
Anomaly Detection in Video

by

Tran Thi Minh Hanh

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy

The University of Leeds
School of Computing

June 2018

Declarations
The candidate confirms that the work submitted is his/her own, except where work
which has formed part of a jointly authored publication has been included. The
contribution of the candidate and the other authors to this work has been explic-
itly indicated below. The candidate confirms that appropriate credit has been given
within the thesis where reference has been made to the work of others.

Some parts of the work presented in this thesis have been published in the following articles:

Hanh T. M. Tran and David C. Hogg. Anomaly Detection using a Convolutional Winner-
Take-All Autoencoder. Proceedings of the British Machine Vision Conference (BMVC),

BMVA Press, September 2017.

The candidate confirms that the above jointly-authored publications are primarily the work
of the first author. The role of the second author was purely supervisory.

This copy has been supplied on the understanding that it is copyright material and that no
quotation from the thesis may be published without proper acknowledgement.

c©2018 The University of Leeds and Tran Thi Minh Hanh

i

Abstract
Anomaly detection is an area of video analysis that has great importance in automated

surveillance. Although it has been extensively studied, there has been little work on using
deep convolutional neural networks to learn spatio-temporal feature representations. In
this thesis we present novel approaches for learning motion features and modelling normal
spatio-temporal dynamics for anomaly detection.

The contributions are divided into two main chapters. The first introduces a method
that uses a convolutional autoencoder to learn motion features from foreground optical
flow patches. The autoencoder is coupled with a spatial sparsity constraint, known as
Winner-Take-All, to learn shift-invariant and generic flow-features. This method solves the
problem of using hand-crafted feature representations in state of the art methods. Moreover,
to capture variations in scale of the patterns of motion as an object moves in depth through
the scene, we also divide the image plane into regions and learn a separate normality model
in each region. We compare the methods with state of the art approaches on two datasets
and demonstrate improved performance.

The second main chapter presents a end-to-end method that learns normal spatio-
temporal dynamics from video volumes using a sequence-to-sequence encoder-decoder for
prediction and reconstruction. This work is based on the intuition that the encoder-decoder
learns to estimate normal sequences in a training set with low error, thus it estimates an
abnormal sequence with high error. Error between the network’s output and the target
output is used to classify a video volume as normal or abnormal. In addition to the use of
reconstruction error, we also use prediction error for anomaly detection.

We evaluate the second method on three datasets. The prediction models show com-
parable performance with state of the art methods. In comparison with the first proposed
method, performance is improved in one dataset. Moreover, running time is significantly
faster.

ii

Acknowledgements
First of all I would like to express my utmost gratitude to my supervisor Prof. David

Hogg. His guidance, feedback and encouragement have inspired me to pursue novel ideas
and he have helped me to develop the research skills. I would also like to thank him and
the department for funding me for various events such as a summer school and conferences
during my PhD.

My sincere gratitude goes to Project 911 - Vietnam International Education Department
(VIED) Scholarship which funded me for three years of my PhD. Without VIED scholar-
ship, I would not have had the opportunity to come to UK and do my PhD at University of
Leeds.

Also a big thank you to all current and ex PhD students, Aryana Tavanai, Christiana
Panayi, Leo Pauly, Rebecca Stone and so many others who have discussed ideas and helped
me over the last four years. My special thanks go to Duane Carey and Fouzhan Hosseini
who have advised and encouraged me through the hardest times. I would also like to thank
the staff in the School of Computing for a lot of fruitful discussions and support, and for
providing a conductive environment to research. There are many others, too many to list
here, but my gratitude goes to everyone who has helped me or been a friend to me over the
years. I thank you all.

Most importantly however I would like to thank my parents and family in Vietnam.
Without the never ending support and encouragement of my parents, I would not be here
now. I would also like to thank my husband, Nguyen Van Quyen, who has supported me at
the toughest times, understanding when I was so caught up in my work and encouraging
me when things went wrong. My special thanks go to my lovely son, who has brought so
much joy laughter and happiness into my PhD.

iii

Contents

1 Introduction 1
1.1 Challenges . 2
1.2 Motivation . 3
1.3 Aims and Objectives . 4
1.4 Novelty and Significance . 6
1.5 Limitations and Constraints . 7
1.6 Outline . 7

2 Related Work 9
2.1 Introduction . 9
2.2 Non-deep learning methods for anomaly detection 10

2.2.1 Feature descriptors . 11
2.2.2 Generative models of descriptors 17
2.2.3 Discriminative models of descriptors 20

2.3 Deep learning in anomaly detection . 24
2.3.1 Autoencoder and its variants . 25
2.3.2 Deep feature learning for anomaly detection 32
2.3.3 End-to-end deep network . 34

2.4 Experimental validation . 37
2.4.1 Evaluation measure . 37
2.4.2 Datasets . 39

2.5 Summary . 43

3 Convolutional Winner-Take-All Autoencoder for anomaly detection 45
3.1 Introduction . 45
3.2 Our method . 47

3.2.1 Extracting foreground patches 47
3.2.2 Convolutional Winner-Take-All autoencoder 48

iv

3.2.3 Max pooling and temporal averaging for motion feature represen-
tation . 50

3.2.4 Convolutional autoencoder . 52
3.2.5 One class SVM modelling . 55

3.3 Experimental evaluation . 57
3.3.1 Dataset and Evaluation measures. 57
3.3.2 Experimental Settings . 57
3.3.3 Quantitative Analysis . 58

3.3.3.1 Comparison with the state of the art 58
3.3.3.2 Varying patch size. 62
3.3.3.3 Varying max-pooling size. 62
3.3.3.4 Smoothness over number of frames 63
3.3.3.5 Efficiency of the Winner-Take-All sparsity constraint . 64

3.3.4 Qualitative Analysis . 65
3.3.5 Number of parameters and running time 67

3.4 Conclusions . 68

4 Convolutional Long Short-Term Memory for anomaly detection 69
4.1 Introduction . 69
4.2 Architecture . 70

4.2.1 Input data layer . 72
4.2.2 Convolutional and Deconvolutional layer 73
4.2.3 Recurrent Neural Network using Long Short-term Memory 75

4.2.3.1 Long Short Term Memory 76
4.2.3.2 Convolutional Long Short Term Memory 77

4.3 Optimization and Initialization . 78
4.4 Regularity score for anomaly detection 80
4.5 Experiments . 80

4.5.1 Datasets . 81
4.5.2 Anomalous event detection . 81
4.5.3 Reconstruction and Prediction 90
4.5.4 Number of model parameters and tesing time 94

4.6 Conclusion . 95

5 Conclusion and Future Work 96
5.1 Contributions . 97

5.1.1 Convolutional Winner-Take-All autoencoder 97

v

5.1.2 Convolutional Long Short-Term Memory 97
5.2 Limitations . 98
5.3 Future Work . 99
5.4 Closing Remarks . 100

6 Annex 102
6.1 Convolutional WTA autoencoder for anomaly detection 102

6.1.1 One-class SVM kernels . 102
6.1.2 Normalization as a preprocessing step for OCSVM. 102
6.1.3 A convolutional WTA autoencoder with different number of con-

volutional layers. 103
6.2 Convolutional Long Short-Term Memory for anomaly detection 105

6.2.1 Regularity score of different models. 105

Bibliography 110

vi

List of Figures

1.1 Overview of our method that uses a convolutional autoencoder to learn
motion representations for anomaly detection. The details of this method
will be described in Chapter 3. 5

1.2 Overview of our method that uses prediction error for anomaly detection.
The details of this method will be described in Chapter 4. 6

2.1 An ensemble of patches in video, c is an origin of the ensemble. Figure
from [1]. 12

2.2 (A) Multi-scale Histogram of Optical Flow [2] is extracted from a basic
unit. (B) The selection of spatial-temporal basis used for anomaly detection.
Figure reproduced from [2]. 13

2.3 AMHOF descriptors of three regions of interest. Figure from [3]. 14
2.4 The interaction force (red) of two sampled frames is calculated based on

optical flow (yellow). Figure from [4]. 15
2.5 (a) Distribution based HMM and (b) coupled HMM for capturing temporal

and spatial relationships. Figure from [5]. 17
2.6 (a) Temporal and (b) Spatial anomaly detection with MDT models. Figure

from [6]. 20
2.7 SVM for binary classification, where support vectors are the training points

that lie near the hyperplane defining the margin. 23
2.8 Taxonomy: most popular autoencoders classified according to the charas-

teristics they induce in their encodings [7]. 25
2.9 A general autoencoder structure. 25
2.10 Common activation functions. 26
2.11 Under-complete and over-complete auto-encoders. 27
2.12 Architecture of the shift-invariant unsupervised feature extractor applied to

the two bars dataset. Figure from [8]. 29
2.13 2D and 3D convolution operations [9]. 30

vii

2.14 Two examples of a LSTM autoencoder. 31
2.15 (a) A Generative Adversarial Network and (b) an example of a conditional

GAN for mapping edges to photos (Figure from [10]). 32
2.16 The fully convolutional network with a trainable layer on top of pretrained

layers. (Figure from [11]). 33
2.17 The overview of frameworks using three stacked denoising autoencoders

to learn appearance, motion and joint representations. (Figure from [11]). 34
2.18 Stacked convolutional auto-encoders used for anomaly detection. (a)

Spatial-temporal information is learned on a sequence of 10 frames with a
convolutional auto-encoder (Figure reproduced from [12]) and (b) a convo-
lutional LSTM is applied on top of convolutional layer’s feature maps to
learn temporal information (Figure reproduced from [13]). 35

2.19 Architecture of a 3D convolutional auto-encoder for anomaly detection
with reconstruction and prediction branches. Figure from [14]. 36

2.20 The ROC curve, where the blue area is AUC and the intersection between
the line (FPR = 1 - TPR) and the curve is EER. A better method gives
higher AUC and lower EER. 39

2.21 Sample normal/abnormal frames in UCSDPed1 (top row) and UCSDPed2
(bottom row). Anomalous pixels are shown in red. 40

2.22 Examples of abnormal frames in Avenue dataset, where red boxes corre-
spond to abnormal events. 41

2.23 Examples of anomalous frames in Subway Entrance (top row) and Subway
Exit dataset (bottom row). Red boxes correspond to abnormal events. . . 42

3.1 Overview of the method using a spatial sparsity Convolutional Winner-
Take-All autoencoder for anomaly detection. 46

3.2 (a) The flow field color coding [15] used in this chapter, where flow-vector
angle and magnitude are represented by hue and saturation; (b) Examples
of training patches. 48

3.3 Foreground patches extraction using a sliding window and thresholding
of the accumulated optical flow squared magnitude. (a) Video frame at
time t. (b) Map of the flow magnitude (from frames t and t + 1) with
overlapping foreground patches superimposed; the red square delineates a
single (24× 24) foreground patch. 49

3.4 The architecture for a Conv-WTA autoencoder with spatial sparsity for
learning motion representations. 49

viii

3.5 Learned deconvolutional filters of the Conv-WTA autoencoder trained
on the UCSDPed1 and UCSDPed2 optical flow foreground patches: (a)
visualisation of 128 filters, and (b) displacement vector visualisation of 25
filters. 51

3.6 The convolutional WTA feature extractor. 52
3.7 Convolutional autoencoder for learning motion representations. 53
3.8 The convolutional feature extractor. 53
3.9 Training error of the convolutional autoencoder and the convolutional WTA

autoencoder. 53
3.10 Learned deconvolutional filters of the convolutional autoencoder trained

on the UCSDPed1 and UCSDPed2 optical flow foreground patches: (a)
visualisation of 128 filters, and (b) displacement vector visualisation of 25
filters. 54

3.11 Examples of one-class SVM regions. 56
3.12 Frame-level and pixel-level evaluation on the UCSDPed1. The legend for

the pixel-level (right) is the same as for the frame-level (left). 59
3.13 Frame-level and pixel-level evaluation on the UCSDPed2. 59
3.14 Frame-level comparison on the Avenue dataset. 61
3.15 Detection results on the UCSDPed1 (first 2 rows), the UCSDPed2 (third

row) and the CUHK Avenue dataset (fourth row). 65
3.16 False detection results on the UCSDPed1 (first row), the UCSDPed2 (sec-

ond row) and the Avenue dataset (third row). 66

4.1 Regularity scores obtained from an extract from the CUHK Avenue dataset[16].
The regularity score drops when an abnormal event appears. 70

4.2 The convLSTM encoding-decoding structure used for future prediction
with τ = 5. 71

4.3 The convolutional encoding-decoding structure with skip connections used
for future prediction with τ = 5. 71

4.4 A diagram of an Long Short-term Memory cell, an activation function can
be tanh or ReLU. 76

4.5 The validation error of the convLSTM encoder-decoder trained on each
dataset. 79

4.6 The train and validation errors of the convLSTM encoder-decoder trained
on UCSDPed1 and UCSDPed2. 79

ix

4.7 Prediction error in the timestamp area affects the regularity score. A
blue-green-red color map shows error from low to high. 84

4.8 Regularity score of video sequence #1, 5, 24, 17, 23 (from top to bottom)
of UCSDPed1 dataset. 86

4.9 Regularity score of video sequence #2, 4, 5, 7 (from top to bottom) of
UCSDPed2 dataset. 87

4.10 Regularity score of each sequence of video sequence #5, 7, 15, 12 (from
top to bottom) of CUHK Avenue dataset. 88

4.11 Regularity score of frames #115, 000−120, 000 of Subway entrance dataset. 89
4.12 Regularity score of frames #52, 500 − 64, 000 of Subway exit dataset

(without and with masking the timestamp). 89
4.13 Reconstruction and prediction on sample irregular frames of UCSDPed1

which contains a car. Best viewed in color. 91
4.14 Reconstruction and prediction on sample irregular frames of UCSDPed1

which contains a wheelchair. Best viewed in color. 92
4.15 Reconstruction and prediction on sample irregular frames of UCSDPed2

which contains a biker. Best viewed in color. 93
4.16 Reconstruction and prediction on sample irregular frames of CUHK Av-

enue which contains a running person. Best viewed in color. 94

5.1 A proposed encoder-decoder with the presence of negative samples from
the generator . 100

6.1 Learned deconvolutional filters of the Conv-WTA autoencoder with 6
convolutional layers trained on optical flow foreground patches (UCSD
dataset). 104

6.2 Regularity score of video sequence #1, 5, 24, 17, 23 (from top to bottom)
of UCSDPed1 dataset. 106

6.3 Regularity score of video sequence #2, 4, 5, 7 (from top to bottom) of
UCSDPed2 dataset. 107

6.4 Comparison of regularity scores deriving from prediction and reconstruc-
tion errors on video sequence #5, 7, 15, 12 (from top to bottom) of CUHK
Avenue dataset. 108

6.5 Regularity score of frames #115, 000 − 120, 000 of Subway entrance
dataset (with masking the timestamp). 109

6.6 Regularity score of frames #52, 500−64, 000 of Subway exit dataset (with
masking the timestamp). 109

x

List of Tables

2.1 Composition of abnormal events in the UCSD dataset. 41
2.2 Groundtruth of Avenue dataset. 41
2.3 Groundtruth of Subway dataset. 43

3.1 Performance comparison on UCSDPed1 and UCSDPed2. (* the results
in [17] include replicated results for MPPCA [18] and Social Force Model
[4] methods.) . 60

3.2 Performance comparison on the Avenue dataset. (* the results from [19]
replicated SCL method [16]) . 61

3.3 Detection accuracy (%) with IoU threshold υ on CUHK Avenue dataset.
OCSVM[8× 12] is used. 61

3.4 Performance comparison on UCSDPed1 and UCSDPed2 with different
patch sizes. 62

3.5 Performance comparison on UCSDPed1 with different kernel sizes and
strides of max-pooling and different subdivisions. 63

3.6 EER/AUC for different temporal smoothing windows. 64
3.7 Impact of the WTA constraint. 64
3.8 The details of the number of parameters for each autoencoder. 67
3.9 Testing time (second/frame) without and with GPU. 67

4.1 The details of the convolutional LSTM encoder-decoder model with 12
layers. The two dimensions in “Kernel”, “In Res” and “Out Res” represent
for height and width. 74

4.2 The details of the convolutional LSTM encoder-decoder model with 8
layers. 74

4.3 The details of the 2D convolutional encoder-decoder with skip connections. 75
4.4 Number of training data and training epochs correspond to each dataset. . 82

xi

4.5 Comparison of EER/AUC with different architectures and setups of the
convLSTM encoder-decoder. τ is the number of frames in an input volume
and a target volume. 82

4.6 Comparison of EER/AUC with different types of the encoder-decoders (the
convolutional encoder-decoder and the convLSTM encoder-decoder) for
reconstruction and prediction, aug2 is used for data augmentation, τ = 5

is used. 83
4.7 Performance comparison with the state of the art. 83
4.8 Performance comparison in Subway Entrance/Exit datasets with and with-

out masking the timestamp. 85
4.9 Comparison on number of parameters. 95
4.10 Testing time (second/frame) without and with GPU. 95

6.1 Performance comparison on UCSDPed2 with different kernels for OCSVM.102
6.2 Performance comparison on UCSDPed2 with different normalization meth-

ods for OCSVM. 103
6.3 Performance comparison on UCSDPed1 and UCSDPed2 with different

network’s architectures. 104

xii

List of Notations
The following is a list of important math notations used in the thesis. In general, the
following rules are used for numbers and arrays:

• Bold capital letters (e.g. W) denote matrices.

• Bold small letters (e.g. w) denote column vectors. A row vector is denoted by its
transpose, e.g, wT .

• Non-bold letters (e.g. x, l, C) are for scalars.

Latin

a - Negative slope in leaky ReLU layer

b - Network bias

bl - Network bias of layer l

Cl - The depth of output tensor of layer l

C0 - The depth of input tensor

d - Feature representation of a patch

E - Output tensor

e - Prediction/Reconstruction error

Ft - A video frame at time t

P - Foreground patch

Pn - n-th foreground patch

P̂ - Estimation of the foreground patch

Hl - The height of output tensor of layer l

H0 - The height of input tensor

N - Batch size

w - Decision hyperplane normal vector

xiii

r - Regularity score

s - Anomaly score

thr - A threshold for anomaly score

Wl - The width of output tensor of layer l

W0 - The width of input tensor

Wl - Network weights at layer l

W - Network weights

(x, y, c) - The row, column and channel indices of an element in the tensor

Greek

λ - Regularization term or weight decay

αi, βi - Lagrangian multipliers

ξi - Slack variables in one-class Support Vector Machine

ν - One-class Support Vector Machine parameter

ρ - Bias

γ - Radial basis kernel function parameter

υ - Intersection over Union threshold

τ - Temporal window

θθθ - A video volume

Functions

g, f - Activation function

σ(x) - Logistic sigmoid, 1
1+exp(−x)

Φ - Feature projection function

k - Kernel function

L - Loss function

‖W‖2F - Frobenius norm of W

‖W‖22 - L2 norm or Euclidean norm of W

N (µ,Σ) - Gaussian distribution with mean µ and covariance Σ

a · b = aTb - Dot product between column vector a and b

xiv

List of Acronyms
AMHOF - Adaptive Multi-scale Histogram of Optical Flow

AE - Autoencoder

CAE - Convolutional Autoencoder

CNN - Convolutional Neural Network

Conv-WTA - Convolutional Winner-Take-All

ConvLSTM - Convolutional Long Short Time Memory

CRF - Conditional Random Field

GMM - Gaussian Mixture Model

HOF - Histogram of Optical Flow

HMM - Hidden Markov Model

KL - Kullback-Leibler

LDA - Latent Dirichlet Allocation

LSTM - Long Short Time Memory

MHOF - Multi-scale Histogram of Optical Flow

MPPCA - Mixture of Probabilistic Principal Component Analyser

MDT - Mixture of Dynamic Textures

MRF - Markov Random Field

OCSVM - One Class Support Vector Machine

PCA - Principal Component Analysis

xv

ReLU - Rectified Linear Unit

RNN - Recurrent Neural Network

xvi

Chapter 1

Introduction

The world around us is monitored by millions of CCTV cameras; according to a report
from the British Security Industry Association in 2013, there were between 4 million and
5.9 million surveillance cameras in the UK alone. These surveillance cameras bring a
significant growth of video data, increasing pressure on conventional video monitoring and
analysis processes, which are usually highly labour-intensive and costly. Because of this,
the need has arisen for automatic monitoring of video streams to minimise the requirement
for human supervision.

Motivated by the growth in computational speed and memory capacity of computers,
the industry and academics have developed key techniques for intelligent surveillance.
Given a large amount of video collected by a set of surveillance cameras, an intelligent
video surveillance system aims at detecting and tracking objects of interest over time, and
further analysing and understanding the visual events of the scene. It has a wide range of
applications, such as health care [20], traffic monitoring [21] and threat detection [22, 23].

Recent advances in camera hardware and network communication technology have led
to widespread installation of video surveillance systems in private and public places, such
as airports, railway stations, schools, shopping malls, hospitals and the home. Although
the systems used in public places often have to deal with a high density of objects, leading
to greater processing challenges, the research on crowded scene analysis has already
attracted significant attention along with the increasing concern on public security and
safety [24, 25].

Anomaly detection in video is a key approach to scene analysis. This approach aims at

1

Chapter 1 2 Introduction

automatically identifying abnormal events within video stream, serving a wide range of
applications, from monitoring surveillance cameras, or suggesting frames of interest that
need to be analysed manually, to drawing the viewer’s attention to salient behaviour in a
video. Although automatic anomaly detection has attractive potential, it still faces lots of
problems.

1.1 Challenges

In general, there are a few challenges for anomaly detection in video surveillance:

• In contrast to action recognition where events are clearly defined, the definition of
anomalies in video can have some degree of ambiguity. Anomalies usually cover a
wide range of activities. In addition, the definition of an anomaly changes in different
applications and datasets. In some cases, different authors even define different
anomalies as ground truth on a common dataset.

• The availability of labelled data, which are used to train or to validate models for
anomaly detection, is usually a major problem. In practice, it may be easy to provide
sufficiently many samples of normal activities, however it is difficult to provide all
possible examples and types of abnormal activity that can happen in the scene. As a
result, it is difficult to train a model in a supervised manner to separate an abnormal
class from a normal class.

• Crowded scenes involve many independently moving objects that occlude each other
in complex ways. Moreover, these videos often have low resolution. Although
object tracking and trajectory analysis are considered as sufficient methods to cap-
ture high level features, they were mainly designed for scenes with low density of
population. Therefore, many low level features were proposed to deal with crowded
scene anomaly detection (covered in detail in chapter 2). However, most of the
proposed methods for feature representation are based on hand-crafted features. It is
challenging to decide which kind of feature is suitable for a specific situation.

• Low level features were built on small 2D or 3D patches extracted from video and
then these features are used to learn a model of normality. As a result, anomalies are
dependent on the scale at which a model of normality is defined. A normal behaviour
at a fine visual scale may be perceived as highly anomalous when a large scale is
considered, or vice versa. Moreover, in scenarios where scale changes significantly,
features of the same object at different locations may vary due to the perspective of

Chapter 1 3 Introduction

the camera. An anomaly at a further distance to the camera may be ignored due to
the small scale.

• An anomaly detection system is supposed to provide real-time and automatic notifi-
cations when an anomaly appears in the scene. Therefore, computational complexity
and running time need to be considered.

1.2 Motivation

Although anomaly detection can be extremely challenging, this has motivated a great
diversity of application and a surge of interest. Many methods have been proposed to deal
with the above challenges in which anomalies are defined as events that have not been seen
or have rarely been seen in the training data.

