 4.14

There exists an algorithm computing a particular solution for 

(4 .4 ) 1n

0(n2[n  ♦ login log(n |}A|| ))]M (n  log(n ||A|| ) )  

elementary operations. Moreover log ||X|| »  0(n log(n ||A|| ) ) .
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Proof

Using algorithm 4 .3 , one can compute a matrix T ,  the HNF of At  

and a matrix M such that 

t
MA -  T

Hence the system (4 .4 ) 1s equivalent to 

TX* * M -(dIn)

whose solution Is easily computed, since T Is triangular.

The complexity of the method follows from the analysis In 

Proposition 4 .5 . □

Proposition 4.15

There exists an algorithm computing the matrices B and C of 

Theorem 4.10 1n

0(na+2 login [|A|| )lo g (n  login ||A|| ))M (n login ||A||)))

elementary operations, where 0(na ) 1s an upper bound on the number of 

m ultiplications required for m ultiplication of two n x n matrices.

Proof

One can use the following method of computing the matrices B and C.

(1) Compute the matrix 0 , the SNF of A, using algorithm 3.14. From 

Remarks 3 .5 , 3.11 one can see that algorithm 3.14 can be modified to 

yield unlmodular matrices L j , . . . , L ^  of dimension 2n * 2n and R j , . . . ,R ^  

of dimension n * n such that



LA L (4.5)

( 11)  Compute an Integral solution o f the system

XA * dl n

using the algorithm given by Proposition 3.14. Moreover le t

(111) Compute the matrices L «  n L ^ L *  and R * n .1-1 1 1-1 1
The computation can be done by m ultiplying In the 11st 

A = (L 1,. . . ,L ^ ,L * >  pairwise from le f t  to rig h t so to obtain

a new 11st { L ^ . L ^ , . . . } ;  then repeating this process u n til a 11st 

with a single element v iz . the product LjL^ . . .  L^L* 1s obtained

(1v) Let L -  •

where fo r 1 <  1 <  4 are matrices of n * n dimension. Then le t 

8 -  Aj ♦ AgX and C -  R.

The correctness follows from the facts that

X n
A P

BAC -  D

and since C 1s unlmodular and |det(A)| -  |det(D)|, the matrix B 1s 

unlmodular.
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The complexity required for the computation of L ^ s .  R j’ s and X 1s 

given by Propositions 3.15 and 4.14.

The computation of L and R requires

o j
Z v/2 with v * max {x .p } .  o * Hog v l 1-1

matrix m ultiplications comprising

0(na z C(v/21) M(21 log ||Q|| ) ] )  
i-1

elementary operations, where ||Q|| -  max {  ||L11| . ||Rj|| . L* }.
1»J

Now from Remarks 3 .9 , 3.14 and (3 .1 ) follows that

o
v <  n log d <  n login ||A|| ) 

and H qII <  max { ||A|| ,d } <  (n ||A ||)n.

Hence the running time of (111) requires

O f n ^ lo g in  ||A|| )1og(n log(n ||A|| )M(n log(n  ||A|| ) elementary 

operations, o

COROLLARY 4.16

There exists an algorithm fo r computing the matrices B and C 

of Theorem 4.10 1n 0(sa+3 log s M(s2) )  elementary operations, where 

s 1s the size of A. o

REMARK

Using the remark below Proposition 4.12 and Proposition 4.15 one 

can derive an expression of the upper bound of Proposition 4.15 In terms

of ||K|| -  max { ||A|| (d e t (A )| ), which 1s
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0(na+1 log ||K|| log ||K|| M(log ||K|| ) )  elementary operations. o

Now the following problem whose solution w ill be used for the 

computation of the canonical structure of an In fin ite  abelian group 

and fo r the solution of a system of linear DIophariHne equations, 1s 

considered.

PROBLEM 4.17

Suppose that A 1s an m * n Integer matrix with rank n. Compute 

a unimodular (tn+n) x (m+n) matrix L such that

where T  1s an upper triangular n *n matrix. □ 

ALGORITHM 4.18

INPUT : The matrix A of Problem 4.17 

OUTPUT: A matrix L satisfying (4 .6 )

begin

B <• an n x n non-singular submatrix of A; 

d •*- d e t(B );

find  an Integral solution of the system: XA -  d IR;

(4 .6 )

fo r 1 »  1 to n do
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begln

ELIMINATECOL* ( M . O s

Let L.| be the matrix L defined 1n Remark 3.5 ; 

end
n

L n Li *L*;1-1 1
end. □

PROPOSITION 4.19

Algorithm 4.18 correctly computes L 1n

0(n[nalog n + mn ♦ n2log(n log(n ||A|| ))]M (n  log(n ||A|| ) ) )

elementary operations« where 0(n°) denotes an upper bound on the number 

of m ultiplications required for m ultiplication of two n x n matrices. 

Moreover

log ||L|| -  0 (n2 log (n ||A|| ) .

Proof

The correctness of the algorithm Is obvious.

The time required fo r the computation of d and B Is given by

Proposition 1 .2 .4 . . Using Proposition 3 .7 « one can find the time

required fo r an application of the procedure ELIMINATECI.*•

The computation of the matrix L requires

Clogn] «
I  (n/21)1-1



matrix m ultiplications comprising

0(n° E (n / Z ^ M ^ Io g  ||K || ) -  0(na+11og n M(n login ||A|| ) ) )  1-1
elementary operations. Moreover from Remark 3.9 and Proposition 4.14

■»x €||Lf ||> -  0 (|| K ||) and ||L*|| -  0 ( ||K || ) 

hence log ||L|| -  0(n log ||K|| ) a 0 (n^ log (n ||A|| ) ) .  □

REMARK 4.20

Suppose that L and A are as 1n Problem 4.18. Let

L A1 a2 
a3 a4

where A j Is an m x m m atrix, A.g 1s an m x n m atrix, A 3 Is  an n x m 

matrix and Ji4 Is an n x n matrix.

Then

a'a ■[ ° : j

but a 3 I s not necessarily unlmodular. The author does not know of 

an e ffic ie n t way of computing a unlmodular matrix a such that

AA -

and this w ill  lead to some Inelegancies 1n the presentation of «
algorithms fo r computing the structure of In fin ite  abelian groups and 

fo r solving systems of linear Dlophantlne equations. a
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REMARK 4.21

The algorithm of Proposition 4.17 and the algorithm of 

Proposition 4.19 make use of a "fast matrix m ultiplication" algorithm; 

Coppersmith's and W1nograd's algorithm (see Proposition 0.3 .4 and 

Remark below) fo r matrix m ultiplication Is faster than the obvious way 

for matrix m ultip iIcatlon,only fo r matrices with very large numbers 

of rows(columns); therefore for practical purposes for the above two 

algorithms 1s suggested the use of the usual way of m ultiplying 

matrices.
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ff. A DIRECT METHOD FOR COMPUTING THE STRUCTURE OP MF MITE

ABELIAN GROUPS

Suppose that A is an n x n integer matrix representing an 

in fin ite  abelian group G. Then the matrix A is singular. In order 

to transform A to diagonal form, one may use the following algorithm.

ALGORITHM 5.1

INPUT : An m x n singular matrix A representing the In fin ite  abelian group G. 

OUTPUT: The canonical structure of G

begin

1. r  rank(A)

2. B an r  x r  nonsingular submatrlx of A;

3

comment The matrix D Is an ( n - r )  x r  matrix. C 1s an r  x (n -r )  matrix 

and E is  an (m -r) x (n -r )  m atrix. The transformation 1s done with 

column and row interchanges.

comment Note that the addition of t r iv ia l  re lations to the set of 

defining relations of G does not change Its  structure.

4. Compute a unimodular (m+r) x (m+r) matrix L such that: 

L D -  [ U  where T 1s an r  x r  upper triangular matL D ■ [J 1 where T  Is an r  x r  upper triangular matrixwhere T 1s an r  x r  upper triangular matrix;
f8

5

p rJ  L ■* rs
comment One can use algorithm 4.18, since rank ( 0  ) ■ r
---  L°r.
A «- LA;

6

for 1 ■ r  down to 1 do



8. COL( j ) «- COL(j) -  ) COL(1) for r+1 <  j  <  n;

9. end
t

10. A* -  [T ,M ]

comment A* Is an n «  r  matrix with rank r  and thus represents an 

fin ite  abelian group, say 6*.

11. compute the canonical structure of 6* using algorithm 3.15; 

end. □

PROPOSITION 5.2

Algorithm 5.1 correctly computes the canonical structure of G.

Proof

( I )  A ll steps are expressed In terms of IRC operations which respect 

the structure of the group G.

( I I )  In step 6 the bottom rig h t corner (m -r )* (m -r) submatrix of A 1s 

a matrix where a ll entries are zeros, because i f  Its  j - t h  column had a 

non-zero entry for some j ,  then A would have r+1 lin e a rly  Independent 

columns (the f i r s t  r  columns of A and the j - t h  of the submatrix) which 

contradicts the fa ct that r  ■ rank ( A ) .

( I I I )  In step 10,A* represents the f in ite  group G*. Let G' be the 

maximal f in ite  subgroup of G. I t  w ill  be shown that G* Is Isomorphic 

to G '. Let A1 -  [T ,M ]. Since A1 represents G, there exists unlmodular 

matrices L and R such that:

L ■ D (5.1)

where 0 represents the canonical structure of G. Moreover 

G' • G ( d j j ) * . . .  x G(dr r ) (5.2)
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From (5 .1 ) follows that

R* A* L* -  D* or R1 A* Lt -  Dt  

and DT represents the canonical structure of G*. Therefore 

G* * G(dn ) x . . .  x G(dr r ) 

and using (5 .2 ) follows that G* ** G '. o

PROPOSITION 5.3

Algorithm 5.1 computes the canonical structure of G 1n

0 ( r [ r a+mr <nr lo g (r  ||A|| )(r+ lo g (r  lo g (r  ||A||)))]M(r lo g (r  ||A|| ) 

♦ mn M(r2 lo g (r  ||A|| ) )  ♦ r 2n M(r3 lo g (r  ||A|| ) ) )

elementary operations.

Proof

Step 1-2 requires 0(mnr M(log |d*|) elementary operations by 

Proposition 2.4 , where |d*| -  max {|d|: determinant of an r  x r  

submatrix of A ).

The running time of step 4 1s given by Proposition 4.19.

Step 5 requires 0(mn) m ultiplications comprising 

0(mn M(r2 log ( r  ||A|| ) ) )  elementary operations, using that 

log ||L|| ■ 0 (r2 lo g (r  ||A|| ) )  by Proposition 4.19. Loop 7-9 requires 

0 (r2n) m ultiplications comprising 0 (r2n H (r2 lo g (r ||A || ) ) )  elementary

operations.
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One can observe that

IIA*H< |d| <  ( r  HA|| ) r  (5 .3 )

From Proposition 3. lb and (5 .3 ) one can derive the running time

of step 11 comprising 0 (nr2 lo g (r  ||A|| )[r+ lo g (r  lo g (r  ||A|| ) )J M (r lo g (r  ||A|| ) ) )

elementary operations.

The proposition follows from the fact that |d*| <  ( r  ||A|| ) r  • □ 

COROLLARY 5.4

There exists an algorithm computing the canonical structure of

an In fin ite  abelian group G represented by a matrix A of size  s, 1n
c o0 (s M(s ) )  elementary operations.

Proof

From Proposition 5.3 and using the fact that a <  3 (a  * 3 In 

the classical algorithm for matrix m u ltip lica tio n ). o

The Chou-Col11ns algorithm fo r computing the structure of f in ite  

groups is discussed below. Corollary 3.19 can be used *or In f in ite  abelian 

group as w ell. Hence the (3 .2 ) upper bound of 0 (s 1^) 1n the case
3

of In fin ite  groups has been also Improved by at least a factor 0 (s ) .



DIOPHANTINE EQUATIONS

Let A be an m xn matrix with Integer entries and b an n * 1 

vector with entries from the Integers. Then the system of equations

Ax -  b , x e Znx 1 (6 .1 )

1s called a system of linear Diophantine equations.

The computation of a solution or a ll ( I f  any) of the system 

(6 .1 ) 1s closely related to the tr1angular1zat1on of the matrix A. If  

the matrix A of (6 .1 ) 1s of rank n, then (6 .1 ) has exactly one solution 

or none and this can be found by means of Gaussian elim ination. In the 

case 1n which the rank r  of A 1s less than n, the system (6 .1 ) has an 

In fin ite  number of solutions (n -r  lin e a rly  Independent solutions) or 

the system 1s Inconsistent. In th is  case the classical algorithm for 

solution of a system of linear Diophantine equations makes use of the 

classical tr1angular1zat1on algorithm (Smith [4 8 ], Bradley [  5 ] )  and 

therefore has the problem of "Intermediate expression sw ell".

The f i r s t  polynomial algorithms for solution of (6 .1 ) were given 

by Frumkln In [17] (see also [1 6 ]) 1n some special cases. Frumkln's 

algorithm for computing a p a rticu la r  solution of ( 6 . 1) or establishing 

that there 1s not one requires In worst-case 

0(n2m2log(n ||A|| )M(n log(n ||A|| ) )  ♦ n2M(n login ||A|| ) ♦ ||b|| ) ■ 

0( s5M(s2) ♦ s2M(s*)) where s Is the size of the matrix A and s* the 

size of the vector b. Moreover Frumkln In [17] gave an algorithm for 

computing the set of a ll solutions ( I f  any) of an homogeneous system of 

linear Diophantine equations (that 1s (6 .1 ) with b ■ ( 0 , . . . , 0 ) )  which 

requires 0(n3m1og(n ||A|| )M(m log mlog(m ||A|| ) ) )  ■ 0 (s5M(s2log s ) ) 

elementary operations.

6. A DR ECT METHOD FOR THE SOLUTION OF SYSTEMS OF LMEAR



The best known polynomial algorithm fo r solving a general 

system of linear D1ophant1ne equations 1s given by Chou-ColUns 1n [  8 ] .

for the computation of the set of a ll the solutions of ( 6 . 1) 1f  any, 

where s 1s the size of A and s* 1s the size of the vector b.

the Frumkin's and Chou-Collins' upper bounds is presented below: 

ALGORITHM 6.1

INPUT : The system of equations (6 .1 )

OUTPUT: A set of a ll Integral solutions of the system (6 .1 ), i f  any. 

begin

1. r  +■ rank(A);

2 . B «- an r  x r  non-singular submatrix of A;

comment The matrix D Is an (m -r) x r  m atrix, C Is an r  x ( n - r )  matrix 

and 1s an (m -r) x (n -r )  m atrix. The transformation 1s done with column 

and row Interchanges.

4 . A 4- LjAR1 ;
5 . b +■ Lj*b;

«*|»lor|> t  r t i6 .  compute a unlmodular (n+r) * (n+r) matrix L such that: L[B,C,Or ]  ■ |on I» 

comment The matrix T 1s upper triangular. The (n+r) x r  matrix [B .C .O p]* 

has rank r  and therefore one may use algorithm 4.18 for the computation of L.

3 2Their algorithm requires 0(n (m+n)[n ♦ r  lo g (r ||A|| ) ]  ♦

r(m+n)log ||b|| [n + r  log(n ||A|| ) ] )  * 0(s8 ♦ s4 s*) elementary operations

An algorithm for solving (6 .1 ) whose upper bound improves

3.compute unimodular matrices
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7 • A «- ARg» 
8« R ^ R̂ Rg* 

T* T*
Let A « [ M q] ;

9 . I f  the system Az ■ b has not an Integral solution then

comment One can compute a solution (1 f  any) ea sily, since T* is  a

lower triangular matrix;

return "the system 1s Inconsistent"

10. else

le t  z be a solution;

11. w R*z* le t w * (ttfj,• • • ,w ^y,) ; 

w ♦ (w^,...,Wyy) ;

comment The vector w is  a particular solution of the system ( 6 .1 ) ;

12. R* «- C»*i jD * r+1 <  j  <  n+r, 1 <  1 <  n;

13. return {x -  w R *(t^, . . . , t n) } ;  

end. □

PROPOSITION 6.2

Algorithm 6.1 correctly computes the set of a ll solutions of 

the system.

Proof

Let x ■ ( x ^ . ^ . x ^ y , ) 1 and x :»  R(y1, . . . , y r . t 1 . . . . , t n) t  ♦ w.

I t  w ill be shown that A '*  -  b where A ' ; -  [ a ^ ]  and that y 1«y2 ■•••■ y r  m °* 

Using that LA'w ■ LA'Rz ■ Lb one can show that



Stt
L

LA'x -  L A 'R iy .t )*  ♦ LA'w * j J  Q ^ ^ .t )*  ♦ Lb * Lb 

t
and moreover L A 'R (y ,t ) * 0 

which implies y ■ 0 .

Hence x yields the set of a ll  solutions of the system A5? -  b which 

is  equivalent to ( 6 . 1 ) and thus i t  is  not d if f ic u lt  to see that ?  is  the 

set o f  a ll  solutions of ( 6 . 1) .  □

PROPOSITION 6.3

Algorithm (6 .1 ) computes the set of a l l  integral solutions of 

(6 .1 ) in  O trtr^ o g  r  ♦ mr+r2 lo g (r  lo g (r  ||A|| ) ) ] M ( r  lo g (r  ||A|J ) )  ♦ 

mn M (r2 lo g (r  ||Aj| ) ♦ log ||b|| ) )  elementary operations.

Proof ~  — ■

Steps 1 -4 , 6 -8  require

O irC ^ lo g  r  + mr+r2lo g (r  lo g (r  ||A|| ) ) ]M (r  lo g (r  ||A|| ) )  ♦ 

mn H (r2 log ( r  ||A|| ) ) )

elementary operations. Th e ir analysis Is  the same as In Proposition 5.3 

(s te p s l-5 ).

Step 5 requires 0(n log ||b|| ) elementary operations using the fact

tha t the rows of Lf are of the form ( 0 .........0 , 1 , 0 , . . . .O ) .

