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TRANSPORTATION INEQUALITIES FOR NON-GLOBALLY
DISSIPATIVE SDES WITH JUMPS VIA MALLIAVIN CALCULUS
AND COUPLING

MATEUSZ B. MAJKA

Accepted for publication in Annales de ’Institut Henri Poincaré Probabilités et Statistiques

ABSTRACT. By using the mirror coupling for solutions of SDEs driven by pure jump
Lévy processes, we extend some transportation and concentration inequalities, which
were previously known only in the case where the coefficients in the equation satisfy
a global dissipativity condition. Furthermore, by using the mirror coupling for the jump
part and the coupling by reflection for the Brownian part, we extend analogous results
for jump diffusions. To this end, we improve some previous results concerning such
couplings and show how to combine the jump and the Brownian case. As a crucial step
in our proof, we develop a novel method of bounding Malliavin derivatives of solutions
of SDEs with both jump and Gaussian noise, which involves the coupling technique and
which might be of independent interest. The bounds we obtain are new even in the case
of diffusions without jumps.

1. INTRODUCTION

We consider stochastic differential equations in R¢ of the form

(1.1) dX; = b(Xy)dt + o(X)dW; + / g(Xt,,u)]V(dt, du) ,

U
where (W, )¢ is an m-dimensional Brownian motion and N (dt, du) = N (dt, du)—dt v(du)
is a compensated Poisson random measure on R, x U, where (U, U, v) is a o-finite measure
space. Moreover, the coefficients b : R? — R?, o : R — R™>™ and g : R x U — R? are
such that for any z € R? we have

/ lg(x,u)Pv(du) < oo
U

and there exists a continuous function  : R, — R such that for all z, y € R? we have
(1.2)

(b(l“)—b(y),ﬂf—yH%/UIg(%U)—g(y,U)IQV(dUHIIU(x)—U(y)II?fs < —k(lz—yl)lz -y,

where ||o||gs = Vtroo® is the Hilbert-Schmidt norm. Note that x is allowed to take
negative values.

If the condition (1.2) holds with a constant function k = K for some K € R, we
call (1.2) a one-sided Lipschitz condition. If K > 0, we call it a (global) dissipativity
condition. If a one-sided Lipschitz condition is satisfied and we additionally assume that
the drift b is continuous and that o and g satisfy a linear growth condition, we can prove
that (1.1) has a unique non-explosive strong solution, even if the one-sided Lipschitz
condition is satisfied only locally (see e.g. Theorem 2 in [17]).
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For p > 1, the LP-Wasserstein distance (or the LP-transportation cost) between two
probability measures p1, po on a metric space (E, p) is defined by

p
W o1, p2) == ﬂen”ff " (// (z,y)'m( dwdy)) :

where II(j11, p12) is the family of all couplings of py and po, i.e., m € II(u, o) if and only
if 7 is a measure on £ x F with marginals p; and ps. If the metric space (E, p) is chosen
to be R? with the Euclidean metric p(z,y) = |z — y/, then we denote W, , just by W,,.

If the equation (1.1) is globally dissipative with some constant K > 0, then it is well
known that the solution (X;);>¢ to (1.1) has an invariant measure and that the transition
semigroup (p;)>o associated with (X;);>¢ is exponentially contractive with respect to W),
for any p € [1,2], i.e

Wy (pape, popr) < e Wy, o)

for any probability measures p; and p2 on R? and any ¢ > 0 (see e.g. the proof of Theorem
2.2 in [25]). However, we will show that for p = 1 a related result still holds (under some
additional assumptions, see Corollary 2.7) if we replace the global dissipativity condition
with the following one.

