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Abstract: This paper presents a systematic approach for the kinematic calibration of a 6-DOF hybrid polishing robot. It concentrates 

particularly on dealing with ill-conditioning that arises from multicollinearity in the identification Jacobian as a consequence of limited 

pose measurements. A linearized error model is formulated, using screw theory, by considering all possible source errors at the joint/link 

level. Calibration is based upon pose error measurements captured using a laser tracker when the polishing head undergoes pure 

translation within the task workspace. A two-step procedure for error parameter estimation and pose error compensation is then proposed: 

(1) coarse estimation and compensation of the encoder offsets using linear least squares; and (2) fine estimation of the whole set of 

identifiable error parameters using a Liu estimation and subsequent modification of the NC trajectory dataset of the polishing head. Both 

simulations and experiments on a prototype machine show that the overall standard deviation of the error parameters identified by Liu 

estimator is much less than that estimated by linear least squares, confirming its greater robustness in the presence of measurement 

uncertainty. The proposed approach results in satisfactory pose accuracy of the polishing head throughout the entire task workspace.  

 

Keywords: Hybrid robots; Optical lens polishing; Kinematic calibration; Liu estimation  

 

1 Introduction 

Rapid developments in astronomy, space exploration and many other high-end optical instruments has created an ever 

increasing demand for larger, high-quality optical components. Computer Control Optimal Surfacing (CCOS), which plays 

an important role in optical lens polishing, achieves material removal by tuning the dwell time and relative pressure 

between the polishing tool and the surface being polished. Although high precision five-axis polishing machine tools have 

been widely used for CCOS [1], a more cost effective way to do this is to use hybrid robots [2-5] that have sufficiently high 

rigidity and accuracy and also offer desirable dynamic characteristics.  

Geometric accuracy is one of the most important performance specifications of hybrid robots used for optical polishing. 

It is well known that if sufficient repeatability can be ensured via manufacturing and assembly processes, kinematic 

calibration by software is a practical and economical way to improve pose accuracy. It usually involves four successive 

steps: modeling, measurement, identification and compensation [6-7]. Once a complete and continuous error model is at 

hand, the kernel step in kinematic calibration is to estimate error parameters using a full/partial set of pose measurements 

that can be obtained in a cost- and time-effective manner such that inverse kinematic model residing in a controller more 

closely matches the real system at all possible configurations. 

Large amounts of effort have been devoted over the past few decades to the geometric parameter identification of robotic 

mechanisms [8-11]. The methods available can be classified broadly into two categories: nonlinear and linear identification. 

Nonlinear identification involves estimating realistic geometric parameters or their errors by minimizing the sum of the 

squares of the differences between the observed poses in the given dataset and those predicted by forward kinematics. The 

commonly used approaches include the Newton-Gauss method [12], the Levenberg-Marquardt (L-M) algorithm [13], 

neural networks (NN) [14], genetic algorithms [15], and many others. However, because most geometric source errors are 

much smaller than their associated dimensions, the most common practice is to use linear least squares for dealing with 

error parameter identification of robotic mechanisms [16-20]. The procedure involves first formulating a linearized map 

between the pose error twist and all the possible source errors at the link/joint level. It then estimates a set of identifiable 

error parameters by minimizing the sum of the squares of the differences between the observed pose error twists in the 

given dataset and those predicted by the linearized regression model. For the purpose of pose error compensation, the ideal 

command dataset of the end-effector is modified by the predicted pose error twist dataset generated by the linearized error 

model so established. The modified command dataset of the end-effector is then converted into the joint command dataset 

via ideal inverse kinematics residing in the controller. Note that, since the pose errors caused by the encoder offsets are 

usually much larger than those caused by the structural errors of joints and links, it is necessary to coarsely identify and 

compensate the encoder offsets iteratively until they are reduced below the level at which the linearized model becomes 

valid for full error parameter identification and pose error compensation [21-23]. 
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Two important issues need to be carefully considered in error parameter identification by using linear least squares. The 

first issue is that the identification Jacobian, also known as the design matrix in linear regression analysis, is of perfect 

multicollinearity in most cases if all the possible geometric source errors at link/joint level are considered in the error 

modeling [24-26]. Although this problem can be tackled simply by generating a column full ranked identification Jacobian 

with the aid of spectral decomposition [27-28], the corresponding error parameters to be identified no longer have 

geometric meanings, though they are irreducible. So, the resulting estimates cannot be used for the encoder offset 

compensation. The second issue is of ill-conditioning arising from multicollinearity due to the limited pose measurements 

available in some circumstances, even when the column space of the identification Jacobian is full ranked. For example, 

with the hybrid polishing robot considered in this paper, the polishing head undergoes nearly pure translational motion to 

polish aspheric lenses having very large radii of curvature. So, in kinematic calibration of the polishing robot, it is natural 

and convenient to let the polishing head undergo pure translation across the task workspace in which the polishing 

operation will be performed. However, a preliminary study shows that some of the columns in the identification Jacobian 

are nearly linearly dependent due to these restricted calibration poses. This problem reduces the confidence of the error 

parameters estimated by linear least squares, thereby affecting the accuracy of pose error compensation at configurations 

different from the calibration ones. A literature review reveals that little attention has been paid to the second issue [29-30], 

although a number of biased estimators have been made available for dealing with multicollinearity problem of the design 

matrix in the field of statistics, for instance James-Stein Shrinkage Estimator (JSSE) [31], Ridge Estimator (RE) [32], 

