A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/112016/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

ASIEPOMENO ETOTE TONEIE MOT

ENrpo AEEnoiNA

DEDICATED TO MY PARENTS

SPIROS DESPINA

CONSTANTINOS SPROS' ILIOPOULOS
ELSc. (Athens) , M.Sc. (Warwick)

COMPUTATIONAL PROBLEMS

INTHE THEORY OF ABELIAN GROUPS

Ph.D. THESIS

Warwick University
Department Of Computer Science
Coventry CV4 7AL
England

Augutt 1963

AMEPOMENO ETOTE TONEIE MOT

EnTPO AEEIIOINA

DEDICATED TO MY PARENTS

SPIROS DESPINA

2>T£
'<722
1&7

ACKNOWLEDGEMENTS

1. Summary
2. Introduction

3. Preliminaries

COMPUTATIONAL PROBLEMS ON ABELIAN GROUPS REPRESENTED

1. Introduction

A. Preliminaries

CONTENTS

CHAPTER O
INTRODUCTION

CHAPTER |
BY A SET OF DEFINING RELATIONS

2. IRC operations - Flnlteness of an Abelian group.- The order

of an Abelian

OFOUP ettt ettt ettt ettt et e et st e e en e sreeaeene

3. A direct method for computing the structure of finite

abelian groups

4. The computation of the Hermlte and Smith normal forms of

an Integer matrix

A. Hermlte normal form

B. Smith normal form

5. A direct method for computing the structure of Infinite

abelian groups

6. A direct method for solution of systems of linear

Dlophantlne Equations

7. An alternative time algorithm for computing the structure of

abelian groups

8. Applications

(0

37

10
12

15

19

42

51

55

51
54

37

CHAPTER I
COMPUTATIONAL PROBLEMS ON FINITE ABELIAN GROUPS REPRESENTED
BY AN EXPLICIT SET GENERATORS

L. INTFOAUCTION oot sre e e s 67
2. The computation of the order of an element of a group 69
3. The computation of a set of defining relations for the

P-OFOUP SH,X> oottt ettt ettt ettt e aeebeste st eteebeebesre st e 74
4. The computation of a basis for the p-group <HX>ccccoevivenenn. 80
5. The computation of the structure of a finite abelian group . . 87
6. Membership-inclusion tesStinNg ..o 90
7. The structure of a subgroup of a group with known structure . 95
8. The computation of the structure of the union and intersection

OF GIOUPS ittt e et esb b e s b e e e bne e nnre e 100
9. Relative Complexity of the problems 1n chapter Il 103

A. Computing the order of an element and factoring an integer 103

B. Relative complexity of problems 1n abelian groups 108

C. Relative complexity of decision problems ... 116

0. Relative complexity of Intersection problems ... 121

E. CONCIUSIONS oottt s . 126
10. APPHICATIONS it 129

CHAPTER I
COMPUTATIONAL PROBLEMS ON ABELIAN SUBGROUPS
OF THE SYMMETRIC GROUP

Lo INEFOAUCTION o e 130

A PrelimMiNariES e e 132
2. The computation of the order and the structure of an abelian

SUDGIOUP OF SN et 135

3. Membership-Inclusion testing and computing the union of groups . 144
4. The computation of the structure of the intersection of
abelian groups

D APPIICATIONS e *66

REFERENCES

(1)

ACKNOWLEDGEMENTS

| am Indebted to my supervisor Dr. Meurlg Beynon for the
enormous amount of time spent with me, the effort and hls continuous
help during the two years of research for this degree. It 1s a
pleasure working with him and | certainly enjoyed our mathematical
debates.

| should like to thank Professor Mike Paterson for many
rewarding discussions.

| should also like to thank Professor John Dixon (Carleron
University, Ottawa) for Ms helpful comments on my work on Chapters
I and I1l. Algorithm 1.7.1 and Proposition 11.9.4 are due to him (any
errors are due to me).

| am grateful to Professor Christos Papadimiltrlou (National
Tech. Unlv. of Athens andM.l.T.) for helpful comments and for pointing
out to me the reference [19].

It Is a pleasure to acknowledge the financial support of the
Greek section of research and scholarships "Alexander S. Onassls"
Public Benefit Foundation for the academic year 1982-83.

I would like to thank my parents for their encouragement,

love and support. | heartily dedicate this work to them.

1. SUMMARY

Id this thesis» the worst-case time complexity bounds on the algorithms

for the problems mentioned below have been Improved.

A.

Algorithms on abelian groups represented by a set of defining
relations for computing:
(n a canonical basis for finite abelian groups

(1) a canonical basis for Infinite abelian group

Algorithms for computing:
(n Hermlte normal form of an Integer matrix
(1) The Smith normal form of an Integer matrix

(I'1) The set of all solutions of a system of Dlophantlne Equations

Algorithms on abelian groups represented by an explicit set of
generators for computing:

(1Y the order of an element (space complexity 1s only Improved)
(1) a complete basis for a finite abelian group

(1'1'1) membership-Inclusion testing

(1v) the union and Intersection of two finite abelian groups

A classification of the relative complexity of computational problems
on abelian groups (as above)» factorization and primllity testing.
Algorithms on abelian subgroups of the symmetric group for

computing:

(1) the complete structure of a group

(1) membership-Induslon testing

(111) the union of two abelian groups

(1v) the Intersection of two abelian groups.

2. MTRODUCTION

In this thesis we Investigate a large class of computational
problems 1n the theory of abelian groups. Abelian groups are studied
In three forms of representation:

(1) represented by a set of defining relations, (11) represented by an
explicit set of generators and (111) represented as subgroups of a
permutation group.

The algorithms presented here are considered from the point of view
of worst-case complexity; mostly we consider the worst-case time
complexity and In few places the space complexity. All algorithms
mentioned below have been shown to have better worst-case complexity
upper bounds than the bounds already cited 1n the literature. A brief
outline of the algorithms Included 1s given here; for a fuller summary
of the restuls see the Introduction of each chapter.

In the case which the group Is presented by a set of defining
relations, algorithms for computing the canonical structure of a
finite or Infinite abelian group 1s presented; algorithms for the
closely related problems of computing the Hermlte and Smith normal form
of an Integer matrix are also given. Among the applications of the
above algorithms are methods for solving systems of Linear Dlophantlne
Equations, for computing the characteristic polynomial of a matrix and
for the problem of Integer linear programming.

In the case of an abelian group represented by an explicit generating
set an algorithm for computing the complete structure 1s presented;

algorithms for membership-inclusion testing and for computing the

Intersectlon of groups are also given. These algorithms have
applications to factorization and public key cryptosystems. Further
a classification of the relative complexity of the factorization
problem» primallty testing and several group-theoretic problems 1s
given.

In the case of abelian permutation groups, an algorithm for
computing the complete structure together with algorithms for member-
ship-inclusion testing are presented. Further an algorithm for
computing the Intersection of two abelian groups 1s given; this
problem Is related to the graph Isomorphism problem.

Most of the algorithms are presented In an Informal computer-11ke
language named PIDGIN-ALGOL Introduced by Aho, Hopcroft and Ullman 1n
[2].

By Proposition 11.3.5 1s denoted the 5-th proposition of the 3rd

section of Chapter Il. If the chapter number (In Roman) Is omitted,

then we refer to the current chapter.

Coventry, August 1983

3. PREUMMARCS

A. Whrit-Cata Complexity Bounds For Numerical Algorithms

The computational complexity 1s measured 1n terms of elementary
operations. An elementary operation 1s a Boolean operation on a single
binary bit or pair of bits or an input or shift of a binary bit.

For ease 1n bounding operation counts the following convention

is established throughout:

/=log n if n> 4
logn* < 2
I If n<4

Moreover the cardinality number of a set S 1s denoted by |S].

THEOREM 3.1. (Schttnhage and Strassen p5])

There exists an algorithm for multiplying two Integers of length

n bits in M(n) elementary operations, where
M(n) - cn log n loglog n

for some positive constant c. a

THEOREM 3.2 (Cook [9])

There exists an algorithm for division of n bit Integers In M(n)
elementary operations, o]

The following theorem yields an upper bound on Knuth's algorithm
(see [36]) for computing the greater common divisor of two Integers.

The bound 1s due to SchOnhage [46].

THEOREM 3.3 (Extended Euclidean Algorithm-abbreviated EEA)

There exists an algorithm for computing the gcd r of two Integers

alta? and two Integers x* and x2 such that

xlal + x2a2 * r
with

X < |a /2 X2l < |all?2

in O(H(n) log n) elementary operations, where n = log(max {)a"|,|a2]>).

The following theorem due to Goppersmlth-Winograd (see [10]) yields the

current upper bound on matrix multiplication.

THEOREM 3.4

There exists an algorithm for multiplying two n x n matrices,

which requires 0(na) multiplications, where
a = 2.495364... . a

In 1969 Strassen [51] gave the celebrated algorithm for matrix
multiplication which requires 0(n"°® m O(n"*®") multiplications.
Since then a series of Improvements (Pan, B1lnl, Winograd) have led to
the bound of Theorem 3.4. It Is worth mentioning that these Improve-
ments are of theoretical rather than practical Interest, since the

hidden constant of the symbol 0 Is very large.

THEOREM 3.5 (Strassen [51])
The Inverse of a n x n matrix may be computed with 0O(na) multi-
plications. o

A sorting algorithm and searching algorithm 1s presented below.

THEOREM 3.6 (Heapsort, see Williams (53], Floyd [15])

There exists an algorithm sorting a list of n elements which

requires O(n log n) comparisons. O

THEOREM 3.7 (Binary search)

There exists an algorithm for searching for a particular element

1n a sorted 11st of n elements which requires O(log n) comparisons, o

B. Abelian Groups

A set {gltg2,...,g n} is called a generating set for an abelian

group G, if for every x € G there exists integers ai for 1< 1< n
such that

The g”n's are called generators.
a.i a .
A set of relations S « {x" xn * 1, for 1< 1<m.
xkx. = xjx*.v k»j) s®ld t0 be a set defining relatione for an
abelian group G if every relation holding 1n G can be derived from S.
The matrix

Ealie
Vi "W

associated with S represents the group G.

Suppose that G 1s a group and x 1s an element of G. If h s
the smallest positive Integer such that xh m 1 1s called the ondin of x
denoted |x]. The least common multiple of the orders of all the elements of

G 1s called exponent of G. The total number of elements of G Is called

ottdVL of the group G denoted |G].

The dOiict product of two abelian groups H and K both
subgroups of a group G with Hn K* 1 Is said to be

Hx K- (hk : HE H, k € K}

A cyclic group of order n 1s denoted by C(n).
Suppose that the abelian group G 1s decomposed 1n terms of cyclic
groups

G=C(d.) x x Cd]M) x C(v») x ... x C(«0) (3.1)
m times

If di divides d1+l for 1< 1 < k, then the representation (1.1) defines

the canonical structure of G.

THEOREM 3.8 (H.J. Smith, [49])

The canonical structure of G 1s unique. o]

Suppose that the abelian group G 1s decomposed 1n terms of

cyclic groups

xC(-) (3.2)

m times
where the p”~'s are distinct primes. The representation (3.2) defines

the complete structure of G.

A set of elements B - {blt...,bn) 1n an abelian group G 1s
independent 1f a finite product n b® - 1 only when b®1 » 1 for every
If an Independent set B of an abelian group G also generates G, then It

1s said that B form a basis for G; It 1s denoted by G m «b j...b n>>.

If the orders of the elements of a basis for an abelian group
yield the canonical structure of the group, then the basis Is called
canonical basis. |If the orders of the elements of a basis for an
abelian group yield the complete structure of the group then the basis
Is called complete basis.

If G lIs a group, then the set
Z(G) « {Xx:xy » yx Vy €G}

under the group operation of G forms a group called the centre of G.
The multiplicative group of Integers modulo n 1s denoted by Z*.
(Integers moduloiirelatlve prime to n under multiplication)

C. Rlemsnn Hypotheses

The function

(I) 3
c(s) = Z -V . s complex number
ml ns

Is called Riemann seta function.
The hypothesis that the zeros of c(s) In the critical strip
0 < Re(s) < 1 (Re(s) denotes the real part of s) all 1le on the line

Re(s) mi, Is called Riemann's Hypothesis.

Diriahlefe L functions are defined by:

S
L(s,x) m 1 x(n)/n , with s complex number
n-1

where x Is * character (we call x * character. If x'1* « function over
all group elements of a group G-Can”,......... ah> with properties (1) X(*j)

+ o(Vi and (11) x (a™ x (*j) m X (#i4))] Vi»j)* Two well kno*n

characters are

(1) The Legendre symbol Xp m {jj) defined by

2
1 a =1md p
(i) | -1 a2] 1mod p and gcd (a,p) - 1, with p prime
0O gcd (a,p) i 1

(11) The Jacobi symbol Xpg = (~) defined by

(~):- (I (). with p.q primes

where (*) and (i) are Legendre symbols.

The hypothesis that the zeros of L(s,X) in the critical strip
a< Re(s) < 1all lie on the Une Re(s) * where x 1s a Legendre or
a Jacobi symbol with fixed denominators» 1s called Extended Riemann'e
Hypothesis (ERH).

Some of the proofs of the propositionsof Section 9 of the second

chapter depend on the truth of ERH.

1. INTRODUCTION

In this section computational problems on abelian groups
represented with a set of defining relations and closely related
problems are Investigated. In particular, the problem of computing
the order and the canonical structure of a finite or an Infinite
abelian group 1s examined. Consequently the closely related problems
of computing the Hermite normal form and the Smith normal form of
a non-singular integer matrix are considered. Moreover an effective
way of solving systems of linear Dlophantine equations is studied.

An algorithm for computing the order and the canonical structure
of a finite abelian group 1s presented; It requires O(SSM(S?))
elementary operations, where s is the size of the matrix associated
with the set of defining relations. The most competitive algorithm
for this problem is due to Chou-Collins (see [8]) which requires
0(s11) elementary operations.

An algorithm for computing the Hermite normal form of an Integer
matrix 1s given; 1t requires O(SSM(SZ)) elementary operations, where
s 1s the size of the matrix. Also an algorithm for computing the
Smith normal form of an Integer matrix of size 1s 1n O(s M(s))
elementary operation 1s presented. The upper bounds of the above two
algorithms Improve the upper bounds given 1n [8J; the algorithm for
Hermite normal form 1s shown to be optimal as direct method. Moreover
algorithms for computing the multiplier-matrices M, B and C such that
MA and BAC are the Hermite and Smith normal forms of the given matrix A

are presented;the algorithm for computing Mrequires 0(s3M(s2)) elementary
operations and the algorithm for computing B and C requires 0(s5**9M(s2))

elementary operations.

1

An algorithm for computing the canonical structure of an Infinite

abelian group 1n 0(s5M(s2)) elementary operations, 1s presented here.

An algorithm for computing the set of all solutions (or a particular
solution) or establishing that there Is none, of systems of linear
Dlophantlne equations 1s given; It requires O(sJ*sM(s) & s M(s¥*))
elementary operations where s is the size of the matrix A and s* the
size of vector b (The system is Ax » b), This upper bound Improves the
Chou-Collins upper bound in [8] by at least a factor of O(s). More-
over, 1t is better than the Frumkin's upper bounds on the computation
of a particular solution and on solving a homogeneous system of linear
Oiophantine equations.

A simplified algorithm for computing the canonical structure of
an abelian group having asymptotically the same complexity with
algorithm mentioned above 1s given; Its main difference 1s that 1t 1s not a
direct method.

The chapter closes with a discussion about applications of the

algorithms refered to above.

A.Preliminari««

DEFINITION 1.1
Suppose that A Is an mx n matrix. |If the entries of A are
Integers, then the norm |JA]] of the matrix 1s said to be the Integer

HHAIl = max { |alJ]>.
1»J

If the matrix A 1s over the field of rationals (denoted by <]|), then the

norm |JAll] 1s defined to be the Integer

 mT 1rJdy fs<il:

DEFINITION 1.2

The size s of an m x n matrix A with entries from Z or (] 1s defined

to be the number

smamen elog |JA] - o

DEFINITION 1.3

A square matrix A Is called aingular 1f Its determinant (denoted
det (A)) 1s zero, otherwise 1s called non-singular.

A square matrix A over the Integers, whose determinant 1s of

absolute value 1, 1s called unimodular. a

NOTATION 1.4
t
If A 1ls an mx n matrix, then the n x mmatrix A defined..by

t
CA 3lj " all *

Is said to be the transpose matrix of A. a

13

NOTATION 1.4a.
An n x n ldentity matrix 1s denoted by In and an n x n zero

matrix 1s denoted by On. O

NOTATION 1.5

Let A be an mx n matrix. For 1< 1< n, the 1-th column of
A will be denoted by COLA(1) and for 1< j < m, the j-th row of A
will be denoted by ROMA(j). When there 1s no ambiguity the subscript

A 1s omitted. a

DEFINITION 1.6
An elementary row-column operation (abbreviated ERC operation)

on a matrix with entries from a ring (R, &, <) is:

(1) The multiplication of all entries of a row (column) by -1 =
or (11) The Interchange of two rows (columns)«
or (111) The addition of a multiple (over R) of a row (column) to a
different row (column)
An IRC operation over the ring of Integers Is called an integer

raw-column operation (abbreviated IRC operation). a

DEFINITION 1.7

The square matrices

0 0
a
0
* t
j-th column k-th column

1-th row

are called elementary matrices, a

THEOREM 1.8 (see Gantmacher [19]).

Every matrix can be written as a product of elementary matrices.

PROPOSITION 1.9

An ERC operation on a matrix corresponds to a multiplication of

the matrix by an elementary matrix. O

DEFINITION 1.10
An algorithm for transforming a matrix A to another matrix A* Is
called a direct method 1f the transformation is performed by means of®
sequence of linear combinations of rows and columns of the matrix A. a
The above definition was Introduced by Klyuyen and

KokovkIn-Shchebak In C34]s

15

2. RC OPERATIONS-FINITENESS OP AN ABELIAN GROUP -THE ORDER OP AN

ABELIAN GROUP

Suppose that an m x n matrix A represents the abelian group G.
The multiplication of a row by -1 substitutes the relation

| x. * 1 for the relation n ®ls m 1. The addition of an Integer

multiple of a row to a different row substitutes the relations

{il x.is « 1, n x.1 = 1} for the relations {n x.1 m 1, n x.1 s « 1}
11 1 1 11 1 1

The Interchange of rows corresponds to the renaming of generators. The
multiplication of a column by -1 substitutes the generator x“1 for the
generator x. The addition of an Integer multiple of a column to a
different column changes the generators by substituting {xyp,y} for

{x,y}. Hence the following lemma Is shown:

LEMVA 2.1

The IRC operations on a matrix A respect the structure of the
group G represented by A. o]

Let A and G be as above and suppose that rank (A) mr < n. Then
there exists a sequence of IRC operations to transform A to the matrix
A':« CA*,0], where A* 1s an mx r matrix? Therefore the generators
xrd.j,...,x n corresponding to the r ¢ 1,....n-th column of Al respectively

are free and thus G Is Infinite. Hence the following lemma Is proved:

LEMVA 2.2 \
Suppose that an m * n matrix A represents the abelian group G*--------

Then G Is finite 1f and only 1f rank (A) m n. a

+See £49).

16

One can compute the order or a multiple of the order of an
abelian group G (If G Is Infinite group, then one can compute the
order or a multiple of the order of the finite component® of G) 1n the
following way:
(n Case rank (A) mm- n. |In this case G Is finite and 1t 1s not
difficult to show that the determinant of A 1s equal to the order |C]
of G.
(Il) Case rank (A) m n <m In this case G 1s finite. Moreover It
1s not difficult to show that

IG| m gcd {det (M): MIs an n x n non-singular submatrix of A)
(Using Gaussian elimination, one can transform A to the matrIx”j*j, where
If Is an n x n matrix. Then |G] m det (M*) and In £19} one can see that
det (M*) - gcd (det(M), M as above})
Since the number of n x n non-singular submatrices of Als (JJ) (see £,93)»
the above formula does not yield an efficient way of computing |G|. By
computing the determinant of n x n non-singular submatrix M one can

compute a multiple of the order |G]. ,

(I11) Case of rank (A) <n. In this case G Is Infinite. Let 6 m H x K
where H Is a subgroup containing all the finite order elements of G.

Then

|[Hl = gcd (det(M): M 1s an r X r non-singular submatrix of A).
Since the number of r x r submatrices of A 1s (") (") (see tl91), the
above formula does not yield an efficient wpy of computing |Hl but by
computing the determinant of such a matrix Mone can compute a multiple

of the order of H.

*The subgroup of an abelian group containing all the finite order elements
of G 1s called, the finite component of G.

A

Papadlmltrlou and Stelglltz [43] refer to the existence of a
polynomial time upper bound on Gaussian elimination over the rationals.
Strassen 1n [51] yields a polynomial time upper bound on the number of
multiplications needed for Gaussian elimination over a field but this
does not Imply necessarily a polynomial time upper bound 1n terms of
elementary operations. The author knows of no reference to an explicit
upper bound on the number of elementary operations required for

Gaussian elimination which 1s shown below:

ALGORITHM 2.3 (Gauss)

INPUT: An m x n matrix A with entries from ratlonals (WJ.o0.g.
assume m> n)
OUTPUT: The rank r of A and the determinant d of an r x r non-singular

submatrix of A

begin
1« 0
1. repeat
1e lei:
ULa” * 0 then
Interchange ROW(1) and ROW(k), COL(1) and COL(A), wherea”™ t O,
k, Aal;
2. a~/an for 1 <J < m;
3. ROW(J) 4 ROW(Q) - Vij ROW1) for 1 <j < m;
4. until ROW() - (O......... 0) for all J > 1;
r el

5.d I‘ll «.ﬂ;

end. a

18

PROPOSITION 2.4

Algorithm 2.3 correctly computes r and d 1n O(nmr M(log|ld*]))
elementary operations, where |d*] « max {|det(M)]:M Is an r X r non-

singular submatrix of A).

Proof

Let A~ denote A at the beginning of the 1-th Iteration of
loop 1-4. Step 2 requires at most m divisions comprising O(mM(log | |AM]))
elementary operations. Step 3 requires at most rm multiplications
comprising O(mnM(log ||A"]])) elementary operations. Hence algorithm

2.3 requires
Oil "in M(log JIA) I)

elementary operations.

It 1s known (see [19], p.26 formula (12)) that ||]A*]|] 1s at most
the largest 1n absolute value determinant of an 1x1 submatrix of A.
Therefore the algorithm requires O(mnr M(log |d*])) elementary

operations, a

THEOREM 2.5 (Hadamard)
Suppose that A 1s an n x n square matrix and d Its determinant.