Given a set of training data, anomaly detection methods, based on low-level features,
aim to learn feature representations that capture normal motion and appearance from either
2D image patches or 3D video volumes. These features of training data are then used to
train a model of normality and anomalies are detected by identifying patterns which are
outliers of the model. The model can be probabilistic [1, 4, 5, 6, 17, 18, 26, 27, 28, 29],
a sparse coding [2, 16, 30, 31, 32] or one-class Support Vector Machine [33, 34, 35, 36]
(covered in detail in Chapter 2). These methods have been shown to perform well on a
variety of datasets. However, the limitation of these methods is the use of hand-crafted
features, which are designed with some prior knowledge of the domain.

Recently, deep learning, especially the use of deep convolutional neural networks
(CNNs) have achieved state of the art performance in a range of tasks, including object
recognition [37], detection [38] and segmentation [39]. A deep CNN model learns a
hierarchical set of features through multiple layers [40], each layer in the model captures
information at different scales, for example low-level edges, mid-level edge junctions, high-
level object parts or a complete object. Moreover, feature representations can be learned
automatically from unlabelled data thus avoiding a lot of time-consuming engineering.
These unsupervised feature learning algorithms are based on building an autoencoder
(reviewed in detail in Chapter 2), which maps an input to a hidden feature space and then
maps the features back to the input space. This is done by minimizing an error between a
target and a network’s output. Learning features in this way is very useful for datasets with
few labels.

Deep learning has also been applied to video feature learning in a supervised setting [9,
41, 42] or an unsupervised setting [43, 44]. Spatio-temporal dynamic features in video can

Chapter 1 4 Introduction

be exploited by the use of 3D convolution networks [9], different temporal/temporal fusion
strategies [45] and Recurrent Neural Networks (RNNs) [43, 46].

Even though a deep model contains many layers with many matrix calculations, the
recent availability of powerful parallel machines (i.e., GPU, CPU clusters) helps to speed
up the running time.

1.3 Aims and Objectives

Given the issues and the motivation outlined above, it is the intention of this work to
provide a framework to learn spatio-temporal feature representations for anomaly detection
in video, with a focus on the datasets containing dense crowds.

Our main research questions hence are as follows:

• Can we train a deep learning model to automatically learn feature representations
that capture the motion information in crowded video?

• Using the above feature representations, can we develop an effective method to learn
normality model for anomaly detection?

• Can we build an end-to-end trainable prediction network for anomaly detection?

The work aims to solve the problem of hand-crafted feature representations by the use
of an autoencoder framework in deep learning. The discriminative features can be learned
automatically via multiple layers with non-linear activation functions in the autoencoder.
Having a trained autoencoder, the encoder can be used to form a feature extractor in
the anomaly detection system. A model of normality is trained on extracted feature
representations in a training phase, which is then used to detect anomalies on features of
testing data.

The work also aims to solve the problem resulting from the variation in scales as object
moves in depth through the scene. The scene is divided into regions and a separate model
of normality is learned at each region. Figure 1.1 describes the overview of our method
that uses a convolutional autoencoder to learn motion representations. The details of this
method will be presented in Chapter 3.

Chapter 1 5 Introduction

Figure 1.1: Overview of our method that uses a convolutional autoencoder to learn motion
representations for anomaly detection. The details of this method will be described in
Chapter 3.

When using a trained encoder to build a feature extractor, we also need to train another
model on top of these feature representations for modelling normal behaviours. Normality
modelling is not jointly optimized with the autoencoder. Intuitively, an encoder-decoder
is trained to estimate normal samples in training set with low cost, it should estimate an
abnormal samples with higher cost. Using this intuition, we aim to train encoder-decoders
to learn spatio-temporal dynamics from training normal video volumes and then use an
error between network’s output and a target to detect a test volume as normal or abnormal.
This network can be trained end-to-end without requiring any other modelling. Figure 1.2
shows the overview of our method that uses prediction error for anomaly detection. The
details of this method will be presented in Chapter 4.

Chapter 1 6 Introduction

(a) Training (b) Anomaly detection

Figure 1.2: Overview of our method that uses prediction error for anomaly detection. The
details of this method will be described in Chapter 4.

In our methods, we use unlabelled training data containing mostly normal samples for
training autoencoders, encoder-decoders and modelling normalities.

1.4 Novelty and Significance

This thesis introduces contributions in unsupervised feature learning and normality mod-
elling for anomaly detection in video. The following include the novel and significant
contributions of this work.

• We present a novel method that uses a convolutional autoencoder to learn motion
representations on foreground optical flow patches. The sparsity constraint, known
as Winner-Take-All (WTA), is combined with the autoencoder to promote shift-
invariant and generic flow features that are potentially discriminative for the model
learning and anomaly detection using one-class Support Vector Machine (OCSVM).

• We propose an end-to-end framework that learns normal spatio-temporal dynamics
from sequences of successive frames. This is done by interleaving convolutional
Long Short Term Memory (LSTM) based RNNs between convolutional layers to
encode temporal information on hierarchical spatial representations from low-level to
high-level. To evaluate the efficiency of convLSTMs in learning temporal dynamics,
we also introduce a convolutional encoder-decoder with skip connections.

• Beside the use of reconstruction error, we propose to use prediction error for anomaly
detection. We train the encoder-decoders for future prediction and shows that using

Chapter 1 7 Introduction

prediction error gives superior performance than using reconstruction error.

• We evaluate the methods on different anomaly detection datasets and demonstrate
competitive performance with state of the art approaches.

1.5 Limitations and Constraints

In the proposed methods, we have a few limitations and assumptions.

• In Chapter 3, we look for anomalies via dense optical flow of successive video
frames. We assume that anomalies are only found in foreground regions where there
is non-zero optical flow in the image plane. The foreground patches are extracted
by comparing their accumulated optical flow squared magnitudes with a threshold.
Therefore, we do not attempt to detect anomalous appearance of static objects.

• We only learn (or extract) dynamic information over a range of 5 − 10 frames.
Learning longer range dynamic information can be explored in future works.

• In the work using encoder-decoders, we use an intuition that the encoder-decoder
which is trained to minimise reconstruction/prediction errors on normal data, it should
reconstruct/predict abnormal data with high errors. Anomalies arise as failures in
reconstruction or prediction.

1.6 Outline

The rest of the thesis is organised as follows:

Chapter 2: Related Work
In this chapter we provide a literature review on some fundamental spatial-temporal fea-
ture descriptors and generative/discriminative modelling methods that have been used in
anomaly detection. We also present related works within the application of deep learning
methods. We primarily focus on autoencoders and their use for anomaly detection. Finally,
we describe the evaluation methodology and anomaly detection datasets. Since there
are many datasets, we focus only on datasets and evaluation measures that we use for
performance evaluation.

Chapter 3: Convolutional Winner-Take-All Autoencoder for anomaly detection
In this chapter, we present a method using a convolutional WTA feature extractor and

Chapter 1 8 Introduction

OCSVM for anomaly detection. We compare architectures with the use of a sparsity
constraint in training a convolutional autoencoder and without the use of it. We also present
an approach to extract a smoothed motion feature representation by the combination of
a trained encoder, a max pooling layer and a temporal averaging step. We show the im-
provement of the method that uses a convolutional WTA feature extractor over the use
of a convolutional feature extractor. We also compare the performance of the framework
against various state of the art approaches on two datasets.

Chapter 4: Convolutional Long Short-Term Memory for anomaly detection
To accomplish the goal of using an end-to-end trainable deep network for anomaly detec-
tion, this chapter describes a framework that interleaves convLSTM based RNNs between
convolutional layers to learn spatio-temporal dynamics of normal video volumes. To
evaluate the efficiency of RNNs layers, we also describe a method that uses convolutional
encoder-decoders. This chapter includes details of different network architectures and
approaches that use reconstruction error and prediction error for anomaly detection. We
present quantitative and qualitative results and compare the method against state-of-the-art
methods on three challenging datasets.

Chapter 5: Conclution and Future Work
The final chapter provides a summary of the work presented in the thesis and a final
conclusion on their novelty and significance. Moreover, we also provide possible extensions
and future research directions.

Chapter 2

Related Work

2.1 Introduction

Detecting unusual activities, uncommon behaviours or irregular events in video has become
an important problem that has drawn a significant amount of attention in the field of
automated video surveillance systems. Monitoring a large number of surveillance video
streams is a cumbersome and error prone process. Automatic anomaly detection allows to
reduce the amount of data needed to be processed manually by raising human attention on
the specific time of anomalies appearing in a video.

Many researchers have focused on anomaly detection in video, and a comprehensive
survey of this problem can be found in several review papers [47, 48, 49, 50]. Over the years,
previous approaches proposed for this problem changed from rule-based methods [51, 52]
to machine learning approaches. In rule-based methods, the rules are defined using
prior knowledge. For example, Dee and Hogg [51] built a model of intentional, goal-
directed behaviour based on an understanding of the way people navigate toward a goal.
People usually move directly and purposefully to their desired destinations and these
then consistently explain their behaviours. Therefore, behaviour patterns, that are not
consistently explainable by the model, are abnormal. The rules can be defined on a set
of events to form hypothetical explanations for the normal activities [52]. These methods
work well in restricted domains and do not need (or need less) training data.

However, the rules need to be predefined, which does not scale well to new domains

9

Chapter 2 10 Related Work

and may be impractical for complex behaviours involving multiple actors. Therefore,
unsupervised methods are more appealing because they attempt to learn models of normality
without the aid of human intervention. In this thesis, unsupervised learning is used on
training data that is largely composed of normal data. As a result, we describe in this
chapter unsupervised or semi-supervised methods for anomaly detection.

Most unsupervised approaches consist of two key steps, (i) feature representation and
(ii) normality modelling. In this chapter we provide a literature review on these two steps.
Section 2.2.1 presents the related work on spatio-temporal feature descriptors and then
Section 2.2.2 reviews some generative modelling methods that have been employed for
anomaly detection. Discriminative methods for modelling normality are presented in
Section 2.2.3.

As mentioned in Chapter 1, deep convolutional neural networks can learn a hierarchical
set of features through multiple layers and this can be done in an unsupervised manner
by the use of autoencoders. Therefore, in this chapter we also highlight the successful
trends that have leveraged deep learning on anomaly detection in Section 2.3. Firstly, the
background on a basic autoencoder and its variants are presented in Section 2.3.1. Then,
we review the methods that use deep models for feature representations, which are then
combined with generative or discriminative modelling methods. These models can be
pre-trained models on a large-scale image dataset for object classification (e.g. ImageNet
dataset) or models trained with an autoencoder, which are described in Section 2.3.2.
Finally, deep learning architectures that require no additional modelling method [12, 13,
14, 53] are described in Section 2.3.3.

Section 2.4 reviews the evaluation measures that are commonly used in current day
anomaly detection. Finally, we describe briefly three challenging datasets for anomaly
detection.

2.2 Non-deep learning methods for anomaly detection

Most video based anomaly detection approaches involve a feature extraction step followed
by the application of traditional machine learning methods. There are mainly two ap-
proaches to extract robust and descriptive features, which capture the unique properties of
normal behaviour.

The first method captures pixel-level descriptions with primitives such as gradient,
colour, texture and motion. The features used to represent normality can be either global
or local. They also can be either spatial or temporal or both. Among these features,
spatial-temporal features have shown particular promise in motion understanding and are

Chapter 2 11 Related Work

widely used as features descriptors [1, 2, 4, 18, 54, 55].
The second method is object-level description with primitives such as trajectory, size,

shape and speed of the object. Object-based representations provide direct object-level
semantic interpretation of behaviour, so approaches are performed based on detection and
segmentation. Some well-known methods in this category are based on video parsing [56,
57] or object tracking [58, 59, 60]. Typically, anomaly detection is based on the use
of videos from stationary cameras and object candidates can be detected with a robust
background subtraction algorithm [61]. Then anomaly detection can be seen as the task of
video parsing.

In the work by Antic and Ommer [56, 57], a short list of object hypotheses was
computed using background subtraction and a linear SVM classifier that was trained on
background and normal foreground segments. During training, normal object prototypes
were learned on a set of normal objects that best explained the foreground. Then an
anomaly was a hypothesis which was necessary to explain the foreground but fitted to a
normal object prototype with low probability. The authors used shape, appearance and
motion of normal objects to build normal prototypes.

Other works [58, 59, 60] modelled normal trajectories, which were collected by tracking
individual moving objects in the video. Then an object with trajectory deviating from
the normal model was detected as an anomaly. While capable of identifying abnormal
behaviours, video parsing and tracking are both difficult and computationally expensive for
crowded and complicated scenes.

Therefore, when taking the above into consideration, this review of non-deep learning
methods only focuses on hand-craft feature descriptors that are extracted from appearance
in still image data or motion patterns in Section 2.2.1. Generative and discriminative
models that have been adopted for anomaly detection are reviewed in Section 2.2.2 and
Section 2.2.3.

2.2.1 Feature descriptors

Appropriate feature descriptors benefit the subsequent normal model building in anomaly
detection. In recent years, a number of spatio-temporal feature descriptors have been
proposed in video processing, containing texture and/or motion information.

Boiman and Irani [1] densely extracted spatio-temporal patches from video at various
spatial and temporal scales. For each small patch, a descriptor vector was computed and
stored, along with the absolute spatial-temporal coordinates of the patch. The descriptor
of each video patch was constructed from the absolute values of the temporal derivatives

Chapter 2 12 Related Work

in all pixels of the patch. To account for both local and global compositional information
in video regions, the authors broke down a large region into an ensemble of hundreds of
small spatio-temporal patches at multiple scales with their relative geometric positions. An
example of the ensemble of patches is illustrated in Figure 2.1. The approach is invariant
to small changes in local parts of a configuration. This is done by allowing for small local
misalignments in the relative geometric arrangement when searching for similar ensembles.

The primary drawback of this work is dense sampling. Dense sampling at different
scales yields a large number of patches which faces scalability issues. Moreover, densely
sampled patches are also redundant once training data is very large. Therefore, similar
patches were grouped by constructing a codebook using the ‘bag of video’ approach [54].

Figure 2.1: An ensemble of patches in video, c is an origin of the ensemble. Figure from
[1].

Many other works have made use of local image features and these include the use of
histograms of optical flow [2, 3, 33], histograms of pixel change [62], measures based on
optical flow [4, 18] and 3D Gradient [5, 16, 63].

Optical flow [64, 65] is the pattern of apparent motion of objects, surfaces and edges
between two consecutive frames caused by the movement of objects or the camera. It is a
2D vector field where each vector is a displacement vector showing the movement of scene
points from first frame to second. Descriptors can be built on optical flow to capture the
long-range spatial and temporal properties.

For example, in order to construct a feature descriptor representing a 2D image region,
Kim and Grauman [18] divide the region into u× v sub-regions (so-called ‘units’). Each
unit is represented by a 9 dimension vector computed from optical flow. The first eight
bins of the vector correspond to a histogram of eight optical flow orientation ranges and the
last bin is the sum of optical flow magnitudes of all pixels in the unit. Finally, a 9× u× v

Chapter 2 13 Related Work

dimensional descriptor for the image region is constructed by concatenating the descriptors
of all units.

Figure 2.2: (A) Multi-scale Histogram of Optical Flow [2] is extracted from a basic unit.
(B) The selection of spatial-temporal basis used for anomaly detection. Figure reproduced
from [2].

The optical flow magnitude of each pixel in the region can be voted into one of d
bins using its optical flow direction to form a d-bin histogram (so-called Histogram of
Optical Flow - HOF). This simple histogram of optical flow descriptor has been extended
to describe complex motions in anomaly detection [2, 3, 33].

Cong et al. [2] used eight bins for eight ranges of direction, combining with two scales
of magnitude to create a 16-bin histogram (so-called Multi-scale Histogram of Optical
Flow (MHOF) descriptor). Applying a threshold on flow magnitude, the first eight bins
denoted direction ranges with motion magnitude less than the threshold, and the second
eight bins denoted direction ranges with magnitude equal or greater than the threshold.
MHOF descriptor was built on several arrangements of units as illustrated in Figure 2.2 to
handle different abnormal events: the group behaviour of global scene (global abnormal
event) or the behaviour of an individual in the scene (local abnormal event). 16-bin MHOFs
of all units in the arrangement are calculated and are then concatenated to form a final
descriptor. Different arrangements capture different information such as spatial, temporal
or spatio-temporal information. While stacking multiple units at the same location over
time helps to incorporate temporal information, concatenating neighbouring units preserves
spatial contextual information.

Chapter 2 14 Related Work

The 16-bin MHOF was extended to a histogram of m × n bins (so-called Adaptive
Multi-scale Histogram of Optical Flow (AMHOF)) by Lin et al. [3] where m is the number
of directions and n is the discrete level of the motion intensities. Instead of using a fixed
partition of motion magnitudes defining the n bins, the bin edges was determined using
k-means clustering on a random subset of magnitude of flow vectors from the training data.
To use this descriptor for anomaly detection, the authors [3] stacked successive units at the
same location, then a histogram of m× n bins was extracted. This descriptor considers the
temporal relation between units in a similar way to Cong et al. [2]. However, the histogram
is computed from optical flow of all pixels in the arrangement, instead of concatenating
histograms of separate units.

Figure 2.3: AMHOF descriptors of three regions of interest. Figure from [3].

Another variant of histogram of optical flow was proposed to capture local motion
information of foreground objects in the work by Wang et al. [33]. A spatio-temporal
cuboid was partitioned spatially into smaller spatio-temporal regions. Then HOFs, which
were separately extracted from these small regions, were concatenated into a descriptor
for the cuboid. According to Wang et al. [33], this descriptor can capture the difference in
local motions. For example, consider a walker and a skater moving in the same direction
with similar speeds, the HOF descriptors of the upper parts of their bodies are the same,
however, the HOFs for the person’s legs are different from the skater.

The social force model describes the behaviour of a crowd as a result of interaction of
individuals. This method has been applied for pedestrian motion dynamics by considering
internal motivations of individuals to perform certain movements and environmental
constraints [66]. The actual force consists of the internal desire force and the interaction
force. To estimate interaction forces for anomaly detection without object tracking, a crowd
is treated as a collection of interacting particles [4, 27] (Figure 2.4). A grid of particles

Chapter 2 15 Related Work

is overlaid the image in which particles move with the underlying flow field. The optical
flow is used for estimating interaction forces. In particular, the average of the optical flows
over a fixed window of space and time around a particle is used as the actual velocity of
the particle. Moreover, each particle has a desired velocity, which is computed from the
corresponding optical flow that particle overlays. The interaction force of the particle with
the surrounding particles or the environment is estimated using the difference between
its desired velocity and its actual velocity. Finally, the magnitude of the interaction force
vectors is mapped to the image plane to construct a feature matrix of force flow for the
image. Spatio-temporal cuboids are extracted from these feature matrices over successive
video frames and then are used to learn a generative model (using the Latent Dirichlet
Allocation method, for example) for anomaly detection [4, 27].

Figure 2.4: The interaction force (red) of two sampled frames is calculated based on optical
flow (yellow). Figure from [4].

Kratz and Nishino [5] have proposed a 3D Gaussian distributionN (µ,Σ) to model the
distribution of spatio-temporal gradients in a local video volume with N pixel values:

µ =
1

N

N∑
i

∇Ii, Σ =
1

N

N∑
i

(∇Ii − µ)(∇Ii − µ)T (2.1)

Chapter 2 16 Related Work

where∇Ii is the spatio-temporal gradient of pixel i:

∇Ii = [Ii,xIi,yIi,t]
T =

[∂I

∂x

∂I

∂y

∂I

∂t

]T
(2.2)

For each spatial location l and temporal location t, the local spatio-temporal motion
representation is defined by µl

t and Σl
t. This multivariate Gaussian modelling presents the

range of motions observed in the cuboid.
Instead of using a Gaussian distribution, the spatio-temporal gradient ∇Ii (so-called

3D-Gradient) has been used as a descriptor for anomaly detection in other works [16, 63].
By using this, the descriptor is simpler, but the dimension of 3D-Gradient features depends
on the cuboid size. To deal with this problem, Principal Component Analysis has been
employed to reduce the dimension of the representation [16, 63].

Beside the motion-related descriptors, appearance has also been combined with motion
to detect anomalies [6, 17]. Dynamic texture [67] is an efficient method to consider both
appearance and dynamic in the video sequence. Specifically, the dynamic texture is a
generative model. It consists of a random process containing an observed variable yt, which
encodes the appearance component (video frame at time t), and a hidden state variable xt,
which encodes the dynamics (the change of the video over time). The relations between the
states and observed variables are represented through the linear dynamic system as follows:xt+1 = Axt + vt vt ∼ N (0,Σ1)

yt = Cxt + ut ut ∼ N (0,Σ2)
(2.3)

where xt ∈ Rn, yt ∈ Rm (n � m), A ∈ Rn×n is a state transition matrix, C ∈ Rm×n

is an observation matrix. vt ∈ Rn and ut ∈ Rm are the independent and identically
distributed sequences drawn from Gaussian distributions with zero mean and covariance
Σ1 and Σ2, respectively. Many methods can be used to learn the parameters of the dynamic
texture from a video sequence, including maximum likelihood [68], subspace identification
algorithm [69] or a closed-form sub-optimal solution for computational efficiency [67].
The dynamic texture mixture model has been considered as being more suitable for local
unusual event detection in crowded scenes than by the use of optical flow only [6, 17].

In the anomaly detection methods without tracking, where motion and texture are
employed, various motion-based hand-craft feature descriptors have been proposed and
have shown state-of-the-art results. These above descriptors were designed to combine with
different methods for modelling normality and inferring an anomaly. In the next section,
the generative models applied to the above feature descriptors are described.

Chapter 2 17 Related Work

2.2.2 Generative models of descriptors

A standard approach to detecting anomalies in video is to estimate a generative probability
distribution from the set of descriptors extracted from the training videos. Descriptors
extracted from a test video are then labelled as abnormal if they are outliers of the distribu-
tion. The distribution can be learned using either a parametric [1, 4, 5, 6, 17, 18, 26, 27] or
non-parametric approach [28, 29].

Often the generative model is over spatial and temporal arrangements of descriptors,
for example using an Hidden Markov model (HMM) to model sequences of descriptors
at a fixed position in the image plane [5, 26]. Kratz and Nishino [5] used a 3D Gaussian
distribution N (µ,Σ) as a feature descriptor for a spatio-temporal cuboid. Kullback-
Leibler (KL) divergence is then used as a distance metric in online clustering to build
normal prototypes. Given a local spatio-temporal cuboid, the probability of it belonging
to a specific prototype is estimated using KL distance. A pattern with low probability is
identified as an unusual pattern. The set of prototypes illustrates normal activities in the
scene, however it does not capture the relationship between motion patterns. Therefore,
HMMs are combined to model spatial-temporal relationship. A single HMM is modelled
at each spatial location to account for temporal dynamics. Moreover, to capture the
relationship between spatially neighbouring cuboids which occur across temporal frames,
a coupled HMM is constructed among surrounding tubes as shown in Figure 2.5. In both
case, the prototypes obtained from clustering are used as hidden states, hence the emission
probability of the HMM models corresponds to the probability of an observation belonging
to a prototype.

(a) (b)

Figure 2.5: (a) Distribution based HMM and (b) coupled HMM for capturing temporal and
spatial relationships. Figure from [5].

