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Abstract

Highly B-site ordered Pb2ScTaO6 crystals have been studied as a function of temperature via dielectric

spectroscopy and in-situ high dynamic range electron di�raction. The degree of ordering has been

examined on the local and macroscopic scale and is determined to be 76 %. Novel analysis of the electron

di�raction patterns provides structural information, with two types of antiferroelectric displacements

determined to be present in the polar structure. It has then been found that a low temperature transition

occurred on cooling at ∼ 210 K that is not present on heating. This phenomenon is discussed in terms

of the freezing of dynamic polar nanodomains where a high density of domain walls creates a metastable

state.

1 Introduction

Perovskite relaxor ferroelectrics have garnered interest due to their excellent dielectric, piezoelectric, electro-

optic and pyroelectric properties[1�5] while exhibiting a range of phenomena that are still not fully under-

stood.[6] The de�ning property of a relaxor is the frequency dependence of its dielectric permittivity, asso-

ciated with the presence of small polarized regions that �uctuate at time-scales on the order of GHz.[7�11]

Several theories have been put forward to explain this phenomenon, often invoking the presence of small

random �elds.[12�16]

Here, Pb2ScTaO6 (PST) is investigated, a double perovskite of form A2B′B′′O6. This has the useful

property of being ferroelectric when the Sc and Ta ions are fully ordered and a canonical relaxor when
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they are disordered.[17�20] The ability to vary the level of ordering by choice of annealing parameters has

made it one of the more widely studied relaxors.[8, 21] Highly ordered PST has a unit cell doubled in

all directions with respect to the prototype disordered (average structure Pm3̄m) perovskite, with rock-

salt ordering of the Sc and Ta cations giving a face-centred Fm3̄m structure with lattice parameter of

8.15 Å. Its paraelectric to ferroelectric phase transition at about 300 K, associated with a maximum in

dielectric constant, is associated with a change in crystal structure from Fm3̄m to the rhombohedral R3

structure.[22, 23] Below the Fm3̄m to R3 transition, highly ordered PST is switchable and able to maintain a

permanent polarization, but it still possesses a large dielectric maximum in its unpoled state associated with

rapidly-�uctuating polar nanodomains, sometimes named polar tweed.[24] Some studies of highly-ordered

PST observed an incommensurate antiferroelectric phase in the range of 323-222 K.[25] In its disordered form,

in common with many relaxors, disordered PST does not transform to a ferroelectric upon cooling while the

polar nanoregions are expected to grow in size as the temperature decreases.[9, 26] Whilst multiple studies

have been conducted on formation of polar regions from the high temperature paraelectric phase,[24, 27] there

are relatively few studies at lower temperatures.

Here, the low temperature dynamics of highly ordered PST are examined using a combination of dielectric

spectroscopy, X-ray di�raction (XRD) and transmission electron microscopy (TEM). Due to the dependence

of functional properties on the level of ordering, a comprehensive analysis of the ordering has been conducted.

High dynamic range (HDR) electron di�raction patterns are used to give a quantitative analysis of di�racted

intensities and reveal a change of structure at ∼ 210 K, attributed to the collapse of �uctuating polar tweed

into a static ferroelectric.

2 Experimental details

PST ceramic samples were fabricated using the mixed oxide method described by Osbond and Whatmore.[28]

Sc2O3 and Ta2O5 powders were milled together and then pre-reacted at 900 ◦C to form the wolframite

phase ScTaO4. This was reacted with PbO at 900 ◦C to form a single-phase perovskite powder, which was

subsequently hot-pressed in Si3N4 tooling and an alumina grit packing medium at 40 MPa and 1200 ◦C for

6 hours.

Powder XRD was performed using a Bruker D5005 di�ractometer with a Cu Kα source in the Bragg-

Brentano geometry. Dielectric measurements were made on the same material as a function of temperature

using a HP 4192A impedance analyser measuring AC resistance and capacitance with an AC voltage at

2.5, 10 and 40 kHz. Cooling was provided using liquid nitrogen with temperature control using an Oxford

Instruments ITC503S. The entire system is kept under vacuum (< 10−4 Torr) to avoid ice build up.
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Figure 1: X-ray θ-2θ di�raction pattern from the bulk PST ceramic. Inset are close ups of the peaks used
to determine the B-site ordering.

