
 - i -

ENSEMBLE MORPHOSYNTACTIC

ANALYSER FOR CLASSICAL ARABIC

Abdulrahman Mohammed S. Alosaimy

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Computing

October 2018

 - ii -

PUBLICATIONS
The candidate confirms that the work submitted is his own, except where

work which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

Chapters 4, 5, 6, 8, and 9 of this thesis are based on jointly-authored

publications. The candidate is the principal author of all original contributions

presented in these papers, the co-authors acted in an advisory capacity, providing

feedback, general guidance and comments.

Chapter 4

Alosaimy, A. and Atwell, E. (2015) ‘A Review of Morphosyntactic Analysers and

Tag-Sets for Arabic Corpus Linguistics’, in Eighth International Corpus Linguistics

conference (CL2015), pp. 16–19.

Alosaimy, A. and Atwell, E. (2017) ‘Tagging Classical Arabic Text using Available

Morphological Analysers and Part of Speech Taggers’, Journal for Language

Technology and Computational Linguistics. German Society for Computational

Linguistics & Language Technology (GSCL), 32(1), pp. 1–26.

Chapter 5

Alosaimy, A. and Atwell, E. (2016) ‘Ensemble Morphosyntactic Analyser for

Classical Arabic’, in Second International Conference on Arabic Computational

Linguistics. Konya, Turkey.

Alosaimy, A. and Atwell, E. (2016) ‘SAWAREF: Multi-component Toolkit for

Arabic Morphosyntactic Tagging’, in the 9th Saudi Students Conference.

Birmingham, UK. (poster)

Alosaimy, A. and Atwell, E. (2018) ‘Diacritisation of a Highly Cited Text: A

Classical Arabic Book as a Case’, in 2nd IEEE International Workshop on Arabic

and derived Script Analysis and Recognition (ASAR 2018). London, UK.

Chapter 6

Alosaimy, A. and Atwell, E. (2017) ‘Joint Alignment of Segmentation and Labelling

for Arabic Morphosyntactic Taggers’, International Journal of Computational

Linguistics. CSC Journals.

 - iii -

Alosaimy, A. and Atwell, E. (2017) ‘Ensemble Joint Segmentation and POS Tagger

for Arabic’ in The Workshop on Computational Approaches to Morphologically

Rich Languages CAMRL. Leeds, UK. (presentation).

Chapter 8

Alosaimy, A. and Atwell, E. (2017) ‘Sunnah Arabic Corpus: Design and

Methodology’, in Proceedings of the 5th International Conference on Islamic

Applications in Computer Science and Technologies. Semarang, Indonesia. (in

press)

Chapter 9

Alosaimy, A. and Atwell, E. (2018) ‘Web-based Annotation Tool for Inflectional

Language Resources Major features’, in LREC: Proceedings of the International

Conference on Language Resources and Evaluation. Miyazaki, Japan: European

Language Resources Association (ELRA), pp. 3933–3939.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper

acknowledgement.

The right of Abdulrahman Mohammed S. Alosaimy to be identified as Author of

this work has been asserted by him in accordance with the Copyright, Designs and

Patents Act 1988.

© 2018 The University of Leeds and Abdulrahman Mohammed S. Alosaimy

 - iv -

ACKNOWLEDGEMENTS
First and foremost, all praise and thanks to Allah The Almighty for His

graces and guidance. Peace and Blessings of Allah be upon the Prophet Muhammad.

I would like to express my heartfelt gratitude and deepest thanks to my PhD

supervisor Prof. Eric Atwell for his continuous encouragement, assistance and

valuable advice throughout this work. He kept motivating and supporting me along

the way, and his advice returne me back to the right path when I lose confidence. He

encouraged me to write papers and attend meetings and conferences.

I would never have the chance to study in the UK without the financial aid of

my sponsor, Al-Imam Mohammed bin Saud University, and the government of the

Kingdom of Saudi Arabia. I hope to be able to repay part of the debt by transferring

the knowledge and promoting research in Saudi Arabia.

I would like to thank Dr Abdullah Alfaifi, Ayman Alghamdi for their support

in many linguistic aspects of my work. They voluntarily accept my request for help

in some linguistic experiments, and help in some of decisions.

