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Abstract 

This article proposes a practical semi-empirical method for determining shear crack-induced 

deformations in Glass Fibre Reinforced Polymer (GFRP) Reinforced Concrete (RC) beams. Current 

design guidelines neglect shear and shear crack-induced deformations in the calculation of deflections 

of GFRP RC beams. However, shear-induced deformations can be up to 30% of the total beam 

deflection due to the lower stiffness of GFRP bars compared to steel. To calculate the component of 

deflection due to shear action and crack opening, the proposed model uses a ‘single fictitious inclined 

crack’ with a width equal to the sum of the individual effective shear crack widths. Twelve shear tests 

were conducted on six RC beams reinforced internally with GFRP bars considering different 

reinforcement types and test parameters. The additional deformation due to shear cracks calculated by 

the proposed model is then used to predict the overall deformations of such beams up to failure. It is 

shown that, in comparison to current design guidelines, the proposed model predicts more accurately 

the total deflection of FRP RC beams at both service and ultimate loads. This article contributes 

towards the development of more accurate models to assess the overall shear deflection behaviour of 

FRP RC beams so as to balance the performance, serviceability and economic viability of structures. 
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1. Introduction 

In the last two decades, the use of Fibre Reinforced Polymer (FRP) reinforcement has been 

widely adopted in the construction industry to address durability issues and to extend the 

service life of reinforced concrete (RC) beams. Nonetheless, due to the properties of FRP 

materials (high strength, relatively low elastic modulus, softer bond and elastic tensile 

response up to failure), FRP reinforced beams generally develop wider cracks compared to 

counterpart specimens reinforced with conventional steel reinforcement. As a result, such 

FRP RC beams also experience larger deflections that affect the aesthetics and structural 

performance of these elements. To ensure an acceptable level of structural performance, it is 

necessary to estimate accurately the maximum deflections (i.e. deformations) at serviceability 

limit state, as well as at higher load levels.    

Overall, the sources of deformation in FRP RC beams subjected to flexure consist of the 

flexural, shear and rigid body components, as discussed later in Section 5 of this study. Shear 

induced deformations are normally negligible at service load and are usually ignored when 

calculating the total deflection of FRP RC members. However, previous research indicates 

that i) the component of shear induced deflection can be larger when FRP materials are used 

as reinforcement [1], and ii) shear deformations can increase rapidly after the development of 

diagonal cracks, thus reducing considerably the overall stiffness of the element [2, 3]. 

Moreover, experimental results on FRP RC beams [4, 5] also indicate that the development of 

diagonal cracking can result in additional deformations (up to 30% of the total deflection as 

shown later) that need to be taken into account. Despite of this, relatively few studies have 

examined in detail the shear behaviour of FRP RC beams (e.g. [1, 5-7]).  

The overall deformation of RC beams depends heavily on cracking. The task of defining the 

magnitude of each individual deformation component (e.g. bending, shear and rigid body) as 
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well as any interaction between them is a challenging task. For instance, to date there is no 

standard method to measure accurately shear induced deformations, which in turn prevents 

compiling a comprehensive database of experimental results suitable for the development of 

improved predictive models. Due to this lack of robust data, current design recommendations 

calculate the deflections of FRP RC members using equations originally developed for steel 

reinforced concrete elements. However, such guidelines can underestimate overall 

deformations by up to 20% [4] as the shear deflection component is neglected in the 

calculations. 

Whilst several studies have focused primarily on the development of models to estimate the 

shear strength of RC beams with FRP stirrups [e.g. 8-13], additional research has provided 

further insight into their deflection behaviour. For instance, several approaches available in 

the literature can predict accurately deflections of members subjected to flexure but only up 

to a service condition (e.g. [14-20]). Rafi and Nadjai [21] proposed modifications to the ACI 

440 guidelines to improve the accuracy of the deflection predictions over the complete load 

history (e.g. from elastic to ultimate loads), although the proposed model did not consider the 

shear induced deformations. Kara et al. [20] proposed a stiffness matrix-based method to 

predict the deflection of FRP reinforced elements. Whilst the method calculates deflections 

with reasonable accuracy, it is computationally demanding and thus difficult to incorporate in 

design guidelines. Ferreira et al. [22] proposed a 1D fibre beam finite element (FE) model 

that accounts for the additional shear deformations in FRP RC beams. The FE model was 

proven effective at predicting the deflection of beams over the complete load history, but 

such FE analyses are mainly suitable for research purposes. More recently, Dundar et al. [23] 

presented a general computational algorithm to calculate deflections of FRP RC beams based 

on effective flexibilities of members in the cracked state using a) curvature distributions 

along the member, or b) available effective stiffness models. Using this model, Dundar et al. 
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predicted accurately the complete load-deflection history of FRP RC beams, but it is also 

necessary to verify the accuracy of such model using additional test data. Moreover, to date, 

practical models to predict the deflection of a FRP reinforced member throughout its 

complete load history are still needed. 

This article proposes a practical method to determine shear crack induced deformations in 

FRP RC beams. Section 2 of this study discusses design equations included in recent design 

guidelines that predict deflections of FRP RC members. Subsequently, Section 3 presents an 

experimental programme on six beams designed to fail in shear. Section 4 presents and 

discusses the experimental observations, and gives details of the initiation and development 

of shear cracking, which are used as input parameter of the proposed method. The model is 

then incorporated into existing code equations to calculate the overall beam deformations up 

to failure (Section 5). The model is validated by comparing the predicted deflections and the 

experimental results from the tested beams. Concluding remarks of this study are given in 

Section 6. This article contributes towards the development of more accurate models to assess 

the overall shear deflection behaviour of FRP RC beams so as to balance the performance, 

serviceability and economic viability of structures. 