Steps 9-10 require 0(mn) dlvlslons/m ultipllcatlons comprising 

0(mnM(r2 (1og(r ||A|| ) ♦ log ||b|| ) elementary operations, since I f  A* denote 

the matrix A at step 8  then
_2

||A*||.||L1ARi R2 ||<||Li H || A ll  IIRjII ||R2 || <  Il A II ( r  ||A || ) r  

using that ||L1 1| -  ||R2 || -  1 and ||R2 ||< ( r  ||A|| ) r  by Proposition 4.19
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Step 11 requires 0(mn M(r2 lo g (r  ||A|| ) ♦ log ||b|| ) elementary 

operations for m ultiplications.

From the above analysis the proposition follows, o

COROLLARY 6.4

There exists an algorithm for computing the set of a ll the 

solutions, 1f any, of a linear Dlophantine system (6 .1 ) 1n

0 (sa+1log s M(s2) ♦ s2M(s* ))

elementary operations, where s 1s the size o f A and s* the size  of b.

?

Proof

From Proposition 6.3 using Wlnograd's (see [5 4 ]) re sult that

a > 2. a

Suppose that

x ■ w ♦ R * ( t j , . . . , t n)* (6 .2 )

1s a general solution of (6 .1 ).  I f  the elements of the set 

S - { « ,  C0Lr* ( 1 ) , t 1 )  are linearly Independent, then S 1s called a 

beu-U of the general solution of ( 6 . 1) .

PROPOSITION 6 .5 .

There exists an algorithm for computing a basis for the solutions 

of ( 6 . 1) 1n

0(s°+1log sM(s2) ♦ s2M(s* ))

elementary operations, where s 1s the size of A and s* the size of b.
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Proof

One can compute (6 .2 ) using algorithm 6 .1 . Then using algorithm 

one can trlangularlze  R* 1n sim ilar way with the tr1angular1zat1on of A 

by algorithm 6 .1 . I f  the triangular form of R* 1s

1s a basis for a ll solutions. The analysis follows from Propositions 

6.3 and 4.19. □

Using the Coppersm1th's-W1nograd's re s u lt that a * 2 .4 9 ... one

elementary operations. Therefore the Frumkln's upper bounds on the 

computation of a particular solution and the computation of a general 

solution of homogeneous systems are Improved by a factor at least 0 ( s ) .  

Moreover the Chou-Colllns upper bound on the computation of a basis of 

a ll  solutions of a general system 1s Improved by at least a factor of 

0 (s 2) .

This section closes with a re sult on systems over the ring Zk, 

which w ill be used 1n la te r sections.

PROPOSITION 6 .6  (Hu, see [2b])

Suppose that A and b of (6 .1 ) have entries from Zk. There exists 

an algorithm for solving (6 .1 ) over Z R 1n 0 ( t 3 M(log k) elementary 

operations, where t  ■ max (n,m ). □

T --------------------------
Note that ?k -  Z/kZ w ith k«IN.

then x ■ w + T ( t ^ » . . . , t n)*

can see that algorithm ( 6 . 1) requires 0 (s 5 ,49 log2sloglog s + s2s*logs*loglogs*)
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7. AN ALTERNATIVE ALGORITHM FOR COMPUTING THE STRUCTURE OF

ABELIAN GROUPS

In the previous sections, d ire ct methods for computing the structure 

of abelian groups represented by a set of defining re lations, are presented.

In the case both f in ite  and in fin ite  abelian groups, the methods require
c o

0(s M(s ) )  elementary operations, where s is in the size representing 

the group. An algorithm r for the same problem is given below, which 

requires asymptotically the same time as the methods above. This algorithm 

is presented because of its  sim plicity and the fact that its  worst-case 

complexity bound is  better by a constant factor than the bounds of the 

direct method. The disadvantage of the algorithm is that i t  is a non- 

direct method and thus 1t  is d if f ic u lt  to compute the m ultiplier-m atrices 

corresponding to the transformation.

The proposed method for diagonallzation of an integer matrix A is the 

following:

( I )  Compute an r  x r  non-singular submatrix B of the matrix A, 

where r  Is  the rank of A

( I I )  Compute the determinant d of the matrix B

( I I I )  Use the classical algorithm for diagonal1zat1on of the matrix A 

applying arithmetic modulo d.

(1v) I f  the computed diagonal matrix is

0 ’ **0

t  Due to W.M. Beynon, J .D . Dixon and C.S. Iliopoulos
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then dj ■ gcd(d1 td) for 1 i  1 i  r  are the components of the 

canonical structure of the group represented by A.

I t  is known that the order of a group 6 ( f in i t e  part of G i f  6 
1s in fin ite ) is given by

|G| = gcd (det(B ) : B is an r  * r  submatrix of A} (7 .1 )

Since

|G| = gcd (det(B ) mod d, d)
B

where B as in (7 .1 ) ,  the correctness of the method follows.

A formal way of describing the above method is  the following:

ALGORITHM 7.1

INPUT : An m x n Integer matrix A

OUTPUT: The canonical structure of the abelian group represented by A. 

begin

r  ♦ rank(A)

B <*■ an r  x r  non-singular submatrix of A; 

d ♦ d e t(B );

comment observe than rank(k) ■ n. 

diagonalize the matrix k using algorithm 3.16} 

k jj ♦ 0  fo r r  < 1 * n; 

end.
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COMMENT

One can observe that the above method coincides with algorithm 3.16 

when A represents a f in ite  abelian group.

PROPOSITION 7.2

Algorithm 7.1 correctly computes the canonical structure of G In 

0(s**M(s^)) elementary operations, where s 1s the size of A. □
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S. APPLICATIONS

The diagonal1zat1on of an Integer matrix Is shown to have an 

appl1cat1on;

A. computing the canonical structure of a f in ite  or In fin ite  abelian 

group represented by a set of defining re lations.

B. computing the set o f  a l l  solutions (o r a particular solution or a 

basis for the general solution) 1f  any, of systems of linear 

D1ophant1ne equations.

One can find fu rth e r applications 1n:

C. Geometry Of Numbers
n x 1

Suppose that al t . . . , a n are lin e a r Independent vectors 1n Z 

and

A (a j.........aR) -  (x  : x
n
Z u ,a ., u< e Z } 

1 - 1  1 1 1

Then A Is a la ttic e  with basis (a ^ .........an) .

Using HNF and SNF algorithms one can compute a triangular or 

a canonical basis for the la tt ic e . Moreover one can compute the 

structure of a sublattice given the structure of the la tt ic e . For 

further details  see Cassels [7 ] .

D. Matrix Theory

Suppose that A 1s a square matrix with entries from R[x] where 

R Is  a ring and R[x] Is  the ring o f a l l  polynomial with coefficients 

from R. The using the algorithms described In the previous sections one 

can compute the HNF and SNF of the m atrix; this can be done using an 

algorithm computing the gcd of two polynomials (see Knuth [3 5 ]).

For further d e ta ils  see Gantmacher [1 9 ],
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E. Linear Algebra

The method mentioned In the previous sections can be used for 

the computation of the Invariant polynomials of the characteristic 

equations» the elementary d iviso rs and the eigenvalues of a matrix 

with entries from a ring  R.

The characteristic equation of matrix 1s said to be the equation 

AX -  XX. X e R.

The invariant polynomials L j ( x ) .........Lf (X) are the diagonal elements

of the SNF of the matrix A -X In and det | A -X IJ  -  n L ^ X ) Is the 

characterietio polynomial Of A.

One can factor L^(X) In such a way that

®n a1t
L1(X) -  P j11 . . .  psls  for 1 s 1 $ r

where e Z and p.j 1s a lin ear funct1on+of X for l s l  s s .  Then 

the P j's  are called the elementary divisore  of A -XIn and the roots 

of the p j1 s fo r I s  1 s n  are the eigenvalues of A.

Therefore one can re adily  see the application of the SNF algorithm 

In the computation of the above values. For further d e ta ils  one can see 

Lancaster [37] and Gantmacher [1 9 ]. For factorization of polynomials 

see Aho et al [ 2 ] .

P. System Theory

The use of the HNF and SNF algorithm Is essential fo r the solution 

of linear modular systems In system theory and c irc u it  theory. For 

details see Zadeh and Polak [5 5 ].

"*That 1s ax + b fo r a. b 1n R



Q. Integer Programming

An integer linear programing problem (abbreviated ILP) has

the form:

n
minimize z ■ £ a*, x. * 0 

1 - 1  11 1

n
(8 . 1)subject to Z a1j xl -  bj for 2 s j  s m

and i  0 Integer for 1 s 1 s n

The ILP 1s a well-known NP-complete problem see Garey-Johnson [2 0 ].

Dropping the constraint a 0 for 1 s 1 s n, then the problem

has a polynomial time solution. One can solve the system

using algorithm 6 . 1 .

Further In order to obtain the minimal solution fo r z from the 

general solution

using the EEA algorithm.

The SNF algorithm also has a standard application In the 

method of ILP solution described in Hu [25] p.325.

H. Algebrale Group Theory

For computations over ideals of rings* see Newman [42] •

z -  p j t j  ♦ . . .  ♦ pr t r

one can compute t ^ 's ,  fo r 1 s 1 s r  such that 

£ t 1Pi ■ |gcd (p l . . . . . P r )|• • • • •



COMPUTATIONAL PROBLEMS ON FINITE ABELIAN GROUPS 

REPRESENTED BY AN EXPLICIT SET OF GENERATORS
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1. INTRODUCTION

In this chapter computational problems In abelian groups represented 

by a set of generators are Investigated. The upper bounds on the time 

complexity of the algorithms presented here are polynomial 1n terms of 

the order of the group and exponential 1n terms of the size of the 

Input.

In the construction and analysis of the algorithms presented here, 

certain assumptions on the representation of the group elements are 

done. I t  Is assumed that every element of a group G has a binary 

representation of length at most 0(1og |G|). One can see that th is  

convention 1s reasonable, since the |G| elements of a group G can be 

assigned an Integer of the set ( 1 , 2 , 3 , . . |G|C> via an In jective 

function, where c 1s a positive constant Independent of G. I t  1s also 

necessary to consider £ the number of elementary operations required for 

a group operation. In Section 9 1t Is assumed that £ ■ 0(logc |G|) for 

some positive constant c which does not depend on G, although 1n a l l  

other sections the time complexity bounds are functions of € . For 

example In Z* an element can be represented with a t most logn b its  

and a group operation requires only M(n) elementary operations.

Sim ilarly the above assumed bounds apply to permutation groups and to 

the form class group (see £47], £30] and £3 1]).

In Section Z Shanks' algorithm for computing the order of a group 

element together with an algorithm for computing a power of a group 

element Is presented. Moreover an algorithm for computing the order of 

a group element with better space complexity than Shanks' algorithm 1s 

presented ( 1t  Is assumed that the order of the group 1s g iven).
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In the th ird  section an algorithm for computing a set of defining 

re lations for a p-group H* ■ <H,x>, where H has a known basis,1s presented; 

1t  requires 0 (|H*11>r2+cc) elementary operations.

In Section 4, two algorithms for computing a basis fo r H* given a 

set of defining relations are presented; both require polynomial time In 

terms of the size of the Input.

In section S an algorithm for computing a basis fo r a f in ite  abelian 

group G 1n C (| G | ^ 2+e£) elementary operations 1s given. This upper bound 

Improves Savage's bound of 0(|G|2£) (see [3 2 ])

In Section 6 a membership testing algorithm Is  given.

In Section 7 the problem of computing a basis for a subgroup 

represented by a set of generators, of a group with known basis 1s 

Investigated. The existence of a polynomial time algorithm for this 

problem 1s proved.

In Section 8  algorithms for computing a basis fo r the union and 

Intersection of two f in it e  abelian groups F and G Is Investigated. An 

upper bound on th e ir time complexity of 0((|F||G|)* *?) Is proved.

In Section 9 the re la tiv e  complexity of the problems mentioned 

above, the problem of factoriza tion  and primal1ty  testing 1s examined.

A classification  of the complexity of the problems Is established. More­

over the role of the Extended Rlemann Hypothesis 1n speeding algorithms 

and Improving bounds 1s Investigated.

In Section 10 some applications of the algorithms of this chapter

are discussed.
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2. THE COMPUTATION OF THE ORDER OF AN ELEMENT OF A  GROUP

The procedure ORDER(x) given below 1s due to Daniel Shanks (see 

[4 7 ] ) j given an element x of a f in ite  abelian group of unknown order.

I t  computes the order of x by means of the "baby-giant step" strategy.

ALGORITHM 2.1 

Procedure ORDER(x) 

begin

k 0 ; h <► u;

1 . repeat

k ■*- k+i

r -  r*V2i
compute the set L j ■ {x* : 0 s 1 s r )

3. compute the set L2 ■ {x^r :0 s j s r )

4. Sort the set L^i

6 . for each c do

begin

I f  ■ 11 fo r some « L  ̂ then

comment Testing whether or not 1, c L, one may use binary search.
--------------- 1\ C j  r  *
L «- • t 2 equivalent to x A ■ xJ* for some 1^, J ^ )  ;

6 . end

7. h «• m1n { |1  ̂ - J^r|);
8 . u n til h f  0 }

return h; 

end. Q
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PROPOSITION t .L

The procedure ORDER correctly computes the order of the element x 

in 0 (|x | l/ * (log* | x| + E ) elementary operations.

Proof

The correctness of the procedure ORDER follows from the fact that 

1t  merely computes the order of x by means of d ire c t search fo r matches 

of the form

x 1 -  xj r  with 1 -  j r  t  0

and the order |x| 1s the minimal |1—jr|  > 0 deduced from them.

Let r k denote r  a t the k-1terat1on of loop 1”8. The computation 

of the set Lx and L2 requires 0 (rk) group operations. Step 4 requires 

0 (r k log r k) comparisons using "heap sort" (see Proposition 1.1.1) 

comprising 0 (rk log r k log |x|) elementary operations. Loop 5-6 

requires at most r k applications of "binary search" and therefore 

requires 0 ( r k log r fc) comparisons comprising O tr^ log r k log |x|) 

elementary operations* using Proposition 1 .1 .2 .

Now le t  the n-th Ite ra tio n  be the last one. Then

W  »  ' i i

because x^r_ i f  1 for 1 s 1, J s r n_i* Therefore 

r n -l  "
p2 ( n - l ) / 2<| s |x |l/ 2  implies that n ■ log |x| -  1
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Hence, from the above analysis the procedure requires

0( Z r ke + log |x| Z r k log r . ) ■ 0 (/ [x f  (lo g 2 |x| ♦ O )
1 - 1  K 1 - 1  K K

elementary operations. □

S a ttle r and Schnorr in [44 ] gave a probabilistic  algorithm 

computing the order of an element of an abelian group G. The expected 

computational time Is exactly the same as the time required by Shanks' 

algorithm. The space complexity of their algorithm requires a constant 

number of registers (s t r ic t ly  speaking 1t  requires 0 ( 1og |x|) bits of 

memory). Shanks' method requires 0 (|x | ^ 2 log2 |x|) b its  of memory 

as one can observe e a s ily . Hence their prob ab ilistic  method Is very 

practica l, since problems of th is  size can overload the memory of a 

computer. Note that the order of the element since 1t 1s computed by 

the prob ab ilistic  algorithm given 1n [44] I t  has a c e rtific a te  of 

correctness.

Furthermore an algorithm computing the order of an element x of 

an abelian group G. given x and |G| 1s presented below; it s  computational 

time complexity Is of 0(|G|l ^24€) elementary operations and Its  space 

complexity 1s of 0(1og |G|) b its  of memory. One of the applications of 

the algorithm may be on computations 1n Z£, since 1t  1s known that 

I IJ I  " P -1 -

ALGORITHM 2.3

INPUT : An element x of a group G and the order |G|* of G 

OUTPUT : The order h of x
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begin

factor |G|;

comment Use the naive method of t r ia l  and e rro r.
° i 01 it

Let |G| »  pj . . .  pk ;

x i «- xqi with qi ■ |G|/p11 for 1 s 1 s k|

compute the minimal 6  ̂ for 1 s 1 s k :
n 3

n •*- n

P16 ,
l ;

l - i
Pi 1i

end. 0

PROPOSITION 2.4

Algorithm 2.3 correctly computes the order of x 1n 

0(|G | 1 /2  M(log |G|) + log2 |x|0 elementary operations. Moreover Its  

space complexity Is 0(1og |G|) binary bits of memory. □

One may Improve the time complexity of the algorithm by using a 

more sophisticated factorization algorithm requiring small memory space.

This section closes with an algorithm fo r  computing a power of a 

group element. This "power algorithm" is referred 1n Hindu manuscript 

200 B.C. (See Knuth [3 5 ])

ALGORITHM 2.5 

Procedure POWER (x .k )

begin
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n 11 . compute a< e { 0 *1} :  k ■ £ a. 2 ;1 1-0 1
y +• x ; z • Is

3 . for 1 -  0 to n do

begin

I f  a, -  0 then
1 2

y -  y
4. else
5. 2 ♦ zy;

6 . end
k

return x z ; 

end. □

PROPOSITION 2.6

Algorithm 2.5 computes xk 1n 0(log k M(log k) ♦ C log k) 

elementary operations.

Proof

Step 1 requires a t most logk divisions comprising 0(log k M(log k ))  

elementary operations. Moreover n ■ 0(1og k ).

Using the fact that steps 3-4 require 2 group operations one can 

see that loop 2-6  requires 0 ( 1og k) group operations. □
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3. THE COMPUTATION OP A SET OP DEFINING RELATIONS FOR THE

p-GROUP < H,x >

In this section the problem of computing a set R of defining 

relations for the p-group H* • <H,x> 1s Investigated; given a basis 

for H, the orders of the basis elements, an element x and Its  order, 

compute the set R. The procedure DEFIREL presented below computes 

a set R as 1t 1s deduced by the following proposition;

PROPOSITION 3.1

Suppose that H -  <<b., . . . , b ^ » ,  H* ■ <H,x> are f in ite  abelian
h

p-groups. I f  |b1 1 -  p and |x| ■ p , then there exists an Integer

0 < k s h such that

_k n 6 , _°i
R » {xp ■ n b. ' }  u (b? ■ 1 for 1 s 1 < n) (3.1)

1 - 1  1 1
OLa

for some 0 s 61 < p \  1 < 1 < n, Is  a set of defining relations for H* 

and pk Is the smallest possible exponent of x 1n this form of re lations.