Generative models can be used to present a set of descriptors and their conditional
dependencies, for example the use of a Bayesian network to simultaneously impose
constraints on the relative geometric arrangement of patches in an ensemble as well as their

Chapter 2 18 Related Work

descriptors [1]. For a new observation, a large region surrounding every pixel is represented
by an ensemble of hundreds of small patches at multiple scales with their relative geometric
positions to the center of the ensemble. Using a Bayesian network, Boiman and Irani [1]
solved the anomaly detection problem by computing the joint likelihood that the observed
ensemble was similar to some ensemble in the database. A high likelihood means that
the observed ensemble can be composed by a large number of patches in the database
thus it is normal, otherwise it is abnormal. The authors considered both the similarity in
descriptors of patches as well as the similarity in their relative positions. The inference
method searched for a hidden database ensemble, which maximized the joint likelihood
using a belief propagation algorithm [70]. This method showed good performance in
detecting anomalous behaviour. The main drawbacks of this method are high computation
cost for the searching process and high memory for storing patch descriptors.

A generative probabilistic model of a corpus, such as Latent Dirichlet Allocation
(LDA) [71], has been employed to estimate the distribution of topics for normal crowd
behaviour [4, 27]. The trained model is used to estimate the likelihood of being normal
for blocks of T frames. To use LDA, a video sequence of T frames (a clip) is likened
to a document with spatio-temporal cuboids as visual words. Though LDA has been
applied on spatial-temporal cuboids extracted from force flow in some works [4, 27], other
spatio-temporal descriptors can be used with LDA. LDA is shown to be very effective
in detecting a global abnormal event (i.e., abnormal event in the whole clip), it is still
challenging to localize an abnormal event. Employing LDA modelling with force flows [4],
anomalies are expected to occur in the regions with higher social interaction. Therefore,
areas with high force flow in an abnormal clip are considered to localize anomalies [4].

Other probabilistic methods for modelling normal behaviours are mixture models [6,
17, 18]. These methods can be used on spatio-temporal descriptors to build local normal
models, then other methods (such as, Markov Random Field) can be combined to account
for the spatio-temporal relationship between local patterns. For example, Kim and Grauman
[18] used a simple descriptor which was a 9-dimension vector extracted from flow field
on a local region and then applied a mixture of probabilistic principal component analyser
(MPPCA) algorithm [72] to learn a generative model for these local patterns.

However a local model could not capture the abnormal interactions between multiple
local patterns, therefore a space-time Markov Random Field (MRF) was adopted to ac-
count for spatio-temporal interactions. From the learned MPPCA model, the frequency
histogram at each node and the co-occurrence histogram at each link between two nodes
were computed to establish the space-time MRF. The frequency histogram considers the
frequency of each component observed at each location, while the co-occurrence histogram

Chapter 2 19 Related Work

represents the frequency of two component appearing at neighbouring nodes. Given a new
observation, inference on the MRF graph, the maximum posterior probability specifies
which local regions are normal or abnormal. Because the method is built on a flow based
descriptor, it only emphasizes motion dynamics.

Based on the efficiency of a dynamic texture model for both appearance and dynamics
of video sequences, a mixture of dynamic textures (MDT) [73] has adopted to model
temporal and spatial normalities [6, 17]. The MDT models a sequence of τ video frames
as a sample from one of K dynamic textures.

p(y1:τ) =
K∑
i=1

πip(y1:τ |z = i) (2.4)

where z ∼ multinomial(π1, ..., πK) and the mixture components p(y1:τ |z = i) are defined
by the linear dynamic systems as in Equation 2.3. This model generates the mixture of
probabilistic PCA models, as the matrix C in Equation 2.3 is the PCA parameter applied
on patches drawn from a mixture component z.

Mahadevan et al. [17] used spatial-temporal cuboids on appearance as a sequence of
observations, thus the method employed MPPCA on appearance patches, not optical flow.
Moreover, the dynamic motions were captured by the hidden state x1:τ , which can be seen
as trajectory in PCA space [6, 17].

Mahadevan et al. [17] employed MDT for modelling both temporal and spatial nor-
malities as illustrated in Figure 2.6. The model of temporal normality enables the detection
of behaviours that are different from the behaviours in the past while the model of spatial
normality enables the detection of behaviours that are different from the surroundings. In
order to model temporal normality, a scene is divide into regions. For each region, a MDT
is learned during training on spatio-temporal patches extracted from that region over time.
After training, patches of low probability under their corresponding MDT are considered
as abnormalities.

In addition to a temporal model, spatial anomaly detection as illustrated in Figure
2.6 (b) is based on saliency detection that defines salient locations as where the features
contrast with their surrounding features. Therefore, the spatial model requires no training
data, a MDT is learned on a batch of frames (or a volume) around a current test frame.
For a testing volume, a dense collection of spatial-temporal patches are extracted and are
used to learn a single MDT with Kglobal components. Each patch in the volume is then
assigned to the mixture component with maximum posterior probability. At each location l
in the scene, a centre window containing the location and a surrounding window containing
background are defined. Sharing components of the learned MDT for both centre and

Chapter 2 20 Related Work

surrounding classes, the saliency of the location l is calculated by the discriminant power
to classify windows into center and surround class. This is done using KL divergence
between MDT components, the ratio of pixels assigned to each component in respective
windows and the ratio of volumes of these two windows.

(a) (b)

Figure 2.6: (a) Temporal and (b) Spatial anomaly detection with MDT models. Figure
from [6].

Li et al. [6] improved the method of Mahadevan et al. [17] by learning MDTs at
different scales. For modelling temporal normality, the authors used different sizes when
dividing a scene into sub-regions. Each MDT is trained for each sub-region at the fine
scales, while the whole visual field is presented with a global MDT at the coarsest scale.
For modelling spatial normality, the authors used different sizes of a surrounding window
with a fixed size of centre window. The performance is significantly improved but with
higher computational cost.

Probabilistic approaches are mathematically well-grounded and can effectively identify
abnormal data if an accurate estimate of the probabilistic density function is obtained.
However, in many scenarios where prior knowledge of the data distributions is unavailable,
parametric approaches may be problematic if the data do not follow the assumed distri-
bution. In the next section, we survey discriminative models that have been applied for
anomaly detection.

2.2.3 Discriminative models of descriptors

We categorize sparse coding and the support vector machine into discriminative methods
because they do not need to model a probability distribution. Specifically, sparse coding
can be seen as a reconstruction-based method for anomaly detection. It can model the

Chapter 2 21 Related Work

underlying data, and when test data are presented to the system, the reconstruction error,
defined to be the distance between the test representation and the output of the system,
can be related to an anomaly score. Working in a different way, a support vector machine
requires a boundary around the normal data to be created based on the training dataset. The
class of test data is then determined by its location with respect to the boundary. In this
section, we describe the idea of each method and then review related works using these
methods.

Sparse coding
Sparse coding [74] aims to represent input vectors approximately as a sparse weighted
linear combination of “basis vectors”. The basis set can be over-complete with the number
of basis vectors greater than the input dimension. Thus it can efficiently capture structures
and patterns inherent in the input data. The sparse characteristic of the representation
is motivated by the observation that most sensory data, such as natural images, can be
described as the superposition of a small number of atomic elements such as edges.

In general, given an input matrix with m samples X ∈ Rk×m (each column is an input
vector), a dictionary of n basis vector B ∈ Rk×n and the coefficient matrix S ∈ Rn×m

(each column is a coefficient vector) are estimated by solving the following optimization
problem:

minimizeB,S
1

2
||X−BS||2F + β

∑
i,j

φ(Si,j)

subject to
∑
i

B2
i,j ≤ c,∀j = 1, ..., n.

(2.5)

where c, β are constants. The first term is a reconstruction error which tries to force the
algorithm to provide a good representation of an input while the second term φ(.) is a
sparsity penalty which forces the representation to be sparse. The constraint

∑
i B

2
i,j ≤ c

is added to prevent the case that B is scaled up and S is scaled down to get small sparsity
penalty.

The problem is convex with respect to the coefficient S when the dictionary B is fixed
and also convex with respect to B when S is fixed. The solution method is to alternate
between the two variables, minimizing one while holding the other fixed.

Sparsity based anomaly detection models have been proposed [2, 16, 30, 31, 32] which
achieve state of the art performances in many datasets. In these works, sparsity reconstruc-
tion cost is used to reflect an anomaly level. This follows the intuition that a normal event
is likely to generate sparse reconstruction coefficients with a small reconstruction cost,

Chapter 2 22 Related Work

while the abnormal event generates a dense representation with a large reconstruction cost.
Sparse coding has been employed on different descriptors such as MHOF [2, 30, 32], 3D-
Gradient [16] or HOG+HOF [31] to detect anomalies. These methods focus on solving the
problem of learning a dictionary and/or deriving a robust reconstruction cost for anomaly
detection.

Instead of alternatively optimizing a dictionary and coefficients, the dictionary is chosen
from training data in the work by Cong et al. [30]. Given an initial candidate feature
pool extracted from training data, the optimal subset of it is selected as a dictionary, from
which the rest of the candidates can be well reconstructed [2, 30]. This dictionary selection
method was designed with a sparsity consistency constraint which helped to avoid the case
that all candidates are selected. Beside the use of reconstruction cost, frequency of each
basis in the dictionary has also been considered. If the basis vector appeared frequently to
present training data, then the cost to use it in the reconstruction should be low [2, 30].

Work by Zhao et al. [31] showed that adding a smoothness regularization to the object
function (Equation 2.5) is an effective way to consider relationships between neighbouring
cuboids in an event. This regularization helps to assign similar coefficient vectors to
neighbouring cuboids containing similar motions. Therefore, the coefficient vectors change
smoothly over space/time across actions in the event. After training, these dictionaries
can be updated using newly normal observations [2, 30, 31]. Another change to the
optimization was the use of earth mover’s distance as a distance metric for reconstruction
cost in the objective function instead of Euclidean distance in the work of Zhu et al. [32].

In order to speed up the testing time, instead of finding a dictionary of n basis vectors,K
basis combinations with each containing s dictionary basis vectors (s� n) were estimated
in the work by Lu et al. [16]. For each testing feature, the most suitable combination is
found by checking the least square error for each combination. This method reaches a high
detection rate at about 150 frames per second.

Sparse coding methods have achieved state of the art performances in many datasets.
However, a significant limitation of sparse coding is that even after a set of basic vectors
has been learned, optimization must be performed to obtain the encoding coefficients for a
new data sample. Therefore, the sparse coding is computationally expensive at test time
especially compared to typical feed-forward architectures such as an autoencoder (review
in detail in Section 2.3.1).

Support Vector Machines
Support Vector Machines (SVMs) [75, 76] are a popular technique for forming an optimal
decision boundary (also known as a hyperplane) that separates data into different classes.

Chapter 2 23 Related Work

The original SVM is ideally for binary pattern classification of data that are linearly
separable (as in Figure 2.7). The optimal hyperplane maximizes a margin between two
classes. By applying a kernel trick, SVM can handle nonlinear classification problems [77].
The idea is to map the training data into a higher-dimensional feature space, and then
construct a separating hyperplane with maximum margin there. This yields a non-linear
decision boundary in the input space.

Figure 2.7: SVM for binary classification, where support vectors are the training points
that lie near the hyperplane defining the margin.

Tax and Duin [78], Scholkopf et al. [76] have developed various algorithms based on
SVMs to tackle one class classification problems where only one category of (the positive)
samples is available. The idea is to define the boundary in the feature space corresponding
to a kernel, separating the training data from the origin in the feature space with maximum
margin. The origin plays a crucial role in the methods of both Scholkopf et al. [76] and
Tax and Duin [78], where it acts as a prior for where the abnormal instances are assumed
to lie. To explain the reason, the authors assume that a Gaussian kernel is used. With a
kernel function k(x,y) = Φ(x) · Φ(y) = e−γ‖x−y|

2 , all dot products k(x,y) > 0 between
data points in the feature space. This implies that all mapped points lie inside the same
orthant (generalization of quadrant to n dimensions). Moreover, all data lie on the surface
of a hypersphere in feature space since k(x,x) = 1. The objective is therefore to construct
a hyperplane which is maximally distant from the origin with all data points lying on the
opposite side of the origin. In practical implementations, one class SVM (OCSVM) of
Scholkopf et al. and method of Tax and Duin perform comparably and both perform best
with the Gaussian kernel [79].

OCSVMs have been adopted for anomaly detection with batch mode learning [33, 34]
or online learning [35, 36]. The key advantage of online learning is to train an OCSVM for

Chapter 2 24 Related Work

a large-scale dataset or streaming data in which video frames arrive sequentially rather than
all at once. Different online learning methods have been proposed specially for anomaly
detection [35, 36]. Lin et al. [35] used incremental and decremental OCSVM within a
sliding buffer to solve the problem of increasing processing time as the dataset grows,
resulting in a suitable method for a real time system. Wang et al. [36] extended an online
least square OCSVM [80], where the solution was found by solving a linear system instead
of solving a quadratic programming problem, with a sparse solution to adapt to online
abnormal event detection.

A drawback of one-class SVM methods is the computational complexity associated
with the kernel functions. Moreover, the choice of the appropriate kernel function may be
problematic. Additionally, it is not easy to select values for the parameters which control
the size of the boundary region.

In our work, we use one-class SVM in batch mode to train a model for normality and
then use it for detecting anomalies. Rather than using hand-crafted features, an autoencoder
is employed to learn a feature representation. In the next section, we review related works
that use deep learning methods.

2.3 Deep learning in anomaly detection

Since the success of convolutional neural networks (CNNs) in the 2012 ImageNet competi-
tion [37], rapid progress has been made on feature learning using deep networks. Deep
methods have been applied successfully to a large variety of computer vision tasks, for
example to object recognition [37], object detection [38], segmentation [39], action recog-
nition [42] and super-resolution [81]. Various pretrained convolutional network models
(such as, AlexNet [37], VGGNet [82], GoogLeNet [83]) are available for extracting image
features. These models are trained on a very large dataset, such as ImageNet with roughly
1.2 million training images from 1000 categories.

Donahue et al. [84] show that features extracted from the activations of a deep convolu-
tional network trained on a large dataset for object recognition tasks can be re-purposed to
novel generic tasks such as object recognition in a new domain (domain adaptation) which
may differ significantly from the originally trained tasks. The key benefit is that there may
be insufficient labelled data to train or to adapt a deep architecture to the new tasks.

Moreover, feature representations can be learned from unlabelled data with the use of a
deep autoencoder. In this section, we present the autoencoder and the use of this method in
the related works. While there are many variants of the basic autoencoder, we focus on
autoencoders that have been used for anomaly detection.

Chapter 2 25 Related Work

2.3.1 Autoencoder and its variants

Auto-encoder
An autoencoder (AE) is the most common method that is used when considering the use of
deep learning for unsupervised classification. Figure 2.8 shows a taxonomy of AE [7], each
AE is designed to learn feature representations with desired properties, such as features
with lower dimensionality, sparsity, noise tolerance or feature representations drawn from
a distribution.

Figure 2.8: Taxonomy: most popular autoencoders classified according to the charasteristics
they induce in their encodings [7].

Figure 2.9: A general autoencoder structure.

In its simplest form, the autoencoder is a one hidden layer artificial neural network.
The middle layer represents an encoding of the input data that presents some of the above
desired properties. The basic structure of an AE, which is shown in Fig. 2.9, is trained to
encode the input x into representation y via an encoder. A decoder then maps the latent
representation y to the reconstruction x̂.

y = f(Wx + b)

x̂ = f(W′y + b′)
(2.6)

where f is a non-linear function such as the sigmoid or ReLU function (Figure 2.10).

Chapter 2 26 Related Work

The parameters W,W′, b, b′ are optimized such that the reconstruction loss L(x, x̂) is
minimized. For real-valued x ∈ Rd, mean squared error L(x, z) = ||x− x̂||22 is typically
used.

Activation functions of common use in autoencoders
The sigmoid function is the most common activation function in autoencoders. The output
is in the range [0, 1], which is not symmetric around the origin and the values received are
all positive. A problem that the sigmoid function suffers is that the gradients become very
small when the input values fall beyond the range [+3,−3].

The hyperbolic tangent is a scaled version of the sigmoid function. It works similarly
to the sigmoid function but is symmetric around the origin in the range [−1, 1]. Similar
to the sigmoid function, hyperbolic tangent still suffers the vanishing gradient problem.
According to Lecun et al. [85], the tanh should be preferred, since it often converges faster
than the standard sigmoid function.

f(x) = 1
1+ex

f(x) = ex−e−x

ex+e−x f(x) = max(0, x) f(x) =

x, x > 0

ax, x ≤ 0

Figure 2.10: Common activation functions.

The ReLU is the rectified linear unit [37] which is one of the keys to the recent success
of deep networks. According to Krizhevsky et al. [37], ReLU expedites convergence of the
training procedure. It helps to solve the vanishing problem. However, with the negative
input, the gradient is zero, the weights are not updated during back propagation. This
can lead to ‘dead’ neurons, which never get activated. Variants of ReLU function have
been proposed, such as leaky ReLU [86] and parametric ReLU [87]. These functions
use a coefficient to control the slope of the negative part, which helps to overcome the

Chapter 2 27 Related Work

zero gradient problem. Sigmoid, tanh, ReLU and leaky ReLU (negative slope a = 0.2)
activation functions are shown in Figure 2.10.

Learning good representations with fully-connected autoencoders
Training an autoencoder by minimising reconstruction error is not sufficient to yield a useful
representation [88]. For example, an autoencoder where y has the same dimensionality
as input x can achieve a perfect reconstruction simply by learning an identity mapping.
Without any other constraints, this criterion alone is unlikely to lead to the discovery of a
more useful representation than the input .

(a) Under-complete autoencoder (b) Over-complete autoencoder

Figure 2.11: Under-complete and over-complete auto-encoders.

Thus further constraints need to be applied to retain useful information from noise.
The traditional approach used by autoencoders is referred to as bottleneck and is shown
in Figure 2.11 (a). The resulting lower dimensional y can thus be viewed as a lossy
compressed representation of x. An alternative architecture is to use an over-complete
representation, as shown in Figure 2.11 (b), with a sparsity constraint [89]. A sparse
over-complete representation can be viewed as an alternative “compressed” representation
with a large number of zeros.

Denoising has also been introduced as a training criterion for learning useful features
with an autoencoder [88, 90]. A denoising autoencoder, is trained to reconstruct a clean
input x from a partially corrupted version x̃. The corrupted inputs are obtained by (1)
adding Gaussian noise or (2) randomly choosing a fixed number of components of x and
forcing their values to 0. In this way, the autoencoder cannot learn the identity of x, thus a
denoising autoencoder does not need any constraint or regularization to learn a meaningful
latent representation.

Chapter 2 28 Related Work

To learn a set of discriminative feature representations with a deep AE, shallow AEs
are stacked successively to form a multiple layer autoencoder or a stacked autoencoder. An
effective way to obtain good parameter values for a stacked autoencoder is to use greedy
layer-wise training [91].

Convolutional Auto-encoder
Fully connected autoencoders ignore the spatial relations in images. Moreover, it intro-
duces a large number of parameters when working with large images. A convolutional
autoencoder (CAE) [8, 92] employs the advantage of a convolutional layer, dealing with
uncompressed images with small shared weights.

The convolution naturally operates on the input of any size and produces an output of
corresponding spatial size. An output is achieved by convolving the filter and the input
tensor. The output size depends on the input size, kernel size, the amount by which the filter
shifts (so-called stride) and the depth of zero padding around the input borders. Locations
in higher layers correspond to the locations in the input image they are path-connected to,
which are called their receptive fields.

The CAE architecture is similar to a basic fully connected autoencoder except that
matrix products are replaced with convolutions, a 1D input is replaced with a 2D/3D tensor.
For an input X ∈ RH×W×C , the k-th feature map Yk is given as in Equation 2.7. The
reconstruction X̂ is obtained by mapping the latent feature maps back to the input space as
follows:

Yk = g(
∑
c∈C

Xc ∗Wc,k + bk)

X̂c = g(
∑
k∈K

Yk ∗W′
k,c + b′c)

(2.7)

where encoding convolutional filters W ∈ RH1×W1×C×K and decoding convolutional
filters W′ ∈ RH2×W2×K×C , ‘∗’ denotes to 2D convolution. g(.) is an activation function.
K is the number of latent feature maps in the hidden layer. There is a single bias bk for
each feature map and one bias b′c per input channel.

An example of the use of a CAE on images from the “two bar” dataset [8] is illustrated
in Figure 2.12. An encoder consists of a convolutional layer and a max-pooling layer, a
decoder mirrors the encoder with an upsampling (also known as unpooling) layer and a
convolution. Max-pooling [93] can be used on the top of the convolutional layer in the
encoder to down-sample the latent representation.

Chapter 2 29 Related Work

Figure 2.12: Architecture of the shift-invariant unsupervised feature extractor applied to
the two bars dataset. Figure from [8].

The max-pooling operation produces the maximum output within a rectangular window.
Pooling helps to make the representation invariant to small translations of the input. If the
input is translated by a small amount, the value of most of the pooled outputs do not change.
However, spatial information within the receptive field is lost. Therefore, both value and
location of the maximum are recorded, in which the feature representation contains values
and transformation parameters contain the locations (Figure 2.12). The transformation
parameters are then used in a corresponding unpooling layer to do up-sampling. The
unpooling operation takes elements in its input and places them in its output tensor at the
location specified by the transformation parameters.

The decoder transforms data in the opposite way to the encoder, thus a transpose
convolution (also called a deconvolution or a fractionally strided convolution) can be
considered to replace a convolution in the decoder. A deconvolution works by swapping
forward and backward passes of the convolution operation, projecting feature maps to a
higher-dimensional spatial space [94, 95, 96]. In the deconvolution, the spatial dimension
of an output tensor is increased, thus the output boundary is sometimes cropped to get a
desired size.

In order to learn a hierarchical set of features, several shallow CAEs can be stacked
into a multi-layer convolutional auto-encoder. The encoder consists of multiple stack of
convolution, activation function, pooling layers and the decoder mirrors the encoder with
unpooling, deconvolutional and activation function layers.

Chapter 2 30 Related Work

3D Convolution Autoencoders
2D convolutional neural networks lose temporal information of the input right after the first
convolution layer. As can be seen in Figure 2.13 (a), although multiple frames are stacked
to form an input, a 2D convolution layer treats a temporal dimension as input’s channel,
temporal information is collapsed completely. 3D convolutional networks have been
proposed to learn spatio-temporal features for human action recognition in video [9, 97].

(a) 2D convolution on multiple frames (b) 3D convolution (d < L)

Figure 2.13: 2D and 3D convolution operations [9].

According to Tran et al. [9], a 3D convolutional network can learn effective video
features with four properties: generic, compact, efficient and simple. A 3D convolution
preserves the temporal information of the input resulting in an output tensor. Figure 2.13
(b) illustrates a 3D convolution which convolves a filter kernel size of k × k × d with an
input tensor size of H ×W × L× C , where k is kernel spatial size, d is kernel temporal
depth, H is the height of the frame, W is the width of the frame, L and C are the length in
number of frames and the number of channels (C = 1 in the illustration in Figure 2.13 (b)).

Beside the use of 3D convolution, a 2D pooling has been extended to 3D pooling
[9], which applies max-pooling to the input data within a 3D pooling cube. Similar to a
multi-layer convolutional autoencoder, a multi-layer 3D convolutional autoencoder consists
of multiple stacks of 3D convolution, activation function, 3D pooling in the encoder and
the decoder mirrors the encoder.