Assumption D1. (Dissipativity at infinity)
limsup k(r) > 0.

r—00
In other words, Assumption D1 states that there exist constants R > 0 and K > 0
such that for all x, y € R? with |x — y| > R we have

{b(x) = by),z —y) + % /U l9(2,u) — gy, w)[Pv(du) + [lo(z) — o(y)|hs < —Klz —yl?,

which justifies calling it a dissipativity at infinity condition. Moreover, in some cases we
will also need another condition on the function x, namely

Assumption D2. (Regularity of the drift at zero)
limrk(r) =0.

r—0
This is obviously satisfied if, e.g., there is a constant L > 0 such that we have x(r) > —L
for all » > 0 (which is the case whenever the coefficients in (1.1) satisfy a one-sided
Lipschitz condition) and if b is continuous. Such an assumption is quite natural in order
to ensure existence of a solution to (1.1).
For probability measures u1 and us on (E, p), we define the relative entropy (Kullback-
Leibler information) of p; with respect to ps by

log iy if g < po
H(pa|p2) == J1og 5. .
+00 otherwise .

We say that a probability measure p satisfies an LP-transportation cost-information
inequality on (FE,p) if there is a constant C' > 0 such that for any probability measure
n we have

Wh,o(n, 1) < 2CH (n]p) -
Then we write p € T,,(C).
The most important cases are p = 1 and p = 2. Since W; , < W, ,, we see that the
L2-transportation inequality (the T5 inequality, also known as the Talagrand inequality)

implies T}, and it is well known that in fact 75 is much stronger. The T, inequality
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has some interesting connections with other well-known functional inequalities. Due to
Otto and Villani [29], we know that the log-Sobolev inequality implies T5, whereas T
implies the Poincaré inequality. On the other hand, the T} inequality is related to the
phenomenon of measure concentration. Indeed, consider a generalization of T} known as
the a-W7 H inequality. Namely, let a be a non-decreasing, left continuous function on
R, with «(0) = 0. We say that a probability measure p satisfies a W H-inequality with
deviation function « (or simply a-WjH inequality) if for any probability measure 1 we
have

(1.3) (Wi ,(n, 1)) < H(nlp) .

We have the following result which is due to Gozlan and Léonard (see Theorem 2 in
[14] for the original result, cf. also Lemma 2.1 in [39]). It is a generalization of a result
by Bobkov and Go6tze (Theorem 3.1 in [8]), which held only for the quadratic deviation
function.

Fix a probability measure p on (E,p) and a convex deviation function a. Then the
following properties are equivalent:

(1) the a-W1H inequality for the measure p holds, i.e., for any probability measure
non (F,p) we have

a(Wip(n, 1)) < H(nlp),
(2) for every f: E — R bounded and Lipschitz with || f||Lip, < 1 we have

(1.4) /eA(f_“(f))dpJ < e for any A >0,

where a*()) := sup,>o(rA — a(r)) is the convex conjugate of a,
(3) if (&)k>1 is a sequence of i.i.d random variables with common law p, then for
every f: E'— R bounded and Lipschitz with || f||Li, < 1 we have

(1.5) P (%kz:f(ﬁk) —u(f) > T) < e for any r > 0,n > 1.

This gives an intuitive interpretation of a-Wi H in terms of a concentration of measure
property (1.5), while the second characterization (1.4) is very useful for proving such in-
equalities, as we shall see in the sequel. For a general survey of transportation inequalities
the reader might consult [15] or Chapter 22 of [37].

As an example of a simple equation of the type (1.1) consider

dX, = b(X,)dt + v/2dW,

with a d-dimensional Brownian motion (W;):>o. If the global dissipativity assumption is
satisfied, then (X;);>0 has an invariant measure p and by a result of Bakry and Emery
[3], u satisfies the log-Sobolev inequality and thus (by Otto and Villani [29]) also the
Talagrand inequality. More generally, for equations of the form

(16) dXt = b(Xt)dt + O'(Xt)th y

also under the global dissipativity assumption, Djellout, Guillin and Wu in [11] showed
that 75 holds for the invariant measure, as well as on the path space. As far as we are
aware, there are currently no results in the literature concerning transportation inequal-
ities for equations like (1.6) without assuming global dissipativity. Hence, even though
in the present paper we focus on SDEs with jumps, our results may be also new in the

purely Gaussian case.
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For equations of the form

(1.7) dX, = b(X,)dt + / (X u)N(dt, du),
U
the Poincaré inequality does not always hold (see Example 1.1 in [39]) and thus in general
we cannot have Ty. However, under the global dissipativity assumption, Wu in [39] showed
some a-W1H inequalities.
Suppose there is a real measurable function g, on U such that |g(z,u)| < goo(u) for
every x € R and v € U. We make the following assumption.

