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ABSTRACT 
Classical Arabic (CA) is an influential language for Muslim lives around the 

world. It is the language of two sources of Islamic laws: the Quran and the Sunnah, 

the collection of traditions and sayings attributed to the prophet Mohammed. 

However, classical Arabic in general, and the Sunnah, in particular, is underexplored 

and under-resourced in the field of computational linguistics. This study examines 

the possible directions for adapting existing tools, specifically morphological 

analysers, designed for modern standard Arabic (MSA) to classical Arabic. 

Morphological analysers of CA are limited, as well as the data for evaluating 

them. In this study, we adapt existing analysers and create a validation data-set from 

the Sunnah books. Inspired by the advances in deep learning and the promising 

results of ensemble methods, we developed a systematic method for transferring 

morphological analysis that is capable of handling different labelling systems and 

various sequence lengths. 

In this study, we handpicked the best four open access MSA morphological 

analysers. Data generated from these analysers are evaluated before and after 

adaptation through the existing Quranic Corpus and the Sunnah Arabic Corpus. The 

findings are as follows: first, it is feasible to analyse under-resourced languages 

using existing comparable language resources given a small sufficient set of 

annotated text. Second, analysers typically generate different errors and this could 

be exploited. Third, an explicit alignment of sequences and the mapping of labels is 

not necessary to achieve comparable accuracies given a sufficient size of training 

dataset.  

Adapting existing tools is easier than creating tools from scratch. The 

resulting quality is dependent on training data size and number and quality of input 

taggers. Pipeline architecture performs less well than the End-to-End neural network 

architecture due to error propagation and limitation on the output format. A valuable 

tool and data for annotating classical Arabic is made freely available. 
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1 INTRODUCTION 

1.1 This research 
The topic of this research is the morphological analysis and POS tagging of 

classical Arabic (CA) texts. Morphological analysis and POS tagging are two 

preliminary steps in many text analytics applications from different disciplines. 

Many systems were developed to identify and analyse the Arabic text 

morphologically, i.e. by studying and analyzing the form of the word. They vary in 

complexity from light stemmers, linguistically based stemmers, lemmatisers, simple 

table-lookup analysers, complex morphology analysers, and POS taggers. These 

analysers handle Arabic's morphological-rich problem, and are useful for many 

downstream applications, such as syntax analysis, machine translation, information 

retrieval, question answering, and ontology construction.  

However, most of the Arabic morphological analysers are designed and 

tuned for Modern Standard Arabic (MSA) and adapting these tools to under-

resourced domains/languages is challenging. 

This research proposes a systematic method for adapting multiple MSA 

morphological analysers to the domain of classical Arabic text, specifically for the 

Sunnah texts. Instead of adopting a single tool, like (Almeman, 2015) for dialects, or 

(Dukes and Habash, 2010) for Quranic Arabic, we pursue the method of combining 

heterogeneous taggers for the purpose of more robust and accurate morphological 

tagging of the Sunnah Arabic texts.  

The Sunnah, also known as Hadith, is the collection of traditions and sayings 

attributed to the prophet of the Muslims, Mohammed (peace be upon him). The 

Sunnah, in particular, and classical Arabic, in general, with the exception of the 
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Quranic text, lack many computational linguistic resources such as treebanks and 

morphological annotation. In this research, we aim to fill the gap by implementing 

an accurate tagger for classical Arabic and providing a semi-automatically 

morphologically annotated corpus for a collection of Sunnah sayings. 

While this research scope uses domain adaptation methods for adapting 

MSA taggers to classical Arabic text, it is designed to be language-agnostic and 

provide a systematic way for overcoming challenges of knowledge transfer. These 

challenges include mismatch of labelling schema between individual taggers and 

target classical text tagset. Besides, segmentation schemas of the input and target 

output are not identical, which required some alignment between the two sequences 

of words and morphemes. In this research, we report the performance of multiple 

ways of ensemble methods that overcome these obstacles of heterogeneity. 

1.2 Motivation and Aim 
The field of Arabic Natural Language Processing (NLP) has received many 

contributions recently. Most morphological analysers handle the morphological-rich 

problem in Modern Standard Arabic text (MSA), and there are at least seven open 

access morphological analysers.  However, the choice between these taggers is 

challenging, and there is no open-access tagger explicitly designed for CA to the 

best of the author's knowledge. 

Experiments that used these MSA-based taggers for classical Arabic 

reported a significant drop in the accuracy. Even though the morphology of 

classical Arabic is the father of MSA, some studies showed that CA texts are not 

compatible with MSA taggers. Alrabiah (2014) compared two MSA-based taggers 

both designed for MSA to annotate the KSUCCA classical Arabic corpus. Using 

five samples from different genres of classical Arabic, an evaluation of these two 

systems showed a drop in their accuracy by 10-15%. In addition, the semi-

annotation of the QAC corpus used an MSA morphological analyser (Buckwalter 

analyser), but the manual verification step made corrections to at least 24% of 

words, nearly a quarter of text words, although the text is fully diacritised. A more 

comprehensive experiment tends to reaffirm similar findings for all MSA taggers 

(See Chapter 4). These studies show that current taggers might need to be adapted 

for classical Arabic and their dictionaries need to include a classical lexicon. 
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For word segmentation and POS labelling, supervised learning has become a 

dominant model. Its progress is due to the development of annotated corpora and 

NLP techniques. Although many corpora are released in the literature, obtaining 

sufficient amounts of high-quality training data remains a major obstacle, especially 

for morphologically rich languages. Although most of Arabic annotated corpora are 

for MSA, not exploiting these related corpora for classical Arabic seems 

wasteful. Because underlying linguistic theories differ, annotation schemes for 

corpora are adversarial, and consequently taggers trained on them. Sadly, although 

there are multiple resources, it is not possible to merely collate such data for training 

systems, since almost all existing NLP systems assume a homogeneous annotation. 

Therefore, it is essential to consider how to use and exploit heterogeneous resources 

to improve Arabic word annotation and segmentation.    

Building a specific tagger or lexicon for CA is expensive and a waste of 

existing resources. Inspired by the successful results of ensemble methods, 

specifically (Qiu, Zhao and Huang, 2013; Alabbas and Ramsay, 2014), we decided 

to pursue the idea of combining and reusing available morphological taggers to 

adapt resources in rich languages to under-resourced languages. 

1.3 Research Questions 
My research questions are the following: 

1 Do MSA-based taggers perform well on CA texts? Can the annotation 

of CA texts benefit from existing MSA or unsupervised resources? 

2 Is it feasible to transfer knowledge from MSA-based taggers to tag 

classical Arabic texts through combining heterogeneous POS taggers?  

3 Does aligning and mapping different segmentation and labelling 

schemas help ensemble taggers? Can this alignment be learned 

implicitly? 

 

Chapters 4 and 5 try to answer the first question. It compares and evaluates 

different taggers on a set of classical Arabic excerpts. The thesis overall illustrates 

how reusing other resources, e.g. especially diacritised texts and morphological 

analysers, can help in reducing the ambiguity and help in annotation. The remaining 

chapters try to reply to the second and third research questions by developing 

different combinations of strategies and assessing these combinations on a newly 
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created Sunnah Arabic Corpus. They propose different ways for tackling the 

annotation-style adaptation.  

1.4 Thesis Contributions 
In our PhD research, we provide the following contributions: 

• A comprehensive comparison between open access Arabic POS taggers 

and morphological analysers with the focus on classical text annotation. 

This comparative evaluation should ease the choice of a tagger.  

• A novel systematic way of combining multiple heterogeneous tagging 

algorithms to achieve improved robustness.  

• An ensemble POS tagger for classical Arabic from four open access 

Arabic POS taggers designed for MSA. 

• An open-access semi-automatic annotated Sunnah Arabic corpus of 

Hadith collections (a genre of classical Arabic) using the built ensemble 

tagger and manually verified. 

• An easy-to-use web-based toolkit that aggregates available morphological 

analysers and POS taggers. This should ease the usage of those POS 

taggers for developers.  

• An efficient web-based annotation tool for semi- and manual- annotation 

of gold standard corpus which integrates a set of features needed in highly 

inflectional languages.  

• Arabic multi-tagged corpus, annotated with four POS taggers and 

aligned to the morpheme-level. This corpus is useful for evaluation 

purposes, presenting differences, and possibly learning mappings from one 

tagger results to another. 

• A novel method for increasing the diacritisation level of highly cited 

classical Arabic text for the goal to reduce the word ambiguity level. 

1.5 The scope of this research 
While this research tried to provide a systematic way of transferring 

knowledge from any language, the case study in this research is classical Arabic. 

The results of this research need to be taken cautiously when it is directly applied to 

other languages. Part of the methodology is tailored to Arabic specifications. An 

example is the reuse of diacritised texts to reduce the morphological ambiguity.  
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The results as well have a high correlation with the quality of individual 

taggers. It is also influenced by the tagger similarity with the required target 

morphological analysis schema. In this research, the target morphological analysis is 

based on the traditional Arabic grammar while all individual MSA taggers do not. 

However, there are evidences of similarity in different aspects (tagset, segmentation, 

morphological features).  

While the research aimed at the beginning to support non-deterministic 

morphological analysers, they are excluded from this research and the scope is 

narrowed to only deterministic analysers (taggers).  

1.6 Thesis Outline 
After a brief background in the following chapter, this thesis is divided into 

three parts: evaluation and classical Arabic adaptation, morphosyntactic ensemble 

analyser and corpus annotation.   

The literature review covers four aspects of this research. It starts with a 

survey of corpora as they play a critical role in tagging and segmentation. Then it 

surveys the annotation tools used to create similar corpora that are adapted to Arabic 

needs. Then it discusses the morphological annotation representation aspects such as 

tagsets, mapping tagsets, segmentation, etc. Finally, it explores different methods in 

the literature that combine and exploit heterogeneous annotation.  

Then, in the first part of the thesis, open access Arabic taggers and analysers 

are surveyed, Chapter 4. They are illustrated to contrast their differences using one 

classical sentence. Then, the results of using several open access MAs and POS 

taggers to tag classical Arabic are reported. A multi-tagged corpus by several MSA 

taggers for the Quran is developed that is proofread and manually checked.  

The second part introduces the ensemble tagger in more detail. It is divided 

into three chapters: Chapter 5 describes the challenges of the ensemble method and 

provides a common ground design for subsequent experiments. It gives the 

necessary multi-component framework (named SAWAREF) that provides an easy 

interface for running several taggers, comparing and evaluating between them, and 

standardising the outputs of each component. Chapter 6 continues the work by 

delivering concrete methods to tackle the alignment problem and illustrates the 

effect of this alignment on a pipeline ensemble approach. Chapter 7 moves in 
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another direction and provides an end-to-end systematic ensemble method for 

morphological analysing using deep learning. 

The third part is divided into two chapters: Chapter 8 provides the design, 

structure, and annotation of the Sunnah Arabic corpus. It also includes the process of 

decreasing the word ambiguity level of the original text using a novel method of 

borrowing diacritisation from similar contexts. It also provides detailed guidelines of 

the annotation. Chapter 9 presents an open-source web-based annotation tool that 

aims to increase the annotation speed and consistency of several morphosyntactic 

annotation tasks by reusing other resources like morphological analysers.  

At the end of this thesis, the research is concluded by highlighting the 

findings and providing a roadmap for future work.  
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2 BACKGROUND 

Chapter Summary: 

This chapter aims to provide a brief background on different terminologies 

discussed in this research. It starts with a brief background on Arabic and its 

morphology. Then, it discusses the morphological analysis of the language in the 

computational linguistic point of view and the challenges that face Arabic 

morphological analysis. 
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2.1 Introduction 
Arabic is a major world language and is one of the six languages officially 

recognised by the United Nations. It is the first language for around 250-300 million 

people (Clive Holes, 2004). It is an official language for at least twenty independent 

Middle Eastern and African countries. It is the language of Islam’s holy book: the 

Quran, and Islam’s prophet, Mohammed. Verses attributed to his tradition and 

sayings, i.e. the Sunnah or Hadith, are also reported in Arabic. Nearly a quarter of 

the world’s population are Muslims, and they use classical Arabic, especially the 

Quran and the Sunnah, in their prayer and worship.  

2.2 Part-of-Speech Tagging and Morphological Analysis 
Part of Speech (POS) tagging is a common and well-known problem in the 

field of Natural Language Processing (NLP). It can be defined as the procedure of 

identifying the morphosyntactic class for each lexical unit using its structure and 

contextual information. POS tagging is usually done in the first steps of advanced 

NLP tasks such as machine translation and text categorisation. 

Morphological analysis is a more general term that tackles different aspects 

of the word. It involves the identification of word segments, POS tags, lemma, and 

morphological features. A morphological analyser (MA) is usually a context-free 

tool that provides all possible morphological analyses based on a lexicon or 

dictionary. Morphological analysers may also include a disambiguation component: 

the solution set are ranked according to the context. In this case, we call such tools  

taggers. The terms POS tagger and morphological analyser are sometimes used 

interchangeably though. While POS taggers and morphological analysers both 

analyse the word form (or sometimes its morphemes), POS tagging usually is a more 

straightforward task that only predicts the POS tag from a set of tags.  

2.3 Arabic Language 
Arabic and Hebrew are the two most common examples of Semitic 

languages. Arabic itself contains many different dialects. Arabic is the official 

language of more than 20 countries, which covers most of the Middle East and 

North Africa.  

Classical Arabic is the “liturgical” language that Muslims around the world 

use in religious practice. CA is also known as “Fussa” (the clearest), which Arabic 



  - 9 - 

Grammarians build their rules upon. One variant of CA is Quranic Arabic (QA), 

which is worded from CA, but differs in the sense that it is believed by Muslims to 

be the direct word of Allah. As time passes, different spoken variants of classical 

Arabic emerged, and people needed a standard form of communication: Modern 

Standard Arabic (MSA). MSA is recognised as the formal and standard written 

Arabic. MSA is the language currently employed in media and education (Bin-

Muqbil, 2006). 

MSA differs from CA. MSA inherits its syntax, morphology, and 

phonology from CA; however, MSA's lexicon is much more modern (Habash, 2010) 

and its stylistics are different (Bin-Muqbil, 2006). CA is not a spoken language 

(neither is MSA) and is usually found in books and journals. Therefore, it is more 

standardised in the form of writing. Because it is a classical language, CA had less 

attention in the literature and is under-resourced compared with MSA, despite a 

significant amount of Arabic heritage of ancient books. The classical text is usually 

grammatically analysed with POS tagsets that are inspired from traditional Arabic 

Grammar, Ia’rab (Elhadj, 2009; Dukes and Habash, 2010; Sawalha, 2011; Elhadj, 

Abdelali and Ammar, 2014).  

Almost all classical Arabic is low-resourced with one exception, the Quran. 

There are at least 5 corpora that either completely focus on the Quran or at least 

include it. Because of the Quran’s central position in Muslim lives, it grabs more 

attention. However, in this research, we claim that the Quran is not a fully 

representative sample of classical Arabic1. The Quranic script (a.k.a Uthmani) has a 

different orthography and lacks some POS tags that normally appear in classical 

Arabic such as punctuation and numbers.  

2.4 Arabic Morphological Analysis 
Morphology in linguistics can be defined as the study of the form (internal 

structure) of the word (Kiraz, 2001). While there is some disagreement in the 

literature about its definition, this research only cares about morphological analysis 

in the sense of identification of some meaningful parts and aspects of word structure. 

Specifically, it includes identifying inflectional and lexical features of word 

                                                
1 Neither will the Sunnah corpus be a fully representative sample of classical Arabic. However, it  is 

in the direction of filling the gap of one classical Arabic genre. 
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segments such as root, stem, affixes, part-of-speech, lemma, pattern, etc. For 

example, the word ( نوبرضیس  /syDrbwn/ (They) will hit) has four meaningful 

elements /s+y+Drb+wn/: /s/ indicates a future tense, /y/ is third person marker,  

/Drb/ is the verb “hit”, /Drb/ is its root and lemma and / FaCaL/ is its pattern, and 

/wn/ is a plural marker of the subject. These elements (a.k.a. morphemes) are the 

smallest meaningful units of the word.  

Morpheme function can be derivational or inflectional. Morphology 

derivation is the procedure of building new words on the basis of an existing word, 

e.g. unstable and stableness are both derived from stable. Inflectional morphology, 

however, changes grammatical features of the same word, e.g. cats is the plural form 

of cat. Unlike English which is mostly morphologically concatenative (or linear), 

Arabic derivational morphology tends to be nonlinear or templatic (a root with some 

vocalism injected into a pattern to form a word), and Arabic inflectional morphology 

tends to be concatenative. However, there are some exceptions: for example, broken 

plurals (inflectional) are templatic, and the Nisba phenomenon (a derivation of 

relative adjective by attaching a suffix Yaa letter) is concatenative (Ryding, 2005, p. 

263).  

Morphology analysis includes the process of identifying each word's 

morphemes and extracting their grammatical features: including inflectional and 

lexical features. A morpheme is the minimal unit of the word that carries a meaning. 

The term word is used to represent its orthographical purpose, i.e. one unit of a 

sentence bounded by two whitespaces. Tokenisation is the process of transforming 

the stream of input characters into a series of words. It includes separating 

punctuations, grouping digits of one number or date, etc. In contrary, segmentation 

is a more specific form of tokenisation: the morphological process of separating 

clitics and affixes from the word according to some linguistic theory. Clitics and 

affixes are not the same: An affix is a morpheme of a word, such as prefixes and 

suffixes, that attach to a base or a stem while a clitic is a syntactically independent 

morpheme that attaches after affixes (Habash, 2010). 

The term feature is sometimes misleading. In this research, it is mostly used 

to describe the morphological aspects or characteristics of one word or morpheme, 

primarily inflectional and lexical features. It is also, however, later in the thesis used 

in the Machine Learning sense of describing model parameters or factors.  
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This research follows the convention of representing the morphological 

features for each segment of the word, instead of the word. While feature inventories 

can have an extensive list of features, morphological analysers usually limit the list 

to morphosyntactic features: the features whose values are directly related to the 

syntax of the word (either in agreement  [ ةیعبتلا ] (e.g. gender agreement between 

noun and verb) or government [ لومعملاو لماعلا  ] (e.g. case  (for nouns) and mood (for 

verbs)). 

Morphosyntactic features include: 

- Gender [ سنجلا ]: a lexical2 feature for nouns, and inflectional feature for 

verbs, adjectives, pronouns, etc. It does not necessarily denote the sex of the 

entity but indicates the grammatical function. Values usually are either 

masculine or feminine.   

- Number [ ددعلا ]: usually an inflectional feature (although it is sometimes 

derivational, e.g. broken plural nouns). It denotes the number of persons 

(even though it is used for non-animate nouns) and usually singular, dual, or 

plural. In traditional Arabic grammar, more values are defined (e.g. plural of 

plural) (Sawalha and Atwell, 2013). 

- Definiteness [ فیرعتلا ]: inflectional feature for nominals that determine 

whether they are known or unknown. Usually, definite nouns are prefixed 

with /Al+/. Nunation, the process of adding Tanween (/F/,/N/,/K/): a suffix 

for nominals that is pronounced as an /n/ sound and usually marks nominals 

as indefinite. However, diptotes (some specific classes of words) are 

restricted from nunation (Ryding, 2005). 

- Case [ ءامسلأا بارعإ ]: inflectional feature for nouns and adjective. It is related 

to morphology as they are usually marked by a case marker (e.g. a diacritic), 

and to syntax, as it indicates the role of the noun in the grammar. There are 

three cases in Arabic: nominative [ عوفرم ], genitive [ رورجم ], and accusative 

[ بوصنم ].  

- Tense/Aspect [ لعفلا عون ]: a derivational feature of verbs that has three values: 

perfect (or past) [ يضام ], imperfect (or present) [ عراضم ] and imperative [ رمأ ]. 

These types are profoundly influenced by traditional Arabic grammar. 

Perfect verbs do not necessarily indicate the past occurrence of their actions. 

                                                
2 See discussion of lexical features below. 
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There are more tenses in Arabic, but they are compound tenses. The 

imperative feature can be describe the mood of the verb (Ryding, 2005) as 

imperative semantics can be expressed in other ways. 

- Person [ ریمضلا عون ]: inflectional feature for imperfective verbs and pronouns: 

first person [ ملكتملا ], second person [ بطاخملا ], and third person [ بئاغلا ]. 

- Voice [ لوھجملاو مولعملل ءانبلا ]:  derivational feature for verbs and participles to 

indicate whether the agent of the verb is known (active [ لعاف مسا ،مولعملل ينبم ], 

or passive [ لوعفم مسا ،لوھجملل ينبم ]) 

- Mood [ لاعفلأا بارعإ ]: similar to the case feature of nouns, the mood is an 

inflectional feature to determine the mode of the verb: indicative [ عوفرم ], 

subjunctive [ بوصنم ], jussive [ موزجم ].  

In addition to inflectional features, computational morphological analysis 

usually include identifying some lexical features. Lexical features are the set of 

features that describe the meaning of one word regardless of its inflexion (i.e. 

abstracted from the morphological analysis) but from the language’s inventory 

(lexicon). A lemma is a word form that represents a group of word forms that differ 

only among themselves (Marton, Habash and Rambow, 2010). This group of word 

forms are called lexeme. A lexeme is the smallest unit of language that bears some 

meaning. One example of a lexeme is “describe”, and it includes the set of word 

forms through inflexion: describing, describes, described. In English, the infinitive 

form of the verb and the singular form of nouns are usually picked as lemmas. So, 

the lemma is the central representation as it is used in a lexicon. 

The most crucial lexical feature is the core part-of-speech, POS (or lexical 

category): the category of words in the lexicon that has similar grammatical 

properties. Because this grouping can be done using different linguistic theories, 

there is no standard set of POS tags.  

Other lexical features include the pattern (either the pattern of the word or 

the lemma), the root of the word, number of root letters and noun finals. Arabic 

word roots can be defined as “a relatively invariable discontinuous bound 

morpheme, represented by two to five phonemes, typically three consonants in a 

certain order, which interlocks with a pattern to form a stem and which has lexical 

meaning.” (Ryding, 2005, p. 47)  

Diacritics or short vowels are some phonological marks that are usually 

underspecified (not written) in Arabic. Diacritisation is the process of adding those 
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missing marks. Some diacritics are lexical, and some are inflectional and their type 

usually correlates with their position (usually, last diacritic is inflectional, and others 

are lexical). Lexical diacritics change the lexical word meaning, while inflectional 

diacritics change mood, case and voice features. This process is close to 

morphological analysis as both processes analyse an ambiguous word based on its 

context and because of the effect of absence/appearance of diacritics on the 

morphological analysis. It is worth noting that the above Arabic morphology terms 

are not standardised; and they were sometimes used interchangeably in the literature 

(Al-Sughaiyer and Al-Kharashi, 2004; Habash, 2010). 

2.5 Computational Arabic Morphological Analysis 
Arabic morphology analysis is usually essential to Arabic NLP tasks. It is 

usually done in the first steps of advanced NLP tasks, such as machine translation 

and text categorisation (Jurafsky and Martin, 2008). It is considered one of the most 

studied topics in Arabic NLP. Arabic morphology has a high impact on 

computational tasks.  

However, the level of analysis needed depends on the target goal. Tasks 

can be either contextual or non-contextual, analytical or/and generative, and shallow 

or deep. For example, it may be sufficient for information retrieval (IR) tasks to 

extract the stem or the lemma of the word. In contrast, traditional statistical machine 

translation (MT) tasks require thorough morphological analysis (e.g. morphological 

features play a critical rule such as the gender of the subject and the aspect of the 

verb).  

The traditional text analysis pipeline includes tokenisation, POS-tagging, 

and parsing. The stages of analysis usually start from the surface text, and proceeds 

through tokenization, lexical analysis, syntactic analysis, semantic analysis and 

pragmatic analysis with the goal to fully grasp the speaker’s intended meaning 

(Indurkhya and Damerau, 2010). This research is limited to the first two stages. To 

support the subsequent downstream analyses, it is usually more beneficial to have a 

fine-grained tagset than a course tagset3. 

                                                
3 In fact, Kübler and Mohamed (2012) shows that tagging using a complex tagset then converting its 

result to a smaller tagset leads to a higher accuracy than directly tagging using the smaller tagset. 
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In this research, the task is contextual: the proposed tagger must determine 

the most likely tag based on the context, analytical: it only cares about labelling a 

sequence of text with morphological annotation, and deep: the level of 

morphological analysis cares about functional morphology and extend core tags to 

the set of inflectional features. 

Computational Arabic morphological analysis techniques can be classified 

into four categories: table-lookup, linguistic (using finite state automaton (FSA) or 

traditional grammar), combinatorial and pattern-based (Al-Sughaiyer and Al-

Kharashi, 2004). Table-lookup approaches use a massive database of lexicon and 

morphology. The linguistic approach uses hand-crafted or auto-generated rules to 

analyse.  The combinatorial technique determines the morphology by checking 

combinations of letters against a root list. Pattern-based uses the word pattern to 

find the stem of the word. Table-lookup and linguistic methods suffer from storing 

and maintaining a high number of inflected forms or rules. Recent advances in the 

literature seem to be more towards data-driven statistical methods like 

combinational and pattern-based. However, these methods require creating costly 

annotated corpora, which are missing in the case of under-resourced languages. 

Computational morphological analysis may involve some of the following 

tasks: POS tagging: identifying the morphosyntactic class for each lexical unit using 

its structure and contextual information; morphological features prediction: 

assigning each word a value of a specific morphological feature (e.g. gender); 

segmentation: finding word segments boundaries; lemmatisation/stemming: 

extracting the lexical origin (lemma, stem, pattern, or radical root) of each lexical 

unit; and diacritisation: recovering unspecified lexical and inflectional diacritics 

(i.e. short vowels) in each word’s orthography.  

In this research, we interchangeably use morphological tagger and POS 

tagger to refer to deterministic analysers that use the context to either choose the 

most probable tag according to the context or at least provide an ordered list of tags. 

Morphological analysers is a more general term and usually refer to non-

deterministic analysers. One more slight but important difference: morphological 

analysers (non-deterministic analysers) are usually designed to be general-purpose 

and therefore their tagset is usually rich. Taggers are usually designed for specific 

purposes and use a reduced tagset for accuracy purposes.  
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2.6 Computational Linguistic Resources 
A number of Arabic linguistic resources are available in the computational 

linguistic field.  They are designed for different purposes: lexicography, Arabic 

learning, investigating Arabic compounds, language modelling, 

morphological/syntactic modelling, teaching, speech recognition, and much more. 

This research focuses on linguistic resources that are related to morphological 

analysis, namely: morphological modelling, morphological annotated corpora, 

lexicon, and orthographical annotated corpora.  

POS taggers are usually trained on a corpus. A corpus (pl. corpora) is “A 

collection of pieces of language that are selected and ordered according to explicit 

linguistic criteria in order to be used as a sample of the language” (Sinclair and Ball, 

1996, p. 27). The corpus should be annotated with POS tags. Corpus annotation is 

“the practice of adding interpretative, especially linguistic, information to a text 

corpus, by coding added to the electronic representation of the text itself” (Leech 

and Wilson, 1996, p. 3).  

All corpora add some meta-information (annotation) for the collected 

texts. This annotation varies depending on the goal of the corpus from document-

level such as marking document’s source and author, sentence-level such as parallel 

bilingual corpora, to word-level or segment-level such as grammatical annotation, 

i.e. morphological annotated corpora. The more deep the level of annotation, the 

harder and more tedious the task, and probably the fewer  and smaller corpora.  

Morphological annotated corpora are usually word-level (sometimes 

segment-level) annotated. They are useful for several applications such as 

segmentation, grammatical tagging, diacritisation, lemmatisation, and 

disambiguation. Annotated corpora vary in the richness of the annotation itself. 

Usually, they are designed to be rich to give the flexibility to downstream 

applications. However, this comes with a cost in time and money. 

The annotation of morphological analysis is usually performed by 

assigning each word (or a segment of the word) one or a set of tags that represent the 

different aspects of the morphological analysis. One aspect is the POS tag, and the 

annotation should have a set of possible POS tags in advance, a.k.a. POS tagset. 

Annotated corpora serve as training datasets for data-driven POS taggers and as 

evaluation datasets to measure the quality of one tagger.  
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Other valuable linguistic resources are lexicons and dictionaries. In Collins 

Dictionary, a lexicon is “the set of all the morphemes of a language”. In other words, 

it is the entire inventory of the language lexemes. Dictionaries are a similar resource 

but are intended usually for human readers. They usually are indexed by the root 

word where some inflected words can be listed under the root word. Other inflected 

forms are not listed as the dictionary assumes that the reader has enough grammar 

on how they will be inflected. In contrast, lexicons are usually indexed by the 

lexeme where all its inflections are listed.  

Note that the root word are hard to define, especially in templatic languages. 

In English dictionaries, words derived from other words are indexed separately. For 

example, you do not expect to have PLAY and PLAYER in the same entry. 

Classical Arabic dictionaries, however, usually index the entries using the three 

radical letters (the root of the word). This indexation abstracts not only inflection 

morphology but derivational morphology.  

Lexicons are useful in morphological tagging, especially for determining 

lexical features. For example, the gender of nouns is a lexical feature, so lexicons 

can play a critical role in predicting a word’s gender. Because the number of 

inflected forms in Arabic is high, morphological analysers usually encode the 

lexicon in different ways (e.g. finite state automaton). Lexicons, however, are not 

always optimal in terms of coverage, especially for under resourced languages and 

varieties, such as classical Arabic and dialects.  

2.7 Challenges of Arabic Morphology Analysis 
Due to the morphologically-rich nature of the language, its highly 

inflectional, non-linear morphology, and the absence of short vowels (phonological 

information), the morphological analysis of Arabic is not an easy task. The analysis 

involves handling an “exceptionally high degree of ambiguity” (Soudi et al., 2007).  

Arabic is a morphologically rich language (MRL), as illustrated in previous 

sections. It makes the interaction between syntax and morphology more 

complicated. As for all MRLs, the rich morphology allows the language to have a 

considerable degree of freedom in word order as some syntactic relations are 

expressed in the morphology (Tsarfaty et al., 2010). This phenomenon explains why 

case and mood features are of central importance in traditional syntactic theory 

[ وحنلا ]. This is a remarkably essential difference in the computational analysis as this 
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free order property makes algorithms less able to model the language given the same 

set of examples (Heintz, 2014). Moreover, the case and mood diacritics are usually 

not written, making such syntactic property ambiguous. Like other MRLs, the actual 

usage of the free order property in Arabic is less than it could be in principle 

(Habash, 2010).  

As an effect, Arabic is highly inflectional. Much of the structural 

information in Arabic sentences is encoded in inflectional features. Grammatical 

features usually inflect the word in a concatenative way (prefixes and suffixes) but 

sometimes in a templatic way. Inflected words do not have an orthographic marker 

to distinguish affixes. Consequently, the number of possible inflected forms is high, 

thus the vocabulary size can be enormous (leading to a data sparseness problem).  

Since there is a high number of inflexions per word, Arabic's tagsets are 

usually more extensive than a typical tagset for English. The size of compound 

tagsets (that embody morphological features) in Arabic can reach an unusually high 

number. The Buckwalter tagset, for example, can hypothetically reach over 330,000 

tags (Habash, 2010). Tagset size is critical to the process of classification.   

POS tagging is typically assigned to each morpheme instead of the whole 

word as in English (Habash, 2007). Therefore, a pre-processing step of 

morphological segmentation is usually required in order to reduce the data 

sparsity. This pre-processing step leads to improvement in performance of statistical 

machine translation (Lee, Papineni and Roukos, 2003; Lee, 2004; Habash and Sadat, 

2006). 

Written Arabic is highly ambiguous because some phonological 

information, particularly short vowels (diacritics), are not usually written. The short 

vowels were not introduced in the Arabic orthography system until the 2nd century 

of prophet Mohammed’s date of migration. In fact, they are still absent in most of 

the printed and handwritten materials in Arabic. As a result, the same word form can 

correspond to different possible lexemes.  

Concatenating a word with a morpheme sometimes results in the adjustment 

of the original word form (form adjustment). For example, the prefix /l/ precedes the 

definitive particle /al/, but this resulted on dropping its first letter /a/. This makes the 

morphological segmentation more complex as it involves morphological awareness 

of the word.  
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Lastly, some letters like the Hamza and Yaa letters in Arabic script are 

inconsistently spelt, which increases the ambiguity and sparsity (multiple forms 

correspond to the same word) (Habash and Sadat, 2006). This problem is not limited 

to MSA but is also applicable to classical Arabic (Mohamed, 2018).  

2.8 Ensemble Tagging 
In Collins English Dictionary, “An ensemble of things or people is a group 

of things or people considered as a whole rather than as separate individuals.” (from 

French word meaning: together).  In Machine Learning, ensemble methods refer to 

the process of combining multiple learning methods to obtain a higher accuracy in 

classification prediction that was not achieved by any individual learning methods. 

Instead of relying on one expert decision, ensemble methods tries to make a decision 

based on the opinions of a collection of experts (Malmasi and Dras, 2018).  

The main goal of combining classifiers it to have a more accurate 

classification decision. This comes at the expense of increased complexity. 

However, the question is “whether a combination of classifiers is justified” 

(Kuncheva, 2014, p. 101).  

There are at least four approaches to building classifier ensembles (see 

Figure 2.1). Ensembles normally mean multiple learning algorithms trained on the 

same training data-set, i.e. homogeneous ensemble.  But in the case of the 

combination in this thesis, the individual Arabic text taggers which are combined are 

not trained on a common data-set, but separate “black boxes”5, where we have no 

control over (or even knowledge of) the training set. 

                                                
5 An alternative name for this combination might be “coalition” or “assembly”, cf. Collins English 

Dictionary: “A coalition is a group consisting of people from different political or social groups who 

are co-operating to achieve a particular aim.” “An assembly is a group of people gathered together for 

a particular purpose. ... The assembly of a machine, device, or object is the process of fitting its 

different parts together.” 
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Figure 2.1 Approaches for building classifier homogeneous ensembles, 

reproduced from  (Kuncheva, 2014). 

 
Figure 2.2 Two approaches of building heterogeneous ensembles.  

Multiple types of ensemble exist in the literature, mostly for homogeneous 

methods like bagging (equally-weighted models trained on random subsets of the 

training data) and boosting (adaptive training where each new model focuses on a 

subset of training data that was misclassified), including others.  

Heterogeneous methods require adaptation or mapping steps 

before/alongside combining and usually are more complex and prone to errors. 

Since they use different datasets, the evaluation method for these ensemble cannot 

be directly compared to original ones. Figure 2.2 listed two approaches to handle 
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heterogeneous ensembles. The right approach combines jointly adversarial corpora 

like (Qiu, Zhao and Huang, 2013; Chen, Zhang and Liu, 2016; Chen et al., 2017), 

while the left approach builds a tagger for each corpus and combine these taggers. 

Variants of this method is implemented in this thesis and by (Zavrel and Daelemans, 

2000; Alabbas and Ramsay, 2012b; Albogamy and Ramsay, 2016).  

In POS tagging, different techniques are used, including knowledge-based 

models: (table lookup, syllable-based morphology, pattern morphology) and 

empirical methods: (Hidden Markov Models (HMM), Support Vector Machines 

(SVM), …).  Each POS tagger is designed differently. However, without a full 

understanding of the language, no POS tagger could ensure perfect accuracy. 

Because of their different bases, taggers will typically produce different errors. 

Some combinations of POS taggers exploit these differences, and have been 

reported to achieve a better accuracy for several languages, including Arabic 

(Alabbas and Ramsay, 2012a; Aliwy, 2015; Zeroual and Lakhouaja, 2017), English 

(Marquez et al., 1999; Halteren, Zavrel and Daelemans, 2001; Schroder, 2002), 

Italian (Søgaard, 2009), Icelandic (Henrich, Reuter and Loftsson, 2009), and 

Swedish (Sjöbergh, 2003).  

Most of the combination of POS-taggers in the literature are homogeneous 

and based on training different models on a common training corpus. Each 

individual model uses the same tagset and morphological segmentation as the one on 

the training corpus. However, combining heterogenous black-box taggers, as the 

approach chosen for this thesis, involves handling different issues, such as mapping 

taggers' tagsets to one output tagset. The output of those taggers might need to be 

aligned on the different levels: document, sentence, word, and even morpheme. 

2.9 Evaluating Taggers 
Several evaluation measures exist for evaluating POS taggers. One of the 

most common and intuitive measures is the accuracy, the proportion of word forms 

correctly tagged. This measure requires a method to decide whether a tagging is 

“correct” or not. For POS tagging, it is common to use a reference corpus that is 

manually annotated to check the validity of a tagging: 

 

!""#$%"& =
no. correct	tags	
no. reference	tags
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However, three conditions need to be met: 

• The tagger must use the same tagset used by the reference corpus, 

otherwise, a mapping to the reference tagset is required;  

• The tagger must produce same tokenisation as the reference corpus, 

otherwise, a re-alignment to the tokenisation in reference corpus is 

required; and, 

• The tagger should output only one tag per token. In case of multiple tags 

per token, some alternative measurements like ambiguity should be 

provided. 

Alongside the accuracy measure, ambiguity is used to determine the average 

tags per word emitted by the tagger. It is common to drop reporting ambiguity if the 

tagger is a single-tag tagger6, as its ambiguity is one. Ambiguity can be used to 

measure the difficulty of POS disambiguation: 

!4567#68& = 	
no. produced	tags	
no. reference	tags

 

An alternative method is the use of precision and recall measures inspired by  

Information Retrieval. It is used for evaluating multiple-tag taggers. Both are usually 

combined into F1-score that can be balanced or shifted toward precision or recall. 

We assume here the frequent case where a single tag is assigned to each token in the 

reference corpus. The recall measure is the proportion of words that have one correct 

tag, i.e. it is the same as the accuracy. Precision can be seen as the accuracy but 

punished by ambiguity.  

<$="6>6?@ = 	
no. correct	tags	
no. produced	tags

= 	
no. correct	tags	

ambiguity ∗ 	no. reference	tags
=

Recall
ambiguity

	 

	H="%II = 	
no. correct	tags	
no. reference	tags

	 

 

J1LMNMOPQR = 2 ∗
precision ∗ recall	
precision + recall

 

In ensemble classifiers, we needed also to compare the error distribution of 

different taggers. Precision, recall, accuracy and even ambiguity are global 

                                                
6 In this thesis, we use the term tagger to refer to single-tag taggers, and analyser to refer to multi-tag 

taggers.  
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measurements. So, we use the known measurement for measuring the human 

annotation agreement: (Kappa coefficient) (Carletta, 1996).  

 

U =
VW − VQ
1 − VQ

 

where po is the relative observed agreement among raters (identical to accuracy), 

and pe is the hypothetical probability of chance agreement. It can be computed as 

following: 

For classes k, number of samples N and @YZ   number of times rater i predicted 

class k: 

p[ =
1
\] 			^@Y_@Y]

Y

 

 

  Please note that this measurement requires that both taggers have the same 

tagset. 

2.10   Conclusion 
This chapter gave a brief but essential summary on different background 

aspects in this research with the aim to define key concepts and help the reader 

understand challenges specific to the Arabic language. It started by defining and 

explaining the problem of the research: Part of speech tagging and morphological 

analysis. Then, it introduced the Arabic language with a focus on the similarities and 

differences between classical Arabic and modern standard Arabic. We define the 

scope of the Arabic morphological analysis and associated computational problems 

and their challenges. After that, we introduce the reader to the concept of ensembles 

in the sense of machine learning. In the next chapter, we explore related work in 

four areas: classical Arabic corpora, annotation tools, morphological annotation 

styles, and automatic annotation methods, with a focus on classical Arabic and 

ensemble methods.  
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3 LITERATURE REVIEW 

Chapter Summary: 

This chapter surveys existing morphological analysis methods with a focus on 

ensemble methods and classical Arabic. It starts by exploring existing Arabic 

corpora, especially morphologically and orthographically annotated corpora, as 

these corpora serve as a basic requirement for data-driven morphological analysis 

methods. Next, it explores and evaluates existing tools for annotating corpora, with a 

focus on Arabic needs and requirements. Third, it investigates morphological 

annotation representations in the literature with a focus on adapting between 

different representations by methods such as mapping and alignment. Finally, it 

examines the computational methods for segmentation, tagging, and diacritisation 

with a focus on ensemble methods and how these methods are evaluated.  
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3.1 Introduction 
The computational analysis of the Arabic language started in the 1980s. The 

morphological aspect of the language is an ongoing research theme, especially on 

low-resource variants like classical Arabic and dialects. Adapting and reusing 

existing resources to a new domain or language has shown advantages in many 

fields.  

This chapter surveys existing morphological analysis methods with a focus 

on ensemble methods and classical Arabic. It starts by exploring existing Arabic 

corpora, especially morphologically and orthographically annotated corpora, as 

these corpora serve as basic requirement for data-driven morphological analysis 

methods. Next, it explores and evaluates existing tools for annotating corpora, with a 

focus on Arabic needs and requirements. Third, it investigates morphological 

annotation representations in the literature with a focus on adapting between 

different representations by methods like mapping and alignment. Finally, it 

examines the computational methods for segmentation, tagging, and diacritisation 

with a focus on ensemble methods and how these methods are evaluated.  

Text corpora forms the basis for developing data-driven computational 

models of one language. These corpora are designed to be representative samples of 

one aspect of its language, e.g. its morphology. Treebanks, or morphologically 

annotated corpora, are usually annotated to the word-level with grammatical 

categories, lemma, and various grammatical features. Classical Arabic, in particular, 

faces a lack in these type of valuable resources unlike its more modern variant: 

MSA. The first part of this chapter presents a systematic review of the literature of 

these corpora. 

The next section focuses on tools for manual annotation of treebanks in 

general and morphological annotation specifically. These tools aim at speeding up 

the repetitve task of annotation by reusing predefined annotations with no 

compromise on the quality and consistency. General methods exist, but Arabic 

language and highly inflectional languages in general require more features that are 

sometimes not implemented in general-purpose frameworks.  

Computational annotation of written texts, POS tagging or morphological 

annotation in particular, adds a layer to the text that is valuable to many downstream 

processes in the field of Natural Language Understanding. This layer describes the 

grammatical role of words for the purpose of a better understanding of the whole 
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sentence. Different linguistic bases lead to different annotation schemas. Because of 

the expensive and tedious characteristic of annotation, several methods that try to 

adapt existing annotation to other languages exist. The third part surveys these 

Arabic annotation schemas and review efforts to map and standardise tagsets and 

align incompatible segmentation schemas.  

The forth part of this chapter surveys existing computational systems for 

morphological and orthographical annotation. It pays more attention on efforts to 

combine or adapt several taggers, especially heterogeneous taggers. Existing open 

access taggers are evaluated in detail in Chapter 4, for the purpose of selecting and 

using the best ones in our ensemble approach. 

 

3.2 Arabic Corpora 

3.2.1 Corpora 

A number of Arabic corpora are available in the computational linguistic 

field.  They are designed for different purposes: lexicography, Arabic learning, 

investigating Arabic compounds, language modelling, morphological/syntactic 

modelling, teaching, speech recognition, and much more. This survey focuses on 

corpora that are related to morphological analysis, namely: morphological 

modelling, morphological annotated corpora, lexicon, and orthographical annotated 

corpora.  

Most existing Arabic corpora are for written texts. There are few corpora that 

are designed for spoken languages, although there is a recent shift in focus in the 

research toward dialectics. The source of written texts is mostly newswire and the 

web, and most of these corpora are not open-access and not freely downloadable 

(Sawalha, 2011).  

MSA Corpora form the majority of these corpora. Classical Arabic has 

recently grabbed attention in the corpus creation field, with most work on the 

Quranic texts. The most prominent resource for classical Arabic is the Shamela 

Library. Shamela (http://shamela.ws) is a freely downloadable electronic library that 

contains at least 5300 Arabic books in Islamic studies and has become the standard 

e-library of Arabic classical books. It has been used to obtain Arabic classical text in 

building several corpora for different purposes: language modelling corpora  

(Alrabiah, 2014; Belinkov et al., 2016), orthographic modelling corpora (Zerrouki 
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and Balla, 2017; Alosaimy and Atwell, 2018), and morphological modelling corpora 

(Mohamed, 2012; Alosaimy and Atwell, 2017).  

3.2.2 Morphologically annotated Corpora 

In regards to Modern Standard Arabic, there are several existing corpora, 

including: 

• Khoja POS tagged corpus, 50,000 words of newspaper text with simple 

POS tags, and 1700 words with detailed POS tags.(Khoja, 2001) 

• The Penn Arabic Treebank (PATB), one million tokens annotated with 

part of speech (POS), gloss, diacritisation and word segmentation. 

(Maamouri et al., 2005) 

• Prague Arabic Dependency Treebank (PADT) (Hajic et al., 2004), 

morphologically annotated 113,500-tokens newswire texts.  

• Columbia Arabic Treebank (CaTiB) (Habash and Roth, 2009).  273,000 

tokens annotated plus 735,000 automatically converted from PATB; 

collectively 1M tokens of newswire.  

• Nemlar Written Corpus (Yaseen et al., 2006). Half-million words in a 

balanced corpus of 13 genres where the time span goes from late 1990’s to 

2005. 

• AQMAR dependency corpus composed of 36,000 words of 10 Arabic 

Wikipedia articles tagged using CaTiB tagset (Schneider et al., 2012). 

One particular treebank is highly influencing the field of Arabic morphological 

analysis: the PATB treebank. It not only has a large amount of annotated texts, but 

its level of annotation is magnificent: the texts are segmented and each segment is 

diacritised, lemmatised and labelled with its complex POS tag. Although PADT 

treebank has a similar rich annotation, PATB treebank has been cited more in the 

literature maybe due to its larger size. However, the fact that they do not conform to 

one standard annotation schema limits their use in a combined corpus.  

Universal Dependency (UD) project is a framework that aims to provide 

treebanks in different languages with cross-linguistically consistent grammatical 

annotation. There are three Arabic treebanks in UD: A converted PADT treebank to 

UD standards, NYUAD treebank that is based on the PATB treebank but converted 

to CaTiB annotation schema in UD format, and a newly released 20K-words Arabic-

part of the Parallel UD (PUD) project. Aside from their fine-grained tagsets, the 
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three treebanks share the same coarse tagset (12-tag UD tagset) and morphological 

features. In fact, the comparative statistics of Arabic treebanks published in their 

website shows some differences such as the lemma definition.  

As Albared, Omar and Ab Aziz (2009) pointed out: most corpora available 

are derived from newspapers. Moreover, each corpus used its own tagset and 

morphological segmentation scheme making it difficult to ensemble them into one 

training dataset, which could lead to a better accuracy (Banko and Brill, 2001). 

Classical Arabic on the contrary is low-resourced, especially in manually 

annotated corpora. They are usually attached with POS tagsets that are inspired from 

traditional Arabic Grammar, Ia’rab (Elhadj, 2009; Dukes and Habash, 2010; 

Sawalha, 2011; Elhadj, Abdelali and Ammar, 2014; Zeroual and Lakhouaja, 2016; 

Alosaimy and Atwell, 2017). 

In regards to classical Arabic corpora, there are six annotated corpora as follows: 

1. The morphological analysis of the Holy Qur'an by Al-Imam University 

(Elhadj et al., 2010) 

This project provides an indexed Quran text database of morphological 

segmentation which has been done according to linguistic terms and rules. Each and 

every word of the Holy Quran has been split into a prefix, a root, a stem and a 

suffix, and then stored in a 4-column table. It was part of a larger project that 

involves a search engine for similar pronunciation of words. The project as well 

provides a manually verified text of the Quran that is written according to modern 

orthography.  

2. The Quranic Arabic Corpus (QAC)1 (Dukes, Atwell and Habash, 2013): 

Developed at the University of Leeds, the QAC corpus is a morpheme-based 

corpus that is fine-grained annotated with grammatical and syntactical annotation. In 

addition to segmenting each word to its morpheme, each morpheme is annotated 

with its POS tag, root, lemma and a set of morphological features.  

The corpus covers the whole holy book which is 77,430 words. After 

manually segmenting each word, the total number of segments is 128,220, where 

each segment is given one POS tag out of about 45 tags, and a set of lexical and 

grammatical features that includes each word’s lemma and root (assigned to its 

stem) and eight grammatical features. In addition, various information about some 

                                                
1 http://corpus.quran.com/ 
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types of words is given to define a finer group of POS like verb form, noun 

derivation, special groups like the verb /kaana/ and its sisters. 

The process of developing this corpus is well defined. It started by analysing 

each word with a non-disambiguated list of possible analysis extracted from the 

Buckwalter morphological analyser filtered to keep only analyses that match the 

diacritised form. Some orthographic processes are required to convert the Quranic 

script to the modern script expected by the analyser. Only 87% of verbs are analysed 

by the morphological analyser. Then two paid annotators were assigned the task of 

selecting and correcting the tagging according to the morphological guidelines and 

tagset in two rounds. The first one completed the analysis of remaining words and 

corrected 13% of words incorrectly analysed, i.e. only 76% of words are correctly 

annotated by the morphological analyser. The second annotator reviewed the 

corrected version and made changes to 1.3% of the words. Users of the corpus 

corrected about 2.5% of words within the first six months of corpus release.  

3. SALMA Annotated Quranic Text (Sawalha, 2011) 

For the purpose of demonstrating the Standard Arabic Linguistics 

Morphological Analysis tagset (SALMA), Sawalha and Atwell (2013) developed the 

Gold Standard of Arabic - Quranic text (GSA-Q). They fully annotated the 29th 

chapter of the Quran, where each word form is annotated with its root, lemma, 

pattern, long stem and its morphemes tagged with its part-of-speech and sixteen 

morphological features: gender, number, person, inflectional morphology, case or 

mood, case or mood marks, definiteness, voice, emphasising, transitivity, rational, 

declension and conjugation, augmentation, number of root letters, verb root type and 

noun finals. The corpus is publicly available2. 

 4. Emad’s Heritage Corpus (Mohamed, 2012, 2018) 

The Heritage corpus is a recently published corpus of classical Arabic that 

covers various genres of classical texts. The total number of annotated text increased 

from 27k word of religious texts in 2012 to 58k words of broad classical texts in 

2018. The text covers several topics that include: the Quran, Sunnah, Islamic law, 

literature, philosophy, and psychology. The corpus will be publicly available. 

The text is annotated with the PATB tagset, which allows the comparison of 

a tagger trained on the corpus and the one trained on the PATB corpus. The tagset 

                                                
2 http://www.comp.leeds.ac.uk/sawalha/ 
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used is a complex tag (morphological features are embodied) and has 133 segment-

level tags and 949 word-level compound tags.  

The corpus was done in one round by the first author in an iterative way. The 

first 2k words are initially tagged using a tagger trained on the PATB treebank and 

then proofread and corrected. Then, for each proofread 2k words, they are added to 

the PATB to create a new more-accurate model, and so on. The initial accuracy of 

using only PATB to tag the corpus is 78.62%. This is due to the high rate of out of 

vocabulary (OOV) words (43.39%) and the domain difference (Mohamed, 2012). 

The author also developed a classical Arabic tagger based on this corpus 

using the TiMBL toolkit, a memory-based learning toolkit. The accuracies of full 

automatic segmentation and POS tagging on development and test datasets are 

89.8% and 87.8%, respectively.  

5. Evaluation Set of Joint Tagging and Parsing (Zhang et al., 2015) 

A classical Arabic dataset is mentioned in (Zhang et al., 2015), where its 

texts are obtained from the Shamela library and segmented and tagged by a 

computational linguist. No clear mention of the used tagset is provided, nor its size; 

however, the paper claims that the dataset is available at the Farasa website, but we 

could not find a link to it.  

The dataset size is 7.9k of words and 163 sentences. The dataset was used for 

testing their joint parser trained on the MSA treebank, and showed that 

incorporating syntactic information reduced the error rate significantly, especially 

for OOV words.  

6. Al-Mus’haf Corpus (Zeroual and Lakhouaja, 2016) 

Al-Mus’haf is a new annotated corpus of the whole Quran that focuses more 

on lexical features and uses a tagset that is more influenced by the traditional Arabic 

grammar, Ia’rab. It covers all words of the Quran (~78k words) and tags each word 

with a rich POS tag, lemma, stem and root. It does not specify the affixes of the root, 

though.  

The annotation is done semi-automatically using the AlKhalil 

morphosyntactic analyser (Boudchiche et al., 2016). Since AlKhalil is a non-

deterministic analyser, a further treatment of its output is required. Experts in Arabic 

morphological rules verified the results and completed non-analysed cases. Alkhalil 

was able to tag a word with one analysis in 71% of cases. Other cases required either 
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correction or disambiguation. The authors did not report the number of cases where 

multi-analyses are incorrect.  

7. Non-verified Corpora 

Corpora that collect classical text usually add a layer of automatic 

morphological annotation. Alrabiah et al. (2014) built the publicly available3 

general-purpose King Saud University Corpus of Classical Arabic (KSUCCA). The 

50-million-word corpus was designed originally for studying the distribution of 

lexical semantics. The corpus was automatically POS-tagged using the MADA 3.2 

toolkit. The corpus combines different genres: religion 45%, literature 15%, 

linguistics 13%, science 12%, biography 7%, and sociology 5%. In a similar 

approach, Belinkov et al. (2016) developed 1-billion words of classical Arabic 

drawn as well from the Shamela Library with a focus on diachronic information of 

the texts. It has been annotated using the MADAMIRA toolkit and is available 

publicly but without the morphological annotation4.  

Table 3.1 summarises the annotated classical Arabic corpora. Most 

annotation is done to the Quranic text. Tagsets of these corpora are not the same nor 

the segmentation schemas, which complicates the combination of these corpora into 

one standard bigger corpus.  With the exception of unverified corpora and Emad’s 

work, all other works are done using tagsets that are influenced by the traditional 

Arabic grammar. We noticed as well that the Sunnah texts are not annotated except 

for a small part of Emad’s work, although the Sunnah is the second major source of 

Islamic law and guidance. Most presented corpora are done semi-automatically, as 

morphological analysers usually speed up the annotation greatly. However, the 

number of needed corrections in these corpora can give us a measure of how well 

these analysers fit to the classical Arabic. The percentage of corrections ranges 

around ~25% of words, which is quite high, although the Quranic text is fully 

diacritised.  