TEM samples were prepared by crushing the sample and mixing the ceramic with aluminium powder in a

ration of ∼1:10 PST:Al, followed by cold-rolling to form a ∼50 µm thick solid sheet of Al with embedded PST

crystals. Electron transparency was achieved using Ar+ ion milling in a Gatan PIPS. In-situ low temperature

studies were performed using a Gatan model 636 cooling holder and model 904 temperature controller.

Maximum temperature ramping rates were 10 K s−1 with ∼10 minutes allowed for the temperature to

stabilize. Atomic resolution annular dark �eld (ADF) scanning transmission electron microscopy (STEM)

images were recorded with a JEOL ARM200F over collection angles 45-180 mrad. High signal-to-noise images

were formed by averaging multiple, rapidly acquired frames to remove scan distortions. All other TEM was

performed on a JEOL 2100 with a LaB6 source and a Gatan Orius CCD camera. For this camera saturation

occurs at readout values of ∼ 1.4 × 104. HDR electron di�raction patterns were acquired by combining

several images with varying exposures;[29] initial exposure times were 120 s with subsequent exposure times

being halved until the CCD was no longer saturated, typically at a few ms. This simple HDR methodology

extends the dynamic range of the CCD camera by a further 5 orders of magnitude to approximately 109,

coping with high intensity electron signals whilst still detecting much weaker features. For a weak feature

to be quanti�able, su�cient counting statistics are required, i.e. readout values between 102 and 103 for

uncertainties of 10 % and 3 % respectively, with the result that quanti�cation is possible with a precision of

10−8 of the incident beam intensity. More details of quanti�cation procedures for HDR patterns are given

later.
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Figure 2: (a) Dark �eld g = 111 image of a single grain of PST. Bright and dark regions show ordered regions
and APBs respectively. (b) Atomic resolution ADF image from (a) with strong ordering clearly evident. (c)
An intensity line pro�le from the region indicated by an arrow in (b). Columns that are expected to contain
Sc and Ta are highlighted purple (dotted shading) and orange (solid) respectively.

3 Results

3.1 B-cation ordering

As the functional properties of PST depend strongly on the degree of B-site cation ordering it is important

to determine the degree of ordering for any specimen examined. Considering, for example, a Sc site, A, in

the Fm3̄m unit cell, an ordering parameter may be de�ned as S = OSc (BSc)−OTa (BSc), where OX (BSc)

is the average occupancy by atom X of the Sc sites, BSc, in the perfect structure. The ordering parameter

S is zero for complete disorder and unity for perfect order. Any ordering of the B-cations can be detected

by di�raction since it produces superlattice re�ections that have all odd indices hkl which are nominally

absent for the prototype disordered material (Note the pseudocubic Fm3̄m indexing is used throughout).

Usefully, in partially ordered material the structure factor of these superlattice re�ections is proportional to

S. Conversely, re�ections with all-even indices are insensitive to B-site ordering and can serve as a reference.

While S may be expected to vary from place to place on a microscopic scale,[21] an average macroscopic

value may be obtained from X-ray di�raction. Using di�raction vectors of similar magnitudes to minimise the

e�ect of temperature factors, S can be estimated from the ratio of the 111 to 200 (or 311 to 222) intensities,
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S2 =

(
I111
I200

)
observed

/(
I111
I200

)
perfect

(1)

where Ihkl is the intensity of the hkl re�ection and `perfect' corresponds to perfectly ordered material.[30]

The integrated intensities in a θ-2θ powder XRD pattern that would be obtained from perfectly ordered

material, randomly oriented material may be calculated using tabulated atomic scattering factors.[31, 32]

Figure 1 shows a θ-2θ XRD pattern, which gives a macroscopic average value of S = 0.76 for the sample

examined here. No crystallographic texture was observed.