Long Short Term Memory Auto-encoders
Long Short-Term Memory (LSTM) units [98] can be used as an alternative to 3D con-
volution to learn changes in temporal dimension. An LSTM unit uses a memory cell to
store information which is better at finding and exploiting a long range context. LSTMs
have been used successfully to perform various supervised sequence learning tasks, such
as speech generation [99], machine translation [100] and to generate image captions [101].
Moreover, they have applied on videos for visual object tracking [102], pedestrian trajectory
prediction [103], visual recognition and description [41]. It has also been used to learn

Chapter 2 31 Related Work

representations of video sequences [43].

(a) (b)

Figure 2.14: Two examples of a LSTM autoencoder.

LSTM unit can be used as an encoder and decoder in the network to extend the
properties of AEs to model sequential data. Figure 2.14 shows examples of LSTM AEs.
An LSTM encoder reads and compresses a sequence of frames into representations, from
which the decoder attempts to produce a target sequence. LSTM units in the autoencoder
can be a fully connected LSTM [43] or a convolutional LSTM [104].

Generative Adversarial Networks
Other deep networks that can be trained on unlabelled data are Generative Adversarial
Networks (GANs) [105], which have been recently proposed to generate data (e.g, images,
video). The supervisory information in GANs is indirectly provided by an adversarial game
between two independent networks: a generator G and a discriminator D. The generator G
is trained to produce output images as real as possible that can fool D. The discriminator
D is trained as well as possible, to distinguish between the real and the generated image.
They both are optimised until the generator generates such realistic images that cannot be
distinguished by the discriminator.

Based on the original GAN, Isola et al. [10] proposed to use conditional GANs for an
image-to-image translation that synthesized photos from label maps or mapped edges to
photos. Figure 2.15 shows the original GAN and a conditional GAN used for mapping
edges to photos. GANs are trained to learn a mapping from random noise vector to output
image. In contrast, the conditional GANs learn a mapping from observed image and
random noise vector to output image. Both generator and discriminator of a conditional
GAN observe an input image. The generator, which is a convolutional encoder-decoder,

Chapter 2 32 Related Work

takes an input image and generate a new image. The noise distribution is provided in the
form of dropout which is applied on several layers of the generator. The discriminator
stacks the observed images with the real or generated images as its inputs. Instead of
classifying an input as being real or fake, the discriminator classifies each patch in its input
as real or fake, for the purpose of capturing local statistics. Besides optimising the GAN
objective cost, the reconstruction error of the encoder-decoder is also considered.

(a) A Generative Adversarial Network

(b) A Conditional Generative Adversarial Network

Figure 2.15: (a) A Generative Adversarial Network and (b) an example of a conditional
GAN for mapping edges to photos (Figure from [10]).

The above autoencoders can be employed for anomaly detection in two different ways.
Firstly, the autoencoder can be trained on training data and then the encoder part can be
used as a feature extractor to extract feature representations for both training and testing
data. We review this method in Section 2.3.2. Secondly, the autoencoder can be trained
end-to-end and the error can be used to detect anomalies. This method is reviewed in
Section 2.3.3. Besides the use of an autoencoder, pre-trained deep models can be used to
extract useful features for anomaly detection, which is represented in Section 2.3.2.

2.3.2 Deep feature learning for anomaly detection

Attracted by the capability of CNNs to produce such a generic representation, pretrained
deep networks have been adopted for anomaly detection [11]. Sabokrou et al. [11] used
the first three layers of the AlexNet model as a fixed feature extractor, then trained a third

Chapter 2 33 Related Work

convolutional layer on top of these features using a sparse auto-encoder. Their architecture
is shown in Figure 2.16. Each spatial point in the output tensors is considered as a feature
representation for a corresponding region in an input image. To model normalities, two
Gaussian models (G1 and G2) are trained on the feature representations of training data
which are output tensors of the second and the third convolutional layers, respectively.

Figure 2.16: The fully convolutional network with a trainable layer on top of pretrained
layers. (Figure from [11]).

The Mahalanobis distance from the feature vector and the Gaussian model is used to
detect an anomaly. For test regions, the Gaussian model G1 is used on feature vectors
extracted from the second convolutional layer to classify regions as normal, suspicious or
abnormal regions. A region that is an outlier from G1 is considered to be abnormal. Those
which are inliers but with a distance above a threshold are regarded as suspicious. For the
suspicious regions, output tensors of the third convolutional layer are computed and used
as their new representations. These features are then fed to the second Gaussian model G2

to classify these suspicious regions into normal or abnormal regions. Results from G1 and
G2 are combined to localize anomalies in the feature space which is then mapped to the
original image.

The method shows that the pretrained networks can be used effectively for anomaly
detection. However, such image based deep features are not directly suitable for videos
due to the lack of motion modelling.

To overcome the above problem, Xu et al. [34] proposed a framework (Figure 2.17) that
trains two separate stacked denoising autoencoders (SDAEs) to learn feature representations
for both appearance in still image patches and motion patterns represented with optical
flow. To learn the correlation between appearance and motion, image pixels and their
corresponding optical flows are stacked to form input data for the third SDAE. After the
SDAE-based features have been learned, multiple one-class SVM classifiers are trained
on top of these features to model normalities and create anomaly maps. Finally, the three

Chapter 2 34 Related Work

Figure 2.17: The overview of frameworks using three stacked denoising autoencoders to
learn appearance, motion and joint representations. (Figure from [11]).

anomaly maps are fused to form a final map which is then thresholded to detect and localize
anomalies.

Similar to the method that uses pre-trained models, a model of normality needs to be
trained on the learned features using another machine learning method (one-class SVM or
Gaussian model, for example). In the next section, we review methods using end-to-end
trainable deep networks for anomaly detection.

2.3.3 End-to-end deep network

Many methods using deep autoencoders on different inputs have been proposed for anomaly
detection. Examples of input have been volumes of consecutive frames [12, 13, 14], 2D or
3D patches [12] or a combination of raw images and optical flow [12]. Sharing the same
intuition with sparse coding methods, the autoencoder is trained to reconstruct normal
motions and appearances with a low cost. Thus, it should derive higher reconstruction
cost for abnormal motions and appearances. In this section, we review methods that use a
convolutional autoencoder, a convolutional Long Short Term Memory (LSTM) autoencoder,
a 3D convolutional autoencoder and a generative model (such as Generative Adversarial
Networks) for anomaly detection.

A deep convolutional auto-encoder was trained by Hasan et al. [12] to learn discrimina-
tive regular patterns by reconstructing sequences of video frames from the training data.
Their network architecture is shown in Figure 2.18 (a).

The network is trained to minimize an objective function with Euclidean loss and L2

Chapter 2 35 Related Work

(a) Convolutional auto-encoder (b) Spatial-temporal auto-encoder.

Figure 2.18: Stacked convolutional auto-encoders used for anomaly detection. (a) Spatial-
temporal information is learned on a sequence of 10 frames with a convolutional auto-
encoder (Figure reproduced from [12]) and (b) a convolutional LSTM is applied on top
of convolutional layer’s feature maps to learn temporal information (Figure reproduced
from [13]).

Chapter 2 36 Related Work

regularization as follows:

L =
1

2N

∑
i

||Xi − fW(Xi)||22 + γ||W||22 (2.8)

where Xi is the ith volume, N is the batch size, γ is a hyper-parameter to balance the loss
and the regularization; fW is a convolutional auto-encoder with its weights W.

After training a model, reconstruction error of a testing video volume is used to derive
a regularity score which is then used to detect a volume as normal or abnormal. The
method shows competitive results on five datasets. However, 2D convolutional and pooling
layers only perform spatially. Though consecutive frames are stacked in input volumes, the
temporal information may be lost after the first convolutional layer.

Inspired by the ability of a convolutional LSTM [104] to learn temporal dynamics and its
potential for anomaly detection [106], Chong and Tay [13] combined convolutional LSTM
layers with a convolutional auto-encoder to learn both spatial and temporal information
for anomaly detection. Their network architecture is shown in Figure 2.18 (b). The key
innovation in this work is the use of a convolutional encoder to learn high-level, compressed
representations. Then convolutional LSTM layers encode temporal information on top of
these feature activations. However, this model only learns temporal dynamics on high-level
representations.

Figure 2.19: Architecture of a 3D convolutional auto-encoder for anomaly detection with
reconstruction and prediction branches. Figure from [14].

Zhao et al. [14] used a 3D convolutional autoencoder to learn regular spatio-temporal
patterns. Sharing the same intuition with previous works in [12, 13], the 3D convolutional
auto-encoder, trained on the normal data, should reconstruct abnormal motions and ap-
pearances with a high reconstruction error. Their network architecture is illustrated in
Figure 2.19. In order to optimise the network, a predictor branch is added on the final
encoding output tensor alongside with a reconstruction branch. The composite of two
branches forces the encoding tensors not just to memorize the whole input but also to

Chapter 2 37 Related Work

capture information about which objects/background are present and their motions so that
the next motion can be predicted. The predictor can help the model to capture the trajectory
of moving objects and forces the encoder to learn the temporal dynamics [14].

After training the model with reconstruction error and prediction error, only recon-
struction error is used to derive a regularity score as in previous works [12, 13]. The
3D convolutional autoencoder learns longer temporal regular dynamics since more video
frames are stacked into the input volumes.

Ravanbakhsh et al. [53] adapted the image-to-image translation framework by Isola
et al. [10] to solve the anomaly detection problem. The authors trained two conditional
GANs: one network mapped raw images to optical flow fields and another network mapped
optical flows to raw images. The models are trained on the normal data only. Thus the
generator learns how to generate the normal pattern while the discriminator learns how to
distinguish the generated sample and the real normal sample. After training the model, both
generator and discriminator can be used for anomaly detection. The reconstruction loss
from the generator is used the same way as in the previous works [12, 13, 14]. Moreover,
the discriminator is trained to discriminate real and fake patches on normal data, it should
produce high probability for a real normal patch. Moreover, the discriminator has never
observed abnormal data during training, anomalies may be seen as fake samples, thus it
produce low probability for anomalies.

In order to compare the performance, the above methods have been evaluated on
some challenging anomaly detection datasets. In the next section, we review datasets
and evaluation measures that are commonly used. We also use these datasets and these
measures to evaluate our methods and to compare with state of the art results.

2.4 Experimental validation

2.4.1 Evaluation measure

In this section, we present three commonly used measures for anomaly detection: frame-
level [17], pixel-level [17], and object-level [16]. An algorithm classifies frames into those
that contain an anomaly and those that do not. These measures are obtained by comparing
the detection results and the ground-truth. In the ground truth, a frame containing an
anomaly is denoted as a “positive” frame while a normal frame is a “negative” frame.

The true and false positives under the three criteria are:

• Frame-level. If a frame contains at least one abnormal pixel, it is considered as abnor-
mal. If the corresponding ground-truth is abnormal, it is a true positive. Otherwise,

Chapter 2 38 Related Work

it is a false positive. The frame-level criterion does not verify the locations where
the actual anomalies appear. It is therefore possible for some true positives obtained
by the lucky occurrences of detection errors and true abnormalities. The pixel-level
criterion can solve this problem.

• Pixel-level. One frame is a true positive if its ground-truth map of anomalous pixels
is more than 40% covered by a map of predicted anomalous pixels. A frame is a
false positive if it is negative and any of its pixels are predicted as abnormal. This
measurement is better than frame-level, reflects the accuracy of anomaly location.
However, it only focuses on the overlap between the detection and the ground-truth
but ignores the union between them. A pixel level is satisfied even when there are
many false positives. For example, when the all pixels in a frame are detected as
anomalies, more than 40% of the true abnormal pixels are covered, thus that frame is
labelled abnormal. However, it is not a good detection since it contains a lot of false
positive pixels.

• Object-level. Object level measurement is the evaluation method for object detection
in which the overlap is defined as the following:

Overlap =
Area(detection ∩ groundTruth)

Area(detection ∪ groundTruth)
(2.9)

A detection is true positive when Overlap > υ where υ is a predefined threshold.

For frame-level and pixel level, a receiver operating characteristic (ROC) curve is
employed to evaluate the performance. The ROC curve is the curve of True Positive Rate
(TPR) versus False Positive Rate (FPR), generated by varying an acceptance threshold (Fig-
ure 2.20). TPR and FPR are defined as in Equation 2.10 where True/False Positive/Negative
are counts for the corresponding class.

TPR =
True Positive

True Positive + False Negative

FPR =
False Positive

False Positive + True Negative

(2.10)

Chapter 2 39 Related Work

Figure 2.20: The ROC curve, where the blue area is AUC and the intersection between the
line (FPR = 1 - TPR) and the curve is EER. A better method gives higher AUC and lower
EER.

Performance is then evaluated using equal error rate (EER) which is the ratio of
misclassified frames at which EER = FPR = 1− TPR, and the area under the ROC curve
(AUC). A better method gives higher AUC and lower EER.

For object-level, the accuracy is employed:

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(2.11)

2.4.2 Datasets

There are many datasets available for anomaly detection. In this section, we review three
commonly used datasets that we also use to conduct experiments and compare performance:
UCSD [17], Avenue CUHK [16] and Subway Entrance/Exit [107].

UCSD anomaly detection dataset

The UCSD dataset [17] was acquired with a stationary camera mounted at an elevation,
overlooking pedestrian walkways. The dataset contains different crowd densities, ranging
from sparse to very crowded. In the normal setting, the video contains only pedestrians
and the anomalous patterns are the presence of non-pedestrians on a walkway (bicyclists,
skaters, small carts, and people in wheelchairs). In some frames the anomalies occur at

Chapter 2 40 Related Work

UCSDPed1

UCSDPed2

Figure 2.21: Sample normal/abnormal frames in UCSDPed1 (top row) and UCSDPed2
(bottom row). Anomalous pixels are shown in red.

multiple locations. The data was split into two subsets as shown in Figure 2.21, each
corresponding to a different scene. The first one, denoted as UCSDPed1, contains clips
of 158 × 238 pixels and depicts a scene where groups of people walk toward and away
from the camera. This subset contains 34 normal video clips (6,800 frames) for training
and 36 testing video clips (7,200 frames) containing one or more anomalies for testing. 36
testing clips are annotated with frame-level ground-truth while only 10 clips are annotated
with pixel-level ground-truth. The second, denoted as UCSDPed2, has spatial resolution
of 240× 360 and contains scenes with pedestrian movement parallel to the camera plane.
This contains 16 normal video clips (2,550 frames) for training, together with 12 test video
clips (2,010 frames). The whole testing clips of UCSDPed2 has both frame-level and pixel
level annotations. The composition of abnormal events in each subset is illustrated in Table
2.1 in which some testing clips contain more than one abnormal types and instances.

In general, UCSDPed1 is more challenging than UCSDPed2 as the angle of camera
results in larger perspective distortion and more significant scale variation of moving
objects. Furthermore, abnormal events in Ped1 include not only motion anomalies caused
by bikers, skaters and small carts, but also contextual anomalies (e.g., pedestrian walking
across the grass).

Chapter 2 41 Related Work

Table 2.1: Composition of abnormal events in the UCSD dataset.

Scene
Normal

clips
Abnormal clips/abnomal instances

Biker Skater Cart Walk
across

Other Total

UCSDPed1 34 19/28 13/13 6/6 3/4 3/3 36/54
UCSDPed2 16 11/19 3/3 1/1 0/0 0/0 12/23

Avenue (CUHK) dataset

Figure 2.22: Examples of abnormal frames in Avenue dataset, where red boxes correspond
to abnormal events.

Table 2.2: Groundtruth of Avenue dataset.

Run Loiter Throw Opposite
direction

Total

Ground truth 12 8 19 8 47

The Avenue dataset [16] contains 16 training and 21 testing video clips with 47 abnor-
mal events in total as summarized in Table 2.2. The videos were captured on the CUHK
campus avenue with 30,652 (15,328 training, 15,324 testing) frames in total. Resolution
of each frame is 360× 640 pixels. The dataset contains some challenges: a few outliers
are included in the training data, some normal patterns seldom appear in training data
and the camera is shaken slightly in some testing frames. Locations of anomalies are
marked in pixel-level ground-truth annotations for all frames in testing videos. Figure 3.14
illustrates some abnormal frames which contain running, throwing and someone moving in
the opposite direction to normal.

Chapter 2 42 Related Work

Subway dataset

Subway Entrance

Subway Exit

Figure 2.23: Examples of anomalous frames in Subway Entrance (top row) and Subway
Exit dataset (bottom row). Red boxes correspond to abnormal events.

In the subway surveillance dataset [107], video sequences were taken from surveillance
camera at a subway station, with one camera at the exit and a second at the entrance. In
both videos, there are roughly 10 people walking around in a typical frame, with a frame
size of 512× 384. The details of each subset are as follows:

• Subway Entrance: is 1 hour 36 minutes long, with 144,249 frames. Normal frames
in the first 12 minutes are used for training a model.

• Subway Exit: is 43 minutes long with 64,901 frames in total. Video frames in the
first 5 minutes are used for training a model.

The number of abnormal events of both Subway Entrance and Subway Exit are defined in
Table 2.3. These anomalies are “wrong direction”, “loitering”, “no payment”, “irregular
interaction” and “misc” which refers to miscellaneous, including suddenly stop, running
fast or cleaning the wall.

Chapter 2 43 Related Work

Table 2.3: Groundtruth of Subway dataset.

Wrong
direction

Loiter No
payment

Irregular
interaction

Misc Total

Exit 9 3 0 0 7 19

Entrance 26 14 13 4 9 66

2.5 Summary

In this chapter we presented related work in the areas of anomaly detection using hand-
crafted feature descriptors and classical machine learning methods. Moreover, methods
based on deep learning were also reviewed. In each case, we described the strengths and
limitations of the related approaches. Here we present a conclusion on how the presented
related work affected the design of our two main frameworks.

The related work on feature descriptors showed that motion based features are crucial
in most of the state of art methods. However, all of these features are hand-crafted features.
Based on the related works on autoencoders, motion feature representations can be learned
through a stacked autoencoder.

We share the same motivation with a feature representation learning approach using
an autoencoder in the literature of anomaly detection, however, the method used fully
connected autoencoders that can not capture the spatial information. We use a convolutional
autoencoder to learn motion features. Moreover, we apply a sparsity constraint on the
convolutional autoencoder which has been shown to be effective on learning features for a
classification task. We present our method in detail in Chapter 3.

A limitation of using autoencoders to form the feature extractor is the use of another
classical machine learning method (such as, one class SVM or a Gaussian model) to
learn the model of normality on features extracted from training data. The whole system
cannot be trained end-to-end. We adopt a convolutional Long Short Term Memory (LSTM)
encoder-decoder to learn an end-to-end trainable network for anomaly detection. This
model is trained to work directly on raw image data and learn temporal dynamics from
it. Although we share the same motivation with state-of-the-art methods, we learn the
temporal dynamics on hierarchical spatial feature activations from low-level to high-level.
Beside the use of reconstruction error, we adopt prediction error for anomaly detection.

Based on these concepts, in Chapter 3 we present our method that uses a convolutional
winner-take-all autoencoder to learn motion feature representations and a one-class SVM

Chapter 2 44 Related Work

for modelling normalities. Our end-to-end trainable architecture using a convolutional
LSTM encoder-decoder is presented in Chapter 4. Our methods are evaluated with current
evaluation measures and commonly used datasets.

Chapter 3

Convolutional Winner-Take-All
Autoencoder for anomaly detection

3.1 Introduction

In this chapter, we propose a method for video anomaly detection using a convolutional
Winner-Take-All (WTA) autoencoder that has recently been shown to give competitive
classification results [108]. The method builds on state of the art approaches to anomaly
detection using a convolutional autoencoder and a one-class SVM (OCSVM).

Autoencoders has been used for anomaly detection in previous works [12, 34]. Xu et
al. [34] built deep networks based on stacked de-noising autoencoders to learn appearance,
motion and joint representations. Then OCSVMs were used to learn a model of normality
and to detect anomalies. Hasan et al. [12] trained a fully connected auto-encoder and a fully
convolutional autoencoder. Then, the authors used a regularity score which was derived
from a reconstruction error for anomaly detection.

In our work, we use a convolutional autoencoder to learn patterns in local flow features,
but instead of applying across the whole field of view (FoV) [12], we apply within fixed-size
windows (so-called patches). With smaller windows, we are able to use spatial WTA step to
produce a sparse (and compressive) representation as in [108]. This sparse representation
promotes the emergence of distinct flow-features during training. Similar to Xu et al. [34],
we use an autoencoder on patches, coupled with a OCSVM for anomaly detection and

45

Chapter 3 46 Winner-Take-All Autoencoder

Figure 3.1: Overview of the method using a spatial sparsity Convolutional Winner-Take-All
autoencoder for anomaly detection.

localization. However, their autoencoder is fully connected and therefore learns larger flow
features. By using a convolutional autoencoder within the window, coupled with a sparsity
operator (WTA), we learn smaller shift-invariant, generic flow-features that are potentially
more discriminative for the OCSVM. We also use local normality modelling in which the
field of view is partitioned into regions and OCSVM is independently used within each
region. Moreover, we only use optical flow data as input, instead of the combination of
optical flow and appearance that has been used previously [12, 34].

The key novelties are (1) using the motion-feature encoding extracted from a convolu-
tional autoencoder as input to a one-class SVM rather than exploiting reconstruction error
of the convolutional autoencoder, and (2) introducing a spatial winner-take-all step after the
final encoding layer during training to introduce a high degree of sparsity. We demonstrate
an improvement in performance over the state of the art on UCSD and Avenue (CUHK)
datasets.

Figure 3.1 shows the overview of our method using a spatial sparsity convolutional WTA
autoencoder for anomaly detection. Motion representations are extracted for consecutive
small patches which are then used to train a OCSVM (in training phase) or to detect
anomalies (in testing phase).

Chapter 3 47 Winner-Take-All Autoencoder

3.2 Our method

3.2.1 Extracting foreground patches

In common with recent approaches [2, 18, 33], we look for anomalies via dense optical
flow fields computed from successive pairs of video frames presented by Liu [109]. We
assume that anomalies will only be found where there is non-zero optical flow in the image
plane. Thus, we do not attempt to detect anomalous appearances of static objects.

Two different patch sizes and methods are adopted to extract foreground patches for
training an autoencoder and for anomaly detection. For training autoencoders, we observe
that patches size of 48×48 can cover the whole object motions and the complex interactions
between objects in all of our experimental datasets. Moreover, with this size, training is
faster than training the autoencoder on an image size. Smaller size such as 24 × 24 are
also considered however it takes longer time to obtain smooth and clean deconvolutional
filters. Some samples of optical flow patches extracted for training autoencoders are shown
in Figure 3.2. We extract them through three steps: firstly a foreground mask is constructed
by thresholding the optical flow magnitude of each pixel with a fixed value (empirically set
at 0.5 in our experiments). Secondly, connected components are found. Finally, from a
center of each connected component, a patch is extracted.

For anomaly detection, patches are extracted by a moving window with 50% overlap.
Those patches with the accumulated optical flow squared magnitude above a fixed threshold
(empirically set at 10 in our experiments) are foregrounded for further processing; other
patches are discarded. Figure 3.3 depicts the result of extracting foreground patches. This
process is designed to eliminate most of the background, thereby reducing the computa-
tional cost of further processing. This method can be done by using convolution with a
matrix of ones in which size of the matrix is the patch size.