Principal Components Estimator (PCE) [33], Liu Estimator (LE) [34] and many other modified versions [35-37]. 

Driven by the many practical needs to improve convergence rates of optical lens polishing processes, this paper presents 

a systematic approach for kinematic calibration of a 6-DOF hybrid polishing robot that deals particularly with the 

ill-conditioning problem arising from multicollinearity of the identification Jacobian. Following this introduction, Section 

2 formulates a linearized error model of the polishing hybrid robot using screw theory and considering the all possible 

geometric source errors. In Section 3, a linear regression model is established for the relationship between the pose error 

twist and positional measurements of three target points on a triangle gauge. Section 4 then proposes a procedure for error 

parameter estimation and pose error compensation that can be implemented in two steps: (1) coarse estimation and 

compensation of the encoder offsets using linear least squares; and (2) fine estimation of the whole set of identifiable error 

parameters using a Liu estimator and modification of numerical control (NC) trajectory dataset of the polishing head. 

Section 5 reports both simulations and experiments on a prototype machine that show that the Liu estimator offers a more 

confident estimate than ordinary least squares in the fine calibration, before conclusions are drawn in Section 6. 

2 Error Modeling  

Fig. 1 shows a 3D view of the polishing machine being considered. It is composed essentially of a six degrees of freedom 

(DOF) hybrid robot, a polishing head and a magnetic worktable. The cuboid portion entailed within the reachable 

workspace is defined as the task workspace in which the polishing of aspheric lenses is performed. This paper concentrates 

on kinematic calibration of the hybrid robot in the task workspace. The hybrid robot comprises a 3-DOF parallel 

mechanism connected in series with a 3-DOF wrist. The parallel mechanism consists of a base, a platform, three identical 

UPS limbs and one properly constrained non-actuated UP limb located in the middle. The UP limb and the wrist form a 

UPS or UPRRR limb. Here, R, U, S and P represent, respectively, revolute, universal, spherical and prismatic joints, and 

the underlined P and R denote the actuated prismatic and revolute joints. 

 

 
 

 

 

Fig. 1 3D view of the polishing robot. 
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This section uses screw theory to formulate the linear map between pose error twist of the polishing head and all possible 

geometric source errors in joints and links. Fig.2 shows schematic diagram of the hybrid robot. For convenience, we treat 

universal/spherical joints as two/three revolute joints having mutually orthogonal joint axes. We number the UPS limbs as 

limb 1, 2 and 3, and the UP limb plus the wrist as limb 4. In order to describe the encoder offsets and structural errors, body 

fixed frames  ,j iR  are attached to the thj  1-DOF joint with 
,j iA  as the origin and 

,j iz  along the joint axis; the 
,j ix  axis 

is the common normal to the 
,j iz  and 

1,j iz 
 axes such that 

,j iA  is the intersection of the 
,j iz  and 

1,j ix 
 axes, except that 

1,iA  is the intersection of the 
1,iz  axis and the 

1,ix  axis. A reference frame  0R  is placed on the base at the center 0A  of the 

ideal equilateral triangle 0,1 0,2 0,3A A A , and a floating frame  0R  attached to point P with its three axes remaining parallel 

to those of  0R . 

By taking P as the reference point, the pose error twist evaluated in  0R  can be expressed as 

, ,t P t S t $ $ $                                                                                 (1) 

where 
,P t$  and 

,S t$  denote the 6 1  pose error twist of the parallel mechanism and that of the wrist relative to the parallel 

mechanism, respectively. Because all limbs in the parallel mechanism share the same platform, 
,P t$  can be written as 

, , , , , ,

1

ˆ
i

g

n

P t a j i ta j i P i

j




  $ $ $ , 
6 1, 2,3

3 4
i

i
n

i


 

                                                    
 (2) 

where in
 
is the connectivity of limb i; , ,a j i  is the encoder offset along or about the thj joint axis and , ,

ˆ
ta j i$  the  unit twist 

of that joint axis; and ,gP i$  is the pose error twist produced by the joint structural errors in the limb. 

