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Probabilistic Conditional Reasoning: Disentangling Form and Content
with the Dual-Source Model
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The present research examines descriptive models of probabilistic conditional reasoning, that is
of reasoning from uncertain conditionals with contents about which reasoners have rich back-
ground knowledge. According to our dual-source model, two types of information shape such
reasoning: knowledge-based information elicited by the contents of the material and content-
independent information derived from the form of inferences. Two experiments implemented
manipulations that selectively influenced the model parameters for the knowledge-based in-
formation, the relative weight given to form-based versus knowledge-based information, and
the parameters for the form-based information, validating the psychological interpretation of
these parameters. We apply the model to classical suppression effects dissecting them into
effects on background knowledge and effects on form-based processes (Exp. 3) and we use
it to reanalyse previous studies manipulating reasoning instructions. In a model-comparison
exercise, based on data of seven studies, the dual-source model outperformed three Bayesian
competitor models. Overall, our results support the view that people make use of background
knowledge in line with current Bayesian models, but they also suggest that the form of the
conditional argument, irrespective of its content, plays a substantive, yet smaller, role.

Keywords: conditional reasoning; probabilistic reasoning; dual-source model; measurement
model; meta-analysis

Introduction

It is difficult to overstate the influence Bayesian ap-
proaches have had on the development of theories in cog-
nitive psychology in the last few decades. Across diverse
domains – ranging from low-level phenomena such as per-
ception to high-level phenomena such as argumentation –
Bayesian models often provide an unprecedented level of ex-
planatory power (Chater, Oaksford, Hahn, & Heit, 2010). A
core assumption of such models is that subjective degrees of
belief can be modeled as probabilities obeying the axioms of
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probability theory.

In the field of reasoning, people evaluating an argu-
ment have traditionally been asked to assume that the stated
premises hold true and to ignore any background knowledge
elicited by the contents of the premises. In tune with these
instructions, theoretical accounts have often assumed that
reasoning is performed on relatively abstract representations
of the argument form (e.g., Johnson-Laird, 1983; Johnson-
Laird & Byrne, 1991; Rips, 1994). The advent of Bayesian
and related probabilistic approaches has led to what has been
called the new paradigm (Over, 2009). In the new paradigm,
the reasoning problems are typically couched in everyday,
real-world contents, and reasoners are not instructed to dis-
regard what they know about the contents.

Using such contents, it turned out that it is easy to con-
struct arguments that are logically valid, but yield a con-
clusion that most people reject as highly improbable. Con-
versely, it was found easy to construct arguments that are log-
ically invalid, but yield a conclusion that most people accept
as highly probable (in the conext of conditional reasoning
see Nickerson, 2015, chap. 14; Byrne, 1991; Singmann &
Klauer, 2011). These and related findings have led many the-
orists to make a strong case that human reasoning is guided
not by logic, but by probability. For example, Chater and
Oaksford (2001) state that “we see probability theory as a
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wholesale replacement for logic as a computational level
theory of what inferences people should draw.” (p. 208).
Prominent Bayesian models assume that reasoning amounts
to the assessment of probabilities of conclusions based on
what the reasoners know about the contents of conclusions
and premises; reasoning is thus conceptualized as proba-
bilistic and content-driven (e.g., Baratgin & Politzer, 2006;
Cruz, Baratgin, Oaksford, & Over, 2015; Oaksford & Chater,
2007; Pfeifer & Kleiter, 2010).

The focus of the current work is on a model that integrates
these two seemingly irreconcilable positions within the new
paradigm. We will show that there are content-independent
effects of different argument forms that are not adequately
captured by Bayesian models. Hence, we propose that rea-
soning is influenced by two different and independent cog-
nitive processes – a probabilistic process in line with ex-
tant Bayesian models, which we call knowledge-based, and
a content-independent process driven by the form of the ar-
gument, which we call form-based. In this view, reason-
ers’ evaluations actually reflect a mixture of form-based and
knowledge-based information. These assumptions are ex-
plicated formally in our dual-source model (DSM; Klauer,
Beller, & Hütter, 2010) elaborated on below.

Probabilistic Conditional Reasoning

A conditional rule links two propositions, an antecedent
p and a consequent q, in the form “if p then q”. Inference
tasks in conditional reasoning (for an overview, see Nick-
erson, 2015) typically present the conditional rule as major
premise and one of p, q, or their negations as minor premise.
Reasoners are asked to assess a proposed conclusion on the
basis of this information. According to classical logic, two
of the usually studied inferences are valid; the truth of the
premises entails the truth of the conclusion:

Modus ponens (MP): Given “if p then q” and
“p”, it follows that “q”.

Modus tollens (MT): Given “if p then q” and
“not q”, it follows that “not p”.

The two so-called reasoning fallacies are invalid; the truth of
the premises does not entail the truth of the conclusion:

Affirmation of the consequent (AC): Given “if p
then q” and “q”, it follows that “p”.

Denial of the antecedent (DA): Given “if p then
q” and “not p”, it follows that “not q”.

Studies in the old paradigm typically employed contents
for which participants have little prior knowledge (e.g., a
major premise might be: “If there is a vowel on the black-
board then there is an even number on the blackboard”), and
participants are asked to evaluate the logical validity of the

above conditional arguments. Naive reasoners almost unani-
mously accept MP as valid, whereas acceptance rates for MT
are significantly smaller, although typically still above 50%.
AC and DA are often erroneously accepted as valid with ac-
ceptance rates of AC sometimes reaching those of MT (e.g.,
Evans, 1993; Schroyens & Schaeken, 2003).

In contrast, studies in the new paradigm usually employ
everyday contents (e.g., a premise might be: “If a balloon is
pricked with a needle then it will pop”), and participants are
to evaluate the probability or plausibility of the conclusions
of the different conditional arguments on a graded scale. In
what follows, we will use the term endorsement to refer to
these graded responses.

Antecedent and consequent of so-called causal condition-
als are at least weakly related as cause and effect. For causal
conditionals, content is usually characterized and sometimes
manipulated in terms of two different types of counterexam-
ples: disablers that prevent the consequent in the presence
of the antecedent and alternatives that bring about the con-
sequent in the absence of the antecedent. For instance, for
the conditional “If a person drinks a lot of coke then the
person will gain weight”, heavy exercising is a disabler that
prevents weight gain, whereas eating food rich in calories
is an alternative cause of gaining weight. A set of seminal
experiments by Cummins (1995; Cummins, Lubart, Alks-
nis, & Rist, 1991; see also Thompson, 1994) established that
the availability or likelihood (Geiger & Oberauer, 2007) of
disablers is negatively related to the endorsement of the for-
mally valid inferences MP and MT, whereas the availability
or likelihood of alternatives is negatively related to the en-
dorsement of the reasoning fallacies AC and DA (for reviews
see Beller & Kuhnmünch, 2007; Politzer, 2003).

Oaksford, Chater, and Larkin’s (2000) model of prob-
abilistic conditional reasoning. An influential Bayesian
model of probabilistic conditional reasoning was proposed
by Oaksford et al. (2000). The model assumes that reasoning
amounts to assessing probabilities of conclusions based on
one’s background knowledge. More precisely, when asked
to evaluate an inference such as MP, “Given ‘If p then q’
and p, how likely is q?”, individuals consult their back-
ground knowledge regarding p and q and assess the condi-
tional probability of the conclusion q given minor premise
p. Thus, endorsement E is modeled as E(MP) = P(q|p).
The joint probability distribution of p, q, and their negations
¬p, ¬q can be parameterized in terms of three parameters,
a = P(p), b = P(q), and e = P(¬q|p) as shown in Table 1,
which leads to the following model predictions:
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Table 1
Joint probability distribution for a conditional “If p then q”.

q ¬q

p a(1 − e) ae
¬p b − a(1 − e) (1 − b) − ae

Note. a = P(p), b = P(q), and e =

P(¬q|p).

E(MP) = P(q|p) = (1 − e) (1)

E(MT) = P(¬p|¬q) =
1 − b − ae

1 − b
(2)

E(AC) = P(p|q) =
a(1 − e)

b
(3)

E(DA) = P(¬q|¬p) =
1 − b − ae

1 − a
(4)

The endorsements of the four inferences provide four in-
dependent data points, whereas there are only three free
model parameters, a, b, and e. In consequence, Oaksford
et al.’s (2000) model can be fitted to data and the differences
between observed and predicted values indicate whether or
not the reasoners’ responses are consistent with the axioms
of probability theory as postulated by the model.1

Fitting the model to empirical data, the Bayesian model
outperformed a classical logic-based model for data obtained
in the old paradigm (Oaksford & Chater, 2003) and described
data from studies in the new paradigm well (Oaksford et al.,
2000). Moreover, there was evidence for the intended inter-
pretation of the model parameters a and b in terms of P(p)
and P(q), respectively: The parameter estimates of a (b) were
small in value when pretesting showed that antecedent cases
p (consequent cases q) were rare compared to when they
were frequent.

Disentangling form and content: The dual-source
model. In the old paradigm, a focus on logical form was
encouraged through the use of contents for which little
background knowledge is available (such as arbitrary rules
obeyed by letters on a blackboard), leading to a neglect of
the potential impact of content-related variables, which were
usually held constant. In the new paradigm, meaningful
contents are used for which background knowledge is avail-
able, and content-related variables such as the availability
of different kinds of counterexamples are manipulated, but
there is now a neglect of the potential impact of logical form.

For example, Oaksford et al.’s (2000) model refers only to
the joint probability distribution shown in Table 1, but it does
not specify a role for the conditional rule as such. In fact, a
conditional inference such as MP:

• If a balloon is pricked with a needle, then it will pop.
A balloon is pricked with a needle. How likely is it
that it will pop?

can be meaningfully evaluated even if the conditional
premise is left out and thus in the absence of a definite
logical form:

• A balloon is pricked with a needle. How likely is it
that it will pop?