Chapter 3 48 Winner-Take-All Autoencoder

(a)

(b)

Figure 3.2: (a) The flow field color coding [15] used in this chapter, where flow-vector
angle and magnitude are represented by hue and saturation; (b) Examples of training
patches.

3.2.2 Convolutional Winner-Take-All autoencoder

The Convolutional Winner-Take-All Autoencoder (Conv-WTA) [108] is a non-symmetric
autoencoder that learns hierarchical sparse representations in an unsupervised fashion. The
encoder typically consists of a stack of several ReLU convolutional layers with small filters
and the decoder is a linear deconvolutional layer of larger size. A deep encoder with small
filters incorporates more non-linearity and effectively regularises a larger filter (e.g 11×11)

Chapter 3 49 Winner-Take-All Autoencoder

(a) (b)

Figure 3.3: Foreground patches extraction using a sliding window and thresholding of the
accumulated optical flow squared magnitude. (a) Video frame at time t. (b) Map of the flow
magnitude (from frames t and t+ 1) with overlapping foreground patches superimposed;
the red square delineates a single (24× 24) foreground patch.

by expressing as a decomposition of smaller filters (e.g. 5× 5) [82]. Like [108], we use an
autoencoder with three encoding layers and a single decoding layer (Figure 3.4), giving a
pipeline of tensors Hl ×Wl × Cl, with the input layer being an input foreground patch P

of optical flow vectors of size H0×W0×C0, where C0 = 2. Zero-padding is implemented
in all convolutional layers, so that each feature map has the same spatial size as the input.

Figure 3.4: The architecture for a Conv-WTA autoencoder with spatial sparsity for learning
motion representations.

Given a training set with N foreground patches ({Pn}Nn=1), the weights Wl and biases
bl of each layer l are learnt by minimising the regularised least squares reconstruction
error:

1

2N

N∑
n=1

‖Pn − P̂n‖22 +
λ

2

4∑
l=1

‖Wl‖2F (3.1)

where ‖.‖F denotes the Frobenius norm, and P̂n is the reconstruction of a patch Pn.
The regularization term λ is a hyper-parameter used to balance the importance of the

Chapter 3 50 Winner-Take-All Autoencoder

reconstruction error and the weight regularization.
In the feedforward phase, after computing the encoding tensor E3(x, y, c) (i.e. the

output of f3 in Figure 3.4), a spatial sparsity mapping is applied:

g(E3(x, y, c)) =

E3(x, y, c), if E3(x, y, c) = maxx′,y′(E3(x
′, y′, c))

0, otherwise
(3.2)

where (x, y, c) are the row, column and channel indices of an element in the tensor. The
result E4(x, y, c) = g(E3(x, y, c)) has only one non-zero value for each channel. Thus, the
level of sparsity is determined by the number of feature maps (C3 for the third layer). Only
the non-zero hidden units are used in back-propagating the error during training. We train
the convolutional Winner-Take-All autoencoder on patches, then we use the encoder part
with three convolutional layers (following by ReLU) to form a feature extractor. Figure 3.5
shows learned deconvolutional filters of the convolutional WTA autoencoder trained on
patches extracted from UCSD database. We further describe how we combine the encoder
part with a max pooling layer and a temporal average step to form a feature extractor in the
next section.

3.2.3 Max pooling and temporal averaging for motion feature repre-
sentation

After training the autoencoder, the encoder can be used as a feature extractor on patches.
C3 non-zero activations in the encoding tensor correspond to deconvolutional filters (shown
in Figure 3.5) which contribute in the reconstruction of each optical flow patch. Using the
full output tensor of size H3 ×W3 × C3 as a motion feature representation preserves all of
the information, but is very large. Therefore, we extract a sparse and compressed motion
feature representation by turning off spatial sparsity, removing zero padding in the three
convolutional layers and applying max-pooling on the last ReLU feature maps, over the
spatial region p × p with stride p. The max-pooling is only used following the training
of the autoencoder with WTA. Thus we benefit from the sparse representation that WTA
promotes, whilst still reducing the dimensionality of the coding so that it is tractable for
the one class SVM. Crucially, WTA preserves the location of the maximum response in
each filter, which is critical to successfully decoding and training the autoencoder to reduce
reconstruction error. The location of the maximum response is less critical for anomaly
detection and hence max-pooling, which greatly reduces dimensionality, is sufficient once
training is complete.

Chapter 3 51 Winner-Take-All Autoencoder

(a)

(b)

Figure 3.5: Learned deconvolutional filters of the Conv-WTA autoencoder trained on the
UCSDPed1 and UCSDPed2 optical flow foreground patches: (a) visualisation of 128 filters,
and (b) displacement vector visualisation of 25 filters.

Chapter 3 52 Winner-Take-All Autoencoder

To stabilise the output for each H0 ×W0 × C0 foreground patch extracted at time t,
we compute the motion feature representations at the same patch location over a temporal
window {t− τ : t+ τ} and average the outputs. This gives a final smoothed motion feature
representation as output for each input foreground patch. Therefore, our convolutional
WTA feature extractor is considered as the combination of three convolutional layers of the
trained encoder with a max-pooling layer and a temporal averaging layer, which is shown
in Figure 3.6.

Figure 3.6: The convolutional WTA feature extractor.

To evaluate the effect of WTA operator in the convolutional autoencoder, we also train
a convolutional autoencoder to learn feature representations. We describe the architecture
of the autoencoder in the next section.

3.2.4 Convolutional autoencoder

In order to evaluate the efficiency of the WTA step in the autoencoder, this step is removed
from the convolutional WTA autoencoder. The network becomes a traditional convolutional
autoencoder with three convolutional layers in the encoder and one deconvoltional layer in
the decoder. Using the same kernel sizes as the convolutional WTA autoencoder, output
tensors are with high dimension. To compress the encoding tensor, a max-pooling layer is
added on the top of the third convolutional layer. Figure 3.7 shows the architecture of the
convolutional autoencoder with a max-pooling layer.

In a similar way to train the convolutional WTA autoencoder, we use the regularised
least squares reconstruction error as in Equation 3.2 to train the convolutional autoencoder.
Figure 3.8 compares training error of the convolutional WTA autoencoder and the convo-
lutional autoencoder, the convolutional autoencoder converges to higher reconstruction
error than the convolutional WTA autoencoder. A max-pooling layer loses the location
information when compressing an encoding tensor, making a deconvolutional layer difficult
to reconstruct. Figure 3.10 shows deconvolutional filters learned with the convolutional
autoencoder.

Chapter 3 53 Winner-Take-All Autoencoder

Figure 3.7: Convolutional autoencoder for learning motion representations.

After training, we keep the encoder with three convolutional layers and the max-pooling
layer, adding a temporal averaging step on the top to form a convolutional feature extractor
(Figure 3.8). This feature extractor has the same architecture as the convolutional WTA
feature extractor (Figure 3.6), although the first three convolutional layers are trained in
different ways (with a max-pooling layer or with a winner-take-all step).

Figure 3.8: The convolutional feature extractor.

Figure 3.9: Training error of the convolutional autoencoder and the convolutional WTA
autoencoder.

Chapter 3 54 Winner-Take-All Autoencoder

(a)

(b)

Figure 3.10: Learned deconvolutional filters of the convolutional autoencoder trained on
the UCSDPed1 and UCSDPed2 optical flow foreground patches: (a) visualisation of 128
filters, and (b) displacement vector visualisation of 25 filters.

Chapter 3 55 Winner-Take-All Autoencoder

After extracting feature representations for patches in training data, these features are
used to train a model of normality using one class SVM. One class SVM method is further
described in the next section.

3.2.5 One class SVM modelling

One class SVM (OCSVM or unsupervised SVM) [76] is a widely used method for outlier
detection. Given the final feature-based representations {di}Mi=1 for M normal foreground
optical flow patches, we use OCSVM for learning a normality model. OCSVM aims to
find an optimal hyperplane that separates the data points from the origin with maximum
margin in the higher dimensional feature space:

f(d) = w · Φ(d)− ρ (3.3)

where Φ is a feature projection function that maps a feature vector d into a higher dimen-
sional feature space, w is a decision hyperplane normal vector which is perpendicular to
the hyperplane, and ρ is an intercept term. w and ρ are obtained by solving the following
quadratic programming problem:

min
w,ξξξ,ρ

1

2
||w||2 +

1

νM

∑
i

ξi − ρ

subject to w · Φ(di) ≥ ρ− ξi, ξi ≥ 0.

(3.4)

the meta-parameter ν ∈ (0, 1] determines the upper bound on the fraction of outliers and the
lower bound on the number of training examples used as support vectors; ξi are non-zero
slack variables for penalizing the outliers.

By using multipliers αi, βi ≥ 0, a Lagrangian is introduced:

L(w, ξξξ, ρ,ααα,βββ) =
1

2
||w||2 +

1

νM

∑
i

ξi−ρ−
∑
i

αi(w ·Φ(di)−ρ+ξi)−
∑
i

βiξi (3.5)

Setting the derivatives with respect to w, ξξξ, ρ equal to zero, w can be determined by
w =

∑
i αiΦ(di) and the Equation 3.5 is optimized by solving dual form problem [77].

The decision function becomes:

f(d) =
∑
i

αik(di,d)− ρ (3.6)

where k(di,d) = Φ(di) · Φ(d) is a kernel function. In our experiment, we employ a

Chapter 3 56 Winner-Take-All Autoencoder

Gaussian kernel:
k(di,d) = e−γ‖di−d‖2 (3.7)

When working with OCSVMs, feature normalization is commonly used as a prepro-
cessing step. We use Min-Max scaling (or normalization) which refers to (independently)
setting each dimension of the data to a fixed range of [0, 1]. We firstly compute the
minimum value of each dimension across the training data and subtract this from each
dimension. Then, each dimension is divided by its maximum value. We also include in
Annex (Chapter 6) the comparison results of two different methods for normalization.

After training, given the optimal αi, ρ as well as support vectors di, an anomaly score for
a representation d of a test patch can be estimated by computing s(d) = ρ−

∑
i αik(di,d)

and then it is compared with a threshold thr to identify as a normal or an abnormal patch.
In particularly, a test patch is abnormal when s(d) ≥ thr.

OCSVM[1× 1] OCSVM[6× 9]

Figure 3.11: Examples of one-class SVM regions.

In order to capture variations in scale of flow patterns as object moves in depth through
the scene, we divide the field of view into I × J regions. A separate OCSVM is learned
from the foreground patches located in each region. Local modelling also helps to capture
‘contextual’ anomalies which are normal motions appearing at a specific part of the scene.
For example, people walking on the grass surrounding a walkway may be a rare event,
it should be therefore regarded as anomalous. Figure 3.11 shows examples of OCSVM
regions used in the experiments, in which I = J = 1 for OCSVM[1 × 1] (so-called a
global OCSVM) and I = 6, J = 9 for OCSVM[6× 9].

Chapter 3 57 Winner-Take-All Autoencoder

3.3 Experimental evaluation

3.3.1 Dataset and Evaluation measures.

We use two datasets (UCSD and Avenue) in our evaluation. The UCSD dataset [17]
contains two subsets of video clips, each corresponding to a different scene. The first one,
denoted as UCSDPed1, contains clips of 158×238 pixels and depicts a scene where groups
of people walk toward and away from the camera. This subset contains 34 normal video
clips and 36 video clips containing one or more anomalies for testing. The second, denoted
as UCSDPed2, has spatial resolution of 240 × 360 and contains scenes with pedestrian
movement parallel to the camera plane. This contains 16 normal video clips, together
with 12 test video clips. For our experiments on the UCSD dataset, we use ground-truth
annotations from Mahadevan et al. [17]. The Avenue dataset [16] contains 16 training
videos and 21 testing videos. In total there are 15,328 training frames and 15,324 testing
frames, all with resolution 360× 640.

We evaluate the method using the frame-level and pixel-level criteria proposed by
Mahadevan et. all [17]. An algorithm classifies frames into those that contain an anomaly
and those that do not. For both criteria, these predictions are compared with ground-truth
to give the equal error rate (EER) and area under the curve (AUC) of the resulting ROC
curve (TPR versus FPR) generated by varying an acceptance threshold. For a predicted
anomalous frame to be correct, the pixel-level criterion [17] additionally requires that a
ground-truth map of anomalous pixels is more than 40% covered by a map of predicted
anomalous pixels. This criterion is well founded when the map of abnormal pixels is
constrained to arise through thresholding a map of abnormality scores, as in [17]; otherwise
it can be circumvented by setting every pixel in a frame as anomalous, when just one pixel
is predicted to be anomalous - the frame-level score is not affected and the pixel-level
criterion is always satisfied. In order to classify at the pixel level, bilinear interpolation was
used with the computed patch scores.

3.3.2 Experimental Settings

Convolutional WTA autoencoder architecture and parameters
The Conv-WTA autoencoder architecture is 128conv5-128conv5-128conv5-128deconv11
with a stride of one, zero-padding of two in each convolutional layer and cropping of five
in the deconvolutional layer. 128conv5 refers to the convolutional layer with 128 kernels
of spatial size 5 × 5 and 128deconv11 refers to the deconvolutional layer with spatial
kernel size 11 × 11. We train our model on 3 × 105 foreground optical flow patches of

Chapter 3 58 Winner-Take-All Autoencoder

size 48 × 48 extracted from the UCSD dataset, using stochastic gradient descent with
batch size Nb = 100, momentum of 0.9 and weight decay λ = 5 × 10−4 [37]. The
weights in each layer are initialized from a zero-mean Gaussian distribution whose standard
deviation is calculated from the number of input channels and the spatial filter size of the
layer [87]. This is a robust initialization method that particularly considers the rectifier
nonlinearities [87]. The biases are initialized to zero. A fixed value for the learning rate
α = 10−4 is used following the first iteration. We use the MatConvNet toolbox [110],
augmented to perform WTA.

We use the same architecture for the convolutional autoencoder, replacing a WTA step
with a max-pooling layer.

One class SVM model
The LIBSVM library (version 3.22) [111] is employed for our experiments. The parameter
ν is chosen from the range {2−12, 2−11, . . . , 20} and γ (in the Gaussian kernel) is from the
range {2−12, 2−11, . . . , 212}. Both parameters are selected by 10-fold cross validation on
training data containing only normal activities.

For the UCSD dataset, we resize the frame resolution to 156 × 240. We evaluate
performance with three subdivisions of the field of view: [1 × 1], [6 × 9] and [12 × 18].
The first of these is equivalent to operating over the entire field of view. For the Avenue
dataset, we resize the frame resolution to 120 × 156 which is close to one scale used
in [16]. Here we evaluate performance with three different subdivisions of the field of view:
[1× 1], [4× 6] and [8× 12]. In both cases, the sub-divisions are chosen to divide at pixel
boundaries. 10-fold cross validation is used once on each dataset for the OCSVM[1× 1]

model to select values for the parameters to be used in all experiments (ν = 2−9 and
γ = 2−7).

3.3.3 Quantitative Analysis

3.3.3.1 Comparison with the state of the art

In this section, we compare the proposed framework with state of the art methods on the
UCSD and Avenue datasets. Each method is compared on both ROC curves (Figure 3.12,
3.13 and 3.14) and the EER/AUC metric (Tables 3.1 and 3.2). State of the art results in
Tables 3.1 and 3.2 are taken from published papers, some special cases are noted with
‘*’and are explained in corresponding tables.

Chapter 3 59 Winner-Take-All Autoencoder

Figure 3.12: Frame-level and pixel-level evaluation on the UCSDPed1. The legend for the
pixel-level (right) is the same as for the frame-level (left).

Figure 3.13: Frame-level and pixel-level evaluation on the UCSDPed2.

Chapter 3 60 Winner-Take-All Autoencoder

Our method achieves a significantly better EER and AUC results in both frame-level
and pixel-level on UCSDPed2 with OCSVM[1× 1] (Table 3.1). The pixel-level AUC is
improved by around 8% over the SL-HOF [33]. The result is also better on Avenue with
OCSVM[8× 12] (Table 3.2), where the frame-level is improved around 1% over the SCL
[16]. Moreover, the method obtains comparable results with OCSVM[6×9] on UCSDPed1
(Table 3.1).

Method

UCSDPed1 UCSDPed2

Frame level Pixel level Frame level Pixel level
% % % %

EER/AUC EER/AUC EER/AUC EER/AUC

Sparse Coding [2] 19/86 54/46.1 - -
MDT [17] 25/81.8 55/44 25/85 55/-
MPPCA [18]* 40/59 82/- 30/77 -
Social Force Model [4]* 31/67.5 79/- 42/63 -
SCL [16] 15/91.8 40.9/63.8 - -
SL-HOF [33] 18/87.5 35/64.4 9/95.1 19/81

AMDN [34] 16/92.1 40.1/67.2 17/90.8 -
Conv-AE [12] 27.9/81 - 21.7/90 -

Conv-WTA-OCSVM[1× 1] 27.9/81.3 46.8/56 8.9/96.6 16.9/89.3

Conv-WTA-OCSVM[6× 9] 14.8/91.6 35.8/66.1 9.5/95 18.4/83.9

Conv-WTA-OCSVM[12×18] 15.9/91.9 35.7/68.7 11.2/92.8 21.2/80.9

Table 3.1: Performance comparison on UCSDPed1 and UCSDPed2. (* the results in [17]
include replicated results for MPPCA [18] and Social Force Model [4] methods.)

As can be seen from Table 3.1, a finer sub-division gives better results on UCSDPed1,
whereas the best results are obtained for no sub-division on UCSDPed2 (i.e. OCSVM[1×1]).
This may be explained by the greater variation in scale in UCSDPed1 than in UCSDPed2,
leading to substantial variations in the patterns of motion as an object moves in depth
through the scene. It may also be due to ‘contextual’ anomalies such as a pedestrian
walking over grass that occupies only a portion of the scene. Finally, it is worth noting that
a finer sub-division results in less training data for each one-class SVM, which may result
in unexpected results where there is inadequate training data.

We also do evaluation using the VOC Pascal style objection detection evaluation method
for CUHK Avenue dataset. A correct detection should satisfy the criterion of Intersection
over Union IoU > υ. One frame is true positive when IoU between its detection result

Chapter 3 61 Winner-Take-All Autoencoder

and its ground-truth larger than predefined threshold υ. Table 3.3 shows that our results
are better than SCL method [16] when increasing υ, our detections overlap well with the
ground-truth.

Method
Frame level (%) Pixel level (%)
EER AUC EER AUC

SCL [16]* - 80.9 - -
Discriminative framework [19] - 78.3 - -
Conv-AE [12] 25.1 70.2 - -

Conv-WTA + OCSVM[1× 1] 28.2 78.1 50 50.7

Conv-WTA + OCSVM[4× 6] 26.5 81 45.7 54.2

Conv-WTA + OCSVM[8× 12] 24.2 82.1 45.2 55

Table 3.2: Performance comparison on the Avenue dataset. (* the results from [19]
replicated SCL method [16])

υ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SCL [16] 70.0% 67.3% 63.3% 59.3% 57.5% 55.7% 54.4%

Ours 70.5% 69.8% 67.8% 66.1% 64.3% 63.3% 63.1%

Table 3.3: Detection accuracy (%) with IoU threshold υ on CUHK Avenue dataset.
OCSVM[8× 12] is used.

Figure 3.14: Frame-level comparison on the Avenue dataset.

Chapter 3 62 Winner-Take-All Autoencoder

We evaluate our convolutional WTA feature extractor with different patch sizes, dif-
ferent pooling sizes and time steps. The results are shown in next sections. Moreover,
to evaluate the efficiency of the WTA step for learning feature representations in the
autoencoder, we evaluate the model trained with and without the WTA spatial sparsity
constraint.

3.3.3.2 Varying patch size.

In this section, we compare the EER/AUC with different patch sizes on UCSDPed1 and
UCSDPed2 datasets. Table 3.4 shows our results with three different patch sizes and strides.
Stride is the number of pixels by which the window is slid to extract patches. We chose the
sizes around the common sizes use in the state of the art methods. Then a suitable value is
chosen for a stride to make sure the image field of view is scanned. As can be seen in the
Table, patch size of 24 gives the best results on both UCSDPed1 and UCSDPed2. In all
these experiments, we use a global one-class SVM (i.e, OCSVM[1× 1]) for UCSDPed2
and a local one-class SVM (OCSVM[6× 9]) for UCSDPed1.

Patch size (stride)

UCSDPed1 UCSDPed2

Conv-WTA-OCSVM[6× 9] Conv-WTA-OCSVM[1× 1]
Frame level Pixel level Frame level Pixel level

% % % %
EER/AUC EER/AUC EER/AUC EER/AUC

16(7) 15.8/90.4 44.2/57.6 12.5/94.5 29.8/74.6

20(8) 14.7/92.3 36.8/64.5 9.7/96.3 20.2/84.9

24(12) 15.4/91.4 33.9/66.9 8.72/97 16.6/89.8

Table 3.4: Performance comparison on UCSDPed1 and UCSDPed2 with different patch
sizes.

3.3.3.3 Varying max-pooling size.

Max-pooling is used after training the autoencoder with WTA. Thus, we benefit from the
sparse representation that WTA promotes and the dimensionality reduction of the coding
for OCSVM. In this section, we evaluate the impact of using a max-pooling layer by
varying the max-pooling size on UCSDPed1 (Table 3.5). We use patch size of 24× 24 in
the experiments.

Table 3.5 shows a comparison on UCSDPed1. The results are better with max-pooling

Chapter 3 63 Winner-Take-All Autoencoder

size p = 6. Each point in the pooling output tensor can be considered as feature representa-
tions for a corresponding receptive field. Changing max-pooling size changes the receptive
field’s size. When the pooling size is reduced, the size of an encoding representation is
increased. It can be seen that the feature representation of a patch size of 24×24 is obtained
by concatenating feature representations of some overlapped smaller patches. Thus the
feature representation considers spatial relationship between smaller neighbouring patches.
However, reducing max-pooling size also increases the dimension of feature representation,
affecting the efficiency of learning and testing with OCSVM. We use a max-pooling size
p = 6 for comparing our results with the state of the art on the UCSD dataset (Table 3.1)
and p = 12 for evaluating our frame-work on the Avenue dataset.

Max-pooling
size p

Encoding
representation

Subdivision
Frame level

(%)
Pixel level

(%)
EER AUC EER AUC

p = 12 1× 1× 128

[1× 1] 28.4 81.1 47.1 52.8

[6× 9] 15.5 91.3 34.4 65.7

[12× 18] 16.2 91.5 35.5 67.7

p = 6 2× 2× 128

[1× 1] 27.9 81.3 46.8 56

[6× 9] 14.8 91.6 35.8 66.1

[12× 18] 15.9 91.9 35.7 68.7

p = 4 3× 3× 128

[1× 1] 27.9 80.8 46.8 55.4

[6× 9] 15.3 91.1 38.6 63.2

[12× 18] 16.7 91.4 38.1 65.9

Table 3.5: Performance comparison on UCSDPed1 with different kernel sizes and strides
of max-pooling and different subdivisions.

3.3.3.4 Smoothness over number of frames

We do temporal averaging over number of frames to create more robust feature repre-
sentations. In this section, we show the effectiveness of the smoothness over the final
detection results. Results are obtain by using convolutional WTA feature extractor on
patches size of 24× 24, max-pooling size p = 12 with OCSVM[6× 9] for UCSDPed1 and
with OCSVM[1× 1] for UCSDPed2. As can be seen in Table 3.6, performance is improved
when increasing the number of frames.

