
warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/111734

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/161938016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

ID2S Password-Authenticated Key Exchange
Protocols

Xun Yi, Fang-Yu Rao, Zahir Tari, Feng Hao, Elisa Bertino, Ibrahim Khalil and Albert Y. Zomaya

Abstract—In two-server password-authenticated key exchange (PAKE) protocol, a client splits its password and stores two shares of
its password in the two servers, respectively, and the two servers then cooperate to authenticate the client without knowing the
password of the client. In case one server is compromised by an adversary, the password of the client is required to remain secure. In
this paper, we present two compilers that transform any two-party PAKE protocol to a two-server PAKE protocol on the basis of the
identity-based cryptography, called ID2S PAKE protocol. By the compilers, we can construct ID2S PAKE protocols which achieve
implicit authentication. As long as the underlying two-party PAKE protocol and identity-based encryption or signature scheme have
provable security without random oracles, the ID2S PAKE protocols constructed by the compilers can be proven to be secure without
random oracles. Compared with the Katz et al.’s two-server PAKE protocol with provable security without random oracles, our ID2S
PAKE protocol can save from 22% to 66% of computation in each server.

Index Terms—Password-authenticated key exchange, identity-based encryption and signature, Diffie-Hellman key exchange,
decisional Diffie-Hellman problem

F

1 INTRODUCTION

TO secure communications between two parties, an au-
thenticated encryption key is required to agree on in

advance. So far, two models have existed for authenticated
key exchange. One model assumes that two parties already
share some cryptographically-strong information: either a
secret key which can be used for encryption/authentication
of messages, or a public key which can be used for encryp-
tion/signing of messages. These keys are random and hard
to remember. In practice, a user often keeps his keys in
a personal device protected by a password/PIN. Another
model assumes that users, without help of personal devices,
are only capable of storing “human-memorable” passwords.

Bellovin and Merritt [4] were the first to introduce
password-based authenticated key exchange (PAKE), where
two parties, based only on their knowledge of a password,
establish a cryptographic key by exchange of messages. A
PAKE protocol has to be immune to on-line and off-line dic-
tionary attacks. In an off-line dictionary attack, an adversary
exhaustively tries all possible passwords in a dictionary in
order to determine the password of the client on the basis
of the exchanged messages. In on-line dictionary attack, an
adversary simply attempts to login repeatedly, trying each
possible password. By cryptographic means only, none of
PAKE protocols can prevent on-line dictionary attacks. But
on-line attacks can be stopped simply by setting a threshold
to the number of login failures.

• Xun Yi, Zahir Tari and Ibrahim Khalil are with the School of Computer
Science and IT, RMIT University, Melbourne, Australia.

• Fang-Yu Rao and Elisa Bertino are with the Department of Computer
Science, Purdue University, USA.

• Feng Hao is with the School of Computing Science, Newcastle University,
UK.

• Albert Y. Zomaya is with the School of Information Technologies, Univer-
sity of Sydney, Australia.

Since Bellovin and Merritt [4] introduced the idea of
PAKE, numerous PAKE protocols have been proposed. In
general, there exist two kinds of PAKE settings, one assumes
that the password of the client is stored in a single server
and another assumes that the password of the client is
distributed in multiple servers.

PAKE protocols in the single-server setting can be classi-
fied into three categories as follows.
Password-only PAKE: Typical examples are the “encrypted
key exchange” (EKE) protocols given by Bellovin and Mer-
ritt [4], where two parties, who share a password, exchange
messages encrypted by the password, and establish a com-
mon secret key. The formal model of security for PAKE was
firstly given in [3], [8]. Based on the security model, PAKE
protocols [1], [2], [5], [10], [11], [16], [20], [22] have been
proposed and proved to be secure.
PKI-based PAKE: PKI-based PAKE protocol was first given
by Gong et al. [17], where the client stores the server’s
public key in addition to share a password with the server.
Halevi and Krawczyk [18] were the first to provide formal
definitions and rigorous proofs of security for PKI-based
PAKE.
ID-based PAKE: ID-based PAKE protocols were proposed
by Yi et al. [32], [33], where the client needs to remember a
password in addition to the identity of the server, whereas
the server keeps the password in addition to a private key
related to its identity. ID-based PAKE can be thought as a
trade-off between password-only and PKI-based PAKE.

In the single-server setting, all the passwords necessary
to authenticate clients are stored in a single server. If the
server is compromised, due to, for example, hacking or
even insider attacks, passwords stored in the server are
all disclosed. This is also true to Kerberos [12], where a
user authenticates against the authentication server with his
username and password and obtains a token to authenticate
against the service server.

2

To address this problem, the multi-server setting for
PAKE was first suggested in [15], [19], where the password
of the client is distributed in n servers. PAKE protocols in
the multi-server setting can be classified into two categories
as follows.
Threshold PAKE: The first PKI-based threshold PAKE pro-
tocol was given by Ford and Kaliski [15], where n severs,
sharing the password of the client, cooperate to authenticate
the client and establish independent session keys with the
client. As long as n − 1 or fewer servers are compromised,
their protocol remains secure. Jablon [19] gave a protocol
with similar functionality in the password-only setting.
MacKenzie et al. proposed a PKI-based threshold PAKE
protocol which requires only t out of n servers to cooperate
in order to authenticate the client. Their protocol remains
secure as long as t − 1 or fewer servers are compromised.
Di Raimondo and Gennaro [26] suggested a password-only
threshold PAKE protocol which requires fewer than 1/3 of
the servers to be compromised.
Two-server PAKE: Two-server PKI-based PAKE was first
given by Brainard [9], where two servers cooperate to au-
thenticate the client and the password remains secure if one
server is compromised. A variant of the protocol was later
proved to be secure in [27]. A two-server password-only
PAKE protocol was given by Katz et al. [23], in which two
servers symmetrically contribute to the authentication of the
client. The protocol in the server side can run in parallel.
Efficient protocols [21], [29], [30], [31] were later proposed,
where the front-end server authenticates the client with the
help of the back-end server and only the front-end server
establishes a session key with the client. These protocols are
asymmetric in the server side and have to run in sequence.
Yi et al. gave a symmetric solution [34] which is even
more efficient than asymmetric protocols [21], [29], [30], [31].
Recently, Yi et al. constructed an ID2S PAKE protocol with
the identity-based encryption scheme (IBE) [35].

In this paper, we will consider the two-server setting
for PAKE only. In two-server PAKE, a client splits its pass-
word and stores two shares of its password in the two
servers, respectively, and the two servers then cooperate to
authenticate the client without knowing the password of the
client. Even if one server is compromised, the attacker is still
unable to pretend any client to authenticate against another
server.

A typical example is the two-server PAKE protocol given
by Katz et al. [23], which is built upon the two-party PAKE
protocol (i.e., the KOY protocol [22]), where two parties,
who share a password, exchange messages to establish a
common secret key. Their basic two-server protocol is secure
against a passive (i.e., “honest-but-curious”) adversary who
has access to one of the servers throughout the protocol
execution, but cannot cause this server to deviate from its
prescribed behavior. In [23], Katz et al. also showed how
to modify their basic protocol so as to achieve security
against an active adversary who may cause a corrupted
server to deviate arbitrarily from the protocol. The core of
their protocol is the KOY protocol. The client looks like
running two KOY protocols with two servers in parallel.
However, each server must perform a total of roughly 80
exponentiations (i.e., each server’s work is increased by a
factor of roughly 6 as compared to the basic protocol [23]).

In [35], a security model for ID2S PAKE protocol was
given and a compiler that transforms any two-party PAKE
protocol to an ID2S PAKE protocol was proposed on the
basis of the Cramer-Shoup public key encryption scheme
[13] and any identity-based encryption scheme, such as the
Waters’ scheme [28].

Our Contribution. In this paper, we propose a new com-
piler for ID2S PAKE protocol based on any identity-based
signature scheme (IBS), such as the Paterson et al.’s scheme
[25]. The basic idea is: The client splits its password into two
shares and each server keeps one share of the password in
addition to a private key related to its identity for signing.
In key exchange, each server sends the client its public key
for encryption with its identity-based signature on it. The
signature can be verified by the client on the basis of the
identity of the server. If the signature is genuine, the client
submits to the server one share of the password encrypted
with the public key of the server. With the decryption keys,
both servers can derive the same one-time password, by
which the two servers can run a two-party PAKE protocol
to authenticate the client.

In addition, we generalize the compiler based on IBE in
[35] by replacing the Cramer-Shoup public key encryption
scheme with any public key encryption scheme. Unlike the
compiler based on IBS, the compiler based on IBE assumes
that each server has a private key related to its identity
for decryption. In key exchange, the client sends to each
server one share of the password encrypted according to
the identity of the server. In addition, a one-time public
key encryption scheme is used to protect the messages
(containing the password information) from the servers to
the client. The one-time public key is generated by the client
and sent to the servers along with the password information
in the first phase.

In the identity-based cryptography, the decryption key
or the signing key of a server is usually generated by a Pri-
vate Key Generator (PKG). Therefore the PKG can decrypt
any messages encrypted with the identity of the server or
sign any document on behalf of the server. As mentioned in
[7], using standard techniques from threshold cryptography,
the PKG can be distributed so that the master-key is never
available in a single location. Like [35], our strategy is to
employ multiple PKGs which cooperate to generate the
decryption key or the signing key for the server. As long
as one of the PKGs is honest to follow the protocol, the
decryption key or the signing key for the server is known
only to the server. Since we can assume that the two servers
in two-server PAKE never collude, we can also assume that
at least one of the PKGs do not collude with other PKGs.