Simply mentioning p (“a balloon is pricked with a needle”)
and q (“the balloon pops”) is sufficient to elicit the back-
ground knowledge summarized in the joint probability dis-
tribution of Table 1 which in turn allows one to assess the
conditional probability of q given p. This makes it difficult to
disentangle whether the logical MP form as such contributes
anything over and above the content-driven probabilistic as-
sessment.

The present dual-source model (DSM) builds on the dual-
source framework (Beller & Spada, 2003; Klauer et al.,
2010) according to which both logical form and content
shape reasoning with realistic materials. Reasoners’ re-
sponses are seen as reflecting a weighted integration of both
sources of information, logical form and content.

To disentangle the impacts of logical form and content,
the DSM contrasts (a) responses to the conditional infer-
ences and (b) responses to reduced inferences that leave out
the conditional rule. As just exemplified for the MP form,
the reduced MP inference presents only the minor premise p
and asks for an assessment of the conclusion q. This yields
a baseline that reflects only the content-related contribution
(Liu, 2003, see also Beller, 2008; Beller & Kuhnmünch,
2007).

A few studies have contrasted reduced and full inferences
and found that conclusion endorsement increased when the
conditional was present as compared to when the conditional
was absent. This increase was relatively content-independent
and especially pronounced for MP and MT (Klauer et al.,
2010; Liu, 2003; Matarazzo & Baldassarre, 2008).

According to the DSM, responses to the reduced infer-
ences are probabilistic assessments based on the joint proba-
bility distribution of Table 1 like in Oaksford et al.’s (2000)
model. Adding the conditional rule results in a definite log-
ical form. According to the DSM, reasoners also assess
the logical form where present resulting in a form-based
response proposal, and observed responses then reflect a
weighted mixture of both knowledge-based and form-based
response proposals (Klauer et al., 2010).

Let us refer to the content domain addressed in the four
inferences with a given conditional by C (e.g., the domain
of the behaviors of balloons pricked or not pricked with a
needle) and to the four inferences by x, x ∈ {MP, MT, AC,

1Deriving the likelihood function for the data is not trivial as
responses are restricted to the probability scale. Oaksford et al.
(2000; Oaksford & Chater, 2007) fit the data by minimizing the
sum of squared deviations of model predictions and data, a solution
also adapted by Klauer et al. (2010) and in the present study.
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Table 2
Parameters of the dual-source model.

Par. Interpretation

τ Degree to which an inference is seen as logically warranted
ξ Knowledge-based response proposal (based on the parameters given in Table 1)
λ Relative weight given to form-based versus knowledge-based evidence

DA}. We continue to refer to the reduced inferences as MP,
MT, AC, or DA according to the logical form that results if
the rule is added.

Endorsement of the reduced problem x (e.g., MP) with
content C, Er(C, x), reflects the conditional probability of the
conclusion (e.g., q) given the premise (e.g., p) just like in
Oaksford et al.’s (2000) model. We refer to the conditional
probability by the DSM’s knowledge parameter ξ(C, x):

Er(C, x) = ξ(C, x). (5)

Corresponding to the four inferences x, there are four knowl-
edge parameters ξ per content which are expressed as in
Oaksford et al.’s (2000) model by three parameters a, b, and
e per content (see Equations 1 to 4).

Endorsement of the full inference x, E f (C, x), is a
weighted average of a form-based component, multiplied by
the weight λ given to the form-based information, and the
knowledge-based component ξ(C, x), multiplied by (1 − λ),
0 ≤ λ ≤ 1.

The form-based component reflects the subjective degree
of belief τ(x) in the validity of the (full) inference x on a
probability scale. When uncertain about the validity of the
inference, with probability 1 − τ(x), reasoners fall back on
their background knowledge. Thus, the form-based compo-
nent is itself a mixture, with mixture weights τ(x), given by
τ(x)×1+(1−τ(x))×ξ(C, x). Taken together, the DSM predicts
that responses to full probabilistic conditional inferences are
given by

E f (C, x) = λ{τ(x) + (1− τ(x))× ξ(C, x)}+ (1−λ)ξ(C, x), (6)

where 0 ≤ λ, τ, ξ ≤ 1. An overview of the DSM parameters
is given in Table 2.

The knowledge parameters can be uniquely estimated be-
cause they are identified from the observed endorsements of
reduced problems (see Eq. 5). The parameters τ(x) and λ
cannot be uniquely estimated on the basis of the observed en-
dorsements to reduced and full problems; only their products
λτ(x) are identified (see the correction to Klauer et al., 2010).
To fix the scale for these parameters, we set the largest of the
τ(x) equal to one. This yields unique parameter estimates
for λ and τ(x). Differences in the overall level of the profile
of the τ(x) parameters over the four inferences are thereby
represented in the λ parameter, whereas profile shape is re-
flected in the τ(x) parameters. The τ(x) parameters accord-
ingly quantify the relative support for the respective conclu-
sions elicited by the full inference forms x relative to each

other. The λ parameters quantify the overall weight given to
conditional rules and inferences based on them.

Figure 1 shows the profile of τ parameters estimated from
previous experiments. It can be seen that it mirrors the pat-
tern of acceptance rates with MP >MT >AC ≥DA described
above for reasoning based on materials for which little back-
ground knowledge is available.

The DSM’s predictions for the basic paradigm. The
model makes predictions for the pattern of observed endorse-
ments for reduced and full inferences, Er(C, x) and E f (C, x).
For the reduced inferences, these are the same as those of
the Oaksford et al.’s (2000) model, namely that the endorse-
ments are consistent with conditional probabilities from a
joint probability distribution. As shown in the online ap-
pendix, this is equivalent to the constraint that for each con-
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Figure 1. τ parameter from Experiments 1, 3 (condition “if-then”),
and 4 of Klauer et al. (2010). Mean values are displayed in
black, error bars show difference-adjusted 95% Cousineau-Morey-
Baguley intervals (Baguley, 2012). Individual participants’ values
are displayed in grey (◦: Experiment 1; +: Experiment 3; ×: Exper-
iment 4); in case of points with identical values a small amount of
vertical jitter was added to avoid perfect overlap.
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tent C,

(1 − Er(C,MP))Er(C,MT)(1 − Er(C,DA))Er(C,AC)
= Er(C,MP)(1 − Er(C,MT))Er(C,DA)(1 − Er(C,AC)).

(7)

Turning to the full inferences, an additional prediction
is that endorsement should increase, ∆(C, x) = E f (C, x) −
Er(C, x) ≥ 0 for all C and x. As discussed above this is the
pattern that is usually observed and we also generally find
this in the new data presented here. An additional and unique
prediction of the DSM is that for each inference x,

∆(C, x)
1 − Er(C, x)

is not a function of C. (8)

As shown in the online appendix, observed endorsements
are consistent with the DSM if and only if these predictions
are met. We tested the non-parametric prediction of Equa-
tion 8 on data from 132 participants from six experiments
who all used the same four contents C (see Table 3 below)
in a meta-analytic fashion. This analysis (which is described
in detail in the online appendix) revealed that C had no ef-
fect on the ratio confirming the prediction of Equation 8.2

Taken together, for the basic paradigm the DSM does not
only describe the usually obtained increase from reduced to
full inferences, it also generates a new and unique prediction
which is confirmed by the data.

Bayesian models of reduced and full inferences. Re-
member that reduced and full inferences differ by the condi-
tional rule. How could adding a conditional rule be modeled
in a Bayesian framework? Normatively, adding a premise
(the conditional rule) implies updating the joint probability
distribution of Table 1 using Bayes’ rule. Updating amounts
to computing the conditional probability distribution given
the new premise. Unfortunately, Bayesian updating is de-
fined only for premises that are events in the sample space
of the probability distribution in question, which is not the
case for conditional rules (at least as conceptualized in prob-
abilistic conditional reasoning Nickerson, 2015, chaps. 9 and
10).

In consequence, there is no normative or agreed-upon
solution of how to model updating by a conditional in a
Bayesian framework. A few descriptive models have been
proposed, however. For example, Oaksford and Chater
(2007) state that the only effect of adding a conditional
should be to reduce parameter e: “It seems that the only ef-
fect the assertion of the conditional premise could have is to
provide additional evidence that q and p are related, which
increases the assessment of P2(q|p) [i.e., of 1 − e]“ (p. 164).
In this model, endorsement of the reduced and full problems
is thus modeled as above (see Equations 1 to 4) in terms of
three parameters a, b, and e per content C, but different pa-
rameters e and e′ are used for the reduced and full problems,
respectively, with e′ < e. for each content with e′ < e.

This version of Oaksford et al.’s (2000) model can be char-
acterized by a different, unique prediction for the quantities

∆(C,x)
1−Er(C,x)

that is, however, more complex than that shown
in Equation 8 and correspondingly difficult to test directly.
This model and two alternative Bayesian models that imple-
ment updating by conditionals are considered in the section
“Goodness of fit Meta-Analysis” and compared to the DSM.

Scope of the Present Studies: Validating and Applying
the DSM

Following the recommendations laid out by Heathcote,
Brown, and Wagenmakers (2015) for good practices in cog-
nitive modeling, we assess the DSM by evaluating model fit,
by model comparisons, and by selective-influence studies.
Because of the difficulties of directly testing complex non-
linear models’ predictions for the data, a traditional approach
is to fit such models to the data and to assess model fit (for
an example in probabilistic reasoning, see Oaksford et al.,
2000). A reasonable goodness of fit indicates that the ensem-
ble of restrictions defining the model is satisfied to at least a
reasonable degree of approximation. Moreover, comparing
model fit across different models such as the DSM and the
just-sketched descriptive Bayesian models reveals which set
of restrictions describes the data better, the one defining the
DSM or a set defining an alternative model.