2. Deflection prediction of FRP RC members 

Short-term deflections of FRP RC beams are generally derived using linear-elastic deflection 

equations that utilise an effective moment of inertia that accounts for stiffness losses due to 

cracking. Whilst many approaches are used to derive the effective moment of inertia of FRP 

RC beams [14-16], this study focusses on the widely adopted ACI 440 [24] and Eurocode 2 

(EC2) [25] recommendations. 
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ACI 440 [24] adopts a modified form of Bischoff ’s [26] section-based equation for 

calculating the effective moment of inertia ܫ௘ (see  Eq. 1), which includes a factor ߛ to 

account for the stiffness variation along the length of a flexural element: 

௘ܫ ൌ ௖௥ͳܫ െ ߛ ቀܯ௖௥ܯ௔ ቁଶ ൬ͳ െ ௚ܫ௖௥ܫ ൰ (1) 

 

where ܫ௚and ܫ௖௥ are the gross and cracked moments of inertia, respectively; and ܯ௖௥ and ܯ௔ are the cracking and applied flexural moments, respectively.   

 

As reported by Bischoff and Gross [27], Eq. (1) provides reasonable estimates of deflections 

for FRP RC beams and slabs. The factor ߛ depends on the load and boundary conditions, and 

implicitly accounts for the length of the uncracked regions of the member. The above authors 

suggest calculating ߛ using Eq. (2): 

ߛ ൌ ͳǤ͹ʹ െ ͲǤ͹ʹ ൬ܯ௖௥ܯ௔ ൰ (2) 

To predict the deformation of RC beam elements, EC2 [25] includes the effect of tension 

stiffening based on the CEB-FIP Model Code approach [28, 29]. Accordingly, Eq. (3) is used 

to calculate the short-term deflection ߜ: 

ߜ ൌ ߚ ൬ܯ௖௥ܯ௔ ൰௠ ௚ߜ ൅ ቈͳ െ ߚ ൬ܯ௖௥ܯ௔ ൰௠቉  ௖௥ (3)ߜ

In Eq. (3), the deflections in the uncracked (ߜ௚) and cracked (ߜ௖௥) stages are calculated 

assuming constant uncracked and cracked sectional moments of inertia along the beam, 

respectively. The recommended values for the coefficients ߚ and ݉  are 1 and 2, respectively. 

Al -Sunna et al. [4] proposed the use of Eq. (3) to calculate total deflections of FRP RC 
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beams, but a value 0.5=ߚ was recommended for beams reinforced with Glass FRP (GFRP). 

Consequently, such value is adopted for the analyses carried out in this study. 

More recently, Dundar et al. [23] proposed a more advanced model to calculate deflections of 

FRP or steel RC elements. The model considers either the a) curvature distribution along the 

member, or b) effective flexibility models available in the literature. In the cracked state, the 

model uses a complete moment-curvature relationship obtained from sectional analyses. The 

model can compute deflections over the full loading history, including post-yielding if 

reinforcing steel is used. Accordingly, the effective flexibility of the member at a specific 

section can be expressed as: 

ͳܧ௖ܫ௘ ൌ ͳܧ௖ܫ௖௥ ൤ͳ െ ൬ͳ െ ߮ெܯ௔ ൰ ௖௥൨ܫ௖ܧ ൑ ͳܧ௖ܫ௖௥ (4) 

where ܧ௖  is the modulus of elasticity of concrete, and ߮ெ is the curvature of the member at a 

value of applied moment ܯ௔. Due to its versatility, Eq. (4) represents the state-of-the-art for 

calculating deflections of FRP RC elements. 

3. Experimental programme 

To assess the effect of additional shear deformations, twelve tests were carried out on six 

beams reinforced with GFRP in flexure and shear. The parameters examined were expected 

to influence the overall deformation of the specimens, and included different: 1) stirrup 

strength; 2) shear reinforcement ratio; 3) type of flexural reinforcement, and 4) type of FRP. 

The beams were designed with sufficient flexural reinforcement in order to induce a shear 

failure. Different arrangements of shear reinforcement were investigated to assess its effect 

on the total shear capacity and deformations.  
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3.1. Beam characteristics  

Table 1 summarises details of the tested beams and parameters examined in this study. The 

beam specimens had a rectangular cross-section of 150×250 mm and a total length of 2500 

mm. To promote a shear-dominated behaviour, each beam was subjected to four-point 

bending with a shear span to effective depth ratio (a/d) equal to 3.5. Two types of GFRP bars 

were used as flexural reinforcement. Two 16 mm Sc bars were used in beams TB1 to TB3, 

thus leading to a flexural reinforcement ratio ȡf =1.22%, whereas three 13.5 mm Eu bars 

were used in beams TB4 to TB6 (ȡf =1.30%). The reinforcement in the compression zone of 

all beams consisted of two 9 mm Eu bars. Each shear span (see shear span sides A and B in 

Fig. 2) was reinforced in shear with internal FRP stirrups at different spacing. Different 

stirrup spacing was selected for each span in order to test each specimen twice, thus testing a 

different span at the time. The shear reinforcement ratio ȡw of the beams varied between 0.18 

and 0.48. In Table 1, the beams are identified using two letters (TB), followed by the 

specimen number (1 to 6), and a final letter that stands for the tested span side (A or B). 