I would like to thank my colleagues: Dr. Sameer Alrehaili, and Mohammed

Alqahtani for their continued support. Our meetings where we discuss our projects

will never be forgotten.

 - v -

DEDICATION
This thesis is dedicated to my family and parents who endured my years-long

absence in silence

To my father, Mohammed, who is always inspirational throughout my life.

His Arabic challenges when I was a kid helped me improve my critical thinking and

reach the level where I am now.

To my mother, Asmaa, who is like a candle that consumes itself to light the

way for others, with love and passion. Without your prayers and encouragement, I

would not have reached my goals.

To my wife, Fatimah, who has been with me through thick and thin. It is

because of you and your patience, understanding and support in the difficult times, I

kept upholding to my aims.

To my two lovely kids: Mohammed and Asmaa. The smiles on their faces

when I come back home late energizes me again and again.

 - vi -

ABSTRACT
Classical Arabic (CA) is an influential language for Muslim lives around the

world. It is the language of two sources of Islamic laws: the Quran and the Sunnah,

the collection of traditions and sayings attributed to the prophet Mohammed.

However, classical Arabic in general, and the Sunnah, in particular, is underexplored

and under-resourced in the field of computational linguistics. This study examines

the possible directions for adapting existing tools, specifically morphological

analysers, designed for modern standard Arabic (MSA) to classical Arabic.

Morphological analysers of CA are limited, as well as the data for evaluating

them. In this study, we adapt existing analysers and create a validation data-set from

the Sunnah books. Inspired by the advances in deep learning and the promising

results of ensemble methods, we developed a systematic method for transferring

morphological analysis that is capable of handling different labelling systems and

various sequence lengths.

In this study, we handpicked the best four open access MSA morphological

analysers. Data generated from these analysers are evaluated before and after

adaptation through the existing Quranic Corpus and the Sunnah Arabic Corpus. The

findings are as follows: first, it is feasible to analyse under-resourced languages

using existing comparable language resources given a small sufficient set of

annotated text. Second, analysers typically generate different errors and this could

be exploited. Third, an explicit alignment of sequences and the mapping of labels is

not necessary to achieve comparable accuracies given a sufficient size of training

dataset.

Adapting existing tools is easier than creating tools from scratch. The

resulting quality is dependent on training data size and number and quality of input

taggers. Pipeline architecture performs less well than the End-to-End neural network

architecture due to error propagation and limitation on the output format. A valuable

tool and data for annotating classical Arabic is made freely available.