 

                                                
3 https://mahaalrabiah.wordpress.com/2014/06/07/the-annotated-ksucca/ 
4 https://github.com/OpenArabic/ 
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Table 3.1 Summary of classical Arabic corpora 

Name Reference Texts Word # Tagset Downloadable Verified 

Imam (Elhadj et al., 2010) Quran 77k Only segmentation corpora No Yes 

SALMA (Sawalha, 2011) Quran 1k (Sawalha and Atwell, 2013) Yes Yes 

Religious (Mohamed, 2012) Quran, Sunnah, Philosophy 27k (Maamouri and Bies, 2004) No Yes 

QAC (Dukes, Atwell and Habash, 2013) Quran 77k (Dukes and Habash, 2010) Yes Yes 

Eval Set (Zhang et al., 2015) N/A 7.9k (Maamouri and Bies, 2004)1 No Yes 

Al-Mus’haf (Zeroual and Lakhouaja, 2016) Quran 78k (Zeroual, Lakhouaja and Belahbib, 2017) Yes Yes 

Heritage2 (Mohamed, 2018) Five-geners 58k (Maamouri and Bies, 2004) No Yes 

Alrabiah (Alrabiah et al., 2014) General 50m (Habash, Rambow and Roth, 2009) Yes No 

Shamela (Belinkov et al., 2016) General 1bn (Pasha et al., 2014) Yes No 

                                                
1 It is not mentioned in the paper. However, since it is used for evaluating a trained model of MSA text annotated on PATB, we assume that it is annotated using the same tagset. 
2 This is an expanded corpus of the Religious corpus developed by the same author.  



  - 32 - 

 

 

3.2.3 Orthographically annotated Corpora: Diacritised Corpora 

Corpora may also be annotated by adding diacritics to the word form, which 

is useful in reducing the ambiguity of the word in meaning and grammatical 

category and features. This type of annotation can be seen as one type of natural 

rewritings corpora, e.g. misspelling corpora; however, under-specification of word 

forms in Arabic is not a mistake as it is a common practice. Natural rewritings 

corpora are usually helpful in NLP tasks such as text correction, paraphrasing, 

summarisation, and text normalisation.  

This section focuses on diacritised corpora as it is highly related to 

morphological annotation. One unique aspect of classical Arabic texts is that they 

are often diacritised. This added specification was not done for no reason: 

diacritisation should help the reader disambiguate each word by looking at its 

diacritics. This disambiguation is needed more for classical texts, and in particular 

religious texts where correct interpretation is much needed. 

However, works that focus on MSA texts generally ignore the diacritisation 

completely. It is common to normalise the text by removing all diacritics as they 

only contribute to increasing the sparsity of words. In classical Arabic, this 

information should be integrated in the morphological analysis. This section reviews 

the available corpora and sources for diacritised texts. 

1. PATB Treebank  (Maamouri and Bies, 2004) 

Rich-annotated treebanks are one source of diacritised corpora (in particular: 

PATB treebank) (Maamouri and Bies, 2004). The PATB treebank is one million 

tokens (~750k words) annotated with part of speech (POS), gloss, and word 

segmentation; however, not all words are fully diacritised. 

In fact, the diacritisation on the PATB treebank has passed through different 

decisions. The first corpus was lexically diacritised, with no case marks for nouns, 

no voice nor mood marks for verbs. The second corpus diacritisation considered the 

case and voice marks and was governed through some guidelines that allow a 

consistent annotation schema. The third corpus added mood for verbs.  

This treebank has been used in many diacritisers as a training and testing 

dataset. However, the dataset is only available through an expensive membership of 
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the Linguistic Data Consortium (LCD). Its data is newswire and all the text is in 

MSA. 

2. OptDiac Project (Zaghouani et al., 2015) 

OptDiac stands for Optimal Diacritisation Scheme for Arabic Orthographic 

Representation. The project aims to improve readability and comprehension rates for 

Arabic text through NLP. It is the only annotation project that is dedicated to 

diacritisation. It proposes different schemas for partial diacritisation for the purpose 

of achieving optimal readability scores. One contribution of the project is the 

annotation of the Corpus of Contemporary Arabic (CCA) (Al-Sulaiti and Atwell, 

2006), a balanced 1-million words corpus of MSA texts. There is no clear mention 

of the availability of the annotated corpora nor the licence.  

3. Tashkeela (Zerrouki and Balla, 2017) 

Tashkeela is a corpus of 75 million words semi-automatically extracted from 

several sources. Classical Arabic constitutes about 98% to the corpus, with 97 books 

extracted from the Shamela Library. The estimated average number of diacritics per 

word is 2.05, an indicator of partially diacritised texts. The process of text selection 

is basic and does not ensure that all texts in that book is diacritised.  

Although MSA orthography is largely standardised (Habash, Diab and 

Rambow, 2012), the presented corpora cannot be assumed consistent because of 

four reasons:  

1. The level of diacritisation varies: fully (every single letter), semi-fully 

(except deterministic letters), and partially. 

2. The schema for diacritisation may differ which affects how one letter is 

diacritised: e.g. position of nunation and the diacritisation of the final letter 

proceeded by a vowel-starting word.  

3. Some corpora truncate syntactic vowels (i.e. last short vowels) for the 

purpose of keeping only lexical diacritics. An automatic process usually 

results in inconsistent results, e.g. when word is fused with a suffix.  

4. Some lemmas can have multiple correct lexical diacritisations (this does not 

include case marks nor mood marks). For example, (/>SbE/, “finger”) can 

be diacritised in eight ways (Mandhour, 1994): /<iSobaE/, /<iSobiE/, 

/<iSobuE/, />aSobiE/, />aSobuE/, />uSobaE/, />uSobiE/, />uSobuE/. 
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3.3 Annotation Tools 
Recent research developments in, and uses of, Arabic annotated corpora 

were the main inspiration behind building a new tool for manual annotation. These 

corpora play a growing role in some linguistic and computational research areas 

such as part-of-speech tagging, segmentation, and diacritisation. Additionally, the 

need of a freely available annotated corpus of classical Arabic increases the 

importance, which may encourage researchers to conduct more studies in the 

aforementioned research areas. 

Annotation tools play a critical role in the development of annotated 

resources. Annotation is known to be tedious; but because it is done by humans, it is 

prone to errors. All tools should aim to be efficient in terms of time and accuracy. 

The annotation of Arabic text is even more tedious and time-consuming than its 

equivalent in morphologically-poor languages, as the annotation richness is usually 

higher.  

Morphosyntactic annotation of highly inflectional language corpora requires 

additional specialised functionality: 

1. Segmentation of one word into a set of segments 

2. Addition of orthographical accents or diacritics 

3. Listing a set of solutions from a lexicon dictionary (internally or 

externally using a morphological analyser) 

4. Consistency validation and integrating annotation guidelines (e.g. 

homographs). 

5. Adaptive prediction based on historical tagging 

6. Efficient keyboard-based navigation and labelling 

In this literature review, we focus on four aspects, i.e. tools that:  

1. Are open access and available to download for research purposes. 

2. Are web-based: to integrate it with other systems, and to allow easier access 

through browsers.  

3. Annotate text tokens with morpho-syntactic tags in CoNLL-U v.2 format1.  

                                                
1 CoNLL-U format has been used in the Universal Dependencies project (Nivre et al., 2017), and is 

described in detail on their website (http://universaldependencies.org/). The choice of this format is to 

constrain tools that: do not allow morpheme-based annotation, do not restore adjusted-form, and do 

not have POS+features representation. 
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4. Support right-to-left languages.  

Annotation tools can be classified in two categories. General-purpose tools 

aim to provide a single framework to all annotation tasks of one text and support 

different languages. Task-specific tools aim to give specific features for the 

annotation of one layer, e.g. morphological annotation or to specific features of one 

languages, e.g. Arabic. The first usually support a variety of file formats, while the 

second may not. We noticed that task-specific tools are usually done in research 

groups to suit their needs, and are usually not available.  

3.3.1 General Annotation Tools 
These annotation tools are not designed for a specific language. In addition, 

they aim to support a range of annotation tasks. The summary of each tool’s support 

of our set of criteria is shown in Table 3.2.  

1. Brat Annotation Tool (2012) 

The Brat tool (Stenetorp et al., 2012) is a generic tool that has an excellent 

visualisation component for syntactic annotation. It has a morpho-syntactic 

annotation layer as well, but it suffers greatly from not supporting right-to-left 

languages. We can use transliterated Arabic instead, but it is still sub-optimal.  

2. WebAnno (2013) 

WebAnno (Yimam et al., 2014) is a set of well-documented tools for 

multiple annotation tasks. It uses brat annotation for visualisation and supports RTL 

languages as well. However, it does not allow changing or inserting nodes to the 

basic layer and assumes that input is a gold-standard segmented text. Moreover, a 

number of clicks are required to just change one element’s information.   

3. Arborator (2013) 

Arborator (Gerdes, 2013) a dependency annotation tool that supports RTL 

languages. One significant advantage of this is the synchronisation between the 

CoNLL-U and the visualisation, allowing the annotator to edit CoNLL-U text and 

check the result in the visualisation. It has a simple drag-and-drop interface for 

syntactic relations editing. However, it is not well documented, and it is more suited 

for syntactic annotation than morphological annotation.    
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4. CorA (2014) 

CorA (Bollmann et al., 2014) is a web-based tool publicly available2 for 

morpho-syntactic annotation of non-standard texts. It offers token-based annotation 

of lemmatisation, POS tags and morphological features in addition to normalisation 

and modernisation. The modernisation layer can be used for diacritisation in our 

case. A significant advantage of this tool is its support of immediate retraining of 

taggers on newly annotated data. The tool assumes tokenised morphemes as input, 

and does not allow the annotator to segment on the fly.   

 

Table 3.2 Comparative analysis of open access annotation tools. 

Features Brat WebA Arb CorA  

Segment one word into segments. P    

Diacritics  P P P 

Suggest a set of solutions from a lexicon dictionary     

Consistency validation  P   

Adaptive predicting based on historical tagging  P  P 

Efficient Keyboard-based navigation and labelling  P   

 

3.3.2 Arabic Morphological Annotation Tools 

1. Fassieh (2009) 

Fassieh (Attia, Rashwan and Al-Badrashiny, 2009) is a tool used internally 

in the RDI company and is not available for download. It was used in the 

development and annotation of the NEMLAR written corpus. It aims to provide a 

one-for-all framework for all types of annotations including morphological, POS 

tagging, phonetic (diacritisation), and semantic annotation. The annotation tool is 

one part of the whole system which includes diacritiser, tagger and segmenter. It is a 

standalone application that shows the context of the sentence and provides a set of 

possible analyses in a tabular format. The features of annotation tools like searching, 

output format and consistency checking is not specified in the article. The tool 

seems to only work with RDI settings, including the tagset and taggers.  

2. SAWT (2016) 

                                                
2 https://github.com/comphist/cora 
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Sequence Annotation Web Tool (Samih, Maier and Kallmeyer, 2016) is a 

web-based tool for the annotation of token sequences with an arbitrary set of labels 

(e.g. POS tags). It is simple and efficient but suffers from segmentation assumption 

as well. It is yet not available.  

3. MADARi (2018) 

MADARi (Obeid et al., 2018) is a web-based annotation tool for 

morphological analysis with an emphasis on spelling corrections. The authors target 

annotating the MADAR project, a multi-Arabic dialect corpus (Bouamor et al., 

2018). Arabic dialects are often misspelt or at least do not conform to standards. 

They plan to release the tool and make it available but no specific timeline or licence 

is stated. The tool as well does not support CoNLL-U format. Specifically, it does 

not support morpheme-based annotation. Although this tool does not match our 

criteria, this tool is recently published (concurrently with Wasim tool (introduced in 

Chapter 9) in LREC 2018 conference) and have common tasks and needs with 

Wasim. 

3.4 Morphological Annotation Representation  

3.4.1 Tagsets 

Arabic traditional grammar, and school textbooks, state that there are three 

POS tags: nouns, verbs and particles. This classification is criticised for being too 

coarse and confusing. It does not state how to define the three categories and how to 

handle borderline cases. Instead the classification sometimes was based on 

examples; for example, Sibawayh, the father of traditional grammar, introduced this 

classification by saying (translated from Arabic): “the speech consists of nouns, 

verbs or particles which are not nouns nor verbs. A noun is like a man, a horse, a 

farm” (Sibawayh, 1988, p. 12).  But later scholars tried to define this classification 

by stating some features like only nouns can have nunation and the definitive article. 

Traditional scholars were not unanimous on the tripartite classification and some 

introduced a forth class, e.g. Abdel Qahir (Al-saqi, 1975).  

The most famous modern classification is the one introduced by Tamam 

Hassan (Hassan, 1994) and his PhD student (Al-saqi, 1975). They proposed a two-

dimensional morphological analysis system where the first dimension is POS tags, 

and the second dimension is the morphological features. The POS tagset has two 

layers and consists of seven main categories: nouns, verbs, adjectives, adverbs, 
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pronouns, particles and interjections. Each category has its own subcategories. This 

new tagset is based on two principles: word form and function, which can be seen as 

the word features that should be used for classifying one word. Word form considers 

the word’s ability to have some grammatical marks (Ia’rab marks, e.g. case and 

mood marks), its order, possible pattern, inflections system, coupling and its 

orthography. Word function includes morphological and grammatical functions like 

naming, action, tense, dependency, and grammatical meaning. Main categories have 

to have a difference not only in form or in function, but in both principles. This 

classification is not adopted in computational linguistics; however, Al-jundi (2016) 

tried to map some existing resources to this tagset and claim that it is possible. 

Traditional classifications, and Tamam’s in particular, lack the evaluation of 

proposed systems: e.g. there is no tagged corpus with such a classification. 

Arabic tagsets in computational linguistics can be divided into two groups: 

traditional and “English-centric”. English-based tagsets (Hajic et al., 2004; 

Maamouri and Bies, 2004; Diab, 2007) emerge when resources for Arabic was 

limited, and an agreed-upon tagset is required for resource development. These 

tagsets use a minor modified tagset from standard English. However, as Wintner 

(2014) stated: “Such an adaptation is problematic for Semitic languages”. For 

example, the distinction between adjectives and nouns is blurry (See 5.7). Unlike 

English, they have common morphological properties, e.g. inflection, which suggest 

they could be a subcategories of nominal (Wintner, 2014). On the other hand, 

traditional tagsets follow the long history of morphological studies that spans 

fourteen years in their names and classification. They usually are central to the 

explanation of grammatical marks (case and mood). Several traditional-based tagsets 

are proposed (Khoja, 2001; Dukes and Habash, 2010; Sawalha, Atwell and 

Abushariah, 2013; Elhadj, Abdelali and Ammar, 2014; Zeroual, Lakhouaja and 

Belahbib, 2017). However, the main challenge is the construction of a language 

resource, e.g. an annotated corpus, which is fundamental in computation linguistics. 

Since many tagsets are introduced in the literature, we will focus on tagsets used in 

classical corpora.  

Classical corpora, in general, do not conform to a standard tagset and are 

relatively small. As shown in Table 3.1, almost every corpus has its own tagset and 

the largest annotated corpus is the Quran, ~77k words. This might be due to the lack 

of commercial interest and the limited uses of such annotation. However, religious 
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corpora, e.g. the Quranic Arabic Corpus, demonstrate their usefulness not only for 

NLP studies, but for end users who use the tagged corpus for the purpose of 

understanding the Quran.  

1. Khoja’s Tagset (Khoja, 2001) 

It is a complex hierarchical tagset that is based on traditional Arabic 

grammar. Figure 3.1 shows the list of the main POS tags. The hierarchical 

aspect of the tagset implies inheritance such that all subclasses inherit 

properties from parent classes. There is a 1.7k-words newswire MSA corpus 

that uses this tagset. 

 
Figure 3.1 Khoja's Tagset, taken from (Aliwy, 2013). 

2. Penn Arabic Treebank (Buckwalter) Tagset (Maamouri and Bies, 2004) 

The tagset used in PATB is the most widely used (Sawalha and Atwell, 

2013), and has been recently applied to classical texts (Mohamed, 2018). The 

tagset, which consist of ~70 basic tags, is the untokenised version of the 

Buckwalter morphological analyser. Because this tagset is rich, several 

reduced tagsets emerged, e.g. (Diab, 2007). Figure 3.2 shows the token-

based basic tagset.  
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Figure 3.2 PATB Tagset3. 

3. Quranic Arabic Corpus Tagset (Dukes and Habash, 2010) 

QAC tagset is two-dimensional and used to tag the Quranic texts, so the 

tagset is tailored to Quranic texts. It is designed to capture long-established 

traditional Arabic grammar, Ia'rab. The first dimension has ~45 tags: nine 

tags for nominals, one for verbs, 34 tags for particles and one for Quranic 

initials. The second dimension represent affixes and morphological features 

including gender, person, number, aspect, mood, verb form, state, case, 

derivation and voice. The tagset is published online4. This tagset is discussed 

in detail when we introduce the Sunnah Arabic corpus (see Chapter 8).  

4. SALMA tagset (Sawalha and Atwell, 2013) 

SALMA is the most fine-grained tagset in two dimensions: the number of 

features (~ 15 features) and the number of possible tags of each word (~ 91 

distinct tags). The POS tags has two levels where the first level is the three 

traditional categories (noun, verb, particle) plus two categories: affixes, and 

punctuations. The SALMA tagset has thirty-four possible tags for nouns, 

three for verbs (which matches the aspect feature in other tagsets), twenty-

two for particles, twenty for others, and twelve for punctuations. It is the 

                                                
3 Each part has a slightly different tagset. This tagset is for Part 2. The original tagset (with 

compound tags, with morphological features) can be found in: https://catalog.ldc.upenn.edu/ 

docs/LDC2004T02/ 
4 http://corpus.quran.com/documentation/tagset.jsp  
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most finely-grained tagset in Arabic regarding tagset size and feature set 

size. 

The tagset has been applied to two small corpora (~1000 words each): MSA 

and Quranic. While this tagset is rich and follows the traditional Arabic 

grammar, it does not define the characteristics of each tag. This evaluation is 

based on the feedback from two linguists in one experiment (see Section 

5.5). This results in many borderline cases, e.g. some particles can belong to 

two categories like (/mn/ from).  

3.4.2 Mapping of tagsets 
Mapping between tagsets is useful in reusing and accessing existing 

heterogeneous annotated corpora. It is one of the first attempts to exploit the existing 

heterogeneous corpora and collate them into one big dataset which can increase the 

quality of training for statistical methods. Also, it is useful for standardising corpora 

with different annotation schemas. There will be no need to know and memorise 

each corpus tagset.  

Mapping from one tagset to another tagset has been adopted in many 

applications. It has been adopted to achieve better accuracy by reducing tagset size 

(Brants, 1995; Dienes and Oravecz, 2000; Giesbrecht and Evert, 2009), to build a 

universal tagset (Petrov, Das and McDonald, 2012; Zhang, Reichart and Barzilay, 

2012), to evaluate a proposed tagset (Sawalha and Atwell, 2013), to easily use other 

corpora (Atwell, Hughes and Souter, 1994), to standardise languages resources 

(Leech and Wilson, 1996; Schmidt et al., 2006), and to merge an existing annotated 

corpus into a new one (Habash and Roth, 2009). 

Mapping a tag to a different tagset can be seen in one of the following 

situations (Teufel, 1995):  

• 1-to-1 mapping: This is just renaming of the tag. 

• n-to-1 mapping: Many tags can only be mapped to one tag in target tagset. 

We lose some information from the source tagset. For example, mapping 

perfect, imperfect and imperative verbs to V will entail losing the aspect of 

the verb. 

• 1-to-n mapping: The tag is ambiguous. However, the source tag will have 

less information than possible target tags.  

• m-to-n mapping: This case is the most challenging one.  
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Most of the proposed mappings in the literature involve a reduction in the 

tagset size; i.e. mostly mappings are many-to-one or one-to-one mappings. We will 

not go into detail on those mappings, as those mappings are just “renaming” of the 

tagset. However, several attempts have been made  to “standardize” tagsets (map 

tagsets to a standard one) or “cross" map existing tagsets. In the following sections, 

we will explore and describe each approach.   

3.4.3 Cross Mapping of Tagsets 

Automatic Mapping Among Lexico-Grammatical Annotation Models 

(AMALGAM) project (Atwell et al., 2000) was a pioneer project that tried to 

provide a full-featured mapping. AMALGAM aimed to provide a “POS-tagset 

conversion” method for English annotation schemas; i.e. given a text tagged with 

one tagset, it outputs the text tagged with another tagset, no matter how the two 

tagsets differ in their formalism, size, etc.  

The AMALGAM project maps the tagset A to tagset B by doing the 

following steps: First, it builds a POS-tagger trained on the corpus tagged with 

tagset B. Next, it uses the tagger to predict the tag of the word in a corpus tagged 

with tagset A. In other words, there are no mapping rules from tagset A to tagset B. 

This decision was made as the authors discovered in earlier experiments that the n-

to-m and 1-to-n mapping “predominated” over the simple 1-to-1 and n-to-1 

mappings.  

Teufel (1995) proposed a mapping tool which maps morphosyntactic tags to 

a specification language. This language is typed, constraint-based, and editable. The 

paper did not handle multiple tags per word, i.e. words that have clitics, each with a 

tag, which is a very common pattern in Arabic. 

Pîrvan and Tufi (2006) proposed a cross-tagging generic algorithm that 

allows mapping one tagset to another. The algorithm uses four components: two 

gold standard corpora. Each one is tagged using a tagger learned from the other 

corpus. The four components then get involved in a stochastic process that builds 

what they called cross-mapping by finding probabilities of the contingency table of 

tokens. The paper claims that it is possible to merge the two corpora confidently 

tagged with either of the tagsets. It claims even that gold standards can be improved. 

However, the algorithm seems to assume that the two corpora are aligned when 

constructing the contingency table. In the paper, the authors mentioned a 
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tokenisation inconsistency within a gold standard, but they did not mention how the 

corpus and its cross-tagged version were aligned.  

In Arabic, most of the mappings of tagsets consider a reduction or renaming 

of some tagset, to match the target application such as POS tagging (Toutanova et 

al., 2003; Diab, 2007; Habash, Rambow and Roth, 2009; Pasha et al., 2014), parsing 

(Kulick, Gabbard and Marcus, 2006), universal representation (e.g. UD treebanks), 

or faster treebank production (Habash and Roth, 2009). The link between the 

reduced tag and the set of fine-grained tags is usually maintained.  There are some 

cases where reduction is followed by expanding some tags using some manual 

correction, e.g. the QAC tagset (Dukes and Habash, 2010). Similarly, the SALMA 

sample of the Quran was developed using a mapping procedure from the QAC 

corpus (Sawalha and Atwell, 2013). To the best of our knowledge, there is not any 

existing work that handles the mapping of two independent tagsets without manual 

intervention at the word level. 

3.4.4 Standardizing Tagsets 

One appealing solution to the diversity of tagsets is the standardisation of 

annotation schemes. The most famous example of this approach is the EAGLES5 

initiative, which aimed to build standards for large-scale language resources. One of 

the outcomes of the initiative is the EAGLES meta scheme (Leech and Wilson, 

1996) which provides three levels of constraint (obligatory, recommended and 

optional) and in each constraint, a set of attributes and their possible values are 

defined. For example, it is ‘recommended’ to have an attribute number for noun 

tagging, and its value can be singular or plural. These guidelines urge that tagsets 

should be mappable to the provided framework, i.e. the tag should be mappable to 

one or more attribute/value pairs.  

In collaboration with EAGLES, the Multext-East Project built a similar 

project for central and eastern European languages (Dimitrova et al., 1998). The 

project built  parallel and comparable corpora POS tagged and aligned to the English 

version of the original text.  

While these two frameworks provide a detailed set of standard 

morphosyntactic terminology, they are only applicable to Indo-European languages. 

                                                
5 The Expert Advisory Group on Language Engineering Standards. 
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For example, Arabic nouns can be dual but in EAGLES they are either singular or 

plural. Additionally, EAGLES aims to increase tagging comparability of taggers, but 

a tagger must map its tagset to EAGLES’s course tagset. This mapping would 

reduce the quality of such comparison. EAGLES does not constitute an interlingua 

tagset for translating between existing tagsets, as it is not resolving the problem of 

tokenisation (Hughes, Souter and Atwell, 1995). Applying EAGLES standards to 

Arabic in a tagset will “seem alien to Arabic linguists and grammarians” (Atwell, 

2008, p. 517). 

Similarly, in a joint project between three research centres in Germany, 

(Schmidt et al., 2006) presented a new initiative to “standardize” existing linguistic 

resources. They addressed the diversity in the language resources and proposed a 

solution to the integration of linguistic terminology. In contrast to the EAGLES 

project, they propose a “terminological backbone” that is well-defined, does not 

integrate language-specific tags, is not limited to European languages, and is a more 

thorough terminological resource.  

Additionally, Petrov, Das and McDonald  (2012) developed a mapping of 

twenty-five different treebanks tagsets from twenty-five languages (including 

Arabic) to a single universal tagset, initially for unsupervised part of speech tagging. 

The tagset is a course annotation scheme that has twelve tags: ADJ, ADP, ADV, 

CONJ, DET, NOUN, NUM, PRON, PRT, VERB, X denoting others, and DOT (.), 

denoting punctuation marks. These tags were chosen to be the most useful tags to 

exist among different languages. The mapping was done manually by a high level 

analysis of tagset. This mapping does not solve one-to-many mapping cases; they 

map to a courser tagset, whereas the majority of treebanks are “very fine-grained”.  

However, this project has since been adopted as a widely used standard for 

mapping diverse tagsets to a common standard. It has been used later as a standard 

tagset in the famous Universal Dependencies Project along with other projects like 

the Interset (Zeman, 2008), a tool for converting morphosyntactic tagsets of 

different languages. We used this universal tagset as a course tagset version of 

taggers' fine-grained tagsets on several occasions.  

3.4.5 Segmentation Schemas 

Different schemes in POS tagging assume a different tokenisation of the 

input text. This tokenisation varies from tagging compound names with one tag to 



  - 45 - 

tagging each affix of a word. In the same manner, some taggers do not tag some of 

the text, punctuation, dates, numbers,  etc.  

In the Arabic language, Habash and Sadat (2006) defined three ordered 

degrees of segmentation structure: [CONJ+ [PART+ [Al+ BASE +PRON]]]. The 

degrees are ordered, which means that CONJ+ cannot appear after a PART+. The 

authors constructed several schemes, amongst which are: D1 which separates 

CONJ+ from the BASE, D2 which separates CONJ+ and PART+ from the BASE, 

and D3 which separates CONJ+, PART+ and Al+ from the BASE, respectively. The  

ST scheme is the baseline, where a word is tokenised by splitting off punctuations, 

numbers and diacritics. More schemes can be defined, as Arabic is highly 

inflectional. As a consequence, taggers can have varied tokenisation schemes. 

Taggers differ, however, in some more details. Some taggers segment not 

only clitics but affixes as well. For example, the first character on imperative verbs 

is segmented and tagged with some tags that indicate the person and number of that 

verb: >u/IV1S + bAliy/VERB_IMPERFECT. Some taggers segment proclitic 

pronouns that indicate the subject and some do not. Traditionally, Arabic grammar 

segments these pronouns in the “Ia’rab” system: 'aAma/V + n~aA/PRON. More 

details are presented in 4.5. 

3.4.6 Segmentation Alignment 

Because of different schemes of segmentation, it is necessary to align the 

results of those taggers for proper evaluation and voting. However, this alignment is 

“quite sophisticated” (Atwell et al., 2000). Segmentation alignment, in general, is a 

requirement for evaluating different taggers that assume different 

tokenisation/segmentation. Combination techniques vote between aligned tokens as 

well.  

Morphological alignment can be defined as a sequence alignment problem. 

Any algorithm that tries to solve the problem will compute a score of similarity 

(a.k.a. distance) between the two sequences and tries to minimise that distance. The 

output of that algorithm is an alignment, a series of operations (e.g. addition, 

deletion, substitution) where each operation has a cost with the goal of transforming 

one sequence into the other.  The optimal alignment is the alignment that has 

minimum cost. 
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In the GRACE evaluation task  (Adda et al., 1998), the organisers used a 

reference corpus that uses text tokenisation different than the one returned by a 

participant. They give the participants complete freedom in the tokenisation scheme. 

The total number of tokens returned from participants after processing the test 

dataset varied from 416,193 to 463,596 tokens. The “realignment” was done using a 

token-level comparison using each token’s lexical form. Specifically, they used the 

UNIX command diff (after putting each token in a new line) which finds the 

difference between two files. The number of reference tokens is always larger than 

or equal to the number of tokens of any participant; i.e. reference tokenisation is the 

most fine-grained one. The result was then realigned (substring matching in two 

runs), by first adding “ghost” characters then rebuilding the original tokens. In case 

a token could not be realigned, it is omitted from the evaluation (Adda et al., 1998). 

This alignment assumes that there are limited changes to the word when it has been 

tokenized; however, it is very common in Arabic to have orthographical changes 

when tokenizing the word: such as words with final Taa Marbutah /p/ which is 

converted to Taa /t/  (N. Y. Habash, 2010, p. 60).  

In contrast, the AMALGAM project used a neutral tokenisation scheme.  In 

order to simplify comparisons, they used just one tokeniser for all schemes. This 

produced errors in tokenizing and tagging negatives (aren’t), enclitics (where’s), and 

expressions like (for example, have to, set up…) (Atwell et al., 2000). This is only 

possible because they built a Brill tagger for each participating corpus. It is, 

however, not possible if the POS-tagger has an integrated tokeniser with no option 

to configure it.  

To the best of the author’s knowledge, there is no work that described the 

problem of morphological alignment in Arabic or suggested a systematic mapping 

from one to another. However, several studies presented the biword alignment of 

bilingual parallel corpus (Lee, 2004; Elming and Habash, 2007; Nguyen and Vogel, 

2008). Those studies inspired us to develop and learn the alignment from a multi-

tagged corpus.  

3.4.7 Word Form Similarity 

The distance between two text strings can be measured using one of the 

string metrics (or string distance measurements). One of the most commonly used 

metrics is the edit distance (also called Levenshtein Distance) (Levenshtein, 1966) 
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which counts the number of deletions, additions, and substitution operations 

required to transform one string to the another. A smaller number indicates greater 

similarity between strings. We are using string metrics for the alignment purposes 

on the level of word and morpheme between different taggers and/or reference 

corpora.  

Damerau (1964) extended Levenshtein distance algorithm to include the 

transposition operation. Many other string metrics exist including Longest Common 

substring, Jaro and Jaro-Winkler (Cohen, Ravikumar and Fienberg, 2003; Gomaa 

and Fahmy, 2013). However, those string matchings are character-based algorithms 

and treat all letters with an equal weight.  

Arabic words can be optionally diacritised, and therefore a simple string 

metric is not a perfect metric for comparing two Arabic words. Freeman et al. 

(2006) extended the Levenshtein algorithm for the purpose of matching Arabic 

Romanised names by mapping possible English equivalence class to Arabic letters. 

Abdel Ghafour et al. (2011) proposed a string matching algorithm for the purpose of 

name matching by defining different levels of similarity scores. In each level, groups 

of letters are categorised based on their phonetic similarity. Similarly, it defines 

groups based on letter form similarity. Finally, a function is defined to report the 

keyboard distance between two characters. The algorithm then computes the 

similarity based on the three criteria.  

However, none of the algorithms appears to solve the problem of comparing 

two partially voweled strings. Diacritisation systems (even human-based ones) use a 

variety of conventions for diacritizing certain letters, e.g. the final Alef letter with 

nunation. While some put the nunation vowels (◌  ً , Fatha nunation) on the Alef 

letter, some put it in the previous letter. Similarly, a letter preceding an Alef letter is 

always vocalised with a (◌  َ , Fatha) vowel, and linguists debate whether it should be 

written or not.  

3.5 Automatic Annotation 

3.5.1 Taggers 

Several previous studies surveyed the linguistic resources available for 

researchers in the field of Arabic NLP. In these surveys, the aim is to come up with 

a list of morphological analysers that one can use for downstream applications. 

Atwell et al. (2004) conducted a survey on the Arabic MAs and came up with a list 
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of 10 different analysers. They concluded their survey pointing out that most of 

those analysers are not freely available or they are hard to use. Maegaard (2004) 

surveyed the state-of-the-art language resources including MAs and POS taggers. 

The Basic Language Resource Kit (BLARK) project in 2010 listed 7 MAs, three of 

which are commercial software. Sawalha (2011) listed 6 MAs with his proposal of a 

new fine-grained morphological analyser, three of which are freely available. A 

noticeable inconsistency can be seen in the literature, maybe due to the lack of a 

regularly updated directory of NLP tools, or due to the fact that some tools become 

unavailable. In a survey of the literature on POS tagging techniques, Albared (2009) 

surveyed the “POS tagging” techniques with a focus on Arabic: MSA and dialects. 

None were explicitly designed for classical Arabic. Those techniques were criticised 

as assuming closed-vocabulary and low generalisation with OOV words which is the 

major challenge with domain adaptation to classical Arabic.  

However, because our goal is to combine different taggers, these taggers 

should be freely available to be included in our ensemble. Chapter 4 surveys Arabic 

POS taggers and morphological analysers that matches four constraints: availability, 

generality, credibility and normality (i.e. designed for standard Arabic). It evaluates 

surveyed taggers on a classical Arabic dataset. We refer the reader to this chapter for 

more details.  

3.5.2 Domain Adaptation 
Supervised tagging and segmentation methods usually score the best 

accuracies. However, these methods are usually hard to port to other languages or 

variants since they requires a training dataset that is usually costly and expensive. 

There exist several other methods in the literature to tackle this problem, which 

includes bootstrapping training datasets which assumes partially tagged training 

corpus, and unsupervised methods (Freeman, 2001; Clark, 2007; Albared, Omar and 

Ab Aziz, 2009).  

Another approach is exploit existing tagged corpora and adapt these corpora 

to different languages. One example is lemmatization using translation from a 

second language. Another example is the reproduction of morphological analysis 

through exploiting existing taggers designed for a related language, which is 

discussed in this thesis.  
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Experiments that used these MSA-based taggers for classical Arabic reported 

a significant drop in the accuracy. Even though the morphology of classical Arabic 

is the father of MSA, some studies showed that CA texts are not compatible with 

MSA taggers.  

Alrabiah (2014) compared two MSA-based taggers both designed for MSA 

to annotate the KSUCCA classical Arabic corpus. Using five samples from different 

genres of classical Arabic, an evaluation of these two systems showed a drop in their 

accuracy by 10-15%.  

In addition, the semi-annotation of the QAC corpus (Dukes, Atwell and 

Habash, 2013) used an MSA morphological analyser (Buckwalter analyser), but the 

manual verification step made corrections to at least 24% of words, nearly a quarter 

of text words, although the text is fully diacritised. 

The Heritage Corpus (Mohamed, 2018) used a tagger trained on the PATB 

treebank to tag one part of his corpus (2000 words). The accuracy achieved is only 

78.62% and referred to the high percentage of out of vocabulary words (43.39%). 

This finding is not limited to POS tagging. For example, tag-based text 

compression using Prediction-By-Partial Matching exploits the morphological 

analysis to improve the compression performance. The method tagged the text to be 

compressed, and the tagged files then compressed and compared against baseline 

character-based compression. In (Alkhazi and Teahan, 2017), the tag-based 

compression (using MSA tagger) shows improvements in MSA texts over the 

character-based compression. However, for classical Arabic texts it does not show a 

similar pattern, which suggests that “the quality of tagging of classical Arabic has 

dropped”. 

3.5.3 Combining Taggers 
In Machine Learning, ensemble methods refer to the process of combining 

multiple learning methods to obtain a higher accuracy in classification prediction 

that was not achieved by any of individual learning methods. Multiple types of 

ensemble exist in the literature, including bagging (equally-weighted models trained 

on random subsets of the training data) and boosting (adaptive training where each 

new model focus on a subset of training data that were misclassified). Many other 

combination techniques are available. 
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In POS tagging, different techniques were used, including: knowledge-based 

models– table lookup, syllable-based morphology, pattern morphology; and 

empirical methods– Hidden Markov Models (HMM), Support Vector Machines 

(SVM). Each POS tagger is designed differently; however, without a full 

understanding of the language, no POS tagger could ensure perfect accuracy. 

Because of their different knowledge bases and diverse inference methods, taggers 

will typically produce different errors (Halteren, Zavrel and Daelemans, 2001).  

The combination of heterogeneous POS taggers exploits these differences, 

and it is reported to achieve a better accuracy for several languages, including 

English (Marquez et al., 1999; Halteren, Zavrel and Daelemans, 2001; Schroder, 

2002), Italian (Søgaard, 2009), Icelandic (Henrich, Reuter and Loftsson, 2009), 

Polish (Śniatowski and Piasecki, 2012; Kobyliński, 2014), and Swedish (Sjöbergh, 

2003) and even for Arabic (Zribi, Torjmen and Ahmed, 2007; Aliwy, 2013; Albared 

and Hazaa, 2015; Zeroual and Lakhouaja, 2017).  

Most of the combination of POS-taggers are based on training different 

models inferred from one training corpus, i.e. homogeneously annotated texts. 

Therefore, each model uses the same or reduced tagset and morphological 

segmentation as the one on the training corpus. However, heterogeneous 

combination of black-box taggers or heterogeneous corpora involves handling 

different issues (see Section 5.2).  

3.5.4 Exploiting Heterogenous Resources 
For word segmentation in Arabic and POS labelling, supervised learning has 

become a dominant model. Its progress is due to the development of annotated 

corpora and NLP techniques. Although many corpora are released in the literature, 

obtaining sufficient amounts of high-quality training data remains a major obstacle, 

especially for morphologically rich languages. Annotation schemes for corpora are 

adversarial since underlying linguistic theories differ. Sadly, although there are 

multiple resources, it is not possible to merely collate such data for training systems, 

since almost all existing NLP systems assume a homogeneous annotation. 

Therefore, it is essential to consider how to use and exploit heterogeneous resources 

to improve Arabic word annotation and segmentation. 

A second related problem is that existing corpora are usually drawn from 

some specific domains, e.g. newswire data. Adapting these corpora to a new 
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domain, e.g. classical Arabic, usually is not trivial. The second problem is well-

studied, e.g. adapting MSA to dialectal Arabic (Monroe, Green and Manning, 2014; 

Albogamy and Ramsay, 2016). However, we agree with Jiang et al. (2009) and 

argue that the two approaches are related but the underlying problem is different. 

Domain adaptation assumes that the annotation guidelines are the same in terms of 

tagging and segmentation and only the distribution is different (Jiang, Huang and 

Liu, 2009). Contrarily, annotation-style adaption, as defined by Jiang et al., assumes 

the guidelines themselves are different and tries to exploit the shared knowledge, 

and the distribution might be the same or different.  

3.5.4.1 Annotation-style Adaptation: combining heterogeneous corpora  

Exploiting heterogenous resources in annotation-style can be done by 

developing a tagger from heterogeneous corpora or by combining heterogeneous 

black-box taggers. They both exploit the annotation which is costly in terms of time 

and money. However, there are some differences. First, the evaluation of black-box 

taggers is not always possible because of the lack of evaluation datasets. Second, 

these taggers are not always tuneable, as they come pretrained on a specific dataset 

with specific guidelines. 

There are a growing number of efforts that address the reusability of 

heterogeneous corpora, especially in Chinese6. Most of these are done toward 

integrating different corpora instead of adversarial taggers. There are two main 

approaches: stacking and multi-view learning. Stacking methods, e.g. (Jiang, Huang 

and Liu, 2009), pile up independently trained models where each model is trained 

based on the predicted values of the previous model. These methods suffer from an 

error propagation problem. Recent works shift to Multi-view models, which, in 

contrast, model the problem jointly by sharing common feature representations and 

treat the problem as a multi-class problem.  

Qiu et al. (2013) uses a multi-view model and trains two homogeneous 

corpora simultaneously, using a manually-extracted loose mapping between the two 

                                                
6 The Chinese language shares some features with Arabic, namely the need to segment the text 

sequences to reduce the word form sparsity. Chinese words comprise several characters, up to four or 

five characters (Teahan et al., 2000). In Arabic, a surface word form comprises several morphemes, 

up to four morphemes, and five-morpheme words exist but are rare. The segmentation is not standard 

in both languages, which results in corpora annotated with adversarial segmentation schemas.  
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corpora tagsets. Chen et al. (2017) recently published an ACL award-winning paper 

that proposes an adversarial method to exploit heterogeneous segmentations in 

Chinese corpora using deep neural models. The integration of shared knowledge 

from different segmentation schema is done by regarding the problem as a multi-

task learning problem. A shared layer is used to extract shared features (using a 

custom adversarial objective function), and a private layer is used to extract 

segmentation-specific features. The two methods are shown to be effective in 

improving the performance of Chinese word segmentation.  

3.5.4.2 Annotation-style Adaptation: Reusing Adversarial Taggers 
Building an ensemble tagger from heterogenous corpora might be more 

appealing since it does not restrict the ensemble to the taggers’ constraints, e.g. how 

they expect the input. However, taggers might employ sophisticated techniques like 

the use of external resources (e.g. lexicons), which the state-of-the-art Arabic 

taggers do. It is worth exploiting Arabic heterogenous corpora, especially with the 

growing number of classical annotated corpora, but we have left it for future work.  

Most works in Arabic ensemble segmentation and tagging used 

homogeneous settings (Zribi, Torjmen and Ahmed, 2007; Aliwy, 2013; Albared and 

Hazaa, 2015; Zeroual and Lakhouaja, 2017). To the best of the author’s knowledge, 

four works in Arabic utilize adversarial and homogeneous tagging and domain 

adaptation from MSA to classical texts. The following detailed review will only 

discuss studies that combined heterogeneous ensembles in Arabic language analysis.   

1. Alabbas and Ramsay (2014) 

Alabbas and Ramsay (2012a, 2014) performed a simple method for 

combining three Arabic taggers: MADA, AMIRA and a simple home-made 

maximum likelihood tagger (MXL). They examined five strategies of combining the 

results: three strategies of majority voting (with backoff to MADA, AMIRA or 

MXL), majority voting with backoff to the most confident, and most confident as 

the primary strategy. To define the most confident tagger, they examined how likely 

a tagger is correct when tagging with one particular POS tag (e.g. noun), e.g. 

MADA is 95% correct when it is tagging as a noun. The most-confident strategy 

achieved the highest accuracy with 0.995 with a coarse-grained tagset and 0.96 with 

a fine-grained tagset. 

To recover from the mismatches between the reference corpus used (PATB 

Part 1 v. 3) and AMIRA tagset, the authors used transformation-based retagging 
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(TBR) which improves the score from 90% to 95%. However, AMIRA and MADA 

tokenise sometimes differently. To solve this problem, the PATB was translated to a 

coarser version of AMIRA's tagset, and compared with AMIRA's output: the output 

is used if it is compatible with the translated tag; otherwise, the translated tag is 

used. This edit ensured that AMIRA and MADA will use the same token number as 

the PATB. The accuracy of this study is encouraging. The combination of taggers 

boosts the accuracy by 2-4%. 

Although this work is encouraging to our research, testing on a subset of the 

ATB is problematic as the individual tools are trained on the ATB– “due to its 

limited lexical diversity and the similarity between the training and test sets” 

(Darwish and Mubarak, 2016, p. 1070). This generally leads to results that are often 

artificially high.  

The technique does not propose a systematic method for homogeneous 

segmentation schemas. In fact, the AMIRA toolkit uses a reduced tagset from the 

PATB tagset, which means that there is a direct link between the two outputs7. The 

handling of segmentation differences makes this technique inapplicable to unseen 

text as it relies on a pre-processing step on the tagged corpus (to enforce same 

tokenisation).  

2. Albogamy and Ramsay (2016) 

This work does not introduce an ensemble tagger; however, it uses 

heterogenous taggers for the purpose of improving POS taggers using agreement-

based bootstrapping on noisy microblogging texts (Twitter). Using three off-the-

shelf Arabic taggers (Stanford, MADA, AMIRA) for such text reports leads to a 

drop in performance; their accuracies range from 49-65%. The best approach to 

improve their performance was to retrain on a small twitter dataset, pre- and post-

process texts, add MSA annotated corpora and use agreement-based bootstrapping.  

The novel agreement-based bootstrapping aims to increase the training 

dataset size by adding words that the three taggers agree upon. However, since the 

three taggers use different tagsets, their tagsets were reduced to a collapsed tagset, 

which is used to evaluate the predicted outputs of the three taggers instead of the 

original ones.  

                                                
7 POS tags are from “the collapsed set of tags included in the Arabic treebank distribution  

(known as the Extended Reduced Tag Set or ERTS)” [README file in AMIRA package]. 
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This work is related to our research as it utilizes heterogenous taggers and 

adapts them to a new domain, microblogging. However, this work lacks more details 

about the segmentation alignment between the three taggers. Its evaluation is word-

based but there is no clear mention of handling heterogeneous clitics. In addition, 

the agreement-based addition of words will introduce incomplete or ill-formed 

sentences, which might affect the final tagging performance. Constraining to only 

sentences with full agreement is not practical; as the agreement between tagger is 

low (60.4%) according to the authors. The chance of a 5-word sentence to have a 

full agreement is very low: 7%.  

3.5.5 Classical Arabic Tagging  

1. Rabiee (2011): Adapting from QAC to MSA 

Rabiee (2011) tried to adopt several taggers by training them on the QAC 

and then applying the learned model on tagging an MSA sample. He used BAMA as 

a morphological analyser and used TreeTagger to train a model from the QAC. 

Tagging then was constrained by the solutions of BAMA. The tagset of BAMA was 

reduced to only a 9-tag tagset that was comparable with the QAC tagset. However, 

his mapping encountered one-to-many cases (e.g. mapping ADV tag). In that case, 

he chose to map to the most common tag. The accuracy achieved in tagging a 66-

word MSA sample was 76%.  

This tagging can be seen as a novel sequential tagging scheme as it uses the 

output of BAMA to constrain TreeTagger. The coarse mapping of the tagset is 

justified as the author needs to compare taggers with different tagsets. However, 

errors were raised from this mapping: LOC is about 38% of ADV cases, and the 

mapping of ADV to the other more common tag T constrains the TreeTagger to an 

incorrect tag. Additionally, the author used a test sample with only 66 words, which 

does not count as a representative sample of the MSA. The sample’s origin, genre, 

and how it was annotated were not even clear. The author used an earlier version of 

QAC which has word-based annotation, and thus the morphological alignment was 

not an issue. 

2. Alrabiah (2014): Adapting from MSA to Classical Arabic 

This work compared two MSA-based taggers both designed for MSA – 

Alkhalil and MADA - to annotate the KSUCCA corpus. Ten samples were 

randomly extracted from KSUCCA from different genres, and each sample is of 100 
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words. Seven annotations are used to evaluate each tagger: root, pattern, lemma, 

stem, POS tag, number and gender, only two of which is common between the two 

taggers. Because Alkhalil does not disambiguate between proposed solutions, 

Alrabiah proofread all of them and whenever one of them was correct it was marked 

as a success.  The evaluation of these two systems showed a drop in their reported 

accuracy by 10%-15%.   

A comprehensive experiment in Chapter 4 tends to confirm similar findings. 

These studies show that current taggers might need to be adapted for classical 

Arabic and their dictionaries need to include classical lexicon. 

Table 3.3 The accuracy of MADA and Alkhlalil (Alrabiah, 2014) 

Tool Stemming POS tagging 

AlKhalil v.1 75.1% 77.6% 

MADA v3.2 84.9% 83.40% 

3. Alashqar (2012): Various Taggers on Quranic Arabic 

Alashqar conducted a comparison between POS techniques using the 

Quranic Arabic Corpus. He compared four techniques: N-Gram, Brill, HMM, and 

TnT taggers. The experiments were done on two versions: diacritised and 

undiacritised Quranic text using NLTK toolkit.  

After pre-processing a diacritised QAC file to match NLTK format, an 

undiacritised file was generated. Next, the author mapped the tags into the 9-tag 

simplified tagset, resulting in four cases of the experiment: diacritised vs. 

undiacritised and 9-tag vs. 33-tag tagsets. He trained several models using 97% of 

the corpus and reported the accuracy of each model in POS tagging the remaining 

3% of the text. 

According to the authors, N-Gram (particularity Bi-Gram) taggers 

outperform other taggers. The best model accuracy is 83.2%, a Brill tagger on the 

undiacritised version. Tagging undiacritised text also outperforms diacritised ones, 

especially in the case of Brill Tagger. The mapping to 9-tag tagset increased the 

accuracy for all experimented taggers, with the exception of TnT tagger. 

This experiment shows that off-the-shelf taggers are not always capable of 

handling Arabic specific problems: diacritisation and high inflection. Diacritisation 

causes the word sparsity to be high, and for the Brill tagger, for example, accuracy 

on the diacritised version is as low as 38.6%. In addition, the segmentation problem 
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is not discussed in the paper. The author formalized the problem as a word-based 

tagging POS tag, i.e. no prior segmentation is required. 

3.6 Conclusion 
In this chapter, we first provided a survey of available corpora with a focus 

on morphologically-annotated corpora. We show that there are several open access 

manually annotated corpora of classical Arabic, but most of them are on Quranic 

texts and none for Hadith. There is a need for manually-annotated corpora of general 

classical Arabic as well. We showed the need for an open access annotation tool that 

is designed for Arabic specifications. 

The survey of mapping tagsets reveals that most approaches are reductive. 

Although there are several initiatives to standardise PoS tagsets for Indo-European 

languages, Arabic tagsets are still highly incompatible.  

We surveyed the literature for methods that exploits heterogeneous corpora 

and taggers. A few works are done in Arabic, although almost every corpus is 

tagged using its own tagset.  In the next chapter, we survey the open access Arabic 

taggers and evaluate them on tagging classical Arabic excerpts.  
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4 MORPHOSYNTACTIC 
TAGGING OF CLASSICAL 
ARABIC 

Chapter Summary8: 

Focusing on classical Arabic, this chapter in its first part surveys morphological 

analysers and POS taggers that are open access, are designed for Modern Standard 

Arabic (MSA) or classical Arabic (CA), can analyse all forms of words, and from a 

credible academic research group. This chapter lists and compares the supported 

features of each tool, and how they differ in the format of the output, segmentation, 

Part-of-Speech (POS) tags and morphological features. A sample output of each 

analyser is used to demonstrate the differences using one CA fully-vowelised 

sentence. This part serves as a guide in choosing the best tool that suits research 

needs.  

The second part reports the accuracy and coverage of tagging a set of classical 

Arabic vocabulary extracted from classical texts. The results show a drop in the 

accuracy and coverage and suggest an ensemble method might increase accuracy 

and coverage for classical Arabic. 

  

                                                
8 Some parts of this chapter are based on:  

Alosaimy, A. and Atwell, E. (2017) ‘Tagging Classical Arabic Text using Available Morphological 

Analysers and Part of Speech Taggers’, Journal for Language Technology and Computational 

Linguistics. German Society for Computational Linguistics & Language Technology (GSCL), 32(1), 

pp. 1–26. 
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4.1 Introduction 
Arabic morphological analysis is essential to Arabic NLP tasks, and part-of-

speech (POS) tagging is usually done as one of the first steps of advanced NLP tasks 

such as statistical machine translation and text categorisation. It derives its 

importance as its accuracy impacts other subsequent tasks. Arabic morphology is 

one of the most studied topics in Arabic NLP. Due to the nature of the language, 

being highly inflectional, and the lack of short vowels, morphological analysis of 

Arabic is not an easy task. The analysis involves handling a high degree of 

ambiguity. 

POS tagging usually uses the information provided by the morphological 

analyser. A morphological analyser (MA) is a context-independent tagger that 

provides all possible solutions based on a lexicon or dictionary. While POS taggers 

and MAs label the word morphosyntactically, some POS taggers use the context to 

either choose the most probable tag according to the context or at least provide an 

ordered list of tags.  

Surveys of the literature show that multiple morphological analysers and 

POS taggers exist. The accuracy and features of those taggers vary, and errors are 

generated for every tagger. No tagger shows a perfect performance, and no tagger 

has been adopted as a standard. Therefore, choosing between available taggers can 

be challenging. 

Even though the morphology of MSA is inherited from CA, two studies 

showed that classical Arabic is not compatible with MSA taggers and vice versa. 

Rabiee (2011) tried to adopt several taggers by training them on a classical Arabic 

Corpus: the Quranic Arabic Corpus (QAC), and then tested them on MSA. The 

accuracy achieved in tagging a 66-word MSA sample was “not impressive”–73% 

was achieved. Alrabiah et al. (2014) compared MADA and AlKhalil (both designed 

for MSA) in order to annotate the KSUCCA corpus. Using five samples from 

different genres of classical Arabic, an evaluation of these two systems showed a 

drop in their accuracy by 10-15%. It shows that current taggers need to be adapted 

for classical Arabic and their dictionaries need to include more classical vocabulary. 

This evaluation is extended to examine the coverage and accuracy of the surveyed 

tools.  

The next section discusses the survey design and criteria. The third and 

fourth sections list surveyed POS taggers and MAs in detail. The fifth section 
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compares those tools by their features and demonstrates such differences on one 

tagged sentence. The last section reports the accuracy and coverage on a collection 

of classical vocabulary. 

4.2 Survey Methodology and Criteria  
Focusing on open access MAs and POS taggers, we performed a 

comprehensive search, which adds to previous surveys, an in-depth literature review 

of available MAs and POS taggers. We limited the search to MAs and POS taggers 

that:  

• are designed for MSA or CA, i.e. either designed for Arabic but not 

intended for dialectal Arabic or has a model for MSA or CA; 

• are able to analyse all forms of words, i.e. not designed for verb only for 

example; 

• are open access, i.e. available freely for research purposes; and 

• have a credible academic establishment, i.e. either has at least one 

published academic paper or published by a well-known research group.  

The result of this survey includes seven MAs and eight POS taggers listed in Table 

4.1. 

For the sake of completeness, Table 4.2 lists some tools that do not conform 

with the availability condition. However, as other researchers have used them, they 

might have been available, and someone may get hold of them in future. However, 

we contacted their owners to receive a copy for research purposes, but we did not 

get any response.  

4.3 Survey of Open Access Morphological Analysers 
Seven morphological analysers (MA) match our criteria. MA differs than 

POS tagger in that they do not perform any disambiguation; therefore, they provide 

a list of analyses with no order. MA typically do not consider the context in the 

analysis. 

One common phenomenon is the lack of proper documentation that does not 

only include installation guides but a technical documentation of tagset and tools 

features. When the tagset is listed, it is sometimes not comprehensible, as tags are 

always shortened for representation purposes.   
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Table 4.1 The list of MAs and POS Taggers that have been studied 

Name Code 

Main 

Category Sub-category 

Tagset 

Size9 

Mada MD POS-tagger 
knowledge-based: BAMA. SVM using 

SVMTools for disambiguation 
36 

AMIRA AM POS-tagger data-driven: SVM using YAMCHA 25 

MadaAmira MX POS-tagger 
knowledge-based: BAMA. SVM for 

disambiguation 
36 

Stanford ST POS-tagger Data-driven:  25 

ATKS' POS 

Tagger 
MP POS-tagger Data-driven: SVM with CCA features N/A 

MarMoT MR POS-tagger Data-driven: CRF 25 

SAPA WP POS-tagger Data-driven: CRF 24 

Farasa FA POS-tagger Data-driven: Joint prediction with syntax 16 

AraComLex AR MA FST 14 

ElixirFM EX MA Haskell, functional programming 23 

BAMA 

(AraMorph) 
BP MA Dictionary 70 

Almorgeana AL MA Dictionary 36 

ATKS' Sarf MS MA N/A 70 

AlKhalil KH MA Dictionary > 118 

Qutuf QT MA Dictionary N/A 

Table 4.2 The list of MAs and POS Taggers that have been excluded. 