Beam TB 6B had no shear reinforcement and was used as a control specimen.  
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Table 1 Details of reinforcement used in tested beams 

Beam 

ID 

Flexural reinforcement  Shear reinforcement 

Area 

(mm2) 

Effective 

depth 

(mm) 

ȡf 

(%) 

Bar 

type 
 

Area 

(mm2) 

Spacing 

(mm) 

ȡw 

(%) 

TB 1A 

402 219 1.22 Sc 

 60 164 0.24 

TB 1B  60 164 0.24 

TB 2A  60 164 0.24 

TB 2B  60 109 0.37 

TB 3A  60 98 0.41 

TB 3B  60 219 0.18 

TB 4A 

429 220 1.30 Eu 

 60 165 0.24 

TB 4B  60 110 0.36 

TB 5A  60 132 0.30 

TB 5B  96 132 0.48 

TB 6A  60 165 0.24 

TB 6B  No shear reinforcement 

 

3.2. Materials  

3.2.1 FRP reinforcement  

Commercially available pultruded thermoset GFRP bars were used to reinforce the beams in 

flexure. The 16 mm Sc round bars had a machined threaded surface (Fig. 1a), whereas the 

13.5 mm Eu bar had a rough surface produced by peel ply (Fig. 1b). The closed shear 

stirrups were specially manufactured using two types of thermoplastic GFRP strips (see Fig. 

1c). PL stirrups (cross section 3×10 mm) were prepreg composites consisting of a 

thermoplastic polypropylene matrix and continuous unidirectional glass fibres (35% by fibre 

volume). The Ce stirrup had a similar cross section but consisted of a thermoplastic 

polypropylene matrix and continuous unidirectional glass fibres (29% by fibre volume). The 

mechanical properties of the FRP reinforcement used to reinforce the beams in flexure and 
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shear are listed in Table 2. Such properties were obtained by testing at least three bar or 

stirrup strip samples in direct tension, as reported in reference [30]. 

 

Fig. 1.  GFRP reinforcement used: (a) Sc bar, (b) Eu bar, (c) PL strip and (d) Ce strip 

 

Table 2 Mechanical properties of GFRP reinforcements  

FRP 
bars 

Cross 
section 
(mm) 

Modulus of 
elasticity 

(GPa) 

Ultimate 
stress 
(MPa) 

Ultimate 
strain 
(%) 

Sc 16 60 1000 1.8 

Eu 13.5 45 700 1.7 
PL 3×10 28 720 1.9 
Ce 3×10 25 N/A 1.7 

 

3.2.2 Concrete 

A single batch of ready-mix concrete with a target slump of 50 mm was used to cast the 

beams. The mix was produced using concrete C50 with 10 mm maximum aggregate size and 
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Ordinary Portland Cement (OPC) type I. Mean compressive strength values were obtained 

from 100 mm cubes according to BS EN 12390-3 [31].  The indirect tensile splitting strength 

(fctm) was determined from tests on six 100×200 mm cylinders according to BS EN 12390-6  

[32]. The flexural strength (fcfm) was obtained from four-point bending tests on three 

100×100×500 mm prisms according to BS EN 12390-5 [33]. All cubes, cylinders and prisms 

were cast at the same time and cured together with the beams. Table 3 reports the average 

strength and standard deviations from the tested cylinders and prisms. The mean modulus of 

elasticity calculated according to EC2 was Ecm=33.2 GPa. 

 

Table 3 Properties of concrete for tested beams  

 
Compressive 

strength fcm 

Tensile 

strength fctm 

Flexural strength 

fcfm 

Mean (MPa) 60.1 3.60 5.20 

Std. Dev. (MPa) 2.56 0.37 0.34 

Sample (No) 18 18 9 

 

3.3.  Experimental set-up and instrumentation 

The beams were tested in four-point bending using a 250 kN-capacity servo-controlled 

actuator and a stiff spreader loading beam, as shown in Fig. 3. The specimens were simply 

supported over a span of 2300 mm through rollers supported on 100 mm wide steel plates. 

Equal concentrated loads were applied symmetrically at the beams’ mid-span to produce a 

constant moment in this region.  All tests were performed in displacement control and the 

evolution of damage (crack pattern and crack widths) was monitored at load increments of 5 

or 10 kN using a hand held micrometer. Crack widths were measured at the soffit of the 

beams in all tests. The load was initially applied up to 40 kN and then removed to relief 

possible residual strains (which would lead to spurious strain gauge readings), and to check 
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the instrumentation and data acquisition system. Subsequently, the specimens were reloaded 

to induce strains in the flexural and shear reinforcement of approximately 4500-5000 µİ. 

Foil-type strain-gauges were bonded at various locations (see Fig. 2) along the flexural and 

shear reinforcement to monitor strain. Most gauges were fixed on the flexural reinforcement 

within the shear spans to measure the effect of shear cracks. Strain gauges were also fixed at 

the mid-span and under the point loads. In addition, strain gauges were also attached on 

selected shear stirrups to capture the strain values produced by diagonal shear cracks. All 

beams were subjected to two consecutive tests, one on each span side. In all specimens, side 

A was tested first. To prevent excessive cracks or failure during the initial test on side A, side 

B of all beams was externally confined using post-tensioned steel straps [34], as shown in 

Fig. 3. After the test on side A was halted, the straps were removed from side B, new straps 

were fixed on side A, and side B was retested to produce shear failure of the specimen. 