Chapter 3 64 Winner-Take-All Autoencoder

Number of frames

UCSDPed1 UCSDPed2

Conv-WTA-OCSVM[6× 9] Conv-WTA-OCSVM[1× 1]
Frame level Pixel level Frame level Pixel level

% % % %
EER/AUC EER/AUC EER/AUC EER/AUC

1 frame 24.5/83.5 53/47.4 12.6/93.6 27.2/77.9

3 frame 18.1/89.2 43.3/58.8 10/96.2 19.4/87

5 frame 15.5/91.3 34.4/65.7 8.7/97 16.6/89.8

7 frame 15.2/91.6 33.1/67.1 6.3/98 14.3/91.6

9 frame 15.8/91.4 33.6/67 5.3/98 12.1/92.9

Table 3.6: EER/AUC for different temporal smoothing windows.

3.3.3.5 Efficiency of the Winner-Take-All sparsity constraint

Our method consists of many steps such as foreground extraction, feature extraction and
OCSVM with different subdivisions. In order to evaluate the efficiency of the WTA
sparsity constraint for feature representation learning, we do experiments in which we
keep foreground extraction and OCSVM steps unchanged and change the feature extractor.
Table 3.7 compares the results obtained with the convolutional feature extractor and the
convolutional WTA feature extractor on UCSDPed1 and UCSDPed2. In experiments, we
use patch size of 24 × 24, temporal averaging over 5 frames, max-pooling size p = 12,
OCSVM[1×1] for UCSDPed2 and OCSVM[6×9] for UCSDPed1. As shown in Table 3.7,
the convolutional WTA feature extractor outperforms the convolutional feature extractor,
where pixel-level EER and AUC are significantly improved.

Method

UCSDPed1 UCSDPed2

Conv-WTA-OCSVM[6× 9] Conv-WTA-OCSVM[1× 1]
Frame level Pixel level Frame level Pixel level

% % % %
EER/AUC EER/AUC EER/AUC EER/AUC

Conv feature extractor 23.2/84.2 49.4/48.6 14.1/92.7 33.7/69.5

Conv-WTA feature extractor 15.4/91.4 33.9/66.9 8.7/97 16.6/89.8

Table 3.7: Impact of the WTA constraint.

Chapter 3 65 Winner-Take-All Autoencoder

3.3.4 Qualitative Analysis

In this section, we present a qualitative analysis of the results provided by using the
convolutional WTA feature extractor and OCSVM with subdivisions on UCSDPed1,
UCSDPed2 and CUHK Avenue datasets. We use a patch size of 24× 24, OCSVM[6× 9]
for UCSDPed1, OCSVM[1× 1] for UCSDPed2 and OCSVM[8× 12] for Avenue.

Figure 3.15: Detection results on the UCSDPed1 (first 2 rows), the UCSDPed2 (third row)
and the CUHK Avenue dataset (fourth row).

Figure 3.15 shows the detection results on three datasets. Our method can detect the
anomalies of a biker, skater, car and wheelchair on UCSD dataset. Moreover, running,
loitering, throwing object and jumping on CUHK Avenue dataset are also detected. In

Chapter 3 66 Winner-Take-All Autoencoder

these figures, pixels that have been correctly predicted as anomalous are shown in yellow;
anomalous pixels that have been missed are shown in red, and pixels that have been
incorrectly predicted as anomalous are shown in green.

We also observe missed detections and false positives. Figure 3.16 (a), (d) and (g) show
some missed detections in three datasets in which (a) the wheelchair has small anomaly
score when it goes further; (b) a skater with slow motion sometimes looks like a normal
pedestrian and a stand-still person in (g) makes no optical flow. It reveals the disadvantage
of using optical flow, detection relies on motion.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16: False detection results on the UCSDPed1 (first row), the UCSDPed2 (second
row) and the Avenue dataset (third row).

Figure 3.16 (b), (c), (e), (f), (h) and (i) show examples of false positives. In UCSDPed1,
horizontal movement rarely appears in the training set. Therefore, this motion in the test
set is detected as anomalies as shown in Figure 3.16(b) and (c). In UCSDPed2, groups of

Chapter 3 67 Winner-Take-All Autoencoder

pedestrians are detected as anomalies as illustrated in Figure 3.16(e). Moreover, a motion,
which rarely happens in the training set, is also detected as an anomaly as in Figure 3.16
(f). Similar to UCSDPed1, horizontal movements in the area close to the camera in CUHK
Avenue are detected as anomalies since they rarely appear in the training set (Figure 3.16
(h) and (i)).

3.3.5 Number of parameters and running time

In this section, we compare the number of parameters of our convolutional WTA feature
extractor with the feature extractor using fully connected autoencoder from Xu et al. [34]
in Table 3.8. We only show the number of parameters of the encoders that are used for
feature extraction. As illustrated in Table 3.8, convolutional layers reduce the number of
parameters significantly.

Layer Conv-WTA Feature Extractor Fully-connected Feature Extractor
[34]

1 5× 5× 2× 128 15× 15× 2× 2048

2 5× 5× 128× 128 2048× 1024

3 5× 5× 128× 128 1024× 512

4 512× 256

parameters 825, 600 3, 674, 112

Table 3.8: The details of the number of parameters for each autoencoder.

Optical
Flow

Feature
Extraction

OCSVM Total

Without GPU 0.6302 3.7996 0.0055 4.4353

With GPU 0.6302 0.0857 0.0055 0.7214

Table 3.9: Testing time (second/frame) without and with GPU.

We also present running times of our method on a computer (CPU - Intel Core i7-4790)
with and without the use of GPU (GeForce GTX Titan X). We run our experiments using
Matlab2016a, the toolbox from Liu [109] for computing optical flow, Matconvnet [110]
for deep learning and libSVM [111] for one-class SVM. GPU, which is more specialized
at performing matrix operation, speeds up the feature extraction process significantly

Chapter 3 68 Winner-Take-All Autoencoder

as illustrated in Table 3.9. However, the testing time is still affected by optical flow
computation.

3.4 Conclusions

In this chapter, we present a framework that uses a convolutional Winner-Take-All autoen-
coder to learn motion feature representations for anomaly detection. The convolutional
WTA feature extractor extracts compressed, robust motion feature representations. More-
over, the combination of this motion feature representation with a local application of
one-class SVM gives competitive performance on two challenging datasets in comparison
to existing state-of-the-art methods.

However, learning motion feature representations on optical flow requires to compute
optical flow as a preprocessing step, which slows down the running time. In addition, we
use one-class SVM for training a model of normality and detecting anomalies. The system
cannot be trained end-to-end. Therefore, in the next chapter, we present a method that can
be trained end-to-end to learn normal temporal dynamics on video frames.

Chapter 4

Convolutional Long Short-Term
Memory for anomaly detection

4.1 Introduction

In this chapter, we present our proposed method for video anomaly detection based on
sequence-to-sequence prediction and reconstruction, using a layered convolutional Long
Short-Term Memory (convLSTM) encoder-decoder network. As in previous work [12],
anomalies arise as spatially localised failures in reconstruction. Detecting anomalies using
reconstruction error, the encoder-decoder network can be trained end-to-end without the
combination of a one class SVM on top of pre-learned feature representations.

In our work, we adopt a convLSTM encoder-decoder to learn normal temporal dy-
namics from sequences of successive frames. Convolutional LSTMs have already been
employed for anomaly detection. However, the temporal unit in the approach by Chong
et al. [13] is applied on the final spatial stage, which encodes high level representations.
Interleaving RNNs between spatial convolution layers has recently been shown to improve
performance on precipitation now-casting [112]. The model can learn temporal information
on hierarchical spatial representations from low-level to high-level. We adopt the same
architecture, except that we remain with convolutional LSTMs [104] instead of the newly
proposed trajectory Gated Recurrent Unit [112]. A sequence-to-sequence convolutional
LSTM encoder-decoder can be trained for both reconstruction and prediction, which can

69

Chapter 4 70 Convolutional LSTM

Figure 4.1: Regularity scores obtained from an extract from the CUHK Avenue dataset[16].
The regularity score drops when an abnormal event appears.

then be used for anomaly detection.
In experiments with five benchmark datasets, we show that using prediction gives

superior performance than using reconstruction. Moreover, the use of convLSTM layers
helps to improve performance over the similar architectures without these layers. We also
compare performance with different length of input/output sequences. Overall, our results
using prediction are comparable with the state of the art on the benchmark datasets.

4.2 Architecture

For ease of explanation, we focus on using the model for prediction. At each time step,
the network takes as input a sequences of τ video frames Ft−τ+1, ...,Ft, and generates an
output of the same size, representing a τ -step prediction into the future Ft+1, ...,Ft+τ . The
model for reconstruction is obtained by using input sequences in reverse order as target
sequences in the same architecture. Figure 4.2 illustrates the convLSTM encoder-decoder
structure for future prediction, with τ = 5.

In order to evaluate the impact of convLSTM layers on temporal dynamics learning,
we also introduce the a simpler convolutional encoder-decoder as shown in Figure 4.3,
in which we replace convLSTM layers by convolutional layers with skip-connections
[39, 113]. Skip connections help to pass the image details to the top layers in the decoder.

The convLSTM encoder-decoder and the convolutional encoder-decoder structures
consist of two networks, an encoding network and a decoding network. In the convLSTM
encoder-decoder, the encoder contains convolutional layers and the decoder consists of
deconvolutional layers. Leaky ReLU with negative slope equal to 0.2 [86] is used after
each convolutional and deconvolutional layer (except in the last deconvolutional layer).
To learn temporal dynamics with convolutional LSTM, an encoding RNN is interleaved
between convolutional layers and a decoding RNN is interleaved between deconvolutional

Chapter 4 71 Convolutional LSTM

Figure 4.2: The convLSTM encoding-decoding structure used for future prediction with
τ = 5.

Figure 4.3: The convolutional encoding-decoding structure with skip connections used for
future prediction with τ = 5.

layers. The details of the convLSTM encoder-decoder architecture are shown in Table 4.1
and Table 4.2.

In the convolutional encoder-decoder, to pass image details from an encoder to a
decoder, we use ‘concatenate layers’ to concatenate output tensors of deconvolutional

Chapter 4 72 Convolutional LSTM

layers with output tensors of their corresponding convolutional layers in the encoder. The
detail of the convolutional encoder-decoder architecture is illustrated in Table 4.3.

Inputs for the convLSTM encoder-decoder, the convolutional encoder-decoder and the
convolutional encoder-decoder are presented in the next section.

4.2.1 Input data layer

In anomaly detection, the input data is a video clip consisting of multiple frames. The input
to our model is a video volume which consists of τ frames. Before stacking frames together
to form input video volumes, each frame is extracted from the raw video, converted to a
gray-scale image by weighting the sum of the R, G and B components. We use the same
spatial input size as Hasan et al. [12], therefore we resize gray-scale images to 227× 227

using bilinear interpolation. Then, the pixel values are scaled to the range [0, 1].
As used previously in the work of Hasan et al. [12], we stack T frames in the channel

dimension to construct the input to the convolutional encoder-decoder network. The
convolutional layer treats the temporal dimension as the channel information of the input.
Since we use a gray-scale image, our video sequence has size of 227 × 227 × τ . For
the convLSTM encoder-decoder, we construct the input as a video volume by stacking τ
frames in the 4th dimension (also called temporal dimension). Thus our video volume has
size of 227× 227× 1× τ .

As the number of parameters of the network is large, a large amount of data is required
to train the model. However, the number of training data in anomaly datasets is not large
enough. Therefore, data augmentation methods are employed to avoid over-fitting. In
our work, we implement two methods for data augmentation. Firstly, we follow the same
approach as Hasan et al. [12] in which more video volumes are created by concatenating
successive frames with skipping strides. Three values of skipping stride (stride-1, stride-2,
stride-3) are used to construct τ -sized volumes. With stride-1, τ frames are consecutive,
while with stride-2 and stride-3, we skip one and two frames, respectively. We name this
method as aug1.

However, increasing the temporal stride increases the speed of moving objects in the
input volume. Since speed is an important feature in many anomaly detection scenarios,
it may affect a detection result. Therefore, we adopt a second data augmentation method
(aug2) that uses standard image processing techniques such as Gaussian blurring, image
sharpening and histogram equalization. Moreover, we randomly crop video frames with a
spatial size of 100× 100 and then resize these cropped windows to form input volumes.
Augmentation methods are only employed on training data.

Chapter 4 73 Convolutional LSTM

The input data then are fed to networks to train our models. In the next section, we
shows more detail about the encoder-decoder structures.

4.2.2 Convolutional and Deconvolutional layer

In both convLSTM encoder-decoder and convolutional encoder-decoder structures, convo-
lutional layers act as feature extractors which preserve spatial relationship between pixels
within video frames. In our architectures, we use convolutional layers with stride greater
than 1 to abstract the activations, which allows the network to learn its own spatial down-
sampling. Stacking multiple convolutional layers in the encoding side coarsens output
maps, reducing spatial size from the input by a factor equal to the stride. By choosing the
number of convolutional filters, the output maps can be compressed or over-completed.
Unlike the early work of Hasan et al. [12], the output activations in our networks are
compressed after each convolutional layer.

The decoder, which consists of deconvolutional layers, connects the compressed coarse
output back to dense pixels. Since deconvolution reverses the forward and backward
passes of convolution, up-sampling is performed. The learned filters in the deconvolutional
layers correspond to bases to predict or reconstruct shape of an input object. Similar to
convolutional layers, a hierarchical structure of deconvolutional layers are used to capture
different level of shape details. We use a leaky ReLU layer after each convolutional and
deconvolutional layer, except the last deconvolutional since it limits the range of the output.

The details about the number of layers, the kernel size, the spatial size of input/output
tensors, the number of input/output channels, padding and stride for each layer in the
convolutional and convolutional LSTM encoder-decoders are described in Table 4.1, 4.2
and 4.3. In these tables, “Kernel” is the size of convolutional and deconvolutional filters,
“In Res” and “Out Res” is the input and output spatial resolution, respectively. The depth
of input and output tensors is shown under “Ch I/O”. In the convolutional layer, “Pad” is
the number of zeros which are padded to the boundaries of an input tensor and “Stride”
is the number of pixels by which filters shift. In the deconvolutional layer, “Pad” is the
number of pixels in the boundaries of an output tensor which are cropped and “Stride” is
an up-sampling factor.

Chapter 4 74 Convolutional LSTM

Type Kernel Stride Pad Ch I/O In Res Out Res

Conv-ReLU 11x11 4 0 1/16 227x227 55x55

ConvLSTM 3x3 1 1 16/16 55x55 55x55

Conv-ReLU 3x3 2 0 16/32 55x55 27x27

ConvLSTM 3x3 1 1 32/32 27x27 27x27

Conv-ReLU 3x3 2 0 32/64 27x27 13x13

ConvLSTM 3x3 1 1 64/64 13x13 13x13

ConvLSTM 3x3 1 1 64/64 13x13 13x13

Deconv-ReLU 3x3 2 0 64/32 13x13 27x27

ConvLSTM 3x3 1 1 32/32 27x27 27x27

Deconv-ReLU 3x3 2 0 32/16 27x27 55x55

ConvLSTM 3x3 1 1 16/16 55x55 55x55

Deconv 11x11 4 0 16/1 55x55 227x227

Table 4.1: The details of the convolutional LSTM encoder-decoder model with 12 layers.
The two dimensions in “Kernel”, “In Res” and “Out Res” represent for height and width.

Type Kernel Stride Pad Ch I/O In Res Out Res

Conv-ReLU 11x11 4 0 1/16 227x227 55x55

ConvLSTM 5x5 1 2 16/16 55x55 55x55

Conv-ReLU 3x3 2 0 16/32 55x55 27x27

ConvLSTM 3x3 1 1 32/32 27x27 27x27

ConvLSTM 3x3 1 1 32/32 27x27 27x27

Deconv-ReLU 3x3 2 0 32/16 27x27 55x55

ConvLSTM 5x5 1 2 16/16 55x55 55x55

Deconv 11x11 4 0 16/1 55x55 227x227

Table 4.2: The details of the convolutional LSTM encoder-decoder model with 8 layers.

Chapter 4 75 Convolutional LSTM

Type Kernel Stride Pad Ch I/O In Res Out Res

Conv-ReLU 11x11 4 0 5/16 227x227 55x55

Conv-ReLU 3x3 1 1 16/16 55x55 55x55

Conv-ReLU 3x3 2 0 16/32 55x55 27x27

Conv-ReLU 3x3 1 1 32/32 27x27 27x27

Conv-ReLU 3x3 2 0 32/64 27x27 13x13

Deconv-ReLU 3x3 2 0 64/32 13x13 27x27

Concat -/64 27x27 27x27

Conv-ReLU 3x3 1 1 64/32 27x27 27x27

Deconv-ReLU 3x3 2 0 32/16 27x27 55x55

Concat -/32 55x55 55x55

Conv-ReLU 3x3 1 1 32/16 55x55 55x55

Deconv 11x11 4 0 16/5 55x55 227x227

Table 4.3: The details of the 2D convolutional encoder-decoder with skip connections.

In the convLSTM encoder-decoder, the convolutional and deconvolutional layers treat τ
frames in the input volumes as τ separate frames. For example, after the first convolutional
layer, we obtain an output tensor of size 55× 55× 16× τ . The temporal information is
captured using a RNN with a convolutional LSTM. We discuss the convolutional LSTM in
the next section.

4.2.3 Recurrent Neural Network using Long Short-term Memory

RNNs are powerful learning models that are often used for learning sequential tasks.
Since input volumes contain dynamic content, the variation between frames may encode
additional information that is useful for anomaly detection.

Given an input xt in the sequence, the standard RNN cell computes the hidden vector
ht and output yt by iterating the following equations for τ time steps:

ht = g(Wxhxt + Whhht−1 + bh)

yt = g(Whoht + bo)
(4.1)

Chapter 4 76 Convolutional LSTM

where g is the activation function, Wxh, Whh, Who denote the input-hidden, the hidden-
output and the hidden-output weight matrices, respectively. bh and bo denote the hidden
and the output bias vectors, respectively. It can be difficult to train RNN models to learn
long-term dynamics. This limitation is partly because of the vanishing and the exploding
gradients [98] which result from propagating the gradients down through many layers, each
layer corresponds to a time step.

4.2.3.1 Long Short Term Memory

The Long Short-Term Memory (LSTM) architecture [98] introduces memory cells to store
and output information, allowing it to better exploit long range dependencies in the data.
Figure 4.4 illustrates a diagram of the LSTM memory cell from [99], which is derived from
the original LSTM unit [98].

Figure 4.4: A diagram of an Long Short-term Memory cell, an activation function can be
tanh or ReLU.

Each LSTM unit has a cell which has a state ct at time t. The memory unit is accessed
for reading or modifying by three sigmoid gates - input gate it, forget gate ft and output
gate ot. At each time step, it receives inputs from two sources: the current input xt and
the previous hidden state ht−1. Additionally, each gate also considers the cell state ct−1

of its cell block, as its third input. Peephole connections, which are the links between
a cell and gates, allow the gates to access the memory cell c at time t − 1. Peephole
connections are illustrated as blue lines in Figure 4.4. Every time a new input comes, its
information will be accumulated to the cell ct if the input gate it is activated. The sigmoid
layer outputs numbers lie within the range [0, 1], describing how much of each component
can get through. Also, the forget gate ft defines how much of the previous state ct−1 can be
kept in the new state ct. Finally, the final state (the output of LSTM cell) ht is based on

Chapter 4 77 Convolutional LSTM

the cell state but with the control of the output gate ot. These updates are summarized as
follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf)

ct = ft ◦ ct−1 + it ◦ g(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ◦ g(ct)

(4.2)

where ‘◦’ denotes the Hadamard product, σ is the logistic sigmoid function, all activation
vectors it, ft,ot, ct have the same size as the hidden vector ht. The weight matrix subscripts
have the obvious meaning, for example Whi is the hidden-input gate matrix, Wxo is the
input-output gate matrix. The weight matrices from the cell to gate vectors (e.g. Wc∗) are
diagonal. The activation function g can be tanh or ReLU.

4.2.3.2 Convolutional Long Short Term Memory

Fully connected LSTM units unfold the inputs to 1D vectors. Thus it loses the spatial
information and is difficult to apply on high dimensional input tensors. Convolutional
LSTM cells [104] are used to learn temporal dynamics in our convolutional LSTM encoder-
decoder. Since convolutional LSTM replaces matrix products in Equation 4.2 with convolu-
tions, it also learns spatial information with fewer weights. The updates in the convolutional
LSTM cell at time t are given as following:

It = σ(Wxi ∗Xt + Whi ∗Ht−1 + Wci ◦Ct−1 + bi)

Ft = σ(Wxf ∗Xt + Whf ∗Ht−1 + Wcf ◦Ct−1 + bf)

Ct = Ft ◦Ct−1 + It ◦ g(Wxc ∗Xt + Whc ∗Ht−1 + bc)

Ot = σ(Wxo ∗Xt + Who ∗Ht−1 + Wco ◦Ct + bo)

Ht = Ot ◦ g(Ct)

(4.3)

where ∗ represents the convolution operation, and ◦ the Hadamard product. g is the
activation function such as tanh or ReLU. It,Ft,Ct,Ot,Ht ∈ RH×W×Co are the input
gate, forget gate, cell state, output gate and hidden state, respectively. X ∈ RH×W×Ci is
the input tensor. H and W are the height and width of the state and input tensor; Co and
Ci are the channel size of the state and input tensor, respectively. We choose tanh for the
activation function g.

Interleaving multiple convLSTM layers between convolutional layers (as illustrated in

Chapter 4 78 Convolutional LSTM

Figure 4.2) helps our convLSTM encoder-decoder learn spatio-temporal dynamic informa-
tion at different levels. The high level states capture global spatial-temporal representations
while the lower level states retain the detail of local spatio-temporal representations. After
the last frame in the input sequence is read, the decoding convLSTMs take the last encoding
states and output an estimate of the target volume. The encoding states at two lower levels
are also used as initial states for the two corresponding decoding convLSTMs, which pass
feature maps containing image details. These connections share the same aim as skip
connections [39, 113]. Convolutional layers with strides greater than 1 in the encoder may
lose image details, making it difficult to estimate the output with the deconvolutional layers.
These initializations help the decoding convLSTMs and deconvolutional layers to output a
better estimate.

4.3 Optimization and Initialization

The optimization objective of the model is defined by the prediction error, with an aug-
mented L2 regularization term. The weights and biases of layers in the model are learned
by minimizing the regularized least mean squared error as follows:

L(W) =
1

2Nτ

N∑
n=1

‖θθθn − θ̂θθn‖22 +
λ

2

∑
l

‖W‖22 (4.4)

where θ̂θθn is the predicted volume from the model, θθθn is the target volume of τ frames, N is
the size of a mini batch and W is the parameters of the model. The first term is the squares
prediction error and the second term is to regularize the weights. λ is a hyper-parameter
used to balance the importance of the two terms.

The weights in each convolutional layer are initialized using the Xavier algorithm [114]
which automatically determines the scale of initialization based on the number of input
and output neurons. This initialization makes sure the weights are not too small or not too
large, keeping the signal in a reasonable range of values through many layers. We train all
models with the default setting for the Xavier algorithm in the Caffe toolbox [116]; weights
are initialized by sampling from the uniform distribution U [−

√
3
n
,
√

3
n
] in which n = k2c,

where k is being equal to the spatial filter size and c is the number of input channels. We
initialize the weights for convLSTM layers using a zero-mean Gaussian distribution with
a fixed standard deviation of 0.01. The biases for all layers are initialized to zero. The
input-to-hidden and hidden-to-hidden convolutional filters in the convLSTM layers are the
same size as illustrated in Table 4.1 and Table 4.2.