Some error sources can be separated by drawing formally on the properties of dual vector spaces [38], or via the physical 

observations that a wrench of actuations does no virtual work on a twist of constraints, and so on. Taking inner products on 

both sides of Eq. (2) with the unit wrench of actuations ,3,
ˆ

wa i$  imposed upon the thi  UPS limb and with the unit wrench of 

constraints 
, ,4

ˆ
cwc j$  imposed upon the UP limb, yields 

T T

,3, , ,3, ,3, ,
ˆ ˆ

gwa i P t a i wa i P i  $ $ $ $ , =1,2,3i                                                               (3) 

T T

, ,4 , , ,4 ,4
ˆ ˆ

c c gwc j P t wc j P$ $ $ $ , =1,2,3cj                                                                   (4) 

Rewriting Eqs. (3) and (4) in matrix notation results in the error model of the parallel mechanism. 
1

1 1

,

ΔΔ
Δ Δ

Δ

Pa Pa PaPa

P t P P P P P

Pc Pc Pc



 
       

         
       

J G ηξ
J ξ J G η

J G η
$

0                                      
(5) 

with 

Fig. 2 Schematic diagram of the 6-DOF hybrid polishing robot. 

0x

0A
b

0,1A

0y

0z

6,1A

1,1z

2,1z

3,1z

6,1z

5,1z
4,1z

a

3,4q

4,4A

e

6,4A

P

6,4z

4,4z 5,4zdQ

3,1q



4 
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, 
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,1,4 ,4
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,2,4 ,4
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,3,4 ,4
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ˆΔ

ˆ

g

g

g

wc p
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wc p

 
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G η
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where 
,j iw  is the 3 1  nominal unit vector of the thj  joint axis, iq  is the encoder offset of the P joint in the thi UPS 

limb; Paη  and Pcη  are the joint structural error vectors of the UPS limbs and the UP limb; ir  is the 3 1  nominal 

position vector pointing from P  to 
6,iA  with 6,4A Pd  and 6,4 6,i iA Aa ; c  is the nominal length from 0A  to 

6,4A  with 

3,4 0 4,4q A A  and 
4,4 6,4e A A . For the derivation of ,gp i$  in terms of the corresponding source errors, please see 

Appendix A. 

A similar technique formulates the pose error twist of the wrist relative to the parallel mechanism as 
6

, , ,4 , ,4

4

ˆ
gS t a j ta j S S S S S

j




       J ξ G η$ $ $
                                                         

(6) 

with 

4,4 5,4 6,4

4,4 5,4 6,4

S

      
  
 

d w d w d w
J

w w w  

   
T T

,4,4 ,5,4 ,6,4 4 5 6S a a a             ξ  

where 
, ,4a j j     and , ,4

ˆ
ta j$  are the encoder offset about the thj ( =4,5,6j ) actuated joint axis and the nominal unit 

twist of that joint axis of the wrist; and 
gS$  is the pose error twist produced by the joint structural errors of the wrist. For the 

formulation of 
gS$  in terms of the corresponding source errors, please again refer to Appendix A. 

Substituting Eqs. (5) and (6) into Eq. (1) leads to the linear map between the error parameter vector χ  and the pose 

error twist t$  of the polishing head: 

t  B χ$
                                                                                     

(7) 

where 

1 1

,  ,  

,  = ,  

P P

S S

P P P

S S

   

 

      
         

      

   
      

   

ξ ηξ
χ ξ η

ξ ηη

J J G
B B B B B

J G

 

For practical use, the pose accuracy should be expressed in the workpiece frame  R
 
having its z  axis normal to the 

worktable and its y  axis parallel to 0x , as shown in Fig. 3. The pose error twist evaluated in  R  can be obtained by the 

simple adjoint transformation comprising two successive elementary rotations, giving 
0

0 0

w w w

t t  A A B χ$ $                                                                        (8) 

with 

0

0

0

w

w

w

 
  
 

R
A

R

0

0
,    0 Rot , π Rot ,0.5πw y z R  

where 0

t t$ $  as given in Eq. (7) and   is the nominal structural angle between the z  and 0z
 
axes. For the robot 

considered here, π 6  . Hereafter, because this transformation is fixed and can be implied, we will denote w

t$  as t$  

and 
0

w
A B  as B  for simplicity unless indicated otherwise. 
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3 Pose Error Measurement 

The error model given by Eq. (8) enables the formulation of a measurement scheme and linear regression model for error 

parameter identification. As shown in Fig. 3(a), the workpiece frame  R  is placed with its x  and y axes parallel to two 

orthogonal edges of the magnetic worktable. The reference pose is defined to be when P is coincident with the center of the 

cubic task workspace, the nominal 
5,4z

 
axis is coincident with the y  axis, and the nominal 

6,4z  axis is coincident with the 

x
 
axis of  R . To facilitate the pose error measurement of the polishing head using a laser tracker, three target points, 

sequentially denoted by
 1 2,P P and 3P , are seated on an isosceles triangular gauge that is rigidly mounted on the polishing 

head such that 1 2 3 0P P P P P   and 0 1 2 3P P P P , with 2 3P P  and 0 1P P  set as nearly parallel as possible to the x  and y  

axes at the reference pose.  