Based on this assumption, we provide a rigorous proof
of security for our compilers. The two compilers do not
rely on the random oracle model as long as the underlying
primitives themselves do not rely on it. For example, by
using the KOY protocol [22] and the Paterson et al.’s IBS
scheme [25] and the Cramer-Shoup public key encryption
scheme [13], the compiler based on IBS can construct an
ID2S PAKE protocol with provable security in the standard
model. By using the KOY protocol [22] and the Waters IBE
scheme [28] and the Cramer-Shoup public key encryption
scheme [13], the compiler based on IBE can construct an

3

ID2S PAKE protocol with provable security in the standard
model.

We also compare our ID2S PAKE protocols with the
Katz et al.’s two-server PAKE protocol [23] with provable
security in the standard model. The Katz et al.’s protocol
is password-only, where the client needs to remember the
password only and refer to common public parameters,
and each server, having a public and private key pair, and
keeps a share of the password. Our protocols are identity-
based, where the client needs to remember the password in
addition to the meaningful identities of the two servers, and
refer to common public parameters, including the master
public key, and each server, having a private key related to
his identity, keeps a share of the password.

In terms of the setting and the client performance, the
Katz et al.’s protocol is superior to our protocols. How-
ever, in the Katz et al.’s protocol, each server performs
approximately six times the amount of the work as the KOY
protocol, whereas in our protocols, each server performs the
same amount of work as the KOY protocol in addition to
one identity-based decryption (or signature) and one public
key encryption (or decryption).

We have implemented our ID2S PAKE protocols. Our
experiments show that our protocols save from 22% to
66% of computation in each server, compared with the
Katz et al.’s protocol. The server performance is critical to
the performance of the whole protocol when the servers
provide services to a great number of clients concurrently.
In addition, our experiments show that less than one second
is needed for the client to execute our protocols.
Organization. In Section 2, we describe the security model
for ID2S PAKE protocol given in [35]. In Section 3, we
present our new ID2S PAKE compilers. After that, in Section
4, a rigorous proof of security for our protocols is provided.
In Section 5, we analyze the performance of our protocols
and compare them with the Katz’s protocol by experiments.
We conclude this paper in Section 6.

2 DEFINITIONS

A formal model of security for two-server PAKE was given
by Katz et al. [23] (based on the MacKenzie et al.’s model
for PKI-based PAKE [24]). Boneh and Franklin [7] defined
chosen ciphertext security for IBE under chosen identity
attack. Combining the two models, a model for ID2S PAKE
protocol was given in [35] and can be described as follows.
Participants, Initialization and Passwords. An ID2S PAKE
protocol involves three kinds of protocol participants: (1)
A set of clients (denoted as Client), each of which requests
services from servers on the network; (2) A set of servers
(denoted as Server), each of which provides services to
clients on the network; (3) A group of Private Key Gener-
ators (PKGs), which generate public parameters and corre-
sponding private keys for servers.

We assume that ClientServerTriple is the set of triples
of the client and two servers, where the client is au-
thorized to use services provided by the two servers,
Client

⋂
Server = ∅, User = Client

⋃
Server, any PKG 6∈

User, and ClientServerTriple ⊆ Client× Server × Server.
Prior to any execution of the protocol, we assume that an

initialization phase occurs. During initialization, the PKGs

cooperate to generate public parameters for the protocol,
which are available to all participants, and private keys for
servers, which are given to the appropriate servers. The user
may keep the public parameter in a personal device, such as
a smart card or a USB flash drive. When the PKGs generate
the private key for a server, each PKG generates and sends
a private key component to the server via a secure channel.
The server then derives its private key by combining all
private key components from all PKGs. We assume that
at least one of PKGs is honest to follow the protocol.
Therefore, the private key of the server is known to the
server only.

For any triple (C,A,B) ∈ ClientServerTriple, we as-
sume that the client C chooses its password pwC inde-
pendently and uniformly at random from a “dictionary”
D = {pw1, pw2, · · · , pwN} of size N , where D ⊂ Zq , N
is a fixed constant which is independent of any security
parameter, and q is a large prime. The password is then
split into two shares pwC,A and pwC,B and stored at the
two servers A and B, respectively, for authentication. We
assume that the two servers never collude to determine
the password of the client. The client C needs to remember
pwC to log into the servers A and B.

For simplicity, we assume that each client C shares its
password pwC with exactly two servers A and B. In this
case, we say that servers A and B are associated with C . A
server may be associated with multiple clients.

Execution of the Protocol. In the real world, a protocol
determines how users behave in response to input from
their environments. In the formal model, these inputs are
provided by the adversary. Each user is assumed to be
able to execute the protocol multiple times (possibly concur-
rently) with different partners. This is modeled by allowing
each user to have unlimited number of instances (please
refer to [3]) with which to execute the protocol. We denote
instance i of user U as U i. A given instance may be used
only once. The adversary is given oracle access to these
different instances. Furthermore, each instance maintains
(local) state which is updated during the course of the
experiment. In particular, each instanceU i is associated with
the following variables, initialized as NULL or FALSE (as
appropriate) during the initialization phase.

— sidiU , pid
i
U and skiU are variables containing the session

identity, partner identity, and session key for an instance U i,
respectively. Computation of the session key is, of course,
the ultimate goal of the protocol. The session identity is
simply a way to keep track of the different executions of
a particular user U . Without loss of generality, we simply let
this be the (ordered) concatenation of all messages sent and
received by instance U i. The partner identity denotes the
identity of the user with whom U i believes it is interacting.
For a client C , skiC consists of a pair (skiC,A, sk

i
C,B), which

are the two keys shared with servers A and B, respectively.
— acciU and termi

U are boolean variables denoting whether
a given instance U i has been accepted or terminated, re-
spectively. Termination means that the given instance has
done receiving and sending messages, acceptance indicates
successful termination. In our case, acceptance means that
the instance is sure that it has established a session key with
its intended partner; thus, when an instance U i has been

4

accepted, sidiU , pidiU and skiU are no longer NULL.
— stateiU records any state necessary for execution of the
protocol by U i.
— usediU is a boolean variable denoting whether an instance
U i has begun executing the protocol. This is a formalism
which will ensure each instance is used only once.

The adversary A is assumed to have complete control
over all communications in the network (between the clients
and servers, and between servers and servers) and the
adversary’s interaction with the users (more specifically,
with various instances) is modelled via access to oracles.
The state of an instance may be updated during an oracle
call, and the oracle’s output may depend upon the relevant
instance. The oracle types include:

— Send(C, i, A,B,M) – This sends message M to a client
instance Ci, supposedly from two servers A and B. As-
suming termi

C = FALSE, this instance runs according to
the protocol specification, updating state as appropriate.
The output of Ci (i.e., the message sent by the instance) is
given to the adversary, who receives the updated values of
sidiC , pid

i
C , acc

i
C , and termi

C . This oracle call models the ac-
tive attack to a protocol. If M is empty, this query represents
a prompt for C to initiate the protocol.
— Send(S, i, U,M) – This sends message M to a server
instance Si, supposedly from a user U (either a client or
a server). Assuming termi

S = FALSE, this instance runs
according to the protocol specification, updating state as
appropriate. The output of Si (i.e., the message sent by the
instance) is given to the adversary, who receives the updated
values of sidiS , pid

i
S , acc

i
S , and termi

S . If S is corrupted, the
adversary also receives the entire internal state of S. This
oracle call also models the active attack to a protocol.
— Execute(C, i, A, j, B, k) – If the client instance Ci and
the server instances Aj and Bk have not yet been used
(where (C,A,B) ∈ ClientServerTriple), this oracle executes
the protocol between these instances and outputs the tran-
script of this execution. This oracle call represents passive
eavesdropping of a protocol execution. In addition to the
transcript, the adversary receives the values of sid, pid, acc,
and term for client and server instances, at each step of
protocol execution. In addition, if S ∈ {A,B} is corrupted,
the adversary is given the entire internal state of S.
— Corrupt(S) – This sends the private key of the server S in
addition to all password information stored in the server S
to the adversary. This oracle models possible compromising
of a server due to, for example, hacking into the server.
— Corrupt(C) – This query allows the adversary to learn
the password of the client C , which models the possibility
of subverting a client by, for example, witnessing a user
typing in his password, or installing a “Trojan horse” on
his machine.
— Reveal(U,U ′, i) – This outputs the current value of
session key skiU,U ′ held by instance U i if acciU = TRUE,
where U ′ ∈ pidiU . This oracle call models possible leakages
of session keys due to, for example, improper erasure of
session keys after use, compromise of a host computer, or
cryptanalysis.
— Test(U,U ′, i) – This oracle does not model any real-world
capability of the adversary, but is instead used to define
security. Assume U ′ ∈ pidiU , if acciU = TRUE, a random bit

b is generated. If b = 0, the adversary is given skiU,U ′ , and
if b = 1 the adversary is given a random session key. The
adversary is allowed only a single Test query, at any time
during its execution.