Model parameters are mathematical entities that are as
such devoid of psychological meaning. Selective-influence
studies test whether the psychological interpretations at-
tached to model parameters in the verbal description of the
model are tenable. In selective-influence studies, manipu-
lations are chosen that are expected – a priori and on the-
oretical grounds – to affect certain model parameters (such
as the τ parameters) based on their intended psychological
interpretation, while leaving other parameters unaffected. If
the differences between the manipulated conditions do map
on differences in the estimates of the targeted model param-
eters and leave the estimates of the other model parameters
unaffected, the intended psychological interpretation of the
model parameters in question is supported (Heathcote et al.,
2015). As pointed out by Batchelder and Alexander (2013) in
their discussion of selective-influence studies, “any paramet-

2Note that testing this prediction was not trivial as it involves a
ratio. For 6.8% of the data this ratio was not identified as the en-
dorsement for the reduced inferences, Er(C, x), was 1 (we removed
these data points from the analysis). Another problem was of nu-
merical nature and jeopardized the statistical analysis. The ratio
can take on extreme negative values if ∆(C, x) is negative and at the
same time Er(C, x) near 1. As noted above, ∆(C, x) is predicted to be
positive which was the case for the vast majority of the data, but not
always, as is to be expected in the presence of measurement error.
We implemented different strategies of handling these outliers (in-
cluding not removing any outliers) which all led to the same result,
no effect of C.
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Table 3
Contents used in Klauer et al.’s (2010) Experiments 1 and 3.

No. Content Disablers Alternatives

1 If a predator is hungry then it will search for prey. few few
2 If a balloon is pricked with a needle then it will pop. few many
3 If a girl has sexual intercourse then she will be pregnant. many few
4 If a person drinks a lot of coke then the person will gain weight. many many

Note. Content is expressed in the form of a conditional “if p then q”.

ric . . . model can be reparameterized in an unlimited number
of ways, each yielding exactly the same model in terms of
its ability to fit data. Many of these statistically equivalent
models have parameters that have absolutely no psycholog-
ical meaning, and, as a consequence, . . . validity [selective-
influence] studies are essential. The usefulness of . . . mod-
els is that, if properly validated, they return measurements
of latent cognitive processes, and this goes well beyond just
providing statistically acceptable fits to the data” (p. 1209).

As an example, consider the knowledge parameters,
ξ(C, x). Klauer et al. (2010) used four contents, shown
in Table 3, that systematically varied in the availability
of disablers and alternatives. MP and MT (AC and DA)
require that p is sufficient (necessary) for q to occur,
and sufficiency (necessity) is questioned by disablers
(alternatives). If our “knowledge parameters” ξ model
such characteristics of reasoners’ background knowledge
then they should respond to variations between contents
in the availability of counterexamples, of disablers and
alternatives, in specific patterns. Klauer et al. (2010) indeed
found that the knowledge parameters for MP and MT (for
AC and DA) were smaller for contents with many disablers
(alternatives), whereas alternatives (disablers) had little
effect on the knowledge parameters for MP and MT (for AC
and DA).

In Experiment 1, we contrast conditional rules “if p then
q” and biconditional rules “if p then and only then q”. As
elaborated on below, we expect this manipulation to affect
the τ parameters, but not the λ parameters. Experiment 1
thereby aims to validate that τ captures differences in rea-
soning form. For Experiment 2, we predict the converse pat-
tern, via a manipulation of the expertise of the speaker of
the conditional rule. We expect the manipulation to affect
the λ parameter, but not the τ parameters. Experiment 1 also
uses the four contents of Table 3, providing an opportunity to
replicate the pattern predicted for the knowledge parameters
just discussed.

These studies provide evidence for the validity of the dif-
ferent DSM parameters as measures of specific and separa-
ble cognitive processes. Based on them, we use the model
to dissect a prominent phenomenon from the literature on
conditionals, suppression effects (Byrne, 1989), into effects
on knowledge-based processes versus form-based processes
in Experiment 3, and we apply the model to a reanalysis of

studies by Markovits, Brisson, and de Chantal (2015). Next,
we compare the performance of the DSM and a number of
Bayesian competitor models, such as Oaksford et al.’s (2000)
model, in a goodness-of-fit meta-analysis. Finally, we com-
pare the DSM to dual-process theories (Evans & Stanovich,
2013) and show that many criticisms of the latter do not apply
to the DSM.

General Method

In all experiments, participants first worked on reduced
inferences in what we call the knowledge phase and then on
full inferences in what we call the rule phase. The two phases
are separated by at least one week to avoid trivial carry-over
effects. The reduced inferences consist of a minor premise
and a conclusion; the probability of the conclusion has to be
assessed. For example:

Observation: A balloon is pricked with a needle.
How likely is it that it will pop?

In the rule phase, participants work on full conditional infer-
ences with conditional, a minor premise, and a conclusion,
for example:

Rule: If a balloon is pricked with a needle then
it will pop.
Observation: A balloon is pricked with a needle.
How likely is it that it will pop?

In both phases, responses are given on a probability scale
from 0% to 100%. Responses are divided by 100 for the
analyses.

In each phase, participants provide responses for all four
inferences per content. To obtain more reliable estimates,
participants were also asked to provide responses for the so-
called converse inferences MP’, MT’, AC’, and DA’ (Oaks-
ford et al., 2000) in which the conclusion is presented in
negated form. Continuing the above example, MP’ for the
full inference reads as follows:

Rule: If a balloon is pricked with a needle then
it will pop.
Observation: A balloon is pricked with a needle.
How likely is it that it will NOT pop?
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For each content, the two responses to an inference and its
converse were combined into one estimate.3

Each phase was split into two blocks. In each block, par-
ticipants responded to the four inferences for each content
in either original or converse form. For each inference and
content, one member of each pair of inference and converse
was randomly selected (e.g., either MP or MP’) for the first
block, whereas the other member was shown in the second
block. Within each block, the four inferences per content
were blocked and presented in random order. Order of con-
tents was also randomly determined anew for each block.

There were two control groups, the knowledge control
group and the rule control group to assess possible biases
due to the fixed sequence of knowledge phase followed by
rule phase. The knowledge control group was administered
the knowledge phase twice, separated by at least one week.
The rule control group was administered the rule phase as
first phase, and participants had to appear for a second phase
with unrelated tasks or without tasks.

An analysis of the data from these control groups showed
that the pattern of results reported for the experimental
groups in within-participants comparisons was also obtained
when analyzing the data from the control groups in between-
participants comparisons based on their first-phase data. Fur-
thermore, in the knowledge control group, we found that re-
sponding to the knowledge phase items a second time led to
a small but reliable increase of .02 to .03 on the response
scale divided by 100. This increase was however negligi-
ble compared to the increase found in the rule phases of the
experimental groups (≥ .10). Modeling the former (small)
increase explicitly within the DSM led to virtually the same
pattern of results as reported here. For these reasons and for
reasons of space, we decided to relegate the analysis of the
control conditions to the online appendix.

Almost all participants in our studies were University-of-
Freiburg students. Individuals with education in formal logic
were not permitted to participate.

The raw data as well as complete analysis scripts includ-
ing model fitting routines are available in the supplemental
materials (available at https://osf.io/zcdfq/). The supplemen-
tal materials furthermore contains a single manuscript re-
ferred to throughout the article as the online appendix.

Experiment 1: Selective Influence on the τ Parameters

The first experiment contrasted standard conditionals in
“if p then q” form with biconditionals in “if p then and only
then q” form. From a logical perspective all four inferences
are valid with a biconditional, whereas only two of them are
valid with a conditional form. We therefore predicted that
this manipulation should affect the τ parameters, but there
was no reason to expect an effect on the overall weight given
to form-based information as quantified by the λ parameters.
Using the contents of Table 3, we also expected to repli-

cate the effects of disablers and alternatives already described
above.

Method

Participants. A total of 105 persons (35 per group) took
part in the first phase of the experiment. Of these, 86 (mean
age 22.2 years, SD = 2.7) participated in all phases of the
experiment; 31, 26, and 29, in order, in the experimental
group, the knowledge control group, and the rule control
group. After finishing all phases of the experiment, partic-
ipants received a monetary gratification of 16€.

Materials. All materials were presented in German,
participants’ mother tongue. The conditionals in “if-then”
form are the ones shown in Table 3. For the biconditionals,
the form “if p then and only then q” was used, for example:
“If a predator is hungry then and only then it will search for
prey”; see online appendix for the complete list of materials.

Procedure. The procedure followed the “General
Method” described above with the following changes. To
manipulate form, two rule phases were established (i.e.,
there were three sessions in total), in the first rule phase two
randomly selected contents were shown in the conditional
form and the other two in the biconditional form. This
mapping was reversed for the second rule phase. In total,
members of the experimental group responded to 32 items
in the knowledge phase, generated by crossing 4 contents,
4 inferences (MP, MT, AC, & DA), and 2 conclusion
polarities (original vs. converse), and to 32 items per rule
type (conditional vs. biconditional) spread across two rule
phases. After aggregating across original and converse
inference, 3 × 16 = 48 data points remained per participant.

Members of the knowledge control group were adminis-
tered the knowledge phase in all three sessions. Members
of the rule control group started with the rule phases in the
first and second session, which were otherwise identical to
the two rule phases of the experimental group, but they also
had to appear for a third session.

Results

Observed Data. The observed data are displayed in the
upper row of Figure 2 for knowledge phase and the rule
phases, separately for conditional and biconditional rules.
The data were submitted to a repeated-measures ANOVA
with factors type (without conditional, conditional infer-
ences, biconditional inferences), inference (MP, MT, AC,
DA), and content.

3E.g., for MP: (E(MP)+[1−E(MP’)])/2). The two responses are
perfectly consistent with each other if their sum, s, equals one (for
responses divided by 100). Consistency, quantified by (1 − |s − 1|),
was used as a weight in the weighted least-squares estimation of the
DSM parameters.

https://osf.io/zcdfq/
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Figure 2. Observed responses (upper row) and model parameters (lower row) from Experiment 1. Mean values are displayed in black,
error bars show per-plot difference-adjusted 95%-Cousineau-Morey-Baguley intervals (Baguley, 2012). Individual participants’ values are
displayed as in Figure 1. The λ parameters (lower row, middle panel) are displayed in a violin plot (Hintze & Nelson, 1998) in which
the outlines show the density, the boxplots the first, second (i.e., median), and third quartiles, and the × the mean. dis = disablers; alt =

alternatives.