 - vii -

TABLE OF CONTENTS
1 INTRODUCTION .. 1

1.1 THIS RESEARCH ... 1

1.2 MOTIVATION AND AIM .. 2

1.3 RESEARCH QUESTIONS .. 3

1.4 THESIS CONTRIBUTIONS .. 4

1.5 THE SCOPE OF THIS RESEARCH ... 4

1.6 THESIS OUTLINE .. 5

2 BACKGROUND ... 7

2.1 INTRODUCTION .. 8

2.2 PART-OF-SPEECH TAGGING AND MORPHOLOGICAL ANALYSIS 8

2.3 ARABIC LANGUAGE ... 8

2.4 ARABIC MORPHOLOGICAL ANALYSIS .. 9

2.5 COMPUTATIONAL ARABIC MORPHOLOGICAL ANALYSIS 13

2.6 COMPUTATIONAL LINGUISTIC RESOURCES .. 15

2.7 CHALLENGES OF ARABIC MORPHOLOGY ANALYSIS .. 16

2.8 ENSEMBLE TAGGING ... 18

2.9 EVALUATING TAGGERS ... 20

2.10 CONCLUSION ... 22

3 LITERATURE REVIEW .. 23

3.1 INTRODUCTION .. 24

3.2 ARABIC CORPORA ... 25

3.2.1 Corpora .. 25

3.2.2 Morphologically annotated Corpora ... 26

3.2.3 Orthographically annotated Corpora: Diacritised Corpora 32

3.3 ANNOTATION TOOLS ... 34

3.3.1 General Annotation Tools .. 35

3.3.2 Arabic Morphological Annotation Tools ... 36

3.4 MORPHOLOGICAL ANNOTATION REPRESENTATION ... 37

3.4.1 Tagsets ... 37

3.4.2 Mapping of tagsets ... 41

3.4.3 Cross Mapping of Tagsets ... 42

3.4.4 Standardizing Tagsets .. 43

3.4.5 Segmentation Schemas ... 44

 - viii -

3.4.6 Segmentation Alignment ... 45

3.4.7 Word Form Similarity ... 46

3.5 AUTOMATIC ANNOTATION ... 47

3.5.1 Taggers ... 47

3.5.2 Domain Adaptation ... 48

3.5.3 Combining Taggers ... 49

3.5.4 Exploiting Heterogenous Resources ... 50
3.5.4.1 Annotation-style Adaptation: combining heterogeneous corpora 51
3.5.4.2 Annotation-style Adaptation: Reusing Adversarial Taggers ... 52