Assumption E. (Exponential integrability of the intensity measure)
There exists a constant A > 0 such that

B(A) = / (49 — Agoo(u) — Dr(du) < oo

where v is the intensity measure associated with N.

Remark 1.1. Assumption E is quite restrictive. In particular, let us consider the case
where U C RY and g(z,u) = g(x)u for some R valued function § and hence the
equation (1.7) is driven by a d-dimensional Lévy process (L;);>o (i.e., we have dX; =
b(X,)dt + g(X;_)dL;). Then Assumption E implies finiteness of an exponential moment
of (Li)i>o (cf. Theorem 25.3 and Corollary 25.8 in [34]). However, there are examples
of equations of such type for which the a-W7;H inequality implies Assumption E, and
hence in general we cannot prove such inequalities without it (see Remark 2.5 in [39]).
Nevertheless, without this assumption it is still possible to obtain some concentration
inequalities (see Remark 5.2 in [39] or Theorem 2.2 below).

Fix T > 0 and define a deviation function

ar(r) = sup {m _ /0 ' B(eKtA)dt} ,

A>0

where the constants A > 0 and K > 0 are such that Assumption E is satisfied with A and
that (1.7) is globally dissipative with the dissipativity constant K. Then for any 7' > 0
and any r € RY by Theorem 2.2 in [39] we have the Wi H transportation inequality
with deviation function a7 for the measure d,pr, which is the law of the random variable
Xr(z), where (X;(z))r>o is a solution to (1.7) starting from x € R, i.e., we have

ar(Wi(n, dzpr)) < H(n|dzpr)

for any probability measure 7 on R? where W; = W, with p being the Euclidean
metric on R?. Analogous results have been proved by a very similar approach in [25] for
equations of the form (1.1), i.e., including also the Gaussian noise.

In the sequel we will explain how to modify the proofs in [39] and [25] to replace the
global dissipativity assumption with our Assumption D1. We will show that we can
obtain a-WiH inequalities by using couplings to control perturbations of solutions to
(1.1), see Theorem 2.1. We will also prove that the construction of the required couplings
is possible for a certain class of equations satisfying Assumption D1 (Theorems 2.3 and
2.8). All these results together will imply our extension of the main theorems from [39]
and [25], which is stated as Corollary 2.9.

The method of the proof is based on the Malliavin calculus. On any filtered probability
space (Q, F, (Fi)e>0,P) equipped with an m-dimensional Brownian motion (W;):;>¢ and
a Poisson random measure N on R; x U, we can define the Malliavin derivatives for

a certain class of measurable functionals F' with respect to the process (W;);>o (the
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classic Malliavin differential operator V), as well as a Malliavin derivative of F' with
respect to N (the difference operator D). Namely, if we consider the family S of smooth
functionals of (W};);> of the form

F=fW(h),...,W(hy,)) forn>1,

where W(h) = fOTh(s)dWS for h € H = L*([0,T];R™) and f € C*°(R"), we can define
the Malliavin derivative with respect to (W;);>o as the unique element VF in L*(Q; H) ~
L*(Q2 x [0, T];R™) such that for any h € H we have

1 :

<VF, h)LZ([O’T};Rm) - hm - (F(W + / h5d3> - F(W)) 5
e—0 g 0

where the convergence holds in L?(2) (see e.g. Definition A.10 in [10]). Then the defini-

tion can be extended to all random variables F' in the space D%? which is the completion

of § in L?(Q) with respect to the norm

1F 152 = 1 F 172 + IV F 20 -

For a brief introduction to the Malliavin calculus with respect to Brownian motion see
Appendix A in [10] or Chapter VIII in [5] and for a comprehensive treatment the mono-
graph [28]. On the other hand, the definition of the Malliavin derivative with respect to
N that we need is much less technical, since it is just a difference operator. Namely, if
our Poisson random measure N on R, x U has the form

N=> 6ue)
j=1

with R, -valued random variables 7; and U-valued ;, then for any measurable functional
f of N and for any (¢,u) € Ry x U we put

(1.8) Diuf(N) = f(N + 5(t,u)) - f(N).