Name Main Category Sub-category Excluded 

MORPH2 MA knowledge-based: XML lexicon Yes10 

Khoja 

ArabicTagger 
POS-tagger 

Hybrid: Statistical and Rule-based. 

Vetrabi for disambiguation 
Yes10 

SAMA MA Dictionary Yes11 

SALMA MA N/A Yes10 

Xerox MA FST Yes12 

                                                
9 Tagset size might be different from published numbers. This is the output of the process of finding 

core tags (or basic tags ), removing embedded inflectional features and splitting compound tags. 

Complex tags refer to tags with embedded inflectional features. Compound tags refer to tags that 

aggregate all morphemes tags in a single tag. For example, NNS and VBZ are a complex tag, while 

NN is a core tag. DTNN (an article and a noun) is a compound tag. 
10 Authors did not respond to our request for their system. 
11 Only available to LDC members. 
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4.3.1 AraMorph (BP) 
AraMorph (a.k.a BAMA, stands for Buckwalter Arabic Morphological 

Analyser) is free GNU-licenced software initially written in Perl by Tim Buckwalter 

in 2002 and published in www.qamus.org. The software was later optimised by Jon 

Dehdari in 2005 to support UTF-8 encoding and speed up the processing time. 

AraMorph has been ported to Java by Pierrick Brihaye and published on 

www.nongnu.org. AraMorph received further work in 2012 by Hulden and Samih 

(2012)13 that converts original table-based procedural AraMorph software into a 

finite-state transducer (FST) parser using his Foma Software (Hulden, 2009)14. The 

authors claim that it is faster and more flexible, i.e. a more extensive range of 

applications can use the FST such as spell checkers. Tim Buckwalter released 

BAMA 2 and later SAMA 3, but they need the Linguistic Data Consortium (LDC) 

licence to be used; therefore, they have been excluded from our list.  

AraMorph views the Arabic word as a concatenation of prefix+stem+suffix, 

where prefix and suffix can be null. It has a lexicon where each lexeme is assigned a 

category (in addition to its POS tag and gloss). This categorisation is the most 

important part in the analyser and it embodied all morphological decisions. For 

example, some categories allow the addition of Taa Marbouta to mark feminine 

noun, but some do not. The analysis is straightforward: using the list of possible 

prefixes, suffixes, and a compatible table, it extracts all possible compatible 

substrings that match these affixes and returns all matched candidates.  

However, infixes are common in Arabic, and thus it fails to identify them 

correctly (e.g. identify the plurality of a “broken” plural noun). BAMA does not 

make use of partially diacritics inputs (Hulden and Samih, 2012). 

TAGSET: Tags are mixed with morphological features to form complex 

tags such as IV_PASS (imperfective passive verb). The tagset has about 70 basic tags 

(Habash, 2010). 

                                                                                                                                    
12 The demo website is working but its web service produces 501 error which makes it impractical to 

annotate large corpora. 
13 https://code.google.com/p/buckwalter-fst/  
14 Foma is software for constructing finite-state automata and transducers for multiple purposes. 

https://code.google.com/p/foma/  
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4.3.2 AlKhalil (KH) 
The AlKhalil Morphological Analyser (Boudchiche et al., 2016) is a 

morphosyntactic analyser of MSA shipped with a broad set of lexicon and rules. It is 

free open-source software written in Java and in Perl. The latest version 2 was 

released in 201615 which improved the lexicon and added lemma and its pattern to 

the list of features. The standard way to interact with AlKhalil is using its graphical 

user interface that accepts raw text in UTF8 encoding. El-Haj and Koulali (2013) 

reported that AlKhalil (v1.1) reached an accuracy of 96%. 

OUTPUT: The system results can be either shown in the browser or saved 

as a comma-separated file. Given one word, AlKhalil returns a list of solutions of 

possible tags of the stem with features. Noun features are its nature, root and pattern 

in addition to functional features of a noun: gender and number. Verb features are 

aspect, form and voice in addition to syntactic features: form, root, permittivity16, 

transitivity and conjugation's gender, person and number. For every solution, the 

system determines its voweled form, and its prefix and suffix whenever those exist. 

TAGSET: AlKhalil is not consistent in identifying the possible tags of the 

word, and its results are not in readily reusable form: morphological and 

grammatical features are embedded within a plain text that describes the analysis. 

To the best of our knowledge, AlKhalil does not have a predefined set of tags. For 

example, for some functional words that have different possible analyses, it returns 

one analysis with a description such as: “conditional or negative particle”, instead of 

returning two analyses: “conditional particle” and “negative particle”. The estimate 

number of the possible tags for the base form of the word is at least 118 basic tags.  

4.3.3 AraComLex (AR) 
AraComLex (Attia, 2006) is a morphological analyser and generator that 

uses finite state technology shipped with a contemporary dataset of news articles. It 

uses the rule-based approach with the stem as the base form in its lexicon. The last 

version published is 2.117. The analyser uses Foma (Hulden, 2009) to construct a 

model and then lookup for matches.  
                                                
15 http://oujda-nlp-team.net/?p=1299&lang=en  
16 Verbs are traditionally classified into two categories: "primitive" which all of its characters are 

primitive and "derived" where one or more characters have been added to the original primitive verb 
17 sourceforge.net/projects/aracomlex/ 
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A distinguishing feature in AraComLex is the identification of multi-word 

expressions. However, since AraComLex assumes a tokenised input provided by 

author's tokeniser which was not working18, we could not find a suitable tokeniser 

that makes it able to detect and identify multi-word expressions.   

INPUT: With the lack of technical documentation and after some trial-and-

error: AraComLex expects undiacritised UTF8-encoded text with each word in a 

line. The system fails to find proper analysis if diacritics are present.  

OUTPUT: The output of AraComLex is a set of solutions for every input 

word in a custom format as can be seen in Appendix B. No description of the tagset 

is provided: “past” tag, for example, is not lucid (tense or aspect feature). The tagset 

size is about 14 basic tags.   

4.3.4 ALMORGEANA (AL) 
ALMORGEANA (Habash, 2007) is a lexeme-based morphological analyser 

and generator. It uses Buckwalter's lexicon with a different engine that can 

additionally generate the proper inflected word given a feature-set. In the analysis 

task, it differs from AraMorph in the output lexeme-and-feature representation. In 

addition, it has a back-off step where it looks for compatible substrings of prefix and 

suffix, and if found, the stem is considered a degenerate lexeme.  

ALMORGEANA is used in MADA and MADAMIRA toolkits to generate 

all possible morphological analysis of a given text. This step follows the 

preprocessing step of normalisation. ALMORGEANA can be used with either the 

Buckwalter Arabic Morphological Analyser (BAMA) or the Standard Arabic 

Morphological Analyser (SAMA). The latter is only available to LDC members, so 

BAMA is used instead. MADA authors reported that using BAMA instead of 

SAMA will result in a slight drop (2-4%) in word disambiguation. 

                                                
18 The author also published a set of relevant tools in his web page including a guesser and a 

tokeniser in a compiled format for Mac and Windows. However, they did not work on current 

operating systems (at least on MAC OSX 10.10). One tool is Arabic Morphological Guesser, with the 

back-off feature; that is, if a word is not found in the lexicon, it guesses a correct morphology rather 

than returning none. 
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4.3.5 Elixir Functional Morphology (EX) 
Elixir Functional Morphology (Smrz, 2007) is an analyser and generator tool 

that reuses and extends the functional morphology library for Haskell. Elixir has two 

interfaces to the core Haskell system written in Perl and Python. Its lexicon is 

designed to be abstracted from the actual program which allows an easy addition to 

the lexicon. It was initially derived from the form-based Buckwalter dictionary, but 

it has been enriched with syntactic annotations from Prague Arabic Dependency 

Treebank (PADT) and adapted to support function-based morphology.  

TAGSET: Elixir uses the same tagset as PADT (23 basic tags). The tags 

consist of a 10-position string with first two characters reserved for POS tag and the 

remaining eight includes morphological and grammatical features like gender, 

person, case and mood. 

4.3.6 SARF from Arabic Toolkit Service (MS) 

Microsoft Research Lab in Cairo has developed a set of linguistic tools 

targeting the Arabic language. Among eight tools, they provide free of charge access 

to a morphological analyser (SARF) and a POS tagger for academic researchers, 

professors and students only. We could not find an academic paper that describes the 

morphological analyser methodology. The toolkit can be accessed using the SOAP 

web service. 

The morphological analyser (SARF) provides all possible analyses of an 

input word: affixes, stem, diacritised form and morphological features such as 

gender. One distinguishing feature of SARF is that it ranks its solutions based on the 

actual language usage of each analysis. 

TAGSET: The tagset contains 109 possible complex tags, making it the 

second largest tagset. The tagset has some combination of morphological features in 

it. For example, pronouns can be suffixed with _MOTAKALLEM to denote a first-

person. The tagset has about 70 basic tags. 

4.3.7 Qutuf (QT) 

Altabba (2010) proposed an NLP framework written in Python that has a 

morphological analysis component. The latest version of Qutuf is 1.01. Qutuf used 

the Alkhalil dictionary after enriching it. Qutuf extends Alkhalil by making the 

output more easily reusable and by assigning each solution with a probability. 
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TAGSET: A tag has 10 slots separated by a comma that represents the base 

POS tag and some morphological and syntactical features. Some slots serve different 

meanings depending on the main POS tag. For example, slot 2 represents the 

punctuation mark (if the main POS is “other”), particle (if “particle”) type or gender 

(if “verb” or “noun”). 

Table 4.3 The features of each of the morphological analysers for each given 

word/segment. 

Name AR EX BP AL MS KH XE QT 

Base POS tag Yes Yes Yes Yes Yes Yes Yes Yes  

Aspect Yes19 Yes Yes Yes Yes Yes Yes Yes  

Person - Yes Yes Yes Yes Yes Yes Yes  

Gender Yes Yes Yes Yes Yes Yes20 Yes Yes  

Number Yes Yes Yes Yes Yes Yes Yes Yes  

Transitivity Yes - - - - Yes - Yes  

Voice Yes Yes Yes Yes Yes Yes Yes Yes  

State - Yes Yes Yes Yes Yes Yes Yes  

Mood - Yes Yes Yes Yes Yes Yes Yes  

Case - Yes Yes Yes Yes Yes Yes Yes  

Pattern - Yes - - Yes Yes Yes -  

Root Yes Yes - - Yes Yes Yes -  

Stem - Yes Yes Yes Yes Yes - -  

Lemma - - Yes Yes - Yes - -  

Diacritisation - Yes Yes Yes Yes Yes Yes Yes  

Glossing - Yes Yes Yes - - Yes -  

Tokenisation Yes Yes Yes Yes Yes Yes Yes Yes  

Segment-based21 - Yes - - - - Yes Yes  

4.4 Survey of Open Access POS taggers 
POS taggers assign one POS tag to every word-form or every word's 

segments.  Unlike MAs, POS taggers assign a tag that is contextually suitable. Some 

POS taggers return only one tag, a ranked list of possible POS tags or a list with 

each tag assigned with a probability. Some POS taggers use MAs as a preprocessing 
                                                
19 Tense (past, present, and future) is used instead of the aspect of the verb, but they are highly 

related. 
20 Only for nominals. 
21 Whether morphosyntactic features are for each morpheme or not. See Section 6.9 for examples.  
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step (e.g. MD, MX, MR, etc.) and thus they disambiguate and rank different 

proposed analyses. Some POS taggers use MAs even in the tokenisation process, 

e.g. MADA and MADAMIRA. 

While some POS taggers do word-based tagging, e.g. (Mohamed et al., 

2010), all POS taggers in our list do morpheme-based tagging. Because of Arabic's 

rich morphology, word sparsity is high, and consequently, word segmentation 

becomes essential. Studies have shown that word segmentation lowers data 

sparseness and achieves better performance (Diab, Hacioglu and Jurafsky, 2004; 

Benajiba and Zitouni, 2010). A POS tagger usually has a component that does the 

segmentation or relies on the user to provide segmented input. However, this 

segmentation increases the ambiguity as a word may be segmented into multiple 

candidate sets of segments. 

4.4.1 MADA+TOKAN suite (MD) 
MADA (Habash, Rambow and Roth, 2009) is a popular suite that has 

multiple tools for Arabic NLP. MADA processes raw Arabic text to provide a list of 

applications: POS tagging, diacritisation, lemmatisation, stemming and glossing. 

MADA is written in Perl and uses Support Vector Machines (SVM) trained on Penn 

Arabic Treebank (PATB) to select a proper analysis from the list provided by 

Buckwalter Arabic Morphological Analyser (BAMA). MADA uses 19 features, 14 

of which are morphological features, to rank the list of possible analyses. The 

reported accuracy of predicting the correct POS tag is 96.1% (Pasha et al., 2014). 

A remarkable feature of MADA is how it models the problem. The 

prediction is word-based: it predicts its clitics by predicting the value of four 

features: article, preposition, conjunction and question proclitics. It assumes that no 

two proclitics of one type can co-occur in one word. Predicting the value of each 

type will result in the word segmentation. In addition, clitics POS tags are complex 

and embodies some morphological features. This modelling allows the full analysis 

to be done in “one fell swoop”. No segmentation is required in advance. 

TAGSET: MADA “targets the finest possible POS tagset” (Habash, 

Rambow and Roth, 2009). It supports the mapping to four different possible tagsets: 

ALMORGEANA, CATiB, Reduced PATB, or Buckwalter. The default tagset has a 

size of 36 tags for tagging the base of the word. Five, eighteen, seven, and two tags 

are dedicated to article, preposition, conjunction and questions proclitics 
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respectively; and twenty-two tags for enclitics. The tagset used by MADA is well 

documented in the manual shipped with the suite. 

4.4.2 AMIRA (AM) 

AMIRA (Diab, 2009) is a toolkit of three main tools: tokeniser, POS tagger, 

and base phrase chunker. The POS tagger uses YamChi toolkit, an SVM-based 

sequence classification toolkit. The toolkit does not depend on in-depth morphology 

information; instead, it learns from the surface data. AMIRA was trained on PATB. 

The reported accuracy of predicting the correct POS tag using default tagset is 96% 

(Diab, 2009). 

TAGSET: AMIRA can output the tags in one of three tagsets: RTS, 

Extended RTS, Extended RTS with the 'person' information. Extended RTS has 

about 72 complex tags, and those tags encode gender, number and definiteness. 

After removing features from the tag, the tagset is about 25 basic tags.  

4.4.3 MADAMIRA suite (MX) 

MADAMIRA (Pasha et al., 2014) is a suite that combines two previously 

mentioned systems: MADA and AMIRA. MADAMIRA ported the two systems into 

the Java programming language allowing it to be portable, extensible and even 

faster. MADAMIRA supports MSA and Egyptian Arabic. One added feature to 

MADAMIRA is the server mode feature, which allows the user to run MADAMIRA 

in the background and then send HTTP requests for different tasks. While the 

accuracy has not improved, the speed of tagging has improved over MADA 

substantially (16-21 times faster). The reported accuracy of predicting the correct 

POS tag is 95.9% (Pasha et al., 2014). 

TAGSET: The tagset used by MADAMIRA extends the MADA tagset by 

having some tags for Egyptian Arabic processing.  

4.4.4 Stanford POS tagger and Segmenter (ST) 
Stanford NLP group released a list of Arabic NLP tools including a POS 

tagger (Toutanova et al., 2003) and Arabic word segmenter (Diab et al., 2013). The 

POS tagger is shipped with a model for Arabic trained on the Penn Arabic Treebank 

(PATB). It uses the Maximum Entropy approach to assign a POS tag to a segmented 

text (using Stanford Arabic Word Segmenter). The Stanford Arabic Word 

Segmenter uses the Conditional Random Fields (CRF) classifier to normalise the 
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text and split off clitics from base words in a similar segmentation schema to one 

used in the PATB. El-haj (El-haj and Koulali, 2013) reported that the Stanford 

Tagger reached an accuracy of 96.5%. 

TAGSET: This tagset is the (augmented) Bies tagset of 25 basic tags. 

Authors augmented the tagset by adding DT (determiner) to the beginning of 

nominal tags. 

4.4.5 MarMoT (MR) 

MarMoT (Mueller, Schmid and Schütze, 2013) is a generic CRF 

morphological tagger written in Java. MarMoT provides a pre-trained model that 

was trained on the PATB provided by SPMRL2013 shared task. MarMoT does 

backwards-forward computations by incrementally increased order to prune the size 

of possible morphological analyses. MarMoT is efficient in training high order CRF 

classifiers even with large tagsets and does some approximation using coarse-to-fine 

decoding. MarMoT assumes a transliterated and tokenised input according to the 

PATB transliteration and tokenisation. We used the TOKAN segmentation tool to 

pre-process the input. The reported accuracy of predicting the correct POS tag is 

96.43%.  

TAGSET: This tagset is the 25-tag RTS tagset. Additionally, MarMoT 

provides morphological features identical to AraMorph. 

4.4.6 Arabic Toolkit Service POS Tagger (MT) 
The Arabic Toolkit Service (ATKS) also have a POS tagger (Kim, Snyder 

and Sarikaya, 2015) that identifies the part-of-speech of each word in a text. A 

distinguishing feature in this tagger is the use of the Canonical Correlation Analysis 

method to find a multi-lingual word representation in the prediction of the POS tag.  

They do not state the use of their morphological analyser (SARF) in the process of 

tagging. This tool identifies the grammatical features like mood and case; also, it 

resolves the nunation, the addition of nun sound that indicates a noun's indefinite 

case. Instead of normalising, the tagger uses a spelling corrector as a preprocessing 

step which helps in decreasing the ambiguity caused by normalising Hamza and Alif 

letters.   
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TAGSET: This tagset has a complex compound tagset: (>3000 tags22). Each 

particle has its own tag (Laam particle is tagged Laam). Without official 

documentation and because of the limited usage quota, it is hard to estimate the 

number of core tags.  

4.4.7 Segmenter and Part-of-speech tagger for Arabic (WP) 
Segmenter and Part-of-speech tagger for Arabic (Gahbiche-Braham et al., 

2012) is a tool that uses a CRF model trained on PATB using the Wapiti toolkit23. 

The tool has two components: one to predict the POS tag and the second is to split 

the enclitics. The reported accuracy of predicting the correct POS tag is 96.38%. 

TAGSET: WP used the list of main 24 POS tags of PATB, with 3, 6, and 2 

for conjunctions, prepositions, and determiner prefixes respectively.  

4.4.8 Farasa POS tagger (FA) 
Farasa (Zhang et al., 2015) is a toolkit for segmentation/ tokenisation 

module, POS tagger, Arabic text diacritiser, and dependency parser. Farasa is 

different from other POS taggers as it can jointly segment, POS-tag, and parse the 

text which avoids error propagation in the pipelined structure and should exploits 

syntactic information for POS tagging. It is particularly useful for tagging CA as CA 

is different in vocabulary from MSA, but it shares similar syntax. The reported 

accuracy of predicting the correct POS tag of MSA is 97.43% and of CA is 84.44%.  

TAGSET: Farasa has a tagset of 16 basic tags.  

4.5 Discussion 
While POS taggers and morphological analysers predict the main POS tag, 

they vary in fine-graininess of tagset and segmentation. They differ in many aspects: 

tagset used, output format, the method used, and tokenisation. Most taggers adopt 

their own tagset, and they subsequently assume their tokenisation scheme. Table 4.3 

and Table 4.4 lists supported features by each morphological analysers and POS 

tagger. Most taggers produce their results in their customised format as shown in 

Appendix B. 

                                                
22 https://www.microsoft.com/en-us/research/project/part-of-speech-pos-tagger/ 
23 https://wapiti.limsi.fr/  
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Table 4.4 The result of POS taggers, for each input word.  

Name MD AM MX ST MT MR WP FA  

Base POS 

tag 
Yes Yes Yes Yes Yes Yes Yes Yes  

Glossary Yes - Yes - - - - -  

Aspect Yes Yes Yes Yes24 Yes - - -  

Person Yes Yes Yes - Yes - - -  

Gender Yes Yes Yes - Yes - - Yes25  

Number Yes Yes Yes Yes26 Yes - - Yes25 

Transitivity - - - - - - - -  

Voice Yes Yes Yes Yes Yes - - -  

State Yes - Yes - Yes - - -  

Mood Yes - Yes - Yes - - -  

Case Yes - Yes - Yes - - -  

Pattern - - - - - - - -  

Root - - - - - - - -  

Stem Yes - Yes - - - - -  

Lemma Yes - Yes - - - - -  

 

To show the differences in context, Appendix A presents one Hadith (an 

utterance attributed to prophet Mohammed often called “prophet sayings”) sentence 

annotated by each tagger. The sentence was extracted from the prophet Mohammed 

sayings (classical Arabic): ا و ھ  نو ك ی ى ت ح  م ك د ح أ  ن م ؤ ی لا ِ ِ  ُْ  ِ   َ ِ  ً  ََ  ُ   ھ ب  ت ئ ج ا م ل ا ع ب ت  ه َ َ  َ  ُ َ   َّ َ  ْ ُُ  َ َ  ُ ِ ُْ     , /lA yu&ominu 

>aHadukumo Hat~aY yakuwna hawaAhu tabaEFA limaA ji}otu bihi/ (None of you 

[truly] believes until his desires are subservient to that which I have brought). The 

sentence is fully vowelized, including the ending vowel. However, some taggers 

(ST, MR, AR, BP, KH) performed better when vowels are completely removed, 

probably because they were trained on undiacritised texts or the ending vowel is not 

expected.  

We used a slightly edited version of CoNLL-U format to represent the 

tagged sentence using MAs and POS taggers. We added one column (the 1st) to 

represents the tagger name and dropped the 3rd, 7th, 8th, and 9th irrelevant columns. 

                                                
24 Yes unless it is passive: verb mood cannot be determined. 
25 only for nominals. 
26 Number is either singular or plural. 
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Since MAs do not disambiguate, we manually picked the most-correct analysis. The 

last column shows the selected analysis and the number of alternative analyses.  

This conversion is not straightforward. We had to deal with a number of 

different output formats. In addition, the morphological features values were unified 

for a direct comparison. We had to deal with different transliterations and 

representations: e.g. we extracted clitics from word-based taggers, we extracted 

morphological features from compound-tag (e.g. word #5 and IV3MS ) taggers. The 

converter software to CoNLL-U format, XML and JSON is freely available and 

open-source27.  

In the following excerpts, a simpler format is used that highlights only the 

morphological analysis aspect in the discussion, using a list of word form and POS 

tag separated by a slash. The plus sign at the beginning/end of word form indicates a 

proclitic/enclitic. 

The results presented on Appendix A shows that:  

i. Not only POS tags are different, but the word segmentation as well (word 

#2). 
One Segment Two Segment 

AL: yu&omin/verb 

AR: >Amn/verb 

 

BP: yu+/IV3MS &omin/VERB_IMPERFECT 

MS: 

_+/PREFIX_YA2_ANAIT_MA3LOOM_MAGHOOL 

yu&omin/FE3L_MODARE3_MAZEED 

ii. Word #10 shows that the definition of the main segment is not standard: is it 

the PREP or the PRON? This can cause problems when evaluating different 

lemmatisers/stemmers for example.  
Two proclitic Stem + Enclitic 

FA: b+/PREP +h/PRON 

ST: b+/NN +h/NN 

AM: b+/IN +h/PRP_MS3 

BP: bi/PREP +hi/PRON_3MS 

MD: bihi/prep +/3ms_pron 

 

iii. Some taggers do not recover the word's clitics. Instead, it reports the POS tag 

of such clitics. Some others try to recover the original form of the word 

before concatenation. Aligning such taggers with others cannot be done 

intuitively.  

 

                                                
27 http://github.com/aosaimy/sawaref-web   
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No Form 

MT: hawaAhu/Ed -/N  -/Poss 

MX: hawAh/noun -/3ms_poss 

Form Segmentation 
ST: hwA/NN +h/PRP$ 

FA: hwA/NOUN +h/PRON 

Form Restoration 
AM: hwY/NN +h/PRP 

MR: hwy/NN +h/PRP 

EX: hawaY/N- hu/SP 

 

iv. Two tokens sometimes are given one tag (KH analysis of word #10) even 

though the tag explains the two tokens: “a preposition and its pronoun”. 
Two POS tags KH: bihi/jAr_wmjrwr 

Single Tag/Segment 
EX: bi/P- hi/SP 

FA: hwA/NOUN +h/PRON 

v. Some segmentations are for affixes, not clitics (word #7). INDEF tag is 

related to the first segment though. 

Affix-based 
FA: tbE/NOUN-MS +A/CASE 

BP: tabaE/ADV AF/NSUFF 

Clitic-based 
AM: tbEA/NN 

MX: tabaEAF/noun_(CASE=ACC) 

vi. The convention of diacritisation is not standard. For example, look at short 

vowels before long vowels (word #1) and tanween location (before or after 

Alif letter) (word #2). Normalisation is required if a comparison is to be 

performed.  
Long vowels BP: lA/NEG_PART EX: laA/F- 

Tanween 
AL: tabaEAF/adv 

BP: tabaE/ADV AF/NSUFF 
EX: tabaEFA/N- 

MS: tiboEFA/Asm_jAmd 

vii. Features and POS tags are not always consistent between different taggers. 

For example, the morphosyntactic features of verbs and its subject may be 

segmented and not. 

 Single  

AL: ji}ota/verb_(Gender=M|Number=S|Mood=IND| 

Aspect=PERF|Voice=ACT|Person=2) 

EX: ji}tu/VP_(Gender=M|Number=S|Aspect=PERF|Voice=ACT|Person=1) 

AR: jA'/verb_(Aspect=PERF|Voice=ACT|Person=1) 

Segmented
 

ABP: ji}/VERB_PERFECT_(Aspect=PERF) 

tu/PVSUFF_SUBJ:1S_(Number=S|Voice=ACT|Person=1) 

MS: ji}otu/FE3L_MADI_MOGARRAD_(Aspect=PERF) 

_/SUFFIX_TA2_FA3EL_MOTAKALLEM_(Person=1) 

MT: ji}out/V_(Number=S|Aspect=PERF|Voice=ACT) 

_/Subj_(Number=S|Person=1) 

viii. Some diacritics are dropped in the morphological analyser. It is not due to 

input normalisation at the beginning of the morphological process but in the 
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tool’s processing of the word form.  The processing includes some spelling 

changes in short vowels, Hamza letters, and Alif/Yaa Maqsourah. This 

inconsistency complicates the comparison of outputs using lexical forms.  

Word 

Form 

AM: j}t 

FA: j} +t 

MX: ji}otu 

MD: ji}otu 

MR: jt 

ST: j}t 

WP: ji'tu 

MT: ji}out 

 

We noticed that in many cases, the first suggested analysis is the correct one: this 

is because of some ways MAs sort alternative analyses. However, this should not 

be confused with POS taggers as POS taggers use the context to rank alternative 

analyses. 

 

4.6 Tagging Classical Texts 
In optimal cases, evaluating a list of POS taggers requires a gold standard 

test dataset, that has a standard tagset and segmentation (tagger’s output should be 

mapped, otherwise). However, the reported accuracies of taggers fail to adhere to 

these three conditions. Besides, most surveyed tools are designed primarily for 

MSA, including their test datasets. The commonly-used dataset for testing is parts of 

PATB, which has most of its content is news articles. In this thesis, the performance 

of these tools is analysed in classical Arabic. The goal is to compare more taggers on 

a sample of CA concerning accuracy and coverage. A direct automatic evaluation is 

not possible (Paroubek, 2007). 

4.6.1 Methodology 

As mentioned earlier, Alrabia (2014) showed that CA has a worse POS 

tagging accuracy for MD and KH tools. They overcome the issue of different tagsets 

by learning each tagset and validating each tagger against its own tagset. Therefore, 

the reported accuracy can be compared to their published accuracies. However, the 

reported accuracies should be taken with caution when comparing taggers to each 

other as they adhere to different linguistic schemas.  

Their work is limited to only two taggers. In this thesis, more taggers are 

included. The approach is similar to their approach, but with a smaller data set. Our 

approach focuses on a subset of words that looks classical. This decision is to 

minimise the effort and improve the quality of the analysis.  A word is assumed to 
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be classical if it appeared on a classical Arabic corpus but not a contemporary 

corpus. To formalise this assumption, let ! be the set of words in a classical corpus, 

and " be the set of words in an MSA corpus, the set of classical words are # =
! −".  

This methodology makes performance measures intentionally biased to 

classical Arabic and not necessarily comparable to their previously published work. 

For example, frequent words (usually not (out of vocabulary) OOV) contributes to 

good accuracy, but these words are excluded in our case. This methodology should 

as well give some insights into the similarity between classical Arabic and MSA and 

the richness of Arabic lexicon of classical Arabic.  

Since the word list is extracted with no context, their POS tags are not 

determined. It is common for one word in Arabic to have a list of possible tags 

which is required for reporting accuracy as it is a contextual measure. The accuracy 

measure is defined by the average prediction accuracy of the POS tag of the word in 

10 occurrences, i.e. 10 concordances are extracted from the classical corpus subset, 

and checked if the proper POS tag is given correctly by the analyser.    

4.6.2 Data 

The classical corpus used for ! is a subset of OpenArabic Corpus (Dmitriev, 

2016). It categorised classic books into centuries and provided word frequencies for 

each book with and without normalisation. The subset is conditioned books that are 

written in the first seven centuries (1075 books). The contemporary corpus used for 

" is the Corpus of Contemporary Arabic (Al-Sulaiti and Atwell, 2006). W is capped 

to the top 500 words.  

The final list of words have some issues: 30% of the words are proper nouns 

which may suggest the need for gazetteers for classical Arabic proper nouns. It is 

particularly useful because Proper nouns in Arabic are not marked (i.e. they are not 

capitalised). Unlike common nouns, grammatical features of proper nouns are 

sometimes lexical. 

The word frequencies reported by OpenArabic is a simple word frequency, 

instead of the term frequency-inverse document frequency (TF/IDF). This choice 

raised some words that are highly frequent but only on certain books (e.g. 

dictionaries like ( مضب  /bDm/ with a Dammaah vowel), prophet sayings like ( انث  /vnA/ 

he reported), bibliography like some proper nouns). 
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One drawback of this methodology is the incapability of handling different 

inflexions, especially with highly inflectional languages like Arabic. Some 

contemporary words are found in the final list, as they appear in inflected forms that 

did not appear in the contemporary corpus.  

4.6.3 Evaluation 
In this experiment, we report the performance in two folds: the performance 

of morphological analysers and POS taggers. In morphological analysers, we 

compare the accuracy and coverage of these analysers, while in POS tagger we only 

report the accuracy. POS taggers tag each word even if it is OOV, so no coverage is 

reported. The OOV rate is not available due to the unavailability of their training 

dataset. 

In the morphological analysers, the accuracy of tagging these words is 

reported, in addition to the rate of out of vocabulary (OOV) words, analysis time 

measured in seconds, average number of analyses per word, and the average number 

of lemmas per word. See Table 4.5. AL used backoff strategy when no analysis was 

found in the dictionary (so OOV rate is zero). QT does not provide lemmatisation. 

Table 4.5 The rate of out of vocabulary (OOV), accuracy, analysis time, 

average number of analyses/lemmas of analysing 50 common classical words. 

Tool   AR   AL   KH   EX   BP  MS   QT 

OOV rate 0.228   0  0.058   0.076  0.084  0.052   0.82 

Accuracy  56%   88%   90%   84%   88%   82%   N/A 

Analysis Time (in secs)  0.255  4.324  3.453  177.465 1.061  N/A28  0.766 

Avg. Analysis/Word   2.06   7.32  14.25   17.89   2.44   1.86   4.27 

Avg. Lemmas/Word   1.5   2.53   4.51   2.61   2   1.53   1 

 
The second fold is evaluating the performance of POS taggers. Because of 

the high appearance of proper nouns, the accuracy of tagging this specific tag is 

reported. Table 4.6 shows the overall and proper nouns accuracies. 

Proper nouns were rarely tagged correctly by MAs. Alkhalil seems to have a 

list of classical proper nouns (gazetteers) as it performed the best in this matter. The 

identification of personal names is challenging for several reasons: the absence of a 

proper mark, nominals acting as proper nouns (adjectives, nouns, participles, and 
                                                
28 Not available as it is a web-based service. 
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even inflected verbs), and phrasal names (teknonymics, patronymics, 

matronymics)29 (Ryding, 2005). 

Since each tagger has its own labelling schema, marking the tag as either 

correct or not is not easy, as it requires a thorough understanding of the tagset. The 

marking was done by the author of this thesis, who manually checked each tagger’s 

output. A tagger has to identify all clitics correctly and assign each clitic its proper 

POS tag. No other morphological analysis is included in this experiment.  

Some sources of incorrect tagging were as follows: 

- Obsolete forms: One adverb was only tagged correctly by one analyser, as 

this adverb is obsolete. Some patterns as well were not identified as the broken 

plural pattern is obsolete (like ةأرقلا  Alqr>p (the readers) ) 

- Normalisation: e.g. Converting Yaa Maqsourah to Yaa, a proper noun was 

not tagged properly. 

- Orthography and spelling: e.g. Classical tokenisation of اھیأ ای  /yA >yhA/ 

(O (mankind)) was written jointly unlike it usually is in MSA.   

Table 4.6 gives evidence that one POS tagger performs better in some tags 

than the other. The MADAMIRA toolkit (MX) performed poorly with classical 

proper nouns; however, it outperforms other taggers in tagging other words. On the 

contrary, the Stanford POS tagger (ST) (and Alkhalil tagger, KH) performed better 

in proper nouns. These different tag-specific accuracies suggest that an ensemble 

POS tagger could increase the accuracy of POS tagging, maybe with some attention 

to tagger’s strengths. 

Table 4.6 The accuracy of POS taggers of tagging 50 classical words within 

three sentences per word extracted from classical books. 

Tool MD MX ST MR WP AM MT FA 

Overall 30 69.6% 70.6% 78.4% 66.7% 68.6% 79.4% 67.6% 74.5% 

No Prop Nouns (57%) 80.0% 78.5% 71.4% 52.8% 58.5% 74.2% 87.1% 74.2% 

Prop. Nouns (43%) 46.8% 53.1% 93.7% 96.8% 90.6% 90.6% 25.0% 75.0% 

Reported Accuracy 96.1% 95.9% 96.5% 96.43% 96.38% 96% N/A 97.43%31 

                                                
29 It is not uncommon in Arabic to have proper names derived from mother’s child name 

(matronymics), father’s child given name (patronymics), or father’s given name (teknonymics). 
30 This accuracy can be seen as the OOV accuracy, as our methodology limits the test dataset to 

words that have not appear in a contemporary corpus. Therefore, it should not be directly compared 

to reported accuracies, but to their OOV accuracies, which are not reported for most of these tools.  
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4.7 Conclusion 
POS taggers and morphological analysers differ in many aspects. While they 

both predict the main part of speech tag, they vary on what morphological and word 

features they also predict. Most taggers adopt their own tagset, and they 

subsequently assume its tokenisation scheme. With a focus on tagging classical 

Arabic, the accuracy and coverage have dropped to a low score. The average drop is 

at least 20%. As a result, annotation of classical Arabic text should either adopt its 

own new morphological analyser or improve current ones to support classical 

Arabic. One potential solution is to combine those taggers into one system which 

should increase the coverage and accuracy levels. 
  

                                                                                                                                    
31 FA was tested on a classical Arabic corpus as well and the reported accuracy is 84.44%. 
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Part II 
Ensemble Morphosyntactic Tagger for Classical Arabic 
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5 ENSEMBLE TAGGER 
DESIGN FOR CLASSICAL 
ARABIC 

Chapter Summary1: 

In Modern Standard Arabic text (MSA), there are several morphological resources, 

but none is designed and tuned primarily for classical Arabic. The goal of our 

language resource is to build a freely accessible multi-component toolkit (named 

SAWAREF2) for part-of-speech tagging and morphological analysis that can 

provide an easy interface for several taggers, compare and evaluate between them, 

standardise their outputs of each component, combine different solutions, and 

analyse and vote for the best candidates. We illustrate the use of SAWAREF in 

tagging adjectives of classical Arabic.  This chapter describes the research method 

and design and discusses the critical issues and obstacles. 

  

                                                
1 Some parts of this chapter are based on:  

Alosaimy, A. and Atwell, E. (2015) ‘A Review of Morphosyntactic Analysers and Tag-Sets for 

Arabic Corpus Linguistics’, in Eighth International Corpus Linguistics conference (CL2015), pp. 16–

19. 

Alosaimy, A. and Atwell, E. (2016) ‘Ensemble Morphosyntactic Analyser for Classical Arabic’, in 

Second International Conference on Arabic Computational Linguistics. Konya, Turkey. 

Alosaimy, A. and Atwell, E. (2018) ‘Diacritisation of a Highly Cited Text: A Classical Arabic Book 

as a Case’, in 2nd IEEE International Workshop on Arabic and derived Script Analysis and 

Recognition (ASAR 2018). London, UK. 
2 SAWAREF toolkit: sawaref.al-osaimy.com. 
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5.1 Introduction 
The Arabic language has several variants where each has its own 

characteristics in morphology, lexicon and syntax. Classical Arabic, Modern 

Standard Arabic (MSA) and Dialectal Arabic have been written in different genres 

and media: from social networks to newspapers to journals. Researchers tend to 

build POS taggers for specific variant or dialects. Adapting one or several existing 

taggers to another domain/genre saves time and effort. While several POS taggers 

for MSA exist, none exist for classical Arabic to the best of the author's knowledge. 

Moreover, many of them are incompatible: incompatible tokenisation and various 

tagsets. The ultimate goal of our system is to build a methodology of combining 

black-box POS taggers; hence, a more robust tagger. 

The outline of this chapter is as following. First, we formally define the 

problem and propose a general design and methodology of a black-box ensemble 

system for transferring the knowledge to a low-resource variant of Arabic: e.g. 

classical Arabic. Then, we start this chapter by describing the challenges that faced 

the development of the ensemble system (Section 5.3). Section 5.4 describes each 

stage in more detail.  

Then, we report the results of three experimental studies. In Section 4.5, we 

report and analyse the results of mapping one tagset to another. In Section 5.6, we 

take a closer look at the approach of one stage: Diacritisation. Next, one potential 

use of the system (comparative evaluation of taggers) is illustrated by evaluating the 

case study of tagging adjectives (Section 5.7).  

5.2 Problem Definition and System Overview 
The tasks in this thesis can be divided into high-level and low-level 

categories. The high-level, i.e. the final system outcomes, are: the prediction of the 

word segments (or segmentation), and various predictions of POS tags and 

morphological features (or generally tagging). 

The segmentation problem can be seen as either boundary identification or 

word segments restoration. The boundary identification problem is a classification 

problem where the task is to mark the first letter of each segment. For example, the 

position of the first segmental letters of cannot  are the underlined first and fourth 

letters. However, word segment restoration recovers the word segments; e.g. the 

word don't is recovered into two segments: do and not. In this thesis, segmentation is 
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referred to the latter definition. However, it is worth mentioning that most taggers 

use the former definition. In the former word boundary identification, the problem is 

a binary supervised sequence labelling. Given a sequence of characters, & =
{&( … &* … &+} where n is word length, the task is to predict a sequence of labels with 

length n with the label set  - = {0,1}. The latter definition is more complicated: the 

task is to predict an unknown-length set of unknown-length sequences of characters. 

Similar to translating one sentence to another, it translates the lexical form of one 

word to its original word form. Some work such as Darwish and Mubarak (2016) 

formed the problem as a classification problem: the task is to rank and select the 

most probable segmentation from a list of possible segmentations. The list can be 

edited to help restore the original segments.  

The tagging problem is a set of predictions on the segments of the word, i.e. 

segmentation problem outcomes are pipelined in to the tagging problem. Although 

this problem could be performed on the word level (some tools already do that), we 

define the tagging problem as a supervised multioutput-multiclass labelling problem 

of each segment.  

The two problems can be done simultaneously, i.e. joint segmentation and 

tagging by defining the problem as a character-based classification task of character 

position and label. Each character is tagged according to its corresponding 

morpheme label in addition to a boundary tag that indicates its relative position. 

More details will be discussed in form-based ensemble (Section 6.5). This method, 

however, does not recover adjusted word form. 

In both high-level tasks, the feature selection (in the sense of machine 

learning) can vary according to the design of the model. In our ensemble problem, 

all the outputs of individual taggers may be used, including segmentation and 

tagging. In this chapter, the overall design of this model is described. Some 

adaptation to the model is proposed in the following chapters. 

High-level tasks involve several low-level tasks including the alignment 

problem, diacritics restoration, word form-based similarity measurement, and tagset 

mapping. These tasks will be defined later to put them in context. 
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The framework that combines all individual taggers is called SAWAREF3. 

SAWAREF has an interface web-based system that can run seven morphological 

analysers, namely: 

• AlKhalil (KH) (Boudlal et al., 2010),  

• Buckwalter (BJ) (Buckwalter, 2002b),  

• Elixir-FM (EX) (Smrz, 2007),  

• Microsoft ATKS Sarf (MS),  

• ALMORGEANA (AL)(Habash, 2007),  

• AraComLex (AR)(Attia, Pecina and Toral, 2011), and  

• Xerox (XE) (Beesley, 1998).  

Also, it can run seven POS taggers, namely: 

• Madamira (MX) (Pasha et al., 2014), MADA (MD) (Habash, Rambow and 

Roth, 2009),  

• AMIRA (AM) (Diab, 2009),  

• Stanford POS tagger (ST) (Toutanova et al., 2003),  

• Microsoft ATKS POS Tagger (MT) (Kim, Snyder and Sarikaya, 2015),  

• Farasa (FA) (Zhang et al., 2015),  

• MarMoT (MR) (Mueller, Schmid and Schütze, 2013), and 

• Wapiti Arabic Model (WP) (Gahbiche-Braham et al., 2012).  

The framework provides a simple convenient interface for comparing 

between taggers and evaluating them. It is not meant to be compared with those 

taggers: instead, it provides a range of useful tools to compare them against each 

other. The toolkit contains several tools:  

• a parser4 tool that reads the different formats of these taggers,  

• a standardiser component that converts them to a standard morphological 

representation using mapping rules,  

                                                
3 The name is not an acronym. It is a transliteration of the Arabic word فراو  .(distractor) ,ص

Morphology in Arabic is called فرص /sarf/ and its plural form is /soruof/, although both share the 

same root. The name is meant to show how the pattern of the word plays a critical role in the 

comprehension of Arabic words.   
4 Parsing and parser should not be confused with the linguistic meaning of syntax analysis. Syntax 

analysis is not out of the scope of this thesis. Parsing refers to the computational process of 

converting raw text outputs from one tagger into a machine-readable format. 
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• a Mapper web-based interface for mapping rules creation,  

• a CoNLL-U format converter,  

• a word alignment tool that preserves the same number of words from each 

tool,  

• a morphological alignment tool that tries to map a series of morphemes to 

their equivalent on another tagger,  

• a disambiguation tool, or the ensemble tagger that predicts the proper 

analyses given the taggers’ analyses, and  

• finally a web-based viewer to compare and check results interactively (see 

Figure 5.1). 

These tools are written to be used independently following the Unix tools 

philosophy. Each tool is designed to perform a specific task, and one tool output can 

be pipelined in to another tool. This philosophy allows the task to be developed and 

tested independently and its output to be examined easily.  



  - 84 - 

 
Figure 5.1 A screenshot of the SAWAREF web-based interface. The top bar is for navigation through documents and running analysers on 
a given text. The tabs represents different outputs of the analysers. The tabular view shows how each analyser is analyzing the sentence 
presented on a vertical mode. 
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Figure 5.2 The overall process of the ensemble system: SAWAREF. 

 
Figure 5.2 illustrates the overall process of the ensemble system. The process 

starts with the text to be tagged being sent to a pre-processing component for each 

participating tagger. The results are parsed using the parser tool and then sent to a 

word-aligner tool that aligns the results at the word level. Next, the system may use 

the mapping list to standardise the outputs. Each solution is then optionally aligned 

with other solutions using the morphological aligner tool. Finally, we use different 

ensemble methods to produce the most confident tagging and segmentation.  

The framework can be useful for other applications in different stages. For 

example, it provides a high-end interface to individual taggers, which can be used to 

perform evaluation of taggers and ease the choice of a tagger for specific research 

needs. 

5.3 Challenges 
Any heterogeneous ensemble faces the problem of projecting input (or 

individual) components into one standard schema. Specifically, ensemble 

morphological analysers face problems due to the variance in spelling and 

orthography, labelling standards and segmentation schemas. 

5.3.1 Diverse Output Format 
Almost every tool has its own format of the output. Some tools use popular 

machine-readable formats like table-like CSV (Alkhalil), XML (Qutuf, 
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MADAMIRA), or JSON (Xerox). MADA returns a sequence of feature:value pairs. 

However, some tools have a more complex output like BAMA and AraComLex. We 

needed to build a custom parser explicitly designed for their outputs. 

The parser component of SAWAREF translates the custom outputs of each 

tool to an open standard format: JSON and CONLL-U. This standard format eases 

the exchange of the output of these tools with other downstream products. As a 

consequence, the infrastructure needs to be updated every time one of the tools 

changes its output scheme. 

5.3.2 Tools and Resources Availability 
Although many researchers published papers about their morphology tools, 

many of these are either not available, require a licence or are limited to specific 

uses or bandwidth. For example, although the MADA toolkit is freely available, it 

requires lexicon tables that are only available with membership of the LDC until 

version 3.2 is released. Besides, some web services such as Xerox and Microsoft 

toolkits are limited to some usage quotas. 

5.3.3 Different Data Distributions 
Although CA is considered the father of MSA, MSA and classical Arabic 

have different data distributions. Many lexical words and phrases that were used in 

classical Arabic are no longer used in MSA. Because of that, the ensemble case in 

this thesis considers another aspect of adaptation: domain adaptation. Please note 

that some taggers are provided as black-box taggers and are not retrainable on a new 

training dataset. Some others are, as well, limited to specific annotation style, 

because they integrate external lexicon and morphological analysers.  

5.3.4 Different Word Segmentation  
For a valid comparison, words need to be similarly segmented. One approach 

is to segment the input in advance and supply the POS tagger with a segmented 

input. However, most tools jointly segment and tag the input, and therefore they 

cannot accept a segmented text. Even in cases where a segmented input is expected 

(e.g. Stanford POS tagger), the input has to conform to a specific segmentation 

schema. 
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5.3.5 Different Labelling Systems 
Although there are many suggested tagsets in the literature, e.g. (Khoja, 

2001; Sawalha and Atwell, 2013; Elhadj, Abdelali and Ammar, 2014; Zeroual, 

Lakhouaja and Belahbib, 2017), Arabic POS taggers suffer from not having a 

standard tagset. One reason is that researchers have different intentions and different 

views of the rich morphological nature of the language. The differences of 

heterogenous tagsets are derived from four aspects: their representation, 

comprehension, size, and convention.  

First, tagsets are different in their representations. They can be classified into 

two categories: pos+features tagsets (e.g. CONLL-U tagset) and complex one-word 

tagsets (e.g. Buckwalter tagset). In pos+features, tagsets are explicitly distinguished 

from morphological features (which is named explicitly): noun, Gender=Masc. In 

complex tagsets, the tag encodes multiple information with no predictable format: 

NSUFF_FEM_SG. 

Second, The non-standard tagsets introduces a challenge of understanding 

each one. Each tagset is developed using some underlying linguistic theory. 

However, tagsets usually do not name nor explain this theory. See Section 5.7 for an 

example of different definitions of Arabic adjectives.  

Third, tagsets vary wildly in their sizes. The Buckwalter tagset, for example, 

can hypothetically reach over 330,000 tags (Habash, 2010), while the Stanford 

tagger used a reduced Bies tagset that has around 20+ tags.  

Lastly, tagsets usually have implicit conventions. Tags tend to be short for 

presentation purposes, and sometimes they are misleading or incomprehensible, e.g. 

the “NSUFF” tag which stands for a nominal suffix. Fully understanding one tagset 

requires a good documentation.  

Some tagsets use the notion of default value for compactness purposes, e.g. 

“NN” stands for singular common nouns, which may confuse users with other 

situations where the number is not applicable. Another example: the PRON_2D tag 

for Arabic (a second-person dual pronoun) is missing the gender feature which 

might be assumed to be masculine. However, the gender feature is not applicable in 

this dual case due to the nature of Arabic. These sometimes are not mentioned in the 

documentation, which makes the mapping between tagsets or standardising them a 

challenge. Some tagsets are improved or developed over time, and the published 

tagset in an academic article is incomplete.  
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5.3.6 Converting Complex POS Tags 
Although some tools do not explicitly present some essential features such as 

gender, number and person, these features can be extracted from their complex one-

word POS tagset; however, this extraction process needs a careful understanding of 

the POS tags.  

Complex tags usually do not name the feature, which makes tags less 

comprehensible. For example, V.past could refer to a past tense verb or a perfect 

aspect verb (called past in traditional Arabic).  

5.3.7 Different Possible Configurations 
Some tools have different possible hyperparameters for different stages of 

morphological analysis, e.g. MADA input can be preprocessed in three different 

ways.  Different configurations lead to different tokenisation, and therefore different 

analysing and performance. Although these configurations are documented, the 

different combination of configuration values may have some impact on the 

ensemble analyser. However, this increases the hyperparameter space to a high 

degree. We choose to use the default settings and leave comparing different 

configurations for future work. 

5.3.8 Expectancy of Input 
While some tools expect unvoweled text data (AraComLex), some accept 

wholly or partially voweled data such as AlKhalil. ATKS uses these short vowels to 

filter the best analyses if it fits or the diacritics will be ignored. Mada expects the 

input text to be text-only one sentence per line with no tags or metadata. 

AraComLex expects every word to be in a single line. The Stanford tagger expects 

tokenised words. 

5.3.9 Different Transliteration Schemes 
Different tools encode the results in either ASCII or UTF-8. Some use a one-

to-one transliteration scheme like Buckwalter transliteration (which has received 

several extensions, and determining which extension can be tricky). Other tools like 

Elixir uses ArabTex encoding whose transliteration is governed by a set of 

complicated rules. 
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5.3.10 Different Spelling Schema 
There are some differences in the processing of the spelling of the input, due 

to different standards in processing Hamza, Taa Marbouta and diacritics. The 

spelling inconsistency complicates the matching between their output. A post-

processing normalisation step is sometimes required. For example, the convention of 

diacritizing /F/ when it is attached to /A/. More details are in Section 8.9.  

5.4 Tagging Stages 

5.4.1 Diacritisation 
One optional preprocessing step of the input text to all taggers is improving 

the phonological information of the text, i.e. diacritizing the text by adding short 

vowels to its non-diacritised letters.  

In this stage, we do not aim at automatic diacritisation; instead, we aim to 

raise the diacritisation coverage level by “borrowing” diacritisation from similar 

contexts with high confidence of accuracy. Raising diacritisation level reduces the 

word ambiguity level, which improves taggers accuracy (See Section 5.6 for 

experiment results). 

5.4.2 Pre-processing 
Most of the time, each component does the required pre-processing step on 

its own. That is, it transliterates, normalises, spell corrects, and tokenises the input 

text in the format suitable for the component's needs. 

However, after a series of tests to maximise the accuracy, we found that 

some poorly-documented taggers assume input in certain conditions. Some 

components work better when diacritics, digits, or punctuations are deleted, the text 

is normalised, or text is transliterated. In general, we followed the documentation 

requirements, if such existed, and pre-processed the input the way it achieves 

maximal accuracy (by iterative random samples evaluated manually). 

TOKENISATION: Tokenisation is well-known to be difficult in Arabic 

because writers often omit word spaces next to non-joining letters.  Tokenisation on 

whitespace and punctuation, therefore, introduces many errors on all but the most 

carefully written texts. However, our system assumes that every tool has its own 

word and morpheme tokenisation. One tool–MarMoT–required the input to be 

tokenised and we used the AMIRA word tokeniser. Some adaptions are required: we 
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deleted signs that indicate affix type. The Stanford POS tagger requires the text to be 

tokenised using the Stanford Word Segmenter (Monroe, Green and Manning, 

2014)1. AraComLex assumed the text to be tokenised–each word in a line.   

TRANSLITERATION: We transliterate the input if the tagger does not 

support the UTF-8 format (e.g. MarMoT and BAMA) using the two-way table-

lookup transliteration system based on the Buckwalter convention. 

5.4.3 Component Manipulation 
Running: Most of the tools are runnable through the command line. Some 

components have an API (e.g. Madamira and Stanford Segmenter) that allows them 

to be integrated into the developer's code. One component (Alkhalil) is only 

runnable through a Graphical User Interface (GUI). To integrate into the 

SAWAREF system, we added the functionality to permit it to be run from the 

command line without interfering with the analysis code.  

Wrap-To-Service: Since we plan to allow the usage of these tools from the 

web, we wrap each component in a service. The goal here is to speed up the 

processing of texts by having the morphology model loaded and ready for each 

subsequent request. We build a web service for each tagger. It accepts HTTP 

requests and returns component output while maintaining dictionaries in memory.   

Special Modifications: In the Alkhalil morphological analyser, if a word 

reappears in the text, it will be ignored, and no analyses will be given. We modified 

the Alkhalil toolkit source code to print the analyses of each word on every 

occasion, allowing us to align the analyses with other components’ results.   

Besides, the word’s type and POS tag in the Alkhalil toolkit are printed in 

free text as it is meant to be easily read for Arabic linguistics. Free text is converted 

into a structured format by carefully examining the source code and some pattern 

lookups. 

5.4.4 Standardizing Results and Extracting Morphological Features 
Every component has its own format of output (Appendix B). We built 

several parsers that extract analysis for each tagger and transform them to a standard 

JavaScript Object Notation (JSON) object. This representation can be converted into 
                                                
1 The Stanford Word Segmenter processes raw text input according to the Penn Arabic Treebank 

standard (Diab et al., 2013). 
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comma-separated-values (CSV), CoNLL-U, and XML formats. The goal is to 

standardise the format so that they can be reused for evaluation and ensemble 

tagging purposes. 

For each morpheme, SAWAREF maintains the following outputs, whenever they 

exist: 

Morpheme-based Basic POS tag: The part of speech tag XPOS (given by 

the analyser) and its matching universal POS tag (UPOS). 

Morphological Features: Person, gender, number, aspect, definiteness, 

state, voice, mood and case. 

Morphological Segmentation: How the word has been segmented.  

Word-level Analysis: Root, Stem and Lemma. 

Since the outcomes of each tagger are standardised, we were able to show them in a 

convenient side-by-side way on the web interface that allows any researcher to study 

these taggers and see their features (what features they are extracting), the accuracy 

of POS disambiguation, its tokenisation scheme, and more. 