3.5.5 Classical Arabic Tagging ... 54

3.6 CONCLUSION .. 56

4 MORPHOSYNTACTIC TAGGING OF CLASSICAL ARABIC 57

4.1 INTRODUCTION .. 58

4.2 SURVEY METHODOLOGY AND CRITERIA .. 59

4.3 SURVEY OF OPEN ACCESS MORPHOLOGICAL ANALYSERS 59

4.3.1 AraMorph (BP) ... 61

4.3.2 AlKhalil (KH) .. 62

4.3.3 AraComLex (AR) ... 62

4.3.4 ALMORGEANA (AL) .. 63

4.3.5 Elixir Functional Morphology (EX) .. 64

4.3.6 SARF from Arabic Toolkit Service (MS) ... 64

4.3.7 Qutuf (QT) ... 64

4.4 SURVEY OF OPEN ACCESS POS TAGGERS .. 65

4.4.1 MADA+TOKAN suite (MD) ... 66

4.4.2 AMIRA (AM) ... 67

4.4.3 MADAMIRA suite (MX) .. 67

4.4.4 Stanford POS tagger and Segmenter (ST) .. 67

4.4.5 MarMoT (MR) ... 68

4.4.6 Arabic Toolkit Service POS Tagger (MT) .. 68

4.4.7 Segmenter and Part-of-speech tagger for Arabic (WP) 69

4.4.8 Farasa POS tagger (FA) ... 69

4.5 DISCUSSION ... 69

4.6 TAGGING CLASSICAL TEXTS .. 73

4.6.1 Methodology ... 73

4.6.2 Data ... 74

 - ix -

4.6.3 Evaluation .. 75

4.7 CONCLUSION ... 77

5 ENSEMBLE TAGGER DESIGN FOR CLASSICAL ARABIC 79

5.1 INTRODUCTION .. 80

5.2 PROBLEM DEFINITION AND SYSTEM OVERVIEW .. 80

5.3 CHALLENGES ... 85

5.3.1 Diverse Output Format .. 85

5.3.2 Tools and Resources Availability .. 86

5.3.3 Different Data Distributions .. 86

5.3.4 Different Word Segmentation .. 86

5.3.5 Different Labelling Systems ... 87

5.3.6 Converting Complex POS Tags ... 88

5.3.7 Different Possible Configurations ... 88

5.3.8 Expectancy of Input ... 88

5.3.9 Different Transliteration Schemes ... 88

5.3.10 Different Spelling Schema ... 89

5.4 TAGGING STAGES .. 89

5.4.1 Diacritisation ... 89

5.4.2 Pre-processing ... 89

5.4.3 Component Manipulation .. 90

5.4.4 Standardizing Results and Extracting Morphological Features 90

5.4.5 Word and Morphological Alignment ... 91

5.4.6 Voting and Final Prediction .. 93

5.5 EXPERIMENTAL STUDY FOR MAPPING TWO TAGSETS 95

5.5.1 Tagsets ... 95

5.5.2 Mapping Morphological Features ... 96

5.5.3 Mapping POS tags ... 98

5.5.4 Ambiguity in Mapping Experiment .. 101

5.6 EXPERIMENTAL STUDY OF REDUCING AMBIGUITY THROUGH

DIACRITISATION .. 102

5.6.1 Methodology .. 105

5.6.2 Assumption #1: Non-Artificial Diacritics in Source Corpora 108

5.6.3 Assumption #2: Diacritics Standardisation 109

 - x -

5.6.4 Assumption #3: Word diacritisation is the same for n surrounding

words 111

5.6.5 Assumption #4: The similarity between the source and target corpora

 111

5.6.6 Assumption #5: The morphological analyser covers all diacritised

forms 112

5.6.7 Evaluation ... 112

5.7 EXPERIMENTAL STUDY: TAGGING ADJECTIVES ... 115

5.8 CONCLUSION .. 117

6 PIPELINED ENSEMBLE TAGGER ... 118

6.1 INTRODUCTION .. 119

6.2 PROBLEM DEFINITION .. 120

6.2.1 Morpheme-based Alignment ... 120