The cuboid task space is divided into cn  layers, each nominally parallel to xy , and the polishing head undergoes 

nominally pure translation in each calibration layer while the coordinates of each target point with respect to  R  are 

captured by a laser tracker at L L  evenly spaced nodes, see Fig. 3(b). The proposed calibration pose arrangement 

considers two important factors: (1) the polishing head need only undergo nearly translational motion throughout the task 

workspace due to the small curvatures of the aspheric lenses being polished; (2) all active joints are actuated 

simultaneously to fulfill the requirement for ξ  to be identifiable using a minimum set of pose measurements [39]. 

Denoting the position coordinates of the gauge targets at the thk  calibration node as 
,j kP  ( 1,2,3j  ), a linear map 

between 
,t k$ , the pose error twist of kP , and the corresponding position errors of the three target points is 

,k k t k p P $ , 21,2, , ck n L                                                                      (9) 

1, 01, 1,

2, 02, 2,

3, 013 3,

k k k

k k k k

k k k

    
   

       
       

p p p

p p p p

p p p
 
, 

1,

2,

3,

k

k k

k

 
 

  
 
 

P

P P

P

, 
, 3 ,j k j k

     
P I p , 

0,

,

k

t k

k

 
  

 

p

θ
$  

where 0,kp  and kθ
 
are the 3 1

 
position error vector of kP  and the orientation error vector of the polishing head at the 

thk  calibration pose; ,j kp  and 0 ,j kp  ( 1,2,3j  ) are the measured and nominal position vectors of ,j kP ; 
,j k

  p
 
is the 

skew matrix of ,j kp , representing the cross product with the nominal position vector pointing from 
,j kP

 
to kP

 
at the same 

configuration; and 3I  denotes a 3 3  identity matrix. 

Substituting the pose error twist model given by Eq. (8) into Eq. (9) and rewriting in matrix form, finally results in the 

linear regression model 

   p H χ ε                                                                              (10) 

 

 
 

Fig. 3 Pose error measurement of the polishing robot. 
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1

cn L

 
 

   
  
 

p

p

p

, 

2 2

1 1

c cn L n L

 
 

  
 
 

P B

H

P B
 

where H  denotes a n m  matrix known as the identification Jacobian, ε
 
is an 1n  residual error vector assumed to have 

a normal distribution, 29 cn n L  and  dimm  χ . 

4 Error Parameter Estimation and Pose Error Compensation 

Having the linear regression model given by Eq. (10), a systematic procedure is developed in this section to estimate 

error parameters and compensate pose errors via three successive steps.   

4.1 Reconstruction of the identification Jacobian 

The necessary condition for χ  to be identifiable is that column space of H  must be full ranked [40]. In practice, 

however, this requirement is not fulfilled in the majority of cases generally and not for the hybrid polishing robot in 

particular. This critical problem can be dealt with by either of two ways.   

The first way is to generate a column full ranked identification Jacobian 1 1Z H  by spectral decomposition such that 

1  χ α  where 1  is a block matrix formed by the eigenvectors corresponding to the non-zero eigenvalues of T
H H . 

This leads to a modified linear regression model 1   p Z α ε  where    T

1 1 1rank dim m  Z Z α . For convenience, we 

continue to denote α , 1Z  and 1m  asχ , H  and m  (i.e., assuming such corrections have been made) unless indicated 

otherwise. 

The second way is to reconstruct a column full ranked identification Jacobian by correlation analysis of 

 
   H H H  where H  and H  are block matrices associated respectively with ξ  and η , as defined at Eq. (7). 

Note that  dim f ξ  and  dim m f  η  where f  is the number of the actuated joints. Since  rank f H  is 

always ensured at nonsingular configurations, a simple and straightforward algorithm of the reconstruction is proposed: 

Step 1: Let , jh  be the thj  ( 1,2, ,j m f  ) column vector of H  and let H  be the initial H ; 

Step 2: For every j , if    ,rank rank 1j
    H h H , then 

, j
   H H h . Otherwise, H  remains unchanged; 

Step 3: Let  rankm  H  and reconstruct B  in Eqs. (7) and (8) accordingly. 

An obvious advantage of the second approach is that the reconstructed H  remains in the form  
   H H H  such 

that a coarse calibration can be carried out by first identifying and compensating ξ  iteratively until the norm of its 

relative change is reduced below the level at which the linearized regression model becomes valid for estimating χ . In 

addition, note that H  reconstructed by either of two approaches is not unique, leading to a non-unique estimate for χ . 