Within this step, the result of taggers with a one-word complex tagset is 

translated into the pos+features representation. Since our reference corpora 

(SALMA (Sawalha and Atwell, 2013) and QAC (Dukes, Atwell and Habash, 2013)) 

use the lemma-plus-features representation, we extract those morphological features 

and map the complex tag to its base tag. For example, AMIRA has a tag NNS_MD 

that represents a masculine dual noun. We mapped this to NN and assigned 

morphological features (gender, number) as appropriate (see Table 5.2 and Table 

5.3). The goal of this transformation is twofold: to compare morphological features 

with other taggers, and to reduce the sparsity in the POS tagging. It should as well 

ease the mapping between the tagsets and improve the quality of the evaluation of 

those taggers. 

5.4.5 Word and Morphological Alignment 
It is apparent that we must align (morphologically and by token) the output 

of participating taggers before their tagging can be compared. However, what is not 

apparent is how this can be done, especially since we have diverse tagsets and a 

word is sometimes altered when segmented. In other words, there is no apparent link 

between the morphemes of different taggers.   
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The alignment problem here is a low-level task: given two sequences of 

words, the alignment task is to produce a series of links between the elements of two 

sequences. The result is a bipartite graph where the vertices of each partite are the 

words of each sequence, and the edges are the links. 

Alignment should be done in multiple levels: document, paragraph, sentence, 

word and morpheme (or segment). The first three levels are controlled from the 

input to the tagger. Taggers are fed with a sentence, so the first three levels are 

maintained.  

Alignment at the level of the word is a relatively easy job. Taggers’ output is 

usually aligned: they rarely span a tag over two words. No single case is 

encountered in which two words were tagged with a single tag, as opposed to 

English, where “sometimes compound names or idiomatic phrases are given a single 

wordtag” (Atwell et al., 2000, p. 11). However, some taggers drop punctuation 

marks from their analyses or split words without marking it as a clitic. Therefore, a 

word aligner module is required. It checks against the input text to align it correctly. 

It is a simple aligner that assumes an alignment window of three words, that is, the 

analysis should correspond to either the current word, the previous or the next word. 

It aligns the word with the one with the most similar form. 

Morphological alignment is a harder problem as the link between 

morphemes is not clear. The link between morphemes can be the morpheme form or 

the tagging features. However, using these links is not straightforward. The 

morpheme form, for example, is in some tools (with compound tags) missing or 

altered. The POS tag or morphological features can be used; however, these feature 

labels are not standard. In Chapter 6, the problem and four experimental alignment 

methods are described and evaluated. See Table 5.1 for an example of the desired 

output. 

For supervised morphological alignment (i.e. alignment of the morphemes of 

a single word), there is a need for training and evaluation datasets. They should have 

each word tagged by some taggers, i.e. “multi-tagged corpus”. We developed a new 

multi-tagged corpus which is tagged by several taggers and manually aligned and 

proofread (any incorrect solution is marked) (See Sections 6.4.2 and 6.4.3). 
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Table 5.1 Aligned morphemes of the word دقلو  walqd tagged by several taggers 

 

5.4.6 Voting and Final Prediction 
The final stage is voting between aligned candidates. The voting problem is a 

multioutput-multiclass classification problem that aims to predict the target 

segmentation, POS tag, and morphological features. The given input to this stage is 

different according to the different configuration of the previous stages. 

This problem can be modelled in different ways: voting vs. prediction, 

sequence labelling vs. independent-variable labelling, multi-output vs. single-output, 

multiview vs. stacking, or one-to-one sequence vs. sequence-to-sequence labelling. 

Voting vs. prediction: Mapping the input tagset to a standard tagset is 

necessary for voting. Mapping should allow having a higher weight for common 

tags between taggers outputs. Without mapping, the problem should be named 

prediction not voting, and the outputs of individual taggers is considered as features 

(in the sense of ML). 

Sequence labelling vs. independent-variable labelling: Since the 

individual taggers have already encoded the sequence (or the context), the problem 

arguably does not have to be expressed as a sequence classification problem. It 

could predict the required output given a set of features aligned at the morpheme 

level. However, contextual information may be used in the prediction, i.e. a 

sequence labelling problem. 

Multi-output vs. single-output: One specific problem in morphological 

analysis, in general, is the prediction of correlated multiple outputs: segmentation, 

POS tagging, and each morphological feature. This problem can be modelled such 

that segmentation prediction is independent of the output of tagging. This may result 

in an output with mismatching number of segments and tags. The required outputs 

can be as well encoded into a single complex tag, but this makes the classification 

problem more complex due to the large size tagset. 

Multiview vs. stacking: Stacking methods pile up independently trained 

models where each model is trained based on the predicted values of previous 

model. These methods suffers from the error propagation problem. Multi-view 
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models, in contrast, model the problem jointly by sharing common feature 

representations. 

One-to-one sequence vs. sequence-to-sequence labelling: Since the 

segmentation and tagging are heterogeneous, two ways of modelling the problem 

exist. The first approach is the pipelined approach where the outputs of individual 

taggers are pre-processed to ensure they are aligned, then each morpheme is tagged. 

The second approach jointly aligns and tags the individual tagger’s output by 

encoding each tagger’s output and concatenating all features, then decoding the 

concatenated vector to the desired output (see Figure 5.3).  

 
Figure 5.3 Sequence-to-sequence prediction 

Since the black-box taggers are systematically heterogenous, there should be 

a systematic method that exploits the shared information between these taggers. In 

this thesis, we experiment with different ways for the voting stage. Unlike Alabbas 

and Ramsay (2014), we define the problem as a prediction problem (see Section 5.5 

for reasons and mapping results). In Chapter 6, we experiment with a systematic 

pipelined design that defines the problem as a prediction, multi-view, independent-

variable, single-output (only POS tag is evaluated), one-to-one labelling problem. 

This definition required a prior explicit alignment at the morpheme level which is 

discussed in detail. In Chapter 7, the problem is defined as an end-to-end joint 

prediction, multi-view, sequence-labelling, multi-output, sequence-to-sequence 

problem.  

In the following sections, two attempts are discussed in detail to improve the 

overall robustness of the ensemble tagger. The first attempt is to map tagsets into a 

standard tagset, and the second is to enrich the input text with diacritics.  
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5.5 Experimental Study for Mapping Two Tagsets 
Mapping means the conversion from one format or value described in the 

source tagger to the standardised or target format. Mapping can be formalised as 

another alignment problem where each side is a tagset and the goal is to find a link 

between the two sides. The link is, however, less apparent in the mapping problem, 

especially with different linguistic theories and segmentation schema. 

The mapping stage is optional. Ensemble taggers may not require a standard 

tagset unless it involves some comparisons (i.e. voting). Other applications may 

need the mapping process such as evaluating taggers to one ground truth. Some 

methods in the morpheme-based pipelined ensemble approach, proposed in Chapter 

6, require mapping to resolve the morphological alignment problem.  

The next section defines the reference tagsets. Sections 4.5.2 and 4.5.3 define 

the methodology of the mapping of morphological features and core POS tags. 

Section 4.5.4 shows and discusses the lessons learned from an experiment of 

mapping one tagset to another.  

5.5.1 Tagsets 
Two tagsets are chosen for mapping: the SALMA tagset (Sawalha and 

Atwell, 2013) and the MADAMIRA tagset. SALMA is the most fine-grained tagset 

and is proposed to be a standard tagset in the literature. The MADAMIRA tagset is 

as well the most fine-grained possible POS tagset in participating taggers. Two 

reasons for choosing the two tagsets are as follows: they are well documented (thus, 

easily grasped by mapping annotators), and they are fine-grained.  

The SALMA tagset is two-dimensional and is fine-grained in two aspects: its 

number of features (~ 15 features) and the possible tags of each word (~ 91 distinct 

tags). The SALMA tagset has thirty-four possible tags for nouns, one for verbs2, 

twenty-two for particles, twenty for others, and twelve for punctuations. Unlike the 

MADAMIRA tagset, this tagset is designed to capture long-established traditional 

Arabic grammar, I'rab ( بارعإ  /<ErAb/ morphology).  

The default tagset of MADAMIRA is used which has 36 tags for tagging the 

base of the word. In addition, five, eighteen, seven, and two tags are dedicated to 

                                                
2 Originally three values that represents the aspect of the verb: perfect, imperfect, and imperative, but 

we decided to consider them as a morphological feature. 
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article, preposition, conjunction and questions proclitics respectively; and twenty-

two tags for enclitics. The tagset used by MADA is well documented in the manual 

shipped with the suite. 

5.5.2 Mapping Morphological Features 
The mapping involves two components: Morphological features and POS 

tags. Morphological features are mapped to the values of the SALMA tagset. 

Although the naming of morphological features is heterogeneous, this mapping is 

straightforward and is mostly a one-to-one renaming, e.g. mapping from 

gender=male to gender=m. The mapping between ALL taggers and SALMA tagset 

is done by the author.  

We made some necessary modifications to the SALMA tagset. In addition to 

the typical three values of the number feature: singular, dual and plural, the 

SALMA  tagset, for example, has six more possible values (i.e. sound plural, 

broken, etc.). These additions are removed, and a single value for all plurals is used: 

“p”. For the full mapping rules of morphological features, please see Table 5.2 and 

Table 5.3. 
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Table 5.2 The first part of mapping rules of morphological features from all 

participating taggers to the SALMA convention.  The table is divided into five 

parts: Mood, Gender, Case, Voice and State columns. Rows in each part are 

trios: the tool’s label, the tool acronym, the equivalent label in SALMA.  
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Table 5.3 The second part of mapping rules of morphological features from all 

participating taggers to the SALMA convention. The table is divided into three 

parts: Aspect, Person, and Number columns. Rows in each part are trios: the 

tool’s label, the tool acronym, the equivalent label in SALMA. 

 

5.5.3 Mapping POS tags 
The second mapping is the mapping of core POS tagsets. While many 

mappings in the literature involve reducing the tagset size, this experiment is 

designed to find all possible links between the two tagsets.  
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We chose not to reduce the tagset because it will cause a loss of information. 

Reducing tagset size maybe is mostly straightforward, even though it requires the 

understanding of both tagsets. However, when tagset size is reduced, the full 

tagging performance of the tagger will not be evaluated and exploited. Also, such 

mapping would force our ensemble tagger to use its reduced tagset which contradict 

with the stated fine-grained goal. 

This mapping process can be divided into two stages: building a helper tool 

and manually mapping tagsets.  The first stage should help the linguists in the 

second stage to see the tags in context. It helps as well to see how likely they co-

occur in one word. 

In the first stage, a list of co-occurrences is constructed. The MADAMIRA 

tagger is asked to tag the SALMA corpus to build the list. For each word, a pair of 

its MADAMIRA tag and its SALMA tag is defined. From this long list of tag pairs, 

pairs that do not past a certain threshold are deleted. Correlation statistics are 

computed from the rest of the list. A set of examples are maintained for every 

mapping pair (to help later in decisions). This list is fed into the SAWAREF mapper 

tool, a web-based graphical interface that eases the mapping process, where the 

second stage involves manually choosing target tags that are most appropriate.  

Figure 5.4 illustrates the main components of the Mapper screen layout. 
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Figure 5.4 A screenshot of the mapper tool. The tool consists of three parts: the first part is the top bar which shows the current tagger 

(MA)
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5.5.4 Ambiguity in Mapping Experiment 
This experiment examined the possibility of mapping one tagset to another 

for the ensemble voting component between taggers’ output. 

Two volunteer linguists mapped the two tagsets. They have a background in 

teaching Arabic as a second language and pursuing a PhD degree in computational 

linguistics. Mapping one tagset to another tagset requires a thorough understanding 

of both tagsets. They used the ‘Mapper' tool from the SAWAREF toolkit (see Figure 

5.4), which was designed especially for this mapping experiment. For each tag in the 

SALMA tagset, the linguists were asked to select all possible tags in the SALMA 

tagset to map to.  

They had the following in hand:  

1. a description of each tag (extracted from the manual or the paper of the 

tagset),  

2. in-context examples of the tag, and  

3. some statistical correlation information about the target tag (no. of inward 

maps, the probability of such tagging). 

Among possible mappings from the MADAMIRA tagset (59 tags) to the 

SALMA tagset (77 tags) (theoretically 4543 possible mappings), 228 (5%) were 

selected: 130 by both, 33 and 65 by each linguist. The average number of mappings 

for one tag in MADAMIRA is 1.88-2.57, in SALMA is 1.98-2.15 for each linguist 

respectively.  

This experiment indicates that the mapping between the two tagsets is mostly 

n-n mapping. Although the linguistic theory of the two tagsets are different,  it is 

surprising to see that the average number of SALMA tags from one tag in 

MADAMIRA range from 1.88 to 2.57. The SALMA tagset was assumed to be a 

much finer grained tagset. Some tags in MADAMIRA were not mapped to a single 

tag in SALMA. Linguists by mistake did not map some tags (e.g. date, currency, and 

not-separated affixes like Taa Marbouta, feminine suffix).   

Because SALMA is the finer tagset, we wanted the mapping to only have 

one-to-one and one-to-many situations. That is, a tag can be mapped to one or many 

tags in the reference tagset (SALMA), but no tag on the reference tagset can 

originate from two tags. If a congestion is found on one tag (many-to-one), the 

reference tagset should be extended to break this congestion. For example, the two 

tags (from QAC tagset): EXP and RES tags (exception and restriction particles) map 
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to one tag in SALMA ( p---x- exceptive particle), therefore, the SALMA tagset 

was extended to maintain our reference tagsets being the most fine-grained. 

However, this experiment showed that this methodology is not practical. The n-to-n 

mapping does not mean that MADAMIRA is finer than SALMA at some tags; 

instead, it is because they adhere to different underlying linguistic theories which 

prevent us from having an “extended” version of SALMA.  

Our method expands the solution set of each tagger and increased ambiguity 

significantly. The goal was to maintain the level of granularity which could make for 

fairer voting between taggers. However, with this level of added ambiguity, the high 

variance between the two mappings, and the error rate, the mapping between tagsets 

might increase the error rate which will be propagated to subsequent stages. 

Therefore, we decided to not pursue the mapping of taggers. However, we found 

that these links is helpful in morphological alignment for the similarity measure of 

outputs, as will be shown later.  

5.6 Experimental Study of Reducing Ambiguity through 

Diacritisation 

In the Arabic language, a high amount of phonological information is 

missing such as short vowels, Shaddah, tanween, Maddah, and sometimes hamzah1 

as well (see Table 5.4 for details). They (collectively called diacritics) are not 

usually written. It is common as well in NLP to normalise them to reduce the 

sparseness of the data. As a result, the ambiguity at the word level is high in Arabic. 

There is an average of 11.5 diacritisations/word (Debili and Achour, 1998). For 

example, a vowelised form of the word مھف  (fhm) can be one of the following “non-

comprehensive” list (Figure 5.5):  

َ ََ   م ھ ف .1  /fahama/ (v.) to understand 

َ ََّ   م ھ ف .2  /fahhama/ (v.) to teach 

ْ َُ   م ھ ف .3  /fa+humo/ (conj. + pron.) and they 

َّ ََ   م ھ ف .4  /faham~a/ (conj. + v.) and (he) intend  

َ  مَْ   ھ ف .5  /fihom/ (n.) understanding 

 

                                                
1 In cases where Hamza is considered a diacritic, only different shapes of Hamza on Alif is 

considered.  
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Figure 5.5 Ambiguity of one Arabic word. 

 Arabic diacritisation is the computational process of recovering missing 

diacritics to the orthographic word. This process is known for improving readability 

(e.g. children books and educational textbooks), automatic speech recognition 

(ASR) (Vergyri and Kirchhoff, 2004), text to speech (TTS) (Ungurean et al., 2008), 

information retrieval (IR), and morphological annotation (Habash, Shahrour and Al-

Khalil, 2016).  

Words can be fully diacritised, where diacritics for all letter are specified, or 

partially, where diacritics for part of the letters are specified. Texts are usually fully 

diacritised for children’s educational purposes, or when the great precision of 

pronunciation is required e.g. the Quran. (Hermena et al., 2015). On the other hand, 

the text is mostly partly or completely unwritten, due to three reasons: to speed up 

the reading speed (Hermena et al., 2015), not to strain the eyes, and to speed up the 

typing by one third (required for typing diacritics).  

A special type is the minimal where some diacritics are specified in which 

these specifications are enough to avoid word’s ambiguity. But the sufficient level 

of the diacritisation is ambiguous, and the minimal level depends on the audience 

(e.g. reader’s level of education) and target; for morphological annotation in Natural 

Language Processing (NLP), a minimal diacritisation is the minimal partial 

diacritisation that is sufficient to eliminate other possible diacritisations produced by 

a lexicon or morphological analyser. 
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Table 5.4 Diacritics 

Group Diacritic Buckwalter Arabic Notes 

Short vowels 

Fatha /D/ /a/  ض  َ   

Dhammah /D/ /u/  ض  ُ   

Kasrah /D/ /i/  ض  ِ  Optionally written for Hamzah Maksorah 

No vowel Sokun /D/ /o/ ض  ْ  All letters. Indicates that the consonant is not followed by a vowel. 

Shaddah (emphasis, 

geminate) 

Shaddah /D/ /~/ 

ّ  ض  

All letters except the beginning word. Marks a long consonant. Equivalent to writing the constant twice (first is 

.  

Tanween (Nunation) 

Tanween Fatha /D/ /F/ ا ض / ً   اض    ً    

Tanween 

Dhammah 

/D/ /N/  

ٌ  ض   

Tanween 

Kasrah 

/D/ /K/  

ٍ  ض   

No diacritic  

/D/ 

 ض

1. The letter preceding long vowels.  2. Long vowels  3. On the lam of the definite article. 4. When the letter is 

Hamzah Maksorah Otherwise, it indicates unspecified vowel.  

Hamzah (glottal 

stop) 

Hamzah Up />/ أ Can have any short vowel. If it starts a word and has a Kasrah, Hamzah Down is used. 

Hamzah Down /</ إ Can only be at the beginning of has an obvious short vowel Kasrah 

Hamzah Madd 

 Indicates glottal stop, followed by a long Alif. Cannot appear at the end of a word (its components will be آ /|/

written separately). 

Hamzah Wasl 

 Not available in Standard Arabic keyboards. It indicates explicitly the special type of beginning Alif which is ٱ /}/

not pronounced as a glottal stop when connected to previous word. Usually written as normal Alif. 
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Arabic diacritisation has grabbed the attention of Arabic NLP researchers, 

and much work has already been done. Previous approaches have focused on 

improving the quality of automatic diacritisation to produce a fully diacritised 

version of the text, either using a rule-based approach (El-Imam, 2004), statistical 

approaches using, for example, recurrent networks (Abandah et al., 2015), n-gram 

model (Hifny, 2012), hybrid approaches which usually perform the best (Rashwan et 

al., 2009; Pasha et al., 2014; Darwish, Mubarak and Abdelali, 2017) or using the 

prominent deep learning approaches (Al Sallab et al., 2014; Abandah et al., 2015; 

Rashwan et al., 2015).  

Diacritisation in this experimental study focuses on diacritizing text with 

high quality (near gold standard quality) for the purpose of manual annotation later. 

That is, the diacritisation approach seeks a high accuracy in diacritisation but is not 

necessary to diacritise the full text. Habash et al. (2016) exploits diacritizing to 

improve morphological annotation. In their work, they re-rank the solution set from 

the morphological analyser based on the similarity of the input diacritisation and the 

solution predicted diacritised form. In a similar approach, SAWAREF toolkit filters 

the solution set based on the input diacritised form. Additionally, the SAWAREF 

preprocesses the input text to standardise its diacritisation and might borrow and 

merge diacritisation from similar contexts. In this section, we present a robust and 

accurate diacritisation method of highly cited texts by automatically “borrowing” 

diacritisation from similar contexts.  

Since the text in classical Arabic is highly cited and quoted in successive 

texts, we were motivated to increase its text diacritisation level, by automatically 

“borrowing” diacritisation from other books within the same genre. 

As part of the Sawaref toolkit, we developed an open-source diacritiser1 that 

matches the undiacritised version of one word with its equivalent in other books 

using their word n-gram concordance.  

5.6.1 Methodology 
The diacritisation of each word in the target corpus is done simply by 

searching for all locations of similar n-gram words in the target corpus. Then, these 

locations are merged to form a single diacritisation of the centric word. In the 

                                                
1 Available freely at http://github.com/aosaimy/arabic-vowelizer  
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extended version of this method, we asked a morphological analyser if it can help. 

Finally, we replaced the word with the new diacritised word.   

Algorithm 1 describes the method formally: 

1. !"#$%& = ()!*+,(., ()	for . ∈ )"#$%& 

 

The first step is to convert the training text )"#$%& into a list of word (-

grams, with reference to its locations in the text, diacritised and 

undiacritised versions of the centre word. Documents are read in the 

training corpora in parallel to speed up the development of the lexicon 

data. 

2. 345
%

"$#67"
8 ⊂ !"#$%& where :;

"#$%& = ()!*+,45
%

"$#67"
, (8 

 

For each n-gram :;"#$%&	that is on our list (after normalisation), it builds a 

list of matching word-ngrams 345
%

"$#67"
8 from the training corpus where 

each element :;"#$%& has the same n-gram ()!*+,45
%

"$#67"
, (8. 

3. <% = {…?(.)… },��()!*+,(., () ∈ 345
%

"$#67"
8	

For matching n-grams 345
%

"$#67"
8, it extracts all found diacritisations of 

the centre word ?(.)	and counts the number of occurrences of that 

diacritisation.  

4. <% = 	AB*C(<%) 
Once finished, variants are sorted by the number of occurrences in 

descending order. The goal of this sorting is to prevent infrequent 

diacritisation from bubbling up to the surface diacritisation in the next 

step. 

5. while D	 < 	 |<%| ; do 

?(5%) = 	,G*:G4?(5%), ?(H%)8	

od 

 

Centre words diacritisation variants ?(H%)	are merged recursively: the 

merge procedure (Algorithm 2) is done letter by letter. For every letter, 

only candidate diacritics that do not contradict with one existing are 

merged.  

6. ?(5%) = 3IJ(5%)	DKK	|3I(5%)| = 	1 
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This step only applicable to extended version which uses the 

morphological analyser (MA) to improve the results if possible. Merged 

centre words are replaced by a more thorough diacritisation 3IJ(5%) (if it 

exists) by consulting a morphological analyser if and only if it matches 

one candidate diacritisation |3I(5%)| = 	1. 

7. The centre word’s locations in the text are replaced with the new 

diacritised version. 

This methodology assumes the following: 
1. The diacritisation of the source corpora is done manually, i.e. not 

artificially, 

2. Diacritisation of both target and source is standard, 

3. Word diacritisation is only based on a window of n,  

4. The target text is quoted or reused in the source corpora, and 

5. There is no other diacritised form if morphological analyser says so (only 

applicable in the extended version)  

As stated before, the goal is to fully diacritise words in a classical Arabic text 

to increase the robustness of the morphological annotation of the corpus. In the next 

subsections, we show how these assumptions are valid for our case. 
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5.6.2 Assumption #1: Non-Artificial Diacritics in Source Corpora 
For the first assumption, no sign of automatic diacritisation could be found in 

the Shamela Library. Moreover, some diacritised corpora like (Zerrouki and Balla, 

2017) used some of its books as a source for verified diacritisation.  

Algorithm 1. BorrowBasedDiacritise  
DEFINE: 

) = {5M,5N, . . } is a series of words 5.  

P(5)	 is a series of letters P% of word 5. 

?(5) = {?M, ?N, . . } where ?% is a series of diacritics of 

letter P% and |?(5)| = |P(5)|. 

  ()!*+,(5%, () 		=    {5%Q&, 5%Q&RM, … , 5%, … , 5%R&QM, 5%R&} 

3I(5) is a series of ?(5) from a morphological analyser. 

INPUT: )"#$%&,)"$#67"	, ( 

OUTPUT: ?`(5) for all 5 ∈ )"$#67" such that |?%| ≤ |?`%| for 

all D.  

1. !"#$%& = ()!*+,(., ()	for . ∈ )"#$%& 

2. 345
%

"$#67"
8 ⊂ !"#$%& where :;

"#$%& = ()!*+,45
%

"$#67"
, (8 

3. <% = {…?(.)… },��()!*+,(., () ∈ 3(5%) 

4. <% = 	AB*C(<%) 

5. while D	 < 	 |<%| ; do 

   ?(5%) 	= 	,G*:G(?(5%), ?(H )) 

                   od 

6. ?(5%) = 3IJ(5%)	DKK	|3I(5%)| = 	1 

end; 
Algorithm 2. Merge  

INPUT: ?(5M), ?(5N)	where	P(5M) = P(5N) 

OUTPUT: ?`(5M) such that ∑|?%| ≤ ∑|?`%|. 

 ?%(5M): = 	?%(5N) iff ?%(5M) ≤ 	?%(5N) 

end; 
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5.6.3 Assumption #2: Diacritics Standardisation  
To enforce the same standard in source and target, we perform diacritisation 

normalisation as illustrated in Table 5.5. The terminology in the second column is in 

‘regex' notation. Regex is a search pattern that is translated later by a regular 

expression engine into a non-deterministic finite automaton. We use the notion of 

regular expressions, as it is commonly used and quite efficient for text substitutions. 

For example, Fatha Tanween (Rule number 5) should always be before Alif and Alif 

Maqsorah, so the regular expression search for AF followed by a space \s and 

replace it with FA instead. The (?=)symbol makes sure that spaces are not 

captured, so it is not substituted. 
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Table 5.5 Normalisation of diacritisation Rules 

Rule Find Pattern Replace With Example 

   From To 

1.Remove starting diacritics /(?=\s)([aiuoFKN~]+)/g  None /amkAnA/ /mkAnA/ 

2.Remove space-surrounded diacritics / [aiuoFKN~]*(?=\s)/g  None /a/ // 

3.Add Sokun diacritic on the long vowel Alif  /aA/g aAo /mkAnA/ /mkAonA/ 

4.Remove duplicates of the same diacritic /([aiuoFKN~]){2,}/g $1 /maakAnA/ /makAnA/ 

5.Tanween then end /AF(?=\s)/g  FA /mkAnAF/ /mkAnFA/ 

/YF(?=\s)/g  FY   

6.Shaddah should always be before other diacritics /([aiuFKN])~/g  ~$1 /vma~/ /vm~a/ 

7.Remove incompatible diacritics /([aiuFKN])[aiuFKN]+/g  $1 /vNam/ /vm/ 

8.Tanween not at the end of word /[FKN]([^ ][^ ])/g $1 /mkFAnA/ /mkAnA/ 

9.Shaddah at the beginning of a word / ~/g None /~mkAnA/ /mkAnA/ 

10.Bottom Hamza /<[auFKN]/g <i /<srA'/ /<isrA'/ 

11. Bottom Hamza not the beginning /<([^ ][^ ])/ >i /AlxT</ /AlxT>i/ 
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5.6.4 Assumption #3: Word diacritisation is the same for n surrounding 
words 

Changing one final diacritic from a full sentence might change its meaning 

completely (Azmi and Almajed, 2015). While this contradicts our assumption, we 

examine the quantity of these cases in the full corpus. 

To validate prior assumptions (mainly the last), we extracted word five-

grams that have variant diacritisation of its centre word. Then, we examined the top 

of the list (top 100), ranked based on the number of variants in descending order. 

Table 5.6 lists a sample of top 5-grams.  

All variants did not show a sign of artificial diacritic, nor show a non-

standard diacritisation. The centre word has no conflicting diacritisation for 98% of 

the top 100 on the list. Conflicting diacritisation is due to different pronunciation of 

proper nouns, misspelt diacritics, or improper last diacritic. 

Table 5.6 The possibility to merge diacritisations of variants forms. 

Word Possibilities Context Can be 

Merged? 

*r  *r, *r~, *rK, *arK, *ar   wEn >aby *r rDy Allh Y 

lnby  Alnaby~, Alnby, 

Alnbyi, Alnby~  

wEnh En Alnaby~ SlY Allh Y 

w>n  w>na, wa>na, wa>n~  <lAa Allh w>na muHmadFA rswlu Y 

wrhbp  warahbapF, 

warahobapF, 

warhobapF  

<layoka ragbapF warahbapF <layoka 

lA 

Y 

5.6.5 Assumption #4: The similarity between the source and target corpora 

The reliability of the optional diacritisation step depends widely on the 

availability of another similar context. As such, this assumption highly depends on 

the text to be analysed. However, classical texts, especially the Quran and the 

Sunnah, are quoted more often than modern texts. 

In the case study of the Sunnah Arabic Corpus, SAC is mostly a collection of 

religious text which is widely quoted. Several authors have explained its narrations, 

which increases the chance that its text has been quoted. The results of our 

experiment show that at least 84.34% of the corpus word n-grams has been found in 

the source corpora. 



  - 112 - 

5.6.6 Assumption #5: The morphological analyser covers all diacritised forms 

Using the SAWAREF toolkit (Alosaimy and Atwell, 2016), we run four 

morphological analysers, namely Elixir Functional Morphology (EX) (Smrz, 2007), 

ALMORGEANA (included in MADA toolkit) (AL) (Habash, Rambow and Roth, 

2009), AraMorph (BP) (Buckwalter, 2002a), and AlKhalil (KH) (Boudchiche et al., 

2016), on the lexicon of Riyadh Asslaheen (17600 distinct words). The average 

number of possible diacritised forms is shown in Table 5.7.  

We used four morphological analysers to increase the diacritisation coverage 

for our corpus. By merging the output of analysing each word, we built a list of 

possible diacritisation of each word. After close examination of the results, their 

level of diacritisation is different. The diacritised format is not usually full. Table 5.7 

showed the diacritisation coverage for each analyser. While merging analysers' 

results should increase the word coverage, similar words do not merge together as 

taggers’ diacritisation is homogeneous. As a result, we have more than one form of 

diacritisation when in fact there should only be one. This explains the jump in the 

number of possible diacritisation from 10.38 (at maximum) to 17.42.  

Table 5.7 Possible Diacritisation Statistics Per Morphological Analyser. 

MA Max Mean Median Coverage 

EX 124 8.46 6 67.46% 

KH 96 10.38 7 80.64% 

BP 20 2.38 2 47.67% 

AL 23 3.69 3 42.65% 

 

We only use MA diacritisation if it matches only one form. Using a random 

sample (of 100 enhanced words), we could not spot a single error in the enhanced 

diacritisation. It suggests that it is safe to assume there is no other diacritised form if 

the morphological analyser says so. 

5.6.7 Evaluation 
Our evaluation uses two metrics: accuracy, and coverage, both in terms of 

character level. Accuracy is measured by Diacritic Error Rate (DER), i.e. the 

fraction of letters that do not have the same diacritics in the original text. Coverage 

measures the fraction of letters that has at least one diacritic.  
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!"# =
no. incorrect diacritcs

no. diacritics  

%&'()*+( =
no. diacritised letters

no. letters  

In addition, we introduce an ambiguity measure defined as the practical 

average of the possible number of diacritisations per word. In theory, if a word of 

three letters has no diacritics, there are at least eight possible diacritisation for each 

letter (final letter can have more). However, we report the practical number of 

diacritisations only, extracted from a lexicon (or in our case, morphological 

analysers). In case a partially diacritised word is provided, the morphological 

analyser will only return the subset of possible diacritisations of that word with 

respect to the given diacritisation. If the word is not in the lexicon, we exclude that 

word from the average. 

*,-.+/.01(3) = no. analyses returned by MA 

*,-.+/.01 =
∑ *,-.+/.01(3)6

7&.3&)9:  

We test on the part of the text that is already diacritised. In other words, we 

used our models to diacritise a completely undiacritised version of Riyad, and later 

test the accuracy and coverage of our assumption on the diacritised version. 

However, since this method does not diacritise the full text, we only evaluate based 

on the subset of letters that has a diacritic. We do not consider Hamza nor Maddah 

as a diacritic, because in classical Arabic they are usually written according to the 

standards. Hamza in Modern Standard Arabic is misspelt or omitted in many cases. 

Similarly, Maddah is omitted in some frequent words. We only count short vowels 

including Shaddah and Tanween. 

Table 5.8 reports the coverage, diacritic error rate, and average word 

diacritisation ambiguity of baseline, three n-gram models (3,5,7-grams) with/without 

help from morphological analyser. The baseline is the original form of the text. 

We can see that accuracy improves when the word's context is broader, but 

on the other hand, the coverage drops. Word ambiguity does not change after using 

MAs, as MAs’ diacritisation is not used unless word diacritisation only matches one 

candidate. The accuracy increased very slightly (about 0.0001) when using MAs; 

however, the coverage increased by ~0.2%. 
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Table 5.8 Evaluation of N-gram Diacritisation Models. 

Model Coverage DER Ambiguity 

Undiacritised 0 N/A 17.42 

Baseline 48.66% N/A 4.83 

3-gram 80.32% 0.007 1.56 

3-gram+MA 81.26% 0.007 1.56 

5-gram 76.41% 0.004 1.91 

5-gram+MA 77.70% 0.004 1.91 

7-gram 73.97% 0.003 2.13 

7-gram+MA 75.59% 0.003 2.13 
 

In terms of word-level, the source of Riyad is about 47.1% fully diacritised, 

and after borrowing diacritisation, the percentage jumps to 87.1%. However, this 

measure is not precise in our case, because of the different definition of the fully-

diacritised word. 

Additionally, we compare our results to two major open access diacritisers: 

MADAMIRA (Pasha et al., 2014) and FARASA (Darwish, Mubarak and Abdelali, 

2017). Diacritisation is normalised for both toolkits. Our 5-gram model slightly 

surpasses both tools, and FARASA scored an error rate of 0.006 while 

MADAMIRA was not performing well–0.214, which is because MADAMIRA 

removes original diacritics before processing the text. For a fair comparison, we re-

compute the error rate given the undiacritised version. The FARASA error rate 

jumped to 0.263, and the DER of our 5-gram model increased slightly to 0.008. 

While the two tools are expected to diacritise the text thoroughly, we found 

that MADAMIRA only diacritised 61.73% of letters, and FARASA only diacritised 

65.36%, and 67.68% for undiacritised, and diacritised input text respectively. Using 

our method, the 5-gram model diacritised 71.81% of letters, due to diacritisation 

standards of final letter, article AL and long vowels in addition to the fact that our 

measure does not tolerate letters with obvious diacritics (such as Alif Madd (آ), Alif 

 ,Even the Quran text (extracted from Tanzil Project) .((إ) and Lower Hamza (ا)

which is known to have a full diacritised form, covers only 77.83% of letters. Table 

5.9 summarises these findings.   
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Table 5.9 Comparison with major off-the-shelf diacritisers.  

Tool Coverage DER Input Text 

MADAMIRA N/A N/A Diacritised 

61.73% 0.214 Undiacritied 

FARASA 67.68% 0.006 Diacritised 

65.36% 0.263 Undiacritied 

5-gram 76.41% 0.004 Diacritised 

71.81% 0.008 Undiacritied 

Interestingly, using Riyad itself as the only source for diacritisation, we 

found different diacritisation of the same n-grams. 2330 word 5-grams has different 

diacritisation of its centre word. The diacritisation coverage increased from 48.66% 

to 58.48% using the same text as a source for diacritisation. 

5.7 Experimental study: Tagging Adjectives 
While the ensemble of morpho-syntactically taggers aims to provide a robust 

way of tagging text, it is useful for some other purposes: e.g. linguistic comparaison 

of input taggers. This study aims to highlight the differences in the underlying 

theories of tagset. 

Adjectives are commonly mistagged as nouns. The cause of this confusion is 

the definition of adjectives in Arabic. In traditional Arabic grammar, an adjective is 

marked when it qualifies its preceding corresponding noun, i.e. attributive adjective. 

In this case, attributive adjectives agree with the definiteness, number, case and 

gender of their corresponding noun. For example, ( لیوط لجر  /rjl Twyl/ a tall man). 

Taggers agree mostly on tagging “tall” as an adjective. However, taggers often vary 

in tagging “tall” in predicative adjectives: ( لیوط لجرلا اذھ  /h*A Alrjl Twyl/ This man 

is tall). 

Table 5.10 The agreement of tagging adjective morphemes between two 

manually annotated corpora. Recall = 0.38, Precision=0.85. 

 

SALMA 

nj---- Others 

Q
A

C
 ADJ 11 2 

N 18 N/A 
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Using the parallel annotated corpus (PAC) (See Section 6.3.5), we evaluate 

and analyse each tagger and the two corpora in the sense of tagging adjectives. 

Surprisingly, the two manually annotated corpora were not in agreement in tagging 

adjectives. Table 5.10 shows the confusion matrix of tagging adjectives. In only 11 

out of 31 cases, the two manually annotated corpora agree on the tagging. In the 

other 18 cases, QAC tagged them as NOUN. One reason behind this low recall and 

precision is the incompatibility of tagsets: QAC’s definition of adjectives is 

“syntax”-driven while SALMA is morphologically driven.  

Table 5.11 One sentence shows how linguists do not agree on tagging 

predicative adjectives. 

Word Transliteration QAC SALMA Translation 

ُ َّ   ھ نإ  /<n~ahu/ <n~a/ACC+hu/PRON <n~a/pa+hu/rr Indeed, 

و ھ  ُ  /huw/ huw/PRON huw/np He is 

زیزعلا  /AlEzyz/ Al/DEF+Ezyz/N Al/rd+Ezyz/nj The Exalter in Might 

میكحلا  /AlHkym/ Al/DEF+Hkym/ADJ Al/rd+Hkym/nj The Wise 

 

Table 5.11 illustrates the difference in tagging adjectives of one verse 

(29:26). QAC tagged the word alaziz as a noun as it is acting as a predicate (called 

khabar in Arabic traditional grammar). SALMA tagged it however as an adjective. 

However, QAC is not always consistent in this matter; verse 29:19 says: {  ىلع كلذ نإ

ریسی الله } “that for Allah is easy/ADJ” is not consistent with its following verse: {  الله نإ

ریدق ءيش لك ىلع } “Indeed Allah, over all things, is competent/N”. The words: 

“easy/ADJ” and “competent/N” are both adjectives acting as predicate (khabar) and 

should be treated similarly. 

The same confusion carried over to SAWAREF participant taggers: when 

QAC is the gold standard, the average f-score is 0.11 (precision=0.14, recall= 0.2). 

With SALMA, the average f-score is 0.12 (precision=0.22, recall= 0.14). These very 

low scores show how hard is the problem of adjective tagging. The full precision 

and recall of each tagger is reported in Table 5.12. We used QAC’s tag: ADJ and 

SALMA’s tag= nj---- as the only tags of adjectives. 

As a conclusion, even though adjectives play an important role in the 

semantic level, they need a more robust definition and warrant more investigation on 

how to predict them in Arabic specifically.  
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Table 5.12 The precision, recall and f-score of predicting adjectives in chapter 

twenty-nine of the holy Quran.  

Tool     QA as Gold Standard SW as Gold Standard 

 Precision Recall f-score Precision Recall f-score 

MT 0.11 0.62 0.19 0.16 0.41 0.24 

KH 1 0.08 0.14 1 0.03 0.07 

AR 0.07 0.15 0.1 0.07 0.07 0.07 

EX 0.04 0.23 0.07 0.05 0.14 0.08 

MD 0.03 0.08 0.05 0.13 0.14 0.14 

MX 0.12 0.23 0.16 0.24 0.21 0.22 

AL 0.07 0.15 0.1 0.07 0.07 0.07 

BP 0.05 0.15 0.08 0.08 0.1 0.09 

BJ 0.11 0.23 0.15 0.14 0.14 0.14 

ST 0.18 0.46 0.26 0.29 0.34 0.32 

WP 0 0 0 0.03 0.03 0.03 

AM 0.14 0.31 0.2 0.21 0.21 0.21 

QA N/A N/A N/A 0.85 0.38 0.52 

SW 0.38 0.85 0.52 N/A N/A N/A    

 

5.8 Conclusion 
This chapter defined the set of problems and subproblems in this thesis 

including segmentation and tagging. It listed the challenges that face the 

development of such an ensemble tagger. Then, it identified the critical parts of the 

SAWAREF system and showed the stages of the ensemble POS tagger process. It 

briefly showed the methodology for overcoming obstacles in the ensemble method, 

namely morphological alignment, diversity in tagset. 

In an experiment of mapping one tagset to another, results showed a high 

error rate and disagreement between annotators, which suggests that tagsets should 

be used without mapping. Careful borrowing of diacritics in similar context shows 

an excellent opportunity to reduce the word ambiguity level. The open-source 

SAWAREF toolkit runs multiple taggers, standardises their results, and aligns the 

result of each analysis. An expected issue is low agreement among Arabic linguists 

on the definitions of grammatical categories, as exemplified by the tagging of 

adjectives. 
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6 PIPELINED ENSEMBLE 
TAGGER 

Chapter Summary1: 

An ensemble of black-box taggers requires that they conform to a standard 

segmentation schema. Because of the absence of this standard, a systematic 

alignment method should be applied. Our pipelined ensemble combined four 

heterogeneous POS-taggers and evaluated on a classical Arabic corpus. Two models 

of the ensemble tagger are presented: morpheme-based ensemble, and form-based 

ensemble.  

In the first part, we opt to align tagger output using tagger labels. Four methods of 

alignment between segments using individual tagger’s POS tags are presented and 

compared. The problem is not trivial as it is tackling five different tokenisation and 

labelling standards (the tagsets of four input taggers and the target tagset). The 

supervised learning using a unigram model scored the best segment alignment 

accuracy, correctly aligning 96.75% of morpheme segments. Using the best 

approach to align input POS taggers, the ensemble tagger has correctly segmented 

and tagged 88.09% of morphemes. 

In the second part, we opt to align tagger output using word forms in a character-

based setup. Unlike the first ensemble, this ensemble allows a parallel prediction of 

segmentation and labelling problems as it goes deeper and does not rely on the 

tagger’s segmentation. This ensemble scores a slightly better accuracy: 88.73%.  

We show that increasing the number of individual taggers raises the accuracy, 

suggesting that input taggers make different errors.   

                                                
1 Some parts of this chapter are based on: 

Alosaimy, A. and Atwell, E. (2017) ‘Joint Alignment of Segmentation and Labelling for Arabic 

Morphosyntactic Taggers’, International Journal of Computational Linguistics. CSC Journals. 

Alosaimy, A. and Atwell, E. (2017) ‘Ensemble Joint Segmentation and POS Tagger for Arabic" in 

The Workshop on Computational Approaches to Morphologically Rich Languages CAMRL. Leeds, 

UK. (presentation). 
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6.1 Introduction 
There is a need for a Part-of-Speech (POS) tagger for under-resourced 

classical Arabic, the language of the Quran and other Arabic texts from the 7th to 

9th centuries CE. Using gold standard samples from the Quran and the Sunnah and 

several morphological taggers, the goal is to adapt these tools to analyse non-

Quranic classical Arabic texts, including the Sunnah. This chapter shows different 

models for the pipelined approach of combining existing POS-taggers for Modern 

Standard Arabic (MSA), adapted to input classical Arabic words and texts, and to 

output classical Arabic POS-tags.   

The adaptation used some ensemble methods, which have proven to be more 

effective than an individual algorithm in many cases. Because input (or individual) 

POS-taggers are heterogeneous, methods for alignment of segmentation and 

labelling in parallel is a necessity. POS-taggers have been developed for Modern 

Arabic, but they do not conform to shared standards in morphological segmentation 

or morphosyntactic tagsets for labelling. 

The alignment between taggers serves another goal: an evaluation of taggers. 

When evaluating an automatic part-of-speech (POS) tagging, the segmentation 

scheme of words of the gold standard (the sequence of morphemes) should match 

the segmentation scheme of the tagger  (Paroubek, 2007). For example, if the gold-

standard corpus strips the suffix in he’s, a tagger should strip it too.  

Sequence alignment is a well-known problem in several computational 

fields. It is the process of identifying tokens that correspond in some manner in the 

source and the target sequences. Bitext word alignment in Machine Translation is an 

example that identifies translation relationships between words to limit or constrain 

the set of translation rules learned from a bilingual parallel corpus. The problem in 

this chapter is very similar. Unlike bitexts alignment, which aims for linking related 

words in terms of meaning,  our aim is to find a link between elements (segments) of 

one sequence  (the list of word’s segments) to another in terms of morphological 

analysis. The link, however, is not clear and can be defined in several ways. 

After briefly formalising the problem, this chapter presents two approaches 

of alignment: morpheme-based and form-based (or character-based). The 



  - 120 - 

morpheme-based approach links morphemes using their labels, while form-based 

links them using their characters.  

6.2 Problem Definition 
The goal of the ensemble tagger is to use output from taggers to predict the 

correct class. However, since these taggers conform to different tokenisation 

schema, morphemes are not appropriately aligned. For example, as one tagger A 

split off DEF article and another tagger B does not, from the word /Alkitab/, the 

following incorrect input will be fed to the ensemble classifier: 
Word Features Class 

Al DEFA NB  Def 

Kitab NA N 

 

6.2.1 Morpheme-based Alignment 

The alignment problem can be formally defined as the following: having two 

sequences of tagged words ; = {*=, *?, . . . } and A = {-=, -?, . . . } where *B is a 

vector that represents a word in a sentence and ∀	* ∈ 	;;	GH 	= 	 {,=,,?, . . . } is the 

sequence of morphemes in that word, the problem is to find 	, → 	7,, ∈ 	GH, 7 ∈

	GJ, * → 	-. The result of the mapping is a set of pairs: % = 	 KL,B, 7MN, . . . O, ,B ∈

	GH, 7M ∈ 	GJ. Indices in pairs appear just once, limiting pairs to 1-1 mappings. In 

other words, the result of the alignment is a bipartite graph G=(V, E) where each 

edge ( = (,, 7) and each vertex is a leaf vertex.  

The Needleman–Wunsch algorithm (see Section 6.2.3) is used to compute 

the optimal global alignment between two sequences of tags using a variety of 

scoring matrices. 

Two sequences of morphemes are regionally-aligned: words (delimited by a 

space) are aligned to their corresponding words on the other sequence, i.e. There is 

already an existing alignment mapping of * → 	-, * ∈ 	;, - ∈ 	A. Therefore, a link in 

the alignment cannot pass word’s boundaries. Such existing constraint should raise 

the baseline accuracy as the number of possible mappings is limited. 

To illustrate the problem, the word ( دقلو , /walaqado/, and indeed) has two 

possible tokenisations shown in Figure 6.1. Two gold-standard corpora segmented 

the word into three segments, and four taggers segmented it into two segments. This 

tokenisation problem can vary from tagging compound names (with one tag) to 
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tagging a single word with multiple segments. Therefore, it is necessary to align the 

results of those taggers for proper evaluation and voting.  

Figure 6.1 A sample of morpheme-aligned POS tags of one word that has 

two/three morphemes. 

 
In the first part of this chapter, three morpheme-based methods are compared 

(in addition to a simple baseline approach). Four taggers' output is aligned to two 

gold-standard corpora using: 

1. Rule-based: Manually mapping tagsets from each one to the others, then 

aligning matched tags; 

2. Unsupervised: Learning the alignment based on the possibility that two tags 

appear in the same word; 

3. Supervised: Predicting the alignment using a parallel corpus of manually 

aligned tags; or 

4. Baseline: Aligning the core or primary morpheme of the word, then aligning 

affixes starting from the closest ones to the primary morpheme one-by-one.  

6.2.2 Form-based Alignment 

The second part of this chapter follows a different method of alignment. It 

uses the morpheme's form for linking. Because segmentation form overlap between 

input, this instead goes to a deeper level: word’s characters (the set of its letters). 

The deeper level allows the ensemble to overcome the one-to-one prediction 

limitation of the previous approach. The problem becomes a sequence problem 

Segment Form MA ST AM  FA  SAL  QAC  

w+ conj CC CC  CONJ  p--c--  CONJ 

la+ 
part_verb RP RP PART 

p--z--  EMPH 

qado p--b--  CERT 

MA:  wa+/conj laqad/part_verb 

ST: w+/CC lqd/RP   

AM: w+/CC lqd/RP   

FA: w+/CONJ lqd/PART 

SAL: wa+/p--c-- la+/p--b-- qado/p--b-- 

QAC: wa+/CONJ la+/EMPH qado/CERT 
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where the goal is to predict the label of each character. This model of the problem 

makes the output segmentation free from input segmentation schemas.  

A character-based model jointly segments and tags the text using Inside-

Outside-Beginning (IOB) format  (Kudo and Matsumoto, 2001). The joint approach 

was successfully applied to Arabic (Diab, Hacioglu and Jurafsky, 2004; Kübler and 

Mohamed, 2012; Abdul-Mageed, Diab and Kübler, 2013; Algahtani and McNaught, 

2015). However, previous work does not reuse other taggers for language 

adaptation. 

In the character-based approach, the ensemble classifier is trained on the 

character-level instead of morpheme-level. IOB format encodes the character 

position in the sequence. Each character c is tagged with its POS tag prefixed by a 

character to indicate character position. Spaces between words are labeled as O. For 

example, a tagged sentence: “He/PRON play/V +s/CASE” will be encoded as: 
H/B-PRON e/I-PRON <SPACE>/O p/B-V l/I-V a/I-V y/I-V <SPACE>/O s/B-CASE 

The input to our system is a sequence of words: P = [3R, 3=, 3?, … ] which 

is split into characters % = [UR, U=, U?, . . ]	3ℎ()(	UB ∈ W, , where W is the alphabet. 

The goal is to predict its IOB-augmented tag. Then the predicted tag is decoded into 

morpheme-based tagged text.  

 
Figure 6.2 A sample of character-aligned POS tags of one word that has 

two/three morphemes. 

Segment Form MA ST AM  FA  SAL  QAC  

w conj CC CC  CONJ  p--c--  CONJ 

l part_verb RP RP  PART  p--z--  EMPH 

a part_verb RP RP  PART  p--z--  EMPH 

q part_verb RP RP  PART  p--b--  CERT 

a part_verb RP RP  PART  p--b--  CERT 

d part_verb RP RP  PART  p--b--  CERT 

o part_verb RP RP  PART  p--b--  CERT 

MA:  wa+/conj laqad/part_verb 

ST: w+/CC lqd/RP   

AM: w+/CC lqd/RP   

FA: w+/CONJ lqd/PART 

SAL: wa+/p--c-- la+/p--b-- qado/p--b-- 

QAC: wa+/CONJ la+/EMPH qado/CERT 
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6.2.3 Needleman–Wunsch Algorithm 

For the morpheme-based alignment approaches, the Needleman–Wunsch 

algorithm (Needleman and Wunsch, 1970) is used to compute the optimal global 

alignment between two sequences of tags.  

The Needleman–Wunsch algorithm is a dynamic programming algorithm 

that maximises a score computed by summing the weights of matches and penalising 

for each gap inserted. The alignment depends on: 

1. the penalty associated with an insertion of a gap, and  

2. the weights associated with a match.  

The Needleman–Wunsch alignment is projective, i.e. there are no two 

mappings such that: 

1. mY → 	mZ	where	mY ∈ 	M`	and	mZ ∈ 	Md	and	i < j, and 

2. mY → 	mZ	where	mY ∈ 	M`	and	mZ ∈ 	Md	and	j < i.  

This property is helpful as taggers produce tags in the same order. 

The scoring system was adapted to the problem. The score does not only 

count the cost of operation but also the two tokens involved in alignment.  Using the 

similarity matrix hi,j, the cost of one operation depends on the distance between A 

and B. Matching between noun and N may be given a full score, but matching 

between noun and proper_noun may be given a lower score. hi,j = (	0 ≤ 	mY,Z ≤

	1	)  

This algorithm is only used in two of morpheme-based methods (supervised 

and rule-based). The similarity matrix hi,j of the rule-based approach is based on 

the hand-crafted mapping rules. The aligned corpus (PAC) is used to infer the 

similarity matrix using unigrams and bigrams methods in the data-driven approach. 

6.3 Data and Tools 
This section briefly describes the input taggers and the reference corpora 

used throughout the thesis experiments of ensembles. It also contrasts the tagsets 

and segmentation schemas. It introduces the parallel-aligned corpus used to derive 

the required mappings for rule-based and supervised alignments. It also describes 

the orthographic adaptation of one specific corpus for character-based alignment. 
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6.3.1 Taggers 

The ensemble used different combinations of four POS-taggers designed 

primarily for modern standard Arabic. Namely, they are:  

1. MADAMIRA (MX) (Pasha et al., 2014),  

2. Stanford Tagger (ST) (Toutanova et al., 2003; Monroe, Green and 

Manning, 2014),   

3. AMIRA (AM) (Diab, 2009), and 

4. Farasa (FA) (Zhang et al., 2015).  

They are chosen for the high reputation in the research community. They are 

the best four in our experiment of tagging classical Arabic (see Table 4.6). All of 

them are deterministic: they provide one analysis per word or at least rank its 

analyses. Non-deterministic taggers were excluded as it is beyond the scope of this 

thesis. 

The taggers use statistical methods, and they relied on the Penn Arabic 

Treebank for training their model. MX is different in a sense it is a disambiguation 

tool and relies on a morphological analyser. The predicted analysis is used to rank 

morphological analysers outputs. 

Each tagger treats the segmentation and tagging differently. MADAMIRA 

does not segment the raw text in advance. Instead, it formulates the problem as a 

word-based multioutput-multiclass classification problem, where four of the classes 

are for proclitics and one for enclitics. The Stanford tagger uses a pipelined structure 

where the segmentation results are piped to the tagger. The AMIRA tagger uses a 

character-level joint segmentation and tagging, where each character is labelled with 

the POS tag with a reference to its position of the segment. Farasa uses another 

pipelined structure with a different learning method and lexicons. Table 6.1 shows 

the supported output classes for each tagger. 

Table 6.1 Features of Participating POS taggers.  

Name AM MX ST FA  

Base POS 

tag 
Yes Yes Yes Yes  

Aspect Yes Yes Yes2 -  

Person Yes Yes - -  

                                                
2 Unless it is passive. 
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Gender Yes Yes - Yes3  

Number Yes Yes Yes4 Yes2  

Voice Yes Yes Yes -  

State - Yes - -  

Mood - Yes - -  

Case - Yes - -  

6.3.2 Training and Testing Data 

A subset of the QAC chapters is used in addition to the manually annotated 

part of SAC. The chapters chosen are namely: 2, 3, 4, 10, 15, 30, 45, 60, 75, 90 and 

105. The total number of words is 17.8k with 5.7k and 5k diacritised and 

undiacritised word types. The SAC text5 is randomly chosen prophet sayings with a 

total of 4.5k words with 1.5k and 1.2k diacritised and undiacritised word types. The 

SALMA corpus was not chosen because the annotated data is small compared to the 

QAC. It is, however, used in the intrinsic alignment evaluation between different 

tagsets. 

The dataset size in all experiments are split into 80/10/10. The data is 

shuffled in advance, and exact splits are then determined. For experiment 

replicability and fair comparison between experiments, the rearranged data could be 

replicated as the seed of the random generator is set in advance at the start of the 

code (setting the seed makes the random sequences predictable).  

6.3.3 Segmentation 

Different segmentation schemes are introduced in the literature with no one 

defined as a standard because “there is no single optimal tokenisation” (Habash, 

2010).  