Proof

Since the b ^ s  are Independent, the only existing relations of x 

and b^'s are of the form

xY ■ n b,  ̂ y ,  0, « Z (3 .2 )1-1 1 1
Let p > 0 be the exponent of x with the smallest value In  one of the 

relations of the form (3 .2 )



z

-7 5 -

n 6. 
x y -  n 

1 - 1  1
(3 .3 )

I t  w ill  be shown that y divides the exponent of x In every relation 

of the form (3 .2 ) .From (3 .2 ) ,  (3 .3 ) can be deduced that

for some X c Z such that 0 s Y - X y < y  . I f  Y-Xy > 0 , then the exponent 

Y- Xy  of x 1n (3 .4 ) Is positive and smaller than y contradicting with 

the deflniton of y. Therefore Y-Xy ■ 0 and thus y divides Y.

Now consider the re lation

Any set of relations R* fo r H* In terms of b^'s  1s polynomial 

time reducible to the set R of Proposition 3 .1 . A method fo r constructing 

R from R* In  polynomial (almost linear) time 1n terms of the size of R*

1s given below.

PROPOSITION 3.2

Given R* a set of defining relations for the abelian p-group 

H* ■ « <  b1#. . . , b n» , x > ,  tha order p of bj for 1 * 1 s n and the 

order ph of x , then there exists an algorithm for computing the set R 

of Proposition 3.1 1n 0((m loglog ||R*||+ n)M(1og l|R*II) )  elementary 

operations, where m 1s the number of relations 1n R* and ||R* || denotes 

the maximum absolute value of the exponent of b^'s and x 1n the relations

(3 .4 )

Since y divides ph, 1t follows that y ■ pk for somek > 0 . □

of R*.
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Proof
h j  n  C i i

Suppose that R* -  {x  1 ■ n b, 1 s 1 s m)
1-1 J

Compute s ■ gcd (h1 .........hm) and t  ■ hx/s fo r some X such that

1s the required sett The analysis follows from Proposition 0.3.3 and 

0 .3 .2 . □

The following procedure computes the set R of Proposition 3.1 

by means of the "baby-giant step" strategy Introduced 1n [4 7 ].

ALGORITHM 3.3

procedure DEFIREL (bx» . . . « b n* x, p 1, . . . , p  °» ph) ;

5. compute the set L2 ■ {w^Wg.••w„:w^ « L jl  *or * * * * n };

6 . sort the elements of the set L2;

7. fo r each c do

t  One can see that the construction of R' from R* (as above) Is 
equivalent to the transfoimatlon of the matrix associated with R* 

to the matrix associated with R' using ELIMINATECOL.

hx A 0. Then compute * c ^ / t  mod paJ fo r 1 s J s n. 

I t  1s not d if f ic u lt  to seet that

.  n 61 _°1
R' -  {x -  n b1 u { b ^  ■ 1,  1 Î  1 S

1 - 1
-  l ,  1 s 1 i  n}

begin

1 . compute the sets -  {b* : 0  s k s r ^ )  for 1 s 1 x n;

2 . compute the sets L2j ■ (b ^ " *  : O i  k i  r ^ )  for 1 s 1 s n;

3. compute the set L3 -  ix p : O s k s h } ;

4. compute the set •••*n 5 *0  * L3 * *1 4 L11 *or * * * *

begin



/

1f  i j  * L2 then

L «- U x * t 2 for some l z e L2^»

comment To test whether or not t j  e L£ one may use "binary search" 

The set L contains relations o f the form

„k n e4 n A^r.
xp n b< 1 • n b/ 1 11»1 1 1«1 1

with 1 s 0 ^, s r 1 for 1 s 1 s n and O s k s h

b. end

Let A be the relation 1n L which x has the smallest exponent; 
al

R •«- {bÇ ■ 1, for 1 i  1 < n} u {A } ; 

end. □

PROPOSITION 3 .»

The procedure DEFIREL co rre ctly  computes a set of defining relations 

for H* »  <H,x> In 0(|H*|l/ 2 [log|H*| log2 |H*| ♦ Ç]) elementary operations.

Proof

The correctness of DEFIREL follows from the fact that I t  merely 

computes the set R as I t  1s given 1n Proposition 3.1 by means of d ire ct 

search for a match

aA n Yi
xH ■ n b. fo r  some 0 s \  s h 1-1 1
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using that there exist Integers 8  ̂ fo r U i  i n  such that
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Y1 "  ♦ ir i ♦ for 1 * 1 * n 

wlth 1 $ i *̂1*

The computation of the sets and L2i requires 0 ^ )  group

operations fo r 1 s 1 s n. Hence steps 1-2 require

0 ( E r<) * 0 (|H * |^2) group operations. Step 3 requires just 
1 - 1  1

h -  0(log |H*|) group operations.

The computation of L j In step 4 requires

lLl l  -  |L3| S |Ll t | -  h ^  ^  -  0(|H* |1 /2  log |H*|)

group operations. S im ilarly step 5 requires |L2| -  0 (|H *|^2) group 

operations. Step 6 requires 0(|L2 |1og|L2|) ■ 0(|H* | ^ 2 log |H*|) 

comparisons by Proposition 0.3.6 comprising 0(|H* | ^ 2 log2 |H*|) 

elementary operations. Loop 7-8 requires |L21 applications of the 

"binary search" algorithm comprising

0(|L2 |log|L^|) -  0(|H*|1/2 log2|H*|) comparisons, or 0( |H*|1/2log3 |H*|) 

elementary operations.

From the above analysis the proposition follows. □

3.5 A WORKED EXAMPLE

Let H -  « 3 , 3 1 »  e Z|2 and x -  15. The order of 3, 31 and 15 Is 8,

2 and 2 respectively. A sat of defining relations for H* ■ <3, 31, 15> 

w ill  be computed using DEFIREL (H, 15, 23, 2 ,2 ).

-7 8 -
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F irs t  we have * f23/2T -  3 and r 2 -  f*1/2l  -  2.

At step 1 one can compute

L12 ■ {3° ■ 1, 3l  ■ 3, 32 ■ 9, 33 ■ 27} and L21 ■ {31°-1,311«31,322 ■ 1} 

(W .l.o .g . le t La  -  {31° ■ 1, 311 -  3 1 }).

At step 2 one can compute

L21 -  {30 #3 - l ,  33-27, 36*25, 39 -3 } and L£2 ■ {31°-1, 312«1 , 314»1} 

(W .l.o .g . le t  L22 ■ (31° »  1 } ) .

2° 21
At step 3 one can compute L3 ■ {15 ■ 15, 15 « 1 } .

At step 4 one can compute

L1»{1513°31°"15, 15l .3 l .31°-13. 15l .32.31°«7, 15l .33 .31°-21,

lb 1.3°.311b17, 15l .3l .31l -19, 15l .32.31l -25. 15l .33.31l -12.

152.3°.31°«1, 152.3l .31°-3, 152.32.31°-9, 152.33.31°-27,
152.3°.311“31, 152.3l .311-29, 152.31231l -23, 152. A l l  ■ 5}

At step 5 one can compute

L2 -  {3°31°-1, 3331° -  27, 36 .3i° -  25, 34 .31° -  3}

At step 6 the 11st L2 Is sorted and a fte r loop 7-8 one can obtain

L -  {15l .32.31l «36.31°. 152.3°.310-30 .310 ,152.3 1.31°-39 .310 ,

152.33.31° ■ 33 .31°)

Therefore R -  {IS 2® -  34 .31, 38 -  1, 312 -  1} Is  a set o f defining 

relations for <3,31,15> c Z S2. □



80

4. THE COMPUTATION OP A B A S » FOR THE p-GROUP < H.x >

In th is  section the following problem Is considered:

PROBLEM 4.1

Given the f in ite  abelian p-groups H -  «b j^ .........bn>>* H* " <H»X>*
a i h

with |b^| ■ p for 1 s 1 s n and |x| ■ p for some prime p and a 

set R of defining relations for H*, compute a basis for H*. □

In view of Proposition 3.2 every set of defining relations for H* 

1n terms of b ^ s  and x can be reduced to the set given by Proposition 

3 .1  1n polynomial time (almost lin e a r) 1n terms of the size  of the 

Input set. Hence w .l.o .g  one may assume that the set R of defining 

relations given In Problem 4.1 1s th a t of Proposition 3 .1 .

Two algorithms for computing a basis for H* of Problem 4.1 are 

presented below. The f ir s t  method 1s based on the matflx associated 

with the set of defining relations and makes use of the d ire ct method 

presented 1n Chapter 1, Section 3. The second method 1s based on 

case analysis and makes use of group properties.

PROPOSITION 4.2

There exists an algorithm for computing a basis fo r H* of 

Problem 4.1 0 (lo g  |H*|)4 , 411oglog |H*| M(log |H*|) ♦ log2 |H*|£) 

elementary operations.

Proof

The set R of the defining re lations fbr the group G Is  associated 

with the (n+1) * (n+1) matrix
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a l
P \  o 0

M ■
• (1 

0 ** p n 0

_ “6 1 . . .  - 6 n p\
The order |H*| of H* 1s given by

IH*I ■ det(H) «  ph !  p* 1 (♦•!)
1 1-1

Using algorithm 1.3.16 one can compute a diagonal matrix D which 

represents the canonical structure of H*. Moreover using the 

algorithm of Proposition 1.4.15 one can compute unlmodular matrices 

B and C such that

BAC -  D

Then 1t 1s not d if f ic u lt  to show that

b j :■ b j1 1 .........bn1n x 1,n+l l i f t  n+1 (4 .2 )

Is  a basis fo r H*. The computation of the bf's  can be done by means 

of computing the bk Jk 's using the "power algorithm" 2.5 .

The time complexity of the method described above follows from 

Propositions 1.3. 16, I I . 2.6 and remark below coro lla ry  1.4.16 using 

the facts (4 .1 ) and that

n • 0(log |H*|). □



L

-82

Another algorithm for Problem 4.1 1s given below; Its  worst-case 

complexity time upper bound 1s shown to be better than the upper bound 

proved for the method of Proposition 4.2.

ALGORITHM 4.3

INPUT ; A set of defining relations for H*

■ 1 for 1 s 1 i  n, xp « h )  (4 .3 )

where x, b. ' s  are as In Problem 4.1

OUTPUT : A basis for H* ■ <H,x>

Procedure BASIS (H ,x,R)

case k of

1. 0: return H* «  « b ^ , . . . , b n>>;

2. h: return H* ■ « b ^ » . . . , b n»x>>• • • • »

end
L

3. r -*• logp (gcd ( p , 6 j .........¿n) ) i

4. y 1 - 6 ^/pr  for 1 s 1 s n;

5. u ■*- x it bj ; (4 .4 )
1-1

U  r  -  k then 

6 . return H* ■ « b ^  

else

bn.u>>;
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t  Index (Y t :gcd (Yt»P ) "  l ) ;

I f  r  ■ 0  then

H' « b ^ » .  .........bn>>1

R' -  {x
k+ct«. 

P t n b
6 ^

1 , b^p ■ 1 fo r 1 s 1 s n , 1 M i  xf

tt. BASIS ( H1, x.  R' ) i  

else

H" <*■ « b ^ t . .  • »b^_^» bt+l** * *,bn,u>> * 

a. X ♦ a t  + k -  r ;

10. compute an Integral solution of the system:

6 i (pX" k-P _rz) * ♦ Y t* . z t  -  0, 1 s 1 s n

11 . R" «■ ix H ■ uz n b  ̂ bb  ̂ ■ 1 fo r 1 s 1 s n, 1 M i  x*1 *1 ) »  (4*5)

U .  BASIS (H .\ x , R") > 

end

end. □

PROPOSITION 4.4

Algorithm 4.3 correctly  computes a basis for H*. 

Proof

Case k ■ 0 In th is  case
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therefore x « H • H* ■ « b ^ .........bn» .

Case k -  h . In th is  case the set { b x.........bn,x } has Independent elements

and thus correctly H* • « b l t . . . , b n, x » .

Case k -  r . I t  1s not d if f ic u lt  to show that ( b j , . . . , b n,u } 1s a set of 

Independent elements using the facts: (1 ) pk 1s the smallest possible 

exponent of x 1n relations of the form (3 .1 ) and (11) { b ^ « . . . t b n) 1s 

a set of Independent elements. Moreover x e <bl t . . . ,b ntU>, because

I I  . y

x -  n b, 11 u 1-1 1
n

Hence H* -  « b j bn»u>> .

Case r  < k. In this case there exists an Integer t  such that

gcd (y t »P) ■ 1
and thus there exist Integers y and v such that

Therefore (4.6)

Moreover one can observe that the order of u 1s pr .
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subcase r  ■ 0 . Then u ■ 1 and H* ■ <H ',x>. The correctness of the 

computation of the set R' of the defining relations for H' follows 

from (4 .3 ) and the fact that |bt | • p *. Therefore 1t Is suffic ie nt 

to ca ll recursively BASIS fo r a simpler problem« since |H'| s |H'|/p.

Subcase r  + 0 . As 1n the case k ■ r  1t Is not d if f ic u lt  to show that

the set {b 1, . . . . b t _ 1, bt+1.........bn«u) has Independent elements. From

(4 .6 ) follows that H* -  <H",x>. The set R" of the defining relations

for H" 1s correctly  computed since
S |b|| Pk

(1) A -  log (|H*|/|H“ |) -  log ^ -----------------------»  logp( |bt |pk/|u|)
n |b<|. |u|

1-1 1 
1|»t

and (11) Using (4 .4 ) and (4 .5 ) follows that

,p * - wz n b
i n

Zl+Yi- * t2

and by defin itio n  pk divides p* -  wz. hence using (4.3)

DkinA-k -r « 61(pX' k-p"r*) u *1^ *  Yt
XP (p  -P  z) „ n b i -  n b4 1 1 bt

1 1 1J»t 1 1

and thus follows the system of step 10.

Hence In th is  case suffices to c a ll the procedure BASIS recursively 

for a simpler problem« since |HN| s |H|/p. □
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PROPOSITION 4.5

Algorithm 4.3 computes a basis for H* 1n

0 (lo g 2|H*| (M(log |H*|) ♦ 5 ) )  

elementary operations.

Proof

Step 3 requires 0 (r* (lo g  |H*|) loglog |H*|) elementary operations 

for an application of the Extended Euclidean Algorithm using Proposition

0 .3 .3 .

Step 4 requires 0(nM(log |H*|)) elementary operations fo r d ivis io n s.
n

Step b requires 0(log (w n y ^ )  " 0 (log |H*|) group operations

for n+1 applications of the "power algorithm" by Proposition 2.5 .

The solution of the system of step 10 requires 0(nM(log |H*|)) 

elementary operations fo r divisions.

The recursive application of the procedure BASIS 1s done at most 

log |H*| times» since

|H'| s |H|/p and |H'| s |H|/p

From the above analysis and the fact that n s log |H*| the proposition

follows. □



5. THE COMPUTATION OF THE STRUCTURE OF A FINITE ABELIAN GROUP

An algorithm for computing the order and the complete structure of 

a f in ite  abelian group G represented by a set of generators 1s presented 

below; 1t makes use of the procedures ORDER. DEFIREL and BASIS presented 

In the previous sections.

ALGORITHM 5.1

A set of generators iu ia —  .9n> for the f in ite  abelian group G 

The order, the complete structure of G and a set of basis 

elements for G.

1. o i **• ORDER (g.|) for 1 s 1 s nj

2. compute the set P ■ {p : p prime of for some 1 s 1 s n}

cownent This can be done by factoring a ll o.,'s using Shanks' method 

(see [47 ] )

3. fo r each p c P do

begin

A,j ♦ the largest integer such that p * divides O j, fo r 1 s 1 < n;

4. Xi «■ g^w1 with Wi ■ 0 i/p * for 1 <  1 <  n,

H0 -  <1>;

5. for s ■ ! to n do

begin

6. Rs DEFIREL (Hs_r  xs)

7 . Hs «- BASIS (Hs. 1,xs ,R$)

8. end

INPUT : 

OUTPUT:

begin
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return. the order and the basis's elements o f the p-component Gp of G; 

comment This Information 1s Included 1n Hni see Propositions 4.4  and 4 .5 .

9 . end

return |G| ■ n |G |• 
p«P H

end. □

PROPOSITION 5.2

Algorithm b .I  correctly computes the order and the structure of 

the group G In 0(n|G|1/2(lo g  |G|)3 (lo g  |G|+ ç ) )  elementary operations.

Proof

Step I  requires 0(n|G|1/2(lo g 2 |G| + Ç ) )  elementary operations, 

using Proposition 2.2.

Step 2 requires 0(n|G|1/S+e) elementary operations for factorizations. 

Step 4 requires only 0(n log |G|) group operations using the "power 

algorithm" 2.5.

Step 6 requires 0(|G|1/2 log2|G| + 0 )  elementary operations from 
Proposition 3.4.

Step 7 requires 0(log2 |G| (M(log |G| + £)) elementary operations from 
Proposition 4.5.

Hence loop 5-8 requires 0(n|G11/2log2|G|( log |G | + O ) elementary 
operations and loop 3-9 requires 0(n|G|1/2 log3 |G| (1og|G| ♦  C)) elementary 
operations, since

|P| -  0(log |6| /  loglog |G|).
From the above analysis the proposition follows. □



An algorithm for computing a basis for a group 6 In 0(|G| C) 

elementary operations due to Savage Is  mentioned 1n [3 2 ]. Hence one 

can see that the upper bound has been Improved by at least a factor 

of 0 (|G |).

2
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6 . MEMBERSHIP-INCLUSION TESTING *

Given a generating set <gl t . . . , g n> fo r a f in ite  abelian group G 

and an element h < H > G, an algorithm fo r testing whether or not h 

belongs to G Is  presented below.

ALGORITHM 6.1 

begin

compute the order |G| and a basis fo r every p-component^Gp of G;

comment The computation 1s done as 1n algorithm 4 .1 .

Let G -<<b. »•••»b »  fo r every p-component;
¥ - K np.p

3 ♦ 0RDER(h);

I f  3 f  |G| then

return "h does not belong to G";
Ai Xl

Let 3 -  p1 . . .  pfc ,  where p^'s  are d is tin c t primes;

comment For factorization  of 0 use the prime factor of |g | which are known.