However, this non-uniqueness does not affect the final results of pose error compensation because χ  will be estimated in 

such a way that enables the overall discrepancy between the predicted and observed pose errors to be minimized in a sense 

of least squares. 

4.2 Error parameter estimation  
As discussed in Section 3, it is convenient to let the polishing head undergo pure translation in the calibration pose 

measurement in order to avoid potential interruption of the laser beam. However, this restricted range of calibration poses 

may lead to problems of ill-conditioning arising from multicollinearity of the identification Jacobian, even though the 

column space of H  is now assumed to be full ranked. Mathematically, so-called multicollinearity means that at least two 

columns of H  are nearly linearly dependent. If so, χ  estimated by ordinary least squares (OLS) becomes very sensitive 

to measurement disturbance [40], which in turn affects the quality of pose error compensation at configurations that differ 

from the calibration ones. 

Liu-type estimators [34-37] are especially designed for dealing with multicollinearity of the identification Jacobian. This 

article employs the Liu estimator (LE) proposed in [34] to estimate the whole set of identifiable error parameters. LE is an 

improved version of OLS, featuring a single biasing parameter for modifying the regression coefficients via relaxing 

unbiasedness. For the particular problem, the estimate for χ  can be expressed as 

   
1

T Tˆ ˆ
L m d



     χ H H I H p χ                                                           (11) 

where subscript L indicates a Liu estimation, mI  is an m m  identity matrix and 0 1d   is a biasing parameter known as 

the Liu parameter which can be determined by the following process. 

In the light of spectral decomposition, let  



7 

Z HΦ , T= α Φ χ  with  T diag j Z Z Λ                                                (12) 

where  diag jΛ  is a diagonal matrix formed by the eigenvalues and Φ  is an orthogonal matrix formed by the 

corresponding eigenvectors of T
H H . It has been proved [34] that the mean square error of ˆ

Lα  for α  has the form 

 
 

 
 

 

2
2

22

2 2
1 1

ˆ
ˆ ˆMSE 1

1 1

m m
j j

L

j j
j j j

d
d

 


   

 
   

 
 α                                                (13) 

where 

  
T2 1

ˆ ˆˆ tr
n

        
 

p H χ p H χ ,  2 T Tˆ ˆ ˆ
j jj

   Φ χ χ Φ   

Then, the Liu parameter d  can be obtained explicitly by minimizing  ˆMSE Lα , which is equivalent to minimizing 

 ˆMSE Lχ  because ˆ ˆ  χ Φ α . Hence,  

   

2 2 2 2

2 2
1 1

ˆ ˆˆ ˆ

1 1

m m
i i i

i ii i i

d
    

   

   


 
                                                              (14) 

4.3 Pose error compensation 

With a column full ranked identification Jacobian to hand, kinematic calibration of the polishing hybrid robot can be 

implemented by successive coarse and fine calibrations. For the coarse calibration, the pose error twist induced by η  is 

treated as an additional ‘measurement disturbance’. This allows ξ  to be roughly estimated by OLS, requiring an iterative 

process because of the cut-off errors of linearization. The estimate after each iteration updates its nominal one until the 

relative change between two successive estimates is below a specified threshold, that is 

1ˆ ˆ ˆk k k   ξ ξ ξ  until 

1ˆ ˆ

ˆ

k k

k


  
  
  
 

ξ ξ

ξ
 with  

1
T Tˆk k

  



  ξ H H H p                      (15) 

where ˆk
ξ  and 

kp  denote the initial encode setting vector and the measured pose error vector in the thk  round of coarse 

calibration; and   denotes the specified threshold. It should be noted that the number of calibration nodes required for 

coarse calibration is much fewer than is required in the fine calibration because only ξ  needs to be identified. 

Note that it is difficult, if not impossible, to formulate an inverse kinematic model that contains all error parameters and 

to compensate pose error by correcting these parameters. So, starting with a satisfactory coarse calibration, the fine 

calibration is carried out by identifying χ  using LE and storing the estimate ˆ
Lχ  in the master computer of a CNC 

system. For the purpose of pose error compensation, the dataset of the polishing head created via rough interpolation of the 

nominal NC code is modified by the predicted pose error dataset generated using the same interpolation period, i.e. 

     0f f t $ $ $ , ˆ
t L B χ$                                                             (16) 

where  0f$  and  t$  are the nominal pose dataset and the predicted pose error dataset. Then  f$  can be converted into 

the command dataset of the actuated joints mξ  via the ideal inverse kinematics of the polishing robot. Fig. 4 shows the 

flowchart of the proposed two-step strategy for pose error compensation, where symbol 1F represents the ideal inverse 

displacement analysis.  