Partnering. Let (C,A,B) ∈ ClientServerTriple. For the client
instance Ci, let sidiC = (sidiC,A, sid

i
C,B), where sidiC,A (resp.,

sidiC,B) denotes the ordered sequence of messages sent to /
from the client C and the server A (resp., server B). For the
server instance Aj , let sidjA = (sidjA,C , sid

j
A,B), where sidjA,C

denotes the ordered sequence of messages sent to / from the
server A and the client C , and sidjA,B denotes the ordered
sequence of message sent to / from the server A and the
server B. We say that instances Ci and Aj are partnered if
(1) sidiC,A = sidjA,C 6= NULL and (2) A ∈ pidiC and C ∈
pidjA. We say that instances Aj and Bk are partnered if (1)
sidjA,B = sidkB,A 6= NULL and (2) A ∈ pidkB and B ∈ pidjA.

Correctness. To be viable, a key exchange protocol must sat-
isfy the following notion of correctness: If a client instance
Ci and server instances Aj and Bk run an honest execution
of the protocol with no interference from the adversary,
then acciC = accjA = acckB = TRUE, and skiC,A = skjA,C ,
skiC,B = skkB,C and skiC,A 6= skiC,B . Note that a correct
protocol may not be secure. The security of a protocol is
defined as follows.

Freshness. To formally define the adversary’s success we
need to define a notion of freshness for a session key, where
freshness of a key is meant to indicate that the adversary
does not trivially know the value of the session key. We say
a session key skiU,U ′ is fresh if (1) both U and U ′ are not
corrupted; (2) the adversary never queried Reveal(U,U ′, i);
(3) the adversary never queried Reveal(U ′, U, j) where U i

and U ′j are partnered.

Advantage of the Adversary. Informally, the adversary
succeeds if it can guess the bit b used by the Test oracle.
We say an adversary A succeeds if it makes a single query
Test(U,U ′, i) to a fresh instance U i, with acciU = TRUE at
the time of this query, and outputs a single bit b′ with b′ = b
(recall that b is the bit chosen by the Test oracle). We denote
this event by Succ. The advantage of adversary A in attack-
ing protocol P is then given by AdvPA(k) = 2 · Pr[Succ]− 1,
where the probability is taken over the random coins used
by the adversary and the random coins used during the
course of the experiment (including the initialization phase).

An adversary can always succeed by trying all pass-
words one-by-one in an on-line impersonation attack. A
protocol is secure if this is the best an adversary can do.
The on-line attacks correspond to Send queries. Formally,
each instance for which the adversary has made a Send
query counts as one on-line attack. Instances with which the
adversary interacts via Execute are not counted as on-line
attacks. The number of on-line attacks represents a bound on
the number of passwords the adversary could have tested
in an on-line fashion.

Definition 1. Protocol P is a secure ID2S PAKE protocol
if, for all dictionary size N and for all PPT adversaries A
making at mostQ(k) on-line attacks, there exists a negligible
function ε(·) such that AdvPA(k) ≤ Q(k)/N + ε(k).

5

3 ID2S PAKE PROTOCOLS

In this section, we present two compilers transforming any
two-party PAKE protocol P to an ID2S PAKE protocol P ′

with identity-based cryptography. The first compiler is built
on identity-based signature (IBS) and the second compiler is
based on identity-based encryption (IBE).

3.1 ID2S PAKE Based on IBS
3.1.1 Protocol Description
We need an identity-based signature scheme (IBS) as our
cryptographic building block. A high-level description of
our compiler is given in Fig. 1, in which the client C and
two servers A and B establish two authenticated keys,
respectively. If we remove authentication elements from
our compiler, our key exchange protocol is essentially the
Diffie-Hellman key exchange protocol [14]. We present the
protocol by describing initialization and execution.
Initialization. Given a security parameter k ∈ N (the set of
all natural number), the initialization includes:
Parameter Generation: On input k, (1) m PKGs cooperate
to run SetupP of the two-party PAKE protocol P to gen-
erate system parameters, denoted as paramsP. (2) m PKGs
cooperate to run SetupIBS of the IBS scheme to generate
public system parameters for the IBS scheme, denoted as
paramsIBS (including a subgroup G of the additive group
of points of an elliptic curve), and the secret master-keyIBS.
(3) m PKGs choose a public key encryption scheme E,
e.g., [13], whose plaintext group is a large cyclic group G
with a prime order q and a generator g and select two
hash functions, H1 : {0, 1}∗ → Z∗n, where n is the order
of G, and H2 : {0, 1}∗ → Z∗q , from a collision-resistant
hash family. The public system parameters for the protocol
P ′ is params = paramsP,IBS,E

⋃
{(G, q, g), (H1, H2)} and

the secret master-keyIBS is secretly shared by the PKGs in
a manner that any coalition of PKGs cannot determine
master-keyIBS as long as one of the PKGs is honest to follow
the protocol.
Remark. Taking the Paterson-Schuldt IBS scheme [25] for
example, m PKGs agree on randomly chosen G,G2 ∈ G and
each PKG randomly chooses αi ∈ Zp and broadcast Gαi

with a zero-knowledge proof of knowing αi and a signature.
Then we can set G1 = G

∑
i αi as the public master key and

the secret master-keyIBS = G
∑

i αi

2 . The secret master key is
privately shared among m PKGs and unknown to anyone
even if m− 1 PKGs maliciously collude.
Key Generation: On input the identity S of a server S ∈
Server, paramsIBS, and the secret sharing master-keyIBS,
PKGs cooperate to run ExtractIBS of the IBS scheme and
generate a private (signing) key for S, denoted as dS , in a
manner that any coalition of PKGs cannot determine dS as
long as one of the PKGs is honest to follow the protocol.
Remark. In the Paterson-Schuldt IBS scheme with m PKGs ,
each PKG computes one component of the private key for a
server S, i.e., (Gαi

2 H(S)ri ,Gri), where H is the Waters’ hash
function, and sends it to the server via a secure channel.
Combining all components, the server can construct its pri-
vate key dS = (G

∑
i αi

2 H(S)
∑

i ri ,G
∑

i ri), which is known
to the server only even if m−1 PKGs maliciously collude. In

addition, the identity of a server is public, meaningful, like
an e-mail address, and easy to remember or keep. Anyone
can write down the identity of a server on a note.
Password Generation: On input a triple (C,A,B) ∈ Client
ServerTriple, a string pwC , the password, is uniformly drawn
from the dictionary D = {pw1, pw2, · · · , pwN} by the client
C , and randomly split into pwC,A and pwC,B such that
pwC,A+pwC,B = pwC(mod q). g

pwC,A and gpwC,B are stored
in the servers A and B, respectively. We implicitly assume
that N < min(n, q), which will certainly be true in practice.
Protocol Execution. Given a triple (C,A,B) ∈ Client
ServerTriple, the client C (knowing its password pwC) runs
the protocol P ′ with the two servers A (knowing gpwC,A and
its private key dA) and B (knowing gpwC,B and its private
key dB) to establish two session keys, respectively, as shown
in Fig. 1.

At first, the client C randomly chooses an integer rc from
Z∗q and computes Wc = grc and broadcasts msg = 〈C,Wc〉
to the servers A and B.
Remark. To facilitate the communications between the client
and two servers, a gateway may be used to forward mes-
sages between the client and the two servers. In this case,
the client needs to communicate with the gateway only.

After receiving msg from the client, the server X (either
A or B) randomly generates a public and private key pair
(pkx, skx) (where x is either a or b) for the public key
encryption scheme E, and randomly chooses an integer rx
from Z∗q and computes

Wx = grx , hx = H1(X,Wx, C,Wx, pkx), Sx = Sign(hx, dX)

where Sx denotes an identity-based signature of X on hx.
Then the server X replies to the client C with msgX =
〈X,Wx, pkx, Sx〉.
Remark. The public and private key pair for the public key
encryption scheme E can be generated once only and used
repeatedly.

When getting the responses msgA,msgB from the
servers A and B, the client C computes

h′a = H1(A,Wa, C,Wc, pka), h
′
b = H1(B,Wb, C,Wc, pkb)

and verifies the two signatures Sa, Sb on the basis of the
identities of the servers A and B. If

(Verify(h′a, Sa, A) = TRUE) ∧ (Verify(h′b, Sb, B) = TRUE)

the client C sets accC = TRUE and computes two session
keys skC,A =W rc

a , skC,B =W rc
b .

Furthermore, the client C randomly chooses pw1 from
Z∗q and computes

pw2 = pwC − pw1(mod q)

h1 = H2(C,Wc, A,Wa), h2 = H2(C,Wc, B,Wb).

Next, according to the public keys pka, pkb from the servers
A and B, the client C performs the public key encryptions

Ea = E(gpw1h
−1
1 , pka), Eb = E(gpw2h

−1
2 , pkb)

where E denotes the encryption algorithm. Then, the client
sends msg1 = 〈C,Ea〉 and msg2 = 〈C,Eb〉 to the two
servers A and B, respectively.