(*j ♦ e/p^ 1 fo r 1 s 1 s k;

'1
u°1 for 1 s 1 s k;

fo r 1 ■ 1 to k do 

begin
n

search for Integers 0 s < |bjpJ  for 1 i  j  s np j :xi * ^

' comment This can be done using the"baby-g1ant step" strategy In a

sim ilar manner as In  the procedure DEFIREL.

I f  the required 6j 's  do not exist then 

return "h does not belong to G "; 
end

return "h belongs to G"; 
end. □

T ,
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PROPOSITION 6.2

Algorithm 6.1 correctly decides whether or not h belongs to G 1n

elementary operations.

Proof

The correctness of the algorithm 1s Implied from the following 

fa ct: There exist Integers y 1 for 1 s 1 s k such that

The upper bound on the time complexity o f algorithm 6.1 follows 

from Proposition 2.2* 3.4 and 5 .2 . □

Suppose that F and G are f in ite  abelian groups, both subgroups of 

an abelian group and F and G.are represented by a set o f generators.

For testing whether or not either F ■ G or F «  G or G e F, I t  Is suffic ient 

to test each generator for membership of the one group In the other.

Hence using algorithm 6.1 and proposition 6.2 one can show the following 

proposition:

0 (|h|1/2 (log  |h|+ G) + n|G|1/2 log3 |G|(log |G|+ £ ))

« l Y i  ♦ V 2  * *•* + V k  "  1 ( 6 . 1)

Then 1t follows that 
k

k
* n x 

1 - 1
(6.2)

Hence h belongs to G I f  and only I f  x  ̂ belongs to G for 1 <1 <k, using
a< p '

the fa ct that x« ■ h for 1 s 1 i  k .
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PROPOSITION 6.3

Suppose that F ■ £  H »  G ■ <gl t . . . , g n> are fin ite

abelian groups. Then the equal1ty-1nc1us1on test can be done 1n

0((k+n) /|F| + |G| log3(|F| + |G|) [log (|F| ♦ |G| ♦ ç ])

elementary operations. □

COROLLARY 6.4

Given a f in ite  abelian group G * <g1» . . . . g n> and an element h 1n 

G, there exists an algorithm for computing an expression for h In 

terms o f the generators g ^ s  In 0( |G |^2(lo g 2 |G| + C )) elementary 

operations.

Proof

Here an additive notation for the group G 1s used. The computation 

of the required expression of h can be done by means of d ire ct search fo r 

a match of the form

h ■ m ^ j  + (6.3)

using the "baby-giant step" strategy.
n

elementary operations» with y -  n
1-1

This requires 0 (u ^ 2lo g y (lo g  y Ç )) 

Imjl (p ro o f sim ilar to that of

Proposition 2 .2 ).

Now 1t w ill  be shown that there exist m^'s for 1 * 1 s n such that 

w -  0(|G|) .  Let the n x n triangular matrix
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“11 .... 
a22

0

be the associated matr1x+w1th a set of defining relations fo r G In 

terms o f 's .

I f  (6 .3 ) holds* then 1t 1s Implied that

1-----cE•••eH
E1__

‘ V ‘ h '

al l  f in
•
• m 0

•• • • • •
• • • *

0 a g„ 0
L n n . n •

One can reduce the m^'s o f L.H.S. (n+1) x n matrix A' modulo a ^  for 

I s 1 s n, via Integer-row operations (see algorithm 1 .4 .2 ). This 

corresponds to a m ultiplication of A' by a unimodular (n+1) x (n+1) matrix

where * denotes an entry. 

Then i t  follows that

LA' g

Hence I f  (m [* ....m ^) denotes the f i r s t  row of the matrix L A ',  then

+S1nce every matrix can be trlangularlzed, w .I.o .g . A Is assumed to be 
triangular. See proposition 1.4.1.



Moreover

|mj | s |a^ | fo r I s  1 i n

n n
which Implies p ■ n |m{ | s n |ai1 1 * |G|.

1*1 1*1 1

Therefore the proposition follows. □

REMARK 6.5

One can see that using algorithm 6.1 one can compute an expression 

of h In terms of the elements of a basis (see (6 .1 ) ,  (6 .2 ) ) .  □
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7. THE STRUCTURE OF A SUBGROUP OF A GROUP WITH KNOWN STRUCTURE

In  this section the following problem 1s considered:

PROBLEM 7.1

Given that F Is a f in ite  abelian group with a known complete 

basis and G 1s a subgroup of F generated by a set of generators whose 

elements are expressed In terms o f the basis's elements of F, compute 

the complete structure of G. □

An algorithm fbr problem 7.1 which runs In polynomial time 1s 

presented below; 1t makes use o f the procedure DEFIREL* given below 

analogous to the procedure OEFIREL of Section 3.
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Procedure OEFIREL*(H,^+i»h^
n Y ü
n f ,  J for 1 i  1 s n+1, |f4I for 1 s 1 s m) 

j -1  3 3

begin

compute an Integral solution of the system:

1i l  X1Y 1J ■ Kn+1 Yn + l,J  * yj l fj♦ y 11 ̂  11 » 1 s j  s "> x1.y 1 € Z•|Fp

coment This computation Is done using the algorithm of Proposition

I .  6.6.

Let (x ,y )*  * K.w be the set of a ll the solutions with 
K e ^(n-Hn+l) w (n+m +l-r).

comnent The Integer r  1s the rank of the system and w1s a vector of 

variables

confute 6j for 1 <  U  n-Hn+l-r:
n-Hn+l-r 

£ k 
1-1

|r
n+1,n+m+1-r )l ;

comment By valuing w : -  6 the xn+1 Is became minimal.

6  ̂ +• 6j(mod(h.|)) for 1 s 1 s n;
6_. i n 6j a*

R^ hn+1 "  1n1 ^  i  «  ^  1 • 1 fo r 1 s 1 i  n)

comment Note that |h^| ■ 1cm {| f j| / g c d (| f j| ,Y jj ) }  fo r 1 s 1 s n. 

return R;

end □
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PROPOSITION 7.3

Procedure DEFIREL* correctly computes a set of defining relations 

for H* In O(n-Hn) M(1og |F |)) elementary operations.

Proof

Computing x^'s for 1 s 1 s n+1 such that

x Bi i  X. Xu n+i _ u l  u n 
hn+1 hl  “ • hn

1s equivalent to compute solutions of the system 
n ir . . x . ^

m i£ iYU  1 m Ytn+i)
n f ,  J 1 ■ n f ,  ** 1

j « i  J j - i  J
n+l

which 1s equivalent to solving 

n
*1J x( “ > ♦ !  *«♦1 + 1 s J s V  » j  « Z |F|

Step 2 guarantees the minimality o f xn+j  and thus the correctness 

proof 1s completed.

Step 1 requires 0([n-Hn] M(log|F |) )  elementary operations for the 

computation of the set o f a ll  the solutions of the system using 

Proposition 1 .6 .6 .

Step 2 merely requires 0([n-*nO M(log|F |) loglog|F|) elementary 

operations fo r applying the E .E .A . and step 3 requires 

0((n+m)2 M(log IF I ) ) elementary operations.

Using the fact that loglog |F| <m, the proposition follow s. □



ALGORITHM 7 .4

INPUT : A f in ite  abelian group F ■ « f j .........1^1 for 1 s 1 s n,

a subgroup G -  < g ..........gk> and a set o f relations

Y4-
g., * n f< fo r 1 & j  s k .
J 1-1 1

OUTPUT: The complete structure of G and a complete basis for G. 

begin

for each p-component of F do 

begin

H ♦ <g[p^>

comnent The sets {g|p^.........g£p^ } , { f [ p^ , . . . , f ^ }  are the generating

sets for the p-components of G and F respectively 

for 2 s 1 s k do 

begin

R, -  DEFIREL*(H_,gip ) ,g ip )= n ( f (p V 1S fo r 1 s j  s 1 ,| f ip ) | V i)  
1 P 1 J i » 1 1

Hp +  BASIS(Hp* gi# R ^ i  

end

return Hp; 

end

end. □

PROPOSITION 7.5

Algorithm 7.4 correctly computes a complete basis for G In 

0 ( k(log|F|)3 M(log|F |) ♦ log2 |G|0 

elementary operations.
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Proof

The correctness of the algorithm follows from the correctness 

proofs for the procedures DEFIREL* and BASIS.

The upper bound on the time complexity of the algorithm, follows 

from Propositions 3.4 and 7 .3 , since

ms log |G| and n s log |F|

where m denotes the number o f the basis elements for G. □



8. THE COMPUTATION OF TH E STRUCTURE OF THE UNION AND 

INTERSECTION OF ABELIAN GROUPS

A. UNION OF FINITE ABELIAN GROUPS

Suppose that the f in ite  abelian groups F ■ < f j .......... f m> and

G ■ <gl t . . . , g n> subgroups of the same group are given. I f  <F u G> 1s 

an abelian group, then for the computation of Its  order and Its  structure, 

1t 1s suffic ie nt to apply algorithm 4.1 for H * < f ^ , . . . , f m.

Since.|H| -  0(|F| |G|), the computation o f a basis for <F u G> requires

0(m+n) /|FTfGT •

B. INTERSECTION OF FINITE ABELIAN GROUPS

In case which <F u G> Is abelian, the computation of the order of 

the group <F n G> can be done by computing the orders of the groups F,G 

and <F u G> and then

|<F n G>| * |F| . |G|/ |<F u G>|

The computation of the structure o f the group F n G (and Its  order 

In the case which <F u G> 1s non-abellan) 1s apparently d if f ic u lt  since 

I t  seems that finding a generating S for F n G Is hard. The computation 

of S and consequently Its  complete structure can be done using the 

following algorithm.
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INPUT : Two f in ite  abelian groups F ■ < f j ......... fB> and

G ■ <g^.........gn> with <F u G> abelian group.

OUTPUT: The complete structure and a complete basis for <F n G>

begin

1. compute a basis « b ^ .........bn>> fo r F using algorithm 5.1 ;

2. compute a basis « y^ » ...» y^>> fo r G using algorithm 5.1 ;
X z z

3. compute x ^ 's . z ^ 's : b j l  . . .  bkk ■ Y j * . . .  Y ^ w lth  |x^| s |bj | and

|zjl <  |Yj|; (8.1)

comment This 1s done using the "baby-giant step" strategy.
xi Xn4. S «- {s : s ■ bj . . .  bR for every match 1n (8 .1 ) } ;

5. compute a basis fo r <F n G> ■ <S> using algorithm 7 .4 .; 

end. □

PROPOSITION 8.2

Algorithm 8.1 correctly computes the complete structure and the 

order of F n G In 0((|F| |GD^24€) elementary operations.

ALGORITHM 8 .1

Proof

Step 3 requires 0(/|F| |G| (log|F| |G|) + O )  elementary operations 

for the computation of the matches (S .l^ a n d  1t 1s not d if f ic u lt  to see 

that



PAGE
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INPUT : Two fin ite  abelian groups F ■ < f j * . . . , f B> and

G * <Sj.........9 n> with <F u G> abelian group.

OUTPUT: The complete structure and a complete basis for <F n

begin

1. compute a basis « b 1#. . . , b n»  fo r F using algorithm 5.1 ;

2. compute a basis .........y x>> for G using algorithm 5.1i

ALGORITHH 8 .1

comment This Is done using the "baby-giant step" strategy.

5. compute a basis for <F n G> ■ <S> using algorithm 7 .4 .; 

end. □

PROPOSITION 6.2

Algorithm 8.1 correctly  computes the complete structure and

Step 3 requires 0(/|F| |G| (log|F| |G|) Ç )) elementary

Then the upper bound on the complexity of the algorithm follows 

propositions S.2 and 7 .3 . □

I t  has been shown that theJ steps required by the "baby-giant step1 
1s equal the square root of the number of matches.

and

(8 . 1)

x. z . z

X, X
4. S ♦ {s : s ■ bj . . .  bn for every match In (8 .1 ) } ;

order of F n G In 0 ((| F j |gD^^'*€ ) elementary operations.

Proof

for the computation of the matches (8 .1 )+and I t  Is not d if f ic u lt  to see 

that

|S| ■ 0 « F |  |G|)

+Us1ng that 
matches of tl

and |zj| < IY4 I .V 4# follows that the number of 1s equal to J J

V 1*11 «J» IyJ - 0 ( IFI IGI )
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9. RELATIVE COMPLEXITY OP THE PROBLEMS M CHAPTER II

A. Computing Tho Ordor Of An Etomant And Factoring An bitagar

Comparison of the complexities of computing two d istin ct functions 

can be done formally as follows.

DEFINITION 9.1

Suppose that f  and g are functions; f  is called polynomial time 

reducible to g, i f  there exists a T u r ln g  machine which on Inputs n and 

g(n) computes f (n )  In 0(logcn) steps fo r some constant c depending on 

f and g. The re lation is denoted by

f < P 9

If  f <p g and g < ^ f, then f  is  called polynomial time equivalent to g

denoted f  «  g. a 
P

The functions which are investigated 1n this subsection are the 

follow ing:

DEFINITION 4.2

Suppose that h is  the exponent of Z*. Then define the function 

0(n) !• h P «* " !

and le t  0(n) denote the number of elementary operations required by an 

optimal algorithm for computing 6 (n ).

Moreover define the function

f* (n ) :■ (p t .........pk)
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where the p^'s are a ll the d istin ct prime divisors of n and le t F(n ) 

denote the number of elementary operations required by an optimal 

algorithm for factoring the Integer n. a

Two useful facts about the m ultip licative  group of Integers mod n are 

given 1n the following two theorems; both assume the truth of the Extended 

Riemann Hypothesis.

THEOREM 9.3 (E .R .H ) Ankeny-Montgomery (see [4 1 ])

There exists an absolute constant c>  0 such that 1f

H>! ♦ G . where G Is a f in ite  abelian group

Is a non-tr1vial group homomorphism, then there exists a prime p such 

that

Y(p) / 1 and p € [2 , c (lo g n )2] .  a 

THEOREM 9.4 (E .R .H ), Dixon [13]

There exists a polynomial time algorithm for computing a generating 

set for Z*.

Proof

Let B be the set of a ll primes 1n the Interval [2 , clog2n ]. I t

w ill be shown that Z* » <B>.n
Let G ■ Z*/<B> and ip the canonical homomorphism

i|/:Z£ ♦ G.
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The kernel of ^ 1s <B> and thus

<Kq mod n) ** 1 V q in B

By Theorem 9.3 Is t r iv ia l  and thus G = 1 and Z* »  <B>. o 

Two well-known functions are the following:

DEFINITION 9.5
a1 a_

Let n * . . .  pm d istin ct primes p .f 1 <  1 <  m. Then

<Kn) :• p1
a.-1

1s the Euler function. Note that |Z*| * ♦ (n ).

Moreover le t

X '(n ) 1cm {p j-1  . . . , p m-1>. a

The relation between the computational complexity of f* and an integer 

function g Is studied In the following lemma due to M ille r (see £4(0).

LEMMA 9.6 (E.R .H )

I f  g(n) 1s a function satisfying:

( I )  A '(n ) divides g(n)

( I I )  log (g (n ))  -  0(logcn) for some constant c depending on the

function g)

then f* <  pg. o
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PR0P0SITI0N 9.7 (E .R .H .)

f * «  9 
P

Proof

( I )  F irs t  one can compute a generating set S fo r Z* In polynomial

time using the algorithm of Theorem 9.4 . Knowing the prime factorization 
oii ak

of n = Pj . . .  pk one can compute the order |g| of each g 1n S In 

polynomial time; this can be done by raising gm with m = n/p.ai in the
6i 1

smaller power of p  ̂ such that (g ) P1 »  1, for 1 <  1 <  k and then
S1 sk

|g| = P1 . . .  pk . Hence e(n) can be computed in polynomial time 

as

e(n) -  (1cm { |g|: g C S } ) ^ 09" !

Therefore

e s p  f*

( I I )  Since

\ '(n )  divides e(n)

and log (e (n ) )  -  1 og(hi*1 °9n”l ) .  o (log2n)

1t follows from Lemma 9.6 that

f* <p 8. o

Now the re la tion  of the complexity of factoring and computing the 

order of a element of a group 1s Investigated.
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DEFINITION 9.8

Problem T Given a generating set S for an abelian group G of order at 

most n and a element x In G, compute the order of x . a

Let T$ x(n ) denote the time in terms of elementary operations 

required by an optimal algorithm for problem T and le t

T (n ) := max {T c in ) : x € G * <S> and IGI < n } .  a 
S,x b,x

PROPOSITION 9.11 (E .R .H .)

For some polynomial p the following holds

T (n ) >  e(n)/p(log n)

Proof

One can compute e(n) in the following way. F irs t  compute a generating 

set S for Z* in p ^ lo g  n) elementary operations fo r some polynomial

Pj using the algorithm of Theorem 9.4. Second compute the orders 

|g| of each g c S using optimal algorithms; this requires

E
gcS

(n)

elementary operations. The value of e(n) 1s given by (1cm {|g|:g  € S>)^°9 n 

which can be computed 1n p2(1og n) elementary operations. Hence the 

computation of e(n) in the above way requires

0*(n) :■ p .(lo g (n ) ♦ e 
1 g€S

P2Oog n)

elementary operations.
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Now using that |S| * p4(log n) for some polynomial p4 follows

that

0*(n) <  PjOog n) + p2(lo g  n) ♦ p4(log n) T (n ) 

or for some polynomial p follows that

0 *(n) <  p(log n) T (n ) (9 .1 )

Therefore from the obvious relation 

O(n) <  0*(n)

and (9 .1 ) the proposition follows. a

COROLLARY 9.12 (E .R .H .)

For some polynomial P» the following holds

T (n ) >  F (n )/p (lo g  n)

Proof

From Proposition 9.7 I t  follows that 

0 (n ) -  p ^ lo g  n) + F(n)

for some polynomial p^ Therefore the corollary follows from 

Proposition 9.11. o

B. Ralallva Complexity O f Problem« h  Abelian Qroup«

In the previous subsection the complexity relationship between 

functions Is considered; here the relation of the complexity of problems 1s 

considered.
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DEFINITION 9.13

A problem A 1s polynomial time reducible to a problem B denoted 

A « pB

i f  the existence of a polynomial time algorithm fo r solution of problem B 

implies the existence of a polynomial time algorithm for problem A.