Chapter 4 79 Convolutional LSTM

Figure 4.5: The validation error of the convLSTM encoder-decoder trained on each dataset.

Figure 4.6: The train and validation errors of the convLSTM encoder-decoder trained on
UCSDPed1 and UCSDPed2.

We use Adam [115] to optimize the cost function of Equation 4.4 with batch size
N = 4, momentum β1 = 0.9, β2 = 0.999 and ε = 10−8, weight decay λ = 5× 10−4 [37].

We train our networks separately on each dataset so that the model can learn the specific
normal patterns in each dataset. An event may be normal in one dataset but abnormal in

Chapter 4 80 Convolutional LSTM

another. For example, people going towards the turnstile to enter the subway station is
normal in the Subway Entrance dataset but abnormal in the Subway Exit dataset. We start
training the models with a learning rate of 10−4. After 80 epochs, we stop training and use
the models for anomaly detection. Figure 4.5 and 4.6 show train error on UCSD dataset
and validation error on five datasets with two data augmentation methods in which the
errors become smoother after around 80 epochs.

4.4 Regularity score for anomaly detection

Once the model is trained, we compute the prediction error between each estimated frame
F̂i and the target frame Fi in the testing video volume, then sum up all τ frames to form
the prediction error for this volume as follows:

e(t) =
i=t+τ∑
i=t+1

||F̂i −Fi||2 (4.5)

Then, we normalize the prediction error to compute the regularity score r(t) of the testing
volume [12]:

r(t) = 1− e(t)−mint′e(t
′)

maxt′e(t′)
(4.6)

where mint′e(t
′) and maxt′e(t

′) are calculated over the prediction errors of all volumes in
the same test video. The test volume is abnormal if its regularity score r(t) is less than a
threshold.

We also use the same architecture for reconstruction in our experiments. Instead of
using the next τ frames as the target volume, we use the input volume in reverse order as
the target. Replacing the target volume Fi in Equation 4.5, we obtain the reconstruction
error and use it for anomaly detection with the reconstruction model.

4.5 Experiments

We evaluate our method both quantitatively and qualitatively. We modify and use the
Caffe toolbox [116] for our experiments, where models are trained on high performance
computing clusters with NVIDIA Tesla P100 GPUs and tested on a desktop computer with
CPU (Intel core i7-4790) and GPU (GeForce GTX TITAN X).

In this section, we compare the performance results on anomaly detection with different
architectures and different setups as following:

Chapter 4 81 Convolutional LSTM

• (1) We evaluate two architectures with different number of layers, one with 12 layers
(Table 4.1) and one with 8 layers (Table 4.2). We also change the data augmentation
method: aug1, aug2. In these experiments, we use the same value τ = 5 and the
decoding is for future prediction.

• (2) We do experiments with different decoders: reconstruction, future predictor. We
use τ = 5 and aug1 data augmentation method.

• (3) We do evaluation with different values of time-step τ : τ = 2, 5, 8. We use aug1
for data augmentation.

• (4) We do experiments with the convolutional encoder-decoder with skip connections
(the network’s architecture in Table 4.3). We implement both decoders: reconstruc-
tion and future prediction. All experiments use aug2 for the data augmentation
method.

4.5.1 Datasets

We train our models on three of the most commonly used datasets: UCSD (UCSDPed1 and
UCSDPed2) [17], CUHK Avenue [16] and Subway (Entrance and Exit) [107]. UCSD and
Avenue have separate training videos which contain mostly normal events and test videos,
thus we use the training set for training models and then evaluate on test sets. With the
Subway dataset, the first 15 minutes of Subway Entrance and the first 5 minutes of Subway
Exit are used for training. In all datasets, the training data includes a few irregular events.

4.5.2 Anomalous event detection

Two performance metrics are employed for evaluation and comparison with state of the art
results: Equal Error Rate (EER) and Area Under the ROC Curve (AUC). The regularity
score of each volume determines whether it is normal or abnormal. We follow the intuition
that video volumes containing normal events generate high regularity scores since they
are similar to training data. A video sequence containing an anomaly gives a lower score.
Setting different thresholds on the regularity score, we classify testing sequences into those
that contain an anomaly and those that do not. These results are compared with ground-truth
to give the equal error rate (EER) and area under the curve (AUC) of the resulting ROC
curve (TPR versus FPR) generated by varying an acceptance threshold in a range of [0, 1].
Good performance has a low EER and high AUC. Two challenges in evaluating anomaly
detection methods are (1) ensuring the evaluation datasets contain sufficient variety to

Chapter 4 82 Convolutional LSTM

build a representative model of normality, and (2) defining a ground-truth by subjective
assessment, particularly in labelling marginal cases.

UCSDPed1 UCSDPed2 CUHK
Avenue

aug1
training data 18, 000 6, 000 41, 000
validation data 462 738 4, 072
epochs 80 80 80

aug2
training data 30, 000 11, 000 55, 000
validation data 2, 470 1, 030 5, 736
epochs 80 80 80

Table 4.4: Number of training data and training epochs correspond to each dataset.

EER/AUC (%)
Setup UCSDPed1 UCSDPed2 CUHK-

Avenue

Reconstruction
12 layers, aug1, τ = 5 28.9/75.6 17.1/87.5 26.1/81.4
12 layers, aug2, τ = 5 29.4/76 19.3/87 24.6/82.5

Prediction

12 layers, aug1
τ = 2 27.1/78.3 21.1/86.1 22.5/85.1
τ = 5 25.1/80.8 14.4/92.3 22.4/84.8
τ = 8 26.5/79 18.5/89.6 23.2/83.2

12 layers, aug2, τ = 5 24.4/81.8 13.1/92.8 22.7/84.6
8 layers, aug2, τ = 5 25.2/81.4 14.5/92.5 22.8/84.3
8 layers, aug1, τ = 5 27.7/77.6 14.5/92 23.4/83.5

Table 4.5: Comparison of EER/AUC with different architectures and setups of the con-
vLSTM encoder-decoder. τ is the number of frames in an input volume and a target
volume.

Table 4.5 shows the results when different architectures and setups of the convolutional
LSTM encoder-decoder are used. The model trained for future prediction gives better
results than the reconstruction model. This may be because prediction will always try to
draw back to normality, whereas reconstruction works from pre-sight of an anomalous
sequence. The comparison between the outputs from these two models are mentioned in
more detail in the next section. We also compare performance results of two architectures
with 12 layers and 8 layers. The deeper model gives better results on the three datasets.

As can be seen from Table 4.5, τ = 5 give better results than τ = 2 while increasing
it to τ = 8 does not improve the results. Moreover, data augmentation, which is named
as aug2, using Gaussian image blurring, image sharpening, histogram equalization, crop

Chapter 4 83 Convolutional LSTM

and resize improves the results on UCSDPed1 and UCSDPed2. The number of training
samples, which are double for UCSDPed1 and UCSDPed2 in this augmentation method
(aug2), may help to train a more effective model. However, training the model on a larger
training set takes a longer time.

We compare the performances of the convolutional encoder-decoder with skip connec-
tions and the convLSTM encoder-decoder for reconstruction and future prediction in Table
4.6. The prediction models overperform the reconstruction models for all architectures. As
can be seen in this table, the results are the best with the use of the convolutional LSTM
encoder-decoder for prediction.

EER/AUC (%)
Setup UCSDPed1 UCSDPed2 CUHK-

Avenue

Reconstruction
ConvLSTM 29.4/76 19.3/87 24.6/82.5
2D Conv 29.6/77 20.3/86 27.2/79

Prediction
ConvLSTM 24.4/81.8 13.1/92.8 22.7/84.6
2D Conv 27/79.1 17.7/89.3 24.8/82.6

Table 4.6: Comparison of EER/AUC with different types of the encoder-decoders (the
convolutional encoder-decoder and the convLSTM encoder-decoder) for reconstruction
and prediction, aug2 is used for data augmentation, τ = 5 is used.

Method
EER/AUC (%)

UCSDPed1 UCSDPed2 CUHK
Avenue

Subway
Entrance

Subway
Exit

MDT [17] 25/81.1 25/85 - - -
SCL[16] 15/91.8 - - - -
Conv-WTA[117] 14.8/91.6 9.5/95 26.5/81 - -
AMDN[34] 16/92.1 17.1/90.8 - -
GAN [53] - 15.6/93.5 - - -
Conv-AE [12] 27.9/81 21.7/90 25.1/70.2 26.0/94.3 9.9/80.7
ST-AE[13] 12.5/89.9 12.0/87.4 20.7/80.3 23.7/84.7 9.5/94.0
STAE-3D[14] 15.3/92.3 16.7/91.2 33.8/77.1 − −
ConvLSTM-prediction-aug1 25.1/80.8 14.4/92.3 22.4/84.8 24.4/82.6 13.1/92
ConvLSTM-prediction-aug2 24.4/81.8 13.1/92.8 22.7/84.6 25.1/81.4 17.3/89.5

Table 4.7: Performance comparison with the state of the art.

We use the prediction models of the convolutional LSTM encoder-decoder with 12
layers and (τ = 5) to compare with state of the art methods. Table 4.7 shows that the model

Chapter 4 84 Convolutional LSTM

trained for prediction performs comparably to state of the art results, including the three
end-to-end deep learning methods at the bottom of the table (Conv-AE, ST-AE, STAE-3D).
Performance on UCSDPed1 is relatively poor, whilst for CUHK Avenue, the AUC is
3% above the state of the art for which results are available. We have more false alarms
in Subway Entrance/Exit dataset. We observe that the training data for both Entrance
and Exit dataset is not good for representing normal events. The first 15 minutes of the
Entrance dataset contains some anomalous events while the first 5 minutes of the Exit
dataset contains one example of people normally exiting the gate. There are some variations
of normal events in testing data that do not appear during training.

Moreover, we observe that video frames in the Subway dataset contains the time stamp
in the right bottom corner of each frame. The prediction error for the timestamp affects the
regularity score of the video sequence. For example, Figure 4.7 shows that big values of
prediction error are obtained in the timestamp region when the second changes from 29 (in
the input sequence) to 30 (in the target sequence). While we only focus on prediction error
of objects in the scene, we mask out the errors for the timestamp area by setting all pixels
in this area to zero. The results are significantly improved, as in Table 4.8.

Target sequence

Prediction sequence and pixel-wise prediction error

Figure 4.7: Prediction error in the timestamp area affects the regularity score. A blue-green-
red color map shows error from low to high.

Chapter 4 85 Convolutional LSTM

Method
EER/AUC (%)

Subway Entrance Subway Exit

ConvLSTM-prediction-aug1
Without masking 24.4/82.6 13.1/92

With masking 15.9/90.2 8/95

ConvLSTM-prediction-aug2
Without masking 25.1/81.4 17.3/89.5

With masking 17.2/89.1 10.9/93.7

Table 4.8: Performance comparison in Subway Entrance/Exit datasets with and without
masking the timestamp.

Figure 4.8, 4.9, 4.10, 6.5 and 6.6 show the regularity score derived from prediction
error of sequences in some videos of the UCSD, CUHK Avenue and Subway datasets. In
these figures, green shaded regions represent ground-truth abnormal frames. Figure 4.8
shows the regularity score for five video sequences in UCSDPed1. The regularity score
is low when a biker or a car appears in the scene. However, normal frames are falsely
detected as anomalies in some cases. For example, Figure 4.8 (d) and (e) show that the
crowd density of the scene affects the regularity score. Complex movements of a group of
people results in a low regularity score. Moreover, the camera shaking in video sequence
#17 also affects the score.

As shown in Figure 4.9, anomalies in UCSDPed2 are captured better with low regularity
scores. In the CUHK Avenue dataset, low regularity scores are obtained in the video
segments which contain throwing, running and someone moving in the opposite direction
as illustrated in Figure 4.10. However, since the horizontal movement of a person in the
close-field of the scene rarely appears in training data, it results in low regularity score
for the test sequence (for example, sequence #7 and #12 in Figure 4.10 (b) and (d),
respectively).

Figure 6.5 and Figure 6.6 shows the regularity score of video sequences in Subway
Entrance and Exit datasets. The regularity score is fluctuated significantly in the video
segments which do not contain any motion. By masking the timestamp, the regularity score
becomes more robust to capture anomalies, where low scores are obtained when abnormal
events such as no payment, running, loitering and wrong direction appear in the scene.

More visualizations of regularity score are included in Annex (Section 6.3).

Chapter 4 86 Convolutional LSTM

(a)

(b)

(c)

(d)

(e)

Figure 4.8: Regularity score of video sequence #1, 5, 24, 17, 23 (from top to bottom) of
UCSDPed1 dataset.

Chapter 4 87 Convolutional LSTM

Figure 4.9: Regularity score of video sequence #2, 4, 5, 7 (from top to bottom) of UCS-
DPed2 dataset.

Chapter 4 88 Convolutional LSTM

(a)

(b)

(c)

(d)

Figure 4.10: Regularity score of each sequence of video sequence #5, 7, 15, 12 (from top
to bottom) of CUHK Avenue dataset.

Chapter 4 89 Convolutional LSTM

(a) Without masking the timestamp

(b) With masking the timestamp

Figure 4.11: Regularity score of frames #115, 000− 120, 000 of Subway entrance dataset.

(a) Without masking the timestamp

(b) With masking the timestamp

Figure 4.12: Regularity score of frames #52, 500−64, 000 of Subway exit dataset (without
and with masking the timestamp).

Chapter 4 90 Convolutional LSTM

4.5.3 Reconstruction and Prediction

In this section, we visualize the outputs of the convolutional LSTM encoder-decoders
that are used for reconstruction and future prediction. We use the models with 12 layers,
τ = 5 to produce the outputs. In order to visualize the outputs and compare the errors of
two models, we feed an input volume of 5 frames Ft−4, ...,Ft to the prediction model to
predict the next 5 frames Ft+1, ...,Ft+5; and we feed an input volume Ft+1, ...Ft+4,Ft+5

to the reconstruction model to reconstruct 5 framesFt+5,Ft+4...,Ft+1. Basically, the target
volumes are the same but with reverse order.

Figure 4.13, 4.14, 4.15 and 4.16 show the reconstruction and prediction on sample
irregular frames of UCSDPed1, UCSDPed2 and CUHK Avenue dataset in which anomaly
is a car, a wheelchair, a biker and a running person, respectively. In these figures, the first
row shows the target volume, the second and the fourth rows illustrate the prediction and
the reconstruction, respectively. The third and the fifth rows show the pixel-wise prediction
error and the reconstruction error between each frame in the output sequence comparing
to the target sequence, respectively. The final error e(t) is calculated by summing all
pixel-wise errors. We use a blue-green-red color map to show the degree of anomaly in
which blue is normal and red is abnormal.

As shown in the figures, the reconstruction error is usually smaller than prediction error.
This observation is reasonable because playing back the input sequence from the learned
features in hidden states is easier than predicting the unknown sequence in the future.
We trained our model only on normal data and we expect that only normal appearances
and dynamics are captured and have better reconstruction/prediction in comparison with
anomaly. Using reconstruction models, both normal and abnormal objects are reconstructed
fairly well. The pedestrian is better reconstructed but car, biker and running child are also
well reconstructed. In the prediction model, the estimation of pedestrian is worse than its
reconstruction. Moreover, the prediction of the biker looks similar to pedestrian while the
prediction of the car and a running child disappears or becomes increasingly blurred at
each time step into the future.

Chapter 4 91 Convolutional LSTM

Target sequence

Prediction error e(t) = 66.25

Reconstruction error e(t) = 30.28

Figure 4.13: Reconstruction and prediction on sample irregular frames of UCSDPed1
which contains a car. Best viewed in color.

Chapter 4 92 Convolutional LSTM

Target sequence

Prediction error e(t) = 30.2

Reconstruction error e(t) = 14.46

Figure 4.14: Reconstruction and prediction on sample irregular frames of UCSDPed1
which contains a wheelchair. Best viewed in color.

Chapter 4 93 Convolutional LSTM

Target sequence

Prediction error e(t) = 41.03

Reconstruction error e(t) = 21.57

Figure 4.15: Reconstruction and prediction on sample irregular frames of UCSDPed2
which contains a biker. Best viewed in color.

Chapter 4 94 Convolutional LSTM

Target sequence

Prediction error e(t) = 59.81

Reconstruction error e(t) = 11

Figure 4.16: Reconstruction and prediction on sample irregular frames of CUHK Avenue
which contains a running person. Best viewed in color.

4.5.4 Number of model parameters and tesing time

In this section, we compare the number of model parameters for the method against
different end-to-end trainable models in the state of the art as shown in Table 4.9. We only
count the layer which has parameters in # layers column.

Chapter 4 95 Convolutional LSTM

Method # layers # parameters

Conv-AE [12] 6 8, 382, 464

ST-AE[13] 7 1, 073, 384

STAE-3D[14] 8 541, 728

Ours 12 845, 698

Table 4.9: Comparison on number of parameters.

We also present a run-time on CPU (Intel core i7-4790) and GPU (GeForce GTX
TITAN X) in Table 4.10. The convolutional LSTM predictor with 12 layers and τ = 5 is
used to calculate the run-time. Due to the capacity of parallel processing of convolution
operations on the GPU, the run time is significant faster than testing with only a CPU. In
the table, the processing time refers to the time for resizing video frames and stacking
them into a video volume. The prediction refers to the time for the model to output the
estimation and calculate the prediction error.

Processing Prediction

Without GPU 0.00154 2.7907

With GPU 0.00154 0.0132(∼ 75fps)

Table 4.10: Testing time (second/frame) without and with GPU.

4.6 Conclusion

We have adapted a state of the art predictive encoder-decoder deep network to detect abnor-
mal events in video. We evaluate detection performance using both sequence prediction
and reconstruction, and show that prediction gives superior anomaly detection performance
over the reconstruction. For the prediction model, we obtain competitive performance to
state of the art methods on three standard datasets. We evaluate performance with two
different numbers of layers and two data augmentation methods. We also compare perfor-
mance of the convolutional LSTM encoder-decoder and the convolutional encoder-decoder
skip connections. Finally, we evaluate performance across different prediction windows,
encompassing varying levels of motion complexity.

Chapter 5

Conclusion and Future Work

This thesis investigated the problem of anomaly detection in crowded scenes. We presented
our approach to this problem in two different parts of the thesis, (i) using the convolutional
autoencoder to learn motion feature representations and a one-class SVM to learn the
model of normality, (ii) training the convolutional encoder-decoders to learn normal spatio-
temporal dynamics and the use of prediction error for anomaly detection. Each of these
novel frameworks are briefly described below.

In Chapter 3 we presented a method for video anomaly detection using a convolutional
Winner-Take-All (WTA) autoencoder and a one-class SVM (OCSVM). We provided the
full literature review of the feature descriptors that were used in this area in Section 2.2.
However, these descriptors are hand-crafted. We also reviewed the use of deep models
to extract feature representations for anomaly detection in Section 2.3.2. However, these
models are either pretrained models on a large-scale image dataset, which were not designed
for learning motions, or models trained with fully connected layers, which could not learn
spatial information. We therefore presented our method using a convolutional autoencoder
with a WTA step to produce a spare representation. In order to evaluate the efficiency
of this spatial sparsity step, we also presented a convolutional autoencoder, replacing the
WTA step with a max-pooling layer to learn compressed features.

In Chapter 4 we presented our method based on the use of the convolutional encoder-
decoders for anomaly detection. Our method in Chapter 3 required one-class SVM to
be learned on the features extracted on training data, thus the whole system could not be
trained end-to-end. Therefore, we presented a convolutional LSTM encoder-decoder to

96

Chapter 5 97 Conclusion

learn normal spatio-temporal dynamics from sequences of successive frames on training
data which contain mostly normal events. The encoder-decoder was trained to minimise
the error between network’s outputs and targets, thus the error should be small for a normal
test volume. We used the regularity score, which was derived from a prediction error or a
reconstruction error, to classify a test volume as a normality or an anomaly.

5.1 Contributions

5.1.1 Convolutional Winner-Take-All autoencoder

We introduced a method for video anomaly detection that exploits the use of a convolutional
autoencoder on foreground optical flow patches, coupled with a spatial winner-take-all
step, to learn shift-invariant and generic flow features. In addition, a max-pooling layer and
a temporal step are used following the trained encoder to reduce the dimensionality of the
coding features and to form a final smoothed feature representation. We also employ local
normality modelling in which the field of view is divided into regions and a one-class SVM
is independently used within each region. This local modelling method helps to detect
contextual anomalies, and anomalies at different scales through the scene.

Experimental results in Chapter 3 shows that using a convolutional autoencoder with
winner-take-all step improves the performance over the use of a convolutional encoder with
a max-pooling layer. Moreover, our method outperforms state-of-the-art approaches on
two challenging datasets.

5.1.2 Convolutional Long Short-Term Memory

We introduced an end-to-end framework that learns normal spatio-temporal dynamics
using sequence-to-sequence encoder-decoders for prediction and reconstruction. This is
done by interleaving LSTM based RNNs between convolutional layers to encode temporal
information on hierarchical spatial representations from low-level to high-level. To evaluate
the efficiency of LSTMs in learning temporal dynamics, we also introduced a convolutional
encoder-decoder with skip connections.

Beside the use of reconstruction error, we proposed to use prediction error for anomaly
detection. We train the encoder-decoders for both reconstruction and future prediction, and
show that prediction error gives superior performance than the use of reconstruction.

Based on the evaluations in Chapter 4, our prediction models give competitive perfor-
mance to state of the art methods on three challenging datasets. Moreover, the convolutional

Chapter 5 98 Conclusion

LSTM encoder-decoder outperforms the convolutional encoder-decoder with skip connec-
tions.

The convolutional LSTM predictor improves the results of using a convolutional
WTA feature extractor and a global OCSVM on UCSDPed1 and CUHK Avenue datasets.
However, it gives worse results on UCSDPed2. This may be due to the lack of training
volumes in this subset, which is three times less than the number of training volumes on
UCSDPed1 and five times less than the number of training volumes on CUHK Avenue.
Another improvement of the convolutional LSTM encoder-decoder is the running time
which is speeded up around 50 times. The encoder-decoder learns the motion dynamics
from a stack of successive frames, thus there is no need to compute optical flow in a prior
step.

5.2 Limitations

There are a few limitations associated with the proposed methods.

• The work in Chapter 3 assumes that anomalies are only found where there is non-
zero optical flow in the image plane. In particularly, we considered patches with
accumulated optical flow squared magnitude above a fixed threshold are foreground.
Therefore, the threshold value affects the detection results, a big value may remove
abnormal patterns while a small value keeps background patterns as foreground.

• In Chapter 3, we employed a temporal smoothing in the convolutional WTA feature
extractor to extract a robust representation. Since we used a temporal window
of τ = 5, the method cannot capture a longer-time consistency of an anomaly.
Specifically, there are still some false and missing detections due to the occlusion of
moving objects.

• Hyper-parameters for deep models such as kernel size, number of filters, number
of layers in our encoder-decoder architectures were chosen based on the common
use of them in state of the art architectures for classification tasks and anomaly
detection tasks. We trained our models with different optimization methods such
as stochastic gradient descent (SGD) or Adam. However, we evaluated the use of
the optimization methods on one architecture of an autoencoder and then applied it
on other architectures, supposing the method works well with these architectures.
Moreover, we manually changed the value of learning rate, decreased it 10 times if
training error increased.