QAC and SALMA followed a fine-grained tokenisation that is influenced by 

traditional Arabic text. For example, QAC segment an emphatic (ن /n/ noun letter) 

suffix that attach to verbs. This segmentation is influenced by traditional Arabic 

                                                
3 Only for nominals. 
4 Number is either singular or plural. 
5 Please note that SAC was not used in this chapter as it was not fully annotated when these 

experimental studies were conducted. For the sake of fairer comparison between proposed 

approaches, which includes a reimplementation of all proposed architures in neural networks, please 

refer to 7.5.  
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grammar as this letter changes the mood of the verb (becomes [ ينبم ] “invariant 

mood”). None of the taggers segment this emphatic letter. 

MX and AM can be configured to segment the text in different “tokenisation 

aliases” (Pasha et al., 2015). They use a very similar engine (MADAMIRA is the 

successor of MADA and AMIRA). D3 segmentation is used where basically all 

clitics are tokenised. It is the most fine-grained segmentation schema. Similarly, AM 

allows the user to choose which prefixes and suffixes to split off. Its “default” 

scheme is chosen where conjunctions, prepositions, determiners, suffixes and future 

markers are all individually separated. ST and FA do not allow the change in 

segmentation scheme. ST follows ATB schema: all clitics are tokenised except 

determiners. 

In a more in-depth look, FA is a bit different: e.g. it segments off nominal 

suffix that marks the plurality of a noun. It segments the Alif tanween that marks the 

accusative case of nominals. Unlike traditional Arabic, the others do not segment the 

attached nominative pronouns (that acts as a subject). These differences contribute 

to the increase in the number of tokens in FA. ST does not segment the Al+ article 

from nominals. The significant portion of the rest of the differences is due to errors 

in the model's predictions. 

The difference in the number of segments shows that both QAC and 

SALMA used more fine-grained segmentation schemes. It shows the challenge of 

adapting MSA segmentation schemas to traditionally influenced segmentation. It 

also indicates that segmentation varies widely between different Arabic POS-

taggers. 

6.3.4 Tagset 

The tagsets used by the two reference corpora differ: The QAC tagset is 

more syntactically-driven while the SALMA tagset is more focused on the internal 

morphology of the words and has more morphological features (total of 22 

elements). The QAC tagset is designed only for the Quran; thus it does not have tags 

for punctuation for example. Regarding basic tags, the possible number of part of 

speech categories (without any associated features such as gender or person) in the 

QAC is 45: 9 tags for nominals, one for verbs, and 34 tags for particles. The 

SALMA tagset is more fine-grained (77 tags): 34 for nouns, one for verbs, 22 for 
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particles, and 20 for residuals (others). Irrelevant tags (e.g. punctuation) were 

excluded. 

Tagset of the four taggers range from 16 (FA) to 26 (AM, ST) to 59 tags 

(MX). Table 6.2 illustrates a mapping from each tag of each tagset to the universal 

dependencies tagset.  This mapping is a rough mapping and is carried out by the 

author with no validation. It is not used in any alignment methods. The goal is to 

show how tagsets are widely different in some groups. For example, relative 

pronouns are considered a particle in FA. It does not have a proper_noun tag either. 

It also has tags that are a morphosyntactic feature, e.g. NSUFF. ST and AM have a 

very similar tagset. MX uses a separate tagset for enclitics (24) and proclitics (28) 

that are not included in the table. These tagsets not only consist of POS tags; they 

sometimes encode the form of the clitic and some morphosyntactic features. Some 

tags are specific for Egyptian Arabic dialect clitics.  
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Table 6.2 Rough Mapping of Tagsets with Universal Dependencies tagset 

 

UPOS QAC MadaAmira Stanford AMIRA FA 

Open 

NOUN N noun NN, NNS NN,NNS NOUN 

PROPN PN noun_prop NNP,NNPS NNP,NNCD 
 

ADJ ADJ adj JJ,VN JJ,JJCD,JJR,VN ADJ 

ADV T,LOC adv,adv_interrog,adv_rel RB RB ADV 

VERB V verb VB,VBD,VBG, VBN,VBP VB,VBD,VBG,VBN,VBP V 

Closed  

ADP P prep IN IN PREP 

AUX * 
    

NSUFF,CASE 

DET DET part_det DT,NOUN_QUANT DET DET 

PRON PRON pron,pron_exclam PRP,PRP$ PRP PRON* 
 

REL pron_rel WP,WRB WP,WRB 
 

CCONJ CONJ conj CC CC CONJ 

NUM NUM noun_num,noun_quant,adj_num ADJ_NUM,CD ADJ_NUM,CD NUM 

SCONJ SUB conj_sub 
 

CJP PART 

PART 
IMPN,DEM,EXL,FUT,INTG,NEG,RES,VOC, 

EMPH,IMPV,PRP,ACC,AMD,ANS,AVR,CAUS, 

CERT,CIRC,COM,COND,EQ,EXH,EXP,INC, 

INT,INTG,PREV,PRO,REM,RET,RSLT,SUP, 

SUR 

pron_dem, pron_interrog, 

part_focus,adj_comp,part_dem, part, 

verb_pseudo, part_fut, 

part_interrog, part_neg, 

part_restrict, part_verb, part_voc 

RP DT,RP,CJP FUTPART 

INTJ N/A interj UH UH 
 

Other  

PUNCT N/A punc,latin PUNC PUNC,FP PUNC,FOREIGN 

SYM N/A 
    

X N/A abbrev,digit 
  

ABBREV 
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6.3.5 Parallel-Aligned Corpus (PAC) 
The alignment problem needs a source of information for its decisions, i.e. 

our parallel-aligned corpus. Similar to the role of bilingual dictionaries in machine 

translations, supervised alignment methods, that try to align the output of individual 

taggers of the ensemble, use this corpus to infer the best alignment candidate.  

Because assessing the generalization capability of the alignment methods is a 

key goal in our study, and since the alignment is sensitive to the similarity between 

the source and target aligned tagsets, we chose the 29th chapter of the Holy Quran as 

the gold standard corpus for alignment. This specific chapter is annotated by QAC 

(Dukes, Atwell and Habash, 2013) and SALMA (Sawalha, Atwell and Abushariah, 

2013) which makes it a good candidate for a parallel-annotated corpus. The corpus 

is enriched with semi-automatic tagging using the four taggers. Although one 

reference corpus might be enough for comparing different alignment methods, it is 

preferable to test the alignment on multiple corpora as alignment is dependent on the 

similarity between the tagger and reference tagset.  

The reference corpus is nearly 1000 words, morphologically segmented to 

produce 1709 (QAC) or 1942 (SALMA) morphemes. FA, ST, MX, and AM produce 

a different number of morphemes: 1615, 1448, 1426, 1409 morphemes respectively. 

The goal of this PAC is to evaluate the alignment methods. In pipelined 

ensemble, each component is tuned independently. Assessing the alignment method 

is required to optimise the ensemble tagger to achieve the best accuracy. Another 

aim of this language resource is to construct a reference data for evaluating taggers 

based on one test dataset. 

The corpus development process is simple: Input taggers re-tag the corpus 

using their own labels. These morphemes were manually aligned by the author of 

this thesis to SALMA and QAC. The alignment is done per word for all taggers. A 

single morpheme can be aligned to only one reference morpheme, which assumes 

that QAC and SALMA are finer in the segmentation process. If one morpheme can 

be aligned to multiple reference morphemes, the most similar morpheme is chosen 

in terms of POS tag similarity and is judged solely by the author. The other 

morpheme is aligned to a gap in the reference word. The whole process was done on 

the SAWAREF web-interface. The morphemes are shown in tabular format with 
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easy navigation and keyboard shortcuts. The corpus is open access at the 

SAWAREF data repository1.  

6.3.6 QAC Orthographic Adaptation 

The script used by the QAC corpus differ significantly from the text used by 

input taggers (see Section 8.2.3 for a list of differences). The QAC corpus used the 

Othmani script, where 43.16% of the verses and 52.80% of the words are written 

differently from a version written using Modern Standard Arabic script. It requires 

special handling and manual verification to convert it to the modern orthographical 

standard Arabic script. As taggers assume text to be written in modern standard 

orthography, we used the Tanzil Project2 to retrieve an authenticated modern script 

version of the Quran text. 

To rewrite each segment to its MSA form, we perform the following 

procedure: 

1. If the word is composed of one segment, we replace it with Tanzil’s 

form. 

2. Else if there is only one segment that differs in the form, we find and 

use the proper substring from Tanzil’s form. 

3. Else, we try to rewrite each segment in the QAC using attached ordered 

regular expressions which convert Hamza, Yaa, Special characters, 

madd, and missing diacritics to the required format.  

4. We repeat step 2, unless no new changes are made. 

5. If there are still two different segments, we raise an error, and manual 

handling is required. 

6. Any remaining mismatching segments are treated manually. 

The final result of this adaptation is a version of the Quranic Arabic Corpus 

that conforms with modern Arabic orthography. This adaptation, however, does not 

claim that the QAC is now perfect for training machine learning models for classical 

Arabic. In Section 8.2, a more detailed evaluation of the QAC is presented.  

                                                
1 https://github.com/aosaimy/sawaref-data  
2 http://tanzil.net/  
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6.4 Morpheme-based Alignments Methods 

6.4.1 Baseline Alignment  
This approach is a simple method to jointly align the output of two 

sequences. one element (called primary) is selected from each side and are linked; 

then, other elements are aligned with respect to their relative position to the primary 

element, assuming taggers will produce a sequence of morphemes with one 

morpheme marked as a `primary'. Formally, let the primary morpheme be: !" ∈

	%, '( ∈ 	) . The result of the mapping is the set of pairs: * = {. . , (!"/0	, '(/0),

(!"/2, '(/2), (!", '(), (!"32, '(32), (!"30, '(30), . . }.If !" or '( do not exist in their 

respectful sets, they are substituted by a gap (or 5).	 

To illustrate this method: Assume we have two sequences: % =

{6789, :;<:, =<;'}	) = {:6, :9, ;!, =6, ;'} where =<;' and =6 are the primary 

morphemes. The alignment result will be: {(5, :6), (6789	, :9), (	:;<:, ;!),

(=<;', =6), (5, ;')}. 
This method makes three assumptions: 

1. The definition of primary morphemes is standard: An example that 

illustrates the lack of this standard is the case of PREP + PRON which is 

common in Arabic; an example is ( ھیف  /fyh/ in it).  

2. A word has only one primary stem which is invalid when two morphemes 

are equal in rank. ( ا م ن إ  ِ َّ َ  /<in~amaA/ but) was segmented by QAC into two 

primary morphemes: <in~a/ACC + maA/PREV. 

3. Taggers will explicitly mark one morpheme as primary: Some taggers do 

not.  

To overcome these issues, tags in the tagset are ranked. The top-ranked 

morpheme in one word is marked as primary. This method should solve the three 

problems; for example, a higher priority might be given to PRON than PREP, and to 

ACC than PREV. 

The noticeable difference in the segmentation schemes makes this baseline 

algorithm not efficient, so we investigated three different approaches to improve the 

alignment.  
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6.4.2 Rule-based Alignment 
In this approach, rules that map one tagset to the other guide the alignment 

algorithm. They are used to constrain the alignment to only mapped pairs (if such 

exist).  

Two linguists performed the task. See 5.5 for the experimental study of 

mapping. The scoring matrix >?,@ is constructed as follows: 

A",(
?,@ = A(,"

?,@ = B
1	DE	E(D, 9) = 2
0.5		DE	E(D, 9) = 1
0	7Iℎ<;KDA<

	 

where E(D, 9)	is the number of mappings from tag D to tag 9. 

6.4.3 Data-driven Supervised Alignment 
The second approach uses an aligned corpus to learn the probability of 

aligning one morpheme in one sequence to another, using its POS tag. We used our 

parallel annotated and aligned corpus (PAC)3. Incorrectly-tagged words were 

marked and skipped from learning.  

To construct the scoring matrix, we use two basic methods: weighted count 

unigram and bigram. Then, these counts are normalised by dividing them on the 

total number of POS tag occurrences. The scoring matrix >?,@ is constructed from 

the co-occurrence matrix C as follows: A",(
?,@ = A(,"

?,@ = LM,N
∑ PM,QQ

 

6.4.4 Unsupervised Alignment 

This approach uses a method adapted from the word alignment task in 

Statistical Machine Translation (SMT). Similarly, our corpus is multilingual (in the 

sense of annotation style), and is parallel at the word-level. The unsupervised 

alignment is done by linking POS tags of the two sides of the word-level parallel 

aligned corpus using the likelihood of co-occurrences.  

Using our PAC corpus, we use the fast_align method (Dyer, Chahuneau and 

Smith, 2013) which uses the expectation-maximisation algorithm to maximise the 

likelihood of a parallel corpus. The input to the aligner looks like the following ("|||" 

denotes the delimiter between source and target languages): 

wa_conj li_prep verb ||| p--c-- p--z-- r---a- v-c--- r---z- 

                                                
3 http://github.com/aosaimy/sawaref-data  
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The result of this approach is a pairs of links, that depends on the likelihood 

of having two tags appearing on the same word. These links may intersect, i.e. the 

alignment output is not necessarily projective. For example, an enclitic in one side 

may be linked to a proclitic on the other side.  The used method, fast_align, is 

designed for word alignment of a bilingual parallel corpus, and intersection is 

possible in SMT. By using a priority that favours arrangements that are close to 

“diagonal”, we could force the alignment to respect the projectivity property.   

Post-processing the output was necessary to convert n-n mappings to one-to-

many mapping. Among the m possible mappings, and rather than basically choose 

the first one, we pick the most confident mapping, i.e. the most-frequent pair in the 

whole training.  

6.5 Form-based Ensemble 
Previous morpheme-based approaches do not assume same tokenisation 

schema of the gold standard corpus. Some tokens in the gold standard corpus (ex. 

EMPH) will not be identified, as no input tagger assumed the same tokenisation. 

When tagging the word /yatyn/, if tagger A produced “yAtyn/VBP km/PRB” and 

tagger B produced “yAtyn/V km/PRON”, then the following input and output will 

be expected from the morpheme-based ensemble classifier: 
Input Output 

Word Features Class May be predicted 

yAtyn VBPA VB V Yes 

  EMPH No 

km PRPA PRONB N Yes 

The form-based approach extends POS tagset of the gold standard with a 

character that indicates a character's position: B for the first character of morpheme, 

I for other characters. Spaces between words are tagged as O. The previous example 

will be: 
Word Features Class 

y VBPA VB B-V 

A VBPA VB I-V 

t VBPA VB I-V 

y VBPA VB I-V 

n VBPA VB B-EMPH 

k PRPA PRONB B-N 

m PRPA PRONB I-N 
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This approach can combine different taggers with no assumption of the same 

tagset or segmentation. Please note that this approach aligns segments based on the 

characters of the segment's form; i.e. it assumes that for each segment, the tagger 

will output the segment form and the part-of-speech tag. It does not apply to word-

based taggers like MADAMIRA (by default4). For example, the word ( ُ ََ َ   ھ ن ت ف  /fatanahu/ 

entice;torment (him)) is tagged by MADAMIRA as follows: pos="verb" 

enc0="3ms_dobj". 

A form-based ensemble requires inputs to be aligned at the character-level. 

Character-based alignment uses the lexical form of the segments provided by 

segmenter/tagger to align the output. This approach was used in the GRACE 

evaluation campaign (Adda et al., 1998) to align several participating taggers using 

a word-based “diff” tool. 

6.6 Alignment Evaluation 
We evaluate different approaches to alignment using an intrinsic metric: The 

accuracy of aligning morphemes. Using 80-20 split for training and testing, we 

report overall accuracy: the fraction of morphemes that have been correctly aligned 

to the PAC gold-standard corpus. An incorrect alignment will cause at least a 

doubled penalty in this metric. 

Table 6.3 The morpheme-based accuracy of aligning morphemes using five 

approaches of alignments. 

Mapping    Ru    unigram  bigram  baseline   unsup   unsup* 
AM à QA 0.91 0.97 0.83 0.95 0.9 0.91 
AM à SW 0.90 0.96 0.72 0.94 0.83 N/A 
FA à QA 0.91 0.99 0.84 0.95 0.95 0.95 
FA à SW 0.97 0.99 0.95 0.95 0.96 N/A 
MX à QA 0.92 0.95 0.81 0.91 0.92 0.92 
MX à SW 0.93 0.94 0.71 0.90 0.83 N/A 
ST à QA 0.94 0.98 0.82 0.92 0.89 0.90 
ST à SW 0.93 0.96 0.72 0.91 0.82 N/A 
Average 0.93 0.97 0.80 0.93 0.89 0.92 

                                                
4 One of the outputs of MADAMIRA is the original Buckwalter complex tag. The tag shows the 

segments of the word, but its segmentation schema is finer than MADAMIRA.   
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Since there is a chance that one tool tags a word incorrectly, and this word 

will contribute to the error rate of the alignment, these erroneous words are excluded 

them from our training and evaluation. While sometimes just one morpheme is 

marked incorrectly, the whole word is excluded. 

We performed 5-fold cross-validation for the supervised approach and the 

reported accuracy is the average of the five folds. The unsupervised model used the 

full unaligned corpus for training. However, evaluation is based on the same test 

portions as the supervised approach. In the unsup* column, we report the accuracy 

of unsupervised learning from a larger training data (nine times original size), and 

accuracy has increased by around 0.5-1%. 

The results in Table 6.3 show that the unigram model outperforms all other 

models in all our tagsets mappings. We can see that aligning taggers with SALMA 

is more difficult than with QAC because QAC uses segmentation and labelling 

schemes that are more compatible with input taggers. One exception is FA which 

seems to be more compatible with SALMA than QAC. 

The bigram model suffered from the insufficient training corpus even though 

the bigram model uses more contextual information to predict alignment. One 

solution to this problem is back off strategies to unigram model, e.g. using Katz's 

backoff model (Katz, Lamel and Adda, 1987). 

The unsupervised method suffered from the post-processing step which 

converts n-n mappings to 1-1. Both basic and most-confident strategies suffer from 

cases where a tag is more associated with another tag, e.g. verbs frequently collocate 

with pronouns. For example, using the basic method, the tag verb would have paired 

with ra (imperfect particle) instead of vc (imperfect verb). Since the pair (verb, vc) 

is more common, the most-confident method will pick this pair instead. While the 

most-confident method should improve the accuracy, it fails to choose the right pair 

when there are affixes that appear more than their stem. For example, the tag noun 

was paired with nu (active participial noun) and rm (masculine plural sound suffix), 

but since the SALMA tagset is finer grained, a noun can be mapped to at least 15 

possible tags, which lowers the probability of noun à nu. Thus, this method chose 

the incorrect pair (noun, rm). 
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6.7 Morpheme-based Ensemble Evaluation 
We evaluated different approaches to alignment using an extrinsic metric: 

The effect of alignment methods using an application of the alignment (one-to-one 

POS tagging). In this evaluation, we used the QAC POS-tagging of ten randomly-

selected chapters. We compare alignment methods with an ensemble tagger with 

“no” alignment; i.e. no intervention is done to the natural order of morphemes. The 

Random Forest method implemented in the WEKA toolkit (Breiman, 2001) is used 

for the morpheme-based ensemble development. Random Forest has been widely 

used for classification problems, e.g. the gender and number tagging of Arabic 

words (Darwish, Abdelali and Mubarak, 2014).  

We extend the alignment algorithm to work with multiple input taggers. We 

used a simple method: having randomly ordered two sets, aligned and non-aligned, 

we sequentially align one from the non-aligned set with the last-added tagger in the 

aligned set. 

Formally, let R be the set of taggers and S be the set of aligned taggers with 

a size m initialised by randomly adding one tagger from R to it. Then, we select and 

align a randomly picked tool from R − S and align it with :U/2 then add it to S.  

While this greedy algorithm does not ensure optimal multi-sequence 

alignment, it performs well enough in our PAC corpus, and its decrease in accuracy 

seems negligible: 0.025. However, this method makes errors of prior alignment are 

propagated to the next pair. The reduction in accuracy was caused mainly from 

incorrectly labelled words; i.e. aligning two incompatible outputs. 

Only aligned labels were provided to the classifier. We do not edit 

mislabelled segments, nor ignore them in training. Note that our individual data 

points were assumed to be independent, and we rely on input taggers to consider the 

context for classification. A sample of the input to the classifier is Table 6.4.  

Table 6.4 A sample of input to the ensemble POS tagger. 

MX AM FA ST QAC 
verb VBD V VBD V 
prep NN PREP IN P 

2ms_pron PRP PRON IN PRON 
det DET DET DT DET 

noun NN NOUN NN N 
prep IN PREP IN P 
det ----- DET DT DET 

noun NN NOUN NN N 
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The results show that as we increase the number of taggers, the accuracy 

improves, (see ). We can see that the effect of alignment decreases as we increase 

the number of input taggers though. Errors generated from the greedy method might 

have cancelled the gain of more taggers in the ensemble tagger. The ensemble tagger 

improved the accuracy over the best input tagger by at least 1.7%. The best 

ensemble tagger was an ensemble of AM, ST, and MX taggers with an accuracy 

88.09%, 88.07%, 87.88%, 87.74% (using unigram, rule-based, baseline, and without 

any alignment respectively). However, the ensemble of all four input taggers 

performed a little bit worse: 87.80%, 88.06%, 87.92% and 87.90%. 

 

Figure 6.3 The average accuracy of each input tagger against different 

alignment approaches. 
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Figure 6.4 The effect of increasing the number of input taggers against 

different alignment approaches. 

The alignment between taggers seems to increase the tagger performance 

slightly. Overall, the average improvement in accuracy is 0.01 and 0.036 for the 

unigram and rule-based approaches respectively. The fact that the rule-based 

approach performed better than the unigram approach does not contradict the 

intrinsic evaluation, as erroneous words are removed in the intrinsic assessment. The 

training dataset for the ensemble tagger is considerably larger than one used in the 

intrinsic assessment. Unseen tags might contribute to the difference as well. 
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Figure 6.5 Input taggers differ in their contribution to the ensemble tagger. 

The Figure 6.5 shows the average accuracy of all combinations of ensemble 

taggers that include the selected input tagger. It indicates that MX contributes the 

most to the ensemble, and alignment improved its accuracy noticeably. This 

contribution might be due to its fine-grained tagset. While FA used a more fine-

grained segmentation scheme, its small tagset makes it less helpful to the ensemble 

tagger.   

One significant disadvantage of this alignment is the dropping of segments 

that never appear in input taggers. One example is the EMPH tag, which was used in 

the QAC to mark the EMPH enclitic in verbs (see Table 6.7). Input taggers never 

segment this enclitic; instead, they tag it as a part of the verb. 

6.8 Form-based Ensemble Evaluation 
In this experiment, the used evaluation metric is accuracy, the fraction of 

correctly tagged characters (AccMorpheme) and  morphemes (AccCharacter). Since 

character-based methodology preprocesses the input to convert it to a suitable 
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format for training, the results are post-processed such that we can compare it to 

other morpheme-based results. 

The form-based method used a Java-based package called MALLET for 

sequence tagging using Conditional Random Fields. The form-based method 

required us to redefine the problem as a sequence problem as character positional 

tags plays a critical role in prediction. In the next chapter, we reimplement the two 

approaches and evaluate them on a common dataset and platform with the end-to-

end approach proposed there. 

In the character-based method, our results are comparable with the advantage 

that we do not require the prior assumption of similar segmentation scheme between 

taggers. The best combination is the ensemble that includes all four taggers and 

scored 88.73%. 

Table 6.5 A comparative accuracy between morpheme-based and character-

based approaches 

Method AccMorpheme AccCharacter 

Morpheme-based Ensemble 88.09 N/A 

Form-based Ensemble 88.73 92.44 

Note that morpheme-based accuracy is computed by recovering the 

morpheme from the character-level labelling. However, this does not produce 

necessarily the same number of morphemes in the gold-standard corpus. This results 

in a mismatching morpheme number between the two sequences of morphemes. The 

morpheme-based accuracy marks a morpheme as correctly labelled if all its 

characters are tagged correctly. 

6.9 Morpheme-based vs Character-Based Alignment  
We will start this comparison by dividing POS taggers for Arabic into two 

categories: 

1. Word-based Taggers where the word as a whole is given a compound tag 

with no explicit mark for segmentation in the form; i.e. there is no link 

between segments’ lexical form and their POS tags in the compound tag. 

Examples include the MX tagger and the Microsoft POS tagger  (see 4.4.6). 

The tagset for enclitics might even be different than ones for the stem.  

2. Segment-based taggers: Each segment is clearly defined by its 

morphological information. Some taggers mark enclitics by adding a plus 
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sign to indicate that it was split off from the previous/next segment. 

Examples that include ST, FA, and AM taggers.  

Table 6.6 Word-based vs. Morpheme-based tagging. For the word /kunna/, 

word-based do not specific the mark of where the word is split. 
W

or
d-

ba
se

d 

MADAMIRA 

Toolkit 

<morph_feature_set diac=" ا ن ك  ُ ّ " lemma=" 1_ناك " 

bw="kun/PV+nA/PVSUFF_SUBJ:1P" gloss="was;were" pos="verb" 

prc3="0" prc2="0" prc1="0" prc0="0" per="1" asp="p" vox="a"      

mod="i" gen="m" num="p" stt="na" cas="na" enc0="0" source="lex" 

stem=" ن ك  ُ "/> 

Microsoft 

POS Tagger 
V.Dual.Plu.Pst.Act*Subj.Plu.1 

M
or

ph
em

e -
ba

se
d 

Elixir FM 
VCJ---MS-- kun "k w n" "" >>| FuL 

|<< "" 

kun نك ن ك   ُ  

SP---1MD4-    nā ان   َ ا ن 
 

QAC 
ku V STEM|POS:V|PERF|LEM:kaAna|ROOT:kwn|1P 

n~aA PRON SUFFIX|PRON:1P 

 

Using the character-based approach for aligning segments between taggers is 

challenging because some of the input taggers to the ensemble tagger were word-

based. Table 6.6 shows the two ways of tagging the word: ( ا ن ك  ُ َّ , kuna~A, we were).  

Even though the tag in the second row indicates that there are two segments in the 

word: V and Subj (separated by the star sign), there is no mark to indicate where 

the word form should be divided; i.e. the segment form is missing. 

Segment-based taggers have their own issues. One issue is the effect of 

segment form adjustment when it is attached. When a word is split off into 

segments, the segments might require some modification to recover their original 

form. There are at least four reasons for such differences: 

1. Taa Marbouta letter: the Ending Taa Marbouta is converted to normal 

Taa when concatenated to another segment, as it never appears in the 

starting/middle state. Splitting off segments might require recovering the 

Taa Marbouta letter. 

2. Maddah diacritic: This is originally constructed from two letters: (“ ا+ أ  َ  ”, 

/>a+A/, “Hamza with fatha and Alif letters”). For example, questioning 

Alif is converted into Alif with Maddah when concatenated to word with 

starting Alif. When splitting off segments, the Maddah diacritic should 

be recovered to its original two letters. 
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3. Concatenation of Prepositional Lam and the determiner Al: This 

concatenation drops the Alif of the determiner, and in exceptional cases 

drops both letters. Recovering those dropped letters depends on the 

context.  

4. Consonant gemination mark (i.e. Shaddah): This indicates consonant 

doubling of the letter. However, it happens that the gemination is caused 

by attaching a clitic to the word; thus, the letter correlates with both 

segments. For example, possessive Yaa is converted into a consonant 

gemination mark when attached to a nominal word that ends by /y/. 

Prepositional segment /mino+/ when concatenated with relative /+maA/ 

is shortened as /mimaA/.  

These differences result in different forms of the same segment between 

taggers; for example, Table 6.7 illustrates how the inflected word “wa+mi+mA” is 

morpheme-based aligned and recovered by various tools. 

Table 6.7 Different recovery of word’s segments 

 MX ST AM FA 

wa wa/conj w/conj w/CC w/CONJ 

mi mino/prep m/IN mmA/NN mmA/part 

m~aA mA/rel  mA/WP  -  - 

This illustrates incompatible segmentation schemas, and more importantly, it 

shows that MX recovered the /mino/ original form and therefore an extra letter /no/ 

is added that was not originally in the word form. QAC, the gold standard corpus, is 

segment-based tagged but converted letters were not recovered after splitting off 

segments. As a result, a few segments do not have a segment form (as the segment 

form was part of another segment, e.g. possessive Yaa). 

Besides, not all taggers report the segment fully voweled (with diacritics). 

Back to the “wa+mi+mA” example, only MX reports segment diacritics (letters: a, 

o, i, u). 

Furthermore, taggers do not always follow the same procedure of 

normalisation. The ST tagger, for example, by default normalises all Alif shapes 

into the normal Alif. This results in a mismatch between characters. In Appendix A, 

one full sentence (Hadith verse) is tagged by several taggers, and changes that are 

made to the segment form can be seen in context. 
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Morpheme-based alignment requires external resources to find the links 

between morphemes. These resources are usually not perfect and prone to errors. It 

also suffers in the case of multiple tagger alignment, as the optimal alignment is 

computationally expensive. However, it can work with word-based taggers and 

segment-based taggers. Other related work seems to prefer character-based 

approach, especially for Chinese. 

6.10  Conclusion 
This chapter presented and compared two approaches of heterogenous 

pipelined ensembles of part-of-speech taggers: morpheme-based and form-based. 

Morpheme-based ensembles using three methods of alignment were evaluated. The 

supervised learning method using a unigram model had the best morpheme-based 

alignment accuracy evaluated on the specific aligned PAC corpus. However, 

morpheme-based ensembles using a rule-based approach were better in terms of 

accuracy. This might show that individually-tuned pipeline ensembles might not be 

the best model. Using alignment improved the ensemble POS-tagger accuracy by 

3.6%. 

For future work, a more complex vector that includes morphological features 

might be considered in the alignment methods, especially for the unsupervised 

approach. Additionally, this work should be extended to include morphological 

analysers so that the ensemble tagger jointly disambiguates and votes for the correct 

analyses.  

The next chapter introduces a new model for the ensemble problem: a joint 

ensemble with an implicit alignment using an encoder-decoder architecture. The 

goal is to overcome the problem of individual tuning of alignment and the 

requirement of explicit mapping (data-driven or rule-based). 
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7  END-TO-END ENSEMBLE 
TAGGER 

Chapter Summary: 

Pipeline one-to-one ensembles suffer from the requirement of explicit alignment of 

segmentation schemes and independent tuning of each component in the pipeline. 

Inspired by neural machine translation advances, this chapter introduces a joint 

end-to-end ensemble using an encoder-decoder approach. 

A series of experiments are executed to evaluate the approach with consideration 

of the model of encoder-decoder models, the use of word embedding, the 

contribution of each input tagger, coarse vs fine-grained tagsets, and different train 

dataset size. 

The second part involves a comparative analysis of the proposed approaches: 

pipelined morpheme-based, form-based and joint end-to-end ensembles. The 

results are compared with related work in the literature.  

Before concluding, errors generated from these ensembles are examined and 

discussed. In light of these errors, this chapter concludes with some suggestions for 

future work.   
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7.1 Introduction: 
So far, all experiments of the ensemble tagger have been made on parts of 

the Quranic Arabic Corpus (QAC) and were limited to the POS tag only. In this 

chapter, different setup configurations are evaluated for the ensemble tagger 

trained on parts of the Sunnah Arabic Corpus (SAC). The experiments are 

evaluated on the test part of the SAC. The goal is to predict the POS tag, 

segmentation and eight morphological features. 

Pipeline one-to-one ensembles suffer from several problems: 

- the requirement of explicit alignment of segmentation schemes;  

- independent tuning of each component in the pipeline; and 

- propagated errors in subsequent tasks. 

Inspired by neural machine translation advances, this chapter implements a 

joint end-to-end ensemble using an encoder-decoder approach. 

In this chapter, we use Deep Learning algorithms for the prediction, 

specifically recurrent neural networks. Deep Learning is a machine learning 

method that uses layers of processing units where the output of a layer cascades to 

be the input of the next layer. Recurrent Neural Networks (RNN), where iterative 

function loops are used to store information, have been successfully applied to 

sequence labelling problems in Arabic such as Arabic diacritisation (Abandah et 

al., 2015; Rashwan et al., 2015), Word Segmentation  and Morphological 

Disambiguation (Darwish and Abdelali, 2017; Zalmout and Habash, 2017). 

In the first part of this chapter, different parameters and machine learning 

features are examined. It inspects the effect of using word embedding, illustrates 

each input tagger contribution to the ensemble tagger, shows the effect of different 

coarse and fine-grained tagsets, and finally plots the effect of the train dataset size. 

Since the configuration space is vast in our case, a greedy approach is followed to 

find the best model for annotating the rest of the Sunnah Arabic corpus. 

In the second part, previous approaches were reimplemented in neural 

network architecture with the goal to evaluate them using the same platform and 

datasets.  

Before concluding, errors generated from the best model are examined and 

discussed. We compare the ensemble errors with the input taggers outputs. In light 

of these errors, we give our suggestions for future work.   
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7.2 Sequence Labelling: One-to-One vs Sequence-to-
Sequence 

Sequence labelling usually involves the prediction of the next label based 

on sequence of input and the predicted labels so far, e.g. POS tagging. Sequence 

labelling is distinguished from pattern labelling by the fact that individual data 

points (or time steps; words in POS tagging) cannot be assumed independent from 

other data points. 

In sequence labelling, one or many input data points is often transcribed 

with one label (1-to-1, or many-to-1). However, there is a more challenging 

problem in sequence labelling that takes a sequence of input data points and 

transcribes them with a sequence of labels (many-to-many), e.g. machine 

translation. However, this problem might not be defined as sequence labelling, as it 

is no longer labelling “each” token in the input sequence.   

 
Figure 7.1 Seq2Seq model (top) vs One-to-one model (bottom) 

In chapter 5, we formulated our problem as one-to-one sequence labelling. 

It required alignment between the predicted morphemes in the participating 

individual taggers. Pipeline architecture suffers from error propagation: errors 

generated from one alignment are propagated to subsequent tasks (e.g. another 

alignment in multi-tool settings, POS tagging, segmentation). It also suffers from 

independently tuning each task: the alignment in chapter 6 was not tuned for POS 

tagging. Neural networks offer an End-to-End solution and show significant 

advances in neural machine translation (NMT) over the traditional pipelined 

statistical machine translation (SMT). 

RNNs are flexible in their inputs and outputs, and it is one of the reasons 

for choosing them. Many-to-many sequence labelling with neural networks is often 
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done using RNN Encoder-Decoder architecture (sometimes called seq2seq), 

illustrated in Figure 7.1 as introduced by Cho et al. (2014).  

The use of Encoder-Decoder architecture removes the dependency on input 

shape, which is valuable in two needed outputs: recovering adjusted letters and 

recovering mismatches in the segmentation of the target tagset. It not only recovers 

dropped/converted items like the recovery of adjusted Taa Marbouta and Yaa 

Maqsoura letters, but it recovers mismatches in segmentation between input and 

output like the case of a missing EMPH tag. 

In the encoder-decoder model, which has become the standard for seq2seq 

models, the alignment between the morphemes in advance is not required. The 

tagger should learn it implicitly. The input sequence (i.e. the output of the tagger) 

is read in entirety and encoded to a fixed-length internal representation. This 

representation is then used to extract the final required output tasks: POS tags and 

morphological features.  

7.3 End-To-End Experiment Settings 
The goal of these experiments is to build an ensemble of morphosyntactic 

taggers that predicts the POS tag, segmentation, and morphological features for 

automatic annotation of classical Arabic. 

Both QAC and SAC follow the same POS tagset. The extended tags 

introduced in SAC (see 8.10.3) are for word categories that never appear in 

Quranic texts, e.g. digits. 

7.3.1 Data, Participating Tools, Tagset and Morphological Features 
The data used for training and testing and the participating tools are the 

same ones used in the previous experiment using pipelined alignment. Please refer 

to 6.3 for the details. 

7.3.2 Network Architecture 
The problem, as stated before, is a supervised sequence labelling. POS 

tagging and the prediction of every morphological feature are examples of 

sequence labelling problems where there are sets of labels for each problem. 

Segmentation can be seen as binary sequence labelling at the character level. A 

character is labelled as either a start mark of a new morpheme or not. 
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In sequence labelling, Recurrent Neural Networks (RNN), where a network 

uses iterative function loops to store information, has shown some advantages over 

standard feed forward neural networks. They are flexible in how they deal with 

contextual information. They can recognise sequential patterns better (Graves, 

2012) as they use their internal memory to process sequences of inputs. It has been 

successfully applied to sequence labelling in Arabic such as Arabic diacritisation 

(Abandah et al., 2015; Rashwan et al., 2015), Word Segmentation and 

Morphological Disambiguation (Darwish and Abdelali, 2017; Zalmout and 

Habash, 2017).  

From the class of RNN, the TensorFlow implementation of the Long Short-

Term Memory (LSTM) architecture (Hochreiter and Urgen Schmidhuber, 1997) is 

used in all experiments. LSTM is a modified design of the standard RNN to 

overcome one serious flaw: the inability to store information for a long time. 

LSTM was the choice for the previously cited studies in Arabic diacritisation and 

morphological disambiguation, and therefore is the layer of choice to encode and 

decode sequences.  

In all the experiments of joint end-to-end ensemble, we use a sequence-to-

sequence (seq2seq) (Cho et al., 2014; Sutskever, Vinyals and Le, 2014) neural 

network that is composed of an LSTM encoder and decoder. Although dynamic 

NNs perform well when sufficient training data is provided, it has required 

encoding the inputs and targets with vectors of fixed dimensionality. However, the 

dimensionality is not always known in advance in some of the tasks. This 

architecture allows mapping one sequence to another using two LSTMs: an 

encoder and a decoder. The first encodes the whole sequence in a fixed 

dimensional vector, and the latter decodes this vector into a newly generated 

sequence. This method proved to be useful in complex problems such as machine 

translation (Sutskever, Vinyals and Le, 2014).  

The fundamental architecture is composed of an input layer, an encoder, 

and a decoder. An input layer is a 3-dimensional vector: (samples, time steps, 

features). There are two types of inputs: character-based input, which includes the 

lexical form, and categorical-based input, which includes POS tags and 

morphological features. In character-based input, the time steps are the characters 
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of the words, and each character is represented in a one hot encoding61. In 

categorical input, the time steps are the morphemes of one word, and the features 

are represented as well as one hot encoding. 

The representation of input values as one-hot encoding implies that we 

have the same distance between different values of one feature. However, this is 

not always the case; for example, nouns and proper nouns might be closer to each 

other than a particle. One solution is to encode the sparse categorical vector in a 

dense vector of a fixed length. In one experiment, we evaluate the effect of using 

POS embeddings instead of the one hot encoding. 

Note that the input sequences might not have the same length of time steps. 

However, in practice, it is required to pad the sequences to have the same length in 

Keras with TensorFlow backend. Unlike PyTorch62, graphs in TensorFlow are 

defined statically. We pad string inputs with spaces, and categorical inputs with a 

null value to represent padding. 

The next layer is a bidirectional LSTM encoder that maps the input shape 

(the time steps and the features) into a vector of 256 dimensions. In this layer, we 

use the hyperbolic tangent (tanh) as the activation function and a dropout rate of 

0.01 (i.e. a fraction 0.01 of input units are set to 0 to help prevent overfitting). The 

output shape of this layer is a vector of 256 for each sample. The next layer repeats 

this vector to the number of time steps which is required for the next LSTM 

decoder layer, as it expects a 3-dimensional input. 

The idea of bidirectional RNNs (Schuster and Paliwal, 1997) is 

straightforward. It duplicates the first RNN layer such that the input is fed to both 

layers, but with a reversed input order for the second layer. The output of the two 

layers can be merged via several methods, e.g. by concatenation. This approach 

requires that all timesteps of the input are available. Bidirectional LSTMs, in 

particular, were used in POS tagging (Plank, Søgaard and Goldberg, 2016; 

Darwish and Abdelali, 2017), and thus are used in our experiments. 

                                                
61 One hot encoding (a.k.a. dummy encoding) is a numerical encoding of categorical feature where 

a feature value is converted to a vector of 0 and 1. The vector size equals the length of labels set 

size. The vector is all zeros except for the label's index. For more details: 

https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/ 
62 https://pytorch.org/ 
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The decoder layer is another LSTM that expects a sequence of fixed-length 

(256) vectors and will transfer the learned encoded internal representation into the 

output sequence. A regular feedforward dense layer is used to transform the output 

of each time step (morphemes) into the final label. The same weights are shared 

for all timesteps as the same dense layer is applied for each timestep. The network 

for predicting the segmentation is illustrated in Figure 7.2. The full network used 

in the experiments with all categorical and character information (POS tags, 

segmentation, and morphological features) is presented in Figure 7.3. 

 
Figure 7.2 The Basic Encoder-Decoder Neural Network 
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Figure 7. 3 The full neural netw

ork for PO
S, segm

entation, and m
orphological features 
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7.3.3 System Settings 

All algorithms are implemented in Python using the Keras Framework 

(version. 2.1.4) with a TensorFlow backend (version. 1.4.1). Keras is a high-level 

neural networks API. TensorFlow is an open source dataflow library in Python that 

is used for machine learning using neural networks. It was developed by Google 

Brain and seems to be the most widely-used deep learning framework.  

Experiments are run on a MacBook Pro laptop with a processor 2.3 GHz 

Intel Core i7 and 16 GB of RAM. All experiments were run on the CPU, as 

TensorFlow no longer supports GPU in MacOS as of version. 1.2. 

7.4 End-To-End Experiments 

7.4.1 Word and Morpheme Embeddings 

In the following experiments, pre-trained word embeddings are used as an 

input to the network. Words (and subwords) are represented as continuous vectors 

of real numbers, a.k.a. word embeddings. This word representation is a 

distributional model that allows words with similar meanings to be closer to each 

other. 

One method for this representation is the classical distributional co-

occurrence sparse matrix. It counts the number of times one word co-occurred with 

another word in a given text. Using a decomposing technique like PCA or SGD, a 

word is represented in a single vector of real numbers. However, this model suffers 

from storing a substantial sparse matrix. 

Prediction-based word embeddings (e.g. word2vec (Mikolov et al., 2013)) 

overcomes this issue by iteratively predicting a representation of a word from its 

context. However, this model ignores the morphology of the words as it treats each 

word form independently. Another issue is that it is not generalised as it is limited 

to the trained vocabulary; vectors for other words do not exist and cannot be 

generated. 

Subword Embeddings allows guessing the meaning of one word even if it 

is out-of-vocabulary. This models the embedding to take the morphology of a word 

into consideration. For example, the suffix “-borough” should indicate the meaning 
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of a location. Subword approaches assume that word meaning can be recreated 

from its components. The fastText tool (Bojanowski et al., 2017), for example, 

does so from word character n-grams. A vector representation is generated for each 

character n-gram, and the word-representation is the sum of these representations. 

The fastText tool is used in the following experiments. Subword 

embeddings are more applicable to Arabic language as it is a morphologically rich 

language, and the morphology plays a critical role. Besides, the number of 

inflected words in Arabic makes the word2vec approach insufficient without a 

prior segmentation. Lastly, we generate embeddings for the input word to the 

system in addition to the segments generated from participating taggers, so we 

want fastText to be consistent in each case. 

The word vectors were built using fastText on a random subset of classical 

Arabic corpus (the texts in the corpus that were authored from eighth to eleventh 

centuries) that were extracted from the Shamela library (Belinkov et al., 2016). 

The subset’s total number of words is 160 million words, and the vocabulary size 

is 662K. The model was trained using a minimum and maximum of two and seven 

character n-gram lengths. The size of the word vectors is 200. The text was 

cleaned, and diacritics were removed. All annotation in the texts were removed, 

and the model was trained on the book texts only. 

In Figure 7.4, we have six models: emb models use the trained fastText 

model on the input word in addition to encoding the original word as one hot 

vector, only_emb does not include the original word, baseline does not use 

embeddings at all, both for small and large training dataset. It shows that the 

embedding input did not contribute much in emb cases, even though it contributes 

slightly more to the model with a small training dataset. It also shows that 

embeddings did not represent the original word and did not encode all input word 

features. It was developed using the undiacritised corpus, so the lack of diacritics 

might cause the drop in accuracy.   
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Figure 7.4 The effect of using word embeddings 

7.4.2 POS Embeddings 
Embeddings do not only apply word form or characters. They can be also 

used as an alternative way for encoding categorical Embeddings. Instead of 

encoding each category in one-hot encoding, these categories can be encoded 

jointly with the network, using embedding layers at the beginning of the network.  

Feature vectors, particularly the POS tag, in one hot encoding are 

independent, but this is not always the case in some of the features. Some POS 

tags, for example, may behave similarly (e.g. nouns and proper nouns). The main 

benefit for this representation is in “generalisation power” (Goldberg, 2017, p. 92) 

which might help the network in the combination process. Also, the dense 

encoding reduces the computation cost of sparse vectors as shown with syntactic 

parsing (Chen and Manning, 2014).  

We evaluate this setting in this section. In Figure 7.5, dense vectors for 

POS tags (POS embeddings) did not improve the overall accuracy. The effect does 

not show improvements in segmentation and POS tagging (the two charts on the 

right side). The effect is slightly noticeable in morphological features but is very 

limited (less than 0.015% at maximum). The embeddings might not have sufficient 

training data (no external resources were used), and thus the dense vector did not 

encode the dependency between tags to the full extent. The dense representation 

requires fewer parameters to be trained (1.08 millions vs 1.19 millions), and the 

training should be faster (in theory). However, the training only converged on the 

50th epoch vs. the 39th epoch (in the baseline). The evaluation of the generated 
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embeddings requires an evaluation dataset of pairs of POS tagsets. So, we leave 

this task for the future.   

The feature vectors might be helpful as well in the mapping between 

different tagsets. The embeddings are trained though monolingually (each feature 

in its space). Embeddings can be transformed linearly (or using Procrustes 

alignment) in a supervised approach using a set of pairs of matching tags (bilingual 

dictionary) or in an unsupervised approach by iteratively refining the alignment 

(Conneau et al., 2018). This method has proven to be useful in word translation, 

and it might also help in finding the mapping between different tagsets. This work, 

however, is beyond the scope of this thesis. 
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Figure 7.5 The accuracy over the training epochs using embeddings (dense vector) for POS tags (Red) vs using one-hot encoding (Blue). 
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7.4.3 The Effect of Training Dataset size 

To remind the reader, our ensemble approach aims to help under-resourced 

variants by reusing existing resources. The two adaptations in this ensemble 

(annotation-style and domain) require a corpus of under-resourced variant 

annotated with the required target annotation style. However, the required size of 

this corpus is unknown in advance, so we evaluate our ensemble using different 

sizes.  

The training dataset size plays a critical rule in the adaptation of the input 

of individual taggers. In this experiment, we show that training data size is directly 

proportional to the accuracy as shown in Figure 7.6. The training dataset is 

iteratively set to be 10, 20, .., 80% of the data, the validation split is always 10%, 

and the rest is for the testing dataset. The model will not be trained on the 

validation dataset, however, it prevents the training from overfitting the training 

dataset by allowing to monitor progress and providing early stopping when the 

validation loss is not improving. The test dataset is an entirely independent data 

split that we use to evaluate the model. The validation dataset in our case is not 

used for development or hyperparameter tunings; therefore validation and test plots 

should have similar patterns. 

In Figure 7.6, we can see clearly that the more data is used for training, the 

better the accuracy. The accuracy is averaged from all outputs: POS tagging, 

segmentation, and morphological features. Over the training, the larger training 

dataset converges faster (in the number of epochs). However, the time of training 

for one epoch is higher with larger datasets (1 min compared to 27sec). We capped 

the number of epochs to 30 for time constraints. 
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Figure 7.6 The effect of different training dataset sizes on the average 

accuracy. 

In Figure 7.7, we can see that the segmentation accuracy primarily and 

POS tagging are the two outputs that suffer from small datasets. It confirms that 

participating taggers have different segmentation and POS tagsets, and annotated 

data is needed to adapt these schemas to the required schemes. As the training data 

get larger, the effect on the accuracy is less. There is no significant difference in 

many features when the training dataset size is increased.  

 
Figure 7.7 The effect of training dataset size on the accuracy of POS tagging, 

segmentation, and morphological features  
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It is notable that even with small amount of data63, the accuracy is still 

high. It suggests that the annotation process for adapting low-resource languages 

should be iterative, and smaller dataset might be sufficient for the purpose. The 

amount of data required is highly dependent on the quality of input taggers and the 

difference between the two languages, though. 

7.4.4 Different Combinations of Individual Taggers 

In this section, different combinations of individual taggers are examined. 

This section aims to show the contribution of input taggers to the overall ensemble 

tagger. A baseline tagger could be created by learning from the training corpus 

given only the sequences of the lexical forms (no tagger’s output is provided). 

One-tagger model can be created as well by adding the features of one tagger. The 

goal here is to contrast the contribution of each input tagger (or the combination of 

taggers) to the overall accuracy.   

                                                
63 The dataset used in all experiments is already relatively small. The whole training data is just a 

subset of the QAC (~30%).  
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Figure 7.8 Word-based accuracy of single-tagger vs ensemble taggers 

Figure 7.8 shows that the four-tagger ensemble improved the accuracy of 

most of the features by an average of 1%. MX tagger accuracy is the best 

compared to others and scored a very competitive accuracy measure.  

Since accuracy is a global performance measurement, it does not give any 

information on the error distribution. Remember that the ensemble method exploits 

the differences in errors generated in each tagger, so we need to report the 

similarity between two taggings of the same text. Taggers have different linguistic 
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theories as illustrated before, but since these taggers are “adapted” to produce a 

similar segmentation/tagging schema, this adaption may make them more 

“homogeneous”. The kappa (κ) coefficient (Cohen, 1960) implemented in the 

Scikit-learn package (Pedregosa et al., 2011) is used to compute the similarity 

between each pair of one-tagger models. Note that this metric (and similar metrics) 

do not operate on homogeneous tagging, so the effect of our adaption on error 

distribution may not be efficiently computed.  

 

Since the adaptation of each tagger might make them act similarly, so we 

report the kappa of these taggers (for POS tagging) in Table 7.1. The table shows a 

high agreement between the four taggers. This high agreement might be due to the 

adaptation technique, the knowledge bases of this taggers, or just because MX 

tagger simply is superior to the other taggers (the MX tagger is more fine-grained 

significantly ).  

Table 7.1 The kappa coefficient for POS tagging between one-tagger models. 

 
MX FA AM ST 

MX 1 0.935633 0.933771 0.932335 

FA 0.935633 1 0.929587 0.920686 

AM 0.933771 0.929587 1 0.926287 

ST 0.932335 0.920686 0.926287 1 

Although the accuracy of the ensemble might not improve the overall 

accuracy of individual taggers significantly, the ensemble introduces a robust way 

for tagging. Researchers might not know the suitability of one tagger to their 

research against the others, so running an ensemble tagger does improve the 

accuracy over the baseline, and will adapt itself to at least the best of these taggers. 

The future work section suggests multiple ways to improve the performance of this 

ensemble such as including an Attention mechanism and stateful networks.  

7.5 Segmentation Model 
The accuracy of predicting the correct segmentation using the Encoder-

Decoder model is quite low (75%). This section introduces a new modelling of the 

segmentation problem.  
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Segmentation in our case involves recovering adjusted forms, so it is not 

surprising that it scores the lowest. Errors in Encoder-Decoder segmentation model 

come from changes in letters and diacritics, with no constraints on how letters can 

be converted. This results in many words that are not even in the Arabic 

vocabulary, e.g. /fa+>aHokumu/ à /fa+>aHomu+kum/. Some words have 

multiple incompatible diacritics in some letters which is not valid in Arabic, e.g. 

/sabiyli/ à /sabiylii/. In addition, the task involves diacritics changes, and it makes 

the sequence length larger, i.e. harder to predict well.  

The current model suffers from high sequence length and high possible 

number of characters. However, many characters (or letters) should remain 

unchanged. Therefore, the segmentation problem should be treated differently: it 

could be treated as a classification problem at the word level (like (Darwish and 

Mubarak, 2016)) or by predicting word clitics like (Pasha et al., 2014) using a 

predefined set of clitics.  

Pasha et al. (2014) uses a predefined set of clitics and the trained model 

predicts one of them. This method is not suitable for our case as it does not recover 

the transformations on the word segments. Darwish and Mubarak (2016) pre-

processes the word form and generates a list of possible segmentations, and then 

the trained model will pick the correct segmentation. We follow a similar method 

but at the character level. 

In other words, we decided to use one-to-one prediction at the character 

level. The problem is transformed into three problems: prediction of the character’s 

segment position (SEG), prediction of the character’s output letter(s) (LET), and 

prediction of the character’s output diacritic(s) (DIAC). Table 7.2 illustrates the 

one-to-one segmentation on the way it segments two words: “it’s” and  يلإ    ّ /<ly~a/ 

(to me). For each character, it should predict the target letter (LET) and diacritic 

(DIAC) after transformation, and the character’s segment number (SEG).  

Before training the model, we had to align every input word in the training 

corpus to its segmented version, at the character level. We used Levenshtein 

Distance between the two sequences (original and segmented) of each word’s 

letters (not including diacritics). Then, diacritics are moved according to thier 

letter’s position. The input letter and the output letter does not have to match; for 

example the apostrophe in the word “it’s” is transformed into “ha”, making “ha” a 
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new class in the classification problem. Rarely, a letter in the original form can be 

deleted after segmentation, i.e. transformed to an empty string. 

In our training dataset, there was 52 unique letters that have been 

transformed into 189 different combinations of letters or an empty string and 16 

unique diacritics that have been transformed into 72. The segmentation problem 

assigns to a letter its position which can be one of 16 possible positions. Please 

note that if one letter (e.g. /y/ in our example) is assigned the segment “1+2”, then 

the segment “1+2” is one possible class of the SEG classification problem, not two 

segments “1” and “2”.  

While the accuracy of predicting the SEG is 95.73%, LET 97.99%, and 

DIAC 96.26%, the accuracy that one word had a complete successful segmentation 

SEG+LET+DIAC, i.e. letters and diacritics are transformed correctly, and each 

letter is assigned the correct segmentation, is 92.16% (see Table 7.3). Only the 

latter accuracy can be compared to our previous model of Encoder-Decoder (75%) 

and it shows a great improvement in the accuracy.  

The result of our model may not directly be comparable to other works in 

the literature, due to different segmentation schemas. Mohamed’s (2018) work on 

the development of religious corpora scored better accuracy on SEG prediction64: 

96.32% (compared to 95.73). However, as mentioned by the authors: “The real 

merit is in the ability of the classifier, and its features, to go beyond what it is 

trained on”. The accuracy of the segmentation of OOV in Emad’s work is 81.56%, 

but it is 86.80% in our case (17.96% of words are OOV in our case and 16.4% in 

Mohamed’s case).  