6

Public: P, IBS,E, (G, q, g), H1, H2

Client C

pwC

(= pwC,A + pwC,B(mod q))

Server A

(gpwC,A , dA)

Server B

(gpwC,B , dB)

rc
R← Z∗q

Wc = grc -
msg = 〈C,Wc〉

-
msg = 〈C,Wc〉

ra
R← Z∗q , (pka, ska)

R← KGE(1k)

Wa = gra

ha = H1(A,Wa, C,Wc, pka)

Sa = Sign(ha, dA)

rb
R← Z∗q , (pkb, skb)

R← KGE(1k)

Wb = grb

hb = H1(B,Wb, C,Wc, pkb)

Sb = Sign(hb, dB)

�
msgA = 〈A,Wa, pka, Sa〉

�
msgB = 〈B,Wb, pkb, Sb〉

h′a = H1(A,Wa, C,Wc, pka)

h′b = H1(B,Wb, C,Wc, pkb)

if {(Verify(h′a, Sa, A) = TRUE) ∧ (Verify(h′b, Sb, B) = TRUE)}

accC = TRUE

skC,A = W rc
a , skC,B = W rc

b

pw1
R← Z∗q

pw2 = pwC − pw1(mod q)

h1 = H2(C,Wc, A,Wa)

h2 = H2(C,Wc, B,Wb)

Ea = E(gpw1h
−1
1 , pka)

Eb = E(gpw2h
−1
2 , pkb)

else return ⊥

-
msg1 = 〈C,Ea〉

-
msg2 = 〈C,Eb〉

h′1 = H2(C,Wc, A,Wa)

ωa = D(Ea, ska)h
′
1/gpwC,A

= gpw1−pwC,A

if accPA = TRUE

accA = TRUE

skA,C = W ra
c

else return ⊥

h′2 = H2(C,Wc, B,Wb)

ωb = gpwC,B/D(Eb, skb)
h′2

= gpwC,B−pw2

if accPB = TRUE

accB = TRUE

skB,C = W
rb
c

else return ⊥

-�
P (ωa, ωb)

Fig. 1. ID2S PAKE protocol P ′ based on IBS

7

After receiving msg1 from C , the server A computes

h′1 = H2(C,Wc, A,Wa), ωa = D(Ea, ska)
h′1/gpwC,A ,

where D denotes the decryption algorithm.
After receiving msg2 from C , the server B computes

h′2 = H2(C,Wc, B,Wb), ωb = gpwC,B/D(Eb, skb)
h′2 .

Because pwC = pwC,A+pwC,B(mod q) and pwC = pw1+
pw2(mod q), we have ωa = gpw1−pwC,A = gpwC,B−pw2 = ωb.

Using ωa and ωb as one-time password, the servers A
and B run a two-party PAKE protocol P to establish a
session key. If the server A accepts the session key as an
authenticated key according to P (i.e., accPA = TRUE), the
server A sets accA = TRUE and computes the session key
skA,C = W ra

c . If the server B accepts the session key as an
authenticated key according to P (i.e., accPB = TRUE), the
server B sets accB = TRUE and computes the session key
skB,C =W rb

c .

3.1.2 Correctness
Assume that a client instance Ci and server instances Aj

and Bk run an honest execution of the protocol P ′ with no
interference from the adversary and the two-party PAKE P
has the correctness property.

With reference to Fig. 1, we have h′a = ha, h
′
b = hb and

the signatures are genuine. Therefore, the client C computes
two session keys, i.e., skC,A = W rc

a , skC,B = W rc
b , and lets

acciC = TRUE.
With reference to Fig. 1, the server instances Aj and Bk

are able to derive the same one-time password ωa (= ωb).
Because P has the correctness property, after running P
based on ωa and ωb, the server instances Aj and Bk accept
the established session key as an authenticated key. This
indicates that the client C has provided a correct password
pwC . Next, the server instances Aj and Bk compute the
session keys with the client C , i.e., skA,C = W ra

c and
skB,C =W rb

c , and let accjA = TRUE and acckB = TRUE.
Since Wc = grc ,Wa = gra ,Wb = grb , we have

skC,A = W rc
a = grarc = W ra

c = skA,C and skC,B = W rc
b =

grbrc =W rb
c = skB,C . In addition, because ra, rb are chosen

randomly, the probability of skC,A = skC,B is negligible.
Therefore, our protocol has the correctness property.

3.1.3 Explicit Authentication
By verifying the signatures Sa, Sb with the identities of the
serversA andB, the clientC can make sure that its intended
servers A and B are authentic and the computed session
keys skC,A =W rc

a , skC,B =W rc
b are authentic.

By running the two-party PAKE protocol P based on
wa (derived by pwC,A) and wb (derived by pwC,B), the
two servers A and B can verify if the client C provides a
password pwC such that pwC = pwC,A + pwC,B(mod q).
This shows that when accjA = TRUE, the server A knows
that its intended client C and server B are authentic. Our
protocol achieves the implicit authentication. Using the hash
function like [6], [35], however, it is easy to add explicit
authentication to any protocol achieving implicit authenti-
cation.
Remark. After the execution of our protocol, the password
in the client cache must be deleted like SSL-based Internet
banking.

3.2 ID2S PAKE Based on IBE
3.2.1 Protocol Description
A high-level description of our compiler based on identity-
based encryption (IBE) is given in Fig. 2. We present the
protocol by describing initialization and execution.
Initialization. Given a security parameter k ∈ N, the initial-
ization includes:
Parameter Generation: On input k, (1) m PKGs cooperate
to run SetupP of the two-party PAKE protocol P to generate
system parameters, denoted as paramsP. (2)m PKGs cooper-
ate to run SetupIBE of the IBE scheme to generate public sys-
tem parameters for the IBE scheme, denoted as paramsIBE,
and the secret master-keyIBE. Assume that G is a generator of
IBE plaintext group G with an order n. (3) m PKGs choose a
public key encryption scheme E, e.g., [13], whose plaintext
group is a large cyclic group G with a prime order q and a
generator g and select two hash functions, H1 : {0, 1}∗ →
Z∗n and H2 : {0, 1}∗ → Z∗q , from a collision-resistant hash
family. The public system parameters for the protocol P ′

is params = paramsP,IBE,E
⋃
{(G,G, n), (G, q, g), (H1, H2)}

and the secret master-keyIBE is secretly shared by the PKGs
in a manner that any coalition of PKGs cannot determine
master-keyIBE as long as one of the PKGs is honest to follow
the protocol.
Key Generation: On input the identity S of a server S ∈
Server, paramsIBE, and the secret sharing master-keyIBE,
PKGs cooperate to run ExtractIBE of the IBE scheme and
generate a private (decryption) key for S, denoted as dS , in
a manner that any coalition of PKGs cannot determine dS as
long as one of the PKGs is honest to follow the protocol.
Password Generation: On input a triple (C,A,B) ∈ Client
ServerTriple, a string pwC , the password, is uniformly drawn
from the dictionary D = {pw1, pw2, · · · , pwN} by the client
C , and randomly split into pwC,A and pwC,B such that
pwC,A + pwC,B = pwC(mod n), and pw∗C,A and pw∗C,B such
that pw∗C,A + pw∗C,B = pwC(mod q). (GpwC,A , gpw

∗
C,A) and

(GpwC,B , gpw
∗
C,B) are stored in severs A and B, respectively.

We implicitly assume that N < min(n, q), which will
certainly be true in practice.
Protocol Execution. Given a triple (C,A,B) ∈ Client
ServerTriple, the client C (knowing its password pwC) runs
the protocol P ′ with the two servers A (knowing GpwC,A ,
gpw

∗
C,A and its private key dA) and B (knowing GpwC,B ,

gpw
∗
C,B and its private key dB) to establish two session keys,

respectively, as shown in Fig. 2.
At first, the client randomly chooses pw1 from Z∗n and

computes pw2 = pwC − pw1(mod n). Next the client C
randomly generates a one-time public and private key pair
(pk, sk) for the public key encryption scheme E, and ran-
domly chooses an integer rc from Z∗q and computes

Wc = grc , h = H1(C,Wc, pk).

Next, according to the identities of the two serversA and
B, the client C performs the identity-based encryptions

Ea = IBE(Gpw1h
−1

, A), Eb = IBE(Gpw2h
−1

, B).

Then, the client sends msg1 = 〈C,Wc, pk, Ea〉 and
msg2 = 〈C,Wc, pk, Eb〉 to the two servers A and B, respec-
tively.

8

Public: P, IBE,E, (G,G, n), (G, q, g), H1, H2

Client C

pwC

(= pwC,A + pwC,B(mod n))

(= pw∗C,A + pw∗C,B(mod q))

Server A

(GpwC,A , gpw
∗
C,A , dA)

Server B

(GpwC,B , gpw
∗
C,B , dB)

pw1
R← Z∗n

pw2 = pwC − pw1(mod n)

rc
R← Z∗q , (pk, sk)

R← KGE(1k)

Wc = grc

h = H1(C,Wc, pk)

Ea = IBE(Gpw1h
−1

, A)

Eb = IBE(Gpw2h
−1

, B)

-
msg1 = 〈C,Wc, pk, Ea〉

-
msg2 = 〈C,Wc, pk, Eb〉

h′ = H1(C,Wc, pk)

ωa = IBD(Ea, dA)h
′
/GpwC,A

= Gpw1−pwC,A

if accPA = TRUE

ra
R← Z∗q

Wa = gra

ha = H2(A,Wa, C,Wc)

E′a = E(gpw
∗
C,Ah−1

a , pk)

accA = TRUE

skA,C = W ra
c

else return ⊥

h′ = H1(C,Wc, pk)

ωb = GpwC,B/IBD(Eb, dB)h
′

= GpwC,B−pw2

if accPB = TRUE

rb
R← Z∗q

Wb = grb

hb = H2(B,Wb, C,Wc)

E′b = E(gpw
∗
C,Bh−1

b , pk)

accB = TRUE

skB,C = W
rb
c

else return ⊥

-�
P (ωa, ωb)

�
msgA = 〈A,Wa, E′a〉

�
msgB = 〈B,Wb, E

′
b〉

h′a = H2(A,Wa, C,Wc)

h′b = H2(B,Wb, C,Wc)

if {(D(E′a, sk)
h′aD(E′b, sk)

h′b = gpwC }

accC = TRUE

skC,A = W rc
a , skC,B = W rc

b

else return ⊥

Fig. 2. ID2S PAKE protocol P ′ based on IBE

9

After receiving msg1 from C , the server A computes

h′ = H1(C,Wc, pk), ωa = IBD(Ea, dA)
h′/GpwC,A ,

where IBD denotes identity-based decryption.
After receiving msg2 from C , the server B computes

h′ = H1(C,Wc, pk), ωb = GpwC,B/IBD(Ea, dB)
h′ ,

Because pwC = pwC,A + pwC,B(mod n) and pwC =
pw1 + pw2(mod n), we have ωa = Gpw1−pwC,A =
GpwC,B−pw2 = ωb.