I f  A «p B  and B <<pA. then problem A is polynomial time equivalent to

problem B denoted AM  B. □
P

PROPOSITION 9.14 (t r a n s it iv it y  of A <<pB)

Suppose that X, Y and Z are problems. I f  X «  pY and Y <<pZ, then

X <<pz. a

PROPOSITION 9.15 (E .R .H )

If  problem F is the problem of factoring an integer n, then 

F « pT .

Proof

Assume the existence of a polynomial time algorithm for T . From 

Proposition 9.12 I t  follows that F(n ) 1s a polynomial p(log n ).  o

DEFINITION 9.16

Problem C. Suppose that G 1s an abelian group with |G| <  n. Given a set 

of generators S for G, compute a canonical basis for G. a

Let Cg'g(n) denote the time 1n terms of elementary operations by an 

optimal algorithm for problem C and le t
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DEFINITION 9.17

Problem D. Suppose that G 1s an abelian group with G <  n. Given a set 

of generators S for G, compute a set of defining relations fo r G. □

Let Dq s(n ) denote the time in terms of elementary operations required 

by an optimal algorithm for problem D and let

D(n) := max {Dr  <.(n) : G = <S>, IGI <  n }. □
G,S

PROPOSITION 9.18

The following holds:

C « p 0 *

C(n) -  max {Cr  c (n ) : G »  <S>, |G| <  n } .  □
G,S G‘ 5

Proof

Assume that there exists an algorithm for computing a set of defining 

relations fo r G ■ <S> in polynomial time, say p^Oog n ). Then using 

algorithm 1.3.1 one can compute a canonical basis for G in p2(1og n) 

elementary operations for some polynomial p2 . Therefore there

exists an algorithm for problem C which computes the canonical basis for 

G In p(1og n) elementary operations, where p ■ p1 ♦ p2. °

DEFINITION 9.19

Problem B Suppose that G Is an abelian group with |G| <  n. Given a set 

of generators S for G, compute a complete basis for G.



-1 1 1 -

Let BG g (n ) denote the time 1n terms of elementary operations 

required by an optimal algorithm for problem B and le t

B(n) : »  max {Br  c(n ) : G = <S>, IGI <  n>. a 
G,S G»5

PROPOSITION 9.20

The following holds:

C <<pB

Proof

Suppose that the complete structure of G Is

'1
“ 11.

g * n c(p. ")
1*1 1

k “ 1kx n c(p. 1K) fo r p4, 1 ■< 1 <  k 1-1 K 1

d istin ct primes and j 1 >  J 2 >  . . .  >  j n, a1(l <  i  for 1 K 1 K  k*
&

Then

k OL
G -  n C (d . ) with d, ■ n p# Ai

U \  1 1 *-1 *

V J i

yields the canonical structure of G.

Therefore the existence of a polynomial time algorithm for problem B 

Implies the existence of a polynomial time algorithm for problem C. a

DEFINITION 9.21

Problem 9 Suppose that G 1s an abelian group with |G| <  n. Given a set 

of generators S for G compute the order of G.
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Let Oq s(n ) denote the time 1n terms of elementary operations 

required by an optimal algorithm fo r 9 and le t

®(n) «  max {®r  - ( n )  : G ■ <S>, IGI <  n }. □
G,S 6,5

PROPOSITION 9.22

The following holds

®  <<PC

Proof

I t  1s obvious. □

PROPOSITION 9.23

The following holds:

T  « p®

Proof

Assume the existence of a polynomial time algorithm for problem ®. 

Then using this algorithm one can compute the order of the group 

<X>. o .e .d . a

DEFINITION 9.24

Problem Cy Suppose that G Is a^ abelian group and G <  n. Given a 

generating set S for G, test whether or not there exists an h e G 

such that G -  <h> and compute ag fo r a ll g € S such that h**9 ■ g . Let 

CY G,S^n) denot* time 1n terms of elementary operations required by an 

optimal algorithm for problem Cy and le t
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Cv(n ) * max {Cv r  ç(n ) :  G ■ <S>, |G| <  n>. □
T G,S T

PROPOSITION 9.25

The following holds

Cv «  C 
» P

Proof

I t  is obvious. □

DEFINITION 9.26

Problem E. Suppose that G is an abelian group with |G| <  n. Given a set 

S of generators fo r G and an element x in G, compute an expression.if any, 

for x in terms of the generators g in S' c S ,  such that

o
x = n g 9 w i t h «  < | g I y  g c  S'  

gCS' 9

Let Eq s x(n ) denote the time 1n terms of elementary operations required 

by an optimal algorithm fo r problem E and le t

E(n) :■ max {Er  c y (n ) : G ■ <S>, x e S, |G| <  n>. a 
G.S.x

ALGORITHM 9.27

INPUT : An algorithm fo r problem E and an element x of G

OUTPUT: The order of G
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Procedure ORD(X)

2
1. compute an expression of x in terms of x using the algorithm for E;

i f  such an expression exists then 
2kle t x * x , where k as 1n step 1;

2. return |x| * 2k-1; 

else

3. |x| <- 2.0RD(x* 2) ;  

return |x|;

end. o

PROPOSITION 9.28

The following holds:

T V

Proof

Assume the existence of a polynomial algorithm fo r problem E. Then 

algorithm 9.27 correctly computes the order of x in polynomial time.

I f  at step 1 an expression 1s computed, then |x| 1s an odd number and 

thus |x| -  |x2 |. Hence 1t 1s not d if f ic u lt  to see that |x| -  2k—1.

I f  there 1s no such expression, then x 1s even and the problem Is
2

reduced to the computation of the order of x . The recursive c a lls  of 

the procedure 0R0 can be at most log |x| <  log n.

Therefore algorithm 9.27 requires polynomial time 1n log n. a
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The following holds:

E <<pD

Proof

Assume the existence of a polynomial time algorithm fo r problem 0.

Then le t S* = S' u {x } .  In polynomial time one can obtain a set of 

defining relations for G* generated by S* using the algorithm for problem D 

Let the defining relations for G* in  additive notation be:

t  t
A[x,g^ » . . . ,g^] * [0 .........0] with S ' * (9^>***>9^} (9 .2 )

where A is an m x n integer matrix.

Now one can t r languiarize A via IRC operations to the matrix

|J |with Ta n (n + 1 ) x (n+1) upper triangular matrix (9 .3 )

This can be done 1n polynomial time by Proposition 1.4 .2 .

From (9 .2 ) and (9 .3 ) follows that

‘„x * t129, . ... . t^.,9,, • 0 (9.4)

By definition of the set of defining re la tio n s. I f  t ^  t  1, then does 

not exist a relation required by problem E and I f  t ^  ■ 1, then (9 .4 )

1s the required re lation . a

PROPOSITION 9.30

The following holds:

PROPOSITION 9.29

T %  CY



-116-

Proof

Assume the existence of a polynomial time algorithm for problem Cy. 

Then using this algorithm for the group generated by {x ,1 } one can see 

that <x,1> 1s c yc lic  and the algorithm also yields the relations x -  x 

and 1 »  xh. Therefore the order h of x 1s computed 1n polynomial time. □

C. Relative Compexity Of Decision Problems

The f i r s t  decision problem considered 1s the following:

DEFINITION 9.31

Problem Given a generating set S for a f in ite  abelian group G with 

|G| <  n decide whether or not G 1s c yc lic .

Let G>s(n ) denote the time in elementary operations required by 

an optimal algorithm for problem and le t

C^(n) :■ max {C^ Q s(n ) :  <S> * G and ls l <  °

PROPOSITION 9.32

The following holds

CY <<pCY

Proof

I t  1s obvious. □

The second decision problem Is a version of problem T .
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Problem T* Given a generating set S for a f in ite  abelian group G with 

|G| < n, an element x In G and an Integer k, decide whether or not the 

order of x 1s less than k.

Let Tg s x k(n) denote the time 1n terms of elementary operations 

required by an optimal algorithm for problem T* and le t

T*(n) := max {T* s>x>k(n ) : G = <S>, x € G, |G| < n } .  □

PROPOSITION 9.34

The following hold:

(1 ) T «  pT*

(11) T* (n ) <  T (n ) <  (log n| T*(n)

Proof

( I )  I t  is obvious that T* <<pT .

Now assume the existence of a polynomial time algorithm for T*.

Then using "binary search" together with the algorithm T* one can compute 

the order of x. A sketch of the method 1s the following:

Check whether or not |x| < £ . I f  the answer Is "yes", then 0 < |x| <

else |x| <  n. Then check whether or not |x| < m where m 1s the

middle of the Interval 1n which the order was estimated to f a l l .  By

repeating th is  process one can find the order 1n at most |1og n| repetitions

since the Interval 1s halved every time. Hence T «  T*.P
( I I )  I t  follows from above. o

DEFINITION 9.33
C|CM
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In order to measure the "hardness" of the problem C^, the well-known 

problem of "prim alIty testing" 1s considered along with some results on

*8-

DEFINITION 9.35

Problem P Given an Integer n decide whether or not n 1s a prime.

Let P(n) denote the time in elementary operations required by an optimal 

algorithm for problem P. □

DEFINITION 9.36

An Integer n Is said to be Carmiohael number 1f

(1 ) n = p1 . . .  pk where p^'s are d istinct primes with k> 2 

(11) p^-1 divides n-1 for 1 <  1 <  k. a

LEMMA 9.37

I f  an abelian group G 1s c y c lic , then i t  contains exactly $(p) 

elements of order p in every p-Sylow subgroup of G.

Proof
a, a.

Let G -  <x> and Z* ■ { k1. . . . » ^ ( p ) l 6 l * Pf ••• Px* » then
k,d.

le t  dj ■ |G|/p.| fo r 1 <  1 <  Moreover le t  Xj ■ x J fo r every kj 1n

Z*. Then I t  1s not d if f ic u lt  to see that s ■ (X j .........x^ (p )^  are a11 the

elements of G of order p. Because I f  y has order p^, then using that 

y -  xq for some q follows that xqP1 ■ 1 and that q = 0 mod d  ̂ which Implies

q * u d1
with p re lative prime to p  ̂ and thus y € S. o
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Suppose that n is Carmichael number. Then Z* 1s not c yc lic .

LEMMA 9.38

Proof

Let n = Pj . . .  pk where p̂  fo r 1 <  1 <  k are prime. Now consider 

the equation

PX
x = 1 mod(n) for some 1 <  \ <  k 

I f  the number of solutions of the equation

(9 .5 )

x e 1 mod p.| fo r some 1 <  1 <  k (9 .6 )

is k^, then the number *• of solutions modulo n of (9 .5 ) 1s 

k
£ = fcj (see Apostol [ 4 ] ) .

F irs t observe that k  ̂ > 1 ,  since 1,-1 are solutions of (9 .6 ) .

Moreover every h € Z*^ is  a solution of the equation

x ^  = 1 mod p 

and thus k^ >  $ (p ^).

Therefore l  > $(p ) .  This Implies that the number of elements of order
A

Px 1s greater than <t>(Px) and by Lemma 9.41 Z* Is not c y c lic , a 

PROPOSITION 9.39

An Integer n 1s prime 1f and only I f  

(1 ) The Integer n 1s not prime power

( I I )  The group Z* Is cyclic

( I I I )  Every h € Zfl satisfies the equation
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hn-1 = 1 mod n . (Fermat's c rite rio n )

Proof

I f  n Is prime, then 1t 1s well known that Z* «  <{>(n) = n-1 and 

(1 ) -  (111) hold.
°kAssume now that n Is  not prime, n * p̂  . . .  pk for p̂  1 <  1 <  k 

d istinct primes and (1 ) -  (111) hold.

Since (111) holds, 1t follows that

$(n) divides n-1

o j - 1
which Implies that p  ̂ divides n-1 for 1 <  1 <  k. Therefore 1t follows 

that â  = 1 for 1 <  1 <  k.

I f  k >  3, then n 1s a Carmichael number and therefore Z* 1s not 

cyclic  by Proposition 9.38 contradicting with the assumption of (1 1 ).

I f  k = 2, then

<p(n) -  (P1-1 )(P 2-1 ) divides P ^ - 1  = (P 1-1 )(P 2-1 ) ♦ (Pt -1 ) ♦ (P2-1 )

which 1s not d if f ic u lt  to  be shown In va lid . a

As a bridge between the problem and P the following problem 1s

used.

DEFINITION 9.40

Problem I  The same as problem but with G * Z*. The definitions of 

Z ^ 'g f n ) and Z(n) are s im ilar to CJ Q s(n ) and C f(n) respectively. o
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The following holds:

Z << CS. □
P ”

The problem Z is used as bridge between the problem CÇ and P in order 

to avoid the assumption of E.R.H fo r the construction of the generating 

set of Z* in which case the reduction is dependant on the truth of E.R.H.

PROPOSITION 9.42

The following holds:

( i )  P «  Z.

( i i )  P(n) <  Z(n) ♦ p(log n)

Proof

( i )  Assume the existence of a polynomial time algorithm fo r Z.

Then one can check the conditions ( i )  and ( i i )  of Proposition 9.43 in 

polynomial time. One can check whether or not gn-1 -  1 for each g € S 

by means of the "power algorithm" and thus checking whether or not (111) 

holds requires polynomial time.

(11) I t  follows from above. a

D. Relative Complexity Of kitereeetlon Problème

DEFINITION 9.43

Problem 01 Given abelian groups G ■ <S> and F -  <S’> with |G| <  n and 

|F| <  n and the fact that <F u G> abelian, compute the order of <F n G>.

PROPOSITION 9.41
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Let Olg s p £ i(n ) denote the time in elementary operations required by an 

optimal algorithm fo r problem 01 and le t

0I(m ,n) :* max {0 Ir  c c c ,(n,m ):G«<S>tF»<S'>,|G|<n,|F|<n,<F GX abelian} □ 
G .S .F .S ' *

PROPOSITION 9.44

The following holds:

|®(n,m) -  0 I(n tm)| < 0(n) + 0(m) + p(log nm) 

where ®(n,m) = max {#H s(nm) : H * F U G «  <S>, |F| <n |G| <  m}

Proof

I t  is well known that

|<F U G>|= |F| • |G|/ |<F 0 G>| (9 .7 )

Now one using an optimal objection fo r computing F , G and F u G 

can compute <F n G> by using (9 .7 ).  Therefore

0I(n,m ) <  d(n,m) ♦ #(n) ♦ 9(m) ♦ p(1og mn)

for some polynomial p, ,

S im ilarly using an optimal algorithm for computing |F|( |G| and 

|<F 0 G>| one can compute |<F u G>| by using (9 .7 ) .  Therefore

0(m,n) <  0I(n,m ) ♦ 0(n) ♦ t(m) ♦ p(1og mn) (9 .8 )

Hence the proposition follows. a



-123-

The following holds

8(m,n) <  c 0I(n,m ) + p(log mn)

for some constant c > 1 and some polynomial p.

Proof

From (9 .8 ) using that

0(m) + 0(n) <  (1 -  1 ) ®(m,n). o

PROBLEM 9.46

Problem 01» As problem 01 without the re strictio n  that <F u G> 1s abelian. 

In a sim ilar way to 0 I(n ) the complexity of 01* denoted 0I*(n,m) 1s 

defined. □

PROPOSITION 9.47

The following holds:

0I*(n,m) >  c ®(m,n) ♦ p(log mn) 

fo r some constant c < 1 and some polynomial p.

Proof

From Proposition 9.45 and the fact that

PROPOSITION 9.45

0I*(n,m) >  0I(n,m) a
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PROPOSITION 9.45

The following holds

9(m,n) <  c 0I(n,m ) + p(log mn)

for some constant c > 1 and some polynomial p.

Proof

From (9 .8 ) using that

0(m) ♦ 0(n) <  (1 -  ^ )  <J(m,n). o

PROBLEM 9.46

Problem 01* As problem 01 without the re stric tio n  that <F u G> 1s abelian. 

In a sim ilar way to 0 I(n ) the complexity of 01* denoted 0I*(n,m ) 1s 

defined. □

PROPOSITION 9.47

The following holds:

0I*(n,m ) >  c ®(m,n) ♦ p(log mn) 

fo r some constant c < 1 and some polynomial p.

Proof

From Proposition 9.45 and the fact that 

0I*(n,m ) >  0 I(n ,m ). a
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One can define problems of computing the canonical structure 

(problem ( I ) ,  complete structure (problem B I ) ,  a set of defining 

relations (problem D I) fo r the Intersection of two abelian groups.

I t  1s not d if f ic u lt  to show that the following hold:

(1 ) Cl «  D I, (11) Cl «  B I, (111) 0I<< Cl 
P P P

Th e ir proof are sim ilar to the proofs of Propositions 9.18, 9.20 and 

9.22. Moreover one can define the problem of deciding whether or not 

the Intersection of two groups 1s c yc lic  (problem Cyl). I t  1s not 

d if f ic u lt  to prove that

CY « p  CyI
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HASSE DIAGRAM

The dotted lin e  denotes the assumption of E.R.H.
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E. Conclusion*

The Hasse diagram 1n the previous page summarizes the results on 

the re la tive  complexity of problems described In th is  section.

PROPOSITION 9.49 (E.R.H)

The following hold

m a x {D (n ),C (n ),® (n ),B (n ),E (n ),C y(n ),T (n ) ,T * (n )>  >  F(n)/p(log n) (9 .9 ) 

fo r some polynomial p.

Proof

One can see that

TG ,S ,x<n) <  °<x>,x(n > 

which Implies

T (n ) <  max (D<x>fX : (x| <  n ) <  D (n ).

S im ila rly one can show C(n) >  T ( n ) ,  d(n) >  T (n ) e tc .

Therefore using Proposition 9.11 the proposition follows, o

In the sections 1-8 upper bounds are given fo r  the above problems are given; 

I t  1s shown that the complexity of a ll the problems 1n L.H .S . of (9 .9 )

1s 0 ( n ^ e) elementary operations. The best upper bound fo r F Is 

0(log n )c l°9l09l°9 n) elementary operations due to Adleman [ 1 ] ;  the proof 

of the bound depends on the truth  of various number-theoretic assumptions.