5 Verification 

Both simulations and experiments have been carried out on a hybrid polishing robot (see Fig. 5) to verify the 

effectiveness of the proposed calibration method. Particular interest is given here to examining the capability of LE over 

OLS in dealing with multicollinearity of the identification Jacobian. The nominal dimensions of the test robot are given in 

Table 1, resulting in a cuboid task workspace of 500 mm 500 mm 120 mm  . It uses a CNC system built upon an IPC + 

PMAC open architecture. 

Position data measurements for the calibration process used a LEICA AT901-LR laser tracker with the maximum 

observed deviation of 0.005 mm/m. As shown in Fig. 5, the workpiece frame  R  defined in Section 3 is established using 

the position data of three target points (the center of a sphere reflector) on a square gauge located at a corner of the magnetic 

worktable. Then the polishing head is moved to the reference pose defined in Section 3 via JOG operations and the encoder 

settings initialized. Prior to kinematic calibration, a repeatability test was conducted according to ISO9283 [42]. Each 

measurement was repeated thirty times and the mean value retained. The results showed that a volumetric position 

repeatability of 0.016 mm and a volumetric orientation repeatability of 0.010 deg can be achieved within the cuboid task 

workspace. For the coarse calibration, the polishing head was commanded to undergo pure translati on through  
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Table 1 Nominal dimensions of the hybrid robot (unit: mm). 

0, 1,i iA A  
4,4 6,4A A  

4,4 6,iA A  
6,4A Q  

0QP  
0P P  

0 iP P  minq  maxq  

350 345 135 405 120 250 200 628 1178 

minq and 
maxq  denote the minimum and maximum lengths of the UPS limbs  

 

 
 

 

 
Fig. 5 Experiment set-up for kinematic calibration of the hybrid polishing robot. 
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Fig. 4 The hierarchical strategy for error compensation. 
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5 5 25L L     nodes evenly spaced in the calibration layer (the middle layer) of the task workspace, resulting in 

9 25 225n     pose error measurements from the position data of three target points seated on the triangular gauge 

shown in Fig. 5. The positional accuracy of the target point seats relative to P  was tested by a CMM for precisely 

determining the positioning vector pointing from 
jP  to P . The measurement at each calibration pose was repeated three 

times and the mean value retained. Then, ξ  was estimated by OLS using the pose error dataset measured in the 

calibration layer and that estimate used to update the initial encoder settings until the relative change (see Eq. (15)) was 

below a threshold of 5%  . In order to examine the results of the coarse calibration, the pose error twist at each node in 

the calibration layer (the middle layer) and those in two test layers (the upper layer and the lower layer) were measured after 

the coarse calibration. Interpolated by cubic splines, Fig. 6 and Fig. 7 show the volumetric position and orientation error 

distributions of the polishing head in the calibration layer and one of the test layers (the lower layer). It can be seen that the 

ˆξ  estimated by OLS works well in predicting the pose errors in both calibration and test layers thanks to the 

well-conditioned H . This enables the maximum value of the position and orientation pose errors to be held below 0.170 

mm and 0.210 deg after the coarse calibrations. 

 

 
 

 
 

Before considering fine calibration, it is necessary to examine via simulation the robustness of the whole set of 

identifiable error parameters estimated by OLS and by LE. So, a skeleton CAD model of the robot has been built using 

SolidWorks, in which the all possible source errors are taken into account in such a way that their values match exactly 

those in the error model established in Section 2. This CAD model was used to simulate the measured pose errors by adding 

‘measurement disturbance’ in a Monte Carlo study. For the simulation, H  was reconstructed by the second method 

proposed in Section 4.1, resulting in 54 irreducible error parameters (see Table 2) out of 145 source errors. Here, we still 

use the symbolic notations in the Section 2 to denote the reduced parameters for simplicity. It can be seen from that limbs 2 

and 3 have the same irreducible parameters because the two limbs and the chosen measurement nodes share the same 

symmetry plane.  White noise with standard deviation of 0.005 mm was added to position error data points to simulate the  

 

Fig. 6 Pose error distributions in the calibration (middle) layer after the coarse calibration (a) position error (b) orientation error. 
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Fig. 7 Pose error distributions in the test (lower) layer after the coarse calibration (a) position error (b) orientation error. 
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Table 2 A set of irreducible parameters 