Then
n
ldl< n (L

COROLLARY 2.6
. . 3 2 .
Algorithm 2.3 terminates In O(s M(s)) elementary operations.

where s Is the size of A. a

19

3. A DIRECT METHOD FOR COMPUTING THE STRUCTURE OF FNHTE ABELIAN

GROUPS

The classical algorithm (see Smith [48], SIms [50]) for trans-
forming a matrix via IRC operations to a diagonal one may produce
very large entries In the matrix at the Intermediate steps. This
effect is called intermediate expression swell (abbreviated IES),
see McClellan [39]. Frumkin In [17] observed that the IES of Bradley's
algorithm (see [5], it is a slightly improved version of the classical
algorithm) denoted IES(BA) can be higher than 22V, where v = max {m,n},
where the Initial matrix Is an mx n matrix. In [16] Frumkin using

heuristic arguments Indicated that:

(1) IES(BA) > |JAl] il+e)n for some e > o (3)

under the assumption that the entries of the matrix Increase after a
step. The two diagrams below Illustrate the assumed and the empirical

growth of the entries

*The largest In absolute value entry of the martlx throughout the
computation Is the IES of the algorithm

-20-

(11) IES(BA) < (n JIAIl)n (3.2)

under the assumption that there exist Integers x1(...,xn such that
Z xiai = gcd(al...... aR) and |]x13- O(|Ja [|11/n)
1

with ai €Z, 1< i <n
But empirical tests (see Bradley [5]) show that
Ixi 11-0CHTazlD. (3.3)

Also one using that Fn-1 end Fn_2 are the smallest 1n absolute value

coefficients of Fn and FR+l respectively In the equation

FnFn-1 - Fn-2 Fn.1 ’ Scd (Fn*Fo*1> ' '*

where Fi is the 1-th Fibonacci number, one can show that there exists
an infinite sequence of numbers satisfying (3.3).
Therefore (3.3) suggests that Frumklin's upper bound 1s Invalid.

The author 1n [29] proved that
IES(BA) < |JAl] 3« with r = rank (A) (3.4)

Hence the bounds (3.1) and (3.4) almost match and suggest that the
classical algorithm 1s Inefficient and non-polynomial. An upper bound
on the complexity time of the classical algorithm of 0(9rs®) elementary
operations, where s Is the size of the matrix. Is given by the author

in [29].

21

The first polynomial time algorithm for the problem mentioned
above was given by Kannan and Bachem in 03]. Chou and Col 11ns in
[8] improved the complexity bounds of the Kannan-Bachem algorithm
given in 03], and, by slightly modifying their algorithm Improved
the upper bound on the magnitude on the entries over the transformation.
From [d] one can derive an upper bound of 0(s11) elementary operations
on analgorlthm for transforming a matrix A of size s to a diagonal
one. Moreover the growth of the entries at all steps of the Chou-
Col 11ns algorithm 1s bounded by 0(52).

An algorithm running asymptotically faster than the algorithms
mentioned above 1s given below .Knowing that the computation of a
multiple of the order 1s not hard, a modified form of the classical

algorithm 1s applied to the matrix given by the proposition below.

PROPOSITION 3.1
Suppose that A Is an mx n matrix over Z representing a finite
abellan group G. If B Is an n« n submatrix of A with rank (B) m n,

then the (m+n) x n matrix

with d m det (B)

represents a group Isomorphic to G.

Proof

The matrix K merely represents a group with defining relations

Ru{x*"m1l 1< 1< n>

¢2-

Isomorphic to 6, where R 1s the set of defining relations of G and
d 1s a multiple of the order |G]|. a

Kamman-Bachem in [33] refer that Wolsey, Hu, Frumkin et al.,
suggested the use of arithmetic modulo d in order to avoid IES; they

gave an example of a group represented by the matrix

whose determinant 1s 3. Taking the entries of A modulo 3, one can see

that the matrix

represents an Infinite abelian group non-lsomorphic to the group
represented by A. Despite the Kannan-Bachem worries that working modulo
d over the matrix A 1s not always valid, this arithmetic modulo d has
been employed and formulated In a correct way, 1n the procedures of the

new algorithm.

ALGORITHM 3.2

INPUT : The matrix K of Proposition 3.1 and an Integer p, 1< p<n

OUTPUT: A (m+n) * n matrix whose p-column Is of the form

(k1p,...,k pp,0,...,0)t ; this matrix Is a transformation

of Kvia IRC operations.

Procedure ELIMINATECOL (K,d«p)
begin
1f k * 0 then

pp
begin

'’ Sci <V VI.Ph
compute Integers Xj.Xg: x“kpp & x2kp+1,p* r with

IXIl < lkp+1,p"2* Ix21< Ikppl*2»

3. *L*vep/r
4 »2 * -V ori
. 0
v ||I i 0
b oy yel
i o
5 »] >s = K:
____________ L- XI =
! ® I *m+n-p-1
comment The result of step 5 1s a matrix K having kpp * 0
and k »
p+l»p
Note the (m+n) * (m+n) matrix 1s unlmodular
end
6. s - «cdflc™ p. k N ... k.p.d)i
m
7. compute Integers tj for ptl<j <mls J *, ‘jklo * W %y

tj « tj (mod d) for ptl <J<m
m
S - 1 k
me S gLt
8. ROW(p) ¢ ROW(p) ¢ , Z ,tjROW(j) & t, m+P) ;

comment The entry kpp of Kls equal to s. Note that the computation

of tmtl Is not necessary .since one can merely assign kpp m s

9. ROW1) « ROW(1) - (k. /s) ROW(i), for pHtl < 1< m
comment Now COL(p) * (Kjp.....k pp.0.....0)"

10. ROWM1) « ROM1) - (U«ij/«U) ROH(M+J), 1< 1< m, 1< j xn;
comment At this step all the entries of Kare reduced mod d.
return K,

end. O

REMARK 3.3

One may speed up (1n practice) the above procedure by making
the following modifications :
(1) At the beginning of the procedure ELIMINATECOL one can chedk If
there exists a klp for some p< 1< msuch that klp divides kjp for
every p<j < nmgp and 1f It exists, then Interchange ROW(1) and ROW(p)
and go to step 9.
(I'l) At the beginning of the procedure one may check whether or not
there exists a kIp for some p < 1< msuch that k.<IO =0 and 1f 1t
exists then Interchange ROW(1) and ROW(p) and go to step 6.

An amount of computation may be saved with the above modifications
but one can observe that the worst-case complexity will remain

asymptotically the same, a

REMARK 3.5

Suppose that the matrix K of Proposition 3.1 1s transformed to
* after an application of the procedure ELIMINATECOL (K,d,p). Since
every IRC operation can be expressed as matrix multiplication of K by a
unlmodular matrix (Proposition 1.9), It 1s not difficult to. modify the

procedure to compute a unlmodular square matrix L such that

-2b-

3.6 A WORKED EXAMPLE

Let

*26 38 601

2 18 30
3% 54 102 38 601
» 12 48 with |d] =|det(B) | - |det(*2 18 30)|- 144
144 0 0 54 102j
0 144 O
0 0 144

Now we apply ELIMINATECOL (K, 144, 1).
First one computes x* * 1, x2 = -2 such that 1.26 & (-2)12 * gcd(26,12).

Moreover y1 * 6 and y2 * -13

At step 5 we have that

13 . *0 -6 -30'
1 2 é 2 2 0

K4 0 36 54 102
» 75 2 12 48

o 1441, |

At step 6 we have that s*2 and

and t4 > 0 such that

1.2 ¢ 0.36 ¢ 0.22 +

At step 8 we have

2 -4 301
2 2 0
K- 3 54 102
22 12 48

- "h

¢b

At step 9 we have

-4 -30'
6 30
126 642
56 378
14413 «
At step 10 we have
* 4 -30*
0 6 30
K » 0 126 66
0O 656 90
14413

which is the output matrix. O
PROPOSITION 3.7
The procedure ELIMINATECOL terminates 1n

O(mnM(log(m [IKI|)) & mM(log [IK]])loglog [IK]I)
elementary operations in the worst-case and the size of the output

matrix is O(m+n+log [|K]]).

Proof

Steps 1-2 require O(M(log |JAll)loglog |JAll) elementary operations
for an application of the E.E.A. and by Theorem U.3.3.

XU K LR 2 (b (1.1)

Steps 3-4 require O(M(log |JAl]) elementary operations for
divisions.

In view of (1.1) step 5 requires at most 2n multiplications
comprising O(nM(1og |JAll) elementary operations. If A* denotes the

matrix after step 5, then
..**.. ..*..
i < i
Steps 6-7 require O(mM(log |IKI]) loglog |IKI]) elementary operations

for O(m) applications of E.E.A. and

mwan -- tINi 1> <IIMI

Step 8 requires at most mm multiplications comprising
O(mnM(log |IKl]) elementary operations for divlislons/multlpllcatlons.
Step 10 requires O(mn M(log(m ||Kl])) elementary operations.

The bound of the output matrix follows from step 10. O

REMARK 3.8
The dominant complexity of the procedure ELIMINATECOL 1s

O(mn M(log(m [IK]])), except 1n the case of enormous ||K]]i

gnlogm ¢ e
H*1>2 0
REMARK 3.9
One can show that a modification of the procedure ELIMINATECOL for
computing the matrix L defined In Remark 3.5 can be done 1n such a way

that the worst-case complexity Is Increased only by a constant factor and

log [ItI » O(log |IK|). O

ALGORITHM 3.10

INPUT : The integer matrix K of Proposition 3.1 and an integer
p:1< p<m
OUTPUT: An (m+n) x n matrix whose p-row is of the form
(kpi t.-.-.kpp,o,..,&))x; tithiis mnatribx is a transformation
of the matrix Kvia IRC operations.
(Note that procedure ELIMINATEROW is almost symmetric with the procedure

ELIMINATECOL; steps 9 and 11 are the only non-symmetries)

Procedure ELIMINATEROW (K,d.p)
begin
if k__* 0 then
- PP

begin

K« K

Wp.p" di “m+p+Lp+l - di km#p+1,p"- Ol kei+p,p+1 * 01
comment The above operation can be expressed as a sequence

of row operations. See comment below.

end

6. s « gcd (kpfptin***»,qn)l

n
7. Compute t. for p 1 <j < n: £ t.k * S»
J >+1 J w
tj mtj mod d for p+tl < j < n;
n
8. COL(p) «COL(p) + £ t. COL();
j-P+1 J

9. ROW(mM+j) + ROW(m+j) - tjROW(m+1), for p+l < J < n;
comment This step 1s not necessarily executed, since one can

merely assign km+p+Up «... - km+n>p « O.

10. COL(j) +COL(j) - (kpj/s) COL(p), p+ 1<j < n;

11. ROW(m+p) -+m ROW(m+p) - £ (k ,/s) ROW(m+j);
j«P+1 PJ

comment This step 1s not necessarily executed, since one can
merely assign km+pp+l - ... - km+pn - O
12. ROWM1) + ROW(1) - (L k"j/dI)ROW(mM+j),pSI < n,p < j < m;

return K
end, a
Comment
If M1s the Inverse of X~J . then one can see that
m+p-1 0 ; 0
0 ‘m: O . K 1s equivalent to step 51 and thus It can be
0o i

expressed as a sequence of row operations, a

30

REMARK 3.11
One may speed up the above procedure by modifying It 1n a
similar way as procedure ELIMINATECOL was suggested to be modified

at Remark 3.3. o

REMARK 3.12
Suppose that K* 1s the output matrix of ELIMINATEROW (K,d,p).
Then 1t 1s not difficult to modify ELIMINATEROW In order to compute

two unlmodular matrices L and R such that

LKR « K*. a

PROPOSITION 3.13

The procedure ELIMINATEROW terminates 1n

O(mn M(log(m [IK]|)) & n M(log |KIl)loglog [IxID

elementary operations and the size of the output matrix Is O(m+n ¢ log ||K]]).

Proof

It 1s similar to Proposition 3.7. o]

REMARK 3.14

One can show that the computation of the matrices L and R of
Remark 3.12 can be done without any asymptotic Increase In the worst-
case complexity of the procedure ELIMINATEROW and

log(max { [IL] - [IRIl » - O (log |IKl). a

3.15 A WORKED EXAMPLE

Let
26 38 607
12 18 30 26 38 60"
36 54 102 with |d * det(12 18 30
22 12 48 36 54 102
14413 i

In order to eliminate the 1-st row of K one can apply ELIMINATEROW (K,d,I).
Then at step 2 one can find - -16 and x, m 11 such

(-16).26 11.38 * gcd(26,38). Moreover y1 - 19 y2 - -13.

At step 5 we have

which is equivalent to the matrix

"0 2 a0

-6 6 30

-18 18 102

262 -220 48
14413

Now at step 6 one can compute tj - 1, t2 m O such that

1.2 ¢ 0.60 - gcd(2,60)

At step 7 we have

[2 2 &0

-32-

0 6 30
0O 18 102
42 220 48 step 8V
144 0 0 -
144 144 0
144 0 144
At step 10 we have
T2 0 o "
0 6 30
0 18 102 step 11
N
42 -262 -1212 1
144 -144.2 -144.30
0 144 0
0 0 144
and at step 12 we have
‘5 a
0 30
0 118 102
42 -118 -60
14413 J

which the output matrix.

a

'2 2 eor

0 6 30
0 1« 102
42 -220 48

L 14413 \]

*2 0 0)
0 6 30
0 18 102

42 -262 -1212

14413

33-

ALGORITHM 3.16

INPUT : An m x n matrix representing a finite abelian group G
OUTPUT; The canonical structure of the group G
begin

1. d * the determinant of an n x n non-singular submatrix of A;

K* [dij *
3. for p* 1to ndo
begin

repeat
5. ELIMINATEROW (K .d.p);
6. ELIMINATECOL (K.d.p);
7. until either kpp |kpi for all p ¢ 1< 1< nor kpp « O

kpi 0 for Pe 1< t < n»
8. end

jf k™ « O for some 1 then Interchange ROW(1) and ROW(m*1);
A & the n top rows of K;
comment The only non-zero elements of A are the diagonal entries.

9. for pm 1to ndo

tea)"
10. for g m p+l to n do
begin
LIS V
*pp * aedl.N.h)!
A .

g aqq.h/appl
11 end
12. end

-34

PROPOSITION 3.17
Algorithm 3.16 correctly computes a canonical basis for the

abelian group 6 in

O(mn(n loglog [IK]])log [IK]] M(log [IK]|) ¢ m2M(log|d*]))

elementary operations, where d* = max (Jd*]| :d* determinant of an n * n

submatrix of A}.

Proof

The computation of a multiple of the order of the group (steps
1-2) requires O(mn2 M(log |d*]) elementary operations using Gaussian
eliminatlon.

Steps 5 and 6 require.O(m(n+loglog |lkl])M(log |kl)) elementary

operations from Propositions 3.7 and 3.13 and using the facts that
m> n and || d< |KlI Vi

where denotes the matrix K at the 1-th Iteration of the loop 4-7.
The number of Iterations required by loop 4-7 Is at most log |d],

since
1S’ < ikii* 3|2

Hence loop 3-8 requires nlog |d] = n log |K|| Iterations. (3.1)

Loop 9-12 required 0(n2) applications of EEA and 0(n2) multiplications/
divisions comprising 0(n2M(log|d])loglog]d]) » O0(n2M(log ||K]])loglog |IKl])
elementary operations.

From the above analysis the proposition follows, a

-35-

COROLLARY 3.18

Algorithm 3.16 terminates In
O(mn2[n & login login [JAl]))J login []All) M(n login ||A]l)))

elementary operations.

Proof
The result follows from Proposition 3.17 and using the fact

that

mex {d*, [IK]]} < max{[|AlIl .Id].]d*[} < (n [IA]). a

COROLLARY 3.19

If a finite abelian group 1s represented by a matrix of size s,
then one can compute Its canonical structure 1n O(SSM(SZ)) elementary
operations. a

Chou and Collins In [b] propose an algorithm for computing
the canonical structure of a finite (or Infinite) abelian group by
means of their LDSMKB algorithm and the algorithm SNF given by
Kannan-Bachem [33]. The Chou-ColUns LDSMKB algorithm for
triangular!zatlon of an Integer matrix requires 0(mn3[n+n logn ||A|)]2
elementary operations. The Kannan-Bachem algorithm (named SNF)
requires n2log(n |JAll) applications of a trlangularlzatlon algorithm.
Hence the computations of the steucture can be done for the proposed

Chou-ColHns algorithm 1n

O(mn5log(n JJAll)[n e n log (n JJAl])12 - Ois1l) (3.2)

elementary operations. Therefore the upper bound (3.2) has been

Improved by a factor of 0(s3).

-36 -

This section closes by computing the canonical structure of

the group represented by the matrix

(= "1

(Kannan-Bachem example - see below Proposition 3.1).

5 261 1T O 1T O
2 1 0 0O O
3 0 ELI MINATEROW’\L 3 0 ELI MINATECOIN_ 3 0
0O 3 0O 3 0 3

Therefore the group 1s cyclic of order 3.

.37-

4. THE computation op the hermite and smtth normal forms of an

MTEGER MATRIX

A. HarmK* Normal Form

THEOREM 4.1 (Hermlte, see [¢3])

Given a non-singular n x n Integer matrix A, there exists an
n x n unimodular matrix M such that MA = T 1s upper triangular with
positive diagonal elements. Furthermore, each off-diagonal element
of T 1s non-posltlve and strictly less In absolute value than the

diagonal element In Its row. a

DEFINITION 4.2

The matrix T of Theorem 4.1 1s called the Hermite normal form
(abbreviated HNF) of the matrix A. a

It 1s not difficult to modify ELIMINATECOL (K,d,p) to obtain a
procedure ELIMINATECOL* (K,d,p) of the same asymptotic complexity,
for eliminating all entries below the diagonal element of the

column of K.

ALGORITHM 4.3
INPUT : An n X n non-singular matrix

OUTPUT: The HNF matrix T of A and a unimodular matrix M such that

MA - T

3b

begin
1. d mdet(A);

3. for 1 *1to ndo
begin
ELIMINATECOL* (K,d,1);
4. end
T*«-~.] for 1< 1, j<ns

comnent The matrix T* 1s upper triangular. Note that det (T*) * d.

5. ROW1) « -ROW(1) for each <0;
comment The diagonal entries are positive. In the next loop the
entries to the right of the diagonal will be reduced .

6. for 1 * 1to n do

begin
7. forj - 1to 11 do
begin
ROW(j)«- ROM(J) “ Lkij/knJ WM 1)*
end J
8. end

T « [kij] for 1< 1,J<n
10. solve the system X*T m A;
comment It 1s not hard to solve the above system, since T 1s
triangular.
11. H« X“1;
comment Use the algorithm given by Proposition 0.3.5.

end. o

-39

PROPOSITION 4.4
Algorithm 4.3 correctly computes the HNF the matrix A and the

unlmodular matrix M.
Proof
Th«*e exists an nx n Integer matrix W such that

UA « dIn

(4.1)
Using Remark 3.5 there exists a 2n x 2n matrix |2 such that
(4.2)

From Proposition 1.9 there exists a 2n x 2n unlmodular matrix L3

such that

(4.3)

Let L - L3L2L1. Let be a partition of L, WheriA. for

N
a3 a4

1< 1< 4 Is an n X n matrix.

Then from (4.1), (4.2) and (4.3) follows that

Hence A%a - T. The determinant of T 1s d, since T has the same

diagonal elements «* T and det(T) m d. Hence det (Aj) m 1.

PROPOSITION 4.4
Algorithm 4.3 correctly computes the HNF the matrix A and the

unlmodular matrix M.

Proof

The*e exists an n x n Integer matrix Wsuch that

UA - dIn
Let L , then
- - M
H[or]- K 4>

Using Remark 3.5 there exists a 2n x 2n matrix L2 such that

L2K [0"] (, 2>
From Proposition 1.9 there exists a 2n x 2n unlmodular matrix L3
such that

L3[p] " [dl] (4.,3)
Let L - L3L2Lr Let £ be a partition of L. where Ai for

1< 1< 4 Is an n X n matrix.

Then from (4.1), (4.2) and (4.3) follows that

AEd m[<I,]

Hence AfA - T. The determinant of T is d, since T has the same

diagonal elements «* T* and det(T*) - d. Hence det (Ax) - 1.

Moreover one can see that the matrix T satisfies all the conditions

of Theorem 4.1 and thus T 1s the HNF of the matrix A. a

PROPOSITION 4.5

Algorithm 4.3 computes the NHF of A and the matrix M 1n

O(n2[n & login login [|A]))IM(nlog(n |IA])))

elementary operations. Moreover log |[M]- O (n log (n |JAll)).

Proof

The computation of the determinant requires 0(n3M{log d))
elementary operations.Loop 3-4 require 0(n2(n ¢ loglog |IK]])M(log K|l))
elementary operations using Proposition 3.7. (See Remark above
algorithm 4.3).

One can show easily that loop 6-9 requires 0(n3) multiplications
comprising 0(n M(log d) elementary operations.

The computation of X Is not difficult, since T Is triangular.
It requires 0(n2) divisions comprising 0(n2M(log d)) elementary
operations.

The computation of the Inverse of X requires 0(n3M(log d))
elementary operations by Proposition 3.5.

Hence using that

Kl < mex {J[All 1d]>< (n [IA])n

the proposition follows, o]

41-

Chou-Colllns in [to] gave an algorithm computing the HNF of a
matrix A which requires 0(n4[n & n log(n |JAl])]12) elementary operations.

2
Hence the upper bound is Improved by a factor of O(n).

COROLLARY 4.6

There exists an algorithm computing the HNF of a matrix A of
sizes and the unimodular M of Theorem 4.1 in 0(33M(32)) elementary
operations. a

The following corollary 1s given in order to show the optimality

of algorithm 4.3 as direct method.

COROLLARY 4.7

Algorithm 4.3 Is a direct method and it requires O(no) multi-
plications in order to compute the HNF of an n * n matrix A. O

In (34] Klyuyev and KokovkIn-Shchebak proved that Gaussian
elimination 1s an optimal direct method. Note that 1n general
Gaussian elimination Is not optimal (see [51]). The
lower bound on the number of multiplications necessary to transform

a matrix with entries from a field to a triangular matrix, is given

below.