There was a significant main effect of type,
F(1.68, 50.28) = 61.74, η2

G = .12, p < .0001,4

and a significant interaction of type and inference,
F(3.70, 111.04) = 12.08, η2

G = .03, p < .0001: Mean
endorsement was larger by .13 for inferences with con-
ditional rule than for reduced inferences, t(60) = 10.80,
pH < .0001, and this increase, ∆, was more pronounced
for MP and MT than for AC and DA, ∆MP and MT = .16,
∆AC and DA = .09, t(180) = 4.53, pH < .0001. Both
increases were individually significant (both pH < .0001).
Switching from conditional to biconditional rules led to a
further increase in overall endorsement by an amount of .04,
t(60) = 2.61, pH = .01.

As can be seen in Figure 2, the expected effects of dis-
ablers and alternatives were also present across all inference

4Throughout the manuscript degrees of freedom (df ) are
Greenhouse-Geisser corrected in ANOVAs for repeated-measures
factors with more than two levels. Furthermore, we report η2

G as
effect size measure for ANOVAs following Bakeman’s (2005) rec-
ommendations. Contrasts are obtained using the methods imple-
mented in lsmeans (Lenth, 2015). For ANOVAs, contrasts use un-
corrected Satterthwaite approximated df. To control for multiple
testing, p-values of follow-up contrasts are corrected using either
the Bonferroni-Holm correction (Holm, 1979), denoted pH , or, in
case all follow-up tests share the same df and do not involve one-
tailed tests, a generalization of the Bonferroni-Holm method which
takes the correlation among parameters into account (method free
in package multcomp, Bretz, Hothorn, & Westfall, 2011), denoted
pF . Tests are one-tailed throughout the manuscript for the follow-
ing hypotheses: (a) endorsements increase from knowledge phase
to rule phase, (b) in particular, they increase for MP and MT, and
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types and most pronounced in the knowledge phase. Con-
tents with many disablers (i.e., the coke and girl content)
were associated with depressed endorsement for MP and MT,
whereas contents with many alternatives (i.e., the coke and
balloon content) were asssociated with depressed endorse-
ment for AC and DA, leading to a substantial interaction of
inference and content, F(4.11, 123.23) = 62.22, η2

G = .26,
p < .0001.

In addition to the effects reported above, all other effects
of the ANOVA were significant, including the three-way in-
teraction of type, inference, and content, F(8.50, 255.02) =

15.53, η2
G = .08, p < .0001. The just-reported effects were

thus further modified by a higher-order interaction. Note,
however, that the reported patterns hold quite consistently
across conditions.

Dual-Source Model. We fitted the DSM to the 48 data
points of each individual participant using 20 parameters: 4
× 3 parameters underlying ξ plus 2 × 4 λτ parameters from
which we obtained two sets of one λ and four τ parameters
each, one set for the conditional rule and one set for the bi-
conditional rule. Overall model fit was good, mean R2 = .90
(SD = .06), mean and individual parameter estimates are
shown in the lower row of Figure 2.

Results confirmed the prediction of selective influence.
The effect of rule type (conditional vs. biconditional) on
the mixture weight parameters λ was small and not signif-
icant in a repeated-measures ANOVA with factor rule type,
F(1, 30) = 3.15, η2

G = .02, p = .09. In contrast, a repeated-
measures ANOVA of the τ parameters with factors rule type
and inference revealed a small main effect of rule type,
F(1, 30) = 4.92, η2

G = .02, p = .03, moderated by a sub-
stantial interaction with inference, F(2.10, 63.10) = 27.54,
η2

G = .20, p < .0001. There was no main effect of inference,
F < 1. Taken together, rule type did not affect the weighting
of the two types of information; instead, it affected the form-
based information.

Follow-up contrasts revealed that the τ parameters were
lower for the biconditionals than for the conditionals by a
mean amount of −.25, t(83.78) = −4.51, pH < .0001, for MP
and MT, whereas they were larger for AC and DA by a mean
amount of .43, t(83.78) = 7.76, pH < .0001. The τ parame-
ters for the conditional inferences showed the pattern usually
obtained for abstract conditionals (see lower right panel of
Figure 2).

The knowledge parameters ξ mimicked the pattern
of endorsements observed in the knowledge phase: A
repeated-measures ANOVA of the ξ parameters with factors
inference and content revealed a significant interaction,
F(4.41, 132.30) = 119.61, η2

G = .56, p < .0001. ξ
parameters of MP and MT were smaller for contents with
many disablers than for contents with few disablers by
a mean amount of −.39, t(161) = −19.76, pF < .0001,
whereas there was no such difference for AC and DA, the

mean difference being .00, t(161) = 0.19, pF = .85. The
ξ parameters of AC and DA were smaller for contents with
many alternatives than for contents with few alternatives
by a mean amount of −.30, t(161) = −15.08, pF < .0001,
and the ξ parameters of MP and MT were larger by a mean
amount of .18, t(161) = 9.06, pF < .0001.

Discussion

We found the predicted selective influence of the inference
form manipulation on the parameters of the DSM. Contrast-
ing conditional and biconditional inferences affected only the
form-parameters τ, but not the mixture weights λ. These re-
sults are consistent with the DSM assumption that the role
of a (bi)conditional rule in probabilistic (bi)conditional in-
ferences is to provide content-independent form-based infor-
mation that reasoners integrate with their background knowl-
edge about the content of the inference.

That τ parameters of MP and MT were found lower for
the biconditional than for the conditional was somewhat un-
expected. This pattern does not conform to the usual inter-
pretation of biconditionals according to which the bicondi-
tional rule licenses all four inferences alike. However, in-
stead of the “canonical” form of biconditionals (“if and only
if p then q”), we used a form that sounded more natural in a
probabilistic setting (“if p then and only then q”). This form
may have specifically emphasized the necessity of p for q
on which AC and DA are based, while being more neutral
towards the sufficiency of p for q on which MP and MT are
based.

Experiment 2: Selective Influence on the λ Parameters

The second experiment sought evidence for the assump-
tion that the λ parameter reflects the relative weight given to
the form-based versus knowledge-based information. To this
end, we employed a paradigm introduced by Stevenson and
Over (2001) in which we manipulated – within-participants
– the expertise with which a conditional was uttered: Some
conditionals were uttered by an expert on the rule’s con-
tent, others by a non-expert. For example, the conditional
“If Anne eats a lot of parsley then the level of iron in her
blood will increase” could have been stated by either a nutri-
tion scientist or a drugstore clerk. As this manipulation does
not change the form of the inferences, it should not affect
τ. Rather, if a conditional is uttered by a non-expert (e.g., a
drugstore clerk), reasoners should discount the rule and rely
more strongly on their background knowledge of the subject
matter than for rules stemming from an expert source. In
terms of the DSM, this should lead to an effect on the λ pa-

(c) for AC and DA, (d) replicating the previous work, the increases
in MP and MT are larger than those for AC and DA, (e) the effects
of speaker expertise in Experiment 2. All other tests are two-tailed.
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rameter for the relative weight given to form-based versus
knowledge-based information.

A secondary goal was to see whether the applicability of
the DSM would generalize to contents without strong causal
links between antecedent and consequent.5 Note that we nev-
ertheless did not use abstract materials, but everyday contents
for which participants prior knowledge was assumed to be
rather vague. This ensured that the manipulation of speaker
expertise could overshadow participants’ prior knowledge.
To develop appropriate materials we first performed a large
online pilot study (N = 435) in which we tested 20 different
conditionals constructed after Stevenson and Over (2001) for
which participants were expected to have little prior causal
knowledge. Results replicated the effect of speaker expertise
reported by Stevenson and Over (2001) on MP such that en-
dorsement was lower for conditionals uttered by non-experts
compared to experts. However, we could not replicate such
an effect on MT. Extending Stevenson and Over’s work, we
also tested AC and DA and found a similar effect on DA,
but not on AC. For the current experiment, we selected the
seven conditionals with particularly strong effects of speaker
expertise. A full description of the pilot study can be found
in the online appendix.

Method

Participants. Because the effects of speaker expertise
observed in the pilot study were comparatively small, we
collected more participants per group than in our other ex-
periments. A total of 153 participants (51 per group) were
sampled. Of these, 138 (mean age 21.9 years, SD = 3.4) par-
ticipated in both phases of the experiment; 47, 46, and 45,
in order, in the experimental group, the knowledge control
group, and the rule control group. Participants received 12€
as monetary gratification.

Materials and Procedure. The procedure followed the
“General Method” with a few changes. Six contents (out of
the pool of seven) were randomly selected for each partic-
ipant. In the knowledge phase, participants only saw the
minor premise and were asked to rate the probability of a
conclusion. The minor premise was labeled “situation”; for
example,

Situation: Anne eats a lot of parsley.
How likely do you think it is that the level of
iron in her blood will increase?

Participants provided 48 responses, obtained by crossing 6
contents, 4 inferences (MP, MT, AC, DA), and 2 conclusion
polarities (original vs. converse).

In the rule phase, the same six contents were again used.
For three randomly selected contents, the conditional rules
were uttered by an expert (e.g., “A nutrition scientist says:
If Anne eats a lot of parsley then the level of iron in her
blood will increase.”), and by a non-expert for the remaining

three rules (e.g., “A drugstore clerk says: If Anne . . . ”). The
manipulation of speaker expertise was performed within-
participants; the expertise assigned to each rule was random-
ized across participants. Note that speaker expertise was ma-
nipulated only in the rule phase and not in the knowledge
phase. After aggregating across original and converse infer-
ence, participants provided 2 × 24 = 48 data points across
knowledge and rule phase.

Participants in the knowledge control group responded to
reduced problems in both sessions. Participants in the rule
control group started with the rule phase in the first session
which was identical to the rule phase of the experimental
group, but they also had to appear for a second session.