 

The beam deflections were measured at each load increment using Linear Variable 

Differential Transducers (LVDTs) situated at the mid-span, under the point loads and at every 

256 mm under the shear span (see Fig. 2). Two additional LVDTs at the top-face of the beam 

supports measured deflections at the supports, thus enabling the calculation of the net beam 

deflections. 
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Fig. 2. Test set-up and location of strain gauges and LVDTs 

 

 

Fig. 3. Typical view of beams during tests and pre-tensioned steel straps on side B (TB 1) 

Steel straps 
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4. Test results and analysis 

Table 4 summarises the experimental results in terms of diagonal cracking load (Pcr), ultimate 

load at failure (Pu), maximum deflection at mid-span (įmax), maximum flexural crack width 

(w1 at mid-span), major diagonal shear cracks observed during the tests (w2-w4), and average 

crack spacing. The following sections summarise the most significant observations of the 

testing programme and discuss the results listed in Table 4. 

Table 4 Summary of experimental results 

Beam 
ID 

Pcr 
(kN) 

Pu 
(kN) 

įmax 
(mm) 

w1 at load P 
(mm) 

Major diagonal 
shear cracks 

(mm) 

Average 
crack 

spacing 
(mm) w2 w3 w4 

TB 1A 63.8 70.2 21.0 0.40@70 0.25 - - 70 

TB 1B 64.4 79.1 20.5 0.35@60 0.10 0.05 0.08 - 

TB 2A 69.4 72.0 21.1 0.45@70 0.05 0.10 0.01 77 

TB 2B 66.5 131.4 41.2 0.50@80 0.20 0.20 0.10 - 

TB 3A 72.8 126.4 37.7 0.40@80 0.10 - - 77 

TB 3B 60.4 76.8 24.3 0.25@60 0.30 0.60 0.80 - 

TB 4A 53.0 65.6 22.4 0.35@60 0.20 0.35 0.02 85 

TB 4B 65.0 118.6 45.4 0.35@60 0.25 0.20 0.02 - 

TB 5A 55.8 133.7 36.6 0.50@60 0.20 0.20 0.05 85 

TB 5B 72.7 133.7 48.2 0.45@60 0.70 0.60 0.05 - 

TB 6A 57.0 61.2 18.8 0.28@60 0.18 0.20 0.08 85 

TB 6B 58.1 58.1 16.8 0.29@50 0.20 0.22 0.10 - 

 

4.1. Shear capacity and observed failure 

The test on side A of the beams with stirrups was halted when strain levels in both flexural 

and shear reinforcements exceeded a critical value of 4500-5000 . It was assumed that, at 

such strain levels, the load recorded was close to the ultimate capacity (Pu) of the tested shear 

span as observed in similar beams tested by Guadagnini et al. [5,6]. On the other hand, the 
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diagonal cracking load (Pcr) was experimentally determined as the load at the onset of 

diagonal cracking. Pcr was assumed to be the load at which the FRP stirrups were fully 

mobilised, as evidenced by a sudden increase of strains in the shear stirrups. 

The crack development was similar for all beams. The initial load formed small flexural 

cracks within the mid-span and shear span regions; these cracks became wider and visible to 

the naked eye as the load increased. Major shear cracks (i.e. w2A, w3A, and w4A) were 

observed in all beams (see for example Fig. 4a) as the load increased further. The maximum 

loads varied from 61 to 126 kN, depending predominantly on the shear reinforcement ratio in 

span A. It should be noted that the actual capacity of side A of the beams may be slightly 

higher had the tests been continued up to failure; as a result, the values reported in Table 4 

are slightly conservative. 

During the tests on side A, several shear cracks developed on side B but crack opening was 

effectively controlled (maximum width=0.01 mm) by the post-tensioned steel strapping 

around the latter side. During the tests on side B, the flexural and shear cracks developed 

during the tests in side A propagated and penetrated deeper towards the loading point as the 

applied load increased. After the formation of diagonal cracks, the strain recorded in the shear 

stirrups increased rapidly and, eventually, failure occurred. As expected, all beams with 

stirrups were dominated by a shear diagonal failure. This was accompanied by stirrup rupture 

and concrete spalling at the beams’ soffit (Fig. 4b,c). The measured ultimate capacities of the 

beams with stirrups ranged between 77 and 134 kN. 

Unlike the beams reinforced with shear stirrups, the control specimen without stirrups (TB 

6B) did not develop new diagonal cracks during the tests on side B. During testing, the 

existing shear cracks widened further and propagated towards the loading point. Failure 

occurred at a load of 58 kN due to excessive widening of a diagonal crack (labelled as W3B in 

Fig. 4d) that formed during the initial test on side A. Note that, for side B of the beams, Pcr 
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was also assumed as the load at which the FRP stirrups were fully mobilised, as evidenced by 

a sharp increase of strains in the shear stirrups. 