There is also an alternative approach to the Malliavin calculus for jump processes, where
the Malliavin derivative is defined as an actual differential operator, which was in fact the
original approach and which traces back to Bismut [7], see also [4] and [6]. However, for
our purposes we prefer the definition (1.8), which was introduced by Picard in [30] and
[31], and which is suitable for proving the Clark-Ocone formula. Namely, we will need to
use the result stating that for any F' being a functional of (W})¢>o and N such that

T T
(1.9) E/ yvtF\deE/ / |D; o F|*v(du)dt < oo,
0 0 U
we have
T T _
F:]EF+/ E[vtFm]th+/ /E[Dt,uFm]N(dt, du) .
0 0 U

It is proved in [24] that the definition (1.8) is actually equivalent to the definition of
the Malliavin derivative for jump processes via the chaos expansion and this approach is
used to obtain the Clark-Ocone formula for the pure jump case. For the jump diffusion
case, see Theorem 12.20 in [10]. For more general recent extensions of this result, see
[21]. Once we apply the Clark-Ocone formula to the solution of (1.1), we can obtain some
information on its behaviour by controlling its Malliavin derivatives. Therefore one of the
crucial components of the proof of our results in this paper is Theorem 2.14, presenting
a novel method of bounding such derivatives, which, contrary to the method used in
Lemma 3.4 in [25], works also without the global dissipativity assumption and without

any explicit regularity conditions on the coefficients of (1.1), except some sufficient ones
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to guarantee Malliavin differentiability of the solution (it is enough if the coefficients are
Lipschitz, see e.g. Theorem 17.4 in [10]).

The last notion that we need to introduce before we will be able to formulate our main
results is that of a coupling. For an R%valued Markov process (X;);>o with transition
kernels (pi(z, -))¢>0.0erd We say that an R*-valued process (X;, X/);>0 is a coupling of two
copies of the Markov process (X;);>o if both (X})i>0 and (X]');>o are Markov processes
with transition kernels p; but possibly with different initial distributions. The construc-
tion of appropriate couplings of solutions to equations like (1.1) plays the key role in the
proofs of Theorems 2.3 and 2.8. For more information about couplings, see e.g. [22], [12],
[27] and the references therein.

The only papers that we are aware of which deal with transportation inequalities
directly in the context of SDEs with jumps are [39], [26], [25] and [36]. The latter two
actually extend the method developed by Wu in [39], but in both these papers a kind
of global dissipativity assumption is required (see Remark 2.12 for a discussion about
[36]). In the present paper we explain how to drop this assumption (by imposing some
additional conditions) and further extend the method of Wu. Since our extension lies at
the very core of the method, it allows us to improve on essentially all the main results
and corollaries obtained in [39] and [25] (and it might be also applicable to the results
in [36], cf. once again Remark 2.12), replacing the global dissipativity assumption with
a weaker condition.

On the other hand, in [26] some convex concentration inequalities of the type (2.7) have

been shown for a certain class of additive functionals Sy = fOT g(X¢)dt of solutions (X;):>o
to equations like (1.1). These are later used to obtain some a-W;I inequalities, which
are analogous to a-WiH inequalities (1.3) but with the Kullback-Leibler information
H replaced with the Fisher-Donsker-Varadhan information, see e.g. [16] for more details.
The proof in [26], similarly to [39], is based on the forward-backward martingale method
from [19], but unlike [39] it does not use the Malliavin calculus. In the framework of Wu
from [39] that we use here, it is possible to obtain related -3 J inequalities with J being
the modified Donsker-Varadhan information. Once we have transportation inequalities
like the ones in our Theorem 2.1, we can use the methods from Corollary 2.15 in [39] and
Corollary 2.7 in [25]. This is, however, beyond the scope of the present paper and in the
sequel we focus on extending the main results from [39] and [25].