Results

Observed Data. We submitted the observed data to a
linear mixed model (LMM) with fixed effects for inference,
phase (knowledge vs. rule), expertise (expert vs. non-
expert), and their interactions. Note that for this analysis,
contents that were assigned to experts or non-experts in the
rule phase were assigned the same expertise status in the
knowledge phase although we did not manipulate expertise
in the knowledge phase (i.e., an effect of expertise in the
knowledge phase was a priori impossible). Furthermore, we
estimated crossed random effects for participant and content
with maximal random slopes (i.e., random slopes for infer-
ence, expertise, phase, and their interactions for both random
effects; Barr, Levy, Scheepers, & Tily, 2013; see online ap-
pendix for more details). Each participant provided three re-
sponses per cell of the design. The estimated marginal means
of the LMM are displayed in Figure 3, upper row.

The only significant effect to emerge was a main effect of
phase, χ2(1) = 13.35, p = .0002, all other p > .19. Re-
sponses were larger by a mean amount of .12 for full infer-
ences in the rule phase compared to reduced inferences in the
knowledge phase.

We fitted a separate LMM to the rule-phase data in which
expertise had been manipulated. This provided some evi-
dence for an effect of expertise, χ2(1) = 3.66, p = .06;
p > .49 for all other effects and interactions. Follow-up
contrasts showed that only for MP was there evidence for
an effect of speaker expertise (difference = .05), z = 2.41,
pH = .03, but not for the other three inferences, all pH > .23.

Dual-Source Model. The DSM for the 48 data points
per participant uses 26 parameters: 6 × 3 parameters under-
lying ξ plus 2 × 4 λτ parameters from which we obtained

5This goal was also reflected in the statistical analysis: Instead
of treating content as a fixed effect, we now treated it as a random
effect to allow us to generalize conclusions to the population of sim-
ilar contents. More specifically, we treated both participants and
contents as crossed random effects (Baayen, Davidson, & Bates,
2008). For examples in the reasoning domain see Haigh, Stewart,
and Connell (2013) and Singmann, Klauer, and Over (2014).
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Figure 3. Observed responses (upper row) and DSM parameters (lower row) for Experiment 2. Estimated marginal means from LMMs are
displayed in black, grey lines show LMM estimates for the random effect of content. The λ and τ parameters are displayed as in Figure 2.

two sets of one λ and four τ parameters, one set for each
expertise condition. Overall model fit was acceptable, mean
R2 = .82 (SD = .13), mean and individual parameter esti-
mates are shown in Figure 3, lower row.

A repeated-measures ANOVA of the λ parameters with
factor expertise showed that mean λ was significantly larger
for experts than for non-experts, F(1, 46) = 6.88, η2

G = .02,
p = .01. In contrast, a repeated-measures ANOVA of the τ
parameters with factors expertise and inference revealed only
a main effect of inference, F(2.55, 117.45) = 5.08, η2

G = .03,
p = .004, but no main effect of expertise, F < 1, nor an
interaction of both factors F(2.76, 127.10) = 1.93, η2

G = .01,
p = .13. Considering the main effect of inference, the pattern
of the τ parameters descriptively followed the pattern usually
obtained for abstract contents (see lower right panel of Fig-
ure 3). Taken together, the manipulation of speaker expertise
affected only the weighting of the two types of information
(λ), but not the form-based information (τ).

Discussion

We found the predicted selective influence of speaker ex-
pertise on the parameters of the DSM. The expertise with

which the conditional was uttered affected only the weight
parameter λ, but not the form parameters τ. Experiment 2
also replicated Stevenson and Over’s (2001) classical exper-
tise effect for MP. To our knowledge, this is the first repli-
cation of the effect. Going beyond replication, the present
results suggest that the effect is driven by the mixture weight:
Some participants discount a low-expertise conditional, rely-
ing on their background knowledge more strongly for such
conditionals than for high-expertise conditionals.

In addition, Experiment 2 provided evidence for the gen-
eralizability of the DSM. In contrast to previous studies, we
selected contents from a wider set and treated them as ran-
dom effects in the analysis. Furthermore, we used materials
that differed from the ones typically employed in previous
experiments on the DSM insofar as we used materials for
which participants were expected to have little prior causal
knowledge. In consequence, the responses to the different
inferences were all more or less on the same level (see Fig-
ure 3). Importantly, the form parameters τ still tended to
exhibit the pattern usually obtained for abstract conditional
inferences. This finding provides further support for the in-
terpretation of the τ parameters as reflecting the impact of
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content-independent information based on the form of an in-
ference.

The DSM in its current form does not permit an influ-
ence of the conditional rule on the participants’ background
knowledge. It is possible that a Bayesian model of the effects
of speaker expertise could be developed in which updating by
a conditional rule changes the knowledge base via an updat-
ing process that leads to different changes in one’s knowledge
base as a function of whether the conditional is uttered by an
expert or by a non-expert. As discussed in the introduction,
there is, however, currently no agreed-upon or normative way
of Bayesian updating by a conditional premise (see below for
three descriptive approaches).

Together with Klauer et al.’s results (2010), the results
presented so far provide evidence for the theoretical assump-
tions underlying the DSM and for the intended psycholog-
ical interpretations of the model parameters. At least two
dissociable and quantifiable cognitive processes contribute
to probabilistic conditional reasoning, plus an independent
and dissociable weighting process determining how the two
types of information are integrated. In the next experiment,
we move from validation to applying the DSM as a mea-
surement model to dissect the classical suppression effects
first described by Byrne (1989) into possible effects on the
knowledge-based component, the form-based component, or
their mixture.

Experiment 3: Dissecting Suppression Effects

Human reasoning is defeasible or non-monotonic: New
premises can render a previously acceptable inference un-
acceptable. A classical demonstration of non-monotonicity
goes back to Byrne (1989) who compared acceptance rates
of conditional inferences with and without an additional
premise. For example, given Premises 1 and 3 below, most
reasoners accept the Conclusion 4 in an MP inference. Upon
adding Premise 2, the acceptance of the conclusion usually
drops dramatically.

1. If a balloon is pricked with a needle then
it will quickly lose air.

2. If a balloon is inflated to begin with then it
will quickly lose air.

3. A balloon is pricked with a needle.

4. The balloon quickly loses air.

MP and MT require that p is sufficient to bring about
q, and sufficiency is questioned by disablers. AC and DA
require that p is necessary for q to occur, and necessity is
questioned by alternatives. Premises such as Premise 2 sug-
gesting a disabling condition (the balloon is not inflated in

the first place) reduce acceptance of the MP and MT infer-
ences with little effect on AC and DA. Conversely, adding a
premise suggesting an alternative cause (e.g., Premise 2’: If
a balloon is inflated too much and bursts then it will quickly
lose air) decreases acceptance of AC and DA with little effect
on MP and MT (Byrne, Espino, & Santamaria, 1999; Chan
& Chua, 1994; Neth & Beller, 1999).

Several explanations have been offered. One possibility
retains monotonicity of human reasoning and claims that the
two rules are combined into one such as “If the balloon is
pricked with a needle and it is inflated to begin with then
it will quickly lose air” (e.g., Byrne, 1989; Stenning & van
Lambalgen, 2010) or similarly that they are combined in one
mental model (Johnson-Laird & Byrne, 2002), changing the
formal or semantic structure of the argument. Another pos-
sibility, based on the pragmatics of natural language, is that
the second premise undermines the belief in the truth of the
conditional rule (Bonnefon & Politzer, 2010), undermining
all inferences that might be drawn from it formally. A third
possibility exemplified by Oaksford and Chater (2007, chap.
5) is that the second premise alters the knowledge base on
which the assessment of the probability of the conclusion
rests.

In terms of the DSM, the first possibility should lead to a
change in the profile of τ parameters across inferences, the
second to a decrease in the weight λ given to the form-based
information, the third to an effect on the knowledge param-
eters ξ. Note that the three possibilities by no means ex-
clude each other. Experiment 3 aims at assessing the extent
to which suppression effects reflect effects on the form-based
information (τ), on the weight given to such information (λ),
and/or on the knowledge parameters ξ in probabilistic rea-
soning.

A baseline group followed the procedures described in
the section “General Method” above; members of two addi-
tional groups, the disablers group and the alternatives group,
worked on the same problems with additional information
presented for each problem. In the disablers group, the ad-
ditional information specified disablers; in the alternatives
group, alternative causes. The additional information was
always presented in both knowledge and rule phase to enable
us to assess the influence of the additional information on the
full set of DSM parameters.

Experiment 3 comprised two independent replications,
Experiment 3a and 3b. Experiment 3a was performed first,
Experiment 3b was performed second with the goal of repli-
cating the findings and of ruling out some alternative expla-
nations. To this end, we validated the additional informa-
tion used in Experiment 3a prior to running Experiment 3b
in a separate study. Experiment 3b also implemented a sep-
arate rule control group and a separate knowledge control
group for each of the three experimental groups (see online
appendix). As the pattern of results obtained in the two ex-
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periments was virtually indistinguishable, we pooled the data
sets and only report the pooled analysis here, retaining exper-
iment as a factor in the analyses (see the online appendix for
the separate analyses).

Method

Participants. In Experiment 3a, a total of 80 persons
participated in the first phase of the experiment; 26, 27, and
27, in order, in the baseline group, disablers group, and alter-
natives group. Of these, 77 (mean age 23.5 years, SD = 4.5)
participated in both phases of the experiment (3 participants
in the alternatives group did not appear for the second ses-
sion).

In Experiment 3b, a total of 281 persons participated in
the first phase; in the experimental groups, in order, 31, 31,
and 31 in the baseline group, disabler group, and alternatives
group; in the knowledge control groups, 32, 31, and 31; in
the rule control groups, 31, 32, and 31. Of those, 273 (mean
age 21.5 years, SD = 3.2) participated in both phases of the
experiment (29, 31, and 31 in the experimental groups; 31,
31, and 30 in the knowledge control groups; 29, 32, and 29
in the rule control groups). In both experiments participants
received 12€ for their participation.