THEOREM 4.8 (Klyuyen-KokovkIn-Shchebak)
A direct method for trlangularizing an n * n matrix with entries
from a field requires exactly » n(n+1)(2n+1)-n multiplications. o]

Directly from Corollary 4.7 and Theorem 4.8 follows that

42-

PROPOSITION 4.9
Algorithm 4.3 1s optimal within a constant factor as direct

method. a

B. Smith Normal Form

THEOREM 4.10 (H.J. Smith, see [49])
Given a non-singular n *n Integer matrix A, there exists n x n
unimodular matrices B and G such that D * BAC 1s a diagonal matrix

with positive diagonal elements such that d~ | d22 | eee | dnn* °

DEFINITION 4.11
The matrix D of Theorem 4.10 Is called the Smith normal form

(abbreviated SNF) of the matrix A. o]

PROPOSITION 4.12

The SNF of an n x n matrix A can be computed 1n

O(n3log(n [IAIDIn ¢ log(n log(n [IAl)IM(n login |IA])))

elementary operations.

Proof

It readily follows from Corollary 3.18. o]

REMARK

Using Proposition 3.17 one can have a expression of the
upper bound of Proposition 4.12 1n terms of || K| = max{ ||JAl] .det(A)>
the upper bound 1s the same as that of Proposition 3.17. a

An upper bound of O(n®log(n [IAIl) [n & n log(n JIAIl)12) on the
computational complexity of SNF was given by Chou-ColUns 1n [8]
(see (3.2)). Therefore this upper bound is Improved by at least a
factor of 0(n3).

In order to give an algorithm computing the matrices B and C

of Theorem 4.10, the following problem is considered:

FROBLEM 4.13
Suppose that A Is an n* n non-singular Integer matrix with

determinant d. Compute an integral solution of the system

XA - diIn (4.4)
where X is an n x n matrix of unknown variables. O
PROPOSITION 4.14

There exists an algorithm computing a particular solution for

(4.4) 1n

0(n2[n « login log(n Al)IM(n log(n [IAl))

elementary operations. Moreover log [|X]] » O(n log(n [|Al]l)).

Proof
Using algorithm 4.3, one can compute a matrix T, the HNF of A
and a matrix M such that
A - T
Hence the system (4.4) 1s equivalent to

TX* * M-(dIn)

whose solution Is easily computed, since T Is triangular.
The complexity of the method follows from the analysis In

Proposition 4.5. O

Proposition 4.15
There exists an algorithm computing the matrices B and C of

Theorem 4.10 1n

O(na+2 login [|Al])log(n login [|A])M(n login []A]]))

elementary operations, where O(na) 1s an upper bound on the number of

multiplications required for multiplication of two n x n matrices.

Proof

One can use the following method of computing the matrices B and C.
(1) Compute the matrix 0, the SNF of A, using algorithm 3.14. From
Remarks 3.5, 3.11 one can see that algorithm 3.14 can be modified to
yield unlmodular matrices Lj,...,L~ of dimension 2n * 2n and Rj,...,R"

of dimension n *n such that

L L (4.5)

A
(11) Compute an Integral solution of the system
XA > dl

using the algorithm given by Proposition 3.14. Moreover let

X
A P
(111) Compute the matrices L « 1n LAL* and R * ,n

171 111

The computation can be done by multiplying In the 11st

A= (L1,...,.L~L*> pairwise from left to right so to obtain

a new 11st {L ~.L ~,...}; then repeating this process until a 11st
with a single element viz. the product LjL™ ... LAL* 1s obtained
(1v) Let L - -

where for 1< 1< 4 are matrices of n* n dimension. Then let
8- A ¢ AgX and C - R.
The correctness follows from the facts that
BAC - D

and since C 1s unlmodular and |det(A)] - |det(D)], the matrix B 1s

unlmodular.

The complexity required for the computation of L*s. Rj’s and X 1s
given by Propositions 3.15 and 4.14.

The computation of L and R requires

o J
Z v/2 with v * max {x.p}. o * Hog vl

1-1

matrix multiplications comprising

Oina z C(/21) M(21 log |idI)1)
i-1

elementary operations, where ||Q] - mex { [IL1]. |IR]] . L*}.

1»J

Now from Remarks 3.9, 3.14 and (3.1) follows that

v<nlog dc< n login [|All)
and Hqll < max{[JA] ,d} < (n A [Dn.

Hence the running time of (111) requires

Ofn~login |JAl)1og(n log(n [JAIl)M(n log(n JJAl]) elementary

operations, o

COROLLARY 4.16
There exists an algorithm for computing the matrices B and C
of Theorem 4.10 1n O(sat+3 log s M(s2)) elementary operations, where

s 1s the size of A. o

REMARK
Using the remark below Proposition 4.12 and Proposition 4.15 one
can derive an expression of the upper bound of Proposition 4.15 In terms

of [IKIl - max { ||All (det(A)]), which 1s

-47-

O(natl log |IK]| log |IKI] M(log [IKl])) elementary operations. o]
Now the following problem whose solution will be used for the

computation of the canonical structure of an Infinite abelian group

and for the solution of a system of linear DlophariHne equations, 1s

considered.

PROBLEM 4.17
Suppose that A 1s an m * n Integer matrix with rank n. Compute

a unimodular (tn+n) x (m+n) matrix L such that

(4.6)

where T 1s an upper triangular n *n matrix. O

ALGORITHM 4.18

INPUT : The matrix A of Problem 4.17
OUTPUT: A matrix L satisfying (4.6)

begin
B <«an n x n non-singular submatrix of A;
d s det(B);

find an Integral solution of the system: XA - dIR;

for 1» 1to n do

-4b-

begin
ELIMINATECOL* (M .O s
Let L] be the matrix L defined 1n Remark 3.5;

end

L 1[11 Li*L*;

end. O

PROPOSITION 4.19

Algorithm 4.18 correctly computes L 1n
O(n[nalog n + m ¢ n2log(n log(n [IA]))IM(n log(n [IAll)))

elementary operations« where 0(n°) denotes an upper bound on the number
of multiplications required for multiplication of two n x n matrices.

Moreover

log ||l - 0 (n2 log (n JIAIl).

Proof

The correctness of the algorithm Is obvious.

The time required for the computation of d and B Is given by
Proposition 1.2.4. . Using Proposition 3.7« one can find the time
required for an application of the procedure ELIMINATECI.*e

The computation of the matrix L requires

Clogn] «
1|_ 1 (n/21)

matrix multiplications comprising

on° ,E (n/Z"M*~log |IKIl) - O(na+llog n M(n login [JAll)))

11

elementary operations. Moreover from Remark 3.9 and Proposition 4.14

mx ELE[I>- 0 (11 K [I) and [IL]] - O (1IKN)
hence log [IL] - O(n log |IK]]) @ 0 (n® log (n [IAl')). O

REMARK 4.20

Suppose that L and A are as 1n Problem 4.18. Let

Al a2

a3 a4

where Aj Is an mx mmatrix, Ag 1s an mx n matrix, A3 Is an n x m
matrix and Ji4 Is an n X n matrix.

Then

aam°:]j
but a3 Is not necessarily unlmodular. The author does not know of

an efficient way of computing a unlmodular matrix a such that
AA -

and this will lead to some Inelegancies 1n the presentation of

«

algorithms for computing the structure of Infinite abelian groups and

for solving systems of linear Dlophantlne equations. a

REMARK 4.21
The algorithm of Proposition 4.17 and the algorithm of

Proposition 4.19 make use of a "fast matrix multiplication” algorithm;
Coppersmith's and Wilnograd's algorithm (see Proposition 0.3.4 and
Remark below) for matrix multiplication Is faster than the obvious way
for matrix multipilcatlon,only for matrices with very large numbers
of rows(columns); therefore for practical purposes for the above two
algorithms 1s suggested the use of the usual way of multiplying

matrices.

-bi-

ff. A DIRECT METHOD FOR COMPUTING THE STRUCTURE OP MFMITE

ABELIAN GROUPS
Suppose that A is an n X n integer matrix representing an
infinite abelian group G. Then the matrix A is singular. In order

to transform A to diagonal form, one may use the following algorithm.

ALGORITHM 5.1
INPUT : An m x n singular matrix A representing the Infinite abelian group G.

OUTPUT: The canonical structure of G

begin
1. r rank(A)

2. B an r x r nonsingular submatrix of A;

comment The matrix D Is an (n-r) x r matrix. C1s anr X (h-r) matrix
and E is an (m-r) x (n-r) matrix. The transformation 1s done with

column and row interchanges.

comment Note that the addition of trivial relations to the set of

defining relations of G does not change Its structure.
4. Compute a unimodular (m+r) x (m+r) matrix L such that:

L D = [I_lehere T Is an r x r upper triangular matrix;
prd L wF 8
comment One can use algorithm 4.18, since rank (Q __) mr

il 1%

5 A « LA;

for 1 mr dowmn to 1 do

8. COL(j) « COL(j) -) COL(1) for r+l < j < n;
9. end
t
10. A* - [T,M]
comment A* Is an n « r matrix with rank r and thus represents an
finite abelian group, say 6*.

11. compute the canonical structure of 6* using algorithm 3.15;

end. O

PROPOSITION 5.2

Algorithm 5.1 correctly computes the canonical structure of G.

Proof

(1) All steps are expressed In terms of IRC operations which respect
the structure of the group G.

(Il) In step 6 the bottom right corner (m-r)* (m-r) submatrix of A 1s
a matrix where all entries are zeros, because if Its j-th column had a
non-zero entry for some j, then A would have r+1 linearly Independent
columns (the first r columns of A and the j-th of the submatrix) which
contradicts the fact that r m rank (A).

(I'1) In step 10,A* represents the finite group G*. Let G' be the
maximal finite subgroup of G. It will be shown that G* Is Isomorphic
to G'. Let Al - [T,M]. Since Al represents G, there exists unlmodular

matrices L and R such that:

L =D (5.1)

where O represents the canonical structure of G. Moreover

G' = G(djj) * ... x G(drr) (5.2)

From (5.1) follows that
R A< L* - D*or Rl A* Lt - Dt

and DI represents the canonical structure of G*. Therefore
G* * G(dn) x ... x G(drr)

and using (5.2) follows that G* *G". o]

PROPOSITION 5.3

Algorithm 5.1 computes the canonical structure of G 1n

O(rfratmr <nr log(r NI)(r+log(r log(r [[AIDNIM(r log(r [IAI)

o m M(r2 log(r JJAI)) * r2n M(r3 log(r JIAI)))

elementary operations.

Proof

Step 1-2 requires O(mnr M(log |d*]|) elementary operations by
Proposition 2.4, where |d*] - max {]d]: determinant of anr x r
submatrix of A).

The running time of step 4 1s given by Proposition 4.19.

Step 5 requires O(mn) multiplications comprising
O(mn M(r2 log (r JJAl]))) elementary operations, using that
log |IL|] = 0(r2 log(r |JAll)) by Proposition 4.19. Loop 7-9 requires
0(r2n) multiplications comprising 0(r2n H(r2 log(r ||A]]))) elementary

operations.

-54-

One can observe that

HA*H< |d] < (r HAJ|)r (5.3)

From Proposition 3. Ib and (5.3) one can derive the running time
of step 11 comprising 0(nr2 log(r |JAIl)Ir+log(r log(r Al))IM(rlog(r [IAll)))
elementary operations.

The proposition follows from the fact that |d*] < (r ||JA])r = O

COROLLARY 5.4
There exists an algorithm computing the canonical structure of
an Infinite abelian group G represented by a matrix A of size s, 1n

cC o .
0(3 M(s)) elementary operations.

Proof

From Proposition 5.3 and using the fact that a< 3 (a * 3 In
the classical algorithm for matrix multiplication). o]

The Chou-Colllns algorithm for computing the structure of finite
groups is discussed below. Corollary 3.19 can be used *or Infinite abelian
group as well. Hence the (3.2) upper bound of 0(s1") 1n the case

3
of Infinite groups has been also Improved by at least a factor 0(5)

6. ADRECT METHOD FOR THE SOLUTION OF SYSTEMS OF LMEAR

DIOPHANTINE EQUATIONS

Let A be an m xn matrix with Integer entries and b an n * 1

vector with entries from the Integers. Then the system of equations
AX - b, x eznx 1 (6.1)

1s called a system of linear Diophantine equations.

The computation of a solution or all (If any) of the system
(6.1) 1s closely related to the trlangularlzatlon of the matrix A. If
the matrix A of (6.1) 1s of rank n, then (6.1) has exactly one solution
or none and this can be found by means of Gaussian elimination. In the
case 1n which the rank r of A 1s less than n, the system (6.1) has an
Infinite number of solutions (n-r linearly Independent solutions) or
the system 1s Inconsistent. In this case the classical algorithm for
solution of a system of linear Diophantine equations makes use of the
classical trlangularlzatlon algorithm (Smith [48], Bradley [5]) and
therefore has the problem of "Intermediate expression swell".

The first polynomial algorithms for solution of (6.1) were given
by Frumkin In [17] (see also [16]) 1n some special cases. Frumkin's
algorithm for computing a particular solution of (6.1) or establishing
that there ls not one requires In worst-case
o(n2nZlog(n IIAI M(n log(n [IAI1)) & n2Mn login 1IAl) o [ibll) =
0(35M(32) ¢ s2M(s*)) where s Is the size of the matrix A and s* the
size of the vector b. Moreover Frumkin In [17] gave an algorithm for
computing the set of all solutions (If any) of an homogeneous system of
linear Diophantine equations (that 1s (6.1) with b m (0,...,0)) which
requires 0(n3mlog(n HAIl)M(m log mlog(m [JA]]))) = 0(55M(32Iog s))

elementary operations.

The best known polynomial algorithm for solving a general
system of linear Dlophantlne equations 1s given by Chou-ColUns 1n [8].
Their algorithm requires 0(n3(m+n)[n ¢ r log(r 1A)]2 *
r(m+n)log [Ibl] [n + r log(n [JAl]l)]) * 0(38 . 543*) elementary operations
for the computation of the set of all the solutions of (6.1) If any,
where s 1s the size of A and s* 1s the size of the vector b.

An algorithm for solving (6.1) whose upper bound improves

the Frumkin's and Chou-Collins' upper bounds is presented below:

ALGORITHM 6.1
INPUT : The system of equations (6.1)

OUTPUT: A set of all Integral solutions of the system (6.1), if any.

begin

1. r mrank(A);

2. B« an r x r non-singular submatrix of A;

3.compute unimodular matrices
comment The matrix D Is an (m-r) x r matrix, C Is an r x (n-r) matrix
and 1s an (m-r) x (n-r) matrix. The transformation 1s done with column
and row Interchanges.

4. A 4 LjAR];

5. bm Lj*b,

*
« |>>|0r|> e

t
6. compute a unlmodular (n+r) * (n+r) matrix L such that: L[B,C,Or] = Jon»
comment The matrix T 1s upper triangular. The (n+r) x r matrix [B.C.Op]*

has rank r and therefore one may use algorithm 4.18 for the computation of L.

Tv A« ARp
& R™ RRp
T* T*
Let A « [M dq];
9. If the system Az m b has not an Integral solution then
comment One can compute a solution (1f any) easily, since T* is a
lower triangular matrix;

return "the system Is Inconsistent”

10. else
let z be a solution;
11, w Rz let w* (ttfj,» ==, W™ y,)

we (Wh...,Wyy) ;
comment The vector w is a particular solution of the system (6.1);

12. R*« OMjD*r+l < j < n+r, 1< 1< n;

13. return {x - w R*(t",...,tn)};

end. O

PROPOSITION 6.2

Algorithm 6.1 correctly computes the set of all solutions of

the system.
Proof
Let x m (x".’\.x"y,)l and Xx:» R(yl,...,yr.tl....,tn)t * W,

It will be shown that A - b where A';- [a®] and that ylcyl meeem yr m°*

Using that LA'w m LA'Rz m Lb one can show that

LA'X - LA'Riy.t)* & LA'w * JJ QAr.t)* & Lb * Lb

and moreover LA'R(y,t)t *0
which implies y = 0.

Hence x yields the set of all solutions of the system A5? - b which
is equivalent to (6.1) and thus it is not difficult to see that ? is the

set of all solutionsof (6.1). O

PROPOSITION 6.3
Algorithm (6.1) computes the set of all integral solutions of
(6.1) in Otrtr*rog r & mr+r2|og(r log(r JAIl))IM (r log(r [JAJ)) o

m M(r2|og(r 1Al) ¢ log |Ibll)) elementary operations.

Proof - u

Steps 1-4, 6-8 require

OirC™log r + mr+r2Iog(r log(r [JAIl)IM (r lTog(r IIAI]l))
m H(r2 log (r [IAll)))

elementary operations. Their analysis Is the same as In Proposition 5.3
(stepsl-5).

Step 5 requires 0O(n log ||b]]) elementary operations using the fact
that the rows of Lf are of the form (0 0,1,0,....0).

Steps 9-10 require 0(mn) dlvislons/multiplicatlons comprising
O(mnM(rZ(log(r lIAIl) ¢ log |Ibl]) elementary operations, since If A* denote

the matrix A at step 8 then

2
HA*ILHILLARI R [I<ILi H JIAIL HRjIE R JI< HA T (r |A]])T

using that [|LL1- IRRII- 1 and ||R2]]< (r r by Proposition 4.19
g y p

59

Step 11 requires O(mn M(r2 log(r |JAl]) ¢ log |Ibl]) elementary

operations for multiplications.

From the above analysis the proposition follows, o

COROLLARY 6.4
There exists an algorithm for computing the set of all the

solutions, 1f any, of a linear Dlophantine system (6.1) 1n
O(satllog s M(s2) & sZM(s*))

elementary operations, where s 1s the size of A and s* the size of b.
?
Proof

From Proposition 6.3 using WInograd's (see [54]) result that

a > 2. a

Suppose that
X mw & R*(tj,...,tn)* (6.2)

1s a general solution of (6.1). If the elements of the set
S -{«, COLr* (1),t1) are linearly Independent, then S 1s called a

beu-U of the general solution of (6.1).

PROPOSITION 6.5.

There exists an algorithm for computing a basis for the solutions

of (6.1) In

0(s°+1llog sM(s2) ¢ s2M(s*))

elementary operations, where s 1s the size of A and s* the size of b.

-60-

Proof
One can compute (6.2) using algorithm 6.1. Then using algorithm
one can trlangularlze R* 1n similar way with the trlangularlzatlon of A

by algorithm 6.1. If the triangular form of R* 1s

then X mw+ T(tr»...,tn)*

1s a basis for all solutions. The analysis follows from Propositions
6.3 and 4.19. O

Using the Coppersmlth's-Wlnograd's result that a * 2.49... one
can see that algorithm (6 .].) requires 0(55,49I0923Ioglog s + sZs*Iogs*IogIogs*)
elementary operations. Therefore the Frumkln's upper bounds on the
computation of a particular solution and the computation of a general
solution of homogeneous systems are Improved by a factor at least 0(5).
Moreover the Chou-Colllns upper bound on the computation of a basis of
all solutions of a general system Is Improved by at least a factor of
0(52).

This section closes with a result on systems over the ring ZKk,

which will be used ln later sections.

PROPOSITION 6.6 (Hu, see [2Db])
Suppose that A and b of (6.1) have entries from Zk. There exists
an algorithm for solving (6.1) over ZR 1n 0(t3 M(log k) elementary

operations, where t m max (n,m). O

Note that ?k - Z/kZ with k«IN.

-61-

7. AN ALTERNATIVE ALGORITHM FOR COMPUTING THE STRUCTURE OF

ABELIAN GROUPS

In the previous sections, direct methods for computing the structure
of abelian groups represented by a set of defining relations, are presented.
In the case both finite and infinite abelian groups, the methods require
O(SCM(SO)) elementary operations, where s is in the size representing
the group. An algorithmr for the same problem is given below, which
requires asymptotically the same time as the methods above. This algorithm
is presented because of its simplicity and the fact that its worst-case
complexity bound is better by a constant factor than the bounds of the
direct method. The disadvantage of the algorithm is that it is a non-
direct method and thus lt is difficult to compute the multiplier-matrices
corresponding to the transformation.

The proposed method for diagonallzation of an integer matrix A is the
following:

(1) Compute an r x r non-singular submatrix B of the matrix A,

where r Is the rank of A
(1) Compute the determinant d of the matrix B
(1l'l) Use the classical algorithm for diagonallzatlon of the matrix A

applying arithmetic modulo d.

(1v) If the computed diagonal matrix is

0 04

t Due to W.M. Beynon, J.D. Dixon and C.S. lliopoulos

62

then dj = gcd(d].td) for 1i 1ir are the components of the
canonical structure of the group represented by A.

It is known that the order of a group 0 (finite part of G if 0

Is infinite) is given by

ICI

gcd (det(B) : Bis an r * r submatrix of A} (7.1)

Since

ICI

gcd (det(B) mod d, d)
B

where B as in (7.1), the correctness of the method follows.

A formal way of describing the above method is the following:

ALGORITHM 7.1

INPUT : An mx n Integer matrix A

OUTPUT: The canonical structure of the abelian group represented by A.
begin

r & rank(A)

B <@man r x r non-singular submatrix of A;

d ¢ det(B);

comment observe than rank(k) m n.
diagonalize the matrix k using algorithm 3.16}
kjjoOforr<1*n;

end.

63

COMVENT

One can observe that the above method coincides with algorithm 3.16

when A represents a finite abelian group.

PROPOSITION 7.2
Algorithm 7.1 correctly computes the canonical structure of G In

0(s**M(s")) elementary operations, where s 1s the size of A. O

-64-

S. APPLICATIONS

The diagonallzatlon of an Integer matrix Is shown to have an
appllcatlon;

A. computing the canonical structure of a finite or Infinite abelian
group represented by a set of defining relations.

B. computing the set of all solutions (or a particular solution or a
basis for the general solution) I any, of systems of linear
Dlophantlne equations.

One can find further applications 1n:

C. Geometry Of Numbers

nx 1
Suppose that alt...,a n are linear Independent vectors 1n Z
and
n
A(@j........ aR) (x : x Z u,a. W elZ}
1-1 11 1
Then A Is a lattice with basis (a”......... an)

Using HNF and SNF algorithms one can compute a triangular or
a canonical basis for the lattice. Moreover one can compute the
structure of a sublattice given the structure of the lattice. For
further details see Cassels [7].
D. Matrix Theory

Suppose that A 1s a square matrix with entries from R[x] where
Rls a ring and R[x] Is the ring of all polynomial with coefficients
from R. The using the algorithms described In the previous sections one
can compute the HNF and SNF of the matrix; this can be done using an
algorithm computing the gcd of two polynomials (see Knuth [35]).

For further details see Gantmacher [19],

oY)

E. Linear Algebra

The method mentioned In the previous sections can be used for
the computation of the Invariant polynomials of the characteristic
equations» the elementary divisors and the eigenvalues of a matrix
with entries from a ring R.

The characteristic equation of matrix 1s said to be the equation

AX - XX. X e R

The invariant polynomials Lj(X)......... Lf(X) are the diagonal elements
of the SNF of the matrix A-XIn and det |A-X1J - n L~X) Is the
characterietio polynomial Of A.