The ordering has also been examined using electron microscopy, as shown in Fig. 2. Fig. 2(a) shows a

dark �eld g = 111 electron micrograph, where highly ordered regions produce bright contrast and disordered

anti-phase boundaries (APBs) appear as dark lines or bands. Attempting to quantify the ordering by

considering the bright and dark regions as purely ordered and disordered, respectively, gives a value of

S = 0.85. However, this calculation is naive as it relies on the assumption that the order is constant

throughout the crystal thickness in the beam direction. In reality, APBs may be inclined with respect to

the beam, small disordered regions may be embedded in an ordered matrix and even variations on a unit

cell level will be present. Fig. 2(b) shows an atomic resolution ADF image at a 〈110〉 zone axis of a highly

ordered region in Fig. 2(a). Here the TEM specimen is approximately 30 nm in thickness and the intensity

of each column is determined by its average atomic number. In this projection there is no mixing between

Sc and Ta columns in fully ordered material, with Sc columns (Z = 21) appearing faint compared to the

brighter Ta (Z = 73) column. Ordering is evident in Fig. 2(b) although there is a noticeable variation in the

intensities of the Sc and Ta columns, as shown in Fig. 2(c). This demonstrates that quite large variations

in ordering occur at the nm scale, with some columns almost reaching equal intensity � as would be found

in completely disordered material - while others approach 100 % ordering (see also supplementary Fig. S1).

These data are consistent with the average value of S = 0.76 obtained by XRD.

3.2 Dielectric properties

The dielectric permittivity as a function of temperature during a cooling-heating cycle was measured with

applied �eld frequencies of 2.5, 10 and 40 kHz, shown in Fig. 3. The prototypical transition maxima

associated with the non-polar/polar phase transition can be seen at Tm = 298 K, whose lack of frequency

dependence indicates that this highly-ordered PST is not a canonical relaxor. Approximately 20 K hysteresis

is observed between the cooling and heating cycles. The polar state is usually found to be present on the

low-temperature edge of this peak, i.e. at Tc ≈ 270 K when cooling. In highly ordered material when the

material is cooled without the application of an electric �eld, a `polar tweed' phase has been proposed to
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Figure 3: Real (top) and imaginary (bottom) parts of the dielectric permittivity as a function of temperature
and for multiple frequencies of the applied �eld. Inset are magni�ed regions of the same data showing a peak
starting at 205 K. Solid lines show cooling and dotted lines show heating.

form.[24, 27]

In TEM, domain structure is observed using dark �eld ggg = 226 imaging conditions at 270 K (supple-

mentary Fig. S2). These domains are elongated along 〈110〉 directions and often show �uctuating contrast,

consistent with polar domain reorientations.[33] There is some resemblance to the polar tweed microstruc-

ture[34, 35] and there appears to be little or no relationship between this domain structure and anti-phase

boundaries, in agreement with previous observations.[21]

At lower temperatures, an additional in�ection is also visible in the cooling curve at ∼ 200 K. This may

indicate a �rst-order transition from the polar tweed state to a conventional ferroelectric on cooling, as seen in

previous studies. It has been proposed previously that the rhombohedral structure transitions to monoclinic

below similar temperatures, though the possibility of domain wall pinning was also discussed.[36, 37] Here,

this anomaly is not observed in the subsequent heating cycle, indicating that the high-temperature state may

be metastable. In dark �eld TEM imaging, large domains were observed at ∼ 200 K, suggesting that the
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Figure 4: Room temperature (295 K), (a), and Cold (110 K), (b), 〈100〉 HDR di�raction patterns showing
the additional α and β spots. Arrows on (a) show the 200, 020 basis for the matrix spots. Note that the
image intensity scale follows a power law to show all the peaks at the same time.

transition is associated with the collapse of dynamic polar tweed to a static ferroelectric state. Nevertheless,

some small regions still exhibited contrast �uctuations, though this may be associated with the electron beam.