Materials and Procedure. We used the four contents
displayed in Table 3 (we slightly adapted contents 2 and 3
such that we were able to present both disablers and alterna-
tives). Pilot work pretested different ways of presenting the
additional information. Presenting the additional informa-
tion as additional conditionals as done by Byrne (1989) did
not lead to suppression effects of similar size as the ones re-
ported by Byrne; the obtained effects were small or absent.6

Therefore, we decided to present three additional counterex-
amples in a form clearly signaling their causal influence on
the conditional, using “only . . . if” for disablers and “also
. . . if” for alternative causes. For example, MP for the coke
content in the disablers group was presented in the following
way in Experiment 3b:

Rule: If a person drinks a lot of coke then the
person will gain weight.
Observation: A person drinks a lot of coke.
How likely is it that the person will gain weight?
Please note:
A person only gains weight if

• the metabolism of the person permits it,

• the person does not exercise as a compen-
sation,

• the person does not only drink diet coke.

In the alternatives group, this content was presented in the
following way:

Rule: If a person drinks a lot of coke then the
person will gain weight.
Observation: A person drinks a lot of coke.
How likely is it that the person will gain weight?
Please note:
A person also gains weight if

• the person eats a lot,

• the person has metabolic problems,

• the person hardly exercises.

Prior to Experiment 3b we assessed the validity of the pre-
sented additional information in a pretest. The full list of
the items used in Experiments 3a and 3b (including the ad-
ditional information and a description of the pretest) can be
found in the online appendix.

The procedure otherwise followed the “General Method”
with the only difference that the disablers and alternatives
were presented alongside the inferences in the disablers and
alternatives groups, respectively, as exemplified above in
both knowledge and rule phases.

Participants responded to 32 items in each phase obtained
by crossing 4 contents, 4 inferences, and 2 conclusion polari-
ties. After aggregating original and converse inference, there
were 2 × 16 = 32 data points per participant.

Results

Observed data. The upper rows of Figure 4 present
mean endorsements as a function of group and inference (see
online appendix for plots further split up by contents). A
mixed-effects ANOVA with within-participants factors phase
(knowledge vs. rule), inference (MP, MT, AC, and DA),
and content (see Table 3), and between-participants factors
group (baseline, disablers, and alternatives), and experiment
(Experiment 3a vs. 3b), was run to see whether suppression
effects were observed in the rule phase and perhaps already
in the knowledge phase. Note that for this ANOVA and all
further ANOVAs reported for Experiment 3, the effect of ex-
periment did not reach significance, all F < 1.3, all p > .08.

The signature of suppression effects is that disablers sup-
press MP and MT, but not AC and DA, and vice versa for
alternatives. Consistent with this signature, we found an in-
teraction of inference and group, F(3.69, 298.65) = 40.51,
η2

G = .07, p < .0001, qualified by a significant three-way
interaction with phase, F(4.91, 397.72) = 2.99, η2

G = .002,
p = .01. This latter interaction indicated that suppression
effects differ across phases.

6Asking participants to assume the truth of the premises and to
judge the truth of the conclusion as done by Byrne (1989), we repli-
cated her results.
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Figure 4. Observed responses (upper row) and model parameters (lower row) from Experiments 3a and 3b combined. Mean and individual
participants’ data points are shown as in Figure 2.

As can be seen in Figure 4 (upper row), endorsement of
MP and MT was indeed decreased in the disablers group rel-
ative to the baseline group, although this suppression effect
was smaller in the knowledge phase, M = −.05, t(412.69) =

−2.87, pH = .03, than in the rule phase, M = −.14,
t(412.69) = −8.14, pH < .0001 (pH of difference = .0001).
Analogously, endorsement of AC and DA was decreased in
the alternatives group relative to the baseline group, and this
suppression effect was of similar size in knowledge phase,
M = −.15, and rule phase, M = −.19, both t < −8.1, both
pH < .0001 (pH of difference = .07). In contrast, in neither
phase did disablers suppress AC and DA or alternatives MP
and MT, all |t| < 2.26, all pH > .09. Taken together, there
were clear suppression effects showing the classical signa-
ture.

Dual-source model. We fitted a DSM to each partici-
pant’s 32 data point using 16 parameters: 4 × 3 parameters
underlying ξ, and 4 λτ parameters from which we obtained
one λ and four τ parameters. The overall model fit was good,
mean R2 = .89 (SD = .10). Parameter estimates are displayed
in the lower row of Figure 4 as a function of inference and
group.

As can be seen in the figure, disablers and alternatives sup-
press the τ parameters of the “attacked” inferences, that is of
MP and MT for disablers, and of AC and DA for alternatives.
Disablers also undermine the overall weight λ for the rule and
all inferences based on it, whereas alternatives also suppress
the knowledge parameters ξ for AC and DA.

Knowledge-parameters ξ. A mixed-effects ANOVA
with between-participants factors group and experiment,
and within-participants factors content and inference
found a significant interaction of group and inference,
F(3.61, 292.75) = 32.96, η2

G = .08, p < .0001. According
to follow-up contrasts, alternatives reduced ξ parameters for
AC and DA by M = −.16 relative to the baseline group,
t(277.78) = −9.99, pH < .0001, but they left MP and
MT unaffected, M = −.01, t(277.78) = −0.59, pH > .99.
Disablers exerted a small suppression effect on MP and
MT, M = −.06, t(277.28) = −3.72, pH = .0007 that was
significantly smaller than the just-reported suppression
effect of alternatives on AC and DA, t(489.14) = 5.21,
pH < .0001. Disablers left AC and DA unaffected, M = .01,
t(277.78) = 0.40, pH > .99.
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Mixture-weight λ. An ANOVA with factors group and
experiment showed only a significant main effect of group,
F(2, 162) = 12.51, η2

G = .13, p < .0001. The λ parame-
ters were smallest in the disablers group, where they were
significantly smaller than in the baseline group and in the al-
ternatives group by mean amounts of −.28, t(162) = −4.90,
pF < .0001, and −.19, t(162) = −3.25, pF = .003, respec-
tively. The λ parameters of the latter two groups did not differ
significantly from each other, t(162) = 1.61, pF = .11.

Form parameters τ. A mixed-effects ANOVA with
between-participants factors group and experiment, and
within-participants factor inference showed a significant
interaction of group and inference, F(5.07, 410.28) = 7.06,
η2

G = .06, p < .0001. Like for the ξ parameters, dis-
ablers suppressed the parameter values of MP and MT by
M = −.28 relative to the baseline group, t(463.37) = −5.23,
pH < .0001, but they did not affect AC and DA, M = .03,
t(463.37) = 0.52, pH = .73. Analogously, alternatives sup-
pressed AC and DA compared to the baseline by an amount
of M = −.21, t(463.37) = −3.89, pH = .0005, but did not
affect MP and MT, M = −.07, t(463.37) = −1.33, pH = .55.
Unlike for the ξ parameters, the size of the suppression effect
of disablers on MP and MT did not differ from that of the
alternatives on AC and DA, t(647.17) = −0.91, pH = .73. In
addition, τ parameters in the baseline group again exhibited
the pattern usually obtained for abstract contents.

Discussion

Experiment 3 considered suppression effects (Byrne,
1989) in the new paradigm using reduced and full inferences.
Disablers suppressed endorsement of MP and MT primarily
for the full inferences, whereas alternatives suppressed AC
and DA equally strongly for reduced and full inferences.

The DSM dissects the suppression effects into three com-
ponents: First, disablers and alternatives suppress the form-
based evidence brought about by the “attacked” inferences
(i.e., MP and MT for disablers and AC and DA for alterna-
tives). This is in line with traditional accounts of the sup-
pression effect (Byrne, 1989; Johnson-Laird & Byrne, 2002;
Stenning & van Lambalgen, 2010). For example, suppres-
sion effects can be explained by assuming that disablers d
are integrated into the rule, “if p then q” so that reasoners
proceed from the rule “if p ∧ ¬d then q” whereas alternative
causes a are integrated so that reasoners proceed from the
rule “if p ∨ a then q”. These conditional rules, even if in-
terpreted biconditionally (as “if-and-only-if then” rules), no
longer license the attacked inferences, but still warrant the
other ones.

Second, alternatives and disablers decreased the
knowledge-based support of the attacked inferences, the
effect of alternatives being much larger than that of dis-
ablers. This is in line with probabilistic accounts (Oaksford
& Chater, 2007), but also with recent findings suggesting

that reasoners neglect alternative causes, but not disablers, in
probabilistic inferences with causal conditionals (Fernbach
& Erb, 2013). In consequence, stating alternatives explicitly
provides new, up to now unheeded information that prompts
updating. This accounts for the observed effects on the
knowledge parameters relative to the baseline group. In
contrast, disablers are to some extent taken into account
spontaneously and therefore trigger little updating relative to
the baseline group.

Third, disablers also reduce the overall weight λ of the
rule and all formal inferences based on it. Note that disablers
directly discredit the conditional relationship between p and
q as stated in the rule, whereas alternatives have no imme-
diate relevance for the rule and its validity. This effect of
disablers may thus resemble the effect of speaker expertise
considered in Experiment 2.

The present analysis is the first to suggest that suppression
effects can be decomposed into separate contributions of dif-
ferent kinds of processes. Some reflect effects on the knowl-
edge base on which endorsements are based. Such effects
can be directly observed in the endorsements of the reduced
inferences. Additional processes related to the rule and the
form of the full inferences come into play to shape the pattern
of inferences in the rule phase with full inferences. The for-
mer effects are completely consistent with extant Bayesian
accounts of suppression effects; the effects on the τ param-
eters are in line with traditional accounts of them (Byrne,
1989; Johnson-Laird & Byrne, 2002; Stenning & van Lam-
balgen, 2010); the effects on the overall weight λ given to the
form-based information suggest a link between the speaker-
expertise effect and the classical suppression effect.