2. MAIN RESULTS

We start with a general theorem, which shows that a key tool to obtain transportation
inequalities for a solution (X¢):>o to

(2.1) dX; = b(Xy)dt + o(Xy)dW; + / 9( Xy, u)N(dt, du)
U

is to be able to control perturbations of (X;)¢>o via a coupling, with respect to changes in
initial conditions (see (2.3) below) as well as changes of the drift (see (2.4)). In the next
two theorems we assume that the coefficients in (2.1) satisfy some sufficient conditions
for existence of a solution and its Malliavin differentiability (e.g. they are Lipschitz, cf.
Theorem 17.4 in [10]). From now on, (F;):>o will always denote the filtration generated
by all the sources of noise in the equations that we consider, while (p;)¢>o will be the
transition semigroup associated with the solution to the equation. Moreover, for a process
(ht)e>0 adapted to (F;)i>0, we will denote by (X;):>¢ a solution to

(22)  dX, = b(X)dt + o(X ) hudt + o (X)W, + / (X u)N(dt, du).
U
6



Then we have the following result.

Theorem 2.1. Assume there exists a constant o, such that for any x € R? we have
|lo(x)]| < 000, where || - || is the operator norm, and there exists a measurable function
Joo : U — R such that |g(x,u)| < goo(u) for any z € R and u € U. Assume further
that there exists some A > 0 such that Assumption E is satisfied. Moreover, suppose that
there exists a coupling (X, Yi)i>o of solutions to (2.1) and a function ¢y : Ry — Ry such
that for any 0 < s <t we have

(2.3) E||X, — Y}|/F] < ex(t — )X, — Vi

Furthermore, assume that there exists a coupling (Xi,Y/)i>0 of solutions to (2.1) and
functions co, c3 : Ry — R such that for any 0 < s <t we have

(2.4) E(|X; - Y/|/F] < Cz(t—S)E/t 3(r)|o (X )b ldr.

Then the following assertions hold.

(1) For any T > 0 and for any x € RY the measure §,pr satisfies

(2.5) ar(Wi(n, dzpr)) < H(n|dzpr)

for any probability measure n on R%. Here W, = W, p with p being the Euclidean
metric on R? and

ar(r) = sup {m - /OTﬁ(cl(T —H)A\)dt — w /OT cg(t)dt} :

(2) For any T > 0 and for any x € R? the law Py o7 of (Xi(@))icjor) as a measure
on the space D([0, T); RY) of cddldg R4-valued functions on [0,T] satisfies

(2.6) af (Wia,, (Q.Pujory) < H(Q|Py o)
for any probabz'lz’ty measure Q on D([0,T];RY). Here we take dri(y1,7%) =
fo |71(t) — Y2(t)|dt as the L' metric on the path space and

o (r) = sup {m—/oTﬁ <)\/tTcl(s—t)ds) dt — “%AZ /OTcg(t) </tTcg(r)dr)2dt} .

Note that in (2.4) the process (Y{):>o is coupled with (X;);>0, but the estimated dis-
tance is between (Y/)i>o and (X;);>0 given by (2.2). In other words, we need to consider
a process (Y/);>0 whose law is determined by the dynamics (2.1), but it behaves in such
a way that we can control its distance to a process following the modified dynamics given
by (2.2). An example of such a construction can be found in the proof of Theorem 2.8.

Even without Assumption E, it is still possible to recover some concentration inequal-

ities.
Theorem 2.2. Assume that all the assumptions of Theorem 2.1 are satisfied except for
Assumption E. Instead, suppose that g..(u) is just square integrable with respect to v.
Fiz any T > 0 and any x € RY. Then for any C? convex function ¢ such that ¢' is also
convex and for any Lipschitz function f : RY — R, we have

Eo(f(Xr(x)) = prf(2))

< (1 ([ [ 0= 09t >N<dt,du>+c2<T> [ atswan)) .