Using ωa and ωb as one-time password, the servers A
and B run a two-party PAKE protocol P to establish a
session key. If the server X (either A or B) accepts the
session key as an authenticated key according to P (i.e.,
accPX = TRUE), it randomly chooses an integer rx (where x
is either a or b) from Z∗q and computes

Wx = grx , hx = H2(X,Wx, C,Wc),

E′x = E(gpw
∗
C,Xh

−1
x , pk), skX,C =W rx

c

where skX,C is the session key between X and C and E′x is
the encryption of gpw

∗
C,Xh

−1
x . Then the server X sets accX =

TRUE and replies to the client C with msgX = 〈X,Wx, E
′
x〉.

Finally, after receiving msgA and msgB , C computes

h′a = H2(A,Wa, C,Wc), h
′
b = H2(B,Wb, C,Wc),

and check if D(E1, sk)
h′aD(E2, sk)

h′b = gpwC . If so, the
client C sets accC = TRUE and computes two session keys
skC,A =W rc

a , skC,B =W rc
b .

Remark. Our IBE-based protocol needs less rounds of com-
munication than our IBS-based protocol. This can be seen
by comparing Fig. 1 and Fig. 2.

3.2.2 Correctness
Assume that a client instance Ci and server instances Aj

and Bk run an honest execution of the protocol P ′ with no
interference from the adversary and the two-party PAKE P
has the correctness property.

With reference to Fig. 2, the server instances Aj and Bk

are able to derive the same one-time password ωa (= ωb).
Because P has the correctness property, after running P
based on ωa and ωb, the server instances Aj and Bk accept
the established session key as an authenticated key. This
indicates that the client C has provided a correct password
pwC . Next, the server instances Aj and Bk compute the
session keys with the client C , i.e., skA,C = W ra

c and
skB,C =W rb

c , and let accjA = TRUE and acckB = TRUE.
With reference to Fig. 2, we have h′a = ha, h

′
b = hb, and

D(E1, sk)
h′1D(E2, sk)

h′b = (gpw
∗
C,Ah

−1
a)h

′
a(gpw

∗
C,Bh

−1
b)h

′
b

= gpw
∗
C,A+pw∗C,B = gpwC

Therefore, the client instance Ci computes two session keys,
i.e., skC,A = W rc

a , skC,B = W rc
b , and lets acciC = TRUE.

Since Wc = grc ,Wa = gra ,Wb = grb , we have skC,A =
W rc
a = grarc = W ra

c = skA,C and skC,B = W rc
b =

grbrc =W rb
c = skB,C . In addition, because ra, rb are chosen

randomly, the probability of skC,A = skC,B is negligible.
Therefore, our protocol has the correctness property.

3.2.3 Explicit Authentication
By running the two-party PAKE protocol P based on wa
(derived by pwC,A) and wb (derived by pwC,B), the two
servers A and B can verify if the client C provides a
password pwC such that pwC = pwC,A + pwC,B(mod n). In
addition, by checking that D(E1, sk)

h′aD(E2, sk)
h′b = gpwC

(involving pwC), the client C can verify if the two servers
provide two shares of the password, pw∗C,A and pw∗C,B , such
that pwC = pw∗C,A + pw∗C,B(mod q). This shows that when
accjA = TRUE, the server A knows that its intended client
C and server B are authentic, and when acciC = TRUE,
the client C knows that its intended servers A and B are
authentic. Our protocol achieves the implicit authentication.
Using the hash function like [6], [35], however, it is easy
to add explicit authentication to any protocol achieving
implicit authentication.

4 PROOF OF SECURITY

Based on the security model defined in Section 2, we pro-
vide a rigorous proof of security for our compilers in this
section.

4.1 Security of ID2S PAKE Protocol Based on IBS

Theorem 1. Assuming that (1) the identity-based signature
(IBS) scheme is existentially unforgeable under an adap-
tive chosen-message attack; (2) the public key encryption
scheme E is secure against the chosen-ciphertext attack; (3)
the decisional Diffie-Hellman problem is hard over (G, g, q);
(4) the protocol P is a secure two-party PAKE protocol with
explicit authentication; (5) H1, H2 are collision-resistant
hash functions, then the protocol P ′ illustrated in Fig. 1 is a
secure ID2S PAKE protocol according to Definition 1.
Proof. Given an adversary A attacking the protocol, we
imagine a simulator S that runs the protocol for A.

First of all, the simulator S initializes the system by
generating params = paramsP,IBS,E

⋃
{(G, q, g), (H1, H2)}

and the secret master-keyIBS. Next, Client, Server, and Client
ServerTriple sets are determined. Passwords for clients are
chosen at random and split, and then stored at correspond-
ing servers. Private keys for servers are computed using
master-keyIBS.

The public information is provided to the adversary.
Considering (C,A,B) ∈ ClinetServerTriple, we assume that
the adversary A chooses the server B to corrupt and the
simulator S gives the adversary A the information held by
the corrupted server B, including the private key of the
server B, i.e., dB , and one share of the password of the
client C , gpwC,B . After computing the appropriate answer to
any oracle query, the simulator S provides the adversary A
with the internal state of the corrupted server B involved in
the query.

We view the adversary’s queries to its Send oracles as
queries to five different oracles as follows:
— Send(C, i, A,B) represents a request for instance Ci of
client C to initiate the protocol. The output of this query is
msg = 〈C,Wc〉.
— Send(A, j, C,msg) represents sending message msg to
instance Aj of the server A from C . The output of this query
is msgA = 〈A,Wa, pka, Sa〉.

10

— Send(C, i, A,B,msgA|msgB) represents sending the mes-
sage msgA|msgB to instance Ci of the client C . The output
of this query is either msg1 = 〈C,Ea〉|msg2 = 〈C,Eb〉 or ⊥.
— Send(A, j, C,msg1) represents sending message msg1 to
instance Aj of the server A from C . The output of this query
is either accA = TRUE or ⊥.
— SendP (A, j,B,M) represents sending message M to
instance Aj of the server A, supposedly by the server B,
in the two-party PAKE protocol P . The input and output of
this query depends on the protocol P .

When A queries the Test oracle, the simulator S chooses
a random bit b. When the adversary completes its execution
and outputs a bit b′, the simulator can tell whether the
adversary succeeds by checking if (1) a single Test query
was made regarding some fresh session key skiU,U ′ , and (2)
b′ = b. Success of the adversary is denoted by event Succ.
For any experiment P ′, we denote AdvP

′

A = 2 · Pr[Succ]− 1,
where Pr[·] denotes the probability of an event when the
simulator interacts with the adversary in accordance with
experiment P ′.

We will use some terminology throughout the proof. A
given message is called oracle-generated if it was output
by the simulator in response to some oracle query. The
message is said to be adversarially-generated otherwise. An
adversarially-generated message must not be the same as
any oracle-generated message.

We refer to the real execution of the experiment, as
described above, as P0. We introduce a sequence of trans-
formations to the experiment P0 and bound the effect of
each transformation on the adversary’s advantage. We then
bound the adversary’s advantage in the final experiment.
This immediately yields a bound on the adversary’s advan-
tage in the original experiment.

Experiment P1: In this experiment, the simulator interacts
with the adversary as P0 except that the adversary does
not succeed, and the experiment is aborted, if any of the
following occurs: 1) At any point during the experiment, an
oracle-generated message (e.g., msg, msg1, msg2, msgA, or
msgB) is repeated; 2) At any point during the experiment,
a collision occurs in the hash function H1 or H2 (regardless
of whether this is due to a direct action of the adversary,
or whether this occurs during the course of the simulator’s
response to an oracle query).

It is immediate that events 1 occurs with only negligi-
ble probability, event 2 occurs with negligible probability
assuming H1, H2 as collision-resistant hash functions. Put
everything together, we are able to see that

Claim 1. If H1 and H2 are collision-resistant hash functions,
|AdvP0

A (k)− AdvP1

A (k)| is negligible.

Experiment P2: In this experiment, the simulator interacts
with the adversaryA as in experiment P1 except that the ad-
versary’s queries to Execute oracles are handled differently:
in any Execute(C, i, A, j, B, k), where the adversary A has
not queried corrupt(A), but may have queried corrupt(B),
the plaintext gpw1h

−1
1 in the public key encryption Ea is

replaced with a random element in G.