Heating associated with the electron beam is expected to be below 1 K for the conditions used for imaging

and signi�cantly less during acquisition of SAED patterns.[38] Nevertheless, manipulation of domain walls

with a concentrated electron beam was possible (supplementary Fig. S3), likely due to localised charging of

the sample.[21, 39]

3.3 HDR electron di�raction

In electron di�raction, B-site rock-salt ordering gives additional re�ections in patterns taken along zone axes

perpendicular to any direction with all-odd indices. In patterns where this is not the case, such as [001],

ordering changes the intensity of a subset of the matrix spots but does not produce additional ones. Below

Tc a set of weak additional spots appears, with integer indices of the form odd odd 0 (e.g. 110) in the [001]

pattern, known as α-spots.[21] At even lower temperatures another set of spots appears with indices odd

even 0 and even odd 0 (e.g. 210), known as β-spots (Fig. 4). These spots indicate the formation of a polar

structure with symmetry lower than the prototype Fm3̄m structure, in which re�ections with mixed odd-

and even-indices would be forbidden. These additional sets of spots are visible in 〈100〉 HDR selected area

electron di�raction (SAED) patterns, as shown in Fig. 4 for temperatures of 295 K and 110 K. The use of

HDR di�raction patterns allows a quantitative analysis of both the α- and β-spots, even though they are
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weak (see supplementary information Fig. S4).

Since quantitative analysis of HDR di�racted electron intensities has not been performed before, some

issues that arise must be addressed before going further. In quantitative X-ray di�raction it is usual to

normalise all di�racted intensities with respect to the strongest di�racted beam, which itself is given an

intensity of 100 %. This procedure allows quanti�cation in cases where, for example, the crystal is smaller

than the size of the X-ray beam and the directly transmitted beam cannot be used as a reference. However,

such a procedure is not appropriate for electron di�raction, where dynamical di�raction e�ects redistribute

intensity between re�ections and even small (< 0.1◦) changes in crystal orientation can have dramatic e�ects

on strong di�racted beam intensities, making them an unreliable reference. This problem also a�ects the

directly transmitted beam. Fortunately, the use of a selected area aperture means that all the signal has

come from the crystal (though the same area must be used each time) and the captured electron di�raction

pattern collects almost all of the scattered electrons. Thus the total intensity in the whole pattern is used as

a reference, with the reasonable assumption that dynamical e�ects may redistribute intensity between strong

beams, but the total captured intensity will be una�ected and give a good measure of the incident beam

intensity, I0. Some of the scattered intensity appears as di�use background scattering between the di�racted

beams (see Fig. S4(a)). For the weak re�ections of interest, this background can be signi�cantly more intense

than the spots so is measured and removed using an annular region of appropriate size (supplementary Fig.

S4(b) and (c)). Finally, a di�erent problem arises in the measurement of the many spots that make up a

family, such as the α-spots, which have di�erent intensities due to di�erent structure factors and increasing

deviation from the Bragg condition away from the direct beam. Here, the mean of all intensities is used for

each family with g-vector magnitudes less than or equal to the square de�ned by the 800-type spots. Using

this procedure, accurate quanti�able integrated intensities as weak as 10−7I0 are obtained.

Figure 5 shows the mean integrated intensities for α- and β-spots (Iα and Iβ respectively) as a function of

temperature for both cooling and heating cycles. Figure 5(a) shows that the pro�le for the α-spots increase

as a square root law, Iα ∝ (Tc − T )
1
2 . The behavior of the β-spots is more complex; at room temperature,

the spots are not present in the HDR di�raction patterns and, on cooling, this remains the case until 220

K when a sharp increase in the signal is observed. From 210 K to 110 K, the β-spot intensity increases

linearly, Iβ ∝ (Tc − T ), to an intensity of ∼ 2 × 10−6 I0, roughly two orders of magnitude weaker than the

α-spots. On reheating a continuous, linear decrease is observed with no discontinuity until Iβ ∼ 0 at T = Tc.