6.2.2 Form-based Alignment .. 121

6.2.3 Needleman–Wunsch Algorithm ... 123

6.3 DATA AND TOOLS .. 123

6.3.1 Taggers ... 124

6.3.2 Training and Testing Data .. 125

6.3.3 Segmentation ... 125

6.3.4 Tagset .. 126

6.3.5 Parallel-Aligned Corpus (PAC) .. 129

6.3.6 QAC Orthographic Adaptation ... 130

6.4 MORPHEME-BASED ALIGNMENTS METHODS ... 131

6.4.1 Baseline Alignment ... 131

6.4.2 Rule-based Alignment ... 132

6.4.3 Data-driven Supervised Alignment ... 132

6.4.4 Unsupervised Alignment ... 132

6.5 FORM-BASED ENSEMBLE ... 133

6.6 ALIGNMENT EVALUATION ... 134

6.7 MORPHEME-BASED ENSEMBLE EVALUATION .. 136

6.8 FORM-BASED ENSEMBLE EVALUATION ... 139

6.9 MORPHEME-BASED VS CHARACTER-BASED ALIGNMENT 140

6.10 CONCLUSION .. 143

7 END-TO-END ENSEMBLE TAGGER .. 144

 - xi -

7.1 INTRODUCTION: ... 145

7.2 SEQUENCE LABELLING: ONE-TO-ONE VS SEQUENCE-TO-SEQUENCE 146

7.3 END-TO-END EXPERIMENT SETTINGS ... 147

7.3.1 Data, Participating Tools, Tagset and Morphological Features 147

7.3.2 Network Architecture ... 147

7.3.3 System Settings ... 152

7.4 END-TO-END EXPERIMENTS .. 152

7.4.1 Word and Morpheme Embeddings .. 152

7.4.2 POS Embeddings ... 154

7.4.3 The Effect of Training Dataset size ... 157

7.4.4 Different Combinations of Individual Taggers 159

7.5 SEGMENTATION MODEL .. 161

7.6 ENSEMBLE APPROACHES COMPARISON ... 164

7.6.1 Models .. 165

7.6.2 Implementation .. 168

7.6.3 Padding Sequences .. 170

7.6.4 Evaluation .. 171

7.7 ERROR ANALYSIS .. 174

7.7.1 POS Tagging .. 175

7.7.2 Morphological Features .. 177

7.8 COMPARATIVE EVALUATION ... 178

7.9 CONCLUSION ... 180

8 SUNNAH ARABIC CORPUS ANNOTATION: DESIGN AND

METHODOLOGY ... 183

8.1 INTRODUCTION AND MOTIVATION ... 184

8.2 QURANIC ARABIC CORPUS AS A TRAINING CORPUS 184

8.2.1 Annotation Consistency ... 185

8.2.2 Text and Style Differences ... 187

8.2.3 The Quranic Orthography ... 187

8.2.4 Annotation Representation Scheme ... 188

8.2.5 Morpheme Form Adjustment ... 189

8.2.6 Form vs Function Features ... 190

8.3 SAC DESIGN .. 190

8.4 CORPUS CONTENT ... 192

 - xii -

8.5 POTENTIAL USES .. 194

8.6 CORPUS WEBSITE .. 195

8.7 ACCESSIBILITY AND AVAILABILITY ... 195

8.8 ANNOTATION SETUP .. 195

8.9 ORTHOGRAPHICAL ANNOTATION: DIACRITISATION 197

8.9.1 Ambiguity in Sunnah Arabic Corpus .. 197

8.9.2 Automatic Diacritizing .. 198

8.9.3 Manual Diacritisation ... 199

8.10 MORPHOLOGICAL ANNOTATION .. 202

8.10.1 Segmentation ... 203

8.10.2 Lemmatisation ... 206

8.10.3 POS Tagging ... 207

8.10.4 Morphological Features ... 211

8.11 META-ANNOTATION .. 213

8.12 CONCLUSION .. 215

9 WEB-BASED ANNOTATION TOOL FOR INFLECTIONAL

LANGUAGE RESOURCES .. 216

9.1 INTRODUCTION .. 217

9.2 MOTIVATION .. 218

9.3 MAJOR FEATURES .. 218