The difference between the current experiment and the
previous one is bounded by the probability that an adver-

sary breaks the semantic security of the public key encryp-
tion E. More precisely, we have
Claim 2. If the public key encryption scheme E is semanti-
cally secure, |AdvP1

A (k)− AdvP2

A (k)| is negligible.
Remark. If a public key encryption scheme is secure against
the chosen-ciphertext attack (CCA), it is secure against the
chosen-plaintext attack (CPA) (i.e., it is semantically secure).
Experiment P3: In this experiment, the simulator interacts
with the adversary A as in experiment P2 except that:
for any Execute(C, i, A, j, B, k) oracle, where the adver-
sary A has not queried corrupt(A), but may have queried
corrupt(B), the session keys skC,A and skA,C are replaced
with a same random element in the group G.

The difference between the current experiment and the
previous one is bounded by the probability to solve the
decisional Diffie-Hellman (DDH) problem over (G, g, q).
More precisely, we have
Claim 3. If the decisional Diffie-Hellman (DDH) problem is
hard over (G, q, g), |AdvP2

A (k)− AdvP3

A (k)| is negligible.

If |AdvP2

A (k)−AdvP3

A (k)| is non-negligible, we show that
the simulator can use A as a subroutine to solve the DDH
problem with non-negligible probability as follows.

Given a DDH problem (gα, gβ , Z), where α, β are ran-
domly chosen from Z∗q and Z is either gαβ or a random
element z from G, the simulator replaces Wc with gα, and
Wa with gβ , and the session keys skC,A, skA,C with Z . When
Z = gαβ , the experiment is the same as the experiment
P2. When Z is a random element z in G, the experiment
is the same as the experiment P3. If the adversary can
distinguish the experiments P2 and P3 with non-negligible
probability, the simulator can solve the DDH problem with
non-negligible probability. Assuming that the DDH problem
is hard, Claim 3 is true.

In experiment P3, the adversary’s probability of correctly
guessing the bit b used by the Test oracle is exactly 1/2 when
the Test query is made to a fresh client instance Ci or a fresh
server instance Aj invoked by an Execute(C, i, A, j, B, k)
oracle, even if the adversary queried corrupt(B) (i.e., the
adversary corrupted the server B). This is so because the
session keys skC,A and skA,C for such instances in P3 are
chosen at random from G, and hence there is no way to
distinguish whether the Test oracle outputs a random ses-
sion key or the “actual” session key (which is just a random
element, anyway). Therefore, all passive adversaries cannot
win the game, even if they can query Corrupt(B) oracles.

The rest of the proof concentrates on the instances in-
voked by Send oracles.
Experiment P4: In this experiment, we modify the sim-
ulator’s responses to Send(C, i, A,B,msgA|msgB) and
Send(A, j, C,msg1) queries.

Before describing this change we introduce some ter-
minology. For a query Send(C, i, A,B,msgA|msgB), where
msgA|msgB is adversarially-generated, if acciC = TRUE,
then msgA|msgB is said to be valid. Otherwise, it is said
to be invalid. Similarly, for a query Send(A, j, C,msg1),
where msg1 is adversarially-generated, if accjA = TRUE,
then msg1 is said to be valid. Otherwise, msg1 is said to be
invalid. Informally, valid messages use correct passwords
while invalid messages do not. Given this terminology, we

11

continue with our description of experiment P4. When the
adversary makes oracle query Send(C, i, A,B,msgA|msgB),
the simulator examines msgA|msgB . If the message is
adversarially-generated and valid, the simulator halts and
acciC is assigned the special value ∇. In any other case, (i.e.,
msgA|msgB is oracle-generated, or adversarially-generated
but invalid), the query is answered exactly as in ex-
periment P3. When the adversary makes oracle query
Send(A, j, C,msg1), the simulator examines msg1. If it is
adversarially-generated and valid, the simulator halts and
accjA is assigned the special value ∇. In any other case,
(i.e., msg1 is oracle-generated, or adversarially-generated
but invalid), the query is answered exactly as in P3.

Now, we change the definition of the adversary’s suc-
cess in P4. At first, we define that a client instance
Ci is fresh if the adversary has not queried Corrupt(C)
and a server instance Aj is fresh if the adversary has
not queried Corrupt(A). If the adversary ever queries
Send(C, i, A,B,msgA|msgB) oracle to a fresh client instance
Ci with acciC = ∇ or Send(A, j, C,msg1) oracle to a fresh
server instance Aj with accjA = ∇, the simulator halts and
the adversary succeeds. Otherwise the adversary’s success
is determined as in experiment P3.

The distribution on the adversary’s view in experiments
P3 and P4 are identical up to the point when the adversary
queries Send(C, i, A,B,msgA|msgB) oracle to a fresh client
instance with acciC = ∇ or Send(A, j, C,msg1) oracle to a
fresh server instance with accjA = ∇. If such a query is never
made, the distributions on the view are identical. Therefore,
we have

Claim 4. AdvP3

A (k) ≤ AdvP4

A (k).

Experiment P5: In this experiment, the simulator interacts
with the adversary A as in experiment P4 except that
the adversary’s queries to Send(A, j, C,msg1) oracles are
handled differently: in any Send(A, j, C,msg1), where the
adversary A has not queried corrupt(A), but may have
queried corrupt(B), the plaintext gpw1h

−1
1 in Ea is replaced

with a random element in the group G.

As we prove Claims 2, we can prove

Claim 5. If the public key encryption scheme E is semanti-
cally secure, |AdvP4

A (k)− AdvP5

A (k)| is negligible.

In experiment P5, msg1 from Execute and Send oracles
become independent of the password pwC used by the client
C in the view of the adversary A, even if A may require
Corrupt(B). In addition, although the adversary who has
corrupted the server B is able to obtain gpw2 , gpwC,B , they
are independent of the password pwC in the view of the
adversary because the reference msg1 is independent of the
password in the view of the adversary. In view of this, any
off-line dictionary attack cannot succeed.

The adversaryA succeeds only if one of the following oc-
curs: (1) the adversary queries Send(C, i, A,B,msgA|msgB)
oracle to a fresh client instance Ci for adversarially-
generated and valid msgA|msgB , that is, acciC = ∇
(let Succ1 denote this event); (2) the adversary queries
Send(A, j, C,msg1) oracle to a fresh server instance Aj for
adversarially-generated and valid msg1, that is, accjA = ∇
(let Succ2 denote this event); (3) neither Succ1 nor Succ2
happens, the adversary wins the game by a Test query to a

fresh instance Ci or a server instance Aj .

Claim 6. If the identity-based signature (IBS) scheme is
existentially unforgeable under an adaptive chosen-message
attack and the hash function H1 is collision-resistant,
Pr[Succ1] is negligible.

msgA contains a signature Sa of the server A on
H1(A,Wa, C,Wc, pka). If the adversaryA is able to find W ′a
(6= Wa) or pk′a (6= pka) such that H1(A,W

′
a, C,Wc, pk

′
a) =

H1(A,Wa, C,Wc, pk) for given Wc, he may make acciC = ∇
with the same Sa. However, this probability is negligible
because we assume that the hash function H1 is collision-
resistant. If the adversary can forge a new signature S′a
of the server A on H1(A,W

′
a, C,Wc, pk

′
a) for chosen W ′a

(6= Wa) or pk′a (6= pka), he may also make acciC = ∇.
However, this probability is also negligible because we
assume that the identity-based signature (IBS) scheme is
existentially unforgeable under an adaptive chosen-message
attack. Therefore, Claim 6 is true.

Claim 7. If (1) P is a secure two-party PAKE protocol with
explicit authentication; (2) the public key encryption E is se-
cure against the chosen-ciphertext attack; (3) H2 is collision-
resistant hash functions, then Pr[Succ2] ≤ Q(k)/N + ε(k),
where Q(k) denotes the number of on-line attacks and ε(k)
is a negligible function.

To evaluate Pr[Succ2], we assume that the adversary
A has corrupted the server B and consider three cases as
follows.

Case 1. If the adversary A is able to find W ′c (6= Wc)
such that H2(C,W

′
c, A,Wa) = H2(C,Wc, A,Wa) for given

Wa, he may make accjA = ∇ with the same Ea in msg1.
However, this probability is negligible because we assume
that the hash function H2 is collision-resistant.

Case 2. If the adversary A is able to replace the plaintext
gpw1h

−1
1 in Ea with gpw1h

∗
1
−1

(like homomorphic encryp-
tion), where h∗1 6= h1, he may make accjA = ∇ with E′a
transformed fromEa. However, this probability is negligible
because we assume that the public key encryption E is
secure against the chosen-ciphertext attack.

Case 3. The adversary A forges msg′ = 〈C,W ′c〉 and
msg′1 = 〈C,E′a〉 where E′a = E(gpw

∗
1h
∗
1
−1

, pka) and h∗1 =
H2(C,W

′
c, A,Wa) and pw∗1 is chosen by the adversary. After

receiving msg′1, the server A derives ωa = gpw
∗
1−pwC,A =

gpw
∗
1+pwC,B−pwC = gpw

∗
1+pwC,B/gpwC and then runs two-

party PAKE protocol P with the server B (controlled by the
adversary) on the basis of ωa. In the view of the adversary,
ωa can be anyone of {gpw

∗
1+pwC,B/gpw|pw ∈ D} even if he

knows pw∗1 + pwC,B . Without knowing ωa, this probability
of accPA = TRUE is less than QP (k)/N + ε(k), where QP (k)
denotes the number of on-line attacks in the protocol P ,
because we assume that P is a secure two-party PAKE
protocol with explicit authentication.