(2.7)



where j is any deterministic R™-valued function such that for all t > 0 we have |j(t)| =
Ooo- Moreover, for any Lipschitz function F : D([0,T]; R?) — R we have

E¢ (F (X1 (7)) — EF(Xp.n (96)))

(2.8) < Egzb(HFHLip(/OT/U (/tTcl(r—t)dr> oo (W) N (dt, du)
+ /OT cs(t) (/tT @(r)dr) j(t)th>> .

The crucial step in proving the above theorems is to find appropriate bounds on Malli-
avin derivatives of the solution to (2.1). We will show that we can obtain such bounds
on D and V using conditions (2.3) and (2.4), respectively (see Section 5 for details).

Now we present another result, which will consequently lead us to some examples of
equations for which the inequalities (2.3) and (2.4) actually hold. First, however, we
need to formulate some additional assumptions. We will need a pure jump Lévy process
(L¢)i>0 with a Lévy measure v* satisfying the following set of conditions.

Assumption L1. (Rotational invariance of the Lévy measure) v is rotationally invari-
ant, i.e.,

v(AB) = v"(B)
for every Borel set B € B(R?) and every d x d orthogonal matrix A.

Assumption L2. (Absolute continuity of the Lévy measure) v” is absolutely continuous
with respect to the Lebesgue measure on R? with a density ¢ that is continuous almost
everywhere on R

Under Assumptions L1-L2 it has been proved in [27] (see Theorem 1.1 therein) that
there exists a coupling (X, Y;)i>o of solutions to

dXt = b(Xt)dt + st 5

defined as a unique strong solution to the 2d-dimensional SDE given in the sequel by
(3.2) and (3.3). Moreover, consider two additional conditions on the jump density g.

Assumption L3. (Positive mass of the overlap of the jump density and its translation)
There exist constants m, d > 0 such that § < 2m and

(2.9) inf

/ q(v) A g(v+z)dv > 0.
e€R:0<2|<8 /(o] <m}n{|v+a|<m}

Assumption L4. (Positive mass in a neighbourhood of zero) There exists a constant
e > 0 such that ¢ < ¢ (with § defined via (2.9) above) and

/ q(v)dv > 0.
{lvl<e/2}

Suppose now that all the Assumptions L1-L.4 are satisfied. Let us define a continuous
function k : Ry — R so that for any x, y € R? the condition (b(x) — b(y),z — y) <
—k(|z —y|)|z —y|? is satisfied and suppose that Assumption D1 holds. Then we get that,
by the inequality (1.8) in Theorem 1.1 in [27], there exist explicitly given L, # > 0 and
a function f such that

(2.10) Bl X (z) = Yi(y)] ? Le™ f(lz = yl).



However, the function f used in [27] is discontinuous. It is actually of the form
(2.11) [ =aloe)+ i

with @ > 0 and f; being a continuous, concave function, extended in an affine way from
some point Ry > 0 (and thus we have a;x < fi(z) < asx for some aq, as > 0). Hence we
obtain

(2.12) E|Xi(x) = Yi(y)| < Le " (|lz —y| + 1),

for some L > 0, which is, however, undesirable since in order to be able to apply Theorem
2.1 we would like to have |x — y| and not |z — y| + 1 on the right hand side (cf. Remark
2.6). Thus we need to improve on the result from [27] and get an inequality like (2.10)
but with a continuous function f (i.e., with a = 0 in (2.11)). To this end, we define

e/4
(2.13) C.:= 2/ lyv1 (dy)
0

where vf is the first marginal of the rotationally invariant measure v*. The choice of /4
as the upper integration limit is motivated by the calculations in the proof of Theorem
1.1 in [27], see also the proof of Theorem 3.1 below. Now consider a new condition.

Assumption L5. (Sufficient concentration of v* around zero) For any A > 0 there exists
a K (\) > 0 such that for all e < X\ we have ¢ < K(\)C.. In other words, ¢/C. is bounded
near zero or, using the big O notation, e = O(C.) as ¢ — 0.