This behavior matches the dielectric measurements in Fig. 3, where small temperature di�erences may be

reconciled by the experimental setup (i.e. ine�cient cooling through the TEM grid and sample holder).
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Figure 5: (a) Mean α-spot intensities for cooling (blue circles) and heating (orange squares) with a parabolic
�t. (b) Mean β-spot intensities with an abrupt appearance upon cooling at ∼ 210 K (arrowed). Error bars
give the standard error of the mean.

3.4 Structural model

Starting from the ideal Fm3̄m structure (with no aditional spots in [001] electron di�raction patterns), the

atoms are perturbed to form the additional spots. By con�ning the structure to the accepted R3 structure

proposed by previous studies[23, 24,40] and discounting movement that cannot produce extra spots (i.e. the

shift of an entire cation sublattice will produce no extra spots), a structural model for the displacements

can be built. The corresponding di�raction patterns can then be calculated using the kinematical theory

of electron di�raction since the superstructure spots are weak. Here Kirkland's scattering factors[32] and

Debye-Waller factors interpolated from Woodward and Baba-Kishi[40] have been used.

Two displacement schemes that were found to create α- and β-spots are shown in Fig. 6 along with

their calculated intensities. It is found that α-spots are formed by correlated displacements of cations along

the polar [111] axis but with neighbouring [111] columns displaced in the opposite direction (i.e. atoms on

the 3-fold axis are displaced one way and atoms o� the 3-fold axis are displaced oppositely). This forms a

columnar antiferroelectric as shown in Fig. 6(a). On the other hand, β-spots are caused by the anti-correlated

displacements of a rock-salt type antiferroelectric where all nearest neighbours have opposite displacements

along [111] (Fig. 6(b)).

Unfortunately, while the form of displacements from the Fm3̄m sites is clear, it is not possible to a-priori

distinguish between spots formed by A-cations and those formed by B-cations. Iα calculated for correlated

Pb and Ta/Sc displacements is shown in Figure 6(c). An Iα comparable to those observed (∼ 3×10−4I0) can

be produced either by Pb displacements of 12 pm or Ta/Sc displacements of 32 pm (the Pb displacement
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is smaller simply because Pb scatters electrons more strongly than Ta/Sc). In both cases, Iα increases

in proportion with the square of the displacement. Also shown on Fig. 6(c) are mean di�racted α-spot

intensities produced by β-spot type displacements; it is apparent that observed α-spot intensities would

require infeasibly large displacements. As an additional con�rmation of this model, the correlated movements

produce systematic α-spot absences along one 〈110〉 direction, agreeing with experimentally observed weaker

α-spots along both 〈110〉 directions, presumably due to the presence of di�erent orientational variants of the

structure (supplementary Fig. S5).

Mean calculated β-spot intensities are shown in Fig. 6(d), again for both models and Pb and Ta/Sc

displacements. Interestingly, β-spots can be produced by large α-type displacements of the Ta/Sc atoms.

The di�erent temperature behaviors of Iα and Iβ imply that α-spots are formed by coupled displacements

of Pb, consistent with previous studies.[21, 40,41] Therefore, it may be expected that the β-spots are formed

by ∼ 3 pm antiferroelectric displacements of the Ta and Sc ions in a rock-salt pattern, which is pleasingly

consistent with their rock-salt ordering pattern. The mean intensity Iβ also increases in proportion with

the square of the displacement; the smallest intensity measured, ∼ 10−7I0 just below Tc, corresponds to a

displacement of only 0.1 pm.

4 Discussion

The low-temperature structure has been determined by Woodward and Baba-Kishi[40] to be R3 using X-ray

and neutron di�raction at 4 K, although di�culties were experienced due to broadening of superstructure

spots leading them to �x the coordinates of the Sc and Ta ions and constrain O coordinates; the only

unconstrained displacements were of a subset of the Pb atoms. Cooperative oxygen octahedral tilting was not

detected. A mixture of correlated and anti-correlated displacements for crystallographically distinct cations

is required to produce both α- and β-spots, and this behavior is indeed found in their model. Recently,

a ferrielectric model has been proposed to explain the behavior of PST,[41] although only antiferroelectric

Ta/Sc displacements were proposed, rather than the two antiferroelectric distortions seen in this work (it

is not possible to measure potential ferroelectric displacements here). High energy electrons, with a much

smaller wavelength than X-rays or neutrons and the ability to sample smaller volumes, have some advantages

for analysis of these materials. excessive broadening of the superstructure spots are not observed here,

presumably because Scherrer broadening is much smaller for electron di�raction and the material is uniform

over the small region sampled. The nm-scale domain sizes close to Tc in combination with Scherrer broadening

make the very weak re�ections used for the analysis too di�use to be seen in XRD or neutron di�raction.