Applying the DSM to a Reanalysis of Markovits et al.
(2015)

The DSM can also be used outside our experimental
paradigm to provide a unifying theoretical perspective. In a
recent study, Markovits et al. (2015) compared probabilistic
reasoning and deductive reasoning in which participants are
asked to assume the truth of the premises. The studies used
two different fictitious contents involving an alien planet for
which participants had no prior knowledge. For each of the
two different contents, participants first responded to an AC
problem in Experiment 1 or to a DA problem in Experiment
2. They then received relevant frequency information about
the occurrence of pq and ¬pq cases in Experiment 1 or about
the occurrence of ¬pq and ¬p¬q cases in Experiment 2. Fi-
nally, they were asked to assess the same inference they had
previously responded to a second time.

The frequency information for the two contents contrasted
a high-probability condition with high P(p|q) (Exp. 1) or
high P(¬q|¬p) (Exp. 2) and a low-probability condition.
Markovits et al. predicted that under deductive instructions,
acceptance of the initial inference should decrease in both
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Table 4
Observed data from Markovits et al. (2015) and corresponding DSM predictions.

Deductive Condition Probabilistic Condition

First Response Second Response First Response Second Response

Higha Lowb Higha Lowb High Low High Low
— Observed data —

AC .53 .55 .27 .09 .70 .71 .74 .34
DA .56 .56 .16 .21 .59 .65 .64 .33

– DSM predictions —
AC .57 .57 .30 .11 .68 .68 .58 .44
DA .53 .53 .30 .10 .65 .65 .56 .41

Note. AC data from Study 1; DA data from Study 2. The first response was given before
frequency information was provided, the second response was given after the frequency
information was provided. The DSM used 7 parameters to fit the 16 observed data points
with R2 = .86.
aHigh-probability condition. bLow-probability condition.

conditions because both suggested the existence of coun-
terexamples. In contrast, under probabilistic instructions, the
initial estimates should decrease only in the low-probability
condition, but not in the high-probability condition.

The results are reproduced in the upper part of Table 4 and
showed the expected dissociation of probabilistic and deduc-
tive reasoning as a function of probability condition: Un-
der deductive instructions, acceptance rates decreased from
first to second response irrespective of probability condition.
In contrast, for probabilistic instructions, endorsement de-
creased only for the low-probability condition, but not for
the high-probability condition.

In modeling these data, we assume that the first responses
without frequency information reflect only the form-based
component of the DSM (see also Singmann, Klauer, & Over,
2014). In contrast, given frequency information, the second
responses should again reflect a mixture of the form-based
and knowledge-based components. Remember furthermore
that when uncertain about the validity of an inference x (with
probability 1 − τ(x)), reasoners are assumed to fall back on
their background knowledge in probabilistic assessment of
the conclusion. Under deductive instructions, it makes more
sense to assume that the inference is simply not drawn when
it is not clearly perceived as valid. Consequently, while the
full DSM (Equation 6) should hold for responses in the prob-
abilistic condition, the (1− τ(x)) cases are removed for mod-
eling responses from the deductive condition:

Response(C, x) = λ × τ(x) + (1 − λ) × ξ(C, x), (9)

The resulting DSM uses seven free parameters to fit the
16 data points shown in Table 4 (upper part): Two weight
parameters λ, one for the deductive and one for the proba-
bilistic condition, two form parameters τ, one for AC and
one for DA, and three knowledge parameters ξ, one each
for the high-probability condition, the low-probability con-

dition, and for the first responses under probabilistic instruc-
tions (i.e., a “probabilistic baseline”).

The DSM described the data reasonably well as shown by
the predicted values given in the lower part of Table 4 and
the overall goodness-of-fit index, R2 = .86. Importantly, the
estimates of the λ parameters were in line with our a priori
expectations: λ was much larger in the deductive condition
than in the probabilistic condition, λ = .78 and λ = .19,
respectively. The τ estimates for AC and DA were simi-
lar: τ(AC) = .57 and τ(DA) = .53. The ξ parameter es-
timates were .24 for the high probability condition, .00 for
the low-probability condition, and .25 for the “probabilistic
baseline”.

The reanalysis exemplifies that the dual-source framework
can provide a unifying theoretical view on seemingly dis-
parate theoretical positions. In particular, the two reason-
ing modes, probabilistic and deductive reasoning, need not
necessarily be associated with different processes. In our
model both types of reasoning use the same form-based and
knowledge-based information with the major difference be-
ing their differential weighting in determining observed re-
sponses. Note, however, that the DSM agrees with the con-
clusion of Markovits et al. (2015) that deductive updating is
not purely Bayesian.

Finally, consider a pattern in the second responses that
may be responsible for the only satisfactory R2 value: Under
deductive instructions, acceptance of DA slightly increases
in the low-frequency relative to the high-frequency condi-
tion; under probabilistic instructions, it decreases. The latter,
pronounced decrease forces the DSM to also predict a de-
crease in second DA responses under deductive instructions.
A further test of the DSM in this application would therefore
be to replicate the DA condition to see if the pattern found
by Markovits et al. replicates or if one also finds a decrease
from high-probability to low-probability condition in second
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Table 5
Overview of data sets used in the meta-analysis and number of free parameters of each model

Data set n Contents Data Points DSM PROB / KL EX-PROB

This Manuscript:
Exp. 1 (conditional inferences) 31 4 32 16 16 20
Exp. 2 47 6 48 22 24 30
Exp. 3a (baseline condition) 26 4 32 16 16 20
Exp. 3b (baseline condition) 29 4 32 16 16 20
Klauer et al. (2010):
Exp. 1 (phases 1 & 2) 15 4 32 16 16 20
Exp. 3 (conditional inferences) 18 5 40 19 20 25
Exp. 4 (conditional inferences) 13 4 32 16 16 20

Total n 179
Note. DSM = dual-source model; PROB = probabilistic model of Oaksford et al. (2000); KL = Kullback-
Leibler model; EX-PROB = extended probabilistic model of Oaksford and Chater (2007). See online ap-
pendix for more details.

responses under deductive instructions as the DSM predicts.

Goodness-of-Fit Meta-Analysis

Finally, we engaged in a model-comparison exercise
(Heathcote et al., 2015) to assess the DSM relative to
purely Bayesian approaches. We compare the DSM and
Bayesian competitor models using data from both the current
manuscript and from Klauer et al. (2010).

Data Sets and Competitor Models

We used the seven data sets (or parts of data sets) with
179 participants that implement the procedure described in
section “General Method”. More specifically, we excluded
conditions that employed other types of conditionals (e.g.,
the biconditionals of Exp. 1) or that altered the presented
inferences (e.g., in the additional information conditions of
Exp. 3). While it was clear to us how such manipulations are
to be modeled with the DSM, it was not clear how to model
them by the competitor models (we do not doubt that they
could be somehow modeled).

Bayesian models assume that observed endorsements re-
flect the reasoners’ assessments of conditional probabilities
of the conclusion given minor premise. This would be true
of both the reduced inferences of the knowledge phase and
the full inferences of the rule phase. Moving from knowl-
edge phase to rule phase can be naturally modeled as up-
dating the probability distribution driving one’s assessments
to accommodate the additional premise, the conditional rule.
As already discussed, there is however no agreed-upon or
normative mechanism of updating by a conditional premise.

Several descriptive models have been proposed for such
updating in the Bayesian framework. A first model, termed
PROB here, has already been discussed in the introduction.
It assumes that for each content, introducing the conditional
is modeled by a new exceptions parameter e′ in Oaksford

et al.’s (2000) model with e′ < e, and thus e′ and e are sepa-
rate exceptions parameter for the knowledge-phase and rule-
phase data, respectively.

An extension of PROB, termed EX-PROB here, was pro-
posed by Oaksford and Chater (2007, pp. 126; see also Oaks-
ford & Chater, 2013). This extension is motivated by the
observation that MP is usually endorsed much more strongly
than MT and employs two additional exceptions parameters
e in the rule phase instead of only one for PROB to account
for this finding.

The third competitor model, referred to here as KL, is
based on causal Bayes nets (Pearl, 2000) and implements
an idea by Hartmann and Rafiee Rad (2012; see also Paris,
1998). The updating mechanism is similar to that in PROB,
introducing a new and smaller exceptions parameter e′ for
each content in the rule phase, but the other model param-
eters are also adjusted in going from knowledge phase to
rule phase so that the so-called Kullback-Leibler distance
between the probability distributions parameterized by the
parameters for each phase is as small as possible.

Table 5 provides an overview of the data sets used in the
meta-analysis and the number of free parameters that the
DSM and the competitor models need to fit an individual
participant. As noted by many authors (e.g., Roberts & Pash-
ler, 2000), model comparison needs to take model fit and
model flexibility into account. This is frequently done by
means of model-selection indices such as AIC and BIC that
penalize model flexibility in terms of the number of free pa-
rameters. Because we do not have the statistical apparatus
of maximum-likelihood estimation on which these methods
rely at our disposal here, we rely only on model fit. Note,
however, that the DSM invariably requires at most as many
parameters as, and often fewer parameters than, its competi-
tors (see Table 5). The results presented below are thereby
stacked against the DSM because explicit penalties for model
flexibility based on the number of free parameters would hurt
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Figure 5. The left panel shows mean model fits (R2) of each experiment (in grey) and the weighted grand mean (in black) of the four
candidate models. The right panel shows violin-plots for the τ parameters of the DSM across all data sets and contents.

the DSM less severely than the competitor models.
We submitted the R2 goodness-of-fit values of the four

models fitted to each participant’s data to a LMM with ran-
dom effects for participants and experiment. This allowed
us to assess which model provides the best account while
taking into account the idiosyncrasies of each study (see
e.g., Singmann, Klauer, & Kellen, 2014, for a similar ap-
proach). We set up the LMM in such a way that participants
were weighted equally across studies (as traditionally done in
meta-analyses; Hedges & Olkin, 1985) and then assessed the
overall effect of model (DSM, PROB, EX-PROB, vs. KL).
More details on the data sets used, the exact specification of
the different Bayesian models, and the specification of the
LMM can be found in the online appendix.