Chapter 5 99 Conclusion

• In Chapter 4, the encoder-decoders for reconstruction identify anomalies by a poor
reconstruction of objects that have never appeared in the training data. However,
the encoder-decoders are able to reconstruct anomalies fairly accurately even when
know nothing about the anomalies.

5.3 Future Work

Various improvements and extensions may be applied to each of the proposed frameworks
to solve the above limitations. In this section we present several directions as part of future
work.

An abnormal event is supposed to appear in the video in a continuous spatio-temporal
locations. However, our framework in Chapter 4 detected foreground patches separately as
normalities or anomalies. It would be of benefit to track abnormal patches over longer time
duration. This would help to remove false positives and fill missing detections.

Currently, our frameworks only perform on either optical flow (in Chapter 3) or raw
pixel data (in Chapter 4). It would be interesting to add an appearance channel alongside the
optical flow channel. Fusion can be done by concatenating optical flow and appearance to
form input data for a network or concatenating their feature tensors to learn spatio-temporal
features. Moreover, the weighted sum of abnormal scores of two separate networks for
optical flow and appearance can be used to consider anomalies in appearance and motion.

It would be of benefit to run an exhaustive grid search to optimize and tune the hyper-
parameters of our deep models. We ran grid search to find parameters for training a
one-class SVM. However we did not do it for every change we make to the method, for
example the change in a patch size, pooling size or length of temporal smoothing window.
It would be interesting to see the extent to which re-tuning hyper-parameters affects the
final result.

It would be interesting to replace deconvolutional layers in our encoder-decoders in
Chapter 4 with other up-scaling layers such as a sub-pixel convolutional neural network
layer (also called PixelShufle) [118]. Instead of padding zeros in between pixels as in a
deconvolutional layer, the sub-pixel convolution layer uses regular convolutional layers
followed by a specific type of image reshaping which is called a phase shift.

Encoder-decoders for reconstruction in Chapter 4 performed more poorly than encoder-
decoders for prediction. Through qualitative analysis, we observed that the encoder-decoder
reconstructs both normalities and anomalies fairly well. It would be interesting to extend
the existing encoder-decoder for reconstruction (i.e. an autoencoder) using the following
ideas. Firstly, we could add noise (e.g. Gaussian noise) to the input volumes and force

Chapter 5 100 Conclusion

the autoencoder to reconstruct clean inputs. The autoencoder would consider an abnormal
object as noise and reconstruct it poorly. Secondly, it would be interesting to use negative
samples (i.e, anomalies) and force the autoencoder to produce bad reconstructions for
these samples. By doing this, the autoencoder reconstructs normal data with small error
but reconstructs abnormal data with larger error. Since labelled data is not available for
anomaly detection, it would be interesting to consider the use of synthetic abnormal data,
for example in the case of the UCSD dataset which only contains pedestrians, scenes
containing non-pedestrians may be used as abnormal data. However, this method requires
negative samples to be collected manually.

Finally, we could adapt the idea of having a generator producing the contrastive samples
in Generative Adversarial Networks [119] into our existing encoder-decoders, which is
shown in Figure 5.1.

Figure 5.1: A proposed encoder-decoder with the presence of negative samples from the
generator .

The generator G is trained to produce a video volume G(z) from a random vector z,
which is sampled from a Gaussian distribution. The discriminator takes either real (normal)
volumes or generated volumes and reconstructs them, attributing low error to the training
volumes and higher error to the generated ones. The generator (G) and discriminator (D)
can be trained to minimise the following loss functions:

LD(θθθ, z) = D(θθθ) + max(0,m−D(G(z)))

LG(z) = D(G(z))
(5.1)

where D(.) is reconstruction error, m is a positive margin.

5.4 Closing Remarks

This thesis has introduced frameworks where deep convolutional networks are used to
learn spatio-temporal dynamics on optical flow fields or on raw data for crowded scenes.

Chapter 5 101 Conclusion

Based on quantitative and qualitative results, we experimentally validated the use of the
deep encoder-decoder in the problem without labelled data. The proposed methods work
on different datasets, which requires less prior knowledge of the target datasets. While this
work is a small but important step towards exploiting deep feature learning for the anomaly
detection problem, we hope to see a substantial improvement in this approach where a
normal manifold is learned automatically and effectively on normal data in any domain.

Chapter 6

Annex

6.1 Convolutional WTA autoencoder for anomaly detec-
tion

6.1.1 One-class SVM kernels

Table 6.1 shows results when two kernels are used for one-class SVM. In these experiments,
Min-Max scaling is used for normalizing features of training patches.

• Gaussian kernel: k(di,d) = e−γ‖di−d‖2

• Linear kernel: k(di,d) = d′i ∗ d

OCSVM kernel Frame level
(%)

Pixel level
(%)

Running time (s)

EER/AUC EER/AUC Feature
extraction

OCSVM

Gaussian kernel 8.7/97 16.6/89.8 0.0834 0.0231

Linear kernel 44.1/57.5 − 0.0771 6.2693

Table 6.1: Performance comparison on UCSDPed2 with different kernels for OCSVM.

6.1.2 Normalization as a preprocessing step for OCSVM.

Table 6.2 shows performance results on UCSDPed2 with two different normalization
methods for OCSVM. Gaussian kernel is used in all experiments.

102

103 Annex

• Min-Max scaling:

di−norm =
di − min

j=1:M
dj

max
j=1:M

dj − min
j=1:M

dj
(6.1)

• Standardization (Z-score normalization):

di−norm =
di −mean

j=1:M
dj

std
j=1:M

dj
(6.2)

OCSVM kernel Frame level
(%)

Pixel level
(%)

EER/AUC EER/AUC

Min-Max scaling
(γ = 2−7, ν = 2−9)

8.7/97 16.6/89.8

Standardization
(γ = 2−11, ν = 2−9)

10.8/95.8 19/85.4

Table 6.2: Performance comparison on UCSDPed2 with different normalization methods
for OCSVM.

6.1.3 A convolutional WTA autoencoder with different number of
convolutional layers.

In this section, we present EER/AUC results obtained with different number of convolu-
tional layers in the convolutional WTA autoencoder. The network with three convolutional
layers was described in Chapter 3. In order to create a deeper network (with six convo-
lutional layers), we add a max-pooling layer and three convolutional layers on top of the
network used in Chapter 3. The architecture of the deeper network is: 128conv5-128conv5-
128conv5-pool2-128conv3-128conv3-128conv3-WTA-128deconv21. The first three layers
are initialized using the trained model in Chapter 3. The remained convolutional layers are
initialised using He et al. method [87].

104 Annex

Number of layers

UCSDPed1 UCSDPed2

Conv-WTA-OCSVM[6× 9] Conv-WTA-OCSVM[1× 1]
Frame level Pixel level Frame level Pixel level

% % % %
EER/AUC EER/AUC EER/AUC EER/AUC

3 layers 15.4/91.4 33.9/66.9 8.72/97 16.6/89.8

6 layers 18.7/89.5 38.3/60.4 10.5/95.3 18.6/85.3

Table 6.3: Performance comparison on UCSDPed1 and UCSDPed2 with different network’s
architectures.

Figure 6.1: Learned deconvolutional filters of the Conv-WTA autoencoder with 6 convolu-
tional layers trained on optical flow foreground patches (UCSD dataset).

Table 6.3 shows that the model with three convolutional layers gives better results in
both UCSDPed1 and UCSDPed2. We used deeper network to learn higher level feature
representations (for example, motions of pedestrians or motion of upper part of pedestrian’s
body). However, it seems that our model with 6 convolutional layers does not learn these
features effectively (Figure 6.1). Most of the deconvolutional filters capture low-level
feature representations.

105 Annex

6.2 Convolutional Long Short-Term Memory for anomaly
detection

6.2.1 Regularity score of different models.

In this section, we visualize regularity scores of prediction model (with two augmentation
methods aug1, aug2) and reconstruction model (with aug1).

Figure 6.2, 6.3 and 6.4 show that regularity score derived from prediction error captures
anomalies better than the one from reconstruction error. The regularity score are low for
anomalies.

106 Annex

(a)

(b)

(c)

(d)

(e)

Figure 6.2: Regularity score of video sequence #1, 5, 24, 17, 23 (from top to bottom) of
UCSDPed1 dataset.

107 Annex

Figure 6.3: Regularity score of video sequence #2, 4, 5, 7 (from top to bottom) of UCS-
DPed2 dataset.

108 Annex

(a)

(b)

(c)

(d)

Figure 6.4: Comparison of regularity scores deriving from prediction and reconstruction
errors on video sequence #5, 7, 15, 12 (from top to bottom) of CUHK Avenue dataset.

109 Annex

Figure 6.5: Regularity score of frames #115, 000− 120, 000 of Subway entrance dataset
(with masking the timestamp).

Figure 6.6: Regularity score of frames #52, 500− 64, 000 of Subway exit dataset (with
masking the timestamp).

Bibliography

[1] Oren Boiman and Michal Irani. Detecting irregularities in images and in video.
International journal of computer vision, 74(1):17–31, 2007.

[2] Yang Cong, Junsong Yuan, and Ji Liu. Sparse reconstruction cost for abnormal
event detection. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 3449–3456. IEEE, 2011.

[3] Hanhe Lin, Jeremiah D Deng, Brendon J Woodford, and Ahmad Shahi. Online
weighted clustering for real-time abnormal event detection in video surveillance. In
Proceedings of the 2016 ACM on Multimedia Conference, pages 536–540. ACM,
2016.

[4] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior
detection using social force model. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 935–942. IEEE, 2009.

[5] Louis Kratz and Ko Nishino. Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 1446–1453. IEEE, 2009.

[6] Weixin Li, Vijay Mahadevan, and Nuno Vasconcelos. Anomaly detection and
localization in crowded scenes. IEEE transactions on pattern analysis and machine

intelligence, 36(1):18–32, 2014.

[7] David Charte, Francisco Charte, Salvador Garcı́a, Marı́a J del Jesus, and Francisco
Herrera. A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy,
models, software and guidelines. Information Fusion, 2017.

[8] Fu Jie Huang, Y-Lan Boureau, Yann LeCun, et al. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In Computer Vision and

Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

110

111 Bibliography

[9] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Computer

Vision (ICCV), 2015 IEEE International Conference on, pages 4489–4497. IEEE,
2015.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. arXiv preprint, 2017.

[11] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, et al. Fully convolu-
tional neural network for fast anomaly detection in crowded scenes. arXiv preprint

arXiv:1609.00866, 2016.

[12] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury, and
Larry S Davis. Learning temporal regularity in video sequences. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 733–742,
2016.

[13] Yong Shean Chong and Yong Haur Tay. Abnormal event detection in videos using
spatiotemporal autoencoder. In International Symposium on Neural Networks, pages
189–196. Springer, 2017.

[14] Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua.
Spatio-temporal autoencoder for video anomaly detection. In Proceedings of the

2017 ACM on Multimedia Conference, pages 1933–1941. ACM, 2017.

[15] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow. Interna-

tional Journal of Computer Vision, 92(1):1–31, 2011.

[16] Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detection at 150 fps in matlab.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2720–2727, 2013.

[17] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly
detection in crowded scenes. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pages 1975–1981. IEEE, 2010.

[18] Jaechul Kim and Kristen Grauman. Observe locally, infer globally: a space-time
mrf for detecting abnormal activities with incremental updates. In Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2921–2928.
IEEE, 2009.

112 Bibliography

[19] Allison Del Giorno, J Andrew Bagnell, and Martial Hebert. A discriminative
framework for anomaly detection in large videos. In European Conference on

Computer Vision, pages 334–349. Springer, 2016.

[20] Miao Yu, Adel Rhuma, Syed Mohsen Naqvi, Liang Wang, and Jonathon Chambers.
A posture recognition-based fall detection system for monitoring an elderly person
in a smart home environment. IEEE transactions on information technology in

biomedicine, 16(6):1274–1286, 2012.

[21] Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, and Masao Sakauchi.
Traffic monitoring and accident detection at intersections. IEEE transactions on

Intelligent transportation systems, 1(2):108–118, 2000.

[22] Luis Patino and James Ferryman. Detecting threat behaviours. In Advanced Video

and Signal Based Surveillance (AVSS), 2016 13th IEEE International Conference

on, pages 88–94. IEEE, 2016.

[23] Tom Cane and James Ferryman. Saliency-based detection for maritime object
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 18–25, 2016.

[24] Teng Li, Huan Chang, Meng Wang, Bingbing Ni, Richang Hong, and Shuicheng
Yan. Crowded scene analysis: A survey. IEEE transactions on circuits and systems

for video technology, 25(3):367–386, 2015.

[25] M Sami Zitouni, Harish Bhaskar, J Dias, and Mohammed E Al-Mualla. Advances
and trends in visual crowd analysis: a systematic survey and evaluation of crowd
modelling techniques. Neurocomputing, 186:139–159, 2016.

[26] Tao Xiang and Shaogang Gong. Incremental and adaptive abnormal behaviour
detection. Computer Vision and Image Understanding, 111(1):59–73, 2008.

[27] Bo Wang, Mao Ye, Xue Li, and Fengjuan Zhao. Abnormal crowd behavior detec-
tion using size-adapted spatio-temporal features. International Journal of Control,

Automation and Systems, 9(5):905, 2011.

[28] Vikas Reddy, Conrad Sanderson, and Brian C Lovell. Improved anomaly detection
in crowded scenes via cell-based analysis of foreground speed, size and texture.
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE

Computer Society Conference on, pages 55–61. IEEE, 2011.

113 Bibliography

[29] Dan Xu, Rui Song, Xinyu Wu, Nannan Li, Wei Feng, and Huihuan Qian. Video
anomaly detection based on a hierarchical activity discovery within spatio-temporal
contexts. Neurocomputing, 143:144–152, 2014.

[30] Yang Cong, Junsong Yuan, and Ji Liu. Abnormal event detection in crowded scenes
using sparse representation. Pattern Recognition, 46(7):1851–1864, 2013.

[31] Bin Zhao, Li Fei-Fei, and Eric P Xing. Online detection of unusual events in videos
via dynamic sparse coding. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 3313–3320. IEEE, 2011.

[32] Xiaobin Zhu, Jing Liu, Jinqiao Wang, Changsheng Li, and Hanqing Lu. Sparse rep-
resentation for robust abnormality detection in crowded scenes. Pattern Recognition,
47(5):1791–1799, 2014.

[33] Siqi Wang, En Zhu, Jianping Yin, and Fatih Porikli. Anomaly detection in crowded
scenes by sl-hof descriptor and foreground classification.

[34] Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep
representations of appearance and motion for anomalous event detection. arXiv

preprint arXiv:1510.01553, 2015.

[35] Hanhe Lin, Jeremiah D Deng, and Brendon J Woodford. Anomaly detection in crowd
scenes via online adaptive one-class support vector machines. In Image Processing

(ICIP), 2015 IEEE International Conference on, pages 2434–2438. IEEE, 2015.

[36] Tian Wang, Jie Chen, Yi Zhou, and Hichem Snoussi. Online least squares one-class
support vector machines-based abnormal visual event detection. Sensors, 13(12):
17130–17155, 2013.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,
2014.

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference on Medical

114 Bibliography

image computing and computer-assisted intervention, pages 234–241. Springer,
2015.

[40] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[41] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2625–2634,
2015.

[42] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014.

[43] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised
learning of video representations using lstms. In International Conference on

Machine Learning, pages 843–852, 2015.

[44] Quoc V Le, Will Y Zou, Serena Y Yeung, and Andrew Y Ng. Learning hierar-
chical invariant spatio-temporal features for action recognition with independent
subspace analysis. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 3361–3368. IEEE, 2011.

[45] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-
stream network fusion for video action recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1933–1941, 2016.

[46] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals,
Rajat Monga, and George Toderici. Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4694–4702, 2015.

[47] Oluwatoyin P Popoola and Kejun Wang. Video-based abnormal human behavior
recognition—a review. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 42(6):865–878, 2012.

115 Bibliography

[48] Angela A Sodemann, Matthew P Ross, and Brett J Borghetti. A review of anomaly
detection in automated surveillance. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 42(6):1257–1272, 2012.

[49] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review
of novelty detection. Signal Processing, 99:215–249, 2014.

[50] B Ravi Kiran, Dilip Mathew Thomas, and Ranjith Parakkal. An overview of deep
learning based methods for unsupervised and semi-supervised anomaly detection in
videos. arXiv preprint arXiv:1801.03149, 2018.

[51] Hannah M Dee and David C Hogg. Detecting inexplicable behaviour. In BMVC,
pages 1–10, 2004.

[52] Neil Robertson, Ian Reid, and Michael Brady. Behaviour recognition and explanation
for video surveillance. 2006.

[53] Mahdyar Ravanbakhsh, Enver Sangineto, Moin Nabi, and Nicu Sebe. Training
adversarial discriminators for cross-channel abnormal event detection in crowds.
arXiv preprint arXiv:1706.07680, 2017.

[54] Mehrsan Javan Roshtkhari and Martin D Levine. An on-line, real-time learning
method for detecting anomalies in videos using spatio-temporal compositions. Com-

puter vision and image understanding, 117(10):1436–1452, 2013.

[55] Xinyi Cui, Qingshan Liu, Mingchen Gao, and Dimitris N Metaxas. Abnormal
detection using interaction energy potentials. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on, pages 3161–3167. IEEE, 2011.

[56] Borislav Antić and Björn Ommer. Video parsing for abnormality detection. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2415–
2422. IEEE, 2011.

[57] Borislav Antić and Björn Ommer. Spatio-temporal video parsing for abnormality
detection. arXiv preprint arXiv:1502.06235, 2015.

[58] Neil Johnson and David Hogg. Learning the distribution of object trajectories for
event recognition. Image and Vision computing, 14(8):609–615, 1996.

[59] Arslan Basharat, Alexei Gritai, and Mubarak Shah. Learning object motion patterns
for anomaly detection and improved object detection. In Computer Vision and

116 Bibliography

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[60] Fan Jiang, Junsong Yuan, Sotirios A Tsaftaris, and Aggelos K Katsaggelos. Anoma-
lous video event detection using spatiotemporal context. Computer Vision and Image

Understanding, 115(3):323–333, 2011.

[61] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust
principal component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization. In Advances in neural information processing systems, pages
2080–2088, 2009.

[62] Yannick Benezeth, P-M Jodoin, Venkatesh Saligrama, and Christophe Rosenberger.
Abnormal events detection based on spatio-temporal co-occurences. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
2458–2465. IEEE, 2009.

[63] Ying Zhang, Huchuan Lu, Lihe Zhang, and Xiang Ruan. Combining motion and
appearance cues for anomaly detection. Pattern Recognition, 51:443–452, 2016.

[64] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with
an application to stereo vision. 1981.

[65] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial

intelligence, 17(1-3):185–203, 1981.

[66] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physi-

cal review E, 51(5):4282, 1995.

[67] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. Dy-
namic textures. International Journal of Computer Vision, 51(2):91–109, 2003.

[68] Robert H Shumway and David S Stoffer. An approach to time series smoothing and
forecasting using the em algorithm. Journal of time series analysis, 3(4):253–264,
1982.

[69] Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the
identification of combined deterministic-stochastic systems. Automatica, 30(1):
75–93, 1994.

117 Bibliography

[70] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief
propagation and its generalizations. Exploring artificial intelligence in the new

millennium, 8:236–239, 2003.

[71] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[72] Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal
component analyzers. Neural computation, 11(2):443–482, 1999.

[73] Antoni B Chan and Nuno Vasconcelos. Modeling, clustering, and segmenting video
with mixtures of dynamic textures. IEEE transactions on pattern analysis and

machine intelligence, 30(5):909–926, 2008.

[74] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding
algorithms. In Advances in neural information processing systems, pages 801–808,
2007.

[75] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[76] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. Support vector method for novelty detection. In Advances in neural

information processing systems, pages 582–588, 2000.

[77] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[78] David MJ Tax and Robert PW Duin. Support vector domain description. Pattern

recognition letters, 20(11-13):1191–1199, 1999.

[79] Shehroz S Khan and Michael G Madden. One-class classification: taxonomy of
study and review of techniques. The Knowledge Engineering Review, 29(3):345–374,
2014.

[80] Young-Sik Choi. Least squares one-class support vector machine. Pattern Recogni-

tion Letters, 30(13):1236–1240, 2009.

[81] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE transactions on pattern analysis

and machine intelligence, 38(2):295–307, 2016.

118 Bibliography

[82] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[83] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going
deeper with convolutions. Cvpr, 2015.

[84] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. In International conference on machine learning, pages 647–655, 2014.

[85] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 1998.

[86] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages 1026–
1034, 2015.

[88] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In Proceed-

ings of the 25th international conference on Machine learning, pages 1096–1103.
ACM, 2008.

[89] Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 2011.

[90] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine

Learning Research, 11(Dec):3371–3408, 2010.

[91] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in neural information processing

systems, pages 153–160, 2007.

[92] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolu-
tional auto-encoders for hierarchical feature extraction. In International Conference

on Artificial Neural Networks, pages 52–59. Springer, 2011.

119 Bibliography

[93] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-
erations in convolutional architectures for object recognition. In International

conference on artificial neural networks, pages 92–101. Springer, 2010.

[94] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[95] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1520–1528, 2015.

[96] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285, 2016.

[97] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. IEEE transactions on pattern analysis and machine

intelligence, 35(1):221–231, 2013.

[98] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[99] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with
recurrent neural networks. In International Conference on Machine Learning, pages
1764–1772, 2014.

[100] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[101] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on, pages 3156–3164. IEEE, 2015.

[102] Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. Deep reinforcement
learning for visual object tracking in videos. arXiv preprint arXiv:1701.08936, 2017.

[103] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 961–971, 2016.

120 Bibliography

[104] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. Convolutional lstm network: A machine learning approach for
precipitation nowcasting. In Advances in neural information processing systems,
pages 802–810, 2015.

[105] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[106] Jefferson Ryan Medel. Anomaly Detection Using Predictive Convolutional Long

Short-Term Memory Units. Rochester Institute of Technology, 2016.

[107] Amit Adam, Ehud Rivlin, Ilan Shimshoni, and Daviv Reinitz. Robust real-time
unusual event detection using multiple fixed-location monitors. IEEE transactions

on pattern analysis and machine intelligence, 30(3):555–560, 2008.

[108] Alireza Makhzani and Brendan J Frey. Winner-take-all autoencoders. In Advances

in Neural Information Processing Systems, pages 2791–2799, 2015.

[109] Ce Liu. Beyond pixels: exploring new representations and applications for motion

analysis. PhD thesis, Citeseer, 2009.

[110] Matconvnet: Cnns for matlab. http://www.vlfeat.org/matconvnet/.

[111] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[112] Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin
Wong, and Wang-chun Woo. Deep learning for precipitation nowcasting: A bench-
mark and a new model. arXiv preprint arXiv:1706.03458, 2017.

[113] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip connections. In
Advances in neural information processing systems, pages 2802–2810, 2016.

[114] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference

on artificial intelligence and statistics, pages 249–256, 2010.

[115] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

121 Bibliography

[116] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference

on Multimedia, pages 675–678. ACM, 2014.

[117] Hanh TM Tran and DC Hogg. Anomaly detection using a convolutional winner-
take-all autoencoder. In Proceedings of the British Machine Vision Conference 2017.
Leeds, 2017.

[118] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1874–
1883, 2016.

[119] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversar-
ial network. arXiv preprint arXiv:1609.03126, 2016.