 

Fig. 4.  Diagonal tension failure of beams: (a) TB 2A, (b) TB 3B; (c) stirrup rupture in the 

bent region (TB 4B), and (d) view of beam TB 6B during testing 

 

Fig. 5a shows the crack pattern observed during the tests, whereas Fig. 5b shows the 

measured crack widths at different load levels. In general, at maximum load (see Table 4), 

more cracks appeared in beams reinforced with bars Sc (beams TB 1 to TB 3) than in beams 
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reinforced with bars Eu (beams TB 4 to TB 6). Moreover, the average crack spacing was 10% 

higher in the latter beams. The larger number of cracks in beams with Sc bars can be 

attributed to a more distributed bond stress along such bars. Note that the crack spacing 

reported in Table 4 is an average value obtained by dividing the length of the constant 

moment zone by the total number of cracks at maximum load on side A. 
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Fig. 5.  (a) Final crack pattern of beam specimens after tests, and (b) measured crack width of beam specimens  
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4.2. Strain in flexural and shear reinforcements  

Fig. 6 shows the strains recorded along the flexural reinforcement of beam TB 3B, which is 

representative of the rest of the specimens. For clarity, the results are presented at load 

intervals of approximately 10 kN and only up to the peak load. As expected, large strains 

were recorded at mid-span as a result of the flexural cracking produced by increasing loads.  

The sharp increase of longitudinal bar strains at 60 kN (see side B in Fig. 6) was due to the 

development of shear cracks. In all beams, strains measured in the longitudinal reinforcement 

always exceeded 0.5% at maximum load. 

 

Fig. 6.  Longitudinal bar strains recorded during the test on beam TB 3B 

 

Fig. 7 shows the variation of strains in the shear reinforcement of beam TB 1. The stirrups 

A3-A6 shown in this figure were located on side A of the beam, while stirrups B3-B6 were 

on side B. It is shown that, for both beam sides, the measured strains increased rapidly after 

the formation of diagonal cracks at 65 kN. The load at the onset of diagonal cracking was 

well captured by several strain gauges in at least two shear stirrups. Once the diagonal cracks 

formed, the strain gauges adjacent to the cracks were mobilised and the strains increased 

rapidly up to beam failure. Fig. 7 also shows that i) the distribution of strain along the stirrups 

was not uniform (e.g. stirrups A4, A5, B4, B5), and ii) higher strains were recorded at strain 
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gauges adjacent to the cracks. The crack development and strain gauge readings are used in 

the following section to derive a practical model for predicting the deflections of FRP RC 

beams. 

 

 

Fig. 7.  Final crack pattern of beam TB 1, location of strain gauges (dots) and corresponding 

strain distribution in shear stirrups 

4.3. Analysis of beam deflections 

4.4.Theoretical predictions vs experimental results 

The total mid-span deflection, ο௠௜ௗ, of the tested beams subjected to bending and shear can 

be obtained using virtual work principles: 

ο௠௜ௗൌ ܫܧଷͳʹͻ͸ܮܲ͵ʹ ൅  ܣܩ͸ܮܲ׎
(5) 

where ܲ  is the total load, ܮ is the clear span of the beam, ׎ is the form factor (6/5 = ׎ for a 

rectangular section), ܫ is the moment of inertia, ܣ is the cross sectional area of the beam, and ܧ and ܩ are elastic and shear modulus, respectively (ܩ ൌ Ȁʹሺͳܧ ൅ ߭ሻ).  

For RC elements, the effective moment of inertia Ief is often used to calculate the flexural 

deformation component (first term on right hand side of Eq. 5), whereas the shear component 

(second term of Eq. 5) is considered negligible for slender beams. Shear deformations are not 
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explicitly accounted for in ACI 318 [35] nor in Model Code [28, 29] models for calculating 

deflections of RC beams or slabs. Nevertheless, the CEB 158 [36] guidelines consider shear 

deformations of RC members by defining two states of shear strains, as shown in Fig. 8. In 

this figure, the magnitude of shear strains largely depends on the formation of inclined shear 

cracks. If no shear cracks occur (i.e. V<Vr, where Vr is the shear cracking force in state I, Fig. 

8), the shear deformations are elastic, very small and can be thus neglected. However, after 

the development of inclined cracks (Vr<V<4Vr, state II in Fig. 8), shear deformations are 

significant. In this case the calculation of the overall shear deformation uses a parabolic 

function from the elastic shear deflection to the fully opened shear crack deflection due to 

shear. 

 

 

Fig. 8.  Shear strain as a function of applied shear force (adapted from CEB 158) 

 

Accordingly, CEB 158 [36] calculates the shear cracking force ௥ܸ as: 

௥ܸ ൌ ߬௥݇ሺͳ ൅ ͷͲߩ௟ሻܾ௪݀ (6) 

where the shear stress  ߬௥ depends on the concrete strength (refer to Table 3.5.1 of the CEB 

158, 1985), ݇=1.6-d with d in meters, and ߩ௟ is the longitudinal reinforcement ratio (ܣ௦Ȁܾ௪݀). 
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Figs. 9 and 10 compare the load-deflection responses from side A of the tested beams with a) 

the flexural deflection predictions (f) calculated according to EC2 but ignoring the shear 

deflection, and b) deflections according to EC2 (f) plus the shear deflection given by CEB 

158 (s). Likewise, the figures also compare the load-deflection response from side B of the 

beams with the predictions given by cracked section analysis (CSA). It should be noted that 

the concrete tensile strength used to determine the cracking moment and cracking load was 

derived from inverse analysis to account indirectly for the variability of concrete, size effect, 

and shrinkage effects on the initial strain state within the element and on the apparent 

concrete properties [37].  