9.3.1 Morphological Analyser Integration .. 219

9.3.2 Consistency Reinforcement ... 220

9.3.3 POS Tagging Integration .. 222

9.4 DATA REPRESENTATION .. 222

9.5 TOOL DESCRIPTION .. 222

9.6 MORPHOSYNTACTIC TASKS .. 225

9.6.1 Morphological segmentation .. 226

9.6.2 Diacritisation .. 227

9.6.3 POS tagging .. 227

9.6.4 Morpheme-based morphological features 228

9.6.5 Lemmatisation ... 228

9.6.6 Sentence Segmentation layer .. 228

9.7 CASE STUDIES .. 229

9.7.1 Modern Standard Arabic and Morphological Analyser 230

 - xiii -

9.7.2 Quranic Arabic and Consistency Reinforcement 230

9.7.3 Sunnah Arabic and Keyboard Navigation 231

9.7.4 English and UDPipe .. 231

9.7.5 General Case: Sunnah Arabic Corpus .. 232

9.8 WASIM VS OTHER ANNOTATION TOOLS .. 232

9.9 WASIM FRONT-END MODULAR DESIGN .. 233

9.9.1 Control Panel ... 235

9.9.2 Project Page .. 235

9.9.3 Document Annotation page ... 236

9.10 WASIM BACK-END DESIGN ... 238

9.11 CONCLUSION ... 239

10 CONCLUSION ... 240

10.1 OVERVIEW ... 240

10.2 THESIS ACHIEVEMENTS ... 241

10.2.1 First Research Question .. 242

10.2.2 Second Research Question .. 242

10.2.3 Third Research Question ... 244

10.3 CHALLENGES AND LIMITATIONS ... 245

10.4 FUTURE WORK .. 246

APPENDIX A: ANNOTATED HADITH EXAMPLE BY SEVERAL

TAGGERS ... 272

A.1 THE HADITH SENTENCE (BY MAS) ... 273

A.2 THE HADITH SENTENCE (BY POS TAGGERS) ... 278

APPENDIX B: OUTPUT FORMAT DIFFERENCES ... 283

APPENDIX C: SOURCE TEXT OF WASIM CASE STUDIES 287

1 MODERN STANDARD ARABIC AND MORPHOLOGICAL ANALYSER 287

2 QURANIC ARABIC AND CONSISTENCY REINFORCEMENT .. 287

3 SUNNAH ARABIC AND KEYBOARD NAVIGATION .. 288

4 ENGLISH AND UDPIPE .. 289

 - xiv -

LIST OF TABLES

TABLE 3.1 SUMMARY OF CLASSICAL ARABIC CORPORA .. 31

TABLE 3.2 COMPARATIVE ANALYSIS OF OPEN ACCESS ANNOTATION TOOLS. 36

TABLE 3.3 THE ACCURACY OF MADA AND ALKHLALIL (ALRABIAH, 2014) 55

TABLE 4.1 THE LIST OF MAS AND POS TAGGERS THAT HAVE BEEN STUDIED 60

TABLE 4.2 THE LIST OF MAS AND POS TAGGERS THAT HAVE BEEN EXCLUDED. 60

TABLE 4.3 THE FEATURES OF EACH OF THE MORPHOLOGICAL ANALYSERS FOR EACH

GIVEN WORD/SEGMENT. ... 65

TABLE 4.4 THE RESULT OF POS TAGGERS, FOR EACH INPUT WORD. 70

TABLE 4.5 THE RATE OF OUT OF VOCABULARY (OOV), ACCURACY, ANALYSIS TIME,

AVERAGE NUMBER OF ANALYSES/LEMMAS OF ANALYSING 50 COMMON

CLASSICAL WORDS. .. 75

TABLE 4.6 THE ACCURACY OF POS TAGGERS OF TAGGING 50 CLASSICAL WORDS

WITHIN THREE SENTENCES PER WORD EXTRACTED FROM CLASSICAL BOOKS. 76

TABLE 5.1 ALIGNED MORPHEMES OF THE WORD دقلو WALQD TAGGED BY SEVERAL

TAGGERS .. 93

TABLE 5.2 THE FIRST PART OF MAPPING RULES OF MORPHOLOGICAL FEATURES FROM

ALL PARTICIPATING TAGGERS TO THE SALMA CONVENTION. THE TABLE IS

DIVIDED INTO FIVE PARTS: MOOD, GENDER, CASE, VOICE AND STATE COLUMNS.