The best-known upper bound for F (depending on the truth of ERH) 1s 

0 (n 1/5+e) due to D. Shanks [47] (see [3 0 ]) .



Let us consider the role of the Rlemann hypothesis which Is 

unsolved for more than a century. One can see that assuming E.R.H.

one can compute a generating set fo r Z* by picking up a ll the primes
2

In the Interval [1 , (log n ], Without E.R.H to construct a generating 

set fo r Z* one has to pick up a ll the primes of the Interval 

[1 , ch*+G] ;  this 1s the best known unconditional upper bound due to 

Burgess [6 ] (see Lagarlas and Odlyzko [3 6 ]) .  Therefore one can see that 

the assumption of the truth of E.R.H. 1s "responsible" for the gap 

between the upper bound for problem T and Shanks' bound fo r factorization : 

Shanks' constructs a generating set fo r the form class group which can 

be found quickly (0 (log  n )) assuming the truth of E.R.H. but 

unconditionally the computation 1s of 0(n^+G) .  An additional reason 

is that Odlyzko's proof for the 0 (n 1^5+e) upper bound on Shanks' algorithm 

assumes the truth of E.R.H. One paradoxical aspect of Shanks' algorithm 

is that prim alIty depends on E.R.H. but compositeness 1s proved 

unconditionally since one can check whether the "factors" are factors.

In Adleman's factorization algorithm the situation 1s sim ilar. 

The unconditional bound for h1s algorithm by Rumely (see [ 1 ] )  1s

o(ecd°gn)0.4999
)

Assuming that the density of Eulldean primes* 1s "small" (see [ 1 ] , p.403) 

i t  can be shown that Adleman's algorithm terminates 1n

0(log nc loflloglog n}

elementary operations.

+ A prime number p 1s called "Eulldean prime" 
where P1 Is a prime, for 1 < 1 < k, for some

. 1f p ■ 2p. 
Integer k.

Pk + 1
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Hence one can claim that the assumption fo r the density of 

Euclidean primes Is "responsible" for the gap between the upper bounds 

for T and F. Note that the correctness of Adleman's algorithm 1s 

unconditional only the analysis of Its  running time depends on assumptions.

I t  1s not d if f ic u lt  to ve rify  that C^(n) >  P (n ). Using the 

algorithm for problem C one can obtain an 0(n*+e) upper bound for 

problem C£. The best known "prim ality testing" algorithms are due to 

M ille r [4 0 ], He gave an unconditional algorithm for problem P which 

requires 0 ( n ^ 7+e) elementary operations and one depending on the
4

truth of E.R.H. which requires 0(log n loglog n) elementary operations.

Both the correctness and the analysis of the conditional algorithm depend 

on the assumption of E.R.H. Once again one can see the dramatic Influence 

of E.R.H. on proving the bounds and speeding up the algorithms. Also 

from the above one may suggest that the bound given for problem Ĉ ! can 

be Improved.

Also using the facts that 0I*(n,m) w ®(n,m) m #(nm ) and 

0I(n,m ) m  ® (n,m )w l(nm ) and the argument that the bound fo r problem •

Is reasonable, one can suggest that the bounds fo r 01 and 01* proved 

in section 8 are not weak.
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10. APPLICATIONS

A. Factorization And Form Class Group

Shanks' algorithm fo r factorization makes use of the form class

group (see [4 7  ]  and [30 ] ) ;  that is the group formed by the binary
2

quadratic forms (a ,b ,c ) with determinant D = b -a c , where D < 0 1s the 

number given fo r factoring. In order to compute a complete factorization 

of D, i t  is suffic ie nt to compute generators fo r every c y c lic  subgroup 

of the elementary 2-group of the form class group. In pa rticu lar the 

factors are given from the ambiguous forms, that is the binary forms 

of order 2. An ambiguous binary quadratic form 1s of the form either

(a , a, c ) or (a , b, a) or (a , o , c)

Therefore i f  one can compute an ambiguous form, then a factorization 

of 0 either 0 ■ a (a -c ) or D = (b -a )(b+ a) or D > ac 1s obtained. Hence 

one can use the algorithms described 1n the previous sections for 

factorization and further fo r investigation of the form class group

B. Gable Theory

The algorithm fo r computing the basis of a group represented by a 

set of generators can be used In the computation of algebraic functions 

which are determined by the Galois group of the extension of the f ie ld  

by the functions. For details see Ja ' [3 2 ].

C. CRYPTOGRAPHY

Algorithm 23may be used for computing discrete logarithms (see

[4 4 ] and [3 5 ]) .  The same algorithm may have applications In  the public 

key cryptosystem Introduced by O lffle  and Helmann In [1 4 ].
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1. INTRODUCTION

In this section abelian subgroups of the symmetric group 

represented by a set of generators are Investigated. In general 

computing the order, the canonical structure, a set o f defining 

relations a basis et al fo r abstract abelian groups require exponential 

time,but I t  w ill  be shown that such computations 1n abelian permutation 

groups require polynomial time of elementary operations In terms of the 

number of symbols permuted by the group. Furst e t al In [18] showed 

that the computing of the order of a permutation group and membership 

testing In a permutation group can be done 1n polynomial time.

In Section 2 an "elementary o rb it" algorithm 1s presented;

I t  requires 0(kn1og n) elementary operations for computing the o rb its  

of a group G c sn,which Is represented with k generators. Moreover 

algorltnms computing the canonical and the complete structure 

(consequently the order) of an abelian group G c sn are given, doth
4

require 0(kn lognloglog nj elementary operations, where k I s the number 

o f generators. Furst e t  al In [1 8 ] gave an algorithm computing the 

order and a set of "strong generators" for a permutation group which 

requires 0(kn* + n6) elementary operations.

In Section 3 algorithms testing membership and Inclusion are 

presented; the ir complexity Is 0(kn41ogn logiogn) elementary operations. 

Furst's et al membership testing In a permutation group given In [18]
2 K

requires 0(k n + n ) elementary operations.

In Section 4 the problem o f computing the Intersection of two 

abelian groups Is considered; 1t 1s an Important problem due to Its  

links with graph isomorphism problems. Three algorithms for computing
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the Intersection or the abelian groups F and G both subgroups of Sn 

are given one algorithm for computing <h n G>when <F u G> 1s abelian 

and the other two for computing <F n G> when <F u G> 1s non-abellan. 

I he time complexity of a ll the Intersection algorithms 1s of 

0((k+m+n)n logn loglogn) elementary operations.

F in a lly  In Section 5 several applications of the algorithms 

described In previous sections are discussed.

J*
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A. Prelim Inarlaa

Let G be a permutation group, subgroup of the symmetric group Sn 

which operates on the set I n * { l , . . . , n } .  A set A c l n 1s called a

(J-cxed block of G 1f

A -  {g (6 ) :g t G ,  6 c  A ).

Let g ■ c ,c 2 . . .  ck In G , where the c^sare d is jo in t cycles and le t r c l n- 

I f  r Is a set of a ll points permuted by c ^ .V  1fc I ,  for some set Id ln 

then g^a f2 ic-i called the fieAt/Uction of g to r  . Note that 1f 

o c A c l n and g (« )  t  A then gA 1s not defined.

Let A be a fixed block of the permutation group G. Then 

GA ■' igA:g «G>

is  called the conUctu&nt of G on A. Note that GA Is a group.

Let G c  Sn operating on I and r c l fl. Then

Gr ■' {gr :g r  Is w e l l -d e f in e d  and gc 6 }

1s called a pAuido-oonAtltucnt of G on r. Note that G^ 1s a group.

A group G c S n 1s called tAjanAhUot. 1f the only fixed blocks of 

G are the t r iv ia l  fixed blocks * and I n.

A minimal fixed block A of a group G c S n 1s called an 

ofibit of G.

Let G be a permutation group operating on I C l n< I f  fo r each a * I  

and for each n o n -trlv la l g& G, g (a )^  a then G 1s called aemcaegofoa.

A semi regular and tra n s itiv e  group 1s called a.eg uIo a .
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PROPOSITIUN 1.1 (Mlelandt [52 ])

A transitive  abelian group G c_ Sn Is semiregular.
«

Proof

Let G operating on I .  Assume the existence of a non-tr1v1a1 

g In  G such that

g(a) « a  for some a £ I

Then for every f  In G follows that

g (f (a ) )  -  f (g (a ) )  -  f (a )  (1 .1 )

Let A ■ ( f ( a ) : f  c G ). Then A„, 1s a fixed block and since G Is  o a
transitive* follows

Aa - I (1.2)

Hence from (1 .1 ) and (1 .2 ) follows tha t g ■ 1 contradicting the 

n o n -tr iv ia lity  of g. □

PROPOSITION 1.2 (Wlelandt [52 ])

Suppose that G Is a regular abelian group on n symbols. Then

,|G| -  n

Proof

Let Aa • <g(a ):g  «  G> for some a  c I R. Then Aa Is a fixed 

block and since G is  transitive  follows that
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A * J n

Moreover

IV ■ iGl

because I f  f (a )  ■ g(a) fo r some f  and g in  6, then I t  follows that 

( f -1 g )(a ) * a contradicting the semi re gu la rity  of G. □

PROPOSII ION 1.3 (Dixon [1 2 ], Exercise 2 .4 1 )

Suppose that G Is an abelian subgroup ot Sn. Then

|G| s 3n/3

Proof

I f  G 1s tra n s itiv e , then |G| « n s  3n^3.

Let r l t . . . , r t  be the o rb its  of G and le t  ir^| ■ for 1 s 1 s t .  

Then G acts tra n s itive ly  on o rb its  and hence

t  Tj t  kf/3
|G| s n |G ' I  s n ki i  3 1 s 3n/4. □

1-1 1-1 1
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2. THE COMPUTATION OP THE ORDER AND THE STRUCTURE OP AN ABELIAN

In th is  section tne problem of computing the order and the 

structure of an abelian permutation group* given a set or generators,

1s Investigated, une can observe that the order of an abelian subgroup

may use, Furst's  et al algorithm for computing the order 1n polynomial 

time; but th e ir method does not y ie ld  Information about the structure 

of a group, when the group is  abelian. Therefore an e ffic ie n t algorithm 

for computing the canonical structure and the complete structure of an 

abelian group Is needed.

F irs t  the "elementary o rb it  algorithm" for computing the orbits 

of one abelian group G c SR Is considered. The main concept of the 

algorithm Is demonstrated by the following proposition.

LEMMA 2.1.1 (See Wlelandt C523, p. 4 )

Suppose that G Is a permutation group. Two points a and 3 
l ie  In the same o rb it 1f and only I f  g - g (a) fo r some gc G.

PROPOSITION 2.1.2

1s a subgroup of Sn (the c ^ 's  are d is jo in t cycles). Let SAj  denote 

the set of points permuted by the cycle c^j and

SUBGROUP OF THE SYMMETRIC GROUP

of Sn can be as big as 3n^3 and thu$ an application of algorithm I I . 5.1. 

iwhlch requires 0(3n/6) elementary operations) Is Im practical. One

r*1* ■ S^y for some IntegersA and v

and

( 2 . 1)
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Then (1 ) rtr+1) > H r ) for some Integer r  

(11) rir ^ .rIs an o rb it of G

Proof

( I )  I t  1s obvious.

( I I )  F irs t I t  w ill be shown that • where a Is the o rb it of G 

containing S\v . We shall use Induction.

For 1«1, we have r ^ l l A  • Assume that r ^ C A  • Then le t

(1+1) .  J 1>o e r r
_m

Let ot*St j .  Since S4< Intersects r ^ »  we have

that g j ( 0) 4 for some Integer m and thus a«A o .e .d .

Now 1t w ill be shown that A^r . Let b«A and ael". Then by lemma 

2.1.1 we have that

' i j

9(a) * B fo'" some g^G («teTSAand & is  an o r b i t )

Since g * g^l . . .  g|J' fo r  some In te g e r 14Ilk  ,we have that

b-  g j1 ( g ^ ( ........ (g jk ( a ) ) . . . )

One can see that Y|(: -  g jk (a ) t r  t Y k _ i: * g j j j 1 (Yk)*r .

.............. e -  g j 1 (y 2)* T  (by d e f in it io n  o f T ) ,

Hence r«A.o

\

ALGORITHM 2.1

INPUT: A set of generators {g l t . . . , g k} fo r the abelian subgroup 

G of the symmetric group Sn
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OUTPUT: A ll the orbits r t  of G

t -  l ;

Let gj ■ c1 j C2J **• cV jj for 1 -SJ- k;
comment The c ^ j's  are d is jo in t cycles of the generator g j ,  fo r l£  j  <k 

S^j -Ko :a Is affected by c ^ )  fo r 1£ 1< V j, fo r l£  J <k; 

comment Note that 1s the set of a ll points affected by the cycle

2. L ( j )  ( 1 , . . .  ,V j)  for 1< j<. k;

comment Note that I f  t*  L ( j )  for Some l±  j  <k, then c ^  1s the f -th  

cycle of the generator g^. I f  1s a cycle of g  ̂ and

* > f L (j ) ,  then c^j 1s called "used" cycle. A cycle c becomes

used", when the set of a ll points affected by c has been found to 

be a subset of the currently computed o rb it (named I*t , see below)

3. INDEX C o J l  ♦ (m ,j) such that fo r 1< j  <k, for every a «  I n;

comment The INDEXß x .jl 1s an array which yields the Indices of a

4. Repeat

S *■ SXy fo r some L (v ) i*<t> ;

L(w) «- L ( y ) - U )  ;

r  *■ S* t  *
comment The set S contains a ll points affected by the cycle c^y

and thus there exists an o rb it r t  which contains S. Note 

that cXy becomes "used" and thus (X ) 1s subtracted from L (u ).

1. Sort S fo r 1.1 V j, fo r 1< j<_k;

cycle (of the generator g j ) which moves the p o in t  a.
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5. Repeat

a «- an element of S;

6. S* «- { ( v j ) :  ( v j )  -  INDEXC o»d3 and v «  L ( j ) ,  fo r 1< 1 <k}

consent The set S* 1s the set o f Indices ( v , j )  of the cycles cyj that

are not "used" and move a*

7. fo r each ( v , j )  In S* do

begin

8. S ♦ su(svj - rt)
9. rt - r tosvji

comment The cycle cyj  moves at least one p o in t  (the p o in t  o )

of the o rb it r t  and thus every p o in t  affected by cyj  belongs 

to r t . Moreover the p o in ts  added to r t  at step 9 are added 

to S In order to pick up those not "used" cycles which move 

the points of Syj  -  r t -

Also steps 8-9 are executed simultaneously; use "binary search" 

for each a «c yj  fo r testing whether or not a belongs to r t *

I f  a t  r t , then S becomes S\/(a> and lu sa rt ° 1n rt  in such a 

way that rt  remains sorted, "binary search" yields the 

"correct position" of a in the sequence of (see £23 , p. 113).

10. L ( j ) - L ( j ) -  iv>;

comment Note that cyj  became "used" at step 9

11. end

S ♦ S - ( o )  ;

comment The set (a ) 1s subtracted from S, since a ll cycles moving

«( are "used".
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As we did 1n 2.1.2 we choose S * S ^ - {1 ,2 ,3 } .  Hence Cj j  becomes "used" 

and L ( l )  ■ '{2 ,3 ,4 } .  Also the o rb it T j contains at least {1 ,2 ,3 }.

Let us choose ot«l (a fte r step 5 ). Then the set S* yields the Indices 

of a ll not "used" cycles moving 1 (The computation of S* 1s done for 

e ffic iency reasons via the arrays INDEX and L)

Here we have

S* «  { (2 ,2 ) ,  (5 ,3 ) }

since Cgg an(* c33 move 1 , which belongs to  I “i  .

Now since c22 8 (15) and c53 -  (132), we have that ^ c o n ta in s  at least 

{1 ,2 ,3 ,5 }.  Also Cj j  and Cg3 become "used” and thus L(2) ■' {1 ,3 ,4 ,5 ,6 ,7 } 

and L (3 ) * {1 ,2 ,3 ,4 }. Moreover S becomes{2 ,3 ,5 } , since we considered

a ll cycles moving 1 and we want to consider a ll cycles moving 5.

Note that for the computation of the o rb it I\ 1s not necessary to consider 

the cycles which move p o in ts  belonging to s , but the reason for 

considering these cycles Is that since we find them, we can remove them 

(from the array L ) and thus the computation of the other orbits of the 

groups w il l  be more e ffic ie n t.

Now choose a -2 (a fte r step 5 ). Then we have that 

S* -  { (7 ,2 ) }

because c72 moves 2. Note that Cg3 1s "used" (5 i  L (3 ) ) .  Since 2 Is In i j  

and c72 8 (2 6 ), T j  contains at le a s t '{1 ,2 ,3 ,5 ,6 }  . Then c72 becomes 

"used" and L(2 ) ■' {1 ,3 ,4 ,5 ,6 } .  Also we have S ■ {3 ,5 ,6 }.

Again choose a-3 (a fte r step 5 ). Then we have that 

S* • { (3 ,2 ) }

since c32 moves 3. Now c32 -  (4 3 ), hence contains {1 ,2 ,3 ,4 ,5 ,6 ) .

Also we have L(2 ) ■' {1 ,4 ,5 ,6 }  and S ■ {4 ,5 ,6 }.
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S im ila rity  fo r o«4, the cycles c^j and c13 are removed (that is L ( l )  * {2 ,3 } 

and L (3 ) » ’ {2 ,3 ,4 }) and T j  remaines unchanged. For ct*5,6 no change occurs. 

From proposition 2.1.2 follows that C j  is an o rb it  of G. In a sim ilar 

way a ll other orbits of G are computed.

PROPOSITION 2.3

Algorithm 2.1 correctly computes the o rb its  r t  fo r the abelian
2

group G & S n 1n 0(kn log n) elementary operations.

Proof

The correctness of the algorithm follows from proposition 2.1 .2  

and the comments of algorithm 2.1.
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k
Step 1 requires 0( £ £ | c ., |log|c,, |) comparisons fo r

J - l  1 
2

sorting comprising 0(kn log n) elementary operations, since

E |c ij |i n

and a comparison requires Ollog n) elementary operations.