 

Overall, the results in Figs. 9 and 10 indicate that the analytical models predict reasonably 

well the deflections up to (low) loads corresponding to service conditions. In this study, the 

service load is assumed to be about 35% the nominal moment capacity of beams TB 1-3 and 

TB 4-6, which corresponds to loads of 55 and 50 kN, respectively. However, the predictions 

given by the models underestimate considerably deflections at higher loads (i.e. after 

diagonal cracking). Such inconsistencies are attributed to the formation of shear diagonal 

cracks at higher load levels, which results in an additional deformation component. This 

component is referred to as shear crack induced deformation in subsequent sections of this 

study. Note that the load at shear diagonal cracking (Pcr) can be determined experimentally 

from strains in the stirrups, as these are mobilised only upon the occurrence of diagonal 

cracking (see Table 4). 
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Fig. 9.  Comparison of the mid-span deflection between test results and theoretical 
predictions (beams TB 1-3) 
 

  

Fig. 10.  Comparison of the mid-span deflection between test results and theoretical 
predictions (beams TB 4-6) 
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4.4.1 Effect of flexural reinforcement stiffness 

To investigate the effect of longitudinal reinforcement on the additional shear crack induced 

deflections, the deflections from the tests on side B are compared to analytical predictions 

obtained using CSA, but ignoring the concrete contribution in tension. The effect of different 

longitudinal reinforcement on shear deformation can be examined from the results of TB 2B 

and TB 4B, which had longitudinal reinforcement ratios of 1.22% and 1.33%, respectively. 

Fig. 11 shows that, at equivalent load levels, TB 2B had lower additional deflection (i.e. ǻį 

in shaded region) than TB 4B. This is due to the higher flexural reinforcement stiffness Ef ȡf 

of bar Sc (0.732) compared to bar Eu (0.598), which resulted in less axial deformation in the 

bar and thus reduces both flexural and shear deformations.  

 

 

Fig. 11.  Effect of longitudinal reinforcement content on beam deflection. 

4.4.2 Effect of shear reinforcement ratio 

Fig. 12 compares the load-deflection response of beams TB 4B, TB 5B and TB 6B. These 

beams had the same longitudinal reinforcement, but the shear reinforcement ratios of 

specimens TB 4B and TB 5B were 0.36% and 0.48% respectively, whereas specimen TB 6B 

had no shear reinforcement. The results in Fig. 12 show that TB 6B had a capacity of only 58 

kN at 16.8 mm. The total deflections of TB 4B and TB 5B were similar after the diagonal 

crack formed (at 65 kN and 73 kN, respectively, as determined from stirrup strains) and up to 
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a load of 110 kN. At this load, another diagonal crack developed in beam TB 4B, thus 

increasing rapidly the overall deflection. At ultimate load, the shear deformation of 

specimens TB 5B and TB 4B accounted for 20% and 30% of the total beam deformation, 

respectively. 

 

Fig. 12.  Effect of shear reinforcement ratio on beam deflection. 

 

Based on the analysis of the beam deflection, it is evident that the contribution of crack 

induced deformations to the total deflection of FRP RC beams can be significant. The 

additional deflection due to shear crack opening can be added to existing predictive equations 

for calculating overall beam deformations up to failure. The following section proposes a 

practical semi-empirical model that can be incorporated into existing code equations for 

calculating accurately overall beam deformations up to failure. 

5. Model proposal for estimating shear crack induced deflections 

The proposed model considers an element of an RC beam subjected to bending and shear, as 

shown in Fig. 13. The total deformation of the element, tot, is assumed to have deformation 

components due to pure bending f (Fig. 13a), pure shear s (Fig. 13b), and rigid-body 

movement R, accordingly: 
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௧௢௧ߜ ൌ ௙ߜ ൅ ௦ߜ ൅  ோ (7)ߜ

R can be further decomposed into global rigid movement, Ra (Fig. 13c), and localised rigid 

body movement due to the formation of macro cracks, Rcr (Fig. 13d).  

 

 

 

Fig. 13.  Decomposition of the total deflection of a RC element subjected to bending and 

shear force 

The value of s is generally negligible in slender RC elements. However, when diagonal 

shear cracks develop, the additional localised rigid body deformation Rcr (due to crack 

opening) can be significant. This component of deformation can be determined considering 

the change in geometry of the beam element as a rigid body rotation around the tip of a macro 

crack, as shown in Fig. 14 for a beam subjected to two-point loads. If the horizontal 

movement and support settlement are ignored, the value of the angle ߙ is defined as the sum 

of the angles ߚଵand ߚଶ, i.e: 

ߙ ൌ ଵߚ ൅  ଶ (8)ߚ

For very small angles ߚଵ and ߚଶ, the following geometrical relationships can be established: 

ଵߚ ൎ ଵݔ݈ ൎ  Ȁʹሻ (9)ܮ௖௥ሺߜ
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ଶߚ ൎ ଶݔ݈ ൎ  Ȁʹሻ (10)ܮ௖௥݈ଵ݈ଶሺߜ

Substituting Eqs. (8) and (9) into Eq. (7) and rearranging terms, the mid-span deflection can 

be defined as:  

௖௥ߜ ൌ Ȁʹሻͳܮሺߙ ൅ ሺ݈ଵȀ݈ଶሻ (11) 

 

 
 

Fig. 14.  Single straight shear crack model  

 

The angle ߙ can be expressed as a function of the crack width ݓ, and the height of the crack 

tip ݕ. It should be noted that, in practice, several cracks can develop within the shear span of a 