This means that the pm-scale correlated or anti-correlated atomic displacements are then only visible as
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anomalously large thermal vibration parameters.[40, 42] Here, the domain structure is tracked to within a

few degrees of Tc, although broadening e�ects become limiting eventually even for electron di�raction and

�eeting correlations present in dynamic polar nanodomains above Tc are not detected.

4.1 Phase behavior

Several investigators have proposed a low temperature phase transition in PST. Baba-Kishi et al.[25] an

incommensurate antiferroelectric phase between Tc and 223 K in highly ordered PST, though the associated

satellite peaks are not observed in the electron di�raction patterns show here. Dawber et al.[36] proposed

a rhombohedral to monoclinic phase transition at 233 K in ordered PST, although domain wall pinning

was also considered a possibility. Abdulvakhidov et al.[37] also found various anomalies in PST at similar

temperatures. Other studies of relaxors under an applied electric �eld have also found a transition from

nanodomains to a long-range ferroelectric domain state with peaks in dielectric permittivity similar to Fig.

3.[12, 43] The metastability found here, combined with the dark �eld observation of the domains would

suggest that this transition is associated with the domain pinning as the �uctuating nanodomains freeze into

a static state. The high density of mobile domain walls in the �uctuating polar state may act to stabilise the

�uctuating polarity due to low local domain-wall energies,[44] While Pb vacancies have been shown to inhibit

the static ferroelectric state and may contribute to the metastability, the uniform Pb column intensities in

Fig. 2(b) indicate such vacancies are not abundant here.[18] On reheating, the relatively low number of

domain walls act as nucleation points for the continuous `melting' of the ferroelectric state to dynamic polar

nanodomains. This ties into previous analogies of relaxors to water/ice, made due to their similar dielectric

properties,[44�46] where freezing melting asymmetries, similar to those observed here, can be found.[47, 48]

The presence of two distinct antiferroelectric distortions makes PST ferrielectric, rather than ferroelectric,

and probably accounts for much of the relaxor behavior observed in material with di�erent degrees of ordering.

The quantitative nature of HDR electron di�raction, and the known points in k-space associated with the α

and β-spots, allows a straightforward link to be made between the measured intensities and the associated

ferroic order parameters. First, the order parameters Qα and Qβ are de�ned as proportional to the respective

displacements of cations that result in the α- and β spots. Then, using the square root relationship between

the intensities and the displacements it is evident that Qα ∝ (Tc − T )
1
4 , showing tricritical behavior,[24]

while Qβ ∝ (Tc − T )
1
2 and indicates a second order phase transition.[49] Some coupling between these order

parameters may be expected and the observation that Tc is common to both indicates this is at least bilinear.

Qβ may be expected to correlate with the degree of B-site ordering, S, and the variety of behaviors seen in

PST may be dictated by the changes in strength and coupling between Qα and Qβ leading to, for example,
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the incommensurate antiferroelectric structures.[25]