One can factor L~(X) In such a way that

®ﬂ alt
Llx) - Pj ... psls for 1s1%r
where e Z and pj 1s a linear functlon+tof X for Is | ss. Then

the Pj's are called the elementary divisore of A-XIn and the roots
of the pj].s for Is 1 sn are the eigenvalues of A.

Therefore one can readily see the application of the SNF algorithm
In the computation of the above values. For further details one can see
Lancaster [37] and Gantmacher [19]. For factorization of polynomials
see Aho et al [2].
P. System Theory

The use of the HNF and SNF algorithm Is essential for the solution
of linear modular systems In system theory and circuit theory. For

details see Zadeh and Polak [55].

"*That 1s ax + b for a. b In R

Q. Integer Programming

An integer linear programing problem (abbreviated ILP) has

the form:
n
minimize z m £ a* x. * ()
1-1 11 1
n
subject to Z aljxl - bj for 2sj sm (8.1)
and i 0 Integer for lslsn

The ILP 1s a well-known NP-complete problem see Garey-Johnson [20].
Dropping the constraint a 0 for 1 s 1 s n, then the problem

has a polynomial time solution. One can solve the system

using algorithm 6.1.
Further In order to obtain the minimal solution for z from the

general solution
zZ - pjtj & ... eprtr
one can compute t"'s, for lslsr such that

£ tlPi m |gcd (pl====P r)]
using the EEA algorithm.
The SNF algorithm also has a standard application In the
method of ILP solution described in Hu [25] p.325.
H. Algebrale Group Theory

For computations over ideals of rings* see Newrman [42] <

COMPUTATIONAL PROBLEMS ON FINITE ABELIAN GROUPS

REPRESENTED BY AN EXPLICIT SET OF GENERATORS

-67-

1. INTRODUCTION

In this chapter computational problems In abelian groups represented
by a set of generators are Investigated. The upper bounds on the time
complexity of the algorithms presented here are polynomial In terms of
the order of the group and exponential In terms of the size of the
Input.

In the construction and analysis of the algorithms presented here,
certain assumptions on the representation of the group elements are
done. It Is assumed that every element of a group G has a binary
representation of length at most O(log |G]). One can see that this
convention 1s reasonable, since the |G| elements of a group G can be
assigned an Integer of the set (1,2 ,3,..|G|C>via an Injective
function, where ¢ 1s a positive constant Independent of G. It 1s also
necessary to consider £ the number of elementary operations required for
a group operation. In Section 9 1t Is assumed that £ m O(logc |G|) for
some positive constant ¢ which does not depend on G, although 1n all
other sections the time complexity bounds are functions of €. For
example In Z* an element can be represented with at most logn bits
and a group operation requires only M(n) elementary operations.
Similarly the above assumed bounds apply to permutation groups and to
the form class group (see £47], £30] and £31]).

In Section Z Shanks' algorithm for computing the order of a group
element together with an algorithm for computing a power of a group
element Is presented. Moreover an algorithm for computing the order of
a group element with better space complexity than Shanks' algorithm 1s

presented (1t Is assumed that the order of the group ls given).

-68-

In the third section an algorithm for computing a set of defining
relations for a p-group H* m <H,x>, where H has a known basis,1s presented;
1t requires 0(|H*1].>r2+cc) elementary operations.

In Section 4, two algorithms for computing a basis for H* given a
set of defining relations are presented; both require polynomial time In
terms of the size of the Input.

In section S an algorithm for computing a basis for a finite abelian
group G 1In C(|G|"2+ef) elementary operations 1s given. This upper bound
Improves Savage's bound of O(|]G|2£) (see [32])

In Section 0 a membership testing algorithm Is given.

In Section 7 the problem of computing a basis for a subgroup
represented by a set of generators, of a group with known basis Is
Investigated. The existence of a polynomial time algorithm for this
problem Is proved.

In Section 8 algorithms for computing a basis for the union and
Intersection of two finite abelian groups F and G Is Investigated. An
upper bound on their time complexity of O((|F]|G|)* *?) Is proved.

In Section 9 the relative complexity of the problems mentioned
above, the problem of factorization and primallty testing s examined.

A classification of the complexity of the problems Is established. More-
over the role of the Extended Rlemann Hypothesis 1n speeding algorithms
and Improving bounds Is Investigated.

In Section 10 some applications of the algorithms of this chapter

are discussed.

69-

2. THE COMPUTATION OF THE ORDER OF AN ELEMENT OF A GROUP

The procedure ORDER(x) given below 1s due to Daniel Shanks (see
[47])] given an element x of a finite abelian group of unknown order.

It computes the order of x by means of the "baby-giant step” strategy.

ALGORITHM 2.1

Procedure ORDER(X)

begin
k 0; h u;
1. repeat
k o k+i
r- r\Va
compute the set Lj m {x*: 0sls r)
3. compute the set L2 m {x*r:0sjsr)
4. Sort the set L"i
6. for each C do
begin
If m 11 for some « L™ then

comment Testing whether or not 1, ¢ L, one may use binary search.
--------------- _ 1\ Cilr ™
L « -t equivalent to x Am xJ* for some 17, JM)
6. end

hentn {1 - J)):

8. wuntil hf 0}

—~

return h;

end. Q

-70-

PROPOSITION t.L
The procedure ORDER correctly computes the order of the element x

in 0(|x||/* (log* |x] + E) elementary operations.

Proof
The correctness of the procedure ORDER follows from the fact that
1t merely computes the order of x by means of direct search for matches

of the form

x].-xjrwith].-jrto

and the order |x] Is the minimal |l—jr| > 0 deduced from them.

Let rk denote r at the k-lteratlon of loop 1’8. The computation
of the set Lx and L2 requires 0(rk) group operations. Step 4 requires
O(rk log rk) comparisons using "heap sort" (see Proposition 1.1.1)
comprising O(rk log rk log |x|) elementary operations. Loop 5-6
requires at most rk applications of "binary search” and therefore
requires O(rk log rfg comparisons comprising Otr® log rk log [x])
elementary operations* using Proposition 1.1.2.

Now let the n-th lteration be the last one. Then

because x*r_i f 1for 1 s 1, J s rn_i* Therefore

o 2(n-1)/24 s x|1/2 implies that n m log |x] - 1

-71

Hence, from the above analysis the procedure requires

O(Z rke +log |X] Z rklog r.) m O(/[xf (IogZ|x| ¢ 0)
1-1 K 1-1 K K

elementary operations. 0O

Sattler and Schnorr in [44] gave a probabilistic algorithm
computing the order of an element of an abelian group G. The expected
computational time Is exactly the same as the time required by Shanks'
algorithm. The space complexity of their algorithm requires a constant
number of registers (strictly speaking 1t requires 0(109 Ix]) bits of
memory). Shanks' method requires 0(|x|/\2 Iogz Ix]) bits of memory
as one can observe easily. Hence their probabilistic method Is very
practical, since problems of this size can overload the memory of a
computer. Note that the order of the element since 1t 1s computed by
the probabilistic algorithm given 1n [44] It has a certificate of
correctness.

Furthermore an algorithm computing the order of an element x of
an abelian group G. given x and |G| 1s presented below; its computational
time complexity Is of 0(]G|I"24€) elementary operations and Its space
complexity 1s of 0(log |G|) bits of memory. One of the applications of

the algorithm may be on computations Inzg, since 1t ls known that

nr " pP-1-

ALGORITHM 2.3
INPUT : An element x of a group G and the order |GJ*of G
OUTPUT : The order h of x

-72-

begin
factor |GJ;

comment Use the naive method of trial and error.

°j Uit
Let |G| » pj ... pk;
Xi « xqi with qi = |G|/p].1 for 1 s 1s K]
16'
compute the minimal 6~ for 1 s1s k: P l;

n 3
n s In' Pi 1i
-i

end. 0

PROPOSITION 2.4
Algorithm 2.3 correctly computes the order of x 1n
0(|G|1/2 M(log |G]) + IogZ|x|0 elementary operations. Moreover Its
space complexity Is 0(log |G|) binary bits of memory. O
One may Improve the time complexity of the algorithm by using a
more sophisticated factorization algorithm requiring small memory space.
This section closes with an algorithm for computing a power of a

group element. This "power algorithm" is referred 1n Hindu manuscript

200 B.C. (See Knuth [35])

ALGORITHM 2.5
Procedure POMER (x.k)

begin

-73-

1. compute aj e {0*1}: k m 1?0 a

2L
1
y toXx; Z = Is
3. for 1 - 0 to ndo
begin
If a, - Othen
1 2
y-y
4. else
5. 2 & zy;
end
k
return x Z;

end. O

PROPOSITION 2.6

Algorithm 2.5 computes xk 1n O(log k M(log k) & C log k)

elementary operations.

Proof

Step 1 requires at most logk divisions comprising 0(log k M(log k))
elementary operations. Moreover n m O0(log k).

Using the fact that steps 3-4 require 2 group operations one can

see that loop 2-6 requires 0(109 k) group operations. O

-74-

3. THE COMPUTATION OP A SET OP DEFINING RELATIONS FOR THE

p-GROUP <H,x >
In this section the problem of computing a set R of defining
relations for the p-group H* = <H,x> 1s Investigated; given a basis
for H, the orders of the basis elements, an element x and Its order,
compute the set R. The procedure DEFIREL presented below computes

a set Ras 1t 1s deduced by the following proposition;

PROPOSITION 3.1

Suppose that H - <<b., ..., b”r», H* m <Hx> are finite abelian

h .
p-groups. If |bl11- p and |x] m p , then there exists an Integer
0 < k's h such that
n 6 °i

n b '} u®? mlfor1ls1<n) (3.1)
1-1 1 1

k
R» {Xxp =

Qa
for some 0 s 61 < p\ 1< 1<n, Is a setof defining relations for H*

and pk Is the smallest possible exponent of x In this form of relations.

Proof
Since the b”s are Independent, the only existing relations of x

and b”"'s are of the form

XY m n, b, vy, 0, «Z (3.2)
1-171 1

Let p > 0 be the exponent of x with the smallest value In one of the

relations of the form (3.2)

-75-

Xy- n (3.3)
1-1 1
It will be shown that y divides the exponent of x In every relation

of the form (3.2).From (3.2), (3.3) can be deduced that

(3.4)

for some Xc Z such that 0 s Y -Xy<y . If Y-Xy > 0, then the exponent
Y-Xy of x 1In (3.4) Is positive and smaller than y contradicting with
the deflniton of y. Therefore Y-Xy m 0 and thus y divides Y.

Now consider the relation

Since y divides ph, 1t follows that y m pk for somek >0. O

Any set of relations R* for H* In terms of b”'s 1s polynomial
time reducible to the set R of Proposition 3.1. A method for constructing
R from R* In polynomial (almost linear) time 1n terms of the size of R*

Is given below.

PROPOSITION 3.2

Given R* a set of defining relations for the abelian p-group
H m «< bl#..,bn»,x>, tha order p of bj for 1 * 1 s n and the
order ph of x, then there exists an algorithm for computing the set R
of Proposition 3.1 1n O((m loglog |IR*]|+ n)M(1og I|R*Il)) elementary
operations, where m 1s the number of relations 1n R* and ||R*||denotes
the maximum absolute value of the exponent of b”"'s and x In the relations

of R*

-76-
Proof
hj n Cii
Suppose thatR*-{x{l.l n b, 1sl1sm
1-1 7
Compute s m gcd (h]. hm) and t m hx/s for some X such that

hx A 0. Then compute *c~/t mod paJ for 1 sJ s n.

It 1s not difficult to seet that

Con Bl gl L
R - {x - n bl u{b~ ai, i81sn
1-1

1s the required sett The analysis follows from Proposition 0.3.3 and
0.3.2. O

The following procedure computes the set R of Proposition 3.1

by means of the "baby-giant step" strategy Introduced 1n [47].

ALGORITHM 3.3
procedure DEFIREL (bx»...«<bn*x, p 1,...,p °» ph);

begin

1. compute the sets - {b* : 0sks r~) for ls1xn;

2. compute the sets L2j m (b""* : Oi ki r~) for lslsn;

3. compute the set L3 - ixp : Osksh};
4. compute the set eeern 5 *(* 3% *1 4 LIl *or * * * =
5. compute the set L2 m wrWg.eew,:wr « Ljl *or * * * * n};
6. sort the elements of the set L2;
7. for each C do
begin

t One can see that the construction of R' from R* (as above) Is
equivalent to the transfoimatlon of the matrix associated with R*
to the matrix associated with R' using ELIMINATECOL.

-77-

If ij * L2 then

L« Ux*t2 for some |z e L2
comment To test whether or not tj e LE one may use "binary search”
The set L contains relations of the form
LK n e4 n Anr,
X f»l bjl - ﬂ(lb/ll 1
with 1 s 0~ srlforlslsnadoOsksh
b. end

Let A be the relation 1n L which x has the smallest exponent;
al
Re{bC m1, for 1i 1< n} u{A} ;

end. O

PROPOSITION 3.»
The procedure DEFIREL correctly computes a set of defining relations

for H* » <H,x> In 0(|H*|I/2[Iog|H*| I092|H*| ¢ C]) elementary operations.

Proof

The correctness of DEFIREL follows from the fact that It merely
computes the set Ras It 1s given 1n Proposition 3.1 by means of direct
search for a match

aA n Yi
xH m ,n, b for some 0 s \ s h
-1 1

using that there exist Integers 87 for U i in such that

-78-
Y1 " siri o for 1 1 *n

with 1 $ i~

The computation of the sets and L2i requires 0 ~) group
operations for 1 s 1 s n. Hence steps 1-2 require

0(E r<) * O(JH*|"2) group operations. Step 3 requires just
1-1 1

h - O(Iog |[H*]) group operations.

The computation of Lj In step 4 requires

ILIl - 3] S JuUt]- h~ ~ - o(H*|1/2 10g IH*])

group operations. Similarly step 5 requires |L2] - O(]J]H*]|"2) group
operations. Step 6 requires 0(|L2|1og|L2|)] 0(|H* |/\2 log |H*])
comparisons by Proposition 0.3.6 comprising 0(|H* |/\2 Iog2|H*|)
elementary operations. Loop 7-8 requires |L2lapplications of the

"binary search” algorithm comprising

o(jL2Jlog|L™]) - O(JH*]1/2 log2|H*|) comparisons, or O(|[H*|1/2log3 |H*])
elementary operations.

From the above analysis the proposition follows. 0O

3.5 A WORKED EXAMPLE
LetH - «3,31» eZ]2and x - 15. The order of 3, 31 and 15 Is 8,

2 and 2respectively. A sat of defining relations for H* m <3, 31, 15>

will be computed using DEFIREL (H, 15, 23, 2,2).

-79-

First we have * £23/2T - 3 and r2 - 1/21 - 2.

At step 1 one can compute

L12 m{3° w1, 31 w3, 32 w9, 33 w27} and L2] w {31°-1,31131,322 m 1}
(W.l.o.g. let La - {31° = 1, 311 - 31}).

At step 2 one can compute

L2l - 30#43-1, 33-27, 36%25, 39-3} and LE2 m {31°-1, 312«1, 314»1}
(W.l.o.g. let L22 m (31° » 1}).

At step 3 one can compute L3 m {1520 m 15, 1521 «1}.

At step 4 one can compute

L1»{1513°31°"15, 151 .31.31°-13. 15l .32.31°«7, 151 .33.31°-21,
Ib1.3°.311b17, 151 .31.311-19, 151.32.311-25. 15| .33.311-12.
152.3°.31°«1, 152.31.31°-3, 152.32.31°-9, 152.33.31°-27,

152.3°.311%31, 152.31.311-29, 152.312311-23, 152. A || = 5}

At step 5 one can compute

L2 - {3°31°-1, 3331° - 27, 36.3i° - 25, 34.31° - 3}
At step 6 the 11st L2 Is sorted and after loop 7-8 one can obtain

L - {151.32.311«36.31°. 152.3°.310-30.310,152.31.31°-39.310,

152.33.31° m 33.31°)
Therefore R - {IS2® - 34.31, 38 - 1, 312 - 1} Is a set of defining

relations for <3,31,15> ¢ Z S2. O

80

4. THE COMPUTATION OP A BAS» FOR THE p-GROUP < H.x >

In this section the following problem Is considered:

PROBLEM 4.1

Given the finite abelian p-groups H - «bj~........ bn>>* H* " <H»X>*
with b = pali for 1s1lsn and Ix] = ph for some prime p and a
set R of defining relations for H*, compute a basis for H*. O

In view of Proposition 3.2 every set of defining relations for H*
1n terms of b”s and x can be reduced to the set given by Proposition
3.1 In polynomial time (almost linear) In terms of the size of the
Input set. Hence w.l.o.g one may assume that the set R of defining
relations given In Problem 4.1 1s that of Proposition 3.1.

Two algorithms for computing a basis for H* of Problem 4.1 are
presented below. The first method 1s based on the matflx associated
with the set of defining relations and makes use of the direct method
presented 1n Chapter 1, Section 3. The second method 1s based on

case analysis and makes use of group properties.

PROPOSITION 4.2
There exists an algorithm for computing a basis for H* of
Problem 4.1 0(log |H*)4,4110glog |H*] M(log |H*]) * log?2 [H*|£)

elementary operations.

Proof
The set R of the defining relations fbr the group G Is associated

with the (n+].) * (n+1) matrix

Mn 0 - ﬂ 0

B b

The order |H*] of H* 1s given by

IH*| mwdet(H) « ph ! ptl

(e=1)
1 1-1

Using algorithm 1.3.16 one can compute a diagonal matrix D which
represents the canonical structure of H*. Moreover using the

algorithm of Proposition 1.4.15 one can compute unlmodular matrices

B and C such that

BAC - D

Then 1t 1s not difficult to show that
bj mbjl1.... bnln x 1,n+l i ft n+tl (4.2)

Is a basis for H*. The computation of the bf's can be done by means
of computing the bk Jk's using the "power algorithm™" 2.5.

The time complexity of the method described above follows from
Propositions 1.3. 16, 11.2.6 and remark below corollary 1.4.16 using

the facts (4.1) and that

n < 0(log [H*]). O

-82

Another algorithm for Problem 4.1 1s given below; Its worst-case

complexity time upper bound ls shown to be better than the upper bound

proved for the method of Proposition 4.2.

ALGORITHM 4.3

INPUT ; A set of defining relations for H*

m1lfor 1s1in, xp

where X, b.'s are as In Problem 4.1
OUTPUT : A basis for H* m <H,x>

Procedure BASIS (H,x,R)
case k of

1. 0O: return H* « «<b”,...,b n>>;
2. h: return H* m «b " weeebh Nrx>>

end
L
3. r *logp (gcd (p ,6j en))i
4. y]. -6"/pr for 1 s 1s n;

5. umx it bj (4.4)
1-1
U r - k then
6. return H* m«b” bn.u>>;

else

«h)

(4.3)

-83-

t Index (Yt:gcd (Yt»P) " 1);

Ifr IO then
H «b™»., . bn>>1
Pk+C[<<. 6 N n 1 1 1 1 .
R - {x t n bp , bp ml for lslsn, LM i xf
tt. BASIS (H1, x. R')i
else

H* <@ «b"t.. eb”_ ™ bt+l** **bn,u>> *
a. Xeat + k- r;

10. compute an Integral solution of the system:

0i (pX"k-P_rz) * &Yt* zt- 0, 1s1sn

11. R' @ ixH WUz n b bb’\llforlslsn,lMix’i*l)»
u. BASIS (H.\ x, R")>

end
end. O

PROPOSITION 4.4

Algorithm 4.3 correctly computes a basis for H*.

Proof

Case km 0 In this case

(4*5)

-84-
therefore X « H e H* m«b " br» .
Case k - h. In this case the set {bx......... bn,x} has Independent elements

and thus correctly H* e«b It...,bn,x».

Case k - r. It 1s not difficult to show that (bj,...,bnu} 1s a set of
Independent elements using the facts: (1) pk 1s the smallest possible
exponent of x 1n relations of the form (3.1) and (11) {b”«...tbn) 1s

a set of Independent elements. Moreover x e <blt...,bntU>, because

n Ly
X - ,n, b, 1u

1-1 71

Hence H* - «b j br»u>> .

Case r < k. In this case there exists an Integer t such that

ng (yt»P) m 1
and thus there exist Integers y and v such that

Therefore (4.6)

Moreover one can observe that the order of u s pr.

-85-

subcase r m 0. Then um 1 and H* m <H',x>. The correctness of the
computation of the set R' of the defining relations for H' follows
from (4.3) and the fact that |bt]| « p *. Therefore 1t Is sufficient

to call recursively BASIS for a simpler problem« since |H| s |H'|/p.

Subcase r + 0. As 1n the case k mr 1t Is not difficult to show that

the set {b1,....bt_1, bt+1..... bn«u) has Independent elements. From
(4.6) follows that H* - <H",x>. The set R" of the defining relations

for H' 1s correctly computed since
S |b]] Pk
(1) A - log (JH*I/IH*]) - log " —ememmemeeeeees » logp(|bt |pk/|ul)

and (11) Using (4.4) and (4.5) follows that

p *~_ Wz n b ZI+Yi_ *t2
in

and by definition pk divides p* - wz. hence using (4.3)

BMOAK Ty OERKIT) LY

1 1 It 1 1

and thus follows the system of step 10.

Hence In this case suffices to call the procedure BASIS recursively

for a simpler problem« since |HN] s |H|/p. O

. 86.

PROPOSITION 4.5

Algorithm 4.3 computes a basis for H* 1n

O(log2|H* (M(log [H*]) ¢5))

elementary operations.

Proof

Step 3 requires 0O(r*(log |H*]) loglog [H*|) elementary operations
for an application of the Extended Euclidean Algorithm using Proposition
0.3.3.

Step 4 requires 0(nM(log |H*|)) elementary operations for divisions.

Step b requires 0O(log (w P\ y~) " 0 (log |H*]) group operations
for ntl applications of the "power algorithm™ by Proposition 2.5.

The solution of the system of step 10 requires O(nM(log |[H*]))
elementary operations for divisions.

The recursive application of the procedure BASIS 1s done at most

log |H*] times» since

IH'l s [HI/p and |H'| s [H|/p

From the above analysis and the fact that n s log |H*] the proposition

follows. O

5. THE COMPUTATION OF THE STRUCTURE OF A FINITE ABELIAN GROUP

An algorithm for computing the order and the complete structure of
a finite abelian group G represented by a set of generators 1s presented
below; 1t makes use of the procedures ORDER. DEFIREL and BASIS presented

In the previous sections.