Limb ξ  0,iη  1,iη  2,iη  

1 ,3,1a  0,1 0,1 0,1, ,x y z    N/A 2,1 2,1,x z   

2 ,3,2a  0,2 0,2 0,2, ,x y z    N/A 2,2 2,2,x z   

3 ,3,3a  0,3 0,3 0,3, ,x y z    N/A 2,3 2,3,x z   

4 ,4,4 ,5,4 ,6,4, ,a a a     , 0,4η  N/A 2,4 2,4 2,4, ,x z     

Limb 3,iη  4,iη  5,iη  6,iη  

1 3,1 3,1,z    N/A N/A N/A 

2 3,2 3,2,z    N/A N/A 6,2 6,2,x z   

3 3,3 3,3,z    N/A N/A 6,3 6,3,x z   

4 3,4 3,4 3,4 3,4, , ,x z       4,4η  5,4 5,4 5,4, ,x z     6,4 6,4,y    

 

measurement disturbance. χ  was estimated repeatedly over 
410  runs by each of OLS and LE, using the simulated pose 

errors ‘measured’ at 7 7 49L L     evenly spaced nodes in each of two calibration layers (the upper and lower layers) 

of the task workspace. The relative robustness of two estimators against ‘measurement disturbance’ could then be 

evaluated by the index (reduction in stability against noise) 

 

 

ˆ
1 100%

ˆ

L




 
     

χ

χ
                                                                     (17) 

with 

   
1

ˆ ˆ
m

i

i

D 


  χ ,    ,

1

ˆ ˆ
m

L L i

i

D 


  χ                                                    (18) 

where  ˆ χ  is defined as the overall standard deviation of ˆχ  estimated by OLS, and  ˆ
L χ  is that of ˆ

Lχ  estimated 

by LE;  ˆ
iD   and  ,

ˆ
L iD   denote the standard deviation of the ith error parameter in ˆχ  and ˆ

Lχ , respectively. The 

simulation resulted in 63.9 %   for this particular problem, meaning that LE is indeed workable in dealing with the 

ill-conditioning arising from multicollinearity of the identification Jacobian. 

With the simulation providing confidence in the LE process and the coarse calibration completed, the fine calibration 

was carried out using the procedure addressed in Section 4.3, because the linearized regression model was then valid for 

estimating χ . For the fine calibration, the upper and lower layers were used as the calibration layers, while the middle 

layer was taken as the test layer. As shown in Tables 3 and 4, χ  was estimated by both OLS and LE using the position 

error data measured at 7 7 49L L     evenly spaced nodes in each of the two calibration layers. Pose error 

compensation was performed according to Eq. (16). Fig. 8 and Fig. 9 show the volumetric position and orientation error 

distributions of the polishing head in one of the calibration layers (the lower layer) and in the test layer. They show that 

following coarse calibration, the overall pose accuracy of the polishing head can be further improved by the use of either 

estimator. In the calibration layer, OLS and LE have similar capability for predicting and compensating the pose errors. 

However, in the test layer, LE behaves much better than OLS thanks to its robustness. Table 5 shows that compared with 

the coarse calibration, the maximum and mean values of the volumetric position/orientation errors of the polishing head 

can be reduced by as much as 44.6%/55.8% and 57.8%/37.0% when using OLS, whereas the use of LE delivers 

66.3%/75.2% and 63.9%/49.3%. Therefore, we can conclude with confidence that LE has a superior capability for 

predicting and thereby compensating pose errors at any configuration across the task workspace. It is worthwhile stressing 

again that due to the unmodeled source errors, measurement disturbance, and biased estimation by Liu estimator, the values 

of the estimated error parameters may differ from their true ones [40, 41]. Nevertheless, the estimate parameters enable the 

overall discrepancy between the predicted and observed pose errors is minimized, meaning that the discrepancy does not 

affect the final results of pose error compensation. 
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Table 3 Estimated parameters by OLS 

,3,1a  ,3,2a  ,3,3a  ,4,4a  ,5,4a  ,6,4a  
0,1x  0,1y  0,1z  2,1x  2,1z  

4.287 -9.286 -4.380 0.012 0.023 -0.026 -4.098 0.276 2.163 -0.762 2.071 

3,1z  3,1  0,2x  0,2y  0,2z  2,2x  2,2z  3,2z  3,2  6,2x  6,2z  

0.253 0.061 1.906 2.783 1.872 0.443 0.639 0.467 0.072 0.492 -0.517 

0,3x  0,3y  0,3z  2,3x  2,3z  3,3z  3,3  6,3x  6,3z  0,4x  0,4y  

-0.472 -4.963 0.173 0.871 -1.319 0.374 0.069 0.375 0.769 -0.175 -3.055 

0,4z  0,4  0,4  0,4  2,4x  2,4z  2,4  3,4x  3,4z  3,4  3,4  

1.782 0.112 0.063 -0.107 5.782 0.325 -0.036 0.027 0.012 0.216 -0.462 

4,4x  4,4y  4,4z  4,4  4,4  5,4x  5,4z  5,4  6,4y  6,4   

0.207 -2.876 3.879 -0.112 0.204 5.872 2.987 -0.408 3.683 0.309  

length unit: mm, angle unit: deg 

 