In experiment P5, the adversary’s probability of success
when neither Succ1 nor Succ2 occurs is 1/2. The preceding
discussion implies that

PrP6

A [Succ] ≤ Q(k)/N + ε(k) + 1/2 · (1−Q(k)/N − ε(k))

and thus the adversary’s advantage in experiment P5

AdvP5

A (k) = 2PrP5

A [Succ]− 1

12

≤ 2Q(k)/N + 2ε(k) + 1−Q(k)/N − ε(k)− 1

= Q(k)/N + ε(k)

for some negligible function ε(·). The sequence of claims
proved above show that

AdvP0

A (k) ≤ AdvP5

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof
of the theorem.

4.2 Security of ID2S PAKE Protocol Based on IBE

Theorem 2. Assuming that (1) the identity-based encryption
(IBE) scheme is secure against the chosen-ciphertext attack;
(2) the public key encryption scheme E is secure against the
chosen-ciphertext attack; (3) the decisional Diffie-Hellman
problem is hard over (G, g, q); (4) the protocol P is a secure
two-party PAKE protocol with explicit authentication; (5)
H1, H2 are collision-resistant hash functions, then the pro-
tocol P ′ illustrated in Fig. 2 is a secure ID2S PAKE protocol
according to Definition 1.
Proof. Given an adversary A attacking the protocol, a
simulator S runs the protocol for A. First of all, the sim-
ulator S initializes the system by generating params =
paramsP,IBE,E

⋃
{(G,G, n), (G, q, g), (H1, H2)} and the secret

master-keyIBE. Next, Client, Server, and ClientServerTriple
sets are determined. Passwords for clients are chosen at
random and split, and then stored at corresponding servers.
Private keys for servers are computed using master-keyIBE.

The public information is provided to the adversary.
Considering (C,A,B) ∈ ClinetServerTriple, we assume that
the adversary A chooses the server B to corrupt and the
simulator S gives the adversary A the information held by
the corrupted server B, including the private key of the
serverB, i.e., dB , and one share of the password of the client
C , GpwC,B and gpw

∗
C,B . After computing the appropriate

answer to any oracle query, the simulator S provides the
adversary A with the internal state of the corrupted server
B involved in the query.

We view the adversary’s queries to its Send oracles as
queries to four different oracles as follows:
— Send(C, i, A,B) represents a request for instance Ci of
client C to initiate the protocol. The output of this query is
msg1 = 〈C,Wc, pk, Ea〉 and msg2 = 〈C,Wc, pk, Eb〉.
— Send(A, j, C,msg1) represents sending message msg1 to
instanceAj of the serverA. The output of this query is either
msgA = 〈A,Wa, E1〉 or ⊥.
— Send(C, i, A,B,msgA|msgB) represents sending the mes-
sage msgA|msgB to instance Ci of the client C . The output
is either acciC = TRUE or ⊥.
— SendP (A, j,B,M) represents sending message M to
instance Aj of the server A, supposedly by the server B,
in the two-party PAKE protocol P . The input and output of
this query depends on the protocol P .

We refer to the real execution of the experiment, as
described above, as P0.
Experiment P1: In this experiment, the simulator interacts
with the adversary as P0 except that the adversary does
not succeed, and the experiment is aborted, if any of the
following occurs:

1) At any point during the experiment, an oracle-
generated message is repeated.

2) At any point during the experiment, a collision
occurs in the hash function H1 or H2

Claim 1. If H1 and H2 are collision-resistant hash functions,
|AdvP0

A (k)− AdvP1

A (k)| is negligible.
Experiment P2: In this experiment, the simulator interacts
with the adversary A as in P1 except that the adversary’s
queries to Execute oracles are handled differently: in any
Execute(C, i, A, j, B, k), where the adversary A has not
queried corrupt(A), but may have queried corrupt(B), (1)
the plaintext Gpw1h

−1

in Ea is replaced with a random
element in G; (2) the plaintext gpw

∗
C,Ah

−1
a in E′a is replaced

by a random element in G; (3) the session keys skC,A and
skA,C are replaced with a same random element in G.
Claim 2. If (1) the identity-based encryption (IBE) scheme is
secure against the chosen-ciphertext attack; (2) the public
key encryption scheme E is secure against the chosen-
ciphertext attack; (3) the decisional Diffie-Hellman problem
is hard over (G, g, q), |AdvP1

A (k)− AdvP2

A (k)| is negligible.

Experiment P3: In this experiment, we modify the
simulator’s responses to Send(A, j, C,msg1) and
Send(C, i, A,B,msgA|msgB) queries. If the adversary
ever queries Send(A, j, C,msg1) oracle to a fresh server
instance Aj with a adversarially-generated and valid msg1
(denoted as accjA = ∇) or Send(C, i, A,B,msgA|msgB)
oracle to a fresh client instance Ci with a adversarially-
generated and valid msgA|msgB (denoted as acciC = ∇),
the simulator halts and the adversary succeeds. Otherwise
the adversary’s success is determined as in experiment P2.
Claim 3. AdvP2

A (k) ≤ AdvP3

A (k).
Experiment P4: In this experiment, the simulator interacts
with the adversary A as in experiment P3 except
that the adversary’s queries to Send(A, j, C,msg1)
and Send(C, i, A,B,msgA|msgB) oracles are han-
dled differently: in any Send(A, j, C,msg1) or
Send(C, i, A,B,msgA|msgB) oracles where the adversary
A has not queried corrupt(A), but may have queried
corrupt(B), the plaintext Gpw1h

−1

in Ea is replaced with a
random element in G and the plaintext gpw

∗
C,Ah

−1
a in E′a (if

any) is replaced with a random element in G.
Claim 4. If both the IBE scheme and the public key en-
cryption scheme E are semantically secure, |AdvP3

A (k) −
AdvP4

A (k)| is negligible.
The adversary A succeeds only if one of the follow-

ing occurs: (1) the adversary queries Send(A, j, C,msg1)
oracle to a fresh server instance Aj with accjA = ∇
(let Succ1 denote this event); (2) the adversary queries
Send(C, i, A,B,msgA|msgB) oracle to a fresh client instance
Ci with acciC = ∇ (let Succ2 denote this event); (3) neither
Succ1 nor Succ2 happens, the adversary wins the game by a
Test query to a fresh instance Ci or a server instance Aj .

To evaluate Pr[Succ1] and Pr[Succ2], we assume that the
adversary A has corrupted the server B and consider two
as follows.

Case 1. The adversary A forges msg′1 = 〈C,W ′c, pk′, E′a〉
where E′a = IBE(Gpw∗1h∗−1

, A), h∗ = H1(C,W
′
c, pk

′),
W ′c, pk

′, pw∗1 are chosen by the adversary, and sends msg′1

13

to the server A. After receiving msg′1, the server A derives
ωa = Gpw

∗
1−pwC,A = Gpw

∗
1+pwC,B−pwC = Gpw

∗
1+pwC,B/GpwC

and then runs two-party PAKE protocol P with the
server B (controlled by the adversary) on the basis of
ωa. In the view of the adversary, ωa can be anyone of
{Gpw

∗
1+pwC,B/Gpw|pw ∈ D}. If P is a secure two-party

PAKE protocol with explicit authentication, Pr[Succ1] ≤
QP (k)/N + ε(k).

Case 2. Given C,Wc, for X = A and B, x = a and b,
the adversary A forges msg′X = 〈X,W ′x, E′x〉, where E′x =

E(gpw
∗
xh
∗
x
−1

, pk), h∗x = H2(X,W
′
x, C,Wc), and W ′x, pw

∗
x are

chosen by the adversary. Then A sends msg′A|msg′B to the
client. In this case, the event Succ2 occurs if and only if
pw∗a + pw∗b = pwC . Therefore, Pr[Succ2] ≤ QC(k)/N , where
QC(k) denotes the number of on-line attacks to the client
instance Ci.

The above discussion shows that
Claim 5. If (1) P is a secure two-party PAKE protocol
with explicit authentication; (2) the IBE scheme and the
public key encryption scheme are secure against the chosen-
ciphertext attack; then Pr[Succ1 ∨ Succ2] ≤ Q(k)/N + ε(k),
where Q(k) denotes the number of on-line attacks.

In P4, the adversary’s probability of success when nei-
ther Succ1 nor Succ2 occurs is 1/2. This implies that

PrP4

A [Succ] ≤ Q(k)/N + ε(k) + 1/2 · (1−Q(k)/N − ε(k))

and thus the adversary’s advantage in experiment P0

AdvP0

A (k) ≤ AdvP4

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof.

5 PERFORMANCE ANALYSIS

The efficiency of the compiled protocols using our compilers
depends on performance of the underlying protocols.

In our IBS-based protocol, if we use the KOY two-
party PAKE protocol [22], the Paterson et al.’s IBS scheme
[25] and the Cramer-Shoup public key encryption scheme
[13] as cryptographic building blocks, the performance of
our IBS-based protocol can be shown in TABLE 1. In our
IBE-based protocol, if we use the KOY two-party PAKE
protocol [22], the Waters IBE scheme [28] and the Cramer-
Shoup public key encryption scheme [13] as cryptographic
building blocks, the performance of our IBE-based protocol
can also be shown in TABLE 1. In addition, we compare
our protocols with the Katz et al. two-server PAKE protocol
[23] (secure against active adversary) in TABLE 1. In TA-
BLE 1, Exp., exp. Sign. and Pair for computation represent
the computation complexities of a modular exponentiation
over an elliptic curve, a modular exponentiation over Zp, a
signature generation and a pairing, respectively, and Exp.,
exp. and Sign. in communication denote the size of the
modulus and the size of the signature, and KOY stands for
the computation or communication complexity of the KOY
protocol.