Steps 2-3 merely require 0 (n j operations fo r the construction 

of the lis ts  L and INDEX.

Step b requires U(k) elementary operations fo r computing

INDEX [ a , j ]  for 1 s J s k and k applications of “binary search" for
2

testing whether or not v c L ( J ) . Hence step 6 requires 0(k log n)

elementary operations, since |L(J) | s n.

Steps 9-10 requires |cu | applications of "binary search"
v j

comprising 01 |cy |log|rt |) comparisons.
J

I t  1s not d if f ic u lt  to see tnat s* passes through a ll  cycles 

which permute an element of the o rb it . Hence loop 7-11 requires 

01 E |cv J lo g | r t |log n) -  0 (k ( |rt |1og|rt |log n) elementary

operations.

Moreover one can see that a l l  the symbols o f r t  pass through A and 

thus loop 5-12 has a t most |rt| Iterations.

Therefore loop 5-12 requires 0lk|rt |1og|rt | log n ♦ k log|rt |log n) 

elementary operations.

F in a lly  the algorithm requires

Oik lo g|rt |1og n (£ |rt | + log n j)  ■ 0(kn log2n)

elementary operations. □
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Algorithm 2.1 makes use o f the data structure used 1n the 

"d1sjo int-set algorithm" (UNION-FIND algorithm) given In Aho et al 

In [  2 }  p . 124; algorithm 2.1 1s not a straightforward application of 

the "d is jo in t-s e t algorithm ", since the f i r s t  one makes use of UNION of 

sets not necessarily d is jo in t (step 10) and the la tte r deals only with 

UNION of d is jo in t  sets. One can find data structures used 1n a faster 

version of the UNION-FInD algorithm given 1n [  2 ] ,  p.129, the use of 

which w ill Improve the upper bound of the "elementary o rb it  algorithm" 

by a factor o f  0 (1 o / n ),  with 0 < e < 1.

PROPOSITION 2 .4 .

There exists an algorithm fo r computing the constituent or G
2

on each o rb it  o f G 1n u(k n log nj elementary operations, given a set 

of generators for G.

Proof

One may use algorithm 2.1 for computing the o rb its  r t , 1 s t  s A.
2

Then I t  1s not d if f ic u lt  to see that 1n 0(kn log n) elementary
r*

operations one can compute g fo r eacn generator g of G for 1 * t  * A 

by means of "binary search"; so rt the i y s  and then te st whether or 

not a symbol a  permuted by the cycle c^j of gj belongs to r^ . Then 

1*1
•j ■ ?eir

with c^j such that a 1s permuted by c^j and a € 1^. Then

r 1 r 1 r 1 
g ■ <gx ••••tgk >. □
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ALGORITHM 2.5

INPUT An abelian group G subgroup of the symmetric group represented

by a set of generators <g^.........gk>

OUTPUT The canonical structure and the canonical basis fo r G.

begin
r

1. compute a generating set for G 

algorithm of I I I . z . l ;
r

2. compute a complete basis fo r G

to r each o rb it r t  using the

for every t  using algorithm I I . 5 .1 ;
rt

r n g ;
t

3. compute the complete structure or G using algorithm I I . 7 .4 ;

comment The group G 1s a subgroup of the group r  whose the

structure 1s known ( i f  g e G, then g « n g rt *  D G rt  -  r  )
• t  1

end. □

PROPOSITION 2.6

Algorithm 2.5 correctly computes the complete structure of G 

1n 0 (k (lo g |r| }3 M(log|r|) + kn log2n + n3^21og3n) elementary operations.

Proof

The correctness of the algorithm depends on the correctness of

algorithms I I I . 2.1» I I . 5.1 and I I . 7.4 already proved.
o

Step 1 requires U(kn log nj elementary operation by Proposition

I I I . 2.3 .

Step 2 requires 0 (E |rt | ^ 21og3 |rt | (lo g lrt |* G) elementary 
t  r*

operations by Proposition 5.2 and the fact that |G | ■ |rt |
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( Proposition 1 .2 ). Since a group operation requires 0(n) elementary 

operations and £ |rt |* n,

3
Step 3 requires 0(k (lo g | r| ) M(1og|r|)) elementary operations

by Proposition I I . 7.5 .
The re s u lt follows from the above analysis. □

COROLLARY 2.7

Algorithm 2.5 correctly computes the complete structure of
A

the abelian group G ç  5n 1n 0(kn logloglogn) elementary operations. 

Proof

By Proposition I I I . 1.3 follows that

Therefore the re sult follows from Proposition 2.6 . □

Comparing algorithm 2.5 and the algorithm for computing the 

order of a permutation group given In [ i s ]  one can observe the following:

( I )  Fu rst's  e t al algorithm does not y ie ld  aqy Information about tne

complete structure of the group* In the case of abelian groups.
2 6

( I I )  Furst's  e t al algorithm requires 0(kn + n ) elementary operations

fo r computing the order. Under the reasonable assumption that the number 

of generators k ■ 0 (lo g  |G|) ■ 0 (n ) (see C 18]> Hoffman [24]* Theorem 5 )*

the upper bound on the time complexity of algorithm 2.5 is  better a t 

least by a factor 0 (n ) than the upper bound on the time complexity of 

Furst's  e t al algorithm.
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(111) Furst's  et al algorithm depends on the number of symbols 

permuted* since I t  computes a l l  the cosets Gj fo r 1 s 1 s n, where 

1s the subgroup G which contains permutations fix in g  the symbols 

i l , . . . , 1 } .  Algorithm 2.5 mainly depends on the number of o rb its  

of the group as I t  1s shown by Proposition 2.6 . Therefore the 

computation of the order of groups whose orbits are large, requires

time of 0 (k (1og n |r .̂ |4+e) elementary operations which can be much
t  * 4+e

better than the worst-case upper bound of 0 (k n ) elementary

operations. For example with |r,| * j ,  1^1 ■ j  and ■ g- ,

algorithm 2.5 requires 0(k(1og ♦ knlog n + n3^2 log*n) ■
3/2 40 (kn log n + n 7 log n) elementary operations but the time required 

by Furst's  et al algorithm In this case 1s a polynomial of degree 6 .
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3. MEMBERSHP-INCLUSION TESTING AND CO M P U TE» THE UNION OF

ABELIAN GROUPS

A. MEMBERSHIP TESTING

Testing whether or not a permutation h belongs to an abelian group 

G = <h1 .........hk> subgroup of the symmetric group Sn can be done 1n poly­

nomial time 1n terms of n in the following way:



-145

ai16 . le t  h * n Yi j J ; 
1 » J

6(u)
1j7. le t  g * n y j j J fo r 1 <  p <  v ; 

u 1 J  1J

comment The expression of g^'s is done in a sim ilar way with the 

computation of h in terms of Y i< 's *
V / i

8 . Let S be the linear Oiophantine system: Z b ^ '  * z i j l y i j l  v i »<i
X“ 1

over Z Gl*

9. I f  S has a solution then

comment Testing for s o lva b ility  of s can be done by means of 

algorithm 1 . 6 . 6 . 

return "h belongs to 6 " 

else

return "h does not belong to G" 

end. □

PROPOSITION 3.2

Algorithm 3.1 correctly  decides whether or not h belongs to G
4

in 0 (k n logn loglog n) elementary operations 

Proof

The system S of step 8 follows from the equations
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h
01.

n y is
i . j  is

X1 xv h - 9y ... gv

■ U J  Y'J

which Implies that

j ( u )

fo r 1 <  x <  v

n (y ( J )

l  b<5>x
x*i 1J x * n . “ is

i . j i . J  Y1J

Therefore i t  is not d if f ic u lt  to show the correctness of the algorithm.
2

Step 1 requires 0(kn log n) elementary operations by Proposition

2.3.

Step 2 requires t  applications of algorithm I I . 5.1 and thus

using Propositions I I . 5.2 and I I I . 1.2 follows that 1t requires at most

0 (k E I r J *  log4n) = 0 (kn*log4n) group operations comprising 0 (k n3^2log4n) 
i -1 1

elementary operations.

Step 3 requires 0(k n4  logn loglog n) elementary operations by 

Proposition 2.6 . The computation of an expression of h/ n 1n terms

of y ix 's  requires 0 ( ^  |y 1x I *) ■ 0 (| r x |J ) group operation fo r using the

"baby-giant step" strategy. Hence the expression of h In terms of y ^j '*

requires ( E |r.|*n) ■ 0(n3/2) elementary operations, using that a
X-1 x

group operation requires 0 (n )  elementary operations.

The analysis of step 7 Is sim ilar to step 4 and thus step 7 

requires 0 (k  n3^2) elementary operations.
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By Proposition 1.6.6 one can decide about the s o lva b ility  of 

the system S 1n0((v+n)n2 M(log |G|) )  = 0((n+log|G|)nZM(log|G|)) elementary 

operations, using the fact that v <  log |G|, since the g ^ s  form a basis. 

Therefore by Proposition 1.3 , |G| <  3n/r2, therefore follows that step 8 
requires 0 (n4 logn loglogn) elementary operations. o

COROLLARY 3.3

Suppose that h Is an element of the abelian group 

G * <g. . . . . . 9k> E  sn* There exists an algorithm for computing an

expression of h 1n terms of the generators of G 1n 0(kn4logn loglog n) 

elementary operations.

Proof

One can solve the system of step 8 of algorithm 3.1 

using Hu's algorithm of Proposition 1.6.6 and thus to compute the 

expression

h □

B. INCLUSION TESTING

Testing whether or not G -  <g1 , . . . , g k> Is a subgroup of 

F -  < f1t . . . , f m> , where F and G are abelian subgroups of the symmetric group, 

can be done by testing whether or not g  ̂ fo r 1 4  1 4  k belong to F using 

algorithm 3 . 1 ; th is computation requires 0 ((k-Hn)n4 logn loglog n) elementary 

operations by Proposition 3.2«
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In the case of multiple membership testing one need not 

repeat algorithm 3.1 fo r a ll elements fo r testing. A "multiple member­

ship testing" algorithm can be formulated as follows:

( I )  Test the f i r s t  element fo r membership using algorithm 3.1. From

an application of algorithm 3.1 one can obtain the following Information:
t

(1 ) A complete basis fo r r  * n « y . i .........yc * »
j «1 sj J

(2 ) A complete basis for G ■ « g j * . . . tgy»

(3 ) A trian gular matrix T such that

T (x ,y )  -  [a i j ]  over Z|Q|

which yields a pa rticu la r solution of the system S at step 9 of algorithm 

3 .1 .

( I I )  For each of the remaining elements for testing compute an expression

1n terms of Y jj's *  This can be done as the computation of h In step 6 
and requires 0(n3^2) elementary operations. I f  one of these elements 

f a l ls  to be expressed 1n terms of then 1t 1s not a member of the

group G.

( I I I )  Let h ■ n y < ^  be the expression of one of the elements fo r
1.J 13

te stin g . Then 1t suffices to prove that 

T (x »y ) -  [a ^ j ]  over Z|Q|

Is  solvable 1n order to establish membership of h 1n G. This can be 

done 1n 0(n2 M(log |G|) )  -  0(n3 logn loglogn) elementary operations.



Using the above "multiple membership testing" algorithm, I t  1s

not d if f ic u lt  to show that the Inclusion testing mentioned In the
4 3

beginning of this subsection can be done 1n 0 ((kn + mn ) logn loglogn) 

elementary operations.
2 6Furst et al In [18] gave an 0(kn + n ) elementary operations 

algorithm for membership testing 1n a permutation group; any additional 

membership testing requires merely 0(n ) elementary operations. I t  1s 

d if f ic u lt  to compare, Furst's et al and the above "multiple membership 

testing" algorithms, since th e ir input is d ifferent. But the upper bound 

proved In [18] seems superior to our bound 1n terms of worst-case 

complexity. I t  may be practical to use the method described above for 

abelian groups, since Its  complexity depends on the orbits and th is  may 

give better running times that Furst's  et al algorithm (see discussion 

below Proposition 2.7 paragraph ( i 1 ))

C. THE COMPUTATION OF THE STRUCTURE OF UNION OF GROUPS

In the case which the union o f two abelian groups F and G 

subgroups of SR Is an abelian group, the computation of the structure 

of <F u G> can be done merely by means of algorithm 2.5 applied on the 

union of the generating sets F and G. This computation requires 

0(k+m)n4 logn loglog n) elementary operations by Proposition 2 .7 , where 

k and m are the card in ality  numbers o f the generating sets of F and G 

respectively.
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4  THE COMPUTATION OP THE SRUCTURE OP THE MTERSECTION

OP ABELIAN GROUPS

The problem of computing the Intersection of two abelian 

subgroups of the symmetric group 1s considered 1n this section.

The problem Is Investigated 1n two separate cases (1 ) when the union 

of the groups 1s an abelian group and ( 11) when the union of the 

group does not respect commutativity.

In order to be able to separate the above two cases one needs 

an algorithm for testing the group <F u G> for commutativity. If  

F = < fl t . . . , f m> and G = <g1 , . . . , g k> are abelian subgroups of Sn, then 

by testing whether or not f^ g^ * g^f^ for 1 <  1 <  m and 1 <  j  <  k 

one can decide about the commutativity of <F u G> in 0(km) group 

operations comprising 0 (kmn) elementary operations.

A. CASE OF <F U G> ABELIAN

An algorithm for computing the structure of <F n G>, given 

generating sets fo r the abelian groups F and G and the fact that <F u G> 

1s abelian, 1s presented below. An outline of the algorithm Is the 

follow ing; 1t computes the structure of <F u G> and a generating set

fo r <FflG>, then since <FR G> C  <F U G> and <F U G> has a known structure 

one can apply algorithm I I . 7.4 In order to compute the structure of 

<F n g>.
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ALGORITHM 4.1

I NPUT : The generating sets { f j .........fm> and {g ^ ......... gk>

fo r the abelian group F and G respectively, where 

F <= S . G c S „  and the fact that <F u G>

OUTPUT: The order and a complete basis for the abelian 

group <F n G>.

begin

1. compute a basis « h 1f. . . , h  »  for F U G using algorithm 2.5 ;

2. d «- |<F U G>|;
a1 . a 2

3. compute a ^ 's  and f^ » h  ̂ . . .  h u fo r 1 <  1 <  m,

8.
11 h yi• • • I» fo r 1 <  1 <  k

3j  "1 .........U
comment This can be done by means of the algorithm of Corollary 3 .3 .

m k
4. Let S be the linear Diophantlne system: I  ■ E | |

J-1 1 " ¿1 ™
for 1 <  i <  v over

5. solve S using the algorithm of Proposition 1 .6 .6 ;

6 . le t  ( x ,z ,y )  -  K. ( t j , . . . , t y ) be the set of a ll solutions of Si 

comment The matrix K 1s of dimension (m+k*1) x v.

7. -5. «- K f* for 1 <  j  <  v ; J 1-1 1
8 . compute the complete structure of < £ j , . . . , 6y> using algorithm I I . 7.4 

comment Now <F n G> -  <6 1» . . . , 6n> Is subgroup of <F u G> whose 

structure 1s known, 

end. a



PROPOSITION 4.2

Algorithm 4.1 correctly computes the order and complete structure 

of the group <F n G>.

Proof

The system S of step 4 1s deduced from the equations

X1 xm z, z. 
f 1 **• fm 9 1 *•* 9k

a. j  a j
f ,  -  h . 11 . . .  h y l for 1 <  1 <  1 1 u

gj »  h^1J . . .  h j ^  fo r 1 <  j  <  p

which Implies that
m

v j L  aU Xj  J  ¿ y  Si j Zj  
n ( h j j=1 = n ( h j j!s1 1-1 1 1-1 1

Moreover 1f the set of a ll solutions of the system S Is that of step 6 , 

then I t  follows that

v m k .,  t 4 v k k.v m k , 4 t .  v k k. . t .
n ( n V 1) J - n ( n g,J*1^) J

j -1 i - i  1 j « i  1-1 1

equivalent to
v t .  v v k. A t .
n 6,J -  n ( n g > 1+,n) J

j - i  j  j - i  i - i  1

which Implies that { 6 j » . . . . 6y} Is a generating set for <F n G>. 

Hence the correctness of the algorithm follows. a
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PROPOSITION 4.3

Algorithm 4.1 requires 0((m+k)n4 log n loglog n) elementary 

operations for the computation of the complete structure of <F n G>

Proof

Step 1-2 requires 0((m+k)n4 log n loglog n) elementary operations 

by Proposition 2.7 .

Step 3 requires 0((m+k)n4 log n loglog n) elementary operations 

for expressing the f^ 's  and g j's  in terms of the basis elements of G by 

Proposition 3.3 .

Step 5 requires 0(m+k)n3 log n loglog n) elementary operations by 

Proposition 1.6.5 and the fact that u <  m+k.

Step 7 requires 0(log |F|) group operations for applying the
2"power algorithm" comprising 0(n ) elementary operations* since 

|F | < 3n^2 by Proposition 1.3.

Moreover one can observe that

v <  m+k

and thus by Proposition I I . 7 .5 , step 6 requires 0(m+k)n4 logn loglog n) 

elementary operations. a

B. THE CASE OF <F U 6> NON-ABELIAN

Given generating sets for F and G abelian subgroups of the 

symmetric group, where the union forms a non-abe11an group, two algorithms 

fo r computing the structure of th e ir Intersection are presented here.
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An outline of the f i r s t  algorithm Is the following:, one can

compute bases for r  and a » the groups formed by the dire ct product of
F i Aî

the F 's and G 's fo r each o rb it r i and At of the group F and G 

respectively. Then using the reduction described 1n the Proposition 

4.5 below, on r  and a . one can compute groups r* 5  r  and 4 * 5 4  such 

that <r* U a*> 1s abelian group and <r* n a *> * <r n a>* Moreover the

groups f* » <F n ( r  n a )> , f * = <f  u ( r  n a )> . G‘  = <g n ( f  n ( r  n a )>

and G1 -  G U (F  n ( r  (1 4 ) »  are abelian. Hence one can use algorithm 

4.1 for computing the structure of <r n a>. since <r* u a*> is abelian, 

the structure of F*, since F* 1s abelian and the structure of G*, since 

G1 Is abelian. I t  Is obvious that G*»<F n G>.