ALGORITHM 5.1

INPUT : A set of generators iuia— .9n> for the finite abelian group G
OUTPUT: The order, the complete structure of G and a set of basis
elements for G.
begin
1. oi *ORDER (g.]) for 1 s 1 s nj
2. compute the set Pm {p: p prime of for some 1 s 1 s n}
cownent This can be done by factoring all o.,'s using Shanks' method
(see [47])

3. for each pc P do

begin

Aj & the largest integer such that p * divides Oj, for 1 s 1 < n;
4. Xi @ g™wl with Wi m Oi/p * for 1< 1< n,

HO - <1>;
5. for s m! to ndo

begin

6. Rs DEFIREL (Hs_r xs)
7. Hs « BASIS (Hs. 1,xs,R$)

8. end

.88-

return. the order and the basis's elements of the p-component Gp of G;
comment This Information 1s Included 1n Hni see Propositions 4.4 and 4.5.
9. end

return |Gl m n |G |-
p«P H

end. O

PROPOSITION 5.2
Algorithm b.l correctly computes the order and the structure of

the group G In 0(n]G]1/2(log |G])3 (log |G|+ ¢)) elementary operations.

Proof
Step | requires 0(n]GJ1/2(log2 |G +C)) elementary operations,
using Proposition 2.2.
Step 2 requires 0(n]|G|1/S+e) elementary operations for factorizations.

Step 4 requires only O(n log |G|) group operations using the "power

algorithm™" 2.5.

Step 6 requires 0(|G|1/2 log2|G| +0) elementary operations from
Proposition 3.4.

Step 7 requires 0(log2|G| (M(log |G +£)) elementary operations from
Proposition 4.5.

Hence loop 5-8 requires 0(n|G11/2log2|G|(log [G| + O) elementary
operations and loop 3-9 requires 0(n|G|1/2 log3|G (L0g|G| + C)) elementary
operations, since

IP| - O(log 6| / loglog |G]).
From the above analysis the proposition follows. T

2
An algorithm for computing a basis for a group 6 In O(]G] C)

elementary operations due to Savage Is mentioned 1n [32]. Hence one

can see that the upper bound has been Improved by at least a factor

of 0(]G]).

-90-

6. MEMBERSHIP-INCLUSION TESTING .

Given a generating set <glt...,gn> for a finite abelian group G
and an element h < H > G, an algorithm for testing whether or not h

belongs to G Is presented below.

ALGORITHM 6.1
begin

compute the order |G] and a basis for every p-component*Gp of G;

comment The computation 1s done as 1n algorithm 4.1.

Let G -<<b. »eeeyp »
¥

- K np.p
3 ¢ ORDER(h);

for every p-component;

If 3 f |G| then

return "h does not belong to G";
Ai X

Let 3 - p]. ... pft , where p~'s are distinct primes;

comment For factorization of O use the prime factor of |g| which
(*j » e/p/\lforlslsk;
1 Ul for 1s1sk;

are known.

for 1 m 1 to k do

begin
9 n

search for Integers 0s < |bjpJ for 1i j snpjxi *n

comment This can be done using the"baby-glant step” strategy In a
similar manner as In the procedure DEFIREL.

If the required 6j's do not exist then

return "h does not belong to G";
end

return "h belongs to G";
end. O

Tl

91-

PROPOSITION 6.2

Algorithm 6.1 correctly decides whether or not h belongs to G 1n

0(|h|1/2 (log |h]+ G) + n|G|1/2 log3|G](log |G]+ £))

elementary operations.

Proof

The correctness of the algorithm 1s Implied from the following

fact: There exist Integers y1 for 1 s 1 s k such that

AYi ¢V 2 * ** 4V K " 1 (6.1)

Then 1t follows that
k

=~

* X 2
" 6.2

Hence h belongs to G If and only If x* belongsto G for 1 <1 <k, using

a< p
the fact that x«< m h for 1s1i k.

The upper bound on the time complexity of algorithm 6.1 follows
from Proposition 2.2* 3.4 and 5.2. O
Suppose that F and G are finite abelian groups, both subgroups of
an abelian group and F and G.are represented by a set of generators.
For testing whether or not either F mGor F« Gor Ge F, It Is sufficient
to test each generator for membership of the one group In the other.

Hence using algorithm 6.1 and proposition 6.2 one can show the following

proposition:

-92-

PROPOSITION 6.3
Suppose that F = £ H» Gm<glt...,gn> are finite

abelian groups. Then the equallty-1ncluslon test can be done 1n

O((k+n) ZIF] + |G| log3(IF| + [GI) [log(IF| * |G| & ¢])

elementary operations. 0O

COROLLARY 6.4

Given a finite abelian group G * <gl»....g n> and an element h 1n
G, there exists an algorithm for computing an expression for h In
terms of the generators g”~s In O(|G|"2(log2|G] + C)) elementary

operations.

Proof
Here an additive notation for the group G 1s used. The computation
of the required expression of h can be done by means of direct search for

a match of the form

hemA7j + (6.3)

using the "baby-giant step” strategy. This requires O(u”~2logy(log y ())
n

elementary operations» with y - n Imjl (proof similar to that of
1-1

Proposition 2.2).
Now 1t will be shown that there exist m”'s for 1 * 1 s n such that

w - 0(]G]). Let the n x n triangular matrix

-03-

“11
a22

be the associated matrlx+wlth a set of defining relations for G In
terms of 's.

If (6.3) holds* then 1t 1s Implied that

[N B C Rt
L L v} g
all _ fin o m -
-- : d *

0 a ” 0

L nn. g -

One can reduce the m~'s of L.H.S. (n+1l) x n matrix A' modulo a”~ for

I s 1s n, via Integer-row operations (see algorithm 1.4.2). This

corresponds to a multiplication of A' by a unimodular (n+1) x (n+1) matrix

where * denotes an entry.

Then it follows that

LA' g

Hence If (m[*....m”") denotes the first row of the matrix L A', then

+Since every matrix can be trlangularlzed, w.l.o.g. A Is assumed to be
triangular. See proposition 1.4.1.

Moreover

Im|] s |a” |for Is 1in
n n
which Implies pm n |m]s n Jaill* |G]|.
1*1 1*1 1

Therefore the proposition follows. O

REMARK 6.5
One can see that using algorithm 6.1 one can compute an expression

of h In terms of the elements of a basis (see (6.1), (6.2)). O

-095.-

7. THE STRUCTURE OF A SUBGROUP OF A GROUP WITH KNOWN STRUCTURE

In this section the following problem 1s considered:

PROBLEM 7.1

Given that F Is a finite abelian group with a known complete
basis and G 1s a subgroup of F generated by a set of generators whose
elements are expressed In terms of the basis's elements of F, compute

the complete structure of G. O

An algorithm fbr problem 7.1 which runs In polynomial time 1s
presented below; 1t makes use of the procedure DEFIREL* given below

analogous to the procedure OEFIREL of Section 3.

96-

n Ya
Procedure OEFIREL*(H,A+ish n f, Jfor 1i 1sn+l, |f4]l for 1 s 1s m)
-1 3 3
begin

compute an Integral solution of the system:

1i1 XI1Y1J m Kn+l Yn+1,] *)//jllijlb 1s] s™ x1lyl€Z g

coment This computation Is done using the algorithm of Proposition
I. 6.6.

Let (x,y)* * Kw be the set of all the solutions with

K e Mn-Hn+l) w(n+m+1-r).

comnent The Integer r 1s the rank of the system and wls a vector of

variables
n-Hn+l-r
confute 6j for 1< U n-Hn+l-r: £ Kk
1-1

n+1,n+m+1-r)I ;

comment By valuing w :- 6 the xn+l Is became minimal.

6" +6j(mod(h.])) for 1 s 1 s n;
6 _.i n 6j a*

Rrhml " 1nl1”~ i «”~ l1lelforlslin
comment Note that |h*| = 1cm {|fj]/gcd(]fj].Yjj)} for 1 s 1 s n.

return R;

end O

-97-

PROPOSITION 7.3
Procedure DEFIREL* correctly computes a set of defining relations

for H* In O(n-Hn) M(log |F|])) elementary operations.

Proof

Computing x*'s for 1 s 1 s ntl such that

u XB¥i o X u *n
hn+1 hl “ e hn

1s equivalent to compute solutions of the system

Nir. x. A
m i£iYu 1 m Ytn+i
n f, J1 mn f, * 1)n+l
j«i J j-i J

which 1s equivalent to solving

n
*1) xX(“ > &1 *el + 1sJs V. »j « Z|F]

Step 2 guarantees the minimality of xn+j and thus the correctness
proof 1s completed.

Step 1 requires 0O([n-Hn] M(log|F])) elementary operations for the
computation of the set of all the solutions of the system using
Proposition 1.6.6.

Step 2 merely requires O([n-*nO M(log|F|]) loglog|F]) elementary
operations for applying the E.E.A. and step 3 requires
O((n+m)2 M(log IFI)) elementary operations.

Using the fact that loglog |F] <m, the proposition follows. O

ALGORITHM 7.4

INPUT : A finite abelian group F m «fj 171 for 1 s 1 s n,
a subgroup G - <g.......... gk> and a set of relations

Y4-
g, * n f< for 1 & sk.
J 11 1

OUTPUT: The complete structure of G and a complete basis for G.
begin
for each p-component of F do
begin
He <g[p™
comnent The sets {g]p”......... gEp”™) {f[p”,..., T~} are the generating

sets for the p-components of G and F respectively

for 2s 1s kdo

begin
- * i i = i i i
R,1 DEFIREL (|-||3—’91'p)'gjlp) i»nl(f(pV 1S for 1sj s 1,|1i|p)| Vi)
Hp + BASIS(Hp* gi# R”i
end
return Hp;

end

end. O

PROPOSITION 7.5

Algorithm 7.4 correctly computes a complete basis for G In
O (k(log]F])3 M(log|F|) & log2|G]|O

elementary operations.

-99-

Proof

The correctness of the algorithm follows from the correctness

proofs for the procedures DEFIREL* and BASIS.

The upper bound on the time complexity of the algorithm, follows

from Propositions 3.4 and 7.3, since

ms log |G] and ns log |F

where mdenotes the number of the basis elements for G. O

8. THE COMPUTATION OF THE STRUCTURE OF THE UNION AND

INTERSECTION OF ABELIAN GROUPS

A. UNION OF FINITE ABELIAN GROUPS
Suppose that the finite abelian groups F m <fj......... fne> and
G m <glt...,g n> subgroups of the same group are given. If <F u G> 1s
an abelian group, then for the computation of Its order and Its structure,
1t 1s sufficient to apply algorithm 4.1 for H* <f~, ..., fm

Since.|H] - O(]JF|] [1G|), the computation of a basis for <F u G> requires

O(mn) /|FTGT e

B. INTERSECTION OF FINITE ABELIAN GROUPS
In case which <F u G> Is abelian, the computation of the order of
the group <F n G> can be done by computing the orders of the groups F,G

and <F u & and then

IFnG| * |Fl . IG/ |I<Fu G

The computation of the structure of the group F n G (and Its order
In the case which <F u G> 1s non-abellan) 1s apparently difficult since
It seems that finding a generating S for F n G Is hard. The computation
of S and consequently Its complete structure can be done using the

following algorithm.

102

ALGORITHM 8.1

INPUT Two finite abelian groups F m <fj......... fB> and
G m <gh.... gn> with <F u G> abelian group.
OUTPUT: The complete structure and a complete basis for <F n G>
begin
1. compute a basis «b " bn>> for F using algorithm 5.1;

2. compute a basis « y”™»...»y”™>> for G using algorithm 5.1;

X z z
3. compute x"'s. z"N's: bjl ... bkk mYj *... YAwIth |x*] s |bj| and

Izjl < Ivil; (8.1)

comment This 1s done using the "baby-giant step" strategy.
4. S« {s: s = bi(l b?-ﬁ” for every match 1n (8.1)};
5. compute a basis for <F n G m <S> using algorithm 7.4.;

end. O

PROPOSITION 8.2
Algorithm 8.1 correctly computes the complete structure and the

order of F n G In O((JF] |GD"24€) elementary operations.

Proof
Step 3 requires O(/|F] |Gl (loglF|] |IG]) + O) elementary operations
for the computation of the matches (S.I1”and 1t 1s not difficult to see

that

PAGE
MISSING

-102-

ALGORITHH 8.1
INPUT Two finite abelian groups F m <fj* ... fB> and
G * <Sjuceen.. 9n> with <F u G> abelian group.
OUTPUT: The complete structure and a complete basis for <F n
begin
1. compute a basis «b 1#...,bm» for F using algorithm 5.1;

2. compute a basis ... yx>> for G using algorithm 5.1i

X. Z. z
and

(8.1)

comment This Is done using the "baby-giant step” strategy.

X, X
4. Se {s: smbj ... bn for every match In (8.1)};
5. compute a basis for <F n G m <S> using algorithm 7.4.;
end. O

PROPOSITION 6.2

Algorithm 8.1 correctly computes the complete structure and

order of F n GIn O((JFj |oD™M'*€) elementary operations.

Proof
Step 3 requires O(/|F] IG6 (loglFl IGI]) C)) elementary
for the computation of the matches (8.1)+and It Is not difficult to see
that
IS| = 0«F| [G])
Then the upper bound on the complexity of the algorithm follows

propositions S.2 and 7.3. O

+Uslng that and |zjl < IY41.v4# follows that the number of
matches of tl Is equa{ to J J

V 3 lyd - 0 (1A 1Q)
It has been shown that theJsteps required by the "baby-giant stepl
1s equal the square root of the number of matches.

-103-

9. RELATIVE COMPLEXITY OP THE PROBLEMS M CHAPTER I

A. Computing Tho Ordor Of An Etomant And Factoring An bitagar

Comparison of the complexities of computing two distinct functions

can be done formally as follows.

DEFINITION 9.1

Suppose that f and g are functions; f is called polynomial time
reducible to g, if there exists aTurlng machine which on Inputs n and
g(n) computes f(n) In O(logcn) steps for some constant ¢ depending on

f and g. The relation is denoted by

f<P9
If f <p gand g <~f, then f is called polynomial time equivalent to g

denoted f « Pg. a

The functions which are investigated 1n this subsection are the

following:

DEFINITION 4.2

Suppose that h is the exponent of Z*. Then define the function

0(n) ! hP«*"!

and let O(n) denote the number of elementary operations required by an
optimal algorithm for computing 6(n).

Moreover define the function

f*(n) m (pt...... pk)

-104-

where the p~'s are all the distinct prime divisors of n and let F(n)
denote the number of elementary operations required by an optimal
algorithm for factoring the Integer n. a

Two useful facts about the multiplicative group of Integers mod n are

given 1n the following two theorems; both assume the truth of the Extended

Riemann Hypothesis.

THEOREM 9.3 (E.R.H) Ankeny-Montgomery (see [41])

There exists an absolute constant ¢c> 0 such that 1f

H ¢ G . where G Is a finite abelian group

Is a non-trlvial group homomorphism, then there exists a prime p such

that

Y(p) / 1 and p € [2, c(logn)2]. a

THEOREM 9.4 (E.R.H), Dixon [13]
There exists a polynomial time algorithm for computing a generating

set for Z*.

Proof
Let B be the set of all primes 1n the Interval [2, clog2n]. It
will be shown that Z’ﬁ » ,

Let G m Z*/ and ip the canonical homomorphism

iV/ZE » G.

-105-

The kernel of N 1s and thus
<Kg mod n) *1 Vqin B

By Theorem 9.3 Is trivial and thus G = 1 and Z* » . o]

Two well-known functions are the following:

DEFINITION 9.5

al a
Let n * ... pm~ distinct primes p.f 1< 1< m. Then

a.-1
<Kn) :e p1l

1s the Euler function. Note that |Z*] * (n).

Moreover let
X'(n) Iom {pj-1 ...,pml>. a

The relation between the computational complexity of f* and an integer

function g Is studied In the following lemma due to Miller (see £4(0).

LEMVA 9.6 (E.R.H)
If g(n) 1s a function satisfying:
(1) A'(n) divides g(n)
(Iry log (g(n)) - O(logcn) for some constant ¢ depending on the
function g)

then * < pg. o

-106-

PROPOSITION 9.7 (E.R.H.)

f*« 9
p

Proof
(1) First one can compute a generating set S for Z* In polynomial

time using the algorithm of Theorem 9.4. Knowing the prime factorization

aii ak
of n = Pj ... pk one can compute the order |g| of each g 1n S In
polynomial time; this can be done by raising gmwith m = n/p.ai in the

6i 1

smaller power of p* such that (g)P1 » 1, for 1< 1< k and then
lal = PlSl kak. Hence e(n) can be computed in polynomial time
as

e(n) - (Iem {|g]: g C S})~09"!
Therefore

esp f*

(1) Since

\'(n) divides e(n)

and log (e(n)) - log(hi*1°9r1) . o(log2n)

1t follows from Lemma 9.6 that
f* <p 8. o]

Now the relation of the complexity of factoring and computing the

order of a element of a group 1s Investigated.

-107-

DEFINITION 9.8

Problem T Given a generating set S for an abelian group G of order at
most n and a element x In G, compute the order of Xx. a
Let T$ x(n) denote the time in terms of elementary operations

required by an optimal algorithm for problem T and let

T(n) =mex {Tc in) : x€ G * <S> and IGl < n}. a
S,X b,x
PROPOSITION 9.11 (E.R.H.)

For some polynomial p the following holds

T(n) > e(n)/p(log n)

Proof
One can compute e(n) in the following way. First compute a generating
set S for Z* in p~log n) elementary operations for some polynomial

Pj using the algorithm of Theorem 9.4. Second compute the orders

lgl of each g ¢ S using optimal algorithms; this requires

E ()
gcsS

elementary operations. The value of e(n) 1s given by (1cm {]g]:g € S>)"°9 n
which can be computed 1n p2(log n) elementary operations. Hence the
computation of e(n) in the above way requires
0*(n) m p.(log(n) & e F’ZOOQ n)
1 g€S

elementary operations.

-108-
Now using that |S] * p4(log n) for some polynomial p4 follows
that
0*(n) < PjOog n) + p2(log n) & p4(log n) T(n)

or for some polynomial p follows that

0*(n) < p(log n) T(n) (9.1)
Therefore from the obvious relation
O(n) < 0*(n)
and (9.1) the proposition follows. a
COROLLARY 9.12 (E.R.H.)
For some polynomial P» the following holds
T(n) > F(n)/p(log n)
Proof
From Proposition 9.7 It follows that

O(n) - p~log n) + F(n)
for some polynomial p”* Therefore the corollary follows from

Proposition 9.11. o]

B. Ralallva Complexity Of Problem« h Abelian Qroupc«
In the previous subsection the complexity relationship between
functions Is considered; here the relation of the complexity of problems 1s

considered.

-109-

DEFINITION 9.13

A problem A 1s polynomial time reducible to a problem B denoted

A « pB

if the existence of a polynomial time algorithm for solution of problem B
implies the existence of a polynomial time algorithm for problem A.
If A«pB and B <<pA. then problem A is polynomial time equivalent to

problem B denoted AM PB. O

PROPOSITION 9.14 (transitivity of A <<pB)

Suppose that X, Y and Z are problems. If X « pY and Y <<pZ, then

X <<pz. a

PROPOSITION 9.15 (E.R.H)

If problem F is the problem of factoring an integer n, then

F « pT.

Proof

Assume the existence of a polynomial time algorithm for T. From

Proposition 9.12 It follows that F(n) 1s a polynomial p(log n). o]

DEFINITION 9.16
Problem C. Suppose that G 1s an abelian group with |G] < n. Given a set
of generators S for G, compute a canonical basis for G. a

Let Cg'g(n) denote the time 1n terms of elementary operations by an

optimal algorithm for problem C and let

-110-

C(n) - max {Cr c(n) : G» <S>, |G < n}. O
G,S G'5

DEFINITION 9.17
Problem D. Suppose that G 1s an abelian group with G < n. Given a set
of generators S for G, compute a set of defining relations for G. O
Let Dy s(n) denote the time in terms of elementary operations required
by an optimal algorithm for problem D and let
D(n) = max {Dr <(n) : G = <S>, IGl < n}. O
G,S
PROPOSITION 9.18

The following holds:
C «p0O*

Proof

Assume that there exists an algorithm for computing a set of defining
relations for G m <S> in polynomial time, say p”Oog n). Then using
algorithm 1.3.1 one can compute a canonical basis for G in p2(log n)
elementary operations for some polynomial p2 . Therefore there
exists an algorithm for problem C which computes the canonical basis for

o

G In p(log n) elementary operations, where p m pl & p2.

DEFINITION 9.19
Problem B Suppose that G Is an abelian group with |G < n. Given a set

of generators S for G, compute a complete basis for G.

-111-
Let BG g(n) denote the time 1n terms of elementary operations
required by an optimal algorithm for problem B and let

B(n) :» max {Br c(n) : G =<S>, IGl < n>. a
G,S G»5

PROPOSITION 9.20

The following holds:

C <<pB

Proof

Suppose that the complete structure of G Is

Il . k (13
g* n c(p-] X c(p- 1'&) for p4, 1 1< k
1*1 1 11 K 1
distinct primes and j1>J2> ... > jn, all< i for 1K 1K k*
&
Then
k Q
G- n C(d.) with d, " n p# Al
U\ 1 1 *1 *
Vo Ji

yields the canonical structure of G.
Therefore the existence of a polynomial time algorithm for problem B

Implies the existence of a polynomial time algorithm for problem C. a

DEFINITION 9.21

Problem 9 Suppose that G 1s an abelian group with |G < n. Given a set

of generators S for G compute the order of G.

-112-

Let Og s(n) denote the time 1n terms of elementary operations
required by an optimal algorithm for 9 and let
®Nn) « max {® -(n) : G m <S> IGl < n}. O
GS 6,5

PROPOSITION 9.22

The following holds

o <<PC

Proof

It 1s obvious. |

PROPOSITION 9.23

The following holds:

T « p®

Proof
Assume the existence of a polynomial time algorithm for problem ®.
Then using this algorithm one can compute the order of the group

<X>. o0.e.d. a

DEFINITION 9.24

Problem Cy Suppose that G Is a* abelian group and G < n. Given a
generating set S for G, test whether or not there exists an h e G

such that G - <h> and compute ag for all g € S such that O m g. Let

CY G,S"n) denot* time 1n terms of elementary operations required by an

optimal algorithm for problem Cy and let

113

Cv(n) *max {Cvr ¢(n): Gm<S> |G < n> 0O
T , T
PROPOSITION 9.25

The following holds

C\){« PC

Proof

It is obvious. O

DEFINITION 9.26
Problem E. Suppose that G is an abelian group with |G| < n. Given a set
S of generators for G and an element x in G, compute an expression.if any,

for x in terms of the generators g in S' ¢S, such that

0}
X= n g9 withc« < gl ygece S
gCs' 9

Let Eq s x(n) denote the time 1n terms of elementary operations required
by an optimal algorithm for problem E and let
E(n) mmax {Er cy(n) : Gm<S> xe$S, |G <n> a
G.S.x
ALGORITHM 9.27

INPUT : An algorithm for problem E and an element x of G

OUTPUT: The order of G

-114-
Procedure ORD(X)
1. compute an expression of x in terms of x using the algorithm for E;

if such an expression exists then

let x * x2k, where k as 1n step 1;

2. return |x|] * 2k-1;
else
3. IX] < 2.0RD(x2);
return |x]|;
end. o]

PROPOSITION 9.28

The following holds:

TV

Proof

Assume the existence of a polynomial algorithm for problem E. Then
algorithm 9.27 correctly computes the order of x in polynomial time.