In TABLE 1, different operations are computed in differ-
ent protocols. For example, some modular exponentiations
in our protocols are over an elliptic curve group, while the
modular exponentiations in the Katz et al.’s protocol are
over Zp only. Our protocols need to compute pairings while

the Katz et al.’s protocol does not. In order to further com-
pare their performance, we implement our two protocols.

To realize the modular exponentiation Gx over an elliptic
curve group G and the pairing map e : G × G → GT
in our protocols, we build our implementation on top of
the PBC pairing-based cryptography library1, whereas the
multiplicative group over the prime integer p is based on the
GNU MP library2. Moreover, the elliptic curve we use is the
A512 ECC in which the first two groups are the same, i.e.,
a symmetric pairing. Another library mbed TLS3 is adopted
due to the invocations of AES and SHA-512 for the one-
time signature in KOY. All the experiments were conducted
in Ubuntu 14.04 running on a computer equipped with an
Intel i7-4770HQ CPU and 16 GBytes of memory. When im-
plementing our protocols, we also performed optimization
when applicable. For example, we compute the Waters’ hash
function by parallel computation.

The execution time of our two protocols compared with
the Katz et al.’s protocol can be shown in TABLE 2. From
TABLE 2, we can see that the client performance in Katz et
al.’s protocol is better than our protocols, but the execution
times for client in the three protocols are all less than
10 ms. The server performance in our protocols is better
than the Katz et al.’s protocol, saving from 22% to 66% of
computation. When the servers provide services to a great
number of clients concurrently, the server performance is
critical to the performance of the whole protocol. For exam-
ple, assume that Servers A and B provide services to 100
clients concurrently and there is no communication delay,
the longest waiting time with respect to a client for our IBE-
based protocol is around 7.08+208+176=391.08 ms while the
Katz et al.’s protocol takes about 1.26+531+531=1,063.26 ms.
The difference is 672.18 ms.

In terms of communication complexity, the size of a
group element over elliptic curve (denoted as Exp.) in our
protocols can be 512 bits, while the size of a group element
over Zp in the Katz et al.’s protocol [23] has to be 1024
bits. From TABLE 1, we can see that the communication
complexity of our protocols is about a half of the Katz et
al.’s protocol [23].

6 CONCLUSION

In this paper, we present two efficient compilers to trans-
form any two-party PAKE protocol to an ID2S PAKE proto-
col with identity-based cryptography. In addition, we have
provided a rigorous proof of security for our compilers
without random oracle. Our compilers are in particular suit-
able for the applications of password-based authentication
where an identity-based system has already established.
Our future work is to construct an identity-based multiple-
server PAKE protocol with any two-party PAKE protocol.

REFERENCES

[1] M. Abdalla, P. A. Fouque, and D. Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Proc.
PKC’05, pages 65-84, 2005.

1. https://crypto.stanford.edu/pbc/download.html
2. https://gmplib.org/
3. https://tls.mbed.org/

14

TABLE 1
Performance comparison of Katz et al. protocol and our protocols

Katz et al. Protocol [23] Our IBS-based Protocol Our IBE-based Protocol
Public Keys Client: None Client: None Client: None

Sever A: Public Key pkA Server A: A Server A: A
Sever B: Public Key pkB Server B: B Server B: B

Private Keys Client: pwC Client: pwC Client: pwC

Sever A: pwC,A, Private Key skA Server A: gpwC,A , dA Server A: GpwC,A , gpw
∗
C,A , dA

Sever B: gpwC,B , Private Key skB Server B: gpwC,B , dB Server B: GpwC,B , gpw
∗
C,B , dB

Computation Client: 21(exp.)+1(Sign) Client: 23(Exp.)+6(Pair) Client: 23(Exp.)
Complexity Server: about 6(KOY) Server: about 1(KOY)+9(Exp) Server: about 1(KOY)+2(Pair)+9(Exp.)

Communication Client/Server: 27(exp.)+1(Sign) Client/Server: 22(Exp.) Client/Server: 24(Exp.)
Complexity Server/Server: about 2(KOY) Server/Server: about 1(KOY) Server/Server: about 1(KOY)

TABLE 2
Execution Time of Protocols (in milliseconds)

Katz et al. Protocol [23] Our IBS-based Protocol Our IBE-based Protocol
Client 1.26 5.26 7.08

Server A 5.31 4.14 2.08
Server B 5.31 3.82 1.76

[2] M. Abdalla and D. Pointcheval. Simple password-based encrypted
key exchange protocols. In Proc. CT-RSA 2005, pages 191-208,
2005.

[3] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key
exchange secure against dictionary attacks. In Proc. Eurocrypt’00,
pages 139-155, 2000.

[4] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-
based protocol secure against dictionary attack. In Proc. 1992 IEEE
Symposium on Research in Security and Privacy, pages 72-84,
1992.

[5] J. Bender, M. Fischlin, and D. Kugler. Security analysis of the PACE
key-agreement protocol. In Proc. ISC’09, pages 33-48, 2009.

[6] J. Bender, M. Fischlin, and D. Kugler. The PACE|CA protocol for
machine readable travel documents. In INTRUST’13, pages 17-35,
2013.

[7] D. Boneh and M. Franklin. Identity based encryption from the Weil
pairing. In Proc. Crypto’01, pages 213-229, 2001.

[8] V. Boyko, P. Mackenzie, and S. Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Proc. Euro-
crypt’00, pages 156-171, 2000.

[9] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. Nightingale: A new
two-server approach for authentication with short secrets. InProc.
12th USENIX Security Symp., pages 201-213, 2003.

[10] E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for
an efficient password-based key exchange. In Proc. CCS’03, pages
241-250, 2003.

[11] E. Bresson, O. Chevassut, and D. Pointcheval. New security results
on encrypted key exchange. In Proc. PKC’04, pages 145-158, 2004.

[12] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentica-
tion service for computer networks. IEEE Communications, 32 (9):
33-38, 1994.

[13] R. Cramer and V. Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In Proc.
Crypto’98, pages 13-25, 1998.

[14] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 32(2): 644-654, 1976.

[15] W. Ford and B. S. Kaliski. Server-assisted generation of a strong
secret from a password. In Proc. 5th IEEE Intl. Workshop on
Enterprise Security, 2000.

[16] O. Goldreich and Y. Lindell. Session-key generation using human
passwords only. In Proc. Crypto’01, pages 408-432, 2001.

[17] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer.
Protecting poorly-chosen secret from guessing attacks. IEEE J. on
Selected Areas in Communications, 11(5):648-656, 1993.

[18] S. Halevi and H. Krawczyk. Public-key cryptography and pass-
word protocols. ACM Transactions on Information and System
Security, 2(3):230-268, 1999.

[19] D. Jablon. Password authentication using multiple servers. In Proc.
CT-RSA’01, pages 344-360, 2001.

[20] S. Jiang and G. Gong. Password based key exchange with mutual
authentication. In Proc. SAC’04, pages 267-279, 2004.

[21] H. Jin, D. S. Wong, and Y. Xu. An efficient password-only two-
server authenticated key exchange system. In Proc. ICICS’07,
pages 44-56,2007

[22] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-
authenticated key exchange using human-memorable passwords.
In Proc. Eurocrypt’01, pages 457-494, 2001.

[23] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server
password-only authenticated key exchange. In Proc. ACNS’05,
pages 1-16, 2005.

[24] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold
password-authenticated key exchange. J. Cryptology, 19(1): 27-66,
2006.

[25] K. G. Paterson and J. C.N. Schuldt. Efficient identity-based signa-
tures secure in the standard model. In ACISP’06, pages 207-222,
2006.

[26] M. Di Raimondo and R. Gennaro. Provably Secure Threshold
Password-Authenticated Key Exchange. J. Computer and System
Sciences, 72(6): 978-1001 (2006).

[27] M. Szydlo and B. Kaliski. Proofs for two-server password authen-
tication. In Proc. CT-RSA’05, pages 227-244, 2005.

[28] B. Waters. Efficient identity-based encryption without random
oracles. In Proc. Eurocrypt’05, pages 114-127, 2005.

[29] Y. Yang, F. Bao, R. H. Deng. A new architecture for authentication
and key exchange using password for federated enterprise. In
Proc. SEC’05, pages 95-111, 2005.

[30] Y. Yang, R. H. Deng, and F. Bao. A practical password-based
two-server authentication and key exchange system. IEEE Trans.
Dependable and Secure Computing, 3(2), 105-114, 2006.

[31] Y. Yang, R. H. Deng, and F. Bao. Fortifying password authen-
tication in integrated healthcare delivery systems. In Proc. ASI-
ACCS’06, pages 255-265,2006.

[32] X. Yi, R. Tso and E. Okamoto. ID-based group password-
authenticated key exchange. In Proc. IWSEC’09, pages 192-211,
2009.

[33] X. Yi, R. Tso and E. Okamoto. Identity-based password-
authenticated key exchange for client/server model. In SE-
CRYPT’12, pages 45-54, 2012.

[34] X. Yi, S. Ling, and H. Wang. Efficient two-server password-only
authenticated key exchange. IEEE Trans. Parallel Distrib. Syst.
24(9): 1773-1782, 2013.

[35] X. Yi, F. Hao and E. Bertino. ID-based two-server password-
authenticated key exchange. In ESORICS’14, pages 257-276, 2014.