PROPOSITION 4.5

Suppose that and a . . . . . . A  are the orbits of the groups
n  y a *

F c S  and G e  S„, and le t r? <= F for 1 <  1 <  x . A? <= G for 1 <  1 <  x

r  «  r f  X . . .  X r j  and a * A| * ••• «

r* a ,if rf* :■ <r| n z(rf u (a|) )>. Af* :■ <Af n Z(a| u (rf) ),

A p
r* r î*  x n r î  and a* :■ A*î x n AÎ , then 

1 1-2 1 1 1-2 1

( I )  The group <rf* U Af*> Is abelian

( I I ) <r* n a*> • <r n a>

Proof

(1 ) Let y y € rf* and € Af*. Assume that the re strictio n  Çj of Yj
Ai

on Aj does not belong to ( r f )  .
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Then there is  a cycle c of Yj which permutes some points

{ 6 j , . . . , 6 £ }  of Ly and some points {y ] . .* * . y(J|} of Then i t  is

not d if f ic u lt  to see that c does not commute with the elements of
r ,

(A*) 1 and thus Yj does not commute with the elements of (A f) . Hence
p

Y1 t  Z(rf U (A|) 1) a contradiction.

-  Ai
Therefore Yj € (r* ) > which Implies Yj commutes with 6 j ,

since € z ( a^ U ( r y ) A l) .

( i i )  Let o €<r* n A*>. Then i t  is obvious that o € <r n a>. Hence 

<r* n a *> c  <r n a> (4 .1 )

Now le t  a € <r n A>. Then

a * Yj ••. Yx fo r some y  ̂ € r i , 1 <  1 <  X 

Let 6 € (A | )r i . Then there exists a 6 € Af such that

5 -  66'

I t  Is obvious that

a6 ■ 6a 

which Implies that

Yj wyj W ■ 66 Yj1̂  

from which follows that 

■ oy^
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r .
Therefore y  ̂ «  Z(rj u (a |) and thus o « r*

Moreover o -  6, . . .  6m for some 6« c A<* 1 s 1 s m. S im ila rly  1 m . 1 i
1 t can be shown that 6^ c Z(a^ u ( r j )  ) ,  which Implies a  c A*. 
Therefore a c <!** n A*> and thus

The re s u lt follows from (4 .1 ) and (4 .2 ) .  □

ALGORITHM 4.6

INPUT : Generating sets for the abelian groups F and G subgroups 

o f the symmetric group with <F u G> non-abel1an 

OUTPUT; The complete structure and a complete basis fo r the 

Intersection group <F n G>

begin r,
1. compute a generating set for F for each o rb it I \ .  1 s 1 s A of F;

A,
2. compute a generating set for G for each o rb it A^» 1 s 1 s y  of G;

3. fo r  1 * 1 to 1 do

begin

4. for each Aj such that Aj n r 1 ■ 0 do

comment The computation of the centre and the Intersection
at the above two steps 1s done by testing each element

<r n A> c<r* n A*> (4 .2 )

6

5

T i Aiof F 1(G J) whether or not 1t satisfies the required 
property.

7. end.
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8 . end.
r l  hr* ♦ F x x . . .  x F A;
A l  A

A* «- G x . . .  x G

9. compute a complete basis fo r <r* n a*> using algorithm 4 .1 ; 

comment The group <r* u A*> Is abelian.

10. compute a complete basis fo r <F n r* n A*> using algorithm 4 .1 ;

comment The group < F u (r *  n A*)> 1s abelian.

11. compute the complete structure of <6 n F n r* n A*> using 

algorithm 4 .1 ;

comment The group <G u (F  n r* n A*)> 1s abelian. Moreover the 

group <G n F n r* n A*> * <F n G>;

end. □

PROPOSITION 4.7

Algorithm 4.6 correctly  computes the canonical structure 

of <F n G> 1n 0((m+k+n)n4 logn loglog n) elementary operations.

Proof

The fact that r* u A* is  abelian follows from the construction 

o f r* and A* and Proposition 4 .5 . Therefore i t  Is not d if f ic u lt  to 

see the correctness of the algorithm.
2

Steps 1-2 require 0((k+m)n log n) elementary operations by 

Proposition 2.1.
r l  A 1 T i

The computation of a ll  elements of F and (G J ) requires 

O d T j l  logn) elementary operations and 0 (1 ^1  |Aj | logn) elementary 

operations respectively. Moreover the computation of the centre and the
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Intersection at step 5 requires 0(r^| |Aj | log n) elementary operations for

testing whether or not each element of F permutes with the 
^1 ^ 1

elements of (G J ) . S im ila rly  step 6 requires the same time.

Therefore loop 3-7 requires at most

X p
0( £ |Tf| ( £ |Aj|)1og n) -  0(n log n) 

1-1 j -1  J

elementary operations.

Using the fact that the generating sets of r* and G* 1s of 

card in ality  at most 0(n) and Proposition 4.2 . step 9 requires 

0(n51ogn loglog n) elementary operations.

Step 10 requires 0(k+n)n4 log n loglog n) elementary operations 

by Proposition 4.2 .
o

Step 11 requires 0(m+n)n log n loglog n) elementary operations 

by Proposition 4.2 .

The proposition follows from the above analysis. □

The skeleton of the second algorithm Is  sim ilar to the f i r s t  

one; Its  main scope 1s the computation o f two groups whose Intersection 

contains the required Intersection and th e ir  union Is  abelian. The 

computation o f these two groups 1s done by means of fixed blocks of 

the required Intersection group computed with the following algorithm.

ALGORITHM 4.8

INPUT : A set of generators { f j . . . . . ^ }  and {g A.........g,,,} for the

abelian groups F and G subgroups of Sn.
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OUTPUT : A set o f d is jo in t fixed blocks ♦1, . . . , 4 V for the group 

<F n G> such that I„  »  u ^  n for some

Integers j j  and fo r a ll 1 s 1 s v , where T j 's  are the 

orb its of F and Aj's are the orbits of G.

begin

1. compute the orb its r £» . . . , r ^

2. compute the orbits

3. L ( j )  «- l :  J « for 1 s J s

4 . for 1 «  1 to A do

begin

of the group F using algorithm 2.1; 

of the group G using algorithm 2.1; 

y j M«- 0» S| ♦ 0 fo r 1 s 1 s w;

5* SL ( j )  *  SL ( j )  u f0r every J 1n r 1J 

6. H ♦ H u j)^* ^L ( j )  ^

Sk ♦ i  fo r 1 s k s y ;

7. end

Let $ 1.........<(>v be the elements of M;

end. □

PROPOSITION 4.9

Algorithm 4.8 correctly computes the set of d is jo in t fixed
2

blocks of <F n G> 1n 0((k+m)n log n) elementary operations. 

Proof

I t  1s obvious that ^  n A ^  for some Integer J 1 and

fo r all 1 s 1 s n.
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Now le t  a « and g c <F n G>. Since a c r «  • a e A, I t  1 J 1
follows that g(a) e r 4 and g(a) e A. . Therefore g(a) e +4 andJ1 *1 1 
thus ^  Is  a fixed block of <F n G> .

2
Steps 1-2 require 0((k-Hn)n log n) elementary operations by 

Proposition 4 .2 .
u

Step 3 requires £ |A1| -  n elementary operations.1-1 1
Step 5 requires 0 (|r^|) elementary operations for computing

L ( j )  fo r every j  e and for computing the S j 's .  Step 6 merely

requires 0 (| r^ | ) elementary operations. Therefore loop 4-7 requires

0( £ (|r<|) -  0 (n ) elementary operations. □
1-1 1

PROPOSITION 4.10

Suppose that I ^ . . . . , ^  and ¿ ^ . . . « a  are the orbits of the 

abelian groups F and G subgroups o f the symmetric group. Let
x r4 x r.r -  n F 1 and A • II G ' .  I f  4 . .........are the fixed blocks of

1-1 1-1 1 v

the group <F n G> defined 1n algorithm 4.8« then

<F n G> c < r ' n A’ >

where

and G1

X 11r' ■ B Fi and a ' -  n G4, with1-1 1 1-1 1
r l ♦jF^ -  <g : g c F and g J 1s well defined for l i j i v >  

Aj
<g : g 1 6  and g J 1$ w ell defined for 1 s j  s n>.
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Proof
r1

Let h e F n 6. Then there exists y^ « F fo r 1 s 1 s X and

L  c G fo r 1 s 1 î  y , such that

-Yi ••• YX * 616« • • • 6

Moreover h J 1s well-defined for 1 s j  s v and

<0n ♦ h
for 1 s j  s v

where y^ J for 1 s 1 s \  and 1 s j  s v Is w ell-defined, since

c r k fo r some kj and ^  n T j  * (  fo r every 1 + k j.
J

Therefore for 1 s 1 s A and thus h e r'.
Sim ilarly 1t can be shown that 6j e 6  ̂ fo r 1 s 1 s y and thus

h « A* •

Hence i t  follows that h « r* n A '.  □

PROPOSITION 4.11

Let r 1 and A* be as In Proposition 4 .8 ,

♦l ♦j v♦J • <F J n G J > and 4  ■

Then (1 ) the groups <I" u ♦> and <A' u ♦> are abelian 

(11) The following holds

<F n 6> ocr' n A ' n ♦>
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Proof

( I )  Let a c T '  with a »  f j  . . .  f^ for « F|, 1 s 1 s A and 3 « 4 with 

6 * 0j . . .  ev fo r e *, 1 s 1 s v. From the defin itio n  of Fj 1t 

follows that

4i 4» 4W
f 1 "  f 1 f 1 * .. f 1 fo r 1 s 1 s A.

4 •« j
I t  1s obvious that f j  J connûtes with ek for every 1 ,j  and k r  j .

4<
Also f^ J connûtes with 0 j. since 0j  « F J and fj J 1s e ither 1 or 

$4 r j 4 j 4 <
f^ J € (F  ) J ■ F . Hence a and 3 commute and thus < r ‘ u 4> 1s abelian. 

S im ila rly  I t  can be shown that <A* u 4> Is abelian.

( I I )  Let a c F n G. Then e F ^  and e G ^ .  Therefore 
♦ . $i 4o $u

a J e ♦ J. Since a a a a . . . a  ,  1t follows that a e 4«

By Proposition 4.10, <F u G>£<r' n A '> , thus a e r* n A '.

The proposition follows from above. □

REMARK

Since <r* u4>and (A* u 4) are abelian, one can compute 
<r' n 4> and (A 1 n 4) using algorithm 4.1. Moreover one can compute 
<(r' n 4) n (A* n 4)> ■ <r' n A1 n 4> using algorithm 4.1, since 
<(r' n 4 ) u (A* n 4)> Is abelian. □
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ALGORITHM 4.12

INPUT : Generating sets and {g 1, . . . , g k)  fo r the abelian

groups F and G subgroups o f Sn* with <F u G> non-abellan 

OUTPUT: The canonical basis fo r <F n G>

begin

1. compute using algorithm 4.8 ;

2. compute F ^ . . . . , F  and G j.........G^;

comnent This 1s done by d ire ct computation. 

T '

A*
3. compute

F^ ^ ••• ^ F^i 

Gj x • • • * Gjji
compute .........♦*; r k ♦j aa

comment This 1s done by d ire ct computation of (F  ̂ ) n (G ^) =

with c r k and $j  c 
J

4 . compute a basis fOr r '  n <p using algorithm 4.1 ; 

comnent The group r' u f  1s abelian.

5. compute a basis fo r A' n ♦ using algorithm 4 .1 ; 

comment The group A* u 4 1s abelian.

6. compute a basis fo r r‘ n A' n # using algorithm 4 .1 ; 

comment The group (A* n ♦) u (I”  n 4) 1s abelian

7. compute a basis fo r F n T 1 n A' n 4 using algorithm 4 .1 ; 

comnent The group F u ( I"  n A' n 4) Is abelian

8 . compute a canonical basis fo r 6 u F n r* n A' n 4 ) 1s abelian and

G n F n T ' n A '  n + -  F n 8.
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PROPOSITION 4.13

Algorithm 4.12 correctly computes the canonical structure of 

<F n G> 1n 0(k+m+n)n4logn loglog n) elementary operations.

Proof

The correctness of the algorithm follows from Proposition 4.10,

4.11 and 4.2 .

Step 1 requires 0(kn log2n) elementary operations by Proposition 

4 .9 . The computation of Fi requires 0 (| r i |2) elementary operations for 

computing a ll elements of F  ̂ and 0 (| r .J lo g ( E <pj) )  * 0( | |  log n)

elementary operations for testing each of them whether or not Its

re strictio n  to <|> for 1 <  s <  y 1s a permutation. Therefore step 2

requires 0( e | r J 2) * 0(n2) elementary operations fo r computing the 1*1
U p  2

F. and s im ila rly  0( Z |a |̂ ) ■ 0(n ) elementary operations fo r computing 1 1*1
the G j's .

♦s ♦j
The computation of (F  "J ) and (G J ) for 1 <  j  <  v requires

0 ( I | 2 +|A# |2) elementary operations; one can show that 
j  j

a* -  (F  kJ )i^  n (G using the fact that (F  ^ j )   ̂ + 1 and

fact that (F r|cJ )^ J i  1 and ( G ^  )*J i  1 fo r some(G j )  J using the

kj and only, since ^  intersects ju s t one o rb it of F and one o rb it of

G. Therefore the computation of the <fr|'s can be done by sorting the

elements of ( F * ^ ) ^  (they are at most |+j|) and testing fo r a ll g In

( G ^ ^ ) ^  (the are at most | t j )  whether or not g belongs to (F  kJ ) ^ .
“ X 2 y 2 v

Therefore one can compute 4 In 0( E |r4| ♦ E |A<| ♦ E |$J1og|$i |logn)
2 1-1 1 1-1 1 j -1  J J

■ O(n^) elementary operations.
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5. APPLICATIONS

A. Group Thoory

The subsection deals with a negative result about applications 

of the algorithms for permutation groups on abstract groups. The gap 

between the upper bound of 0 ( | G | ^ +e) on the time required for 

computations (lik e  order, canonical structure of a group) in abstract 

abelian groups represented by a set of generators and the upper bound 

of 0(logc |G|) for some constant on the time required fo r  sim ilar 

computations in abelian permutation groups is far too b ig . As a bridge 

between permutation groups and abstract groups is Cayley's theorem (see 

Hall [2 2 ]) saying that every group is isomorphic to a permutation group. 

I t  w ill be shown that given a set of generators for a group G, the time 

required by an optimal algorithm for computing the isomorphic image of G 

Into a permutation group 1s n (|G |). Moreover, Cayley's construction 

is shown to be optimal within a polynomial factor.

Suppose that G = <g> c y c lic  elementary p-group fo r  p prime. Then 

there exists a permutation w such that <ir> = G. Then the order of ir is 

|G| -  p which Implies that it permutes at least |G| symbols. Therefore 

an optimal algorithm for computing an isomorphic permutation group 

to G requires fl(|G|) elementary operations 1n the worst-case.

Moreover Cayley's construction of the Isomorphic group requires 

|G| elementary operations, given G ■ < g ^ ,.. . ,g jc>,The construction 1s 

the following: Define a permutation rg  ̂ for 1 <  1 <  n acting on {g :g  € G> 

such that rg^(g ) ■ gg^ v g  € G. Then 1t 1s not d if f ic u lt  to show that
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I t  1s not d if f ic u lt  to see that the computation of rg requires 0(|G|) 

and then the isomorphic image of G requires 0(k|G|£) elementary operations. 

Assuming that k w ^ m 0(1ogc |G|) for some constant c > 0, Cayley's method 

1s optimal within a factor of 0(1ogc |G|).

Moreover 1n the case which G 1s abelian one can construct a 

complete basis « b j , . . . , b n»  for 6 1n 0( |G|1 ^2",’eC) elementary operations. 

I f  c^ are d is jo in t cycles permuting elements 1n { 1 , . . . , |G|}and c. 1s of 

length |b^| for 1 <  1 <  n, then

^C| i... > c ^  w  G.

This computation requires 0(|G|) elementary operations and thus 1s 

optimal.

Therefore one can conclude that the representation of the group 

as permutation groups 1s powerful fo r computing the order of the group 

but the computation of an Isomorphic permutation group to a given 

abstract group is intractable.

B. Graph Theory

The following two problems are polynomial time equivalent:

Group Intersection problem: Given two permutation groups, subgroups of 

the symmetric group Sn, compute a generating set fo r th e ir Intersection. 

Graph Isomorphism Problem: Given two graphs determine whether or not 

they are Isomorphic and 1f so, construct an Isomorphic from the one to 

another.

There Is no known polynomial time algorithm fo r both of the problems 

mentioned above. Hoffman In [2 4 ] suggests that th e ir complexity lie s  

between P and NP and that they do not seem to be candidates of the
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the symmetric group Sn, compute a generating set for th e ir Intersection. 

Graph Isomorphism Problem: Given two graphs determine whether or not 

they are Isomorphic and 1f so, construct an Isomorphic from the one to 

another.

There 1s no known polynomial time algorithm  for both of the problems 

mentioned above. Hoffman In [2 4 ] suggests that th e ir complexity lies 

between P and NP and that they do not seem to be candidates of the



NP-complete class of problems (fo r  definitions of P, NP and NP-complete, 

see Aho e t a l. [ 2  ] ) .

The graph isomorphism problem has been considered under constraints 

e .g . the graph Is of bounded valence (see Luks [3 8 ] ) .  The algorithms 

described in the previous sections of th is  chapter have no direct 

application on the graph Isomorphism; they (algorithm 4.12.?) may help 

fo r the solution of the graph isomorphism problem under the constraint 

that the automorphism group of the graph is isomorphic.

C . Chemistry

I t  1s well-known the connection of the representation of the 

molecules and the symmetric group (see [ 3 ] ) .  Many of these 

representations form an abelian group (see [1 1 ], e .g . translation group). 

The computation of the structure of these groups aids to the computation 

of the o rb ita ls  of the atoms (see [ 3 ] ) .
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