Results and Discussion

Mean model fits for the different experiments and models
as well as the grand mean for each model are displayed in
Figure 5 (left panel). As can be seen, the four models differ
in their ability to fit the data, with the DSM consistently pro-
viding a better account than the competitor models. This was
confirmed by the LMM which revealed a significant main ef-
fect of model, χ2(3) = 17.66, p = .0005. The DSM provided
a better account than each of the three competitor models,
smallest z = 3.63, largest pF = .0008, which did not dif-
fer significantly from each other, largest |z| = 1.35, smallest
pF = .34. In other words, the DSM explained additional vari-
ance over and above the Bayesian competitor models, mean
R2 = .86 versus mean R2 = .79 − .80.7

Thus, the effect of the conditional does not seem to be

to alter the knowledge base from which individuals reason.
Rather, it provides the reasoner with a content-independent
form-based information on the (subjective) acceptability of
the inference which is integrated with the information pro-
vided by one’s background knowledge.

The Bayesian models incorporate different versions of up-
dating by a conditional rule. While all of these instanstiations
of updating performed equally in terms of goodness of fit,
it is possible that yet another version of updating could be
found that outperforms the DSM. Another possible limita-
tion of the Bayesian models tested here is that they assume
certainty of the minor premise (i.e., that the probability of the
minor premise is 1). However, Singmann, Klauer, and Over
(2014) have shown that Bayesian models not employing this
restriction (e.g., Pfeifer & Kleiter, 2010) also do not provide
a descriptively adequate account. More importantly, it was
not clear to us if and how such models could be fitted to the
data presented here.

As noted previously, one general prediction of the DSM is
that we expected the pattern of form-parameters τ to mimic
the pattern usually found with abstract materials: MP > MT
> AC ≥ DA. We also performed a meta-analysis on the τ pa-
rameters across the seven data sets to evaluate this prediction.
The distribution of τ parameters across all participants and
items is shown in Figure 5 (right panel) and is descriptively in

7Note that when analyzing the data sets separately, the DSM
provided a significantly better account than all three competitor
models in only two of the seven data sets. At the same time, in
none of the data sets did a competitor model provide a significantly
better account than the DSM.
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line with the prediction. The τ parameters were submitted to
an LMM equivalent to the one reported for the R2 values, but
with fixed effects for inference (MP, MT, AC, vs. DA) instead
of model. This LMM revealed a significant main effect of in-
ference, χ2(3) = 12.91, p = .005. Follow-up contrasts (using
one-sided tests for the first two comparisons) confirmed that
MP was larger than MT by M = .09, z = 2.20, pH = .02, MT
was larger than AC and DA by M = .15, z = 2.47, pH = .02,
and there was no difference between AC and DA, M = .02,
z = .49, pH = .62.

General Discussion

A dual-source model of probabilistic conditional reason-
ing was investigated. The tenability of its assumptions
was empirically assessed in terms of model fit, a model-
comparison exercise, a non-parametric test of a unique pre-
diction, and selective-influence studies. In terms of model
fit, the DSM accounted on average for R2 = 86% of
the variance in reasoners’ endorsements. This exceeds the
amount accounted for by three competitor models. The
knowledge-based component, which is an instantiation of the
Bayesian model by Oaksford et al. (2000), explains most
of the variance, 55%, when fitted individually, while the
form-based component alone accounts for only 5%. Interest-
ingly, the DSM thereby explains substantially more variance
than its two subcomponents taken together. This shows that
the weighted interplay of form-based and knowledge-based
component is crucial for providing an adequate account of
the data. Adequate model fit implies that the assumptions
characterizing the model are satisfied by the data to a reason-
able first degree of approximation.

Going beyond model fit our model selection exercise
shows that the DSM provides a better account then three
purely Bayesian competitor models while employing on av-
erage fewer parameters. This provides further evidence for
the idea of a content-independent form-based process on top
of the knowledge-based part shared by all surveyed models.
The non-parametric test of a unique prediction shows that our
assumption of how reduced and full inferences are related –
namely such that the ratio in Equation 8 is not a function of
content – holds for the observed endorsements irrespective
of any model fits. Importantly, this unique prediction goes
beyond a redescription of the empirical observation that en-
dorsements increases from reduced to full inferences and is
not predicted by the Bayesian models.

Finally, selective-influence studies are motivated by the
fact that the parameters of a model are initially only math-
ematical entities devoid of psychological meaning. Such
studies seek to validate the psychological interpretation at-
tached to the parameters. For example, if our “knowledge
parameters” ξ model reasoners’ background knowledge then
they should respond to variations between contents in the
availability of counterexamples, of disablers and alternative

causes in specific patterns, which they generally did (Exp. 1;
see also Exp. 3). Similarly, a manipulation of argument form
(replacing conditional premises with biconditional premises)
should selectively affect the form-based parameters τ (Ex-
periment 1), and a manipulation of speaker expertise should
selectively affect the weight λ given to the rule and all infer-
ences based on it (Exp. 2), predictions that were satisfied by
the data.

The DSM and its Relationship to Dual-Process Models

In some respects, the DSM is similar to traditional dual-
process and dual-system models (Evans & Stanovich, 2013)
that postulate that two qualitatively different processes or
systems shape human cognition. It is instructive to review
criticisms of dual-process models as listed by Keren (2013)
to see (a) whether the DSM can be defended against them and
(b) to bring in sharper relief commonalities and differences
of the DSM and current dual-process models, and (c) to ac-
centuate what is new in the DSM (see also Beller & Spada,
2003, pp. 365-367).

One criticism of traditional dual-process models is that
one-process models can often provide parsimonious alter-
native accounts (e.g., Keren, 2013). In the present context,
a natural one-process competitor is a Bayesian account ex-
tended by an updating mechanism for updating by a condi-
tional rule. As already discussed, there is no agreed-upon
or normatively distinguished way of updating by a condi-
tional in the Bayesian framework, but we considered three
descriptive Bayesian models that instantiate different plausi-
ble possibilities of updating by a conditional. In a model-
comparison exercise across seven studies, the DSM outper-
formed all three Bayesian models. Nevertheless it is possible
that an alternative instantiation of updating could be found
that provides a better account of the data than the DSM in
which case the Bayesian model would be preferred as con-
ceptually more simple.

From a higher vantage point on this issue, it may also
be possible to re-conceptualize the DSM as a Bayesian
model noting that the mixing of two response proposals, one
knowledge-based, the other form-based, could be seen as an
instance of model averaging in a Bayesian framework. In-
deed, the knowledge-based component is already a Bayesian
model, and the remaining challenge here would be to model
the form-based component in a Bayesian framework, per-
haps along the lines exemplified by von Sydow (2011) in his
Bayesian logic.

As argued by Keren (2013), further problems of dual-
process models stem from the fact that they characterize the
different processes in terms of attributes such as whether
or not working memory, intention, effort, and so on are in-
volved. In contrast, the DSM defines its two components op-
erationally in a well-defined empirical paradigm, providing
measures of them via the parameter estimates. This then al-
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lows one to study empirically how the different components
react to manipulations of working memory resources, inten-
tions, effort, and so forth.

In Keren’s (2013) view, dual-process models furthermore
do not state explicit constraints, and consequently do not
generate testable predictions. In contrast, the DSM imposes
specific restrictions on the data that we worked out in Equa-
tion 8. These restrictions were tested directly and the results
were in line with the predictions. Moreover, beyond the basic
paradigm, testable predictions were generated and tested in
the selective-influence studies as was done for the reanalysis
of data sets by Markovits et al. (2015).

On the basis of the validation of the model parameters via
selective-influence studies, the model was applied to dissect
classical suppression effects into effects on the knowledge-
based and the form-based component as well as to rean-
alyze recent studies by Markovits et al. (2015). Suppres-
sion effects of disablers and alternatives were found to dif-
fer qualitatively. While both kinds of counterexamples sup-
pressed the form-based component in meaningful and analo-
gous ways, alternatives exerted a more pronounced effect on
the knowledge-based component than disablers. This sug-
gests that disablers are spontaneously taken into account in
probabilistic assessments of causal contents, whereas alter-
natives need to be made explicit to obtain adequate consider-
ation. These findings are reminiscent of a neglect of alterna-
tive causes in causal reasoning recently reported by Fernbach
and Erb (2013), and provide a new insight in how suppres-
sion effects are generated. The same is true of the obser-
vation that the weight given to the formal component, the
conditional rule and the inferences based on it, is depressed
by disablers, but not by alternatives, providing an empirical
justification for seeing effects of speaker (in)expertise and of
disablers both as instances of the same suppression effect as
is sometimes done in the literature (e.g., Evans & Over, 2004,
p. 106).

Turning back to Keren’s (2013) list, his criticism that dual-
process models do not generate new insights or questions
can thus not be maintained for the DSM. Yet another prob-
lem of dual-process models as seen by Keren (2013) is that
the assumption of discrete processing types is undermined
by the demonstration of processing continua. Our reanal-
ysis of Markovits et al.’s (2015) indeed suggests that the
deductive and probabilistic instructions contrasted in these
studies differ by differential weighting of the form-based and
knowledge-based contributions and thus, along a continuum
defined by the weighting parameter rather than in terms of
discrete processing types. In other words, the DSM accom-
modates evidence for processing continua in terms of the
continuum of mixtures of two processing types with contin-
uously differing weight λ.

Taken together, the DSM does not support the idea that
probability theory can function as a wholesale replacement

for logic as a computational-level theory of what inferences
people should draw (Chater & Oaksford, 2001). Instead, it
suggests that some ideas from the old paradigm capitaliz-
ing on the form of presented arguments (e.g., Johnson-Laird,
1983; Johnson-Laird & Byrne, 1991; Rips, 1994) need to be
transferred to the new paradigm. The DSM provides a tenta-
tively validated tool for disentangling knowledge-based and
presumably probabilistic components from form-based com-
ponents remaining as agnostic as possible on the attributes
and characteristics of these two components, permitting the
data to resolve such questions.
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