ROWS IN EACH PART ARE TRIOS: THE TOOL’S LABEL, THE TOOL ACRONYM, THE

EQUIVALENT LABEL IN SALMA. ... 97

TABLE 5.3 THE SECOND PART OF MAPPING RULES OF MORPHOLOGICAL FEATURES

FROM ALL PARTICIPATING TAGGERS TO THE SALMA CONVENTION. THE TABLE IS

DIVIDED INTO THREE PARTS: ASPECT, PERSON, AND NUMBER COLUMNS. ROWS IN

EACH PART ARE TRIOS: THE TOOL’S LABEL, THE TOOL ACRONYM, THE

EQUIVALENT LABEL IN SALMA. ... 98

TABLE 5.4 DIACRITICS ... 104

TABLE 5.5 NORMALISATION OF DIACRITISATION RULES .. 110

TABLE 5.6 THE POSSIBILITY TO MERGE DIACRITISATIONS OF VARIANTS FORMS. 111

TABLE 5.7 POSSIBLE DIACRITISATION STATISTICS PER MORPHOLOGICAL ANALYSER.

 ... 112

 - xv -

TABLE 5.8 EVALUATION OF N-GRAM DIACRITISATION MODELS. 114

TABLE 5.9 COMPARISON WITH MAJOR OFF-THE-SHELF DIACRITISERS. 115

TABLE 5.10 THE AGREEMENT OF TAGGING ADJECTIVE MORPHEMES BETWEEN TWO

MANUALLY ANNOTATED CORPORA. RECALL = 0.38, PRECISION=0.85. 115

TABLE 5.11 ONE SENTENCE SHOWS HOW LINGUISTS DO NOT AGREE ON TAGGING

PREDICATIVE ADJECTIVES. .. 116

TABLE 5.12 THE PRECISION, RECALL AND F-SCORE OF PREDICTING ADJECTIVES IN

CHAPTER TWENTY-NINE OF THE HOLY QURAN. ... 117

TABLE 6.1 FEATURES OF PARTICIPATING POS TAGGERS. ... 124

TABLE 6.2 ROUGH MAPPING OF TAGSETS WITH UNIVERSAL DEPENDENCIES TAGSET

 ... 128

TABLE 6.3 THE MORPHEME-BASED ACCURACY OF ALIGNING MORPHEMES USING FIVE

APPROACHES OF ALIGNMENTS. .. 134

TABLE 6.4 A SAMPLE OF INPUT TO THE ENSEMBLE POS TAGGER. 136

TABLE 6.5 A COMPARATIVE ACCURACY BETWEEN MORPHEME-BASED AND

CHARACTER-BASED APPROACHES ... 140

TABLE 6.6 WORD-BASED VS. MORPHEME-BASED TAGGING. FOR THE WORD /KUNNA/,

WORD-BASED DO NOT SPECIFIC THE MARK OF WHERE THE WORD IS SPLIT. 141

TABLE 6.7 DIFFERENT RECOVERY OF WORD’S SEGMENTS ... 142

TABLE 7.1 THE KAPPA COEFFICIENT FOR POS TAGGING BETWEEN ONE-TAGGER

MODELS. ... 161

TABLE 7.2 ONE-TO-ONE SEGMENTATION. .. 164

TABLE 7.3 THE OVERALL, AND OUT-OF-VOCABULARY WORD-LEVEL ACCURACY OF

SEGMENTATION (SEG), LETTER TRANSFORMATION (LET), AND DIACRITIC

TRANSFORMATION (DIAC). .. 164

TABLE 7.4 SUMMARY OF DIFFERENCES OF PRESENTED MODELS. 166

TABLE 7.5 THE ACCURACY OF EACH OUTPUT FOR ALL FOUR PROPOSED ENSEMBLE

MODELS .. 172

TABLE 7.6 THE OVERALL ACCURACY AND OUT-OF-VOCABULARY ACCURACY. 174

TABLE 7.7 THE ACCURACY OF UDPIPE VS. EN ENSEMBLE 180

TABLE 8.1 MISSING FEATURES IN SPECIFIC UPOS TAGS .. 186

TABLE 8.2 SOME STATISTICS ABOUT THE SUNNAH ARABIC CORPUS. 193

TABLE 8.3 THE FREQUENCY LIST OF SUNNAH ARABIC CORPUS. 193

 - xvi -

TABLE 8.4 POSSIBLE DIACRITISATION STATISTICS PER MORPHOLOGICAL ANALYSER.

 ... 197

TABLE 8.5 POSSIBLE DIACRITISATIONS OF THE WORD (مثآ , /|VM/, “A SIN”) FROM FOUR

MAS. ... 198

TABLE 8.6 THE COMPATIBILITY TABLE OF AFFIXES AND UPOS TAGS. 204

TABLE 8.7 THE POSSIBILITY OF ATTACHING ONE UPOS TAG TO ANOTHER. 206

TABLE 8.8 TWO-LEVEL PART OF SPEECH TAGSET USED IN SAC. 208

TABLE 8.9 THE INCLUDED MORPHOLOGICAL FEATURES AND THEIR VALUES. 212

TABLE 8.10 DIFFERENT VALID ANNOTATIONS OF ONE PROPHET SAYING. 214

TABLE 9.1 EXAMPLE OF AMBIGUOUS PART-OF-SPEECH HELPER. 221

TABLE 9.2 COMPARISON BETWEEN USING AND NOT USING MA IN ACCURACY AND

SPEED. .. 230

TABLE 9.3 THE ACCURACY AND SPEED WHEN USING CR FEATURE. 231

TABLE 9.4 THE ACCURACY, SPEED, KEYBOARD PRESSES AND MOUSE CLICKS

COMPARISON WITH TWO MODES. .. 231

TABLE 9.5 THE EFFECT OF USING A TAGGER (SEMI-AUTOMATIC VS MANUAL

ANNOTATION) .. 232

 - xvii -

LIST OF FIGURES
FIGURE 2.1 APPROACHES FOR BUILDING CLASSIFIER HOMOGENEOUS ENSEMBLES,

REPRODUCED FROM (KUNCHEVA, 2014). ... 19

FIGURE 2.2 TWO APPROACHES OF BUILDING HETEROGENEOUS ENSEMBLES. 19

FIGURE 3.1 KHOJA'S TAGSET, TAKEN FROM (ALIWY, 2013). 39

FIGURE 3.2 PATB TAGSET. .. 40

FIGURE 5.1 SCREENSHOT OF SAWAREF WEB-BASED INTERFACE. 84

FIGURE 5.2 THE OVERALL PROCESS OF THE ENSEMBLE SYSTEM: SAWAREF. 85

FIGURE 5.3 SEQUENCE-TO-SEQUENCE PREDICTION ... 94

FIGURE 5.4 A SCREENSHOT OF THE MAPPER TOOL. THE TOOL CONSISTS OF THREE

PARTS: THE FIRST PART IS THE TOP BAR WHICH SHOWS THE CURRENT TAGGER

(MA) .. 100

FIGURE 5.5 AMBIGUITY OF ONE ARABIC WORD. ... 103

FIGURE 6.1 A SAMPLE OF MORPHEME-ALIGNED POS TAGS OF ONE WORD THAT HAS

TWO/THREE MORPHEMES. ... 121

FIGURE 6.2 A SAMPLE OF CHARACTER-ALIGNED POS TAGS OF ONE WORD THAT HAS

TWO/THREE MORPHEMES. ... 122

FIGURE 6.3 THE AVERAGE ACCURACY OF EACH INPUT TAGGER AGAINST DIFFERENT

ALIGNMENT APPROACHES. .. 137

FIGURE 6.4 THE EFFECT OF INCREASING THE NUMBER OF INPUT TAGGERS AGAINST

DIFFERENT ALIGNMENT APPROACHES. .. 138

FIGURE 6.5 INPUT TAGGERS DIFFER IN THEIR CONTRIBUTION TO