5 Conclusions

Novel electron di�raction techniques have been employed to extract new information on the structure and

dynamics of the polar �uctuations in highly ordered PST ceramic. This has allowed the exploration a little

studied low temperature phase transition at 210 K that is associated with the transition from a dynamic polar

system to a static one. The transition shows an asymmetry on heating and cooling that suggests a metastable

state and indicates the importance of local domain wall energies. Supported by a comprehensive study of

the ordering in the examined crystals, the work presented here adds yet another piece to the complex jigsaw

puzzle in the understanding of relaxors and related materials. Furthermore, the novel analysis employed here

expands the use of electron di�raction for quantitatively examining structural phenomena on the picometre

scale.
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1 Ordering

In annular dark �eld (ADF) scanning transmission electron microscope (STEM) images, the image intensity is

approximately proportional to the square of the atomic number, Z2, of the column the beam is incident to.[1] This

relationship is useful for probing the composition of a structure such as the ordering in Pb2ScTaO6. Viewing the

double perovskite structure along the 110 direction, the B-sites will align so as each column only contains one

individual element (Ta or Sc) in the perfectly ordered structure. By examining the intensities of the columns, the

level of mixing can be gauged. Figure S1 shows the intensity distributions of the Sc and Ta sites in a highly ordered

region, showing a wide range of intensities for both columns with a small overlap. Intensities are calculated as the

total intensity inside the Voronoi cell de�ned by the A- and B-sites.[2] This shows that the highly ordered regions

still contain a degree of disorder that needs to be considered in any analysis.
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Figure S1: Histogram of the integrated intensities of the Sc (dark) and Ta (bright) columns from Fig. 2(b).
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Figure S2: Dark �eld TEM image showing the polar tweed structure as stripes from bottom-left to top right.
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Figure S3: (a)-(d) time evolution of ferroelectric domains manipulated using the electron beam. (e)-(h) The same
images as in (a)-(d) but with the domain walls highlighted. Images were recorded at 200 K.

2 Domain imaging

Using dark �ld imaging by isolating one of the weak di�raction spots (for example 226), it is possible to image

the polar nanodomains. Figure 2 shows such an image where the domain structure (or tweed) is clearly present as

streaks from bottom left to top right. Such domain structure is present throughout our samples.

In dark �eld imaging it is possible to image the polar tweed and ferroelectric domains as shown in Fig. S2,

where stripes can be seen. In contrast to the polar nano domains, Fig. S3 shows equivalent imaging at 200 K where

the large ferroelectric domains can be seen as well as the ability to manipulate the domains simple by condensing

the beam.
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Figure S4: (a) Pro�le taken from Fig. 5(b) along the 200 direction. The β-spots have been labelled to highlight
the di�erence in intensities. (b) and (c) demonstrate how the peak intensities were extracted. Orange shows the
background region, blue the signal and the dashed red line demonstrates the interpolated background.

3 Di�raction intensity calculation

The intensity extraction for the experimental images is demonstrated in Fig. S4(b) and Fig. S4(c) for a weak β-spot.

Two circles are de�ned, the signal (blue) and the background (orange). The average background is calculated within

the ring, and then used to calculate the expected background signal within the signal area. This is subtracted from

the total intensity within the signal region to give the peak intensity. To be able to compare data across several

days or with di�erent beam conditions, the intensity is divided by the total intensity in the di�raction patter (i.e.

the total beam intensity for low enough campera lengths). Note that this method has the e�ect of assuming a

linear change in background across the signal region (red line in Fig. S4(c)) and results in more accurate intensity

measurements for smaller peaks. Therefore, this method is not practical for the larger matrix spots, where there

is signi�cant overlap of the peaks. However, the small β-spots are easily extracted even if they impinge on the

shoulder of a larger peak (as seen in Fig. S1(a)).
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Figure S5: Calculated di�raction pattern from correlated, (a), and anticorrelated, (b), displacements for Pb atoms
along the [111] direction. Systematic absences can be seen in the 110 direction (bottom-left to top-right). (c)
Experimental image showing weakened α-spots in the 110 and 1̄10 directions (red dashed circles) compared to the
other α-spots (blue solid circles). Contrast has been inverted for all images.

4 Systematic absences

The systematic absences in the di�raction patterns are shown in Fig. S5. It is clearly visible in the calculated

images that there are missing α-spots along one of the 110 directions. Although these absences are not present in

the experimental images, the spots are weakened (Fig. S5(c)). This is due to the thickness of the sample containing

multiple orientations of the same structure, and the absences are a mixture of 110 and 1̄10 type.
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