If at step 1 an expression 1s computed, then |x] 1s an odd number and
thus |x] - [x2]. Hence 1t 1s not difficult to see that |x|] - 2k-1.

If there 1s no such expression, then x 1s even and the problem Is
reduced to the computation of the order of x . The recursive calls of
the procedure ORO can be at most log |x] < log n.

Therefore algorithm 9.27 requires polynomial time 1n log n. a

-115-

PROPOSITION 9.29

The following holds:

E <D

Proof

Assume the existence of a polynomial time algorithm for problem O.
Then let S* = S' u {x}. In polynomial time one can obtain a set of
defining relations for G* generated by S* using the algorithm for problem D

Let the defining relations for G* in additive notation be:

t t
AxX,gM»...,g"] * [0........ 0] with S' * (9/>***>9n} (9.2)
where A is an m x n integer matrix.

Now one can trlanguiarize A via IRC operations to the matrix

P Jwith Tan(n+1) x (n+1) upper triangular matrix (9.3)

This can be done 1n polynomial time by Proposition 1.4.2.

From (9.2) and (9.3) follows that
X *tD, th9, =0 (9.4)

By definition of the set of defining relations. If t~ t 1, then does
not exist a relation required by problem E and If t* m 1, then (9.4)

1s the required relation. a

PROPOSITION 9.30

The following holds:

T% CY

-116-

Proof

Assume the existence of a polynomial time algorithm for problem Cy.
Then using this algorithm for the group generated by {x,1} one can see
that <x,1> 1s cyclic and the algorithm also yields the relations x - X

and 1 » xh. Therefore the order h of x 1s computed 1n polynomial time.

C. Relative Compexity Of Decision Problems

The first decision problem considered 1s the following:

DEFINITION 9.31
Problem Given a generating set S for a finite abelian group G with
IGl < n decide whether or not G 1s cyclic.

Let G>s(n) denote the time in elementary operations required by

an optimal algorithm for problem and let

CrMn) = max {C* Q s(n): <S> * Gand Isl <

PROPOSITION 9.32

The following holds
CY <<pCY

Proof
It 1s obvious. O

The second decision problem Is a version of problem T.

-117-

DEFINITION 9.33
Problem T* Given a generating set S for a finite abelian group G with
IG] < n, an element x In G and an Integer k, decide whether or not the
order of x 1s less than k.

Let Tg s x k(n) denote the time 1n terms of elementary operations

required by an optimal algorithm for problem T* and let

T*(n) = max {T* s>x>k(n) : G =<S> x € G, |G < n}. O

PROPOSITION 9.34

The following hold:

(1) T « pr*

(11) T*(n) < T(n) < (log n] T*(n)

Proof
(1) It is obvious that T* <<pT.
Now assume the existence of a polynomial time algorithm for T*.
Then using "binary search" together with the algorithm T* one can compute

the order of x. A sketch of the method 1s the following:

Check whether or not |x] <£. If the answer Is "yes", then 0 < |x] <§
else IX] < n. Then check whether or not |x] < mwhere m 1s the
middle of the Interval 1n which the order was estimated to fall. By

repeating this process one can find the order 1n at most |log n] repetitions
since the Interval 1s halved every time. Hence T « Fj'*.

(1) It follows from above. o]

-118-

In order to measure the "hardness" of the problem C#, the well-known

problem of "primallty testing” 1s considered along with some results on

*g.

DEFINITION 9.35
Problem P Given an Integer n decide whether or not n 1s a prime.
Let P(n) denote the time in elementary operations required by an optimal

algorithm for problem P. 0O

DEFINITION 9.36

An Integer n Is said to be Carmiohael number 1f

(1) n=pl... pk where p*'s are distinct primes with k> 2

(11) p~-1 divides n-1 for 1< 1< k. a

LEMVA 9.37

If an abelian group G 1s cyclic, then it contains exactly $(p)

elements of order p in every p-Sylow subgroup of G.

Proof
a, a.
let G- <x>and Z* m{k1l....» ~ ((p) I 61 *Pf eee Px* » then
k,d.
let dj m |G)/p.|] for 1< 1< Moreover let Xj m x J for every kj 1n
Z*. Then It 1s not difficult to see that s m (Xj......... xN(p)" are all the

elements of G of order p. Because If y has order p”, then using that

y - xq for some g follows that xqP1 m 1 and that q = 0 mod d* which Implies

q*udl

with p relative prime to p* and thusy € S. o0

-119-

LEMVA 9.38

Suppose that n is Carmichael number. Then Z* 1s not cyclic.

Proof
Let n = Pj ... pk where p* for 1< 1< k are prime. Now consider

the equation

PX
X = 1 mod(n) for some 1< \< k (9.5)

If the number of solutions of the equation

X e 1nmod p|] for some 1< 1< k (9.6)

is k”, then the number *sof solutions modulo n of (9.5) 1s

£= : fg (see Apostol [4]).

First observe that k* >1, since 1,-1 are solutions of (9.6).

Moreover every h € Z** is a solution of the equation

XN =1nmod p

and thus k> $(p”).

Therefore | > $(pA). This Implies that the number of elements of order

Px 1s greater than <t(Px) and by Lemma 9.41 Z* Is not cyclic, a

PROPOSITION 9.39
An Integer n 1s prime 1f and only If
(1) The Integer n 1s not prime power
(I')y The group Z* Is cyclic

(1'11) Every h € Zfl satisfies the equation

-120-
hn-1 = 1mod n. (Fermat's criterion)

Proof

If nIs prime, then 1t 1s well known that Z* « <{>n) = n-1 and
(1) - (111) hold.

Assume now that n Is not prime, n * p* pkok for p» 1< 1< Kk
distinct primes and (1) - (111) hold.

Since (111) holds, 1t follows that

$(n) divides n-1

0j-1
which Implies that p* divides n-1 for 1< 1< k. Therefore 1t follows

that a8 = 1 for 1< 1< k.

If k> 3, then n 1s a Carmichael number and therefore Z* 1s not
cyclic by Proposition 9.38 contradicting with the assumption of (11).

If k =2, then
<p(n) - (P1-1)(P2-1) divides P"-1 = (P11)(P2-1) & (Pt-1) & (P2-1)

which 1s not difficult to be shown Invalid. a

As a bridge between the problem and P the following problem 1s

used.

DEFINITION 9.40
Problem | The same as problem but with G * Z*. The definitions of

Zn'gfn) and Z(n) are similar to CJ Q s(n) and Cf(n) respectively. (o]

-121-

PROPOSITION 9.41

The following holds:

Z <<_ C$. O
P’$

The problem Z is used as bridge between the problem CC and P in order
to avoid the assumption of E.R.H for the construction of the generating

set of Z* in which case the reduction is dependant on the truth of E.R.H.

PROPOSITION 9.42
The following holds:
(i) P« Z
(ii) P(n) < Z(n) & p(log n)

Proof

(i) Assume the existence of a polynomial time algorithm for Z.
Then one can check the conditions (i) and (ii) of Proposition 9.43 in
polynomial time. One can check whether or not gn-1 - 1 for each g € S
by means of the "power algorithm™ and thus checking whether or not (111)
holds requires polynomial time.

(11) It follows from above. a

D. Relative Complexity Of kitereeetlon Probleme
DEFINITION 9.43

Problem 01 Given abelian groups G m <S> and F - <S’> with |G] < n and

IFI < n and the fact that <F u G> abelian, compute the order of <F n G>.

-122-

Let Olg s p £i(n) denote the time in elementary operations required by an

optimal algorithm for problem 01 and let

Ol(m,n) * max {OIr c ¢ c,(n,m):G«<S>tF»<S'>,|G|<n,|F|]<n,<F GX abelian} O
G.S.F.S' *

PROPOSITION 9.44

The following holds:
|®n,m) - Ol(ntm)] < O(n) + O(m) + p(log nm)
where ®n,m) = max {#H s(hnm) : H* F U G « <S>, |F] <n IGl < m}
Proof
It is well known that
I<F U G>|= |F] = |G|/ |<F 0 G| (9.7)

Now one using an optimal objection for computing F, G and F uG
can compute <F n G> by using (9.7). Therefore
Ol(n,m) < d(n,m) & #(n) & 9(m) & p(log mn)

for some polynomial p, ,
Similarly using an optimal algorithm for computing [|F|(|G and

I<F 0 G| one can compute |<F u G| by using (9.7). Therefore
O(m,n) < Ol(n,m) & O(n) & t(m) & p(log mn) (9.8)

Hence the proposition follows. a

-123-
PROPOSITION 9.45
The following holds
8(m,n) < ¢ Ol(n,m) + p(log mn)
for some constant ¢ > 1 and some polynomial p.
Proof
From (9.8) using that
Om) + O(n) < (1 - 1) ®(m,n). o]
PROBLEM 9.46
Problem 01» As problem 01 without the restriction that <F u & 1s abelian.

In a similar way to Ol(n) the complexity of 01* denoted Ol*(n,m) 1s

defined. O

PROPOSITION 9.47

The following holds:

Ol*(n,m) > ¢ ®m,n) & p(log mn)
for some constant ¢ < 1 and some polynomial p
Proof
From Proposition 9.45 and the fact that

0l*(n,m) > 0l(n,m) d

-123-
PROPOSITION 9.45
The following holds
9(m,n) < ¢ Ol(n,m) + p(log mn)
for some constant ¢ > 1 and some polynomial p.
Proof
From (9.8) using that
Om) ¢ 0(n) < (2 -) <Jm,n). o]
PROBLEM 9.46
Problem 01* As problem 01 without the restriction that <F u G> 1s abelian.

In a similar way to 0l(n) the complexity of 01* denoted Ol*(n,m) 1s

defined. O

PROPOSITION 9.47

The following holds:

Ol*(n,m) > ¢ ®m,n) ¢ p(log mn)
for some constant ¢ < 1 and some polynomial p
Proof
From Proposition 9.45 and the fact that

0l*(n,m) > 0I(n,m). a

-124-

One can define problems of computing the canonical structure
(problem (1), complete structure (problem Bl), a set of defining
relations (problem DI) for the Intersection of two abelian groups.

It 1s not difficult to show that the following hold:

(1) Cl« DI, (11) Ch« Bl (111) Ol<<Cl

Their proof are similar to the proofs of Propositions 9.18, 9.20 and
9.22. Moreover one can define the problem of deciding whether or not
the Intersection of two groups 1s cyclic (problem Cyl). It 1s not

difficult to prove that

CY «p Cyl

-125-

HASSE DIAGRAM

The dotted line denotes the assumption of E.R.H.

-126-

E. Conclusion*

The Hasse diagram 1n the previous page summarizes the results on

the relative complexity of problems described In this section.

PROPOSITION 9.49 (E.R.H)

The following hold
max{D(n),C(n),®(n),B(n),E(n),Cy(n),T(n),T*(n)> > F(n)/p(log n) (9.9)

for some polynomial p.

Proof

One can see that

TG,S,x<n) < °<x>x(n>

which Implies

T(n) < max (D<x>fX @ (X] < n) < D(n).

Similarly one can show C(n) > T(n), d(n) > T(n) etc.
Therefore using Proposition 9.11 the proposition follows, o]
In the sections 1-8 upper bounds are given for the above problems are given;
It 1s shown that the complexity of all the problems 1n L.H.S. of (9.9)
1s 0(n~e) elementary operations. The best upper bound for F Is
O(log n)cl°91091°9 n) elementary operations due to Adleman [1]; the proof
of the bound depends on the truth of various number-theoretic assumptions.
The best-known upper bound for F (depending on the truth of ERH) 1s
0(n1/5+e) due to D. Shanks [47] (see [30]).

Let us consider the role of the Rlemann hypothesis which Is
unsolved for more than a century. One can see that assuming E.R.H.
one can compute a generating set for Z* by picking up all the primes
In the Interval [1, (Iogzn], Without E.R.H to construct a generating
set for Z* one has to pick up all the primes of the Interval
[1, ch*+G]; this 1s the best known unconditional upper bound due to
Burgess [6] (see Lagarlas and Odlyzko [36]). Therefore one can see that
the assumption of the truth of E.R.H. 1s "responsible" for the gap
between the upper bound for problem T and Shanks' bound for factorization:
Shanks' constructs a generating set for the form class group which can
be found quickly (O(log n)) assuming the truth of E.R.H. but
unconditionally the computation 1s of 0(n"+G). An additional reason
is that Odlyzko's proof for the 0(n175+e) upper bound on Shanks' algorithm
assumes the truth of E.R.H. One paradoxical aspect of Shanks' algorithm
is that primallty depends on E.R.H. but compositeness 1s proved

unconditionally since one can check whether the "factors" are factors.

In Adleman's factorization algorithm the situation 1s similar.
The unconditional bound for hls algorithm by Rumely (see [1]) 1s

0.4999

ofecd®gn)

Assuming that the density of Eulldean primes* 1s "small" (see [1],p.403)

it can be shown that Adleman's algorithm terminates 1n
O(log nc loflloglog n}

elementary operations.

+ A prime number p 1s called "Eulldean prime"
where PL Is a prime, for 1 < 1 <k, for some'mltfege: ip Pk + 1

-128-

Hence one can claim that the assumption for the density of
Euclidean primes Is "responsible” for the gap between the upper bounds
for T and F. Note that the correctness of Adleman's algorithm 1s
unconditional only the analysis of Its running time depends on assumptions.
It 1s not difficult to verify that C~(n) > P(n). Using the
algorithm for problem C one can obtain an O(n*+e) upper bound for
problem C£. The best known "primality testing" algorithms are due to
Miller [40], He gave an unconditional algorithm for problem P which
requires 0 (n”"7+e) elementary operations and one depending on the
truth of E.R.H. which requires O(Iog4n loglog n) elementary operations.
Both the correctness and the analysis of the conditional algorithm depend
on the assumption of E.R.H. Once again one can see the dramatic Influence
of E.R.H. on proving the bounds and speeding up the algorithms. Also
from the above one may suggest that the bound given for problem CY can
be Improved.
Also using the facts that Ol*(n,m) w ®(n,m) m #(nm) and
Ol(n,m) m ®(n,m)wl(nm) and the argument that the bound for problem
Is reasonable, one can suggest that the bounds for 01 and 01* proved

in section 8 are not weak.

-129-

10. APPLICATIONS

A. Factorization And Form Class Group

Shanks' algorithm for factorization makes use of the form class
group (see [47] and [30]); that is the group formed by the binary
quadratic forms (a,b,c) with determinant D = bz-ac, where D < 0 1s the
number given for factoring. In order to compute a complete factorization
of D, it is sufficient to compute generators for every cyclic subgroup
of the elementary 2-group of the form class group. In particular the
factors are given from the ambiguous forms, that is the binary forms

of order 2. An ambiguous binary quadratic form 1s of the form either
(a, a, ¢) or (a, b, a) or (a, o, c)

Therefore if one can compute an ambiguous form, then a factorization
of O either O m a(a-c) or D = (b-a)(b+a) or D > ac 1s obtained. Hence
one can use the algorithms described 1n the previous sections for

factorization and further for investigation of the form class group

B. Gable Theory

The algorithm for computing the basis of a group represented by a
set of generators can be used In the computation of algebraic functions
which are determined by the Galois group of the extension of the field
by the functions. For details see Ja' [32].

C. CRYPTOGRAPHY

Algorithm 23may be used for computing discrete logarithms (see
[44] and [35]). The same algorithm may have applications In the public

key cryptosystem Introduced by Olffle and Helmann In [14].

130

1. INTRODUCTION

In this section abelian subgroups of the symmetric group
represented by a set of generators are Investigated. In general
computing the order, the canonical structure, a set of defining
relations a basis et al for abstract abelian groups require exponential
time,but It will be shown that such computations 1n abelian permutation
groups require polynomial time of elementary operations In terms of the
number of symbols permuted by the group. Furst et al In [18] showed
that the computing of the order of a permutation group and membership
testing In a permutation group can be done 1n polynomial time.

In Section 2 an "elementary orbit" algorithm 1s presented;

It requires O(knlog n) elementary operations for computing the orbits
of a group G ¢ sn,which Is represented with k generators. Moreover
algorltnms computing the canonical and the complete structure
(consequently the order) of an abelian group G ¢ sn are given, doth
require 0(kn4lognloglog nj elementary operations, where k Is the number
of generators. Furst et al In [18] gave an algorithm computing the
order and a set of "strong generators” for a permutation group which
requires O(kn* + n6) elementary operations.

In Section 3 algorithms testing membership and Inclusion are
presented; their complexity Is 0O(kn4logn logiogn) elementary operations.
Furst's et al membership testing In a permutation group given In [18]
requires 0O(k n2 + nK) elementary operations.

In Section 4 the problem of computing the Intersection of two
abelian groups Is considered; 1t 1s an Important problem due to Its

links with graph isomorphism problems. Three algorithms for computing

131

the Intersection or the abelian groups F and G both subgroups of Sn
are given one algorithm for computing <h n G>when <F u G> 1s abelian
and the other two for computing <F n G> when <F u G> 1s non-abellan.
Ilhe time complexity of all the Intersection algorithms 1s of
O((k+m+n)n logn loglogn) elementary operations.

Finally In Section 5 several applications of the algorithms

described In previous sections are discussed.

-132-

A.Prelimlnarlaa

Let G be a permutation group, subgroup of the symmetric group Sn
which operates on the set In * {l,...,n}. A set Acln 1s called a
(Jcxed block of G 1f

A - {g(6):gtG, 6 c A).

Let gm c,c2 ... ck In G, where the c”"sare disjoint cycles and let rc In-
If rls a set of all points permuted by c”.V 1fc I, for some set IdIn
then gna f2icH called the fieAt/Uction of g to r . Note that 1f
oCAcln and g(«) t A then gA 1s not defined.

Let A be a fixed block of the permutation group G. Then

GA w' igA:g «G>
is called the conUctu&nt of G on A. Note that GA Is a group.

Let G ¢ Sn operating on | and r c | fl. Then

Gr w' {gr:gr Is well-defined and gc 6}
1s called a pAuido-oonAtltucnt of G on r. Note that G 1s a group.
A group GcSn 1s called tAjanAhUot. 1f the only fixed blocks of
G are the trivial fixed blocks * and In.
A minimal fixed block A of a group GcSn 1s called an
ofibit of G.
Let G be a permutation group operating on | C In< |If for each a*|

and for each non-trlvlal g& G, g(a)® a then G 1s called aemcaegofoa.

A semiregular and transitive group 1s called aeguloa.

-133-

PROPOSITIUN 1.1 (Mlelandt [52])

A transitive abelian group G c_Sn Is semiregular.
«

Proof
Let G operating on |I. Assume the existence of a non-trlvlal

g In G such that
g(a) «a for some a £ |
Then for every f In G follows that
g(f(a)) - f(g(a)) - f(a) (1.1)

Let Ao m (f(a):f ¢ G). Then A%‘(1s a fixed block and since G Is

transitive* follows
Aa - | (1.2
Hence from (1.1) and (1.2) follows that g m 1 contradicting the

non-triviality of g. O

PROPOSITION 1.2 (Wlelandt [52])

Suppose that G Is a regular abelian group on n symbols. Then
JGl - n
Proof

Let Aa = <g(a):g « G> for some a ¢ IR. Then Aa Is a fixed

block and since G is transitive follows that

-134-

A *Jn

Moreover

1V mid

because If f(a) m g(a) for some f and g in 6, then It follows that

(f-1g)(a) * a contradicting the semiregularity of G. O

PROPOSII ION 1.3 (Dixon [12], Exercise 2.41)

Suppose that G Is an abelian subgroup ot Sn. Then

IGl s 3n/3

Proof
If G 1s transitive, then |G «n s 3M3.
Let rlt...,rt be the orbits of Gand let ir*] =m for 1s 1st.

Then G acts transitively on orbits and hence

t Ti t kf/3
IGl s n |G'l s n kii 31 s 3n/4. O
1-1 1-1 1

-135-

2. THE COMPUTATION OP THE ORDER AND THE STRUCTURE OP AN ABELIAN

SUBGROUP OF THE SYMMETRIC GROUP

In this section tne problem of computing the order and the
structure of an abelian permutation group* given a set or generators,
Is Investigated, une can observe that the order of an abelian subgroup
of Sn can be as big as 33 and thu$ an application of algorithm 11.5.1.
iwhlch requires 0(3n/6) elementary operations) Is Impractical. One
may use, Furst's et al algorithm for computing the order 1n polynomial
time; but their method does not yield Information about the structure
of a group, when the group is abelian. Therefore an efficient algorithm
for computing the canonical structure and the complete structure of an
abelian group Is needed.

First the "elementary orbit algorithm” for computing the orbits
of one abelian group G ¢ SR Is considered. The main concept of the
algorithm Is demonstrated by the following proposition.

LEMVA 2.1.1 (See Wilelandt €523, p.4)
Suppose that G Is a permutation group. Two points a and 3

lie In the same orbit 1f and only If g¢g- g(a) for some gc G.

PROPOSITION 2.1.2

1s a subgroup of Sn (the c”'s are disjoint cycles). Let SAj denote
the set of points permuted by the cycle c”j and
r1* m Sy for some IntegersA and v

and

(2.1)

-136-

Then (1) rtr+1) > Hr) for some Integer r

(11) rir~.ris an orbit of G

Proof

)
(1)

o e

It 1s obvious.

First It will be shown that = where a Is the orbit of G

containing S\v. We shall use Induction.

For 1«1, we have r*"IlA < Assume that r~C A < Then let
r(1+1) . 1> Let ot*Stj. Since Sg< Intersects 1" » we have
that gT (0)4 for some Integer m and thus a<A o.e.d.