 

 

 

                                                
64 Mohammed assumed that each character does not undo the assimilation and instead keep the 

conventional written form. That is, in cases like “it’s” is not recovered to “it has or it is”. Instead, 

the only goal is to mark each letter with its proper segment. This is similar to QAC original settings, 

which lead to empty-form segments. It is similar to our SEG problem except that one character 

cannot be assigned to different segments; so, the segmentation classes are equal to the maximum 

segments number.  
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Table 7.2 One-to-one Segmentation. 

Input word it’s  يلإ    َّ    /<ly~a/      

Target Segmentation it has it is  ي + ىلإ  

INP LET SEG LET SEG  INP LET DIAC SEG 

i i 1 i 1  < i < i 1 

t t 1 t 1  l a l a 1 

‘ ha 2 i 2  y ~a Y+y o+a 1+2 

s s 2 s 2  Arabic Word 

 

In future work, we might improve the current model to include more 

contextual information, as it is currently work at the word-context only, although 

this extension seems not to improve Mohamed’s work significantly (at most 0.2%). 

The current EN model (unlike other models) does not use information on how 

input taggers have segmented the text, i.e. it is not an ensemble of these taggers. 

So, another option is to encode how they are segmented and use an ensemble of 

these inputs (maybe each sequence associated with an LSTM layer). 

Table 7.3 The overall, and out-of-vocabulary word-level accuracy of 

segmentation (SEG), letter transformation (LET), and diacritic 

transformation (DIAC). 

 
Overall OOV 

SEG+LET+DIAC 92.16 79.86 

SEG+LET 94.65 84.56 

SEG 95.73 86.80 

DIAC 96.26 92.17 

LET 97.99 95.97 

7.6 Ensemble Approaches Comparison 
This research has presented mainly two approaches: Pipelined and End-to-

End ensembles, with two primary methods for morphological alignment: 

morpheme-based and form-based methods. The morpheme-based method tried 

several ways for alignment including rule-based and supervised ways of alignment. 

However, these experiments were done over two years and there are several 

mismatches between experiment factors. This section presents a re-implementation 

of these approaches on a common ground and same platform (Neural Network 
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implementation using Keras with TensorFlow backend, same training and test 

datasets). The code of all experiments is published at the author's Github 

page65.This section as well summarises the differences between these approaches 

and analyses the error generated from each model. 

7.6.1 Models 

This section compares between four proposed models: pipelined 

morpheme-based rule-based ensemble (RU), pipelined morpheme-based 

supervised-alignment ensemble (SP), pipelined form-based ensemble (CH), and 

end-to-end ensemble (EN), as shown in Figure 7.9. These four models had the best 

scores in previous evaluations. Table 7.4 presents a summary of the differences 

between the four models.  

 
Figure 7.9 The hierarchy of presented ensemble models. Only marked models 

are included in this section because they scored the best accuracy in previous 

evaluation. 

 

                                                
65 https://github.com/aosaimy/sawaref-rnn  
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Table 7.4 Summary of differences of presented models. 

 RU SP CH EN 

Definition 

An ensemble that uses rules 

generated from experts to map 

morphemes of different 

taggers. The ensemble uses 

this aligned input one by one 

to predict the morpheme 

label(s). 

An ensemble that uses rules 

generated from an aligned 

dataset to map morphemes of 

different taggers. The 

ensemble uses this aligned 

input one by one to predict the 

morpheme label(s). 

An ensemble that uses the word form to 

map the form characters (with their 

labelling information) of each input 

tagger. The ensemble uses aligned 

character-based information one-by-one 

to predict the character label(s). Character 

labels encode morpheme boundaries. 

An ensemble that utilises an Encoder-

Decoder network to encode the sequences 

of each input tagger, concatenate these 

encoding, and decode the results into a new 

sequence of morphemes.  

Sequence 

labelling 

type 

One-to-one: Each morpheme (or character) is labelled individually with respect to the context. Unlike seq-to-

seq models, the final segmentation is restricted to input form length (in the CH model) or input segmentation 

models.  

Seq-to-seq: A sequence of word morphemes 

is encoded, then decoded to predict another 

sequence of labels. 

Pipelined vs 

Joint 

Fully Pipelined: Alignment precedes tagging, segmentation is the 

result of voting between aligned morphemes. 

Partially Pipelined: Alignment precedes 

tagging, segmentation is jointly predicted 

with tagging. 

Fully Joint: Alignment and segmentation is 

done jointly in the embedding model. 

Error 

propagation 

Pipelined models suffer from errors generated from previous steps. Errors generated from prior alignment 

methods result in lower consistency of input data.  
Fewer changes to input data are required. 

Alignment 

Tuning  

Pipelined models tune previous steps on an evaluation dataset of aligned inputs. This tuning is abstracted from 

the final goal: the tagging results of the ensemble.  

Tuning of network weights is done at the 

same time as training the ensemble. 

Alignment 

Evaluation 

Dataset 

Morpheme-based models require a dataset that is aligned on the 

morpheme level. Morpheme boundaries are not explicit, and this 

alignment is prone to errors. The evaluation is not necessary for 

the ensemble, but it can help to spot errors.  

No prior dataset is required. However, 

some rules for adapting mismatches 

might be required.  

No alignment is required.  

Alignment 

method 

Rule-based requires a mapping 

between tagsets, which in turn 

The supervised method 

requires an aligned dataset to 

Alignment is form-based using string 

similarities algorithms. However, it 

The alignment does not need any human 

intervention.  
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requires a thorough 

understanding of both tagsets.  

the morpheme-level from 

which the alignment rules are 

generated.  

assumes that the form for each output is 

the same, or some adaptation is required. 

Dropping 

some labels 

Morpheme-based models suffer from the limitation on the output 

segmentation. They are limited to the intersection between input 

and target segmentation. Finer segmentation in the output will 

not be reproduced. 

Mapping to character-level solves the 

problem of morpheme-based models. 

End-to-end model mimics the output 

sequence of the training dataset and does 

not have a similar limitation. 

Same form 

output 

Morpheme-based models vote for one input’s segmentation, 

which does not guarantee adapting output segmentation to the 

target segmentation.  

Form-based assumes no additional 

character is inserted in the form; i.e. form 

adjustment is not supported. 

The end-to-End model mimics the output 

sequence of the training dataset.  
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7.6.2 Implementation  

The (re)-implementation of these models is done using the latest version of 

the Keras package (v2.1.4) with a backend of the latest version of TensorFlow 

(v.1.4.1). The end-to-end neural network is the same as reported earlier in this 

chapter.  

Pipelined models were implemented with a single LSTM layer that returns 

states of each timestep, which ensures having a one-to-one model.  

All networks are multi-output networks. The set of outputs are 9 outputs: 

POS tag, and eight morphological features1. Instead of training each output 

individually, the network benefits from sharing layers by utilizing information from 

other morphosyntactic features. We adopt a multi-task approach similar to 

approaches done by Søgaard and Goldberg (2016) and Inoue, Shindo and 

Matsumoto (2017).  

The network (illustrated in Figure 7.10) starts with a set of input layers that 

represent eight features in the four input taggers (resulting in 36 features). In 

addition, one input layer that represents the lexical form is defined. It is either an 

inline one-hot encoding of the character (in form-based models) or a predefined 

embedding of the morpheme (in morpheme-based models), using the FastText 

model (see Section 7.4.1). 

These inputs are concatenated into a single layer that is fed into a 

bidirectional LSTM layer with 256 hidden units. Unlike seq-to-seq models, the full 

sequence is returned (vs. only the last output), which ensures having the same 

timesteps in following layers.  

The output of the LSTM layer is supplied to each required target feature. In 

each feature, a dense layer for every temporal slice of the input (using 

TimeDistributed wrapper) is applied to predict the final values of outputs.  

 

                                                
1 The set of features used at this comparison is the nine features (i.e. tagging). Three more 

segmentation related outputs (SEG, LET, and DIAC) are only used and evaluated for EN model. 

Segmentation is not included in this comparison because the segmentation problem does not utilize 

the segmentation results from input taggers, because they adhere to different segmentation schemas.  
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Figure 7.10 The network used for pipelined models. The input consists of a long 

list of features (8 features x 4 taggers), and output includes all target features 

(the complete lists are not shown). Character-based ensemble uses one-hot 

encoding of the character letter (bw_onehot), while morpheme-based ensemble 

uses an embedded vector of the morpheme form.  

The model used adaptive moment estimation (ADAM) (Kingma and Ba, 

2014) as the optimizer, instead of the classical stochastic gradient descent procedure. 

Unlike stochastic gradient descent, ADAM does not maintain a single learning rate; 

instead, it adaptively update the learning rate associated for each weight in the 

network (between batches). It is widely-used in the recent research for its efficiency 

in achieving optimized network weights in a shorter time. The details are not 

relevant to the research. 

The set of outputs are evaluated in each epoch, and weights are updated 

accordingly. Because each one of the outputs is a categorical feature, we used 

categorical cross-entropy as the cost (or loss) function to measure the performance 

of the classification. The output of each final node (after activation2) is a probability 

of each class. For example, the node “QAgender” outputs a probability for each 

                                                
2 The actual output of the last dense layer is actually a set of numbers which are “softmaxed”, i.e. 

each output is assigned a decimal probability (between 0 and 1), where all probabilities add up to 

exactly 1).  
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class: “male”, ”female”, “irrelevant”. Categorical cross-entropy is a generalization 

of log loss to multi-class classification problems, and it quantifies the difference 

between actual and prediction distribution. The loss increases as the predicted 

probability diverges from the actual label. It is defined for multi-class classification 

problems as follows: 

CrossEntrpy =	−	$%&log	(+&)
-

&./
 

Where L the set of labels, %0  is the actual label (either 0 or 1), and +0 is the 

predicted probability. 

7.6.3 Padding Sequences 

TensorFlow operates on tensors where the network is a directed acyclic 

graph (DAG). However, TensorFlow requires the definition of the graph before a 

model can run. The sequence length must be fixed (usually the maximum length of 

training sequences). Shorter sequences are usually padded with zeros to fill the 

fixed-length requirement.  

Without a careful treatment of output, the padding requirement may lead to a 

biased cost function (the predicted outputs of padded elements may bias the loss). 

This is especially relevant in this comparative evaluation as the padding is different 

between the four approaches.  

Two approaches are used to solve the problem: masking and custom sample 

weights. The masking layer masks timesteps that are equal to a certain value from 

all downstream layers. However, when a sequence is encoded using LSTM, the 

masked timesteps will no longer be effective to downstream layers. The sample 

weights technique allows the definition of custom weights for each sample, 

including its timesteps. For training purposes, the weight of padded timesteps is 

0.05, but in validation is 0. This configuration allows the training process to not 

completely ignore padded timesteps (as they should be marked as padded), but give 

more priority to other timesteps. Padded timesteps in the validation dataset are 

ignored when computing the accuracy of the prediction on the validation dataset (by 

zero-weight configuration) which isolates the evaluation metrics from any padding 

side effects. This configuration explains the high difference in training accuracy 

compared with validation and test datasets (see Figure 7.11).  
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Figure 7.11 The training, validation, and testing sample-level accuracy of each 

approach over the training epochs. 

7.6.4 Evaluation 

Accuracy is the most used metric in the literature (Paroubek, 2007), so it is 

used to report the ratio of the number of words/segments that are correctly tagged 

over the total number of word/segment forms tagged. 

Overall precision and recall are meaningless since every morpheme can be 

tagged with exactly one tag (i.e. ambiguity =1). They will both just equal the 

accuracy measure, as the tagger and the reference datasets are one-tag based. 

Accuracy of the models is reported in two ways: sample-level and word 

level. Sample level is the one used internally for defining the loss (cost function), 

but the sample is different between approaches (e.g. morpheme-level vs character-

level). Therefore, the word-level is the metric used to compare different approaches, 

i.e. the portions of words that are predicted correctly.  

Word-based accuracy is reported for each output (see Figure 7.12 and Table 

7.5). The best scoring model is the end-to-end model for all outputs features. A very 

similar pattern between test and validation can be seen. 



  - 172 - 

Table 7.5 The accuracy of each output for all four proposed ensemble models  

 
EN SP RU CH (Marton, Habash and Rambow, 2013)3 

Aspect 97.85% 95.12% 94.41% 92.53% 99.1% 

Case 95.75% 82.68% 82.82% 79.60% 86.3% 

Gender 93.56% 88.46% 88.95% 83.09% 98.6% 

Mood 96.42% 94.09% 94.23% 90.65% 98.6% 

Number 92.53% 83.49% 83.62% 77.49% 99.2% 

Person 94.63% 91.50% 91.72% 87.20% 99.1% 

POS tag 90.20% 85.32% 85.64% 81.79% N/A 

State 94.63% 88.86% 89.26% 84.25% 95.6% 

Voice 95.21% 92.04% 91.72% 89.35% 98.9% 

Aggregate 74.87% 55.41% 55.01% 45.97% N/A 

    

Figure 7.12 The word-based accuracy of four ensemble approaches that predict 

validation dataset outputs.  
                                                
3 Their experiments used Penn Arabic Treebank, i.e. MSA Arabic, which is 19.3 times larger training 

dataset. The accuracies of functional gender and number are used instead of form-based ones.  
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Sample-based accuracies are higher than word-based accuracies in all 

approaches, see Figure 7.13. Word-based accuracy marks a word as correctly 

predicted if all of its samples are correct.  

Word-based and sample-based accuracies show that number, gender and case 

features in addition to POS tag scores the lowest. Number and gender are two 

functional features which makes their prediction more complex. These two features 

are under-specified in the annotation of the QAC (Please see discussion in next 

chapter and Table 8.1 on page 186). They are underspecified for nouns, proper 

nouns and adjectives with different rates; for example, the number is only specified 

for 36% of nouns.  

The case feature is a known problematic feature. Some approaches in the 

literature ignore it in parsing (Marton, Habash and Rambow, 2013), although it was 

the most helpful feature in the gold standard in their experiments.  

 

Figure 7.13 Sample-based model accuracy of the four approaches 
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The real OOV (out-of-vocabulary) metric is not computable because it is not 

possible to determine what are the OOV words in the input taggers (as we have no 

access to their training dataset). However, ensemble OOV words that have not 

appeared in our training dataset constitute about 17.96% of words. The OOV 

accuracy for each output is provided in Table 7.6. 

Table 7.6 The overall accuracy and Out-of-Vocabulary accuracy. 

 
EN EN-OOV Drop Difference 

number 92.53% 72.93% 19.60% 

person 94.63% 78.08% 16.55% 

voice 95.21% 80.98% 14.23% 

gender 93.56% 79.42% 14.14% 

case 95.75% 83.89% 11.86% 

aspect 97.85% 86.58% 11.28% 

mood 96.42% 85.23% 11.19% 

PoS Tag 90.20% 79.64% 10.56% 

SEG 95.73% 86.80% 8.93% 

state 94.63% 88.14% 6.49% 

DIAC 96.26% 92.17% 4.09% 

LET 97.99% 95.97% 2.02% 

 

The aggregated accuracy is the percentage of words that had a completely 

correct tagging in all output classes. It is 45.97%, 55.41%, 55.01%, and 74.87% for 

CH, SP, RU, and EN approaches, respectively.  

It is clear that the EN model surpasses other models in all of the tests. 

Several improvements can be made to this model specifically and for other models. 

The next section discusses and analyses the ensemble errors in prediction and 

suggests actions for future improvements.  

7.7 Error Analysis 

This section discusses the errors produced by the ensemble analysers. Most 

discussion will be on the EN model as it scored the best in all features. 

The aggregated accuracy of the EN model is 74%. The remaining 26% of 

words are incorrectly tagged (i.e. has at least one error in their tagging, e.g. male is 

incorrect). The total number of outputs in the EN model is 12 which includes POS 
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tag, eight morphological features, and three segmentation-related features (SEG,  

LET, DIAC).  Figure 7.14 shows the percentage frequency distribution of the 

incorrect words. We can see that words with a single error makes the majority of the 

incorrectly labelled words. This might suggest for future work that using a lexicon 

(or a morphological analyser) filtered or ranked based on the prediction might fix 

some of the erroneous outputs. The source of the error in single-error words is 

illustrated in Figure 7.15.  

 

  

Figure 7.14 The percentage word frequency that has n prediction errors. 

 

Figure 7.15 The type of error for words that have a single error 

7.7.1 POS Tagging 

POS tagging word accuracy (90%) is significantly better than other 

approaches.  
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Most of the errors come from predicting ADJ (adjectives) as N (nouns), RES 

(restriction) as EXP (exception), PRO (prohibition) as NEG (negation), REM 

(resumption) and CIRC (circular) as CONJ (conjunction), or vice versa. Please see 

Figure 7.18 for full confusion matrix. Please see Section 8.2.1 for more details about 

the similarity between these tags.  

The overall POS accuracy does not show the performance of tagging a 

specific tag. Many tags are naturally under-sampled in the QAC tagset. Figure 7.16 

and Figure 7.17 show the F1 score for each tag and the frequency of each tag. The 

lowest scored tags suffer from ambiguity at the word level, inconsistent/incorrect 

tagging in the reference corpora (see 8.2.1), and under-representation in the 

training/validation corpus. The figure as well shows the imbalance problem where 

some classes are under-sampled. Two ways are usually used to handle the 

imbalance: oversampling and custom loss function. Oversampling usually is hard as 

the samples in text classification are related. The other option is to give higher 

weight to samples from a certain class, which results in paying more attention to 

these classes. However, tuning these hyperparameters (weights) requires a 

development set and we will leave it for future work.  

A reduced tagset obviously is one option to improve the accuracy, but this 

should be done based on the needs of the target downstream application. Using the 

universal dependencies tagset (UD), a coarser tagset mapped to the QAC tagset in 

Table 8.8, the accuracy improved to 92.96%. Another option is to jointly learn the 

prediction of segmentation, POS tagging, and dependency parsing (like (Zhang et 

al., 2015)), which shows a significant improvement on OOV words. Options 

regarding our model include using stateful NN and custom class weight.  

 

Figure 7.16 The frequency of each POS tag. 
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Figure 7.17 The tagging F1-score of each POS tag. 

 

Figure 7.18 The confusion matrix of POS tagging (EN model). 

7.7.2 Morphological Features 

Morphological features can be divided into two categories: functional and 

form-based. Form-based features scored better results as all input taggers are form-

based. The choice to functionally tag the number and gender features makes its 
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prediction more complex. Morphological features infrequently predict a value that is 

incompatible with the POS tag. Instead of predicting each morphological feature 

independently, it might be beneficial if the predicted POS tag is used as input for 

predicting the feature’s value. Some errors in morphological features come from 

missing values in the reference corpora or inconsistency between the two datasets 

(see Section 8.2.1). The presence of diacritised input text seems to improve mood 

and case accuracies compared to previous works in MSA. Some features are only 

related for specific POS tags, and errors come from incorrectly tagging their POS 

tags. 

7.8 Comparative Evaluation 

The accuracy of the ensemble taggers can be compared with other related 

POS taggers. This comparison is, however, challenging because of different 

standards in annotation and training and testing datasets.  

In regards to tagging classical Arabic text, Alashqar (Alashqar, 2012) used 

six different taggers (Unigram, Bigram, Trigram, Brill, HMM, and TnT) trained on 

the Quranic Arabic Corpus. The best word-based accuracy achieved was 80.4% 

using the full QAC tagset. His result might not be directly comparable since it uses 

an older version of QAC which is word-based. In addition, the training/testing splits 

are not specified, except the ratio of training to testing. The reported word-based 

accuracy might be comparable cautiously as there might be some edits to the newer 

versions of QAC.   

Mohamed (Mohamed, 2018) recently published a new classical Arabic fine-

grained corpus of 60k words annotated with PATB-like tagset. The tagset used is 

complex and has 133 segment-level tags and 949 word-level compound tags. Using 

TiMBL toolkit, a memory-based learning toolkit, the accuracies of full automatic 

segmentation and POS tagging on development and test datasets are 89.8% and 

87.8%, respectively. These accuracies are not directly comparable as settings such as 

test and training datasets, tagset, segmentation are different.  

In regards to an Arabic heterogeneous ensemble, Alabbas (Alabbas, 2013) 

reported a high accuracy (99%) of an ensemble tagger that combines AMIRA, 

MADA, and maximum-likelihood taggers to predict the tagging of MSA text. The 

work is not directly comparable to our results as his training/test datasets and tagset 
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are different; the author used an ensemble tagger on Modern Standard Arabic, which 

means that only annotation-adaptation is required. 

Comparing with input POS taggers might be appealing. POS taggers (MX, 

ST, AM, FA) used different tagsets when reporting their accuracy (see Chapter 4), 

which make a direct comparison with our ensemble system unfair. They used 

various data splits which makes them even incomparable among themselves. Most 

of them used data splits from the PATB,  but the data split is different: the test 

dataset of MX is 10% of Part 3, and of AM and ST are 10% of each part; and Farasa 

used a WikiNews corpus for testing as “Testing done on a subset of the ATB is 

problematic due to its limited lexical diversity, leading to artificially high results” 

(Darwish and Mubarak, 2016, p. 1). We do not have access to the PATB as it 

requires an expensive Linguistic Data Consortium (LDC) membership.  

However, adapting their results to match our test dataset (with QAC 

annotation style) is an option. This is done by training morpheme-based or end-to-

end models that have only one input tagger. These models that has only the tagger 

are no longer ensembles, but they are adapted to label using the QAC annotation 

style. The morpheme-based model of adapted MX, ST, AM, and FA taggers 

correctly predicted 83.86%, 84.78%, 83.28%, and 80.22% respectively (see Section 

6.7). The end-to-end model of adapted MX, ST, AM, and FA taggers correctly 

predicted 89.44%, 87.92%, 88.81%, and 89.26% respectively (see Section 7.4.4). 

This should as well give a rough estimation of how likely an input tagger can help 

our ensemble tagger.  

Another option is to compare the ensemble results to off-the-shelf taggers. 

This is only possible to taggers that are not customized to their own tagset or 

segmentation schema, e.g. our input taggers. In addition, we want to compare with 

taggers that support lexical form adjustment at the morpheme level (word form 

assimilation). We used a state-of-the-art tagger that is built for usage with Universal 

Dependencies schema: namely UDPipe (Straka and Straková, 2017). Default 

settings for training are used: 100 epochs for segmentation, 20 for tagging, 0.1 

dropout, 0.005 learning rate, 50 batch size. We do not use the lemma as a feature or 

ask the model to predict it for fair comparison. Table 7.7 shows the F1 measure of 

UDPipe and the accuracy of EN-ensemble. Please note that UDPipe does not use 

accuracy like our work, instead they used F1 measure as described in CoNLL 17 

shared task (Zeman et al., 2017). In UDPipe and the shared task, the number of 
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nodes (word segments) differ between the gold standard and system output. So, the 

precision is the correct tagging nodes percentage of system nodes, while the recall is 

the correct tagging node percentage of gold nodes. In our case, the nodes are words 

whose alignment are maintained at evaluation. In almost all accuracies produced by 

the UDPipe toolkit, the ensemble scores better except in morphological tagging.  

Obviously, input taggers are trained on a larger training dataset than our 

training dataset which is exploited by the ensemble tagger.  

Table 7.7 The accuracy of UDPipe vs. EN ensemble 

 UDPipe F1  EN-Ensemble Accuracy4 

Segmentation 88.50% 92.16% 

UD POS Tagging 83.55% 93.44% 

X POS Tagging 82.38% 90.20% 

Morph. Features 76.67% 76.16% 

Overall Tagging 73.16% 77.16% 

7.9 Conclusion 

This chapter introduced a novel method for ensemble tagging by using an 

encoder-decoder architecture to perform a sequence-to-sequence learning. In the 

first part of this chapter, different configurations of this model are introduced. It 

shows that the sequence-to-sequence method clearly surpasses the one-to-one 

modelling of the problem. POS embedding did not improve or worsen the accuracy 

significantly although it reduced the parameters of the network, thus the training 

speed. Word embedding in Arabic needs to care more about optional characters 

(diacritics). Embeddings trained using undiacritised texts do not improve the overall 

accuracy as well. Intuitively, the larger training dataset, the better adaptation and 

tagging. However, an acceptable accuracy can be achieved with comparably small 

datasets, the usual case of under-resourced languages. The ensemble tagger 

introduces a robust method for tagging and it can either match or improve the 

accuracies of one-tagger models. Re-using other tools improves the accuracy over 

the baseline, which makes these tools a valuable linguistic resource regardless of 

heterogeneity. These results suggest that researchers should consider re-using 

existing methods although their required tagset/segmentation schema is different.  

                                                
4 The accuracy in our case equals the F1 measure because recall and precision are equal since the 

system tags and gold standards tags are equal by definition.  
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In the second part, a re-implementation of the previous methods with a 

neural network is done to ensure similar and fair comparison. An end-to-end model 

of the problem surpasses previously proposed pipelined methods in all accuracy 

measures. Not only does it have the freedom from manual feature engineering, the 

end-to-end model is superior to other models almost in all classes. It suggests that 

manual alignment or mapping is not needed with the existence of a large enough 

training dataset.  

The error analysis section discussed the errors generated from proposed 

models in detail. It suggested several guidelines for future work for improving the 

overall accuracy and robustness. For future work, the attention mechanism may be 

used to pay more attention to some features or timesteps. In addition, encoding one 

tagger’s outputs should be contrasted with the current encoding of all input taggers. 

A stateful network should be used in production stages as the current network 

discards the states between batches, thus losing the context information. One 

direction for improvement is the integration of lexicons, and it could easily be 

achieved in several ways, e.g. by concatenating a vector that represents the sum of 

one-hot encoding of the lexicon results, as shown beneficial by Inoue, Shindo and 

Matsumoto (2017). Another direction for improvement is combining presented 

ensembles, i.e. ensemble of ensembles, although this approach should be evaluated 

first to ensure that they produce different errors. 

The next part discusses the annotated data used in this thesis and introduces a 

new linguistic resource for the Hadith genre of classical Arabic. It also presents a 

novel tool for annotation that aims to speed up the tedious annotation process while 

maintaining the consistency and accuracy.  

  



  - 182 - 

PART III 
Sunnah Corpus Annotation 
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8  SUNNAH ARABIC CORPUS 

ANNOTATION: DESIGN 

AND METHODOLOGY 

Chapter Summary5: 

Sunnah Arabic Corpus is an annotated linguistic resource that consists of 144K 

words of the Hadith narratives (an utterance attributed to prophet Mohammed), 

extracted from the Riyāḍu Aṣṣāliḥīn book (a.k.a. The Meadows of the Righteous), a 

compilation of 1896 hadith narratives written by Al-Nawawi and compiled on 1334. 

The book is widely known to Muslims and has been studied and translated into 

several languages.  

The first section of this chapter examines whether the Quranic corpus is a good 

representative sample of the classical Arabic texts in general. It illustrates the need 

for an additional manually annotated corpus for classical Arabic. 

This chapter presents the design of the corpus collection and the methodology of its 

annotation. The annotation has been done through several layers: orthography, 

segmentation, and morphology. The diacritisation level is increased to the level that 

all words in the corpus are diacritised. Clitics from each word’s free morpheme are 

detached. All tokens are assigned a part-of-speech tag in addition to eight 

morphological features. 

  

                                                
5 Some parts of this chapter are based on: 

Alosaimy, A. and Atwell, E. (2017) ‘Sunnah Arabic Corpus: Design and Methodology’, in 

Proceedings of the 5th International Conference on Islamic Applications in Computer Science and 

Technologies. Semarang, Indonesia. (in press) 
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8.1 Introduction and Motivation 

Language resources (LRs) are recognised as critical components in the 

development of Natural Language Processing. Annotated corpora, as one example of 

LR, are used to perform statistical analysis, hypothesis testing, accent verification, 

verifying grammar within a language domain and for building statistical 

computational models. Several scholars show the need for freely available Arabic 

resources, e.g. (Yaseen et al., 2006; Albared, Omar and Ab Aziz, 2009), especially 

gold standard annotated corpora. In the case of classical Arabic, there are very little 

available annotated corpora, but they are limited to Quranic texts. Mohamed (2012) 

built a small corpus of religious texts (all texts are considered classical) and 

confirmed the need for a larger classical corpus.   

The Sunnah Arabic Corpus (SAC) is a corpus of Arabic Hadith (prophet 

sayings) that is a freely available morpho-syntactically annotated corpus using a 

fine-grained tagset that conforms with traditional Arabic grammar. 

The SAC is tagged with a fine-grained tagset as it aims to take advantage of 

showing very subtle grammatical differences, the reflects the interest of the experts 

in syntax and morphology, rather than some unknown specific needs of the end 

users (e.g. information retrieval). Fine-grained tagsets can always be reduced so that 

they can support a broader range of downstream applications. Studies show that 

tagging using fine-grained tagsets and then converting them to reduced tagset is 

more effective (Kübler and Mohamed, 2012; Zeroual, Lakhouaja and Belahbib, 

2017). 

After arguing that the Quranic Arabic Corpus is not sufficient, the rest of the 

chapter is divided into two parts: the first part is an overview of the corpus content, 

where the second part is more about its annotation. In the first part, we will list the 

main features and potential uses of SAC, its design and structure, and its availability 

and accessibility. In the second part, we explain in more details our annotation 

guidelines on three levels: orthographical, lexical, and morphological. Besides, we 

talk about the alignment of translations. We conclude by evaluating our collection 

and annotation process. 

8.2 Quranic Arabic Corpus As a Training Corpus 

The Quranic Arabic Corpus is a semi-automatic morphologically annotated 

corpus of the text of the Holy Quran. The annotation of the Quran Arabic Corpus 
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was done using an automatic tagger then each predicted analysis is examined by two 

linguists. The second linguist reviewed the annotation after changes made by the 

first. After that, the public was asked to check the correctness of the annotation. 

In this section, we discuss several issues of using the plain Quranic Arabic 

Corpus as a training dataset, which includes text and style variance, different 

orthography standard, annotation inconsistencies, and annotation representation 

problems. 

8.2.1 Annotation Consistency 

The Quranic Arabic Corpus annotation is very accurate. However, we were 

able to spot some inconsistency in tagging some POS tags, namely ADJ vs N (e.g. 

word 2:35:9, 50:24:5 vs 2:276:10, see Section 5.7), REM vs CONJ (e.g. look at 

2:74), and RES vs EXP (e.g. same sentence “ وھ لاإ ھلإ لا ”: 9:31:19 vs 59:22:6). These 

cases including others make their prediction erroneous.  

The QAC annotation used an Arabic book of grammatical analysis of the 

Quran (Salih, 2007) for reference for borderline cases, i.e. the annotator is asked to 

follow the book for all the annotation. However, the book and the corpus lack the 

guidelines for handling borderline cases. This makes reusing the same tagset harder 

for the case of SAC. 

ADJ (adjectives) and NOUN (nouns) are very similar in Arabic. Adjectives 

function as a noun just like in English, and both categories inflect for four 

categories: gender, number, definiteness, and case. Participles functioning as 

adjectives inflect as well for voice. Tagsets differ in their definition of adjectives: 

QAC marks a word as an adjective when it qualifies its preceding corresponding 

noun, i.e. attributive adjective. QAC usually does not tag predicative adjectives; 

however, it is not consistent in this matter; for example, verse 29:19 is not consistent 

with its following verse. The words: “easy/ADJ” and “competent/N” are both 

adjectives acting as predicate (khabar) and should be treated similarly. 

RES (restriction) and EXP (exception) are two particles for expressing 

exception. In traditional Arabic, they differ in their effect on the case mark of the 

postposition phrase. Usually, if the sentence is complete and sound after removing 

the exception particle and negative particle, the exception particle is tagged as RES.  

Because the variance between REM and COND is minimal and only affects the case 

mark, we suggest reducing the tagset to include one of them. 
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In a similar matter, REM (resumption) and CONJ (conjunction) are two 

particles to connect clauses or sentences or to coordinate words in the same clause. 

In Arabic grammar, conjunction particles cause the word to grammatically follow 

the previous status of a word (i.e. they come after a word and follow it in status). 

REM does not; however, this distinction is minimal and does not apply to the 

majority cases where REM and CONJ are connecting sentences. 

Another issue in this matter is the inconsistencies in the features list. 

Morphological features for one POS tag should always be tagged, e.g. case feature 

for nouns. However, in some words, some values of features are missing. For 

example, the number feature is tagged for 85.13%, 35.81%, 92.74%, 1.62% and 

100% of ADJ, N, PRON, PN, and V, respectively. For the full coverage of feature 

annotation vs. the respective UPOS tags, see Table 8.1. Some features have a 

“default” value, e.g. the mood and aspect features of verbs. Some features have a 

neutral value, but this value is not explicitly specified and is not documented.   

Because we would like to train a model to predict the value of these features, 

we do not want to have unknown values. After a close look into the corpus, we 

decided to fill the missing values with the most common value (singular for number 

and masculine for gender) for the gender and number of nominals. In Table 8.1, the 

starred percentages can be filled using Arabic knowledge: the case, number and 

person of pronouns can be inferred from the form of the pronoun, and the gender is 

neutral in first-person or dual pronouns. The gender of verbs and voice for adjectives 

are neutral when it is unspecified. However, the rest of underspecified features 

(underlined percentages) are not easily recoverable. These percentages contributed 

to the errors of our ensemble analysis. 

Table 8.1 Missing Features in Specific UPOS tags 

 UPOS NOUN PROPN ADJ VERB PRON 

1 Gender 4% 81% 0.8% 13%* 22%* 

2 Number 64% 98% 15% 0% 7%* 

3 Person N/A N/A N/A 0% 15%* 

4 Voice N/A N/A 83%* 0% N/A 

5 Case 0% 0% 0% N/A 100%* 

6 Definite 0% 0% 0% N/A N/A 

7 Mood N/A N/A N/A 0% N/A 
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8.2.2 Text and Style Differences 

The Quranic text is a unique classical text. It was preserved through many 

years away from any changes. It is segmented in verses (6236 numbered verses). 

There is no mark for sentence boundaries except verses. However, verses can have 

multiple sentences, and one sentence can span into two verses (e.g. 2:119 and 

2:220). It has no punctuation marks; however, its text is annotated with pause marks 

which were removed from the text in the QAC. It is worth mentioning that Brierley, 

Sawalha and Atwell (2012) developed an open-source boundary-annotated corpus 

that the Quran text is segmented into 8230 sentences using pause marks. However, 

this work does not concatenate sentences that span multiple verses and is not 

combined in the QAC.  

8.2.3 The Quranic Orthography 

Quranic Arabic Corpus is an annotated resource where each word in the 

Quran is morphologically segmented and annotated. While there are authenticated 

scripts of the Quran that follow current orthographical writing rules in MSA (e.g. 

Tanzil Project and (Elhadj et al., 2010)), the script used in the QAC is the original 

Othmani script. The Tanzil format of each word/segment is not given, and there is 

no direct mapping between these formats. 

Some words in Othmani script are a compound of two or three words in the 

Tanzil format. The number of words in Othmani is slightly lower than the Tanzil 

version (77430 vs 77797 respectively) due to the concatenation of vocative particles 

Ya (361 cases) and Ha (4 cases) with their nominals, and two rare cases. For 

example, the latter word is written as three words in Tanzil project: 

“ya+bona+&um~a” but in QAC, is written as “yaA Abona >um~a”. We can notice 

that there are even orthographical changes when splitting.  Since POS taggers were 

trained on MSA format (which Tanzil project follows); these instances in QAC are 

split off and realigned to Quranic script in MSA format.  

Additionally, QAC follows Quranic diacritics which is an extended set of 

diacritics. There is a relationship between these diacritics and the Tajweed (the rules 

which govern and help the pronunciation during the recitation of the Quran). For 

example, the constant Noon letter is not given a sokun diacritic when it is in 

“Ikhfaa” mode. Additionally, some letters are written indifferently (e.g. Yaa->Alif 

Maqsoura, Alif Madd-> Hamza+Alif, Yaa and Waw as special small diacritics). In 
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the Tanzil project, diacritics are written according to MSA standards. These 

differences in word orthography resulted with segments in the QAC needing to be 

rewritten according to MSA orthographical rules. However, the Tanzil project does 

not provide segmentation as QAC does.  

Finally, some words even in the Tanzil project do not conform to modern 

writing standards. This applies to variability situations such as when Taa and Taa-

Marbouta are written interchangeably ( تأرما/ةأرما ), and for dropped Alif ( مساب ،مسب ), 

dropped Waw وعدی ،عدی( ).  

To recover from this mismatches, we aligned the text in the QAC text with 

the text in the Tanzil project, as shown in the algorithm in Section 6.9.  

8.2.4 Annotation Representation Scheme 

In QAC, the tagset was chosen to comply with the Arabic traditional tagset. 

It is represented as a CoNLL-like lemma-and-feature format: it consists of four 

columns–id, form, POS tag, and features separated by vertical bars. The annotation 

was word-based; then was converted in later versions to morpheme-based. It has a 

main tagset size of 23 tags appended with a comprehensive feature list. Converting 

its annotation to morpheme-based required introducing some tags that only appear 

as a suffix (which was tagged previously as features), e.g. DET. A morpheme does 

not span over words except for a single case, where a proper noun that spans two 

words but treated as one morpheme: 37:130:3, نی سا ی  ل إ  ِ ْ  َ  ِ  َ /PN. 

While there is some redundancy in the feature list with the POS tags, some 

feature values are underspecified (maybe to obtain small size file). Since the features 

are written together, it is not easy to spot missing features (as previously described 

in 8.2.1). It is not easy to know that there are default values for some features.  

Values for each morphological feature is written in the documentation. 

However, features sometimes have a “neutral” value. For example, the gender of 

dual verbs is neutral. The value in these cases is left unspecified, and it is hard to 

know that missing features are neutral without having a background in the Arabic 

morphology system. 

To handle these problems, the annotation scheme required us to build a 

custom file reader. It handles missing values, and more importantly aligns and 
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provides Tanzil's text in addition to Othmani script. The QAC (v.2) can be obtained 

in CoNLL-U format from Sawaref project in Github6. 

8.2.5 Morpheme Form Adjustment  

The annotation scheme chose a segmentation that does not recover fused 

morphemes. For example, attaching a pronoun “ مھ /hm/them” to the “ ىلع  /ElY/ to” 

preposition makes it “ يلع /Ely/to+ مھ  /hm/them” (which makes the first segment a 

homograph for a famous proper noun). The /y/ in the first segment is not recovered 

to /Y/ in the QAC. When segmenting one word, the annotation guidelines should 

deal with two problems: shared letter between two morphemes, and reshaping of 

letters.  

As described in 6.9, morphemes can be fused in Arabic into one word with a 

geminate (double) or maddah diacritic. The geminate and maddah diacritic belongs 

to two morphemes. We found that this decision is not consistent. In most cases, the 

doubled letter belongs to the first morpheme (e.g. 41:15:11 ن م  ِ َّ /P+ا/PRON) but 

sometimes it belongs (e.g. 41:12:11 ي ز  َ َّ /V+   .(PRON/ َّ ا ن

Besides, this decision produces some zero-length (or null) morphemes such 

as Yaa-ending words followed by Yaa Alnesbah (first-person possessive pronoun), 

e.g. 44:18:3 ى ل إ  ِ َ َّ /P+(null)/PRON. There are 208 zero-length forms in the corpus, all of 

which are either PRONs or INTG. 

Some specific letters are changed when attached to another morpheme. It is 

usually the case of ending letters (letters that only appear at the end of a word): the 

Taa Marbouta /p/ and the Yaa Maqasorah /Y/. They are replaced by their sisters’: 

Taa Maftouha /t/ and Yaa letters /y/.  

Although annotating the word with its lemma might be efficient in some 

annotation guidelines, as the lemma recovers the original letters, we hypothesis that 

machine learning, especially character-based methods can benefit significantly from 

recovering original form. They can model the effect of attaching morphemes on the 

level of inflected form, not the lemma. However, recovering original form is not 

supported by QAC. 

                                                
6 https://github.com/aosaimy/sawaref-data  
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8.2.6 Form vs Function Features 

Two morphosyntactic features (the gender and the number of nominals) can 

be in disagreement between their form-based and functional morphology. Broken 

plurals, particularly, are singular morphemically (regarding its form) but they 

function as plural. Broken Feminine nouns do not use the usual feminine suffix (Taa 

Marbouta), but they use pattern-based. Some nouns are morphemically feminine but 

they function as masculine, and many feminine nouns do not have their gender 

morpheme. For more information about gender and noun features in Arabic, please 

refer to (Habash, 2010, p. 53). 

QAC says that the annotation of gender feature of nouns is functionally 

annotated: “nouns are tagged for gender according to grammatical gender, since this 

determines how the noun will function syntactically”7. However, there is no similar 

note about the number feature. After some inspection of the corpus, there are 

number of form-based annotation. 

Functional features seem more useful for parsers in agreement and 

assignment interactions. Even though the accuracy of predicting functional features 

is less than form-based, the contribution of functional features are more (Marton, 

Habash and Rambow, 2013). 

8.3 SAC Design 

The Sunnah Arabic Corpus currently has only one book: Riyāḍu Aṣṣāliḥīn, a 

compilation of 1896 hadith narratives written by Al-Nawawi and published in 1334. 

The book will henceforth be referred to as Riyad. Riyad was chosen for several 

reasons:  

1. It has been widely accepted as a valid source of prophet sayings. 

2. Its codex was validated and investigated by several scholars by a scientific 

paleographical process. 

3. A small subset (42 narratives, 4479 words, ~5% of the book) has been 

studied linguistically in traditional Ia’rab Arabic grammar (by two books). 

4. It has been translated into at least 18 languages. 

5. Its narratives have been explained by six written books, at least by 11 

scholars (spoken explanation). 

                                                
7 http://corpus.quran.com/documentation/gender.jsp 
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6. It is a good representative sample of the Hadith texts in general as it is 

quoting narratives from other significant books (see Section 8.9) 

While it is available through many websites (e.g. IslamHouse.com8, 

Sunnah.com9), we chose to download an e-book version of the book from the 

Shamela10 library, a downloadable repository that contains at least 5300 Arabic 

books in Islamic studies, as this library has become the standard library of classical 

Arabic books. It has already been used to obtain classical Arabic text in building 

several corpora (Alrabiah et al., 2014; Belinkov et al., 2016; Zerrouki and Balla, 

2017).  

Two versions of Riyad were available in the Shamela library, and we chose 

the version with ID# 2348 (Alfahal, 2007). This version is the one investigated by 

Maher Alfahal who made his investigation and commentaries open freely. Both 

versions have the same numbering, hadith text (with some slight differences), but 

they both differ significantly in the commentaries. 

Diacritisation of both versions is not full (not every letter has its short 

vowel). Maher's version is more thorough and accurate using a sample of five 

narratives randomly chosen. Quranic verses are fully diacritised in both versions (a 

standard in book editing). Diacritisation has been merged as described in section 7.6. 

Shamela books are available in three formats: PDF, EPUB, and BOK (used 

for their downloadable desktop software). The PDF format is used for the scanned 

images of the book, and the text is not easily extractable. The BOK version is not 

suitable as it requires their software to open. Therefore, we chose to proceed with 

the EPUB format, an e-book file cross-platform widely-used format to view and 

read the book. Since EPUB format is XML-based, the extraction of the XML 

version of the book is easy. However, we found that the XML version of Riyad does 

not tell the difference between different components of the text (like footnotes' co-

reference, and page numbers). It does not separate the chain of narrators, prophet 

sayings, and citation. Neither does it provide a table of contents (see  for an 

example). Therefore, we developed custom software11 to extract the narratives and 

verses in a structured format which identifies footnotes, chapters, and sections, 

                                                
8 https://islamhouse.com/ar/books/111275/ 

9 https://sunnah.com/riyadussaliheen 

10 library http://shamela.ws/index.php/book/2348 

11 http://github.com/aosaimy/riyadh-corpus-collection/   
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remove inline annotations (for example page break of the original book: “[p.34]”) 

and separate footnotes from the original text and links it with co-reference. It also 

merges narratives that span into multiple pages. It also imports Quranic units 

annotations from the QAC corpus.  

8.4 Corpus Content 

Riyad is a collection of 2330 units (precisely 435 Quranic verses and 1896 

hadith narratives). It is classified into 20 chapters, and each chapter contains several 

sections, with a total of 372 sections the covers Islamic morals, acts of worship, and 

manners. Each section covers a specific topic, and verses and narratives that support 

the topic.  

Figure 8.1 XML version of one page of Riyad book extracted from its EPUB 

version. 

 

The corpus consists of ~144K Arabic words of which about 110K words 

compose Hadith narratives. The rest compose either the author’s commentaries, his 

introduction, or Quranic verses. More statistics about the corpus are in Table 8.2. 

<?xml version="1.0" encoding="utf-8" standalone="no"?> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> 
<html xml:lang="ar" lang="ar" dir="rtl" 
xmlns="http://www.w3.org/1999/xhtml" 
xmlns:epub="http://www.idpf.org/2007/ops"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-
8"/> 
<link href="../style.css" rel="stylesheet" type="text/css" /> 
<title> لحفلا ت نیحلاصلا ضایر </title></head> 
<body class="rtl">   <div dir="rtl" id="book-container"><hr/> 
<a id='C159'></a><a id='C160'></a> 
<span class="title">(6) - ةلا صلاو ت ی ملا عییشت و ضیرملا ةدا یع باتك        َ            َ         َ ّ      ّ   

ھنف د  دع ب  هربق  د ن ع ثكملا و  ھنف د روضح و ھیلع       َ      َ   ِ  َ       ِ ْ َ     ِ  َ  َ  َ   </span><br /><span 
class="red">144 - </span><span class="title">  ةدایع باب

ضیرملا </span><br /><span class="red">894 - </span>     ِ  َ َ       نب  ءا ر بلا نع
 ِ َ  َ ِ    ة دا ی عب - ملسو ھیلع T ىلص -   ُ      َ َ َ    َ  َ               ٍ ِ    T  لوسر ا ن ر مأ : لا ق ،امھنع T يضر  ب زاع

 ِ ْ َ َ   ِ ِ ْ ُ ْ    ر ص ن و ، م س ق م لا ِ  َ ْ  َ   ِ ِ  َ    ِ  ِ ْ َ َ     را ر بإ و ، س طا علا  تی م ش ت و ،ِ َ  َ َ    ِ  َ ِّ  َ   ِ   َ ْ   ة زا ن جلا  عا ب تا و ، ضیر م لا
( . ھ ی ل ع  قفتم . م لا سلا  ءا ش فإ و ،ي عا دلا  ة با جإَ   ِ  ُ ْ َ    و ، مو ل ظ ملا   َ  َ ِ    َّ  ِ    َ  ْ َ  ِ    َّ َ ِ      ٌ  َ َ ْ ِ   1 )<span 

class="footnote-hr">&nbsp;</span><span class="footnote">(1) رظنا 
239( ثیدحلا ).</span> 

</div><hr/> 
<div class="center">  :ةحفصلا ¦ 1 :ءزجلا ¦ 894 :ثیدحلا
273</div></body></html> 
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After removing short vowels and punctuations, the number of word types of hadith 

narratives is ~17K. The word frequency list is presented in Table 8.3. 

Table 8.2 Some statistics about the Sunnah Arabic Corpus. 

Counts  Counts  

Tokens 170453 Word Types 17786 

Words  144106 Fully diacritised Words 102746 

Sentences 7670 Fully diacritised Words 86.08% 

Paragraphs 2075 Distinct 5-grams 90347 

Documents 372 Hadith Narratives 1896 

Ann Tokens 7602 Ann Words 4528 

Ann Sentences 406 Ann Docs (Narratives) 60 

 

Table 8.3 The frequency list of Sunnah Arabic Corpus. 

Word Count Word Count Word Count Word Count 

 160  تلق 251  اذھ 528  ىلإ 7883  الله

 157  سنأ 243  ىلاعت 528  ای 3476  ھیلع

 157  اھب 243  موی 523  ناك 3182  لاق

 145  و 237  يأ 516  ھل 2528  ىلص

 142  اذإف 218  رمع 450  لاو 2470  ملسو

 141  ھنم 213  ھیف 447  ىتح 2068  نم

 139  نیب 212  يذلا 412  نإ 1990  لوسر

 138  امو 210  حیحص 405  وأ 1856  يضر

 137  رانلا 206  يل 373  اذإ 1419  ھنع

 134  ةشئاع 206  مل 347  وبأ 1417  يف

 132  ھنأ 206  يذمرتلا 339  لاقو 1406  نعو

 130  املف 205  تلاق 337  نبا 1173  نأ

 130  ءيش 202  لجر 336  ةریرھ 1151  هاور

 128  اللهو 200  نإف 331  امھنع 876  ام

 127  ينإ 195  وھو 319  ثیدح 867  لا

 124  عم 194  وھ 303  لوقی 833  لاقف

 124  تلقف 192  اھنع 297  نسح 829  نب

 123  لجرلا 192  ةنجلا 282  دبع 825  نع

 122  ةلاصلا 188  دق 275  ةیاور 808  ىلع

 122  لھأ 185  ھنعو 274  يفو 804  يبأ

 121  دحأ 177  لك 269  يراخبلا 747  قفتم
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 120  مكدحأ 174  مھللا 266  ھب 650  يبنلا

 118  يلع 174  نإو 266  كلذ 615  ملسم

 118  دنع 169  نمو 258  سانلا 564  مث

ائیش 165  تعمس 255  دواد 530  لاإ  117 

 

Figure 8.2 A sample of one annotated narrative in CoNLL-U format. 

 

For each unit, we keep a record of its numbering, chapter and page in the 

original printed book, and automatically split its text into sentences with tags to 

describe the purpose of that sentence using a simple rule-based segmenter. 

Hadith units were POS tagged and annotated semi-automatically using the 

Wasim annotation tool, and Quranic units are matched with their QAC annotation. 

The format for storing annotation is CoNLL-U format v2.0, which is used by the 

Universal Dependencies project (Nivre et al., 2017). See Figure 8.2 for an example 

of an annotated sentence.  

8.5 Potential Uses 

Potential uses for the corpus are as follows: 

- It will help Arabic learners by understanding the interaction of sentence 

components since it follows the traditional Arabic grammar, ʾiʿrāb ( بارعإ ).  

- It will help linguistic researchers interested in Hadith to study the stylistic 

and vocabulary and other linguistic studies.  

- It will help researchers in translation studies to compare different translations 

of the same Hadith. 

# newdoc chapter_id=4 hadith=189 

# newpar 

# sent_id=1 

# text = ملسو ھیلع الله ىلص -ِ   ِ ُ  َ  َ َ  ُ ْ َّ َ    َ  َ     ُ  َ  ُ  َ  ِ َ              الله  لو س ر  ع م  ت ی ل ص :  لا ق , ام ھن ع  الله  ي ض ر رمع نبا نع  

َْ   ن ع 1 ن ع    َ ±from;about ADP P _ 

ِ ْ ِ  ن ب ا 2 ن ب ٱ   ِ ْ ±son  NOUN N Case=Gen|Definite=Ind|Gender=Masc 

َ َُ   ر م ع 3 ر م ع    َُ ±Omar;Umar PROPN PN Case=Nom|Gender=Masc|Number=Sing 

َ ِ َ  ي ض ر 4 َ ِ َّ  ى ض ر   VERB V Aspect=Perf|Number=Sing|Person=3|Voice=Act 

ُ  الله 5 َّ   ‘ٱ    PROPN PN Case=Nom|Definite=Def |Number=Sing 

م ھن ع 6-7 اُ  َ    _ _ _ _ _  

َْ   ن ع 6 ن ع    َ ±from;about ADP P _ 

ام ھ 7  ُ   _  PRON PRON Case=Gen |Number=Dual|Person=2 

8 , ,  PUNCT PUNC _ 

َ    لاق 9 َ  َ  لا ق  ±say  VERB V Aspect=Perf|Gender=Masc|Mood=Imp 

10 : :  PUNCT PUNC _ 
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- For researchers of Arabic Language Processing, it will help in improving 

machine translation and classical Arabic understanding using morphological 

and syntactical annotations.  

Moreover, Mohamed (2012) confirms “the need for building religious Arabic 

linguistic resources” by showing that a POS tagger trained using a small corpus of 

classical Arabic outperforms another one trained on the Penn Arabic treebank which 

is 21 times larger.  

8.6 Corpus Website 

The corpus website aims to offer: 

- Part-of-speech concordance search results organised by lemma or surface 

form. 

- A morpheme-based part-of-speech tagged corpus with its morphological 

features. 

- I‘rāb of a sample of hadiths in a novel visualised way12. 

- Morphological and lemma-based search for the corpus. 

- A parallel text of English-Arabic aligned on the Hadith level. 

- A parallel text of Arabic-Arabic commentaries aligned on the hadith level. 

8.7 Accessibility and Availability 

The Sunnah Arabic Corpus is freely available under the Creative Commons 

Attribution-ShareAlike 4.0 International License. This permissive licensee allows 

commercial uses and allows adaptations of the work to be shared as long as others 

share alike. The corpus will be also available online13 which allows easy to use 

corpus functionalities. 

8.8 Annotation Setup 

The annotation of the SAC has been done using the Wasim toolkit (see 

Chapter 9). The toolkit was configured to use the MADAMIRA toolkit in the 

backend as a lexicon resource. To recover from the mismatch between 

MADAMIRA and the QAC tagsets, we mapped each tag in the MADAMIRA tagset 

                                                
12 Left for future work. 

13 http://corpus.al-osaimy.com 
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into a set of tags in the QAC. These mappings were initially from work carried in 

6.4.2, 6.4.3, and the parallel annotated corpus. Solutions with tags in the 

MADAMIRA tagset that map to n tags in the QAC are copied n times and displayed 

in the selection panel (morphological analyser solution picker pop up).  

Besides, if a word was annotated previously (either in the Quranic Arabic 

Corpus or annotated parts of narratives), its previous possible annotations will be 

displayed at the top. We build an offline lexicon of annotated parts of narratives in 

addition to the QAC corpus. This practice increased the consistency and reliability 

of the annotation. The context of this annotation is shown next to the analysis to help 

the annotator understand why it was annotated in such a way. Sometimes, errors in 

previous documents are spotted using this helper tool. 

Documents were chosen randomly from a particular set of the Riyadh 

Asslaheen book: the intersection set of documents that are also in the Nawawiah 

Forty Hadiths book (Nawawiah) (An-Nawawi, 1976). Nawawiah has been wholly 

annotated in the traditional Arabic grammar (Ia`rab) by two works (Yosef, 2003; 

AlOmari, 2005). These set of documents are reserved for validation of the 

morphological annotation.  

The annotation was done semi-automatically. Models were built and used for 

initial annotation, and the annotator performed corrections. Models used are built on 

a cumulative basis. The first model was trained on the only QAC corpus. Next, 

models were trained with each 1000 additional annotated words in the SAC in 

addition to the QAC. Models show good improvements as the training dataset 

increases. 

Models are trained using the UDPipe toolkit. The tokeniser component is 

trained with 100 epochs with a batch size of 50 per iteration (with a dropout of 0.1) 

and a learning rate of 0.005. Character embeddings are 24 dimensions. For the 

tagger component, we train two models separately: one for lemma and one for POS 

tag and morphological features. 