Intuitively, it is an assumption about sufficient concentration of the Lévy measure
vE around zero (sufficient small jump activity). It is satisfied e.g. for a-stable processes
with o € [1,2) since in this case C. = A2~ for some constant A = A(a) and we have
g/C. = Ae~ L.

It turns out that once we replace Assumptions L3 and L4 in Theorem 1.1 in [27] with
Assumption L5, we are able to obtain (2.10) with a continuous function f, which is exactly
what we need for Theorem 2.1. This is done in Section 3 in Theorem 3.1. However, we
are able to generalize this result even further.

Theorem 2.3. Consider an SDE of the form

(2.14) dX, = b(X,)dt + o1dB} + o(X,)dB? + dL; + / g(Xi—, u)N(dt,du) ,
U

where (B});>0 and (B?)i>o are d-dimensional Brownian motions, (L) is a pure jump
Lévy process with Lévy measure v' satisfying Assumptions L1-L2 and L5, whereas N
is a compensated Poisson random measure on Ry x U with intensity measure dt v(du).
Assume that all the sources of noise are independent, oy € R is a constant matriz and
the coefficients b : R* — R? o : R? — R gnd g : R x U — R? satisfy Assumption
D1. If at least one of the following two conditions is satisfied

(1) detoq > O,

(2) Ly # 0 and Assumption D2,

then, there exists a coupling (X, Y, )0 of solutions to (2.14) and constants C, ¢ > 0 such
that for any =, y € R and any t > 0 we have

(2.15) E|Xi(z) - Yi(y)| < Ce ™ —y.

Remark 2.4. The reason for the particular form of the equation (2.14) is that in order to
construct a coupling leading to the inequality (2.15) we need a suitable additive compo-

nent of the noise. We can either use (B} )s>¢ if the condition (1) holds, or (L;)s>¢ if the
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condition (2) holds. The constants C and ¢ depend on which noise we use. In particular,
the constant ¢ is either equal to ¢ defined by (4.5) if we use (B});>o or to ¢; defined by
(3.16) if we use (L¢)i>0. On the other hand, if we have only a multiplicative Gaussian
noise but the coefficient o is such that oo” is uniformly positive definite, we can use
Lemma 4.1 below to decompose this noise and extract an additive component satisfying
(1). Without such an assumption on o, Remark 2 in [12] indicates that it might still
be possible to perform a suitable construction, using the so-called Kendall-Cranston cou-
pling, although this might significantly increase the level of sophistication of the proof. In
the case of the jump noise, as far as we know there are currently no methods for obtaining
couplings leading to inequalities like (2.15) in the case of purely multiplicative noise, and
the recent papers treating this kind of problems (see e.g. [38], [27] and [23]) use methods
that rely on the noise having at least some additive component.

Remark 2.5. The coupling process (Xy, Y;)i>0 is constructed as a unique strong solution
to some 2d-dimensional SDE. This allows us to infer that (X, Y;);>0 is in fact a Markov
process (see e.g. Theorem 6.4.5 in [2] or Proposition 4.2 in [1], where it is shown how the
Markov property follows from the uniqueness in law of solutions to SDEs with jumps). As
a consequence, we see that the inequality (2.15) actually implies that for any 0 < s < ¢
we have

E[|X, — Yi|/F] < Ce )| X, — Y|

Remark 2.6. Theorem 2.3 is obtained based on Theorem 3.1 which is presented later in
this paper. It is however possible to obtain analogous (but perhaps less useful) result
based on the already mentioned Theorem 1.1 in [27], where we have Assumptions L3
and L4 instead of Assumption L5. Then we get an inequality of the form (2.12). It
is still possible to obtain some transportation inequalities if in Theorem 2.1 we replace
the condition (2.3) with a condition like (2.12), but because of its form it forces us to
additionally assume that the underlying intensity measure is finite (see Remark 6.1).

The above result is proved using the coupling methods developed in [27] and [12],
and is of independent interest, as it extends some of the results obtained there. In
particular, it immediately allows us to obtain exponential (weak) contractivity of the
transition semigroup (p;);>0 associated with the solution to (2.14), with respect to the
L'-Wasserstein distance Wi, as shown by the following corollary.