Now 1t will be shown that A”r . Let b<A and ael”. Then by lemma
2.1.1 we have that

9(a) * B fo™ some g"G («teTSAand & is an orbit)
Since g * gl ... g|J for some Integer 1411k ,we have that

b- gjl (g™ (e (gjk (a))...)
One can see that Y|(: - gjk (a)tr t Yk_i: * gjjjl (YK)*r
.............. e- gjl (y2)*T (by definition ofT),
Hence A0

ALGORITHM 2.1

INPUT: A set of generators {glt...,gk for the abelian subgroup

G of the symmetric group Sn

-137-

OUTPUT: All the orbits rt of G

t- 1

Let gj ™ Ci; o) wxe cvjj for 1-Si- k:

comment The c”j's are disjoint cycles of the generator gj, for I1£ j <k
S7j -Ko :a Is affected by c”) for 1£ 1< Vj, for I£ J <k;

comment Note that 1s the set of all points affected by the cycle

Sort S for 11 Vj, for 1< j<_Kk;
L(j) (1,...,Vj) for 1< j<. k;
comment Note that If t* L(j) for Some I+ j <k, then c” 1s the f-th
cycle of the generator g~. If 1s a cycle of g" and
*>fL(j), then c”j 1s called "used" cycle. A cycle c becomes
used", when the set of all points affected by c has been found to
be a subset of the currently computed orbit (named I*t, see below)
INDEX CoJl & (m,j) such that for 1<j <k, for every a« In;
comment The INDEXRx.jl 1s an array which yields the Indices of a
cycle (of the generator gj) which moves the point a.
Repeat
S mSXy for some L(v) = ;
Lw) « L(y)-U)
o WSk
comment The set S contains all points affected by the cycle c’y
and thus there exists an orbit rt which contains S. Note

that cXy becomes "used" and thus (X) 1s subtracted from L(u).

-138-

5. Repeat
a «- an element of S;
6. S* « {(vij): (vj) - INDEXCo0»d3 and v« L(j), for 1< 1 <k}
consent The set S* 1s the set of Indices (v,j) of the cycles cyj that
are not "used” and move a*

7. for each (v,j) In S* do

begin
8 Sesusyj- rt)
9 rt - r tosvji

comment The cycle cyj moves at least one point (the point o)
of the orbit rt and thus every point affected by cyj belongs
to rt. Moreover the points added to rt at step 9 are added
to S In order to pick up those not "used" cycles which move
the points of Syj - rt-
Also steps 8-9 are executed simultaneously; use "binary search"
for each a«cyj for testing whether or not a belongs to rt*
If atrt, then S becomes S\/(a> and lusart ° 1In rt in such a
way that rt remains sorted, "binary search" yields the
"correct position" of a in the sequence of (see £23, p. 113).
10. L(j)-L(j)- iv>;
comment Note that cyj became "used" at step 9
11. end
S ¢S -(o) ;
comment The set (a) 1s subtracted from S, since all cycles moving

«(are "used".

-138b-

As we did 1n 2.1.2 we choose S*S” -{1,2,3}. Hence Cjj becomes "used"
and L(l) m'{2,3,4}. Also the orbit Tj contains at least {1,2,3}.
Let us choose ot«l (after step 5). Then the set S* yields the Indices
of all not "used" cycles moving 1 (The computation of S* 1s done for
efficiency reasons via the arrays INDEX and L)
Here we have
S* « {(2,2), (5.3)}

since Cgg an* 33 move 1, which belongs to I
Now since c2? 8 (15) and ch3 - (132), we have that “contains at least
{1,2,3,5}. Also Cjj and Cg3 become "used” and thus L(2) = {1,3,4,5,6,7}
and L(3) * {1,2,3,4}. Moreover S becomes{2,3,5} , since we considered
all cycles moving 1 and we want to consider all cycles moving 5.
Note that for the computation of the orbit I\ 1s not necessary to consider
the cycles which move points belonging to s but the reason for
considering these cycles Is that since we find them, we can remove them
(from the array L) and thus the computation of the other orbits of the
groups will be more efficient.
Now choose a-2 (after step 5). Then we have that

s* - {(7.2)}
because c/2 moves 2. Note that Cg3 1s "used" (5i L(3)). Since 2 Is Inij
and c2 8 (26), Tj contains at Ieast'{1,2,3,5,6} . Then c72 becomes
"used" and L(2) w {1,3,4,5,6}. Also we have S m {3,5,6}.
Again choose a-3 (after step 5). Then we have that

S* = {(3,2)}
since ¢32 moves 3. Now c32 - (43), hence contains {1,2,3,4,5,6).
Also we have L(2) w {1,4,5,6} and S m {4,5,6}.

-138c

Similarity for o«4, the cycles c”j and c13 are removed (that is L(l) * {2,3}
and L(3) »’{2,3,4}) and Tj remaines unchanged. For ct*5,6 no change occurs.
From proposition 2.1.2 follows that Cj is an orbit of G. In a similar
way all other orbits of G are computed.
PROPOSITION 2.3

Algorithm 2.1 correctly computes the orbits rt for the abelian

2
group G &Sn 1n O(kn log n) elementary operations.

Proof
The correctness of the algorithm follows from proposition 2.1.2

and the comments of algorithm 2.1.

-139-

k
Step 1 requires O(£ £ |c., |log]c,,|) comparisons for
J-1 1

2
sorting comprising O(kn log n) elementary operations, since
E|cij|i n

and a comparison requires Ollog n) elementary operations.

Steps 2-3 merely require 0(nj operations for the construction
of the lists L and INDEX.

Step b requires U(k) elementary operations for computing
INDEX [a,j] for 1 sJ s k and k applications of “binary search" for
testing whether or not v ¢ L(J). Hence step 6 requires 0O(k Iogzn)
elementary operations, since |L{J) | s n.

Steps 9-10 requires |cu | applications of "binary search”
comprising 01 |ch [log]|rt]) co\r/r{parisons.

It 1s not difficult to see tnat s* passes through all cycles

which permute an element of the orbit. Hence loop 7-11 requires

01 E Jevillog]rt]log n) - O(k(|rt |1log|rt |[log n) elementary

operations.

Moreover one can see that all the symbols of rt pass through A and
thus loop 512 has at most Iltllterations.

Therefore loop 5-12 requires Olk]|rt |log|rt] log n ¢ k log]|rt |log n)
elementary operations.

Finally the algorithm requires

Oik log]|rtJlog n (£ |rt] + log nj) = O(kn log2n)

elementary operations. 0O

-140-

Algorithm 2.1 makes use of the data structure used 1n the

"dlsjoint-set algorithm™ (UNION-FIND algorithm) given In Aho et al

In [2} p.124; algorithm 2.1 1s not a straightforward application of
the "disjoint-set algorithm", since the first one makes use of UNION of
sets not necessarily disjoint (step 10) and the latter deals only with
UNION of disjoint sets. One can find data structures used 1ln a faster
version of the UNION-FInD algorithm given 1n [2], p.129, the use of
which will Improve the upper bound of the "elementary orbit algorithm™

by a factor of 0(10/n), with 0 < e < 1.

PROPOSITION 2 .4.
There exists an algorithm for computing the constituent or G
2
on each orbit of G 1In u(k n log nj elementary operations, given a set

of generators for G.

Proof

One may use algorithm 2.1 for computing the orbits rt, 1 st s A.
Then It 1s not difficult to see that 1n O(kn log n) elementary
operations one can compute gr* for eacn generator g of G for l*t~*A

by means of "binary search"; sort the iys and then test whether or

not a symbol a permuted by the cycle c”j of gj belongs to r~. Then

1 ;
< m?dar
with c”j such that a 1s permuted by c”j and a € 1~. Then

grl [] <g§<1---°tg[<1>. O

-141

ALGORITHM 2.5

INPUT An abelian group G subgroup of the symmetric group represented
by a set of generators <g™......... gk>

OUTPUT The canonical structure and the canonical basis for G.

begin
r
1. compute a generating set for G tor each orbit rt using the
algorithm of 1l1l1.z.1;
r
2. compute a complete basis for G for every t using algorithm 11.5.1;
r-ng ;
t
3. compute the complete structure or G using algorithm 11.7.4;

comment The group G 1s a subgroup of the group r whose the

structure 1s known (if ge G, then g «ngrt* DGrt - r)
- 1

t
end. O

PROPOSITION 2.6
Algorithm 2.5 correctly computes the complete structure of G

In O(k(log]r]}3 M(log]|r]) + kn log2n + n3*21og3n) elementary operations.

Proof

The correctness of the algorithm depends on the correctness of
algorithms 111.2.1» 11.5.1 and 11.7.4 already proved.

Step 1 requires U(kn Iogonj elementary operation by Proposition
111.2.3.

Step 2 requires O(E|rt |* 21og3|rt|(loglrt |* G) elementary
*

t r
operations by Proposition 5.2 and the fact that |G | = |rt]

-142-

(Proposition 1.2). Since a group operation requires 0(n) elementary

operations and £ |rt|* n,

3
Step 3 requires O(k (log]r]) M(log]r])) elementary operations
by Proposition 11.7.5.
The result follows from the above analysis. 0O
COROLLARY 2.7
Algorithm 2.5 correctly computes the complete structure of

A
the abelian group G ¢ 5n 1n O(kn logloglogn) elementary operations.

Proof

By Proposition 111.1.3 follows that

Therefore the result follows from Proposition 2.6. O

Comparing algorithm 2.5 and the algorithm for computing the
order of a permutation group given In [is] one can observe the following:
(1) Furst's et al algorithm does not yield agy Information about tne
complete structure of the group* In the case of abelian groups.
(1) Furst's et al algorithm requires O(kn2 + n6) elementary operations
for computing the order. Under the reasonable assumption that the number
of generators k m O(log |G]) m O0(n) (see C18> Hoffman [24]* Theorem 5)*
the upper bound on the time complexity of algorithm 2.5 is better at
least by a factor O(n) than the upper bound on the time complexity of

Furst's et al algorithm.

-143-

(111) Furst's et al algorithm depends on the number of symbols
permuted* since It computes all the cosets Gj for 1s1sn, where
1s the subgroup G which contains permutations fixing the symbols
il,...,1}. Algorithm 2.5 mainly depends on the number of orbits
of the group as It 1s shown by Proposition 2.6. Therefore the
computation of the order of groups whose orbits are large, requires
time of O(k(log n | B+e) elementary operations which can be much
better than the \}vors:-case upper bound of 0(k n +e) elementary

operations. For example with |r,] *j, 171 mj and mg,

algorithm 2.5 requires 0O(k(1og ¢ knlog n + n3"2 log*n) =
0(kn log n + n372Iog4n) elementary operations but the time required

by Furst's et al algorithm In this case 1s a polynomial of degree 6.

-144-

3. MEMBERSHP-INCLUSION TESTING AND COMPUTE» THE UNION OF

ABELIAN GROUPS

A. MEMBERSHIP TESTING

Testing whether or not a permutation h belongs to an abelian group
G =<hl.... hk> subgroup of the symmetric group Sn can be done In poly-

nomial time ln terms of n in the following way:

-145

6. leth* n Y?J”J;

I»J
7. letg * n yjfd for 1< p<v;
u 1J 1

comment The expression of gn's is done in a similar way with the
computation of h in terms of Yi<'s* _
8. Let S be the linear Oiophantine system: Xél b/’\: * zijlyijl vix
over Z Gl*
9. If S has a solution then
comment Testing for solvability of s can be done by means of
algorithm 1.6.6.
return "h belongs to 6"
else

return "h does not belong to G"

end. O

PROPOSITION 3.2
Algorithm 3.1 correctly decides whether or not h belongs to G

4
in 0(k n logn loglog n) elementary operations

Proof

The system S of step 8 follows from the equations

-146-

aL

h n yis
i.j is
itu)

for 1< x<v
mUJ Y

which Implies that

I b<5>x

x*I 1J x* n .“is
no(yQd) i.J Y1)
i.j

Therefore it is not difficult to show the correctness of the algorithm.
Step 1 requires 0O(kn Iogzn) elementary operations by Proposition
2.3.
Step 2 requires t applications of algorithm 11.5.1 and thus
using Propositions 11.5.2 and 111.1.2 follows that 1t requires at most
0(k E Iri* Iog4n) = 0(kn*|og4n) group operations comprising 0(k n3"2|og4n)
i -
elementary operations.

Step 3 requires 0O(k nd logn loglog n) elementary operations by

Proposition 2.6. The computation of an expression of h/ n 1n terms
of yix's requires 0(" ix1*) = 0(|rx|.]) group operation for using the

"baby-giant step"” strategy. Hence the expression of h In terms of y?j'™*

requires (E |r.]*n) m 0(n3/2) elementary operations, using that a
X1 x

group operation requires O(n) elementary operations.
The analysis of step 7 Is similar to step 4 and thus step 7

requires 0(k n3"2) elementary operations.

-147-

By Proposition 1.6.6 one can decide about the solvability of
the system S 1n0((v+n)n2 M(log |G])) = O((n+log]G|)nzM(log|G])) elementary
operations, using the fact that v < log |G|, since the g”s form a basis.
Therefore by Proposition 1.3, |G| < 3n/r2, therefore follows that step 8

requires 0(n4 logn loglogn) elementary operations. o]

COROLLARY 3.3

Suppose that h Is an element of the abelian group
G *<g...... 9> E sn* There exists an algorithm for computing an
expression of h 1n terms of the generators of G 1n O(kn4logn loglog n)

elementary operations.

Proof

One can solve the system of step 8 of algorithm 3.1
using Hu's algorithm of Proposition 1.6.6 and thus to compute the

expression

B. INCLUSION TESTING

Testing whether or not G - <g1,...,g k> Is a subgroup of
F - <flt...,fne, where F and G are abelian subgroups of the symmetric group,
can be done by testing whether or not g* for 14 14 « belong to F using
algorithm 3.1; this computation requires 0((k-Hn)n4 logn loglog n) elementary

operations by Proposition 3.2«

148

In the case of multiple membership testing one need not
repeat algorithm 3.1 for all elements for testing. A "multiple member-
ship testing" algorithm can be formulated as follows:
() Test the first element for membership using algorithm 3.1. From

an application of algorithm 3.1 one can obtain the following Information:

t
(1) A complete basis for r * n, «y .i..... yc *»
j«l sjJ

(2) A complete basis for G m«g j* ...tgy»

(3) A triangular matrix T such that
T(x,y) - [aij] over Z|Q]

which yields a particular solution of the system S at step 9 of algorithm
3.1.

(I'l) For each of the remaining elements for testing compute an expression
1n terms of Yjj's* This can be done as the computation of h In step 6
and requires 0(n3"2) elementary operations. If one of these elements
falls to be expressed In terms of then 1t 1s not a member of the
group G.

(rr) Let hm n_ y<™ be the expression of one of the elements for

1

testing. Then 1t suffices to prove that

T(x»y) - [a”]j] over Z|Q]

Is solvable 1n order to establish membership of h 1In G. This can be

done 1n 0(n2 M(log |G])) - 0(n3 logn loglogn) elementary operations.

Using the above "multiple membership testing” algorithm, It 1s
not difficult to show that the Inclusion testing mentioned In the
beginning of this subsection can be done In 0((kn4 + rm3) logn loglogn)
elementary operations.

Furst et al In [18] gave an 0(kn2 + n6) elementary operations
algorithm for membership testing In a permutation group; any additional
membership testing requires merely O(n) elementary operations. It 1s
difficult to compare, Furst's et al and the above "multiple membership
testing” algorithms, since their input is different. But the upper bound
proved In [18] seems superior to our bound In terms of worst-case
complexity. It may be practical to use the method described above for
abelian groups, since Its complexity depends on the orbits and this may
give better running times that Furst's et al algorithm (see discussion

below Proposition 2.7 paragraph (i1l))

C. THE COMPUTATION OF THE STRUCTURE OF UNION OF GROUPS

In the case which the union of two abelian groups F and G
subgroups of SR Is an abelian group, the computation of the structure
of <F u G> can be done merely by means of algorithm 2.5 applied on the
union of the generating sets F and G. This computation requires
0(k+m)n4 logn loglog n) elementary operations by Proposition 2.7, where
k and m are the cardinality numbers of the generating sets of F and G

respectively.

-150-

4 THE COMPUTATION OP THE SRUCTURE OP THE MTERSECTION
OP ABELIAN GROUPS

The problem of computing the Intersection of two abelian
subgroups of the symmetric group ls considered ln this section.

The problem Is Investigated 1n two separate cases (1) when the union
of the groups s an abelian group and (11) when the union of the
group does not respect commutativity.

In order to be able to separate the above two cases one needs
an algorithm for testing the group <F u G> for commutativity. If
F=x<flt...,fnrp and G = <g].,...,g k> are abelian subgroups of Sn, then
by testing whether or not f* g~ * gAM™ for l<l<mand 1< j <Kk
one can decide about the commutativity of <F u G> in O(km) group

operations comprising O(kmn) elementary operations.

A. CASE OF <F U G> ABELIAN

An algorithm for computing the structure of <F n G>, given
generating sets for the abelian groups F and G and the fact that <F u &
1s abelian, 1s presented below. An outline of the algorithm Is the
following; 1t computes the structure of <F u G and a generating set
for <FfIG>, then since <FRG>C <F U G> and <F U G> has a known structure
one can apply algorithm 11.7.4 In order to compute the structure of

<F n g>.

-151-

ALGORITHM 4.1

INPUT : The generating sets {fj........ fre and {g”......... gk>
for the abelian group F and G respectively, where
F<S.GcS, and the fact that <F u &
OUTPUT: The order and a complete basis for the abelian
group <F n G>.
begin
1. compute a basis «h 1f...,h » for F U G using algorithm 2.5;
2. d« |<F U G>|;

al. a2
3. compute a”'s and 7 » ... hu for 1< 1< m,

Y
comment This can be done by means of the algorithm of Corollary 3.3.
m
4. Let S be the linear Diophantlne system: | m E |1

J-1 1"¢1 ™
for 1< i <v over

5. solve S using the algorithm of Proposition 1.6.6;
let (x,z,y) - K. (tj,...,ty) be the set of all solutions of Si

comment The matrix K 1s of dimension (m+k*1) x v.

7. !ﬁ «- 1|_<1 f’i for 1< j < v;

8. compute the complete structure of <£j,...,6y> using algorithm 11.7.4
comment Now <F n G> - <61».. .,6n> Is subgroup of <F u G> whose
structure ls known,

end. a

PROPOSITION 4.2
Algorithm 4.1 correctly computes the order and complete structure

of the group <F n G>.

Proof

The system S of step 4 1s deduced from the equations

X1 xm z, z.
fl = fm 91 =ex ok
f,l - h?ljl hzy{ for 1< 1<

gj » h~1J ... hj~ for 1<j <p

which Implies that
m

ot 9 1

Moreover 1f the set of all solutions of the system S Is that of step 6,
then It follows that
v m kdaed w ok Kk .t

i G Yy Y T Gy 97

equivalent to

v t. v v k. A t.
.n 6,J- n(.n g,>1+tn J
-1 j-uoi-i 1
which Implies that {6j »....6y} Is a generating set for <F n G>.

Hence the correctness of the algorithm follows. a

-153-

PROPOSITION 4.3
Algorithm 4.1 requires 0((m+k)n4 log n loglog n) elementary

operations for the computation of the complete structure of <F n &

Proof

Step 1-2 requires 0O((m+k)n4 log n loglog n) elementary operations
by Proposition 2.7.

Step 3 requires 0((m+k)n4 log n loglog n) elementary operations
for expressing the fA's and gj's in terms of the basis elements of G by
Proposition 3.3.

Step 5 requires O(m+k)n3 log n loglog n) elementary operations by
Proposition 1.6.5 and the fact that u < m+k

Step 7 requires O(log |F]) group operations for applying the
"power algorithm"” comprising 0(n2) elementary operations* since
IF] < 3n"2 by Proposition 1.3.

Moreover one can observe that
v < nmk

and thus by Proposition 11.7.5, step 6 requires 0O(m+k)n4 logn loglog n)

elementary operations. a

B. THE CASE OF <F U 6> NON-ABELIAN
Given generating sets for F and G abelian subgroups of the

symmetric group, where the union forms a non-abellan group, two algorithms

for computing the structure of their Intersection are presented here.

-154-

An outline of the first algorithm Is the following:, one can
compute bases for r and a » the groups formed by the direct product of
the FFi 's and éi 's for each orbit ri and At of the group F and G
respectively. Then using the reduction described 1n the Proposition
4.5 below, on r and a. one can compute groups r* 5rand 4*54 such
that <r* U a*>1s abelian group and <r* n a*> * <r n a>* Moreover
groups f*» <Fn (r na)>, f*=<f u (rna)>. G =<g n(f n (r na)>
and G1- GU (F n (r (14) » are abelian. Hence one can use algorithm
4.1 for computing the structure of <r n a>. since <r* u a*> is abelian,
the structure of F*, since F* 1s abelian and the structure of G*, since

Gl Is abelian. It Is obvious that G*»<F n G>.

PROPOSITION 4.5

Suppose that and a...... A are the orbits of the groups

n *
FcS and GesS,, and let r? <F for1<y1<x. A? <=Ga for 1< 1< x

r« rf X... Xrj and a* A] * eee «

it rfmnzfuE)” > AT mA N Zal u ("),

X
1-
(1) The group <rf* U Af*> Is abelian

(I <r*na*>«<In a>

Proof

(1) Letyy € rf* and € Af*. Assume that the restriction Cj of Yj

Ai
on Aj does not belong to (rf)

the

-155-

Then there is a cycle c¢ of Yj which permutes some points
{6j,....6 £} of Ly and some points {y]..**.y(} of Then it is
not difficult to see that c does not commute with the elements of
(A*)r’1 and thus Yj does not commute with the elements of (Af) . Hence

p
Y1t Z(rf U (A]) 1) a contradiction.

- Al
Therefore Yj € (r*) > which Implies Yj commutes with 6j,

since € z(a™ U (ry)Al).

(ii) Let o €<r* n A*>. Then it is obvious that o € <r n a>. Hence

I*nha>c In a> (4.1)

Now let a € <r n A>. Then

a *Yj] e Yx for some y*» €ri, 1< 1< X

Let 6 € (A])ri. Then there exists a 6 € Af such that

5 - 66
It Is obvious that

a6 m 6a
which Implies that

Yi wj W m66YjD
from which follows that

m oy"

-156-

. r.
Therefore y” « Z(I] u(a]) and thus o « I*

Moreover o - 61 6m for some 6<_4L C AT* 1s1sm Similarly
1t can be shown that 6" C Z(a" u (rj)), which Implies 4 C A*,

Therefore a ¢ < n A*> and thus

< n A> c<r* n A (4.2)

The result follows from (4.1) and (4.2). O

ALGORITHM 4.6
INPUT : Generating sets for the abelian groups F and G subgroups
of the symmetric group with <F u G non-abellan
OUTPUT; The complete structure and a complete basis for the
Intersection group <F n G>
begin r
1. compute a generating set for F for each orbit IN\. 1 s 1s A of F;
2. compute a generating set for GA’ for each orbit A» 1s 1sy of G;
3. for 1 * 1to 1 do
begin

4. for each Aj such that Aj nrl1 m 0do

comment The computation of the centre and the Intersection
at the above two steps 1s done by testing each element
of F1(GJ) whether or not 1t satisfies the required
property.