To help the annotator find the proper POS tag of closed set words (words 

that have not been tagged as nominals/verbs), Wasim shows possible annotation of 

these words derived from the QAC corpus. It is mostly useful for homographs, 

where some can have up to seven possible tags. For example, the clitic 'w' in the 

QAC tagset can be CONJ, REM, CIRC, SUP, PRON, COM, or P. In each case, the 
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annotator is given a set of examples and the possibility of that tag (without taking 

the context in consideration). 

8.9 Orthographical Annotation: Diacritisation 

“Borrowing” diacritisations from similar contexts have raised the percentage 

of diacritised characters of the corpus, which in return reduced the word ambiguity. 

This section shows the diacritisation ambiguity level on the case of the Sunnah 

Arabic Corpus, brief results of the experimental study of automatic diacritisation 

previously proposed in 5.6, and the guidelines for standard diacritisation of Arabic. 

8.9.1 Ambiguity in Sunnah Arabic Corpus 

In this section, we demonstrate the ambiguity level by expressing the number 

of possible diacritisation within the language (expressed by morphological 

analysers). Using the SAWAREF toolkit, we ran four morphological analysers, 

namely Elixir Functional Morphology (EX) (Smrz, 2007), ALMORGEANA 

(included in MADA toolkit) (AL) (Habash, Rambow and Roth, 2009), AraMorph 

(BP) (Buckwalter, 2002a), and AlKhalil (KH) (Boudchiche et al., 2016), on the 

lexicon of SAC (17.7K distinct words). The average number of possible diacritised 

forms is shown in Table 8.4. It shows the maximum, mean, and median of the 

number of possible diacritisations per morphological analyser. The coverage column 

refers to the average percentage of diacritised letters. 

Table 8.4 Possible Diacritisation Statistics Per Morphological Analyser. 

MA Max Mean Median Coverage 

EX 124 8.46 6 67.46% 

KH 96 10.38 7 80.64% 

BP 20 2.38 2 47.67% 

AL 23 3.69 3 42.65% 

 

Differences in statistics do not necessarily imply better coverage. 

Diacritisations of one example word, as analysed by each tool, are shown in Table 

8.5. We can see that BP and AL do not recover the last diacritic (/u/, /a/, /i/), and 

therefore different moods and cases of verbs and nouns are not iterated. Some tools, 

like KH, produce diacritisations with Tanween if it is suitable (like in indefinite 

nouns). However, KH sticks to the Hamza form and does not produce other possible 
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Hamza locations. EX produces all shapes of the Hamza letter which led to the 

largest possible number of diacritisations. AL makes a similar pattern of iterating 

possible Hamza, Madda, or plain Alif shapes.  

Table 8.5 Possible diacritisations of the word ( مثآ , /|vm/, “a sin”) from four MAs. 

Tool Possible Diacritisation  

EX |vam |vama |vamu |vimN |vimK |vima 

|vimu |vimi >avamN >avamK >avama 

>avamu >avami >avima >av~ama 

>av~im >uvima >uv~ima <ivmN 

<ivmK <ivma <ivmu <ivmi 

أ  م ثآ  م ثآ  م ثآ  م ثآ  م ثآ  م ثآ  م ثآ م ثآ
أ  م ث أ  م ث أ  م ث 

 َُ  َ  ََ  َ  ٍَ  َ  ٌَ  َ  ِ ِ   ُ ِ   َ ِ   ٍ ِ   ٌ ِ   َُ    ََ    َ     م ث 

أ َ ِ َ  َِ  َ  م ث أ  م ث أ
أ  م ث 

أ  م ث أ م  ث 
 َ  َ َّ َ  مث إ  مث إ  مث إ  مث إ  مث إ  م  ث 

ّ ِ    ُِ َ   ُ
ّ ِ َ  ِ  ٌ  ِ  ٍ  ِ  َ  ِ  ُ  ِ  ِ  

KH |vama |vamu |vamo |vuma |vumu |vumo 

|vimN |vimK |vima |vimu |vimi |vimo 

ثآ  م ثآ  م ثآ  م ثآ
ثآ  م 

ْ ِ   ِ ِ   ُ ِ   َ ِ   ٍ ِ   ٌ ِ   ُْ    ُُ    َُ    َْ    َُ    ََ    م ثآ  م ثآ  م ثآ  م ثآ  م ثآ  م ثآ  م ثآ  م   

BP |vim م ثآ   ِ  

AL |vim >avam >avima >av~ama <ivom أ  م ث أ م ث أ م ثآ
ث إ  م ث 

م    ِ   َ  َ  َ ِ َ  َ 
َّ َ  ِ  ْ  

ALL <ivmK <ivmN <ivma <ivmi <ivmu 

<ivom >avam >avamK >avamN 

>avama >avami >avamu >avim >avima 

>uvima |vam |vama |vamo |vamu |vim 

|vimK |vimN |vima |vimi |vimo |vimu 

|vuma |vumo |vumu 

ث إ  مث إ  مث إ َ  ِ  ٌ  ِ  ٍ  ِ   مث إ  مث إ  مث إ
أ  م ث أ  م ث أ  م ث أ م ث أ م 

 َُ  َ  َِ  َ  ََ  َ  ٌَ  َ  ٍَ  َ  َ  َ  ْ  ِ  ُ  ِ  ِ  ِ   م ث أ  م ث 

أ  م ث أ م ث أ
 ِ ِ   َ ِ   ٌ ِ   ٍ ِ    ِ   َُ    َْ    ََ    َ    َ ُِ   َ ِ َ   ِ َ   م ثآ  م ثآ  م ثآ  م ثآ م ثآ  م ثآ  م ثآ  م ثآ م ثآ  م ث 

ثآ َُ    ُ ِ   ْ ِ    م ثآ  م ثآ  م ثآ
ُُ    ُْ    م ثآ  م   

Even though all these morphological analysers produce full diacritisation, we 

notice that diacritisation is not standard in multiple notions: for example, the place 

of the tanween, diacritizing the letter that precedes a long vowel or not, and 

diacritizing the Alif and Lam letter of AL article for definition (the difference 

between sunny and moony AL). 

We merged all diacritised forms from these after standardizing their 

diacritisation (see 5.6.3 for rules). One example is shown in Table 8.5 (last row). 

After removing duplicates, the average ambiguity per word is 17.42 possible 

diacritisations/word. 

8.9.2 Automatic Diacritizing 

Diacritisation reduces the degree of ambiguity of morphological annotation, 

and thus increases the accuracy of part-of-speech tagging (Dukes and Habash, 2010; 

Habash, Shahrour and Al-Khalil, 2016). Since we have multiple 
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versions/investigations of the same book, and the same narrative might be recited or 

quoted in other books as well, we merge the diacritisation by combining words that 

have similar 5-gram context. 

The SAC satisfies the five assumptions in our methodology and is a good 

candidate for our diacritisation process due to several reasons:  

1. It compiles narrations reported in other Hadith books (e.g. Albukhari) 

which make these books a good source for diacritisation. 

2. Its codex was validated and investigated by several scholars by a 

scientific palaeographical process; at least there are two digitally available 

validated versions of the same text. 

3. Its narratives have been explained in 6 written books. 

The details of this methodology and the evaluation on the case of Sunnah Arabic 

Corpus can be found in section 5.6. In short, the source text is initially about 48.66% 

diacritised, and after borrowing diacritisation, the percentage jumps to 76.41% with 

low diacritic error rate (DER=0.004), compared to 61.73% (DER=0.214) using the 

MADAMIRA toolkit, and 67.68% (DER=0.006) using the Farasa toolkit. More 

importantly, this method has reduced the word ambiguity from 4.83 diacritised 

forms/word to 1.91, which suggest that it is useful for the morphological annotation 

task. 

8.9.3 Manual Diacritisation 

In this section, we introduce the guideline section for diacritizing the Sunnah 

Arabic Corpus. As illustrated before, several diacritisation standards exist, and for 

consistency and stability, we write a short list of guidelines for annotators to follow. 

The guidelines cover diacritizing multi-word tokens (before segmentation) and 

morphemes (after segmentation). 

 

Rules: 

General 

- Each letter should have two diacritics at most. 

- In case a letter has two diacritics, one of them should be the Shaddah 

diacritic. 

- A Sokun diacritic cannot be accompanied with a Shaddah diacritic. 

- There should be no duplicate diacritics. 
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- Diacritics cannot standalone. Any diacritic must accompany a letter. 

 

Long Vowels 

1. Diacritizing a constant letter that precedes long vowels is necessary, 

including the Shaddah diacritic if the constant is a long consonant 

(geminate). 

Goal: This is to facilitate a way to find long vowels in the future. 

 

2. Diacritizing a long vowel (includes Alif, Alif Maqsorah, non-consonant 

Waw and Yaa letters) is unnecessary. Never diacritise Alif and Alif 

Maqsorah letters. 

Goal: This is to save annotators' time. 

 

3. DiacritiseWaw and Yaa letters if they are not long vowels. 

Goal: This is to draw a distinction between long vowels. 

 

4. The Sokun diacritic should be placed on the Waw letter when it marks a 

group of people (Waw Aljamaha) 

Goal: This is to differentiate it from A-Muthanna. 

 

Definite Article AL 

5. Diacritizing the Lam letter in the article AL is unnecessary. 

Goal: All Lam letters that are undiacritised are part of articles, and this saves 

time. 

 

6. Diacritisethe long consonant letter after AL with Shaddah (only if multi-

token).  

Goal: This is to distinguish between Soony and Moony articles. 

 

7. Shaddah diacritic should be removed when segmenting it from the solar AL 

article. 

Goal: This is to reduce the sparseness of the words. 

 

Tanween 
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8. The tanween diacritics should be placed on the letter it modifies (tanweened 

letter), not on the Alif or the Alif Maqsoura letters. 

Goal: This is the correct place of tanween. Incorrect placement contradicts 

with Rule 2. 

 

Shaddah 

9. The Shaddah diacritic should always be written before other diacritics.  

Goal: This is for consistency reasons. 

 

10. The Shaddah diacritic should always be companioned with other diacritics 

except with (Rule 1, Rule 11). 

Goal: This is to ensure no missing diacritisation. 

 

11. The Shaddah diacritic should be placed after the solar AL article (Rule 5). 

Goal: This is because it is long consonant (geminate).  

 

12. The Shaddah diacritic should be removed when segmenting it from the solar 

AL article. 

Goal: This is to reduce the sparseness of the words. 

 

13. The Shaddah should be segmented into its two origin diacritics (a Sokun and 

a diacritic) if it is formed because of inflexion.  

Goal: This is to reduce the sparseness of the words. 

 

Maddah 

14. Maddah can only be with Alif. 

Goal: Alif with Maddah is considered a different letter (in the Unicode 

representation). However, it is actually the result of two letters merged with a 

diacritic. It should not be misspelt as a normal Alif. 

 

15. Maddah should be segmented into its two origin diacritics (a Hamazah with 

Fatha and a long vowel Alif) if it is formed because of inflexion. 

Goal: This is to reduce the sparseness of the words. 
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Diacritic of Declined/Conjugated nouns/verbs 

16. Diacritizing of the “last” diacritic (the case and mood marks) of a declined 

noun or a conjugated verb is optional but is strongly encouraged.  

Goal: This is to save the annotator time and to reduce the sparseness of the 

words. The correct case/mood mark is not easily recovered though. We plan 

later to extend the tagging by adding case/mood mark to morphological 

features. 

 

17. Diacritise invariable nouns or verbs. 

Goal: This is to reduce the sparseness of the words. 

 

Hamzah Wasel 

18. Do not diacritise the Alif if it is a Hamza Wasel. 

Goal: This is to mark Hamzah Wasel as it affects pronunciation. It is a long 

vowel alif but sometimes is dropped to avoid the double unvoweled letters. 

 

19. The diacritisation of the last letter of a word should not differ according to 

the subsequent word (the meeting of two vowels).  

Goal: This is to reduce the sparseness of the words. 

 

Hamzah 

20. The lower Hamzah on the Alif can only occur at the beginning of a word.  

Goal: This is for consistency reasons. 

 

21. Do not diacritise lower Hamzah. 

Goal: This is to save the annotator’s time as it is obvious. 

 

8.10  Morphological Annotation  

In this section, we provide the official guidelines used for the annotation of 

the Sunnah Arabic Corpus. These guidelines are meant for the consistency and 

stability of the annotation of the corpus and are meant to be used for human 

annotators. Since the annotation is done in a semi-automatic process, we tried to 

adapt the automatic part of the process to follow these guidelines. However, 
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automatic processing is prone to errors and do not necessarily comply with our 

guidelines. Annotators should always correct these errors.  

The morphosyntactic annotation aims to build a dependency treebank for 

classical Arabic eventually. In a dependency treebank, each node/token is tagged 

with one tag that represents a dependency relationship between a governor and a 

dependent. The syntax annotation is beyond the scope of this thesis; however, the 

annotation guidelines are designed to allow continuing the annotation process with 

syntactic annotation in future. 

In segmentation, tokens are systematically segmented so that the annotation 

is done to syntactic words (not orthographic words), which means that we want to 

split off clitics (not affix) such as the w+/CONJ from nouns. In contrast, we 

generally do not split off Y+ from imperfect verbs, as this affix does not contribute 

to the traditional Arabic grammar ( بارعلإا نم اھل لحم لا ), i.e. is not dependent (not a 

complement or modifier to the head). 

In other morphological features, we select a subset of features from the 

recommended morphological and lexical feature set from (Marton, Habash and 

Rambow, 2013), which explored the contribution of possible morphological sets to 

parser’s accuracy in the context of Modern Standard Arabic.  

The guidelines here is a collection of the best practices of the annotation of 

the Quranic Arabic Corpus and the Universal Dependency version. 2. POS tagset is 

an extended version of the QAC, and the morphological and lexical features comply 

with the Universal Dependency guidelines. In all of these guidelines, we do not 

include the guidelines of the syntax annotation due to irrelevance. 

8.10.1 Segmentation 

In addition to dividing the text into a group of words separated by spaces and 

punctuation (i.e. tokenisation), SAC divides the words into their morphological 

segments (i.e. segmentation), if applicable. 

Although we rely on morphological analysers for the segmentation of the 

corpus text, they do sometimes fail to identify the correct segmentation, because the 

word is homogeneous. Non-diacritised (i.e. underspecified) texts have more 

orthographical homogeneity than the diacritised texts. 

We can segment a word into prefixes, the stem of the word and suffixes. 

Prefixes and suffixes are bound morphemes, while the stem is a free morpheme. 
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Usually, an inflected word consists of one free morpheme and one or more bound 

morphemes. However, some combinations of a prefix and suffixes can form a valid 

word like (bi+hi, PREP+PRON, with+him). 

Unlike the QAC, we decided not to mark segments as either a bound or free 

morpheme nor as a stem or affix. We followed the CoNLL-U guidelines published 

by the Universal Dependency project. In the CoNLL-U format, a list of morphemes 

is listed with no requirement of labelling a morpheme as either an affix, stem, bound 

or free.  

The primary reason is to save annotators time. Even though this information 

might be helpful (e.g. in morphological alignment, see Section 5.4.5), it can be 

recovered for most of the morphemes with a little manual work for some ambiguous 

morphemes. The second reason is the lack of a standard definition of stems which 

adds more confusion, as illustrated in our comparative evaluation of taggers in 

Chapter 4. For example, stems of words that consist of two bound morphemes are 

arbitrarily chosen. We do not have the resources to check its contribution to the 

parser's quality, and we leave it for future work. 

In general, there are five proclitics and one enclitic that should be detached 

(see Table 8.6).  The content of this table is originally automatically generated by 

analysing the Quranic Arabic Corpus. From the list of all inflected tokens, we 

extract the possibility of attaching these clitics to other POS tags. We utilise the 

PREFIX/STEM/SUFFIX mark used in the QAC to determine the possibility of 

attaching one affix to a free morpheme. We expect that the tokeniser to split off non-

Arabic characters of the form of the bottom four tags (13-16). 

In Table 8.6, prefixes and suffixes are necessarily bound morphemes, while 

the 16 categories are the free morphemes. Pronouns, for example, can be a free or 

bound morpheme; however, bound pronouns only inflect nouns, adjectives, verbs 

and adverbs. Determiners are always bound morphemes, and therefore the 

determiner’s row is all empty. Table 8.6 does not list all possible inflexions. Rarely, 

two particles can be inflected such as ( ا م ن إ  ِ َّ َ , <in~amaA, “no more than; only”), and 

both particles are free morphemes. The table shows all possible inflexions regardless 

of the state of the morpheme (free or bound). 

Table 8.6 The compatibility table of affixes and UPOS tags. 

    Bound Clitics 
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Bound 

morpheme 
UPOS 

XPOS 

(Examples) 

Q
uestion P

article
14 

C
onjunctions

15  

P
repositions 15 

C
om

plem
ents

16 

D
efinite article  15 

P
ronouns  15 

1 Nouns NOUN N ✓ ✓ ✓  ✓ ✓ 

2 Proper Noun PROPN PN ✓ ✓ ✓  ✓  

3 Adjectives ADJ ADJ/IMPN ✓ ✓   ✓ ✓ 

4 Verbs VERB V ✓ ✓  ✓  ✓ 

5 Adverbs ADV T/LOC ✓ ✓    ✓ 

6 Pronouns PRON PRP/DEM/REL ✓ ✓ ✓   17 

7 Particles PART 
ACC,AMD,ANS

,… 
✓ ✓ ✓    

8 Prepositions ADP P ✓ ✓     

9 Conjunctions CCONJ CONJ ✓  ✓    

10 Subconjunctions SCONJ SUB ✓ ✓ ✓    

11 Determiner DET N/A18       

12 Interjection INTJ INTJ       

13 Symbols SYM SYM       

14 Punctuations PUNCT PUNCT       

15 Numbers NUM NUM       

16 Other X X       

 

Any combination of two morphemes that do not follow this table will show a 

warning in the Wasim annotation tool (see Chapter 9). Wasim will also display an 

online subset of the guidelines that are related to the highlighted word.  

Please note that the 12th to 16th categories should always be tokenised and 

separated from other words by the tokeniser. Punctuation should be separated from 

                                                
14 The Question Particle is the token that is tagged XPOS:INTJ and UPOS:PART. It attaches to any 

free morphemes. 

15 Conjunctions and prepositions, the definite article, and pronouns are tagged as UPOS:CONJ, 

UPOS:ADP, UPOS:DET, UPOS:PRON.   

16 Complements are a subset of particles (XPOS:CAUS, XPOS:CIRC, XPOS:COM, XPOS:EMPH, 

XPOS:EQ, XPOS:FUT, XPOS:IMPV, XPOS:INTG, XPOS:REM, XPOS:RSLT) that can attach to 

verbs. 

17 Pronouns do not attach to other pronouns unless both are bound morphemes. 

18 Determiner are used in the QAC only for the definite article, which is not a free morpheme.  
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each other, for example, a double quotation and a colon. Numbers, however, should 

not be separated into its digits. The date should be marked as one token.   

Table 8.7 The possibility of attaching one UPOS tag to another. 

 UPOS 

N
O

U
N

 

P
R

O
P

N
 

A
D

J 

V
E

R
B

 

A
D

V
 

P
R

O
N

 

P
A

R
T

 

A
D

P
 

C
C

O
N

J  

SC
O

N
J 

D
E

T
 

1 NOUN      29.45 3.05 12.63 11.86  43.01 
2 PROPN       15.51 32.59 25.39  26.5 

3 ADJ      0.17   0.17  99.65 
4 VERB      68.61 14.42  16.97   

5 ADV      42.87 26.49  27.77 0.21 2.66 

6 PRON 15.36   37.47 1.22 7.45 10.97 16.86 10.67   

7 PART 3.53 1.13  17.48 1.67 24.35 33.77 2.73 14.57 0.37 0.4 

8 ADP 22.07 3.57    56.47 4.12  4.72 0.83 8.22 

9 CCONJ 16.14 2.17 0.01 24.17 2.06 27.83 17.11 3.68  0.17 6.66 

10 SCONJ     1.24  34.16 50.93 13.66   

11 DET 74.05 2.86 5.72  0.25  0.59 8.1 8.43   

8.10.2 Lemmatisation 

In addition to tagging inflectional features, we annotate the Sunnah Arabic 

Corpus with one lexical feature. Arabic is a Semitic language that inherits the 

templatic characteristic, so a word can be described by its root and pattern. Lexical 

features usually include the word lexeme (or its representative: the lemma), pattern 

(either the pattern of the word or the lemma) and the root of the word. Some 

research in the literature (Smrz, 2007; Sawalha and Atwell, 2013) include the 

number of root letters, verb root (or form), and noun finals.  

In Arabic, there is no infinitive form of verbs. We chose the represented 

word form that is most commonly used in the traditional dictionaries. While words 

are traditionally grouped by their roots, the different senses are iterated using one 

representative word (the lemma). For verbs, it is usually the perfective third-person 

masculine singular form of the verb. For nouns, it is nominative singular masculine 

(if possible) form.  

Similar to the QAC, we have tagged words with their roots19. The root of a 

word is the original consonants letters of the word before injecting it into a vocalised 

                                                
19 The root feature is set on the MISC column. It is automatically generated and not yet validated. 
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pattern. Arabic derivational morphology is mostly templatic (see Section 2.4). The 

root provides a more profound abstraction than lemma as it abstract over the 

derivational and inflectional morphology while lemma abstracts over inflectional 

morphology. 

This abstraction seems handy: Marton et al. (2013) found that the 

combination of lemma and root increased the parsing accuracy by 0.03. The gain is 

attributed to the reduction in data sparseness, and the grouping of semantically 

related words together.   

In addition to parsing, lemma and root annotation is useful in the context of 

information retrieval. It is useful for finding all occurrences of a particular word, 

especially for highly inflectional languages like Arabic, where one word can have 

hundreds of possible inflected forms. For example, the lemma kataba can be found 

in “over 400 different forms” (Kübler and Zinsmeister, 2015, p. 43). 

8.10.3 POS Tagging 

Instead of using the well-known coarse traditional three-way tagset 

(nominals, verbs, particles), we implemented a two-level tagset: coarse (UPOS) and 

fine-grained (XPOS) tagsets. Each segment is tagged with two tags from each tagset. 

We followed and extended the fine-grained tagset of the Quranic Arabic Corpus, 

coupled with the Universal Dependency Tagset. The original tagset of the Quranic 

Arabic corpus has about 45 tags: nine tags for nominals, one for verbs, 34 tags for 

particles and one for Quranic initials. The universal tagset is 17 tags (with one tag 

(AUX) never used in Arabic text). Each XPOS tag is mapped to one UPOS tag as 

shown in Table 8.8.  

Because the original tagset used in the QAC is dedicated to the Quranic text, 

which has no punctuation or numbers, we have extended the tagset by adding some 

tags encountered in the SAC. This extension has been designed to suit classical 

Arabic texts in general. Added tags are marked with a star in Table 8.8. 

We decided to support universal tagset annotation by adapting the Universal 

Dependency tagset. The project develops cross-linguistically consistent treebank 

annotation, and its tagset is used to annotate treebanks in many languages. At least 

there are over 60 supported languages with more than 100 treebanks. This 

annotation facilitates the use of other taggers and parsers. 
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Arabic grammarians have studied classical Arabic since the centuries of the 

prophet and his companions. They developed a grammar known as “I3rab”. Since 

we plan to annotate the corpus using such grammar in the future, we found that two 

tagsets follow its terminology: The SALMA tagset (Sawalha and Atwell, 2013) and 

the QAC tagset (Dukes and Habash, 2010). 

The QAC tagset has been used over the SALMA tagset for several reasons:  

- The QAC tagset is designed for the syntax annotation. 

- The QAC tagset is used and tested in the QAC. 

- The QAC corpus is larger in terms of the number of words. 

The detailed classification scheme requires that each tag be clearly defined, giving 

examples in the annotated document. This guideline should include how to identify 

difficult borderline situations so that all the examples in the group can be 

consistently marked. Tagset schemes must specify how to select a label if a word 

may have different labels in a different context (Atwell 2008). The SALMA tagset is 

described in more detail compared to the QAC. However, both tagsets suffer from 

missing guidelines for difficult borderline situations. 

The QAC annotation used an Arabic book of grammatical analysis of the 

Quran (Salih, 2007) for reference for borderline cases, i.e. the annotator is asked to 

follow the book for all the annotation. However, the book and the corpus lack 

guidelines handling for borderline cases and is only limited to the Quran. This 

makes reusing the same tagset harder for the case of SAC. 

For this purpose, we implemented a consistency checker and helper 

component in the Wasim annotation tool. The QAC tagset should be easily grasped 

for annotators with strong traditional Arabic grammar background. For the 

borderline situations, we ask the annotator to mark these situations for later 

judgment, and plan to write detailed guidelines for these situations.  

Table 8.8 Two-level part of speech tagset used in SAC. 

UD Tag 

(UPOS) 

QAC Tag 

(XPOS) 

ملاكلا مسق  Description 

NOUN N مسا  Noun 

PROPN PN ملع مسا  Proper Noun 
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UD Tag 

(UPOS) 

QAC Tag 

(XPOS) 

ملاكلا مسق  Description 

ADJ ADJ ةفص سیلو( فصو(  Adjective 

IMPN رمأ لعف مسا  Imperative verbal noun 

PRON PRP ریمض  Personal Pronoun 

DEM ةراشإ مسا  Demonstrative Pronoun 

REL لوصوم مسا  Relative Pronoun 

ADV ADV نامز فرظ*  Time Adverb* 

ADV ناكم فرظ*  Location Adverb * 

VERB V لعف  Verb 

ADP P رج فرح  Preposition 

CCONJ CONJ فطع فرح  Coordinating Conjunction 

SCONJ SUB يردصم فرح  Subordinating Conjunction 

PART ACC بصن فرح  Accusative particle 

AMD كاردتسا فرح  Amendment Particle 

ANS باوج فرح  Answer Particle 

AVR عدر فرح*  Aversion Particle 

CAUS ةیببس فرح  Causal Particle 

CERT قیقحت فرح  Certainty Particle 

CIRC لاح فرح  Circumstantial particle 

COM ةیعملا واو  Comitative particle 

COND طرش فرح  Conditional particle 
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UD Tag 

(UPOS) 

QAC Tag 

(XPOS) 

ملاكلا مسق  Description 

EQ ةیوست فرح  Equalisation particle 

EXH ضیضحت فرح  Exhortation particle 

EXL لیصفت فرح  Explanation particle 

EXP ءانثتسا ةادأ  Exceptive particle 

FUT لابقتسا فرح  Future particle 

INC ءادتبا فرح  Inceptive particle 

INT ریسفت فرح  Particle of interpretation 

INTG ماھفتسا فرح  Interrogative particle 

NEG يفن فرح  Negative particle 

PREV فاك فرح  Preventive particle 

PRO يھن فرح  Prohibition particle 

REM ةیفانئتسا فرح  Resumption particle 

RES رصح ةادأ  Restriction particle 

RET بارضا فرح  Retraction particle 

RSLT طرشلا باوج يف  عقاو فرح  Result particle 

SUP دئاز فرح  Supplemental particle 

SUR ةءاجف فرح  Surprise particle 

VOC ءادن فرح  Vocative particle 

INL ةعطقم فورح  Quranic initials 

EMPH دیكوتلا ملا  Lam emphasis 
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UD Tag 

(UPOS) 

QAC Tag 

(XPOS) 

ملاكلا مسق  Description 

IMPV رملاا ملا  Lam Imperative 

PRP لیلعتلا ملا  Lam explanation 

DET DET فیرعتلا لا  The definite article 

INTJ INTJ* ةفلاخ  Violation 

X X* ىرخأ  Other 

SYM SYM* زمر  Code 

PUNCT PUNCT* میقرت ةملاع  Punctuation mark 

NUM NUM ماقرأ  Digits 

8.10.4 Morphological Features 

Morphological features play a critical role in helping parsers to determine the 

correct parsing tree. These features distinguish lexical and grammatical properties 

that are not covered by a POS tag. The line, however, between a POS tag and a 

morphological feature is cloudy. Sometimes, morphological features are explicitly 

or implicitly encoded in a POS tag, e.g. NNS. 

Parsers use word order, POS tag and morphological features to find the 

syntactic role of one word. However, in morphologically rich languages, which are 

known to have free word language, the role of the word order is limited, and the role 

of morphological features is prominent. Morphological features help parsers in two 

ways: agreement (like noun-adjective and verb-noun agreements) and assignment 

(assign the subject label to nominative noun) (Marton, Habash and Rambow, 2010).  

The morphological features space is vast in morphologically rich languages. 

Universally, there are 48 morphological features, but most of them do not apply to 

Arabic, with an average of 5.2 possible values for each feature. In the SALMA 

tagset, a tagset designed to be a standard tagset that “adds more fine-grained details 

to the existing tagsets” (Sawalha and Atwell, 2013, p. 63), the author presented at 

least 16 morphological features with an upper limit of about 2 million possible 

values for one word. The average number of morphological values is 4.2. 
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Consequently, designers of the parsing model should aim to carefully select 

morphological features for annotation that contribute to the accuracy of the parsing. 

Optimally, a feature should be considered when it is accurately predictable and 

useful for making an attachment or labelling decision; however, the feature should 

be omitted if its added information is redundant to another feature (Marton, Habash 

and Rambow, 2013). For example, the GENDER feature might help determine the 

attachment of an ADJ in the following example: ( ةعساو ةمحر وذ مكبر  /rbkm *w rHmp 

wAsEp/ Your Lord is full of mercy all-embracing). While the CASE is very relevant, 

it might not be accurately predicted. CASE and CASE_MARKS in the SALMA 

tagset are mostly redundant. 

The selection of supported morphological features in our corpus is initially 

based on Marton, Habash and Rambow (2013). In one part, the authors explored the 

contribution of ten distinct inflectional features, namely DET, PERSON, ASPECT, 

VOICE, MOOD, GENDER, NUMBER, STATE, CASE, and RAT. They contrast 

the contribution of functional vs form-based features of GENDER and NUMBER. 

The best model contains five features: DET, PERSON, FN-NUMBER, FN-

GENDER, FN-RAT.  

Their results were presented in the context of undiacritised Modern Standard 

Arabic text. The included tagsets are not based on traditional Arabic grammar. In 

traditional Arabic grammar, four more morphological features play critical roles: 

CASE, MOOD, ASPECT, and VOICE. For example, the labelling of the subject in a 

passive sentence is different than an active sentence ( لعاف vs  لعافلا بئان ). 

Additionally, the CASE feature specifies the role of the noun phrase in the sentence. 

We expect these four features to be more accurately predictable with an input of 

fully diacritised classical text, so we add them to the list. Therefore the final set of 

features is DET, PERSON, FN-NUMBER, FN-GENDER, VOICE, ASPECT and 

CASE (see Table 8.9).  

Table 8.9 The included morphological features and their values. 

# Arabic Name English Name Possible Values 

سنجلا 1 يوحنلا   Gender Masc Fem -  

ةیبارعلإا ةلاحلا 2  Case Nom Acc Gen - 
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يوحنلا ددعلا 3  Number Sing Dual Plur - 

فیرعتلا 4  Definiteness Def Ind Cons - 

دانسلإا 5  Person 1 2 3 - 

ءانبلا 6  Voice Act Pass -  

لعفلا عون 7  Aspect Perf Impf Imp - 

We decided to use functional features instead of form-based features for 

gender and number. The broken plural form of nouns is tagged as plural even though 

it does not have one of the sound number suffixes. Similarly, the gender of nouns is 

tagged such that it satisfies grammatical agreements: e.g. adjective-noun 

agreements. Functional features seem more useful for parsers in agreement and 

assignment interactions. Even though the accuracy of predicting functional features 

is less than form-based, the contribution of functional features is more (Marton, 

Habash and Rambow, 2013).  

8.11 Meta-Annotation 

Classical corpora represent an interesting and challenging use case because 

they are the basis of empirical studies in many disciplines. They shows a wide 

variety of reuse possibilities. General annotation of classical corpora requires 

different meta-data that reflects the relationship between the original historical text 

and their interpretation (Odebrecht, 2018). Luckily, all annotations of the original 

text are in footnotes which we kept at the document level.  

Hadith corpora should as well reflect the science of Hadith principals 

(Najeeb et al., 2015). We follow an abstract level of classification at the sentence 

level. Each narration (Hadith) is composed of three components: Isnad (the chain of 

narrators), Matn (the text of the narration), and the Takhreej (the list of reporters nad 

their comments). Each hadith in the Sunnah Arabic corpus is segmented at the 

sentence level, and sentences are meta-annotated with the class of which Hadith 

component they belong to. 

The morphological annotation is not always perfect. In many cases, 

annotators can be confused by different possible annotations, and a further 

examination by another expert should be done in the future. Annotators can mark 
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these using the NOTSURE tag. Additionally, some annotations need further 

justification for other people. For example, the choice of a lemma, a case value or a 

POS tag might need a justification to remove the misinterpretation. 

This is more important when we deal with highly respected (or religious) 

texts. People tend to have different interpretations of the holy text, and these 

interpretations originates from ambiguities in orthography, morphology, syntax, or 

semantics. For example, the prophet saying: ( ءامحرلا هدابع نم الله محری امنإ   /<nmA yrHm 

Allh mn EbAdh AlrHmA'/ Allah is Compassionate only to those among His slaves 

who are compassionate [to others]) has three valid morphological analyses (Table 

8.10) (Akbari, 1986, p. 75). With the limit of one possible annotation, some meta 

information about the annotation is required, e.g. justification, other possible 

annotations. 

Table 8.10 Different valid annotations of one prophet saying. 

 Form Form One Two Three 

امنإ 1-2  <nmA    

َّ   نإ 1  <n ACC بصن  ACC بصن  ACC بصن  

ام 2  Ma PREV فاك   REL SUB  ةلوصوم    ةیردصم 

محری 3  yrHm V V V 

…      

ءامحرلا 8  AlrHmA' 
NOUN 

CASE=Acc 
NOUN CASE=Ind 

NOUN 

CASE=Ind 

Meta information is written in the same file. The CoNLL-U format allows 

miscellaneous information to be written on different levels: segment, multi-token, 

sentence or document. Segment and multi-token miscellaneous information are 

stored in the eighth column: MISC. Document- and sentence-based meta 

information are stored as prior lines with a leading hash symbol. In the MISC 

column, we store whether the analysis (via mark FROM_MA=1) is initially from a 

morphological analyser, though some edits might have been made later. We mark 

NOTSURE=TRUE segments to allow further investigation later. Annotators can put 

some notes (e.g. for justification) on different levels: document, sentence or 

elements. Wasim, by default, stores an annotator identifier and session annotation 

information such as the start, finish, breaks date and time. Also, before the start of 

the sentence, its text and its id are written as a comment to ease reading of the full 

sentence. In the last resort, the saved text also helps in finding changes of words or 

segments (e.g. missing words). 
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8.12  Conclusion 

This chapter introduced the corpus and described its collection process, 

content, and its distribution and availability. It argued that the Quranic Arabic 

corpus needs some adaptation before it can be used for training machine learning 

models. It described briefly the project’s potential uses in different fields including 

linguistics studies, natural languages processing, and translation studies. In the 

second part, it introduced the process of orthographical and morphological 

annotation with in-depth description of the process and tagsets.  

For future work, we aim to continue the process of semi-automatically 

annotating the corpus and include other books as well. It will be very helpful to 

manually align the corpus to different languages/commentaries at the sentence level. 

In addition, word-to-word translation proved to be helpful in Quran understanding, 

and we might consider automatic word alignment with other languages.  

In the following chapter, we present a new linguistic resource: Wasim, an 

annotation toolkit that was used in annotating the Sunnah Arabic corpus. 
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9  WEB-BASED ANNOTATION 

TOOL FOR INFLECTIONAL 

LANGUAGE RESOURCES 

Chapter Summary1: 

We present Wasim, a web-based tool for semi-automatic morphosyntactic 

annotation of inflectional languages resources. The tool features high flexibility in 

segmenting tokens, editing, diacritizing, and labelling tokens and segments. Text 

annotation of highly inflectional languages (including Arabic) requires key 

functionality which we could not see in a survey of existing tools. Wasim integrates 

with morphological analysers to speed up the annotation process by selecting one 

from their proposed analyses. It integrates as well with external POS taggers for 

kick-start annotation and adaptive predicting based on annotations made so far. It 

aims to speed up the annotation by completely relying on a keyboard, with no mouse 

interaction required. Wasim has been tested on four case studies and these features 

proved to be useful. The source-code is released under the MIT license2.   

                                                
1 Some parts of this chapter are based on: 

Alosaimy, A. and Atwell, E. (2018) ‘Web-based Annotation Tool for Inflectional Language 

Resources Major features’, in LREC: Proceedings of the International Conference on Language 

Resources and Evaluation. Miyazaki, Japan: European Language Resources Association (ELRA), pp. 

3933–3939. 

2 The source code and a demo are available at http://wasim.al-osaimy.com 
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9.1 Introduction 

Inflectional languages or fusional languages are a group of languages where 

they tend to inflect words to express grammatical features such as the person, 

gender, and number features. Inflexions can be constructed with an affix (prefix, 

suffix, or even infix) or as a vowel change. For example, the word cats is inflected 

with a suffix for the number feature to indicate the plural form of a noun. Words are 

often inflected by at least one free morpheme and at least one bound morpheme. 

Free morphemes can stand by itself (e.g. “cat”) while bound cannot (e.g. “-s”). 

Because of their tendency to inflect words, POS tagging text in inflectional 

languages is usually hard. A typical problem is substantial lexical data sparseness 

due to the high number of possible inflexions of a single word. To reduce sparseness 

and number of Out-of-Vocabulary (OOV) words, inflected words are often 

segmented before or in parallel with POS tagging. However, the segmentation 

process is prone to errors. Inflexion boundaries are often not marked which 

increases the number of homographs (two or more words spelt in the same form but 

with different POS tag or pronunciation (e.g. due to differences in diacritisation). 

Some orthographical changes are caused by inflexions, making it hard to recover the 

original word form. As a result, a segmentation process sometimes fails to detect 

morphemes. 

Wasim is a web-based tool for semi-automatic annotation of text for gold 

standard corpus production. It was developed for the annotation of our Sunnah 

Arabic Corpus (SAC) (see Chapter 7), a collection of classical Arabic sayings 

ascribed to the prophet Mohammad. It has also been tested in four case studies. 

The tool features high flexibility in segmenting tokens, editing, diacritizing, 

and labelling tokens and segments. It can be integrated with morphological analysers 

to ease the annotation by selecting from its proposed analyses. It aims to speed up 

the annotation by entirely relying on a keyboard, with no mouse interaction required. 

The source-code is released under the MIT license, which means it is free to use, 

copy, or modify for any purpose, including commercially. 
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9.2 Motivation 

Recent research developments in, and uses of, Arabic annotated corpora 

were the main inspiration behind this tool. These uses have allowed these corpora to 

play a growing role in some linguistic and computational research areas such as 

part-of-speech tagging, segmentation, and diacritisation. Additionally, the lack of 

freely available annotated corpus of classical Arabic increases the importance of 

creating such a resource, which may encourage researchers to conduct more studies 

in the aforementioned research areas. 

The chapter aims to develop an open-source language-agnostic annotation 

tool for textual corpora that is efficient in terms of time and accuracy.  The 

annotation of Arabic text is more tedious and time-consuming than its equivalent in 

poor morphological languages. The development of Wasim increased the efficiency 

of the annotation project of the Hadith Arabic corpus, which aims to annotate about 

80k words of classical Arabic text with morpheme-based POS tag, lemma, 

morphological features in addition to adding missing orthographic vowels of the text 

(diacritisation).  

For the project, we analysed the required set of features needed for 

annotating SAC and used these as criteria in a survey of existing tools. 

Morphosyntactic annotation of SAC (and other highly inflectional language corpora) 

requires additional specialised functionality: 

1. Segmentation of one word into a set of segments 

2. Addition of orthographical accents or diacritics 

3. Listing a set of solutions from a lexicon dictionary (internally or 

externally using a morphological analyser) 

4. Consistency validation and integrating annotation guidelines (e.g. 

homographs). 

5. Adaptive prediction based on historical tagging 

6. Efficient keyboard-based navigation and labelling 

9.3 Major features 

The annotation of text in a highly inflectional language is usually harder because:  

1. Words are highly ambiguous, which results in many homographs (i.e. more 

need of a lexicon), 

2. Words need to be segmented into a set of morphemes, and 
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3. As a result, taggers performance is usually poorer and mostly rely on a 

lexicon or a morphological analyser to improve the accuracy.  

Semi-automatic annotation should help to remove the ambiguity of words as it 

should be able to correct tagger errors. Many times, these errors are in the ranking of 

the solution set provided by the morphological analyser. Therefore, the most needed 

feature is the integration of a morphological analyser, which allows the annotator to 

re-select the proper analysis in case of incorrect automatic tagging.  

In addition, an efficient way to segment words into a set of morphemes is a 

necessity. For example in Arabic, one word in six words is inflected, and an 

inflected word (multi-word token) consists of an average of 2.06 syntactic words (or 

morphemes)3.  

9.3.1 Morphological Analyser Integration 

Wasim integrates with morphological analysers to speed up the process of 

annotation. Morphological analysers take a word as input and produce a list of 

possible analyses (which include word’s segmentation and lemma and segment’s 

POS tag and features). By providing a set of possible analyses, Wasim allows 

annotators to select one analysis. Once a solution is chosen, all its values of POS tag, 

lemma, segmentation, and morphological features will be reflected in the word 

analysis. The chosen solution can be edited though.  

In the SAC project, the number of morphological features are ten features, in 

addition to segmenting the word into its set of morphemes and marking its POS tag. 

We hypothesise that it will be more efficient to select a solution instead of doing 

them all from scratch. However, this hypothesis depends on the quality of the 

morphological analyser. Annotators have to mark all features though if the analyser 

returns no results. Once a newly-created analysis is detected, it will be saved in the 

server for possible later requests.  

Wasim provides two ways of morphological analyser integration: first, using 

an embedded supplementary tool that acts as a pure lexicon memory, it reads the 

annotated part of the corpus and index words with their annotations. Then, it allows 

HTTP requests to be made from Wasim, and it will return all possible solutions of 

the token in hand.  

                                                
3http://universaldependencies.org/treebanks/ar-comparison.html 
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Figure 9.1 The list of possible solutions from a morphological analyser. A 

solution is usually a bundle of POS tag, segmentation, lemma and 

morphological features. Selecting one solution will replace all its content to each 

proper annotation field. 

Second is using an external morphological analyser. Analyser outputs must 

be in CoNLL-U format with word id in the MISC column that maps to the original 

word index of the submitted sentence (e.g. WID=2). The reason is to allow Wasim 

to group the MA’s analyses of one word. 

A mapping between the MA’s tagset and the project tagset may be required, 

and this can be easily defined in the configuration. If the mapping results in an 

ambiguous tag in the project’s tagset, Wasim will duplicate the analysis for each 

possible tag. For example, if “NOUN” is mapped to PN and N, two analyses will be 

presented to the annotator. 

9.3.2 Consistency Reinforcement  

Consistency (a.k.a. “stability” when measuring the consistency of one 

annotator alone over time) of corpus annotation process is critical to ensure that all 

annotators in all texts follow the same procedure of annotation over time. High 

consistency means very little disagreement in the annotation, and this helps to train 

machine learning algorithms successfully. 

To increase the consistency of the segmentation and tagging of a corpus, 

Wasim followed three approaches: First, it allows the use of automatic POS tagger. 
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Second, it integrates with morphological analysers. Third, it generates a list of 

common homographs periodically. Homographs are associated with their possible 

POS tags and segmentation. Possible segmentations are only shown when the token 

in hand is a homograph. 

Usually, in annotation guidelines, there are some guides of specific words, 

usually homographs. However, in highly inflectional languages, those homographs 

are overwhelming, and such offline guideline may miss some homographs, or 

guidelines document will be lengthy. This feature serves as an online guideline for 

annotators, which is automatically built up. 

In the segmentation layer, Wasim warns the annotator when a segmentation 

of a word differs from previous segmentation of the same word. If the annotator 

insists, its new segmentation will be added. A similar process is happening for 

morphological tagging.  

The list is generated periodically from the annotated part of the corpus, and 

the possible segmentations/POS tags of homographs are kept. Each homograph will 

have a set of examples in context for each sense. Moderators can edit the list, and 

add guideline notes of tagging such cases. The list will appear in Wasim with its 

notes when selecting a word in the list. See Table 9.1 for example.  

Table 9.1 Example of ambiguous part-of-speech helper. 

Ambiguous 

Word 

POS 

tag Frequency Example 

The reason for choosing 

POS tag. 

mina P 78% 

wamaA  < unozila mino 

qabolika wabiAlo|xirapi 

When it is a preposition 

followed by a genitive 

noun. 

   

EalaY hudFY mino 

rabi~himo wa<uwla}ika 

 
REL 16% 

wamina Alna~Asi mano 

yaquwlu |mana~A 

When it means a relative 

pronoun “Al*y”. 

   

<atajoEalu fiyhaA mano 

yufosidu fiyhaA 

 …   
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9.3.3 POS Tagging Integration 

Instead of starting the annotation process of a corpus from scratch, Wasim 

integrates with UDPipe to provide a kick start in the annotation process. UDPipe 

delivers trained models for more than 60 languages that tokenise, tag, lemmatise and 

dependency parse raw text and save results in CoNLL-U formatted files. UDPipe 

can be trained on the part of the corpus that has been annotated as well. Other tools 

can be used as long as they generate CoNLL-U formatted files. For Arabic for 

example, Sawaref, Madamira, Stanford, Farasa and AMIRA tools can all be used 

(translation into CoNLL-U format can be done using Sawaref tools). 

9.4 Data Representation 

Wasim follows the Universal Dependencies v 2.0 (UD)4 (Nivre et al., 2017) 

in the same way it represents sentence segmentation, POS tagging, morphological 

features, segmentation, and lemmatisation. In the UD project, segmentation of text is 

based on a “lexicalist view of syntax”. Texts are segmented into syntactic words; 

this should not be confused with phonological or orthographical words. That means 

clitics like CONJ should be separated from VERBs, even though they appear in the 

same orthographic word (with a space boundary). However, in this chapter, syntactic 

words are called tokens and orthographic words are called words.  

UD does not have a standard for diacritisation. Wasim follows its own 

representation of diacritisation of Arabic (see Section 8.9). We enforce such 

representation by performing a series of transformation using “regex” expressions5. 

Moderators can implement a similar approach for other languages. 

9.5 Tool Description 

The Wasim tool has mainly two components: a front-end interface which 

allows interacting with annotator and provide warnings and feedbacks, and a back-

end server that manages sessions and storage of CoNLL-U files.  

The front-end web-based tool is built using the Ionic framework using the 

Typescript/Javascript programming language. The main screen for document 

annotation () contains four sections: 1) A toolbar at the top is used for warnings and 

                                                
4 http://universaldependencies.org/ 

5 A regular expression, or regex is a favourite way to define a search and replace pattern.  
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helpful shortcuts. 2) The middle column shows the words in small boxes (with its 

XPOS tag and lemma beneath it) with the current word in process highlighted in a 

different colour. Multi-word tokens show their morphemes linked by a “+” symbol. 

Instead of displaying words in a tabular format (like in CorA, SAWT), we display 

words in natural paragraph flow, allowing the annotator to examine each word's 

context easily. 3) The left column shows key-value pairs of the lemma, and 

morphological features. 4) The tab-based right column shows the synchronised 

CoNLL-U format of the current document, and some useful statistics about the 

document. Closed features are a dropdown list with an auto-complete feature.  

shows a screenshot that shows the main components of Wasim. 

The screenshot shows the annotation page for one document. The middle 

part represents one sentence where each box is a token (with its XPOS tag). The left 

side shows feature annotation. The top bar represents file-level actions including 

advanced search engine, previous annotations, save to the cloud, download to the 

drive, undo and redo actions. On the right side, CoNLL-U synchronised 

representation of the sentences is presented for the current sentence. 

CoNLL-U representation on the right side is editable at any time, as Wasim 

synchronise changes. Changes will be validated, and errors are reported in an error 

log box below it. In case of valid changes, such changes are reflected in the Wasim 

widgets. Wasim give an option to the annotator to make changes in bulk like 

copying previous annotations, though it should be rarely used.  

Three useful subviews are displayed on demand: A. a list of other alternative 

solutions retrieved from a morphological analyser. B. a tabular format of 

morphological features and possible values. C. a segmentation view that allows 

segmenting words easily. The front-end of Wasim can be seen as a CoNLL-U file 

editor: it parses the file, validates the syntax and visualises the sentences with a 

synced side by side view of CoNLL-U file.  

The back-end is a server operated using Node.js Express server, and is 

responsible for authentication and managing annotated and raw files. A connection 

with the server using WebSocket is established for the several reasons: such as 

morphological analyser requests, sessions, diacritisation requests, and temporary 

session backup. 
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Figure 9.2 The main screen for document annotation.  
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Each project is a folder in the system that contains document files, 

configuration files, a database of homographs and a file of the corpus lexicon. It 

manages the versioning of files using the popular Git version control system. Git 

system tracks all the changes that are made to files, and allow multiple operations, 

e.g. diff to show changes to a file in the colourful interface. Annotated documents 

are moved to a subfolder.  

All annotations are stored in CoNLL-U format as plain text files. Accessing 

one file from an annotator will grab a copy of that file; however, this might allow 

other annotators to work on the same file. To prevent this, Wasim implements a 

simple lock system where a file is locked while a connection is maintained with the 

server (using WebSocket). We only release the lock if the annotator accessed 

another file or the connection is closed.  

Wasim is designed to be configurable to support preferences and project 

related setup. Project setup includes its name, language, remote Git repository, 

UDPipe model, morphological analyser path and several other preferences. Projects 

must define their own fine-grained tagset (unless UD tagset is used), with their 

morphological features. Wasim allows custom key-binding for actions. The 

configuration files are saved in the project level as JSON files. 

The annotation process can be entirely manual or semi-manual. In the case of 

semi-manual, the corpus is first tagged using UDPipe models. Automatically 

generated tags can be then checked and manually edited using Wasim. In the next 

section, we will describe the supported morphosyntactic layer in more details. 

9.6 Morphosyntactic tasks 
Wasim provides an easy interface for the annotation of six tasks. While these 

tasks can be processed sequentially, we allow annotators to work on any of the tasks 

at the same time. Tasks sometimes are interrelated, e.g. if the automatic tagger 

produced the wrong POS tag, it might also produce the wrong morphological 

segmentation or lemma. Since Wasim uses morphological analysers, if the annotator 

chose one solution, it will affect multiple tasks at the same time. Therefore, we 

allow the annotator to edit previous tasks without leaving the screen. However, we 

expect the annotator to use the MA feature at the beginning of the word 

segmentation, diacritise then segment the word, mark POS tag, and finally mark 

morphological features. 
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Since Wasim allows annotation of text on many levels at the same time, the 

annotator might skip a task accidentally. Wasim provides a guide to go through tasks 

in keyboard mode. It highlights tasks sequentially to grab the annotator’s focus on 

the current task.  

However, depending on the corpus annotation goals and preferences, the 

annotator can customise the view; e.g. deactivates one/multiple tasks, or disables 

CoNLL-U view. The annotator can write post-process rules to check the validity and 

consistency of different tasks as well as constraints on different tasks.  

Wasim is designed to increase productivity for these particular annotation 

tasks while sacrificing some amount of simplicity (many shortcuts/buttons on the 

screen). While the learning curve (the rate of a person's progress in gaining 

experience) is steep, we hypothesised that Wasim features would improve the time 

required for annotating one word. 

9.6.1 Morphological segmentation 

Inflectional languages tend to inflect morphemes to express different 

grammatical features. Unlike many other annotation tools, we do not assume the text 

to be tokenised/segmented. Annotators can easily tokenise words by editing their 

forms. Word can be segmented as well by placing a pointer in the proper position 

and inserting a particular character (“+” sign by default). The two generated 

morphemes will clone the data from the original word except for its form which will 

be divided. The multi-token form will remain the same though. The original word in 

the main screen will be replaced by two morphemes linked by “+” symbol. The 

annotator can remove segmentation by simply hitting the “backspace” button in one 

morpheme, and it will merge to the previous morpheme.  

With the integration of morphological analysers, annotators should mostly 

select the proper segmentation/tagging from its provided list. Manually segmenting 

one word should be resorted to as a last choice, the case when there is no proper 

segmentation.  

Since we follow CoNLL-U representation, UD representation keeps the form 

of both the word and the token in its two-level indexing scheme. The form of one 

token can be rewritten as if it was not inflected. Free morpheme form can be altered 

because of the inflexion, and annotators can recover its original form, e.g. “John's” 
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can be recovered to either “John+has” or “John+is”. The original form (John+'s) will 

be written in the MISC column. 
1-2 John’s _ _ _ _ _ _ _ _ 

1 John  _ NOUN N _ 0 _ _ _ 

2 has  has AUX BE _ 0 _ _ ORG=’ 

Unlike other formats, the format as illustrated above keeps two forms of one 

morpheme: inflected form (e.g. John’s) and free form (e.g. has). 

9.6.2 Diacritisation 
A diacritic (sometimes called accents or short vowels) is an optional small 

glyph added to letters to change the sound of the letter. Diacritisation is the process 

of adding those glyphs. In our Sunnah project, we asked for this addition as 

diacritics reduces the ambiguity of words.  

This process is tedious as it requires to add diacritics for each letter. Since 

the number of the possible diacritisation patterns is low, we enable the use of 

morphological analysers to generate the possible diacritisation of a word. The 

annotation process is then eased by only selecting the correctly-diacritised word. 

The annotator has the ability, though, to edit the form if no solution is provided. 

Additionally, Wasim uses a diacritisation tool (Alosaimy and Atwell, 2018) 

that borrows more thorough diacritisation from  similar context (see section 5.6 for 

details). This method is different from significant diacritiser as it does not “guess” 

diacritisation, but rather “borrows” it if it exists from a similar context. Context can 

be defined in different ways: e.g. n-word gram. 

Wasim allows moderators to enforce some standard on the diacritisation. For 

example, in Arabic, it can be configured to ignore diacritisation of letters proceeded 

by a long vowel. These transformation rules can be enforced using a set of regular 

expressions (regex). These rules will only be applied to a subset of morpheme/words 

that conform to certain conditions. For example, in the guidelines of SAC, we 

require no diacritisation on the Lam letter of the definite article “Al-”. We had a rule 

that removes such diacritisation of the subset morphemes that has a POS tag: DET.    

9.6.3 POS tagging 

POS tagging in Wasim is morpheme-based. We assume that the tagset is 

assignable to any morpheme regardless of its location (e.g. prefix or base). Tags can 

be easily chosen from a list of POS tags ordered by their frequency or 
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alphabetically. The most common POS tags are shown at the top, and pressing its 

associated number will assign it to the current in hand morpheme. 

9.6.4 Morpheme-based morphological features 

Morphological features can be easily marked through a popup that offers a 

single input line for all morphological features together. This popup offers keyboard 

navigation to select the features. It also acts as a search input, so that only features 

that match the input text is visible.  