Corollary 2.7. Under the assumptions of Theorem 2.3,
Wi (npe, ppe) < Ce™ Wi, 1)

for any probability measures n and p on R and for any t > 0. Moreover, (p;)>o has an
mvariant measure 1y and we have

Wi(npe, o) < Ce W, (0, o)

for any probability measure n on R? and any t > 0.

This result follows immediately from (2.15) like in the proof of Corollary 3 in [12] or
the beginning of Section 3 in [20]. Using couplings allows us also to prove a related result
involving a perturbation of the solution to (2.14) by a change in the drift. This gives us
a tool to determine some concrete cases in which the assumption (2.4) from Theorem 2.1
holds.

Theorem 2.8. Let (X;)i>o be like in Theorem 2.3 and suppose additionally that As-

sumption D2 holds, det o1 > 0 and that the coefficients o and g are Lipschitz. Consider
10



a process (Xt)tzo which is a solution to (2.14) with the drift perturbed by w,, i.e.,

dX, = b(X,)dt + wdt + 01dB} + o(X,)dB? + dL; + / g(X,_, u)N(dt, du),
U
where u; s either o1 h; or J(Xt)ht for some adapted d-dimensional process hy. Then there
exists a process (Yi)i>o such that (X, Y:)i>0 is a coupling of solutions to (2.14) and for
any 0 < s <t we have

. t
(2.16) E[| X, - Y|/ F,] < C / ==y, |dr |

where the constants C', ¢ > 0 are given by (4.9) and (4.5), respectively.

Observe that the constants above depend on the function x and hence to calculate their
explicit values we need to apply the right version of k in the formulas (4.9) and (4.5),
i.e., the version that is used in the proof of Theorem 2.8. Now, combining Theorems 2.3
and 2.8 to check validity of assumptions of Theorem 2.1, we get the following result.

Corollary 2.9. Consider the setup of Theorem 2.3. Suppose all its assumptions and
Assumption D2 are satisfied and additionally that det oy > 0 and the coefficients o and
g are Lipschitz. Moreover, assume that (X;)i>o is Malliavin differentiable (X; € DY? for
all t > 0) and, similarly to Theorem 2.1, that there exists a constant o such that for
any x € R? we have ||o(z)| < 0 and there exists a measurable function g : U — R
such that |g(z,u)| < goo(u) for any v € R? and u € U. Assume further that there exists

some A > 0 such that Assumption F is satisfied and that there exists A\ > 0 such that

BN = /U(Ju — = Dt (du) < o

Then the transportation inequality (2.5) from the statement of Theorem 2.1 holds with

ar(r) := sup {7‘)\ / B( Ce’C(T t))\ / BL Ce dT=1) ) A)dt

A>0

(02 + o [P)N° 51 —e 2"
2 ¢ 2c ’

Moreover, for the invariant measure jio we have

(2.17) oo (Wi (1, o)) < H (] po)

for any probability measure n on R, with a. defined as the pointwise limit of ar as
T — oo. Finally, the inequality (2.6) holds with

T HT—t) o T-1)
ak(r) = sup{r)\—/ ﬁ(AC€—> dt—/ BL< 16*) dt
A>0 0 c c

TN 2
_<a§o+||m||2woz/T<1—e <T t)) dt}‘
2 0 c

The constants ¢, 5, c and C appearing in the definitions of ar and ok are the same as

in (2.15) and (2.16).

This corollary extends the results from Theorem 2.2 in [39] to the case where we
drop the global dissipativity assumption required therein, as long as we have an additive

component of the noise, which we can use in order to construct a coupling required in
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our method. It is easy to notice that the corollaries in Section 2 in [39] (various results
regarding concentration of measure for solutions of (2.14) in the pure jump case) hold
as well under our assumptions. We also extend Theorem 2.2 from [25], where similar
results are proved in the jump diffusion case under assumptions analogous to the ones
in [39]. However, in [25] there are additionally stronger assumptions on regularity of
the coefficients, which are needed to get b