7. end.

-157-

8. end.
r*oFr!<x... XI'PA;
Al A
A* « G X ... XxG

9. compute a complete basis for <I* n a*> using algorithm 4.1;
comment The group <r* u A*> Is abelian.
10. compute a complete basis for <F n r* n A*> using algorithm 4.1;
comment The group <Fu(r* n A*)> 1s abelian.
11. compute the complete structure of <6 n F n r* n A*> using
algorithm 4.1;
comment The group <G u (F n r* n A*)> 1s abelian. Moreover the
group <G nF nr* nA*> * <F n G>

end. O

PROPOSITION 4.7
Algorithm 4.6 correctly computes the canonical structure

of <F n G> 1n O((m+k+n)n4 logn loglog n) elementary operations.

Proof

The fact that I u A* is abelian follows from the construction
of r* and A* and Proposition 4.5. Therefore it Is not difficult to
see the correctness of the algorithm.

2

Steps1-2 require O((k+m)n log n) elementary operations by

Proposition 2.1.
. ri Aj. Ti .
The computation of all elements of F and (G J) requires

OdTjl logn) elementary operations and 0(1"1 |JAj | logn) elementary

operations respectively. Moreover the computation of the centre and the

-158-

Intersection at step 5 requires O(r*] |Aj | log n) elementary operations for

testing whether or not each element of F permutes with the

N N
elements of (G }) 1. Similarly step 6 requires the same time.
Therefore loop 3-7 requires at most

X p
o £ |Tf] (£ JAjl)log n) - O(n log n)
1-1 j-1 J

elementary operations.

Using the fact that the generating sets of r* and G* 1s of
cardinality at most 0(n) and Proposition 4.2. step 9 requires
0(n51ogn loglog n) elementary operations.

Step 10 requires O(k+n)n4 log n loglog n) elementary operations
by Proposition 4.2.

Step 11 requires 0(m+n)nO log n loglog n) elementary operations
by Proposition 4.2.

The proposition follows from the above analysis. O

The skeleton of the second algorithm Is similar to the first
one; Its main scope 1s the computation of two groups whose Intersection
contains the required Intersection and their union Is abelian. The
computation of these two groups 1s done by means of fixed blocks of

the required Intersection group computed with the following algorithm.

ALGORITHM 4.8
INPUT : A set of generators {fj..... N} oand {gA....... 0., for the

abelian groups F and G subgroups of Sn.

-159-

OUTPUT : A set of disjoint fixed blocks e1,...,4V for the group

<F n G> such that I, » u N n for some

Integers jj and for all 1 s1s v, where Tj's are the
orbits of F and Aj's are the orbits of G.
begin

1. compute the orbits r£»...,r~ of the group F using algorithm 2.1;

2. compute the orbits of the group G using algorithm 2.1;
3. L(j) «1: J« for 1sJ syj M«O» § 0 for 1s1sw,
4. for 1« 1to A do

begin

5* SL(j) * SL(j) u fOr every J 1n r1)
6. HeHu PDAFAL()) N
Skei for 1 sksy;

Let $1....... $v be the elements of M,

PROPOSITION 4.9
Algorithm 4.8 correctly computes the set of disjoint fixed

2
blocks of <F n & 1n O((k+m)n log n) elementary operations.

Proof

It 1s obvious that # n A® for some Integer J1 and

for all 1s 1 s n.

-160-

Now let a « 1andgC<FnG>. Sinceacrﬁl-aeA, It

follows that g(a) e rjll and g(a) e A*l. Therefore g(a) e +1 and
thus » Is a fixed block of <F n G> .

Steps 1-2 require O((k-Hn)n log n) elementary operations by
Proposition 4.2.

u
Step 3 requires 1£1 |A]:| - n elementary operations.

Step 5 requires O(]r™]) elementary operations for computing
L(j) for every j e and for computing the Sj's. Step 6 merely
requires O(]r™]) elementary operations. Therefore loop 4-7 requires

0(£(|r<|) - O(n) elementary operations. U]
1-1 1

PROPOSITION 4.10
Suppose that I~,~ and ¢ *...«a are the orbits of the
abelian grqups F and G subgroups of the symmetric group. Let
X r‘i X T.

r- nrfFladAa=- 1t c*. 1f4d. .. are the fixed blocks of
1-1 1-1 1 \

the group <F n G> defined 1n algorithm 4.8« then

<FnGc<r" nA>

where

' = 3 Fjand a' - A , with
1A K
ri

FA-<g:gcF' and g* 1s well defined for 1ijiv>

Aj
and Gl <g : gl 6 and g J 1$ well defined for 1 s j s n>.

161

Proof

rl

Let he F n 6. Then there exists y*» « F for 1 s 1s X and

L ¢cG forl1ls 11y, such that

_Yi eee YX * B4 =6

Moreover h J 1s well-defined for 1 s j s v and

< ¢h .
for 1sj s v

where y*» Jfor 1s 1s\ and 1sj s v s well-defined, since
crk for some kj and » nTj *(for every 1 + kj.

J

Therefore for 1s 1 s A and thus h e r'.

Similarly 1t can be shown that 6j e 6 for 1 s 1 sy and thus
h« Axe

Hence it follows that h « r* n A" O

PROPOSITION 4.11

Let r1 and A* be as In Proposition 4.8,

0J-<F’J nG‘J> and 4 m v

Then (1) the groups <I" u &> and <A' u &> are abelian

(11) The following holds

<F n6>o0cr' nA" n e

-162-

Proof
(1) LetacT' witha» fj ... f* for « F], 1 s 1 sAand 3 « 4 with
6 * 0j ... ev for e * 1s1sv. From the definition of Fj 1t

follows that

4i 4» 4\W
fi" f1l fl *.. f1l for 1s 1 s A.

4 =« 1
It 1s obvious that fj J connites with ek for every 1,j and kJr j-

4<
Also f* J connites with 0j. since Oj « FJ and fj J 1s either 1 or

$4 rj 4j

<
J€((F)JmF . Hence a and 3 commute and thus <r‘ u 4> 1s abelian.

Similarly It can be shown that <A* u 4> Is abelian.

(I1) LetacFnG. Then e F~ and e GN. Therefore
..) $i 4o $u

alJe). Sinceaaa a ...a , 1t follows that a e 4«
By Proposition 4.10, <F u G>£<r' n A'™>, thusa e r* nA".

The proposition follows from above. O

REMARK

Since <r* ud>and a~ U 4) are abelian, one can compute
< n4>and (a1 n 4 using algorithm 4.1, Moreover one can compute
<r' nd) n @ nd>mQ' nazn $UsIng algorithm 4.1, since
<r' n4) u @ n4>1s abelian, [

163

ALGORITHM 4.12
INPUT : Generating sets and {gl1,...,9 k) for the abelian

groups F and G subgroups of Sn* with <F u G> non-abellan

OUTPUT: The canonical basis for <F n &

begin
1. compute using algorithm 4.8;
2. compute F~....,F and Gj......... G,

comnent This 1s done by direct computation.

T FA N eee N FAj
KOG X v * G
3. compute ... > rk ¢j aa

comment This 1s done by direct computation of (F) n (G #) =

with crk and $j c
J

4. compute a basis fOr r' n 9 using algorithm 4.1;
comnent The group ' uf 1s abelian.
5. compute a basis for A' n & using algorithm 4.1;
comment The group A* u 4 1s abelian.
6. compute a basis for Mna n# using algorithm 4.1;
comment The group (A* n e) u (I” n 4) 1s abelian
7. compute a basis for FnT1n A" n 4 using algorithm 4.1;
comnent The group F u (I" n A' n 4) Is abelian
8. compute a canonical basis for 6 u Fnr* n A' n 4) 1s abelian and

GnFnT'nA'" n+- Fn8

-164-

PROPOSITION 4.13
Algorithm 4.12 correctly computes the canonical structure of

<F n G> 1n O(k+m+n)ndlogn loglog n) elementary operations.

Proof

The correctness of the algorithm follows from Proposition 4.10,
411 and 4.2.

Step 1 requires 0O(kn log2n) elementary operations by Proposition
4.9. The computation of Fi requires O(]ri |2) elementary operations for

computing all elements of F ~ and O(]r.Jlog(E <pj)) *O0(] | log n)

elementary operations for testing each of them whether or not Its
restriction to $ for 1< s < y 1s a permutation. Therefore step 2

requires 0(1*<j | rd2) * 0(n2) elementary operations for computing the

U 2
F.l and similarly 0(1)51 El’\|) m 0(n) elementary operations for computing

the Gj's.
S Qj
The computation of (F 'J) and (G J) for 1< j < v requires
O (1] 2 +]|A# |2) elementary operations; one can show that
] i
a* - (F k3)i® n (G using the fact that (F ~j) ~ + 1 and

(G j) J using the fact that (Fr|cdJ)*J i land (G~)*J i 1 for some
kj and only, since © intersects just one orbit of F and one orbit of
G. Therefore the computation of the <fr|'s can be done by sorting the
elements of (F* ")~ (they are at most |+j]) and testing for all g In
(GAMN (the are at most | tj) whether or not g belongs to (F kl)~.

113

X v
Therefore one can compute 4 In O(E [r4] E IA<| ¢ E |$J1log]|$i |logn)
2 11 1 11 1 j-1 J

m O(n") elementary operations.

-166-

5. APPLICATIONS

A. Group Thoory

The subsection deals with a negative result about applications
of the algorithms for permutation groups on abstract groups. The gap
between the upper bound of O(] G | ~+e) on the time required for
computations (like order, canonical structure of a group) in abstract
abelian groups represented by a set of generators and the upper bound
of O(logc |G]) for some constant on the time required for similar
computations in abelian permutation groups is far too big. As a bridge
between permutation groups and abstract groups is Cayley's theorem (see
Hall [22]) saying that every group is isomorphic to a permutation group.
It will be shown that given a set of generators for a group G, the time
required by an optimal algorithm for computing the isomorphic image of G
Into a permutation group 1s n(]G|). Moreover, Cayley's construction
is shown to be optimal within a polynomial factor.

Suppose that G = <g> cyclic elementary p-group for p prime. Then
there exists a permutation w such that <ir> = G. Then the order of ir is
IGI - p which Implies that it permutes at least |G| symbols. Therefore
an optimal algorithm for computing an isomorphic permutation group
to G requires fl(]G|) elementary operations 1n the worst-case.

Moreover Cayley's construction of the Isomorphic group requires
IGl elementary operations, given G m <g”,...,gjc>,The construction 1s
the following: Define a permutation rg” for 1< 1< n acting on {g:g € &

such that rg”(g) m gg® vg € G. Then 1t 1s not difficult to show that

167-

It 1s not difficult to see that the computation of rg requires 0(|G])
and then the isomorphic image of G requires O(k|G|£) elementary operations.
Assuming that kw ~ m O(logc |G]) for some constant ¢ > 0, Cayley's method
1s optimal within a factor of 0(logc |G]).

Moreover 1n the case which G 1s abelian one can construct a
complete basis «bj,...,bm for 6 1n O(|G]1*27eC) elementary operations.
If ¢ are disjoint cycles permuting elements 1n {1 ,...,|G|}land c. 1s of

length |b* for 1< 1< n, then

NCli...>c™M w G.

This computation requires O(]G|) elementary operations and thus 1s
optimal.

Therefore one can conclude that the representation of the group
as permutation groups 1s powerful for computing the order of the group
but the computation of an Isomorphic permutation group to a given

abstract group is intractable.

B. Graph Theory

The following two problems are polynomial time equivalent:
Group Intersection problem: Given two permutation groups, subgroups of
the symmetric group Sn, compute a generating set for their Intersection.
Graph Isomorphism Problem: Given two graphs determine whether or not
they are Isomorphic and 1f so, construct an Isomorphic from the one to
another.

There Is no known polynomial time algorithm for both of the problems
mentioned above. Hoffman In [24] suggests that their complexity lies

between P and NP and that they do not seem to be candidates of the

-167-

It 1s not difficult to see that the computation of requires 0(]G])
and then the Isomorphic Image of G requires O(k|G|€) elementary operations.
Assuming that km g m O(logc |G]) for some constant ¢ > 0, Cayley's method
1s optimal within a factor of O(logc|G]).

Moreover 1n the case which G 1s abelian one can construct a
complete basis «b 1t...,bm for G 1n 0(]G|”~2+eC) elementary operations.
If ¢~ are disjoint cycles permuting elements 1n {1 ,...,]|G]>and c* 1s of

length |b* for 1< 1< n, then
<ch,. ««|C"™ w G.

This computation requires 0(]G|) elementary operations and thus 1s
optimal.

Therefore one can conclude that the representation of the group
as permutation groups Is powerful for computing the order of the group
but the computation of an Isomorphic permutation group to a given

abstract group 1s Intractable.

B. Graph Theory

The following two problems are polynomial time equivalent:
Group Intersection problem: Given two permutation groups, subgroups of
the symmetric group Sn, compute a generating set for their Intersection.
Graph Isomorphism Problem: Given two graphs determine whether or not
they are Isomorphic and 1f so, construct an Isomorphic from the one to
another.

There 1s no known polynomial time algorithm for both of the problems
mentioned above. Hoffman In [24] suggests that their complexity lies

between P and NP and that they do not seem to be candidates of the

NP-complete class of problems (for definitions of P, NP and NP-complete,
see Aho et al. [2]).

The graph isomorphism problem has been considered under constraints
e.g. the graph Is of bounded valence (see Luks [38]). The algorithms
described in the previous sections of this chapter have no direct
application on the graph Isomorphism; they (algorithm 4.12.?) may help
for the solution of the graph isomorphism problem under the constraint

that the automorphism group of the graph is isomorphic.

C. Chemistry

It 1s well-known the connection of the representation of the
molecules and the symmetric group (see [3]). Many of these
representations form an abelian group (see [11], e.g. translation group).
The computation of the structure of these groups aids to the computation

of the orbitals of the atoms (see [3]).

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

169

REFERENCES

Adleman, L.M. "On distinguishing prime numbers from composite
numbers” 21st Annual IEEE Symposium on Foundations of Computer
Science (1980).

Aho .Hopcroft,Ullman, "The Design and Analysis of Computer
Algorithms" Addison-Uesley (1974)

Altmann, S.L., "Induced representations in crystals and molecules"
Academic Press (1977)

Apostol, T.M., "Introduction to Analytic Number Theory" Springer-
Verlag (1976).

Bradley, G.H., "Algorithms for Hermlte and Smith Normal Matrices
and linear Dlophantlne equations" Maths of Comp, v.25, 116 (1971).
Burgess, D.A., "The distribution of quadratic residues and non-
residues”, Mathematlca 4 (1957), pp. 106-112.

Cassels, J.W.S., "An Introduction to the geometry of numbers"
Springer-Verlag (1959)

Chou, T.J., Coll1lns, G.E., "Algorithms for the solution of systems
of linear dlophantlne equations" SIAM J. Computing 11 (1982)

Cook, S.A., "The complexity of theorem-proving procedures" Proc. 3rd
ACM Symp. on Th. of Comp. (1971) pp. 151-158.

Coppersmith, D., Winograd G., "On the asymptotic complexity of
matrix multiplications” In 22-nd Annual symposium on FOCS (1981).
Cotton, F.A., "Chemical Applications of Group Theory" John Wiley
(1963).

Dixon, J.D., "Problems In Group Theory " Dover, New York (1973)

Dixon, J.D., "Factorization and Primallty Tests" (to appear)

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

-170-

D1ffle, W., Helman, M., "New directions In cryptography" IEEE
Trans. Inform. Theory IT-221 6 (Nov 1976), 644-654.

Floyd, R.W., "Algorithm 245 : treesort 3" Corm ACM 7:12, p. 701.
Frumkin, M.A., Polynomial time algorithms 1n the theory of
linear dlophantlne equations” M. Karplnskl ed., Fundamentals on
Computation Theory, Springer Lecture Notes 1In CS 56 (1977), pp. 386-
392.

Frumkin, M.A., "An application of modular arithmetic to the
construction of algorithms for solving systems of linear equations”
Soviet Math. Doxl. Vol. 17 (1976) No. 4.

Furst, M., Hopcroft, J., Luks, E., "Polynomial time algorithms
for permutation groups” 1n 21st Annual Symposium on FOCS (1980)
pp. 36-41.

Gantmacher, F.R.,"Matrix Theory" Vol. I, Chelsea (1960)

Garey, M.R., Johnson, "Computers and IntracrablUty - A Guide to
the Theory of NP-completeness” W.H. Freeman, San Francisco (1979).
Gauss, C.F.,"D1squsltlones Arithmeticae? English transi. Yale
Unlv. Press, (1966).

Hall, M.Jr, "The theory of Groups"” McMillan New York (1959)
Hermlte, C.,"Sur 1'Introduction des variables continus dans la
théorie des no bres? J.R. Augeur. Math., 41 (1851), pp. 191-216.
Hoffman, C.M., "Group Theoretic Algorithms and Graph Isomorphism"
Springer Verlag (1982).

Hu, T.C., "Integer Programming and Network Flows" Addlson-Wesley
(1969).

IHopoulos C.S. "Composition and Characters of flnary quadratic

forms" Warwick Unlv., Theory of Comp. Rep. 37 (1981).

-171-

[273 llipoulos, C.S., "Worst-case complexity bounds on Algorithms for
computing the canonical structure of Infinite abelian groups and
solving systems of linear Dlophantlne equations” Warwick Unlv.
Theory of Computation Rep. 50 (1983).

[28] IHlopoulos, C.S., "Worst-case complexity bounds on algorithms for
computing the canonical structure of finite abelian groups and
the Hermite and Smith normal forms of an Integer matrix" 1n
Theory of Computation, Warwick Unlv. Rep. 49, (1983).

[29] Illopoulos, C.S., "On the computation of the structure of an
abelian group represented by a set of defining relations” Theory
of Computation, Warwick Unlv. Rep. 40 (revised) (1982).

[30] MHlopoulos, C.S., "Algorithms 1n the theory of integral binary
quadratic forms" M.Sc. Thesis, Warwick Unlv. (1981).

[31] Illopoulos, C.S., "Analysis of an Algorithm for composition of
binary quadratic forms" J. Algorithms 3, 157-159 (1982).

[32] JallJal, J., "Computation of Algebraic Functions” 1n 22nd Annual
Symposium on FOCS (1981).

[33] Kannan,R., Backem, A., "Polynomial algorithms for computing the
Smith and Hermite normal forms of an Integer matrix” SIAM J.
Computing, 8 (1979) pp. 499-507.

[34] Klyuyen, V.V., Kokovkin-Shchebak, N.l., "On the minimization of the
number of arithmetic operations for the solution of linear Algebraic
Systems of equations" (translated by G.J. Tee) Stanford Unlv.
Rep. 24 (1965).

[35] Knuth, D.E., "Seminumerical Algorithms” Addison-Wesley 19609.

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

-172-

Lagarias, J.C., and Odlyzko, A.M., "Effective versions of the
Chebotarev density theorem" 1n Algebraic Number Fields (A. Frdéhlich,
Ed.) Proc. 1973 Durham Symposium, Academic Press (1974).

Lancaster, P., "Theory of Matrices"”, Academic Press (1969).

Luks, E., "Isomorphism of Bounded Valence can be tested 1n
Polynomial Time" Proc. In 21st IEEE symp. on FOCS (1980) pp. 42-49.
McClellan, M.T., "The exact solutions of systems of linear Equations
with Polynomial Coefficients"” J. of ACM V.20, 4 (1973), pp.563-588.
Miller, G.L., "Rlemann's Hypothesis and tests for primallty"

J. Comput. System Scl. (13) (1976) 300-317.

Montgomery, H.L., "Topics 1n Multiplicative Number Theory" Lecture
Notes 1n Math. 227, Springer, Berlin (1971).

Newman, M., "Integral Matrices"” Academic Press New York (1972).
Papadimiltriou, C.H., Steiglltz, K., "Complnatorlal Optlmazatlon:
Algorithms and Complexity" Prentice-Hall (1982).

Sattler, J., Schnorr, C.P., "Generating random walks In groups

(to appear).

Schoénhage, A., Strassen, V., "Schnelle Multiplication grosser
Zachlen" computing 7 (1972) pp. 281-292.

Schoénhage, A., "Schnelle Berechnung von Kerren bruchentwlcklungen"
Acta Informatics 1 (1971), pp. 159-144.

Shanks, D., "Class number, a theory of factorization and genera" 1n
Proc. Symp. Pure Math., Vol. 20, AMS (1971), pp. 45-440.

Smith, D.A., "A Basis algorithm for finitely generated abelian

groups" In Math. Algor. V.1, (1966) pp. 13-66.

[49]

[50]

[51]

[52]
(53]

[54]

[55]

-173-

Smith, H.J., "Report on the Theory of Numbers" Chelsea, New

York, (1965).

Sims, C.C. "The Influence of computers 1n Algebra"™ Proc. of Symposia
1n Applied Mathematics, 20 (1974), pp. 13-30.

Strassen, V. "Gaussian elimination 1s not Optimal”. Numer. Math. 13,
354-356 (1969).

Wlelandt, H., "Finite permutation groups"” Academic Press (1964).
Williams, J.W .J., "Algorithm 232: Hempsort* Comm ACM. 7:6 pp.347-
348.

WIlnogrand, S., "On the number of multiplications necessary to
compute certain functions"”, Comm Pure and Applied Maths 23, (1970)
pp. 165-179.

Zadeh A. and Pola, K.E., "Systems Theory", McGraw-Hill (1969).

* Attention is drawn to the fact that the
copyright of this thesis rests with its author.

This copy of the thesis has been jsupplicd
on condition that anyone who consults it is
understood to recognise that its copyright rests
with its author and that no quotation from
the thesis and no information derived from it
miay be published without the author’'s prior,

written consent. |, =

= Attention is drawn to the fact that the
copyright of this thesis rests with its author.

This copy of the thesis has been supplied

on condition that anyone who consults it is

understood to recognise that its copyright rests

with its author and that no quotation from

the thesis and no information derived from it
may be published without the author’'s prior
written consent, t =

VUT AL _wvi -j o V. mei

Fnr-ive=sE))wiedgrr ~