RC beam. Whilst these shear cracks always initiate vertically (usually as progression of 

previous flexural cracks), their orientation changes rapidly as a result of the change in 

direction of the principal stresses. Fig. 15a shows a possible distribution of idealised curved  

shear cracks along the shear span of a RC beam, whereas Fig. 15b shows idealised straight 

diagonal cracks that represent the inclination of the curved cracks. 
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Fig. 15.  Idealised shear cracks in a concrete beam element 

 

Thus, the maximum deflections at mid-span due to the rigid-body movement of the beam can 

be obtained by adding the deflections of each of the elements between cracks (elements A, B 

and C in Fig. 15b). For simplicity, it is assumed that the mid-span deflection cr can be 

calculated using a fictitious single diagonal crack with a total width equal to the sum of all 

the developed shear cracks (Fig. 15c) according to Eq. (12): 

௖௥ߜ ൌ ෍ ൤ݓ௦ݕߠ݊݅ݏ ൨ ή ൤ Ȁʹͳܮ ൅ ሺ݈ଵȀ݈ଶሻ൨ (12) 

where ws is the sum of the shear crack widths;  is the inclination of the single crack; y is 

height of the crack tip; L is the total span of the beam (L=l1+l2); note that l1, l2 and y indicates 

the location of the crack tip from each support (see Fig. 15c). Eq. (12) indicates that the 

additional component of deflection caused by the formation of shear diagonal cracks is a 

function of 1) the crack width w, 2) the inclination angle of the crack , and 3) the location of 

the crack tip with reference to the support. The effect of these parameters is examined in 

more detail through a sensitivity analysis. 
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5.1. Sensitivity analysis 

Eq. (12) was used to assess the additional component of deflection from shear diagonal 

cracks on the tested beam specimens. Different values of crack inclination (starting from 

=21.8o) were used to study their effect on the beam deflection results, including a simplified 

analysis assuming a fixed crack angle (=45o). Fig. 16 compares the additional mid-span 

deflection for the tested beams. The results show that a fixed crack angle (=45o) leads to a 

higher mid-span deflection with an increase in the crack width and its inclination angle. As 

shown later, the use of =45° in the calculations leads to accurate estimations of the 

additional deflection component due to shear cracks. 

 

Fig. 16.  Effect of variation inclination angle on beam deflection 

 

In real beams, shear diagonal cracks develop vertically at the beginning of loading. 

Subsequently, the cracks tend to propagate and penetrate deeper towards the loading points, 

and finally the cracks’ tip stops close to the neutral axis. Conversely, Eq. (12) was derived 

assuming that the crack tip is at the loading point. For practical purposes, the height of the 

crack tip can be taken as y=0.9h, where h is the total height of the beam.  
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The proposed model (Eq. (12) also assumes that several shear cracks can form in the shear 

span, and that all these cracks contribute to the additional mid-span deflection. However, the 

location of the actual crack tips is unknown and is difficult to measure in practice. As a result, 

Eq. (12) can be further simplified assuming that a crack tip occurs very close to the loading 

point within the shear span (defined as a). The horizontal distance of the fictitious crack tip 

(l2) to the support can be defined as approximately equal to the shear span a. Assuming =45o 

and y=0.9h, Eq. (12) can be re-written as: 

௖௥ߜ ൌ ൬ݓ௦ߠ݊݅ݏʹ ൰ Ǥ ൬ܽݕ൰ (13) 

Or further simplified for the beams tested in this study: 

௖௥ߜ ൌ ͲǤ͵ͻ͵ݓ௦ ቀ݄ܽቁ (14) 

It should be noted that the assumptions regarding the number of inclined cracks and the crack 

angle used in the proposed model may not apply for all load configurations, and thus further 

research should investigate/extend the applicability of the model to different load cases such 

as distributed loading or single point loading. It should be also mentioned that the additional 

deflections computed by Eq. (12) are expected to be conservative for shorter spans or deep 

beams (i.e. shear cracks are likely to develop at service conditions). For longer spans, the 

moment-to-shear ratio increases and the contribution of shear deformations to the total 

deformation is small [38]. As such, Eq. (13) is sufficiently accurate to estimate the additional 

deflection due to shear cracks in the case of three- and four-point flexural bending using the 

experimental cracking moment. If the experimental cracking moment is not available, 

alternative methods such as a strain control approach could be used to estimate the shear 

crack width, as explained later in section 5.2. 
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5.2. Comparison of theoretical and experimental results 

To assess the accuracy of the proposed model, the results from shear diagonal crack 

development of the tested beams are used (refer to Fig. 5). Only major diagonal cracks were 

considered in the assessment based on the experimental observations. Moreover, a fixed 

crack angle =45° was assumed in the analysis. Figs. 17 and 18 compare the theoretical and 

experimental load-deflection responses for beam specimens TB 3A and TB 4A, respectively. 