Table 4 Estimated parameters by LE 

,3,1a  ,3,2a  ,3,3a  ,4,4a  ,5,4a  ,6,4a  
0,1x  0,1y  0,1z  2,1x  2,1z  

1.364 -3.259 1.472 -0.020 0.014 0.108 1.982 -2.037 3.162 -0.325 2.485 

3,1z  3,1  0,2x  0,2y  0,2z  2,2x  2,2z  3,2z  3,2  6,2x  6,2z  

-0.367 0.035 2.196 -0.124 0.042 0.381 0.188 0.945 -0.063 2.957 -1.428 

0,3x  0,3y  0,3z  2,3x  2,3z  3,3z  3,3  6,3x  6,3z  0,4x  0,4y  

1.423 -0.407 -3.186 1.392 -0.915 0.624 -0.013 -1.376 0.527 -0.279 0.068 

0,4z  0,4  0,4  0,4  2,4x  2,4z  2,4  3,4x  3,4z  3,4  3,4  

0.461 0.040 0.028 0.121 2.531 0.615 0.030 0.781 0.284 -0.041 0.074 

4,4x  4,4y  4,4z  4,4  4,4  5,4x  5,4z  5,4  6,4y  6,4   

-0.313 0.426 0.881 -0.094 0.051 1.934 1.217 -0.053 -0.210 -0.104  

length unit: mm, angle unit: deg 

 

 
 

Fig.8 Pose error distributions in the calibration (lower) layer after the fine calibration (a) position error (b) orientation error. 
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Table 5 Pose errors after calibration in three measurement layers 

Pose error 
Maximum value Mean value 

Coarse OLS LE Coarse OLS LE 

Position/mm 0.166 0.092 0.056 0.083 0.035 0.030 

Orientation/deg 0.206 0.091 0.051 0.073 0.046 0.037 

6 Conclusions 

This paper has proposed and explored a systematic approach for the kinematic calibration of a 6-DOF hybrid robot 

developed for polishing aspheric lenses. This approach improves the calibration efficiency and accuracy by implementing 

two successive steps: (1) estimation of the encoder offsets by ordinary least squares (OLS) in an iterative manner until an 

overall linearized regression model becomes valid; and (2) estimation of the whole set of identifiable error parameters 

using a Liu estimator on the basis of a column full ranked identification Jacobian reconstructed by correlation analysis. For 

the prototype machine under investigation, simulation results confirm improved robustness against measurement 

disturbances by showing that the overall standard deviation of the whole set of identifiable error parameters estimated by 

LE is 63.9% smaller than that estimated by OLS. Experimental results demonstrate the effectiveness of the approach: 

following fine calibration the maximum value of the volumetric position and orientation errors of the polishing head can be 

reduced below 0.06 mm and 0.06 deg by LE in comparison with 0.10 mm and 0.10 deg by OLS throughout a task 

workspace of 500 mm 500 mm 120 mm  . 
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Appendix A 

This appendix develops the pose error twist produced by the joint structural errors in a serial kinematic chain, such as 

shown in Fig. A-1, which might be one limb of a parallel mechanism or an individual system such as a wrist. Without loss 

of generality, let  

, , ,

,

,

j i j i j i

j i

j i

     
  

R r R
A

R0
                                                                   (A-1) 

be the 6 6  adjoint transformation matrix, where ,j iR  denotes the 3 3  orientation matrix of  ,j iR  with respect to  0R  

and 
,j i

  r  is the 3 3  skew matrix of vector ,j ir  pointing from P  to ,j iA . The pose error twist produced by the 

structural errors in the ith limb of the parallel mechanism can be expressed by 
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j i
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g i j i j i j i n i i i
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 
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$                                        (A-2) 

Fig. 9 Pose error distributions in the test (middle) layer after the fine calibration (a) position error (b) orientation error. 
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with 

 
T

0, 0, 0, 0, 0, 0, 0,i i i i i i ix y z       η     

 
T

, , , , , , ,(1 )j i j i j i j i j i j i j ix y k z k        η    , 
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where 
,j ix , 

,j iy  and 
,j iz  (

,j i ,
,j i  and 

,j i ) denote the structural errors along (about) the 
,j ix , 

,j iy  and 
,j iz  axes 

of  ,j iR , except for the one along (about) a joint axis. For the hybrid polishing robot being considered, 

1 2 30,  6ij n n n     for the UPS limbs, and 40, 3ij n   for the UP limb of the parallel mechanism, giving 

T

,3,
ˆdiagPa wa i i
 
 

G A= $ ,  
T

T T T

1 2 3Pa    η η η η
                                  

(A-3) 

T

,1,4 ,2,4 ,3,4 4
ˆ ˆ ˆ

Pc wc wc wc
 
 

G A= $ $ $ , 
4Pc  η η
  

                                        (A-4) 

whereas 4ij  , 4 6n   for the wrist, so that 

4,4 5,4 6,4S
  G A A A= ,  

T
T T T

4,4 5,4 6,4S    η η η η                                    (A-5) 
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