 
Figure 9.3 Features annotation popup one-line input with an auto-complete 

feature of a VERB token. 

Only the subset of morphological features that is compatible with the 

segment's POS tag is shown (see Figure 9.3). For example, “Mood” is only shown 

with VERBs. The compatibility table is configurable, and by default, we used the 

compatibility of the UPOS tag and UD morphological features. 

Once the input gets the focus of the user, it shows a drop-down list of all 

possible values. Once a value is selected (e.g. “MASC” for gender), other 

incompatible values hide accordingly. The goal is to speed up the annotation by 

selecting values in one place and asking for relevant morphological features only.  

9.6.5 Lemmatisation 

Wasim offers a simple interface for lemmatisation. If it is integrated with a 

morphological analyser, the lemma of the chosen solution will be assigned. The 

lemma, however, can be edited manually.  

9.6.6 Sentence Segmentation layer 
Wasim provides the ability to alter the text and separate one sentence into 

two. By convention, the CoNLL-U format leaves an empty line as an indicator of 
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sentence start/end. Also, words of each sentence are numbered orderly starting from 

1. CoNLL-U also allows the tagging on the sentence level by allowing comments at 

the beginning of the sentence. These are reflected in Wasim, and the ID numbers of 

words will be reordered. Sentences can have multiple tags, and a tag can be assigned 

to sentences. 

9.7 Case Studies  
We provide four case studies to show the use of four languages. In each case, 

we evaluate one major feature and the effect of that feature on the speed and 

accuracy.  

In each case, we annotate a couple of sentences (an average of 70 words) 

depending on the target language of the case. While the text size is small and might 

not clearly show the improvement, these experiments are for illustration purposes 

rather than to actually measure the difference. The annotator who has done these 

four experiments is the author of the tool; therefore, most of the effect of the 

learning curve is excluded.  

For each case, the text is divided into two halves, H1 and H2, and both 

halves are tagged twice (two rounds). In all cases and for both rounds, the annotator 

is the same person. Both halves are tagged with the feature enabled (F=True) and 

then disabled (F=False) but in a different order for each half. The steps are 

{H1F=True,H2 F=False,H1 F=False,H2 F=True }, and the first two steps are in the first round. 

In the last two steps, the annotator already knows the texts and should annotate it 

faster. However, the results between step 3 and 4 are comparable as the word counts 

are similar.  

In Arabic cases, we used the QAC tagset and asked the annotation to follow 

its annotation guidelines. UDPipe is trained as well on the Quranic Arabic Corpus 

(Dukes and Habash, 2010) (converted to CoNLL-U by the author and available 

here2). The morphological analysers used here is MADAMIRA, and its results are 

parsed and converted to CoNLL-U format using Sawaref toolkit. A manual mapping 

from MADAMIRA tagset to QAC is defined and used.  

Time is used as a metric for efficiency. The Intra-rater reliability is high in 

all cases which shows that using features does not affect the accuracy. Mismatches 

                                                
2 https://github.com/aosaimy/sawaref-data  
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between the two rounds are reviewed and corrected in a third round. The accuracy 

concerning the fraction of correctly annotated words is then used to evaluate the 

correctness of the two rounds compared with the gold standard (third round). More 

metrics are reported per case requirement. In all cases, we only evaluate the 

accuracy of segmentation and POS tagging, although all tasks are done. 

Diacritisation, lemmatisation, and other features accuracy are not included. In the 

end, we show brief statistics on our Sunnah Arabic Corpus Annotation.  

9.7.1 Modern Standard Arabic and Morphological Analyser 
In this case, the annotator used the morphological analyser to select one 

candidate analysis from a list of proposed analyses. “Uses of MA” report the case of 

annotators selecting an analysis even though such analysis was corrected later. We 

report the number of times that the annotator used the MA and the number the 

proposed analysis is edited. Clearly, the results show that using MA is helpful in 

speed and accuracy, but in most cases, it is prone to errors. Using MA improved the 

annotation accuracy and speed significantly. All the texts used in these experiments 

are appended to the thesis.  

Table 9.2 Comparison between using and not using MA in accuracy and speed. 

 Using MA Without 

 Step 1 Step 4 Step 2 Step 3 

Word count 50 51 51 50 

Morphs count 72 70 70 72 

Accuracy 96% 100% 84% 84% 

Time (secs) 1358 635 1819 1729 

Time (s/m) 18.86 9.07 25.99 24.01 

Uses of MA 39 43 - - 

Number of edits 30 31 - - 

9.7.2 Quranic Arabic and Consistency Reinforcement  
In this case, we show how the warning and helper guidelines help to improve 

the accuracy. The consistency Reinforcement feature used the whole QAC corpus to 

build the list of homographs and their segmentation and tagging. We report the 

number of homographs that has been displayed on the screen, Table 9.3. 5-8 out of 

25-24 morphemes shows that homographs in the Quranic Arabic (a case of highly 

inflectional language) is relatively frequent. Using this feature increased the 
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accuracy in step 3 compared to step 4. We expect the effect of this feature to be 

more apparent in large corpora. 

Table 9.3 The accuracy and speed when using CR feature. 

 Using Consistency Helper Without 

 Step 1 Step 4 Step 2 Step 3 

Word count 15 16 16 15 

Morphs count 25 24 24 25 

Accuracy 100% 100% 100% 93% 

Time (secs) 269 278 331 284 

Time (s/m) 10.76 11.58 13.79 11.36 

homographs 5 8 - - 

9.7.3 Sunnah Arabic and Keyboard Navigation  

In this case, the annotator does not use the keyboard for navigation. He can 

use it for typing in the correct form or segmentation. We also report the number of 

mouse clicks vs the number of uses of keyboard shortcuts. Table 9.4 shows that 

using keyboard shortcuts reduced the annotation time by about 30% (9.34 vs. 6.89 

and 8.3 vs. 18.3), even though the number of presses are higher than the number of 

clicks. 

Table 9.4 The accuracy, speed, keyboard presses and mouse clicks comparison 

with two modes. 

 Using Keyboard Using Mouse 

 Step 1 Step 4 Step 2 Step 3 

Word count 31 30 30 31 

Morphs count 38 37 37 38 

Accuracy 100% 100% 100% 100% 

Time (secs) 355 307 677 262 

Time (s/m) 9.34 8.3 18.3 6.89 

Presses/clicks 131 166 147 87 

9.7.4 English and UDPipe 
In this case, we used a trained model of Linguistic Data Consortium English 

Web Treebank LDC2012T13 to kick-start the annotation process. We compare the 

process of assigning (only) POS tags and show that Wasim is language agnostic and 

can work for left-to-right languages as well. Since the text excerpt is too small, we 

do not show the effect of using an adaptive training UDPipe model.  Table 9.5 
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shows that semi-automatic tagging advances the speed of the general annotation 

task. This is, however, highly dependent on the quality of the automatic tagger.  

Table 9.5 The effect of using a tagger (semi-automatic vs manual annotation) 

 Using Tagger Without 

 Step 1 Step 4 Step 2 Step 3 

Word count 31 30 30 31 

Accuracy 96% 100% 96% 90% 

Time (secs) 67 47 170 203 

Time (s/w) 2.16 1.57 5.67 6.55 

No. of Edits 0 0 1 3 

9.7.5 General Case: Sunnah Arabic Corpus 

Wasim is used as well for the project of morphological annotation of SAC. 

So far, words have an average of 1.3 morphemes, and we spend 10.9 secs/morpheme 

on average to annotate a morpheme with all features enabled3, i.e. 9.17 morphemes 

per minutes.  

In SAC, the speed of the annotation is rising over time due to two reasons: 

the automatic tagger become more accurate over time, the annotators are gaining 

experience. Apparently, the speed of annotation depends on several factors such as 

text, language, course vs fine-grained tagging, and annotator experience. Therefore, 

reported speed measures should be taken with caution. 

9.8 Wasim vs other annotation tools 
The comparison with other tools needs similar experimental settings in all of 

the annotation tools. However, morphological annotation is known to be time-

consuming and costly, so repeating the same experiment was not an option. 

The authors of MADARi, however, reported a similar (but not identical) 

experiment. They used their tool on annotating one dialectical corpus. The task is 

divided into two tasks: spelling corrections and morphological tagging. 

Morphological tagging involve tokenisation, POS tagging, lemmatisation and 

English glossing and the annotation rate is 277 words/hour or 4.61 words/min. This 

is not directly comparable to Wasim experiment with annotating SAC (average rate 

of 7.05 words/min) as SAC used classical Arabic (vs. dialectical), did not lemmatise 
                                                
3 Features include POS tagging, segmentation, and six morphological features. 
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nor provide English gloss of the words, and did not have a look into the corpus 

before (vs prior spelling correction step).  

9.9 Wasim Front-End Modular Design 
Wasim is implemented using version 3 of Ionic Framework4. Ionic is a 

modular design for mobile and web application. In our case, Wasim has mainly 

three types of modules: providers, components, pages. Wasim is self-packaged 

which make it easier for others to install.  shows the overview design of Wasim.  

 
Figure 9.4 The overview design of Wasim. 

Wasim has four pages: a control panel for managing all projects and is only 

authorised to the Wasim administrator (). The project page is used for managing 

project documents and properties ( and Figure 9.7). The last page is the main page 

for annotation (). Project pages can be shared with other annotators by a direct URL 

link. 

                                                
4 Ionic is an open-source free SDK for developing native and progressive web apps using familiar 

web technologies (HTML, CSS, and JavaScript). https://ionicframework.com/  
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Figure 9.5 The page for managing top-level projects. 

  

Figure 9.6 The page for managing Project’s documents.  
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Figure 9.7 Project's Settings Editor  

9.9.1 Control Panel 

In this page, an administrator with the proper authentication can control the 

projects and users. When a new project is initiated, a folder in the server is created, 

and git  repository is initiated to track all changes to the project.  

9.9.2 Project Page 
In this page, a list of all documents is shown and searchable. Project 

documents can be downloaded as a CoNLL-U formatted document. Project 

moderator (with proper authentication access) can manage the documents and 

change project's settings as well. Project settings include customising keyboard 

shortcuts, project language, access credentials, MA settings, POS tagset, 

morphological features, and the mapping from MA tagset and values to project 

settings. 
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9.9.3 Document Annotation page 
The Document annotation page has four main components: 1) morphological 

analyser selector, 2) morphological feature selector, 3) word sequence viewer, and 

4) manual CoNLL-U format editor. 

The first component is the morphological analyser selector. A text input for listing 

the morphological analyses is used which allows the annotator to search quickly 

through the list using the POS tag, morphological feature, form, number of segments 

and lemma. Once a text is entered, the list will be filtered to only those that match 

the input. 

 
Figure 9.8 illustrate the use of the component when tagging one word in Arabic. 

It shows as well the search functionality. 

This component contacts the morphological analyser by the MA list 

provider. It is used to send requests (an HTTP request) to the morphological 

analyser and handle its response. The response is a slightly modified CoNLL-U 

format of the sentence. We add the position of the word in the sentence as a value to 

the miscellaneous column. The word provider then assigns each word in the 

sentence with the list of analyses that match word's position. 
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Figure 9.8 Morphological Analyser selector component. 

The second component is the morphological feature selector. It allows the 

annotator to quickly choose the correct value of all morphological features that are 

compatible with the chosen POS tag. Similar to the last component, it filters the list 

once a text input is entered. Morphological features are ordered in columns, and 

once a value of a feature is chosen, the column disappears. 

 
Figure 9.9 Morphological feature selector component. 

The third component is the CoNLL-U viewer and editor. This component 

periodically syncs the internal representation of document to its representation in 

CoNLL-U format. It allows the annotator to double check that their edits are 

reflected in the CoNLL-U representation. It allows manual editing of the CoNLL-U 

text. Edits are parsed and validated to make sure it does not violate the formal 

format rules5 using a publicly available validator and parser6.  

                                                
5 http://universaldependencies.github.io/docs/format.html  
6 https://github.com/spyysalo/conllu.js  
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Figure 9.10 CoNLL-U viewer and editor. 

This component maintains an internal object-oriented representation of the 

document. A Document object has an array of Sentence object. A Sentence object 

has an id, comments (both parsed from the comment at the beginning of the 

sentence) and an array of Elements. An Element can be one of several types: 

Multiword, word, or a segment (part of a multiword element). A Multiword has only 

a form and range of segments ids with reference to its segments. A Word has an id 

(used later for syntactic representation), form, lemma, two levels of POS tags 

(universal and detailed), a list of key-value pairs for morphological features in 

addition to three properties for syntactic. A Segment is a Word except the form is 

modified as it will appear if not attached and a reference to its parent (a Multiword 

object) and the segment's position in the parent is saved. The original text of the 

sentence can be covered by the form of Multiword and Word elements. 

The last component is the main viewer of the annotator. A sentence is 

represented as a sequence of words. If a word is a Multiword object, its segments are 

shown separated by a plus sign. One word is active, and its list of properties (lemma, 

form, parent form (if a segment), morphological features, etc.) is shown on the side. 

Each sentence is separated from the next sentence. 

9.10  Wasim Back-End Design 
The backend part of the tool has two major components: document 

management, morphological analyser, tagger (UDPipe), result parser, and result 

mapper. 
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Wasim used the Git tool for managing documents and versioning. Git7 is a 

free and open-source system that track changes of files (or documents). In Wasim, 

we use Git for several reasons: It offers off-the-shelf file tracking and maintenance.   

Wasim clones the original repository for every user. For every save to the 

document, Wasim pushes the changes to the remote repository. 

Besides, we use Git to show the difference between two annotations using 

the git diff subcommand. This feature is handy for project moderators, as it allows a 

simple curation. The differences are highlighted, and one can be chosen as the best 

human analysis. 

 

9.11  Conclusion 
We presented Wasim, an open-source web-based tool efficiency-oriented for 

semi-automatic annotation of inflectional languages resources. It supports multiple 

tasks including segmenting tokens, diacritizing and labelling tokens and segments. It 

is integrated with UDPipe to kick-start the annotation process. It can be integrated 

with a morphological analyser to speed up the annotation process. 

For future work, we might add additional layers for syntax, co-referencing, 

and named entities. We also might as well support other formats (e.g. XML) in the 

future. Unlike deterministic (i.e. one-tag) morphological taggers, morphological 

analysers and lexicon, which produce multiple possible solutions, do not have an 

official format for encoding results. However, recent work done by More et al. 

(2018) , which encodes morphological analyses as lattices, seems appealing. We 

might consider adapting this format in future or any other standard format, if it is 

adopted by the UD community.  

                                                
7 https://git-scm.com/  
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10 CONCLUSION 

10.1 Overview 
The Classical variant of Arabic has received less attention in the field of 

Arabic NLP. Although it is considered the father of Modern Standard Arabic (MSA) 

and it has wide liturgical usage by Muslims around the world, this variant is under-

resourced and underexplored, especially classical texts beside the Quran.  

Most approaches have involved the development of new corpora, tools, and 

standards for classical Arabic. These approaches are limited in terms of resource 

size, because the creation of new resources is usually costly. Some approaches ease 

the contribution of the public and allow them to be involved in the resource 

development, but it shows that the quality of this approach is not optimal. Generally, 

the development of new resources is usually costly in terms of money and time. We 

aimed in this thesis to follow a different approach: reuse available resources in 

MSA. MSA and classical Arabic share many aspects in the language, and not 

benefiting from these resources is wasteful. 

Although there are a number of great and thorough resources in MSA, these 

resources are not optimal for classical Arabic, and need some adaptation. This thesis 

explored computational ways that adopt existing available heterogeneous resources 

in Modern Standard Arabic and combine and adapt them. This adoption tackles two 

types of adaptation: annotation-style adaptation and domain adaptation. Firstly, 

existing MSA taggers are not standard in their underlying linguistic theories, nor the 

computational implementation. They use different annotation tagsets and adversarial 

segmentation schemas. They are implemented as well in different programming 

languages, and their output format is not standard. Secondly, these resources are 

trained to be used optimally in MSA language. The two languages have different 
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distributions, and we aim at learning from the MSA distribution an accurate model 

for classical Arabic.  

The first part of this thesis explored and surveyed the literature and 

implemented a systematic way for evaluating available MSA taggers. Although the 

results should be taken cautiously, this evaluation reaffirmed other works in the 

literature: classical Arabic texts vary greatly from newswire data, i.e. MSA. The 

drop in the accuracies of these taggers varies from 10% to 20%.  

Using best-scoring taggers in the first part, we designed a systematic 

approach that combines and adapts several taggers to other domains and annotation-

styles. This systematic approach is done through several stages of format 

standardisation, tagset and segmentation conversion, and advanced techniques for 

prediction and disambiguation. Each stage has its own challenges and different 

techniques were compared and contrasted.  

Several experimental studies were conducted throughout the thesis. One 

experiment showed that cross mapping of tagsets is mostly n-to-n and tagsets cannot 

be easily contained or mapped to one very-fine-grained tagset. Another successful 

experiment utilised freely available naturally-annotated texts to reduce the 

ambiguity level by increasing the diacritisation level of words. A third experiment 

illustrated how tagsets are not compatible in a case study of tagging adjectives.  

Although the ensemble of heterogeneous taggers is shown to be challenging, 

especially when used to adapt to another domain, an ensemble of four MSA-based 

taggers that uses a relatively small corpus (~25k) for adaptation is found to be 

effective in terms of robustness and accurateness. The best ensemble method does 

not require prior alignment rules and scored an accurate POS tagging (90.2%).  

The third part introduced two contributions to the Arabic linguistic 

resources. A new data resource is publicly released, the 144K words 

morphosyntactically-annotated Sunnah Arabic corpus (SAC) where 5k of the corpus 

is annotated manually using an extended QAC tagset. In addition, an open-source 

annotation tool that aims to speed up the tedious annotation process through four 

major features is introduced and shown to be effective. 

10.2 Thesis Achievements 
At the commencement of this thesis, we aimed to answer three research questions: 
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1 Do MSA-based taggers perform well on CA texts? Can the annotation 

of CA benefit from existing MSA or unsupervised resources? 

2 Is it feasible to transfer knowledge from MSA-based taggers to tag 

classical Arabic texts through combining heterogeneous POS taggers?  

3 Does aligning and mapping different segmentation and labelling 

schemas help ensemble taggers? 

10.2.1 First Research Question 

This thesis tries to answer these three questions, through novel scientific approaches. 

For the first question: 

• A new framework that runs a comprehensive list of MSA taggers is 

introduced. The framework can install, run, and standardise the output of 

these taggers. The framework covers almost all open access and 

downloadable MSA taggers and analysers. 

• Tested on some classical Arabic sentences and words, taggers performed 

below their published accuracy. Taggers differ, however, on their 

performance on classical Arabic and were shown to make different errors, 

which motivated us to combine these resources.   

• An experimental study on mapping one tagger’s tagset to a classical Arabic 

tagset shows that mapping is mostly n-to-n, and the underlying linguistic 

theories are different,  which is illustrated on the case of tagging adjectives.  

• An experimental study shows that classical Arabic texts can greatly benefit 

from the availability of large resources of diacritised classical texts. Word 

ambiguity was reduced greatly by borrowing diacritics from similar contexts. 

MSA taggers do not fully exploit this opportunity, and some completely drop 

these diacritics.  

10.2.2 Second Research Question 
For the second question, this thesis introduced a systematic way for adapting 

heterogeneous taggers by combining and exploiting them to perform well on a new 

domain.  

There are many low-resourced languages that share many aspects with some 

high-resources languages, and developing new corpora without exploiting existing 

recourses is wasteful. However, direct usage of these resources is not practical as 
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they face the problem of heterogeneity. We illustrate this heterogeneity on classical 

Arabic texts.  

• Three robust systematic ways for reusing existing taggers to a new domain 

with heterogeneous annotation style are introduced: morpheme-aligned 

ensemble using labelling information, character-aligned ensemble using 

form information, and joint end-to-end ensemble using deep learning and 

neural networks. 

• The thesis presented the SAWAREF ensemble tagger. It is the first 

heterogenous ensemble tagger for Arabic that can be used with unseen texts 

and adapt to any arbitrary annotation style. The tagger was able to tag 90.2% 

of the words with their POS tag correctly. Although this accuracy is not 

directly comparable to other approaches due to different forms of data, 

language and annotation, it is higher than any adapted-form of participating 

taggers.  

• A new one-thousand-word corpus that is tagged and aligned by different 

heterogeneous taggers is introduced. It can be used for evaluating and 

aligning the output of four taggers. This dataset can serve as well to induce 

mapping between taggers. The dataset is shown conveniently in tabular 

format and is the first of its kind in Arabic.  

• The Quranic Arabic corpus has been adapted to serve a broader use of 

classical Arabic. We modified the orthography and morphological 

representation and introduced a newer version of the corpus to make the 

corpus more usable in the sense of machine learning. 

• Since the thesis targeted general classical Arabic, a different genre of 

classical Arabic texts other than Quranic texts is needed. We presented the 

Sunnah Arabic Corpus, an annotated linguistic resource that consists of 

144K words of the Hadith narratives (an utterance attributed to prophet 

Mohammed) extracted from Riyāḍu Aṣṣāliḥīn book (aka The Meadows of 

the Righteous), a compilation of 1896 hadith narratives written by Al-

Nawawi and compiled on 1334. Because the morphological annotation 

conforms to traditional Arabic grammar, this resource should be helpful to 

Arabic students. The book has been studied extensively in the literature and 

translated into several languages, and the corpus (and its website) presents a 
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framework that combines all these studies coupled with the morphological 

analysis of the Arabic hadith. 

10.2.3 Third Research Question 

For the third question, we present three models of combining heterogeneous 

taggers. The presented models use different intrinsic ways of handling 

heterogeneity.  

• Although some work in the literature (Hughes, Souter and Atwell, 1995; 

Alabbas and Ramsay, 2012b) suggested combining existing taggers using 

mapping rules, the mapping strategy requires a considerable linguistic 

background and is prone to errors. An experimental study of mapping one 

tagset to another performed by two students in computational linguistics 

confirmed that the inter-agreement of the mapping is very low.  

• The study also shows that mapping tagsets with different underlying theories 

is not effective. However, mapping morphological features to one standard 

representation is shown effective in ensembles. These morphological 

features are sometimes extracted from complex tagsets. 

• A new web-based tool for helping linguists map one tagset to another is 

introduced. The tool is designed to learn possible mappings by running 

taggers on a corpus. 

• Another web-based tool is created to develop our Parallel Aligned Corpus, 

which allows users to align the outputs of different taggers at the morpheme 

level. 

• We presented different ways of aligning morphemes of input taggers. 

Alignment using mapping rules extracted from aligned corpus performed the 

best: 96.75%, then manually crafted mappings 92.62%. However, errors 

propagated from this alignment hurt the ensemble tagger, especially when 

aligning multiple taggers. The best ensemble tagger using these methods is 

88.09% accurate.  

• The form-based method used a novel approach for aligning taggers using 

their form. The ensemble tagger that used this approach performed slightly 

better: 88.73%. 

• This thesis introduced an end-to-end method that does not require any prior 

alignment or mapping. It not only has the freedom from manual feature 
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engineering, the end-to-end model is superior to other models in almost all 

classes. 

10.3 Challenges And Limitations 
This section discusses the main obstacles during the research. We were able 

to handle some of these obstacles and some remain limitations of the study and need 

rethinking of different approaches. One of the main challenges of this study is the 

limited ability to download, run, and standarise different tools. Many of the tools are 

designed in research labs and not designed as an end-user product. They are usually 

not documented at all or the documentation falls short in many aspects. Some tools 

require specific environments and libraries to run, and figuring out how to install 

these tools and its input-shape expectancy is often time-consuming.  In addition, 

standardizing these valuable tools requires a thorough understanding of the tool 

outputs, and with the lack of documents that describe its tagset, it become very 

challenging. 

Although we were determined to combine not only deterministic taggers but 

also morphological analysers, we needed to focus on deterministic taggers because 

of time limits. The path for combining morphological analysers should be much 

easier now as this project has already shown how to run, map, and standardise 

several analysers. The alignment part of the combination is left for future work. 

Another challenge was the availability of classical Arabic corpus texts. The 

only corpus that is large enough and reasonably documented is the Quranic Arabic 

corpus at the time of the research. However, the Quranic text does not constitute a 

valid corpus for our final goal of annotating a collection of the Hadith narratives, 

because of different text, orthography, and distribution. In addition, in contrast to 

other annotation projects, we did not have funds for annotating the Sunnah Arabic 

Corpus, which required us to develop it in our spare time. 

Although there are many annotation projects in Arabic, the annotation tools 

used are generally not accessible or not available unfortunately. The development of 

the open-source Wasim tool is a necessity for efficient and consistent annotation of 

the Sunnah Arabic corpus. Although this development was time and effort 

consuming, we hope that it will speed up and help other annotation projects around 

the world, especially projects in inflectional languages. We aim to use it extensively 

in other projects in the future.  



  - 246 - 

 In contrast, we encounter different challenges during the research which we 

have not addressed. As mentioned before, the alignment between taggers assumes 

that they are deterministic and only one label is given per morpheme. However, this 

makes many taggers unusable as there are many taggers (i.e. morphological 

analysers) that are not deterministic and produces multiple analysis per morpheme. 

Another challenge that we faced throughout the thesis is the absence of 

benchmark dataset. Beside the known split of the Arabic Treebank (PATB), we have 

not found any other data split that we can compare our results with, especially 

classical texts. The Arabic Treebank split even requires adhering to its labelling 

schema. The Arabic Treebank is not freely available and requires a membership of 

the Linguistic Data Consortium. Because of this absence, we implemented several 

approaches and compared them against each other. We are publishing our data split 

and code and hope it will be considered as a benchmark for classical Arabic. 

10.4 Future Work 
Many different adaptations, configurations, tests, and experiments are left for 

future work, and it is mainly because of lack of time. Experiments with 

larger/different datasets, and/or different configurations are usually very time and 

computational power consuming. We look forward to continuing exploring two 

topics in particular in addition to extending the annotation of the Sunnah Arabic 

Corpus and its website development.  

The Sunnah Arabic Corpus is developed in this thesis in response to the lack 

of other annotated corpora beside the Quran. The Sunnah, being the second source 

of Islamic law and morals, is an under-resourced valuable text. We aim to continue 

the annotation of the Riyadh Asslaheen and include other books. Now that we have 

an annotation tool that is efficient in time and accuracy, we aim to access some 

funds to annotate the remaining parts of the corpus. We hope as well to syntactically 

annotate the corpus using available resources. In addition, the current website for 

SAC does not make the most of the resource for the end-users. We aim to enrich it 

with translations of the Hadith and utilise and group many scattered resources in an 

intuitive user interface.  

In addition, the current ensemble approaches do not make use of 

morphological analysers. As shown before, the best analysers do not only rely on 

statistical methods of information extraction of training corpora, but they have 
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access to external resources such as lexicon and morphological databases. Since the 

number of classical Arabic resources are growing (e.g. Hadith Science Lexicon 

(Najeeb et al., 2015) and Heritage corpus (Mohamed, 2018)) and our paradigm is to 

reuse and exploit available resources, we plan to incorporate them in our neural 

network architecture. Instead of only incorporating a single morphological analyser, 

we plan to continue our deferred work of combining multiple heterogeneous 

morphological analysers and use the ensemble instead. This work is halfway 

completed, and we have now experience of merging and aligning heterogeneous 

labels. 

One important improvement is experimenting to exploit existing 

heterogenous annotated corpora, instead of exploiting heterogenous POS taggers, 

especially since we have a number of recently introduced classical Arabic annotated 

corpora. The two problems look similar but there are some critical differences. The 

adaptation of ensemble POS taggers is dependent on the quality of the POS taggers 

on the samples of the training dataset; however, annotated corpora are verified and 

assumed to have correct annotations. Exploiting heterogeneous annotated corpora 

can be converted to our problem: an ensemble of POS taggers, simply by training a 

tagger on each corpus. However, to fully exploit the differences, the training of these 

taggers can be done simultaneously and some information can be shared for the 

benefit of all taggers. A similar approach (Qiu, Zhao and Huang, 2013) has been 

done for Chinese which has some common features with Arabic. We have 

experienced a less similar approach when combining the two problems: 

segmentation and labelling in one network. Although they have different input and 

output, they share information (by encoding the sequence and concatenating the two 

encodings) that is useful for both tasks.  

The ensemble methods are designed to be language neutral. We would like 

to experiment how our ensemble may be applied to other domains/languages. For 

example, we can make use of the AMALGAM project (Atwell et al., 2000) which 

aggregated several existing rival taggers, and build an ensemble on top of these 

taggers. The Chinese language has rival segmentation schemas and we might 

compare our ensemble to related work on exploiting corpora-based heterogeneous 

annotation style.  

The end-to-end approach using deep learning is actually a hot topic in the 

literature. It has been proven to be one of the most successful approaches in several 
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classification problems. In this thesis, the two ends of the approach start from the 

output of the input taggers, and conclude with the morphological analysis of one 

word. As a future work, we plan to extend this process from both ends. Using 

existing taggers that are tuned to some other domains is not optimal, so one possible 

adaptation is to tune these taggers within the ensemble process, thus making the end-

to-end process start from the corpora itself. Another extension can be done to the 

other end, i.e. syntactic parsing of the text. One study in the literature shows that 

MSA and classical Arabic share similar syntax which can be exploited (Zhang et al., 

2015). 

The current network architecture can be improved in several ways. The 

stacking of LSTM hidden layers has been successfully applied in POS tagging (thus 

earning the description as deep learning) (Goldberg, 2017). For example, we could 

map a word from its embedding representation. But, with a deeper network, a word 

can be represented more efficiently from its characters. Similarly, we would like to 

experiment with a deeper representation of input taggers by exploring their outputs 

in the different levels: character, morpheme, and word. Another way is to stack tasks 

where the output of one task (e.g. POS tag) can happen in the different layers, not 

only on the outermost layer. This approach has been reported in (Søgaard and 

Goldberg, 2016) that it is worthwhile to make higher-level tasks make use of lower-

level representation, especially when a hierarchy between tasks exists. This might 

also apply to our task with POS tagging and morphological feature prediction. 

Diacritics in the input text is not fully exploited in our ensemble. In almost 

all input taggers, these taggers are designed to ignore these marks (because they 

contribute to increasing word sparsity). We plan to retune these input taggers so that 

analyses are ranked based on the similarity in diacritics. In addition, the experiment 

of diacritization of classical Arabic can be enhanced by exploiting larger diacritics 

corpora, flexible fuzzy matching of words, and better representation of contexts.  
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APPENDIX A: ANNOTATED HADITH EXAMPLE BY 
SEVERAL TAGGERS 

In this appendix, we show a full sentence of one Hadith (prophet sayings) 

annotated in parallel by several morphological analysers and POS taggers. Columns 

represent 1) the abbreviation of the tool, 2) word id with morpheme id (if detected), 

3) word form, 4) lemma, 5) assigned POS-tag, and 6) analysed morphological 

features such as gender (if available).  
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A.1 The Hadith Sentence (by MAs) 
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AL 1 lA lA_1 part_neg - 

AR 1 lA - part_neg - 

BP 1 lA - NEG_PART - 

EX 1 laA laA F- - 

KH 1 laA laA Hrf nfy - 

MS 1 laA laA HARF_NAFY - 

QT 1 lAa - pc - 

            

AL 2 yu&omin |man_1 verb Gender=M| Number=S| 

Aspect=IMPF| 

Voice=ACT| Person=3 

AR 2 >Amn - verb Gender=M| Number=S| 

Aspect=IMPF| 

Voice=ACT| Person=3 

BP 2-0 yu - IV3MS Gender=M| Number=S| 

Aspect=IMPF| 

Voice=ACT| Person=3 

BP 2-1 &omin |man_1 VERB_IMPERFECT - 

EX 2 yu&minu |man VI Gender=M| Number=S| 

Mood=IND| 

Aspect=IMPF| 

Voice=ACT| Person=3 

KH 2 yu&am~in

u 

>am~ana fEl mDArE mbny 

llmElwm 

Case=NOM| 

Aspect=IMPV| 

Person=3 

MS 2-0 - - PREFIX_ YA2_ ANAIT_ 

MA3LOOM_ MAGHOOL 

- 

MS 2-1 yu&omin yu&omin FE3L_MODARE3_MAZEED Aspect=IMPF 

QT 2 UNK-WORD       

            

AL 3-0 >aHadkum >aHad_1 noun Gender=M| Number=S| 

Case=- 

AL 3-1 - - 2mp_poss Gender=M| Number=P| 

Person=2 
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AR 3-0 >Hd - noun Gender=M| Number=S 

AR 3-1 _km - genpron Gender=M| Number=P| 

Person=2 

BP 3-0 >aHad >aHad_1 NOUN - 

BP 3-1 kum - POSS_PRON_2MP Gender=M| Number=P| 

Person=2 

EX 3-0 >aHadu >aHad N- Number=S| Case=NOM 

EX 3-1 kum huwa SP Gender=M| Number=P| 

Case=ACC| Person=2 

KH 3-0 >aHadaku

mo 

>aHad Asm jAmd Gender=M| Number=S| 

Case=ACC 

KH 3-1 - - kumo: Dmyr AlmxATbyn - 

MS 3-0 >aHad~ak

umo 

>aHad~a AF3AL_TA3AGOB - 

MS 3-1 - - SUFFIX_ KUM_ 

MOKHATAB_ GAM3_ 

MOTHAKAR 

Number=P| Person=2 

QT 3 UNK-WORD       

            

AL 4 Hat~aY Hat~aY_

1 

prep - 

AR 4 HtY - prep - 

BP 4 Hat~aY - PREP - 

EX 4 Hat~aY Hat~aY P- - 

KH 4 Hat~aY Hat~aY Hrf ETf - 

MS 4 Hat~aY Hat~aY HARF_GARR - 

QT 4 HatY~a - pp - 

            

AL 5 yakuwn kAn_1 verb Gender=M| Number=S| 

Aspect=IMPF| 

Voice=ACT| Person=3 

AR 5 - kaw~an verb Gender=M| Number=S| 

Aspect=IMPF| 

Voice=PASS| Person=3 

BP 5-0 ya - IV3MS Gender=M| Number=S| 

Aspect=IMPF| 

Voice=ACT| Person=3 

BP 5-1 kuwn kAn_1 VERB_IMPERFECT - 

EX 5 yakuwna kaAn VI Gender=M| Number=S| 

Mood=SUBJ| 

Aspect=IMPF| 
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Voice=ACT| Person=3 

KH 5 yukowun~

a 

>akowaY fEl mDArE m&kd mbny 

llmElwm 

Aspect=IMPV| 

Person=3 

MS 5-0 - - PREFIX_YA2_ANAIT_MA3L

OOM 

Voice=ACT 

MS 5-1 yakuwn yakuwn FE3L_MODARE3_MOGARRAD Aspect=IMPF 

QT 5 UNK-WORD       

            
AL 6-0 hawAh hawaY_1 noun Gender=M| Number=S| 

Case=- 

AL 6-1 - - 3ms_poss Gender=M| Number=S| 

Person=3 

AR 6-0 hwY - noun Gender=M| Number=S 

AR 6-1 _h - genpron Gender=M| Number=S| 

Person=3 

BP 6-0 hawA hawaY_1 NOUN - 

BP 6-1 hu - POSS_PRON_3MS Gender=M| Number=S| 

Person=3 

EX 6-0 hawaY hawaY N- Number=S| Case=NOM 

EX 6-1 hu huwa SP Gender=M| Number=S| 

Case=ACC| Person=3 

KH 6-0 hawaAhu hawFY Asm jAmd Gender=M| Number=S| 

Case=NOM 

KH 6-1 - - hu: Dmyr AlgA}b - 

MS 6-0 hawaAhu hawaY MASDAR_MOGARRAD - 

MS 6-1 - - SUFFIX_ HA2_ MODAF_ 

GHA2EB_ MOTHAKKAR 

Gender=M| Person=3 

QT 6 UNK-WORD       

            

AL 7 tabaEAF tabaEAF

_1 

adv Gender=M| Number=S| 

Case=ACC 

AR 7 tbEAF - adv - 

BP 7-0 tabaE tabaEAF

_1 

ADV - 

BP 7-1 AF - NSUFF_MASC_SG_ACC_IND

EF 

- 

EX 7 tabaEFA tabaE N- Number=S| Case=GEN 

KH 7 tiboEFA tiboE Asm jAmd Gender=M| Number=S| 

Case=ACC 

MS 7-0 tabaEFA tabaEFA MASDAR_MOGARRAD - 
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MS 7-1 - - SUFFIX_ALEF_TANWEEN - 

QT 7 UNK-WORD       

            

            

AL 8-0 li - prep - 

AL 8-1 mA mA_1 pron_rel Gender=M| Number=S| 

Case=- 

AR 8-0 l_ - prep - 

AR 8-1 mA - rel Number=S 

BP 8-0 li - PREP - 

BP 8-1 mA limA_1 REL_PRON - 

EX 8-0 li li P- - 

EX 8-1 maA maA S- - 

KH 8-0 - - li : Hrf Aljr - 

KH 8-1 limaA maA Asm mwSwl - 

MS 8-0 - - PREFIX_LAM_GARR - 

MS 8-1 limaA maA ESM_MAWSOOL - 

QT 8 limaA - nc Case=GEN 

            

AL 9 ji}ota jA'_1 verb Gender=M| Number=S| 

Mood=IND| 

Aspect=PERF| 

Voice=ACT| Person=2 

AR 9 jA' - verb Aspect=PERF| 

Voice=ACT| Person=1 

BP 9-0 ji} jA'_1 VERB_PERFECT - 

BP 9-1 tu - PVSUFF_SUBJ:1S Number=S| 

Aspect=PERF| 

Voice=ACT| Person=1 

EX 9 ji}tu jaA' VP Gender=M| Number=S| 

Aspect=PERF| 

Voice=ACT| Person=1 

KH 9 ji}otu jaA'a fEl mAD mbny llmElwm Person=1 

MS 9-0 ji}otu jaA'a FE3L_MADI_MOGARRAD Aspect=PERF 

MS 9-1 - - SUFFIX_TA2_FA3EL_MOTA

KALLEM 

Person=1 

QT 9 UNK-WORD       

            

AL 10-

0 

bihi bi_1 prep - 

AL 10- - - 3ms_pron Gender=M| Number=S| 
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1 Person=3 

AR 10-

0 

b_ - prep - 

AR 10-

1 

_h - objcon Gender=M| Number=S| 

Person=3 

BP 10-

0 

bi bi-_1 PREP - 

BP 10-

1 

hi - PRON_3MS Gender=M| Number=S| 

Person=3 

EX 10-

0 

bi bi P- - 

EX 10-

1 

hi huwa SP Gender=M| Number=S| 

Case=ACC| Person=3 

KH 10 bihi bihi jAr wmjrwr - 

MS 10-

0 

bihi bi HARF_GARR - 

MS 10-

1 

- - SUFFIX_ HA2_ MODAF_ 

GHA2EB_ MOTHAKKAR 

Gender=M| Person=3 

QT 10 UNK-WORD       
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A.2 The Hadith Sentence (by POS taggers) 
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AM 1 lA - RP - 

FA 1 lA - PART - 

MA 1 lA lA_1 part_n

eg 

- 

MD 1 lA lA_1 part_n

eg 

- 

MR 1 lA - RP - 

ST 1 lA - RP - 

WP 1 lA - part_n

eg 

- 

MT 1 lA - Laa  

            

AM 2 y&mn - VBP Aspect=IMPF|Voice=ACT|Person=2 

FA 2 y&mn - V - 

MA 2 yu&omin |man_

1 

verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3 

MD 2 yu&omin |man_

1 

verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3 

MR 2 ymn - VBP - 

ST 2 y&mn - VBP Aspect=IMPF|Voice=ACT 

WP 2 yu'minu - verb - 

MT 2 yu&omin

u 

- V Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Mood=Ind 

            

AM 3-0 >Hd - NN - 

AM 3-1 km - PRP Person=2 

FA 3-0 >Hd - NOUN Person=1 

FA 3-1 km - PRON - 

MA 3-0 >aHadak

um 

>aHad

_1 

noun Gender=M|Number=S|Case=ACC 

MA 3-1 - - 2mp_po

ss 

Gender=M|Number=P|Person=2 

MD 3-0 >aHadku

m 

>aHad

_1 

noun Gender=M|Number=S|Case=- 

MD 3-1 - - 2mp_po

ss 

Gender=M|Number=P|Person=2 
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MR 3-0 AHd - NN - 

MR 3-1 +km - PRP$ - 

ST 3-0 AHd - NN Number=S 

ST 3-1 km - PRP$ - 

WP 3 AHaduku

m 

- noun - 

MT 3-1 >aHaduk

umo 

- Ed  

MT 3-2 - - N.Qnt Gender=M|Number=S|Case=Nom|Qnt=True 

MT 3-3 - - Poss  

      

AM 4 HtY - CJP - 

FA 4 HtY - PREP - 

MA 4 Hat~aY Hat~a

Y_1 

prep - 

MD 4 Hat~aY Hat~a

Y_1 

prep - 

MR 4 Hty - AN - 

ST 4 HtY - IN - 

WP 4 Hat~ay - noun - 

MT 4 Hata~Y - Prp  

            

AM 5 ykwn - VBP Aspect=IMPF|Voice=ACT|Person=2 

FA 5 ykwn - V - 

MA 5 yakuwn kAn_1 verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3 

MD 5 yakuwn kAn_1 verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3 

MR 5 ykwn - VBP - 

ST 5 ykwn - VBP Aspect=IMPF|Voice=ACT 

WP 5 yakwna - verb - 

MT 5 yakuwna - V Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Mood=Sub 

            

AM 6-0 hwY - NN - 

AM 6-1 h - PRP Person=2 

FA 6-0 hwA - NOUN Person=1 

FA 6-1 h - PRON - 

MA 6-0 hawAh hawaY

_1 

noun Gender=M|Number=S|Case=- 

MA 6-1 - - poss Gender=M|Number=S|Person=3 
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MD 6-0 hawAh hawaY

_1 

noun Gender=M|Number=S|Case=- 

MD 6-1 - - poss Gender=M|Number=S|Person=3 

MR 6-0 hwy - NN - 

MR 6-1 +h - PRP$ - 

ST 6-0 hwA - NN Number=S 

ST 6-1 h - PRP$ - 

WP 6 hawAhu - noun - 

MT 6-1 hawaAhu - Ed  

MT 6-

2  

-  - N  Gender=M|Number=S|Case=Nom  

MT 6-3 - - Poss Gender=M|Number=S|Person=3 

      

AM 7 tbEA - NN - 

FA 7-0 tbE - NOUN Person=1 

FA 7-1 A - CASE - 

MA 7 tabaEAF tabaE

_1 

noun Gender=M|Number=S|Case=ACC 

MD 7 tabaEAF tabaE

_1 

noun Gender=M|Number=S|Case=ACC 

MR 7 tbEA - NN - 

ST 7 tbEA - NN Number=S 

WP 7 tabaEAF - verb - 

MT 7 tabaEFA - N Gender=M|Number=S|Case=ACC|Nunation=Tru

e 

            

AM 8-0 l - IN - 

AM 8-1 mA - WP - 

FA 8-0 l+ - PREP - 

FA 8-1 mA - PART - 

MA 8-0 li - prep - 

MA 8-1 mA mA_1 pron_r

el 

Gender=M|Number=S|Case=- 

MD 8-0 li - prep - 

MD 8-1 mA mA_1 pron_r

el 

Gender=M|Number=S|Case=- 

MR 8-0 l# - IN - 

MR 8-1 mA - WP - 

ST 8-0 l - IN - 

ST 8-1 mA - WP - 

WP 8 limA - noun_p - 
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rop 

MT 8-

1  

limaA  -  Le    

MT 8-2 - - RelMaa Number=S 

      

AM 9 j}t - VBD Aspect=PERF|Voice=ACT|Person=2 

FA 9-0 j} - V - 

FA 9-1 t - PRON - 

MA 9 ji}otu jA'_1 verb Gender=M|Number=S|Mood=IND|Aspect=PERF|

Voice=ACT|Person=1 

MD 9 ji}otu jA'_1 verb Gender=M|Number=S|Mood=IND|Aspect=PERF|

Voice=ACT|Person=1 

MR 9 jt - VBD - 

ST 9 j}t - VBD Aspect=PERF|Voice=ACT 

WP 9 ji'tu - noun_p

rop 

- 

MT 9-1 ji}out - V Number=S|Aspect=PERF|Voice=ACT 

MT 9-2 - - Subj Number=S|Person=1 

            

AM 10-

0 

b - IN - 

AM 10-

1* 

h - PRP Person=2 

FA 10-

0 

b+ - PREP - 

FA 10-

1 

h - PRON - 

MA 10-

0 

bihi bi_1 prep - 

MA 10-

1 

- - 3ms_pr

on 

Gender=M|Number=S|Person=3 

MD 10-

0 

bihi bi_1 prep - 

MD 10-

1 

- - pron Gender=M|Number=S|Person=3 

MR 10-

0 

b# - IN - 

MR 10-

1 

+h - PRP - 

ST 10-

0 

b - IN - 
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ST 10-

1 

h - PRP - 

WP 10 bihi - noun_p

rop 

- 

MT 10-

1 

bihi - Prp  

MT 10-

2 

- - Poss Gender=M|Number=S|Person=3 
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APPENDIX B: OUTPUT FORMAT DIFFERENCES 
Figure 10.1 A sample of the output of AraMorph in two versions Java and Perl. 

In the Perl version, each solution has the vocalized word (in parenthesis), 

lemma (in square brackets), analyses of each segments where segments are 

separated by plus sign, and finally a helpful gloss in Engish. 

 
 

Figure 10.2 Alkhalil output of one analysis of the word “ji}otu” is on the first 

row. We added a new row for translating the output shown in the first row. It is 

clear that the POS tags and the type of the word are not in a good reusable 

format. 

 
 

Figure 10.3 A sample of the output of AraComLex. 
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Figure 10.4 A sample of the output of Elixir FM. Each analysis has seven 

columns (e.g. first column is an eight-slot string that represent the POS tag and 

morphological features). 

 
 

Figure 10.5 A sample of the XML output of the Qutuf System. 

 
 

 

Figure 10.6 A sample of the output of ALMORGEANA. The representation of 

the analysis is similar to MADA and MADAMIRA. 
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Figure 10.7 A sample of the output of MADA. It is identical to 

ALMORGEANA except its solutions are ranked. Starred solutions are the 

selected solution. 

 
 

Figure 10.8 A sample of the output of MADAMIRA: Like MADA output except 

for sufgloss (suffix gloss) feature. 

 
 

Figure 10.9 A sample of the output of MarMoT. 
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Figure 10.10 A sample of the output of SAPA. 

 
 

Figure 10.11 A sample of the output of the Stanford POS Tagger, AMIRA, and 

Farasa. Standford does not mark segmented morphemes (e.g for regrouping 

later). 
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APPENDIX C: SOURCE TEXT OF WASIM CASE STUDIES 

1 Modern Standard Arabic and Morphological Analyser 
Arabic excerpt: 

اشتم اتناك ة یموقلا  ة یوھلاو  ةغللا  نإف ،لآملا نع رظ نلا  ضغبو   َ                                 ْ  ، كبتشا دقف .لیدیزروأ ىلإ ةبسنلاب ن یتكب           ّ       َ ّ       َ       ّ               ّ     ّ    

ف  رقتسا نأ دعب نیرخلآا نامللأا نییفنملا با تكلا مظعم نم ریثكب رثكأ"  َّ   ُ                            ى نبت ملا ھنطو ةفاقث عم ،اكیرمأ ي  ّ              امك ،"                        ّ                        

-            ّ      ٍ       َ      ّ         ً       ّ      ٌ               َ                          نییكیرملأا با تكلا  ةمارصب  أرقو .ة یزیلجنلإل  امامت  يفیظو  كاردإ لیدیزرولأ  لصح دق ناكو .ناھوج ينربخأ

 مھنع تلااقم رشنو -نامتیو تلاوو ،نروثوھ لیناثانو ،وروث دیفید يرنھو ،نوسرمیإ ودلاو فلار لثم

ة یكیرملأا  ةرعاشلا  مجرت دقو .ة ینامللأاب          ّ          َ         َ        ّ (H.D) ق لاخ وحن ىلع ة یزیلجنلإا يف رشنی مل ھ نأ دیب . ملأا ھتغل ىلإ             ّ         ّ                     ّ           ّ . 

English translation. 

Whatever the fate, language and national identity were intertwined with 

Orziedel. After settling in America, he clashed with the culture of his adopted 

homeland "much more than most other exiled German writers," Johan told me. 

Orzidl had a very functional grasp of English. He read the books of the American 

writers - such as Ralph Waldo Emerson, Henry David Thoreau, Nathaniel 

Hawthorne, and Walt Whitman - and published articles about them in German. The 

American poet (H.D.) was translated into his mother tongue. However, it was not 

published in English creatively. 

Reference: 

http://midan.aljazeera.net/intellect/literature/2017/5/27/%D9%84%D9%85%

D8%A7%D8%B0%D8%A7-%D9%86%D8%B1%D8%B3%D9%85-

%D8%A8%D9%84%D8%AF%D8%A7-

%D8%AE%D9%8A%D8%A7%D9%84%D9%8A%D8%A7-

%D8%AD%D9%8A%D9%86%D9%85%D8%A7-

%D9%86%D9%81%D9%82%D8%AF-

%D8%A7%D9%84%D9%88%D8%B7%D9%86 

 

2 Quranic Arabic and Consistency Reinforcement  
Arabic verses from chapter 18 (Alkahf, the cave): 

ا د ش ر ا ن ر م أ  ن م ا ن ل ْ ِّ  ئ  یَ َ ً  َ ْ َ  َ ُ  َّ   ِ   َ ِ    َ َّ َ    ُ َ َ   ِ ْ َ ْ    َ ِ ُ  َْ  ِ ْ    َ َ  ْ ِ  ھ و  ة م ح ر  كن د ل ن م ا ن تآ ا ن ب ر او لا ق ف  ف ھ ك لا ى ل إ  ة ی ت ف لا ى و أ  ذ إ .10   َ َ   ِ ْ  َ ْ ِ َ   َ َ  ً  

ا د د ع  نی ن س  ف ھ ك لا ي ف  م ھ ناَ    َ َ   َ ْ َ ََ   ذآ ى ل ع ا ن ب ر ض ف .11   ِ ِ ْ  ِ    ْ َ ْ ِ  ِ ِ  َ  َ  َ ً  

ا د م أ اوُ ِ َ   َ ِ   َ ْ َ  ِ ْ َ ْ ِ ْ   ُّ َ  َ َ ْ َ ِ  ْ ُ  َْ َ  َ  َُّ   ث ب ل ا م ل ى ص ح أ  ن ی ب ز ح لا  ي أ  م ل ع ن ل  م ھا ن ث ع ب  م ث .12     َ َ  ً  

ى د ھ  م ھا ن د ز و ْ ِ  م ھِّ َ ِ   ُ  َ  ٌ  َْ  ِ  ْ ُ َّ ِ  ِّ َ ْ  ِ   َُ  َ َ  َ ْ َ َ  ُُّ  َ  ُ ْ َّ   ب ر ب او ن مآ  ة ی ت ف  م ھ ن إ   ق ح لا ب م ھ أ ب ن  ك ی ل ع  ص ق ن  ن ح ن .13  َ ِ ْ َ  ُ ْ  ُ  ً  
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 ً  ِ   َ  ا ذ إ ا نُْ   َْ  َّ   ً َ ِ  ِ ِ ُ    ِ  َ ُ ْ َّ   َ  ِ َْ ْ  َ  ِ  َ  َ َّ    ُّ َ   َ ُّ َ    ُ َ َ     ُ َ   ْ  ل ق  د ق ل ا ھ ل إ  ھ نو د ن م  و ع د ن ن ل  ض ر  لأا و  تا وا م سلا  ب ر ا ن ب ر او لا ق ف او ما ق  ذِ  ْ ِ ِ  ُُ    َ َ   َ ْ َ َ َ  إ  م ھ بو ل ق ى ل ع ا ن ط ب ر و .14

ا ط ط ش  َ َ ً  

ا ب ذ ك   - ى ل ع ى رَ ْ   ِ َّ ِ  ُ َ ْ َ  ْ ََ   ٍ ِّ َ  ٍ  َ ْ ُ ِ    ت فا  ن م م  م ل ظ أ  ن م ف  ن  ی ب  نا ط ل س ب مِ ْ َ  ھ ی لَ  َ ُ ْ  َ  َ ْ َّ ً  َ ِ   ِ ِ ُ    ِ   ُ  َ َّ    َ ُ َْ   ِ َ ُ َ  ع  نو ت أ ی  لا و ل  ة ھ لآ  ھ نو د ن م او ذ خ تا ا ن م و ق  ء لا ؤ ھ .15  َ   َ َ   َّ ِ َ ِ  ً  

English translation: 

10. [Mention] when the youths retreated to the cave and said, "Our Lord, grant 

us from Yourself mercy and prepare for us from our affair right guidance." 

11. So We cast [a cover of sleep] over their ears within the cave for a number of 

years. 

12. Then We awakened them that We might show which of the two factions was 

most precise in calculating what [extent] they had remained in time. 

13. It is We who relate to you, [O Muhammad], their story in truth. Indeed, they 

were youths who believed in their Lord, and We increased them in guidance. 

14. And We made firm their hearts when they stood up and said, "Our Lord is 

the Lord of the heavens and the earth. Never will we invoke besides Him any 

deity. We would have certainly spoken, then, an excessive transgression. 

15. These, our people, have taken besides Him deities. Why do they not bring for 

[worship of] them a clear authority? And who is more unjust than one who 

invents about Allah a lie?" 

Reference: 

http://tanzil.net/#18:10  

3 Sunnah Arabic and Keyboard Navigation  
Arabic hadith from The Book of Miscellany (Alkahf, the cave): 

 ،ھسأر لجرم ،ھسفن ھبجعت ةلح يف ىشمی لجر امنیب”:لاق ملسو ھیلع الله ىلص الله لوسر نأ ھنعو

 .))ھیلع قفتم(( “ ةمایقلا موی ىلإ ضرلأا يف لجلجتی وھف ،ھب الله فسخ ذإ ،ھتیشم يف لاتخی

English translation: 

Messenger of Allah (peace be upon him) said, “While a man was walking, 

dressed in clothes admiring himself, his hair combed, walking haughtily when Allah 

caused the earth to swallow him. Now he will continue to go down in it (as a 

punishment) until the Day of Resurrection.” 

[Muslim]. 
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4 English and UDPipe 
English excerpt: 

“Brazil's government has abolished a vast national reserve in the Amazon to 

open up the area to mining. 

The area, covering 46,000 sq km (17,800 sq miles), straddles the northern 

states of Amapa and Para, and is thought to be rich in gold, and other minerals. 

The government said nine conservation and indigenous land areas within it 

would continue to be legally protected. 

But activists have voiced concern that these areas could be badly 

compromised.” 

Source: http://www.bbc.co.uk/news/world-latin-america-4103322