These are typical results and the following observations apply to the rest of the beams. Three 

analytical predictions are shown in the figures: a) ߜ௙ ൅  ௦ is the beam deflection consideringߜ

flexure predictions from EC2 and shear predictions from CEB 158, b) ߜ௙ ൅ ௦ߜ ൅  ோ௖௥ is theߜ

prediction considering the above components plus the additional shear crack induced 

deflection (i.e. Eq. (13), and c) Dundar et al.’s model using moment-curvature analysis. It is 

shown that code equations and Dundar et al.’s model predict well the experimental results 

only before diagonal cracking occurs. In particular, the load-deflection curves obtained from 

Dundar et al.’s model are closer to the experimental curves of TB 3A and TB 4A compared to 

the code predictions, which have a stiffer response. Whilst Dundar et al.’s model matches the 

experimental curves of the tested beams up to approximately 70-80% of their capacity, the 

deflection calculated by the new proposed model matches well the test results up to ultimate 

load. However, further comparisons with different test data are necessary to validate the 

better accuracy of the predictions yield by the proposed model. 
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Fig. 17.  Prediction of mid-span deflection for specimen TB 3A 

 

 

Fig. 18.  Prediction of mid-span deflection for specimen TB 4A 

 

Table 5 compares the experimental deflections and the analytical predictions by ACI 440 

[24], EC2 [25], Dundar et al.’s model [23] and the proposed model (Eq. 13) for the tests on 

beam sides A. The results in Table 5 indicate that, compared to the predictions given by 

existing design guidelines and the advanced moment-curvature approach, the proposed 

equation predicts the test results more accurately (mean Test/Prediction ratios T/P=1.03 and 

1.02 at Pcr and Pu, respectively) and with less scatter (Standard Deviations SD=0.03 and 0.02 

at 0.02 at Pcr and Pu, respectively). The results in Table 6 confirms that the proposed model 

also predicts more accurately the experimental deflections on side B of the beams (T/P=1.13 

and SD=0.07) when compared to CSA. Consequently, it is proposed to use Eq. (13) (or the 
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more general Eq. 12) to predict the deflection of FRP beams. It should be mentioned that, in 

real situations, shear crack widths are not easy to determine beforehand. Moreover, the 

experimental studies available in the literature rarely report detailed data on the progression 

of shear cracking during tests. In the absence of these data, the designer can, for instance, 

estimate the additional deformation due to shear action by the strain approach and 

considering the number of shear stirrups likely to contribute to a beam’s shear resistance 

along with a predetermined limiting strain value such as that proposed for the design of shear 

stirrups (for example 0.45% [38]). In an attempt to provide a simple design tool, additional 

shear crack induced deformations could be estimated according to the proposed strain 

approach which is suitable for design procedure. Such approach will be presented by the 

authors in a forthcoming article. 

 

Table 5 Experiment and calculated deflections of beams, sides A 

Specimen 

Deflection at Pcr (mm)  Deflection at Pu (mm) 

Test 
ACI 

440 
EC2 

Dundar 

et al. 
f+s+CR  Test 

ACI 

440 
EC2 

Dundar 

et al.
f+s+CR 

TB 1A 17.6 15.3 16.1 16.3 16.5  21.0 16.7 18.9 19.2 20.2 

TB 2A 19.1 16.3 17.1 17.8 18.4  21.1 17.5 19.7 20.1 20.3 

TB 3A 18.5 16.1 17.3 17.9 17.5  37.7 28.9 32.6 34.1 37.2 

TB 4A 17.2 15.9 16.2 16.9 17.1  22.4 18.3 19.5 21.4 22.1 

TB 5A 16.7 15.1 15.9 16.8 16.3  36.6 28.6 29.7 31.9 35.4 

TB 6A 15.8 15.1 15.3 15.7 15.8  18.8 16.9 18.3 18.5 18.7 

Avg. (T/P) - 1.12 1.07 1.07 1.03  - 1.23 1.12 1.08 1.02 

SD - 0.05 0.03 0.03 0.03  - 0.07 0.07 0.05 0.02 

Note: SD is the standard deviation. 

 

Table 6 Experiment and calculated deflections of beams, sides B 

Specimen 
Deflection at Pu (mm) 

Test CSA CSA+CR 
TB 1B 21.1 19.2 19.6 

TB 2B 41.2 34.1 34.8 
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TB 3B 24.3 18.0 20.5 

TB 4B 44.8 36.5 37.2 

TB 5B 48.2 42.8 43.0 

TB 6B 16.8 16.0 16.5 

Avg. (T/P) - 1.18 1.13 

SD - 0.11 0.07 

Note: SD is the standard deviation. 

6. Conclusions 

This study proposes a practical semi-empirical method for determining additional 

deformation due to shear cracking in FRP RC beams. To account for the contribution of shear 

cracking to total beam deflection, the model uses a single fictitious inclined crack with a 

width equal to the sum of the individual effective shear crack widths. The additional 

deflection obtained by the proposed model can be added to the deflection predicted by CSA 

or by equations in existing design guidelines. Based on the results of this study, the following 

conclusions are drawn:   

 The deflection of FRP RC beams can be adequately predicted by equations included in 

current guidelines (e.g. ACI 440, EC2) and the advanced moment-curvature model by 

Dundar et al. but only up to the service limit. At higher load levels, such equations can 

significantly underestimate deflections by up to 30%. 

 The experimental results indicate that the additional component of deflection due to shear 

crack development needs to be added to the components due to bending and rigid-body 

movement. The results also show that diagonal cracking can occur even under normal 

service conditions and can rapidly increase the magnitude of the overall deflection. 

 The estimated total deflection of FRP RC members can be significantly improved by 

adding the component of deflection due to shear action and crack opening to the flexural 

deflection calculated by existing predictive equations. Compared to ACI 440 and EC2, 
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the proposed model provides more consistent predictions and less scatter up to beam 

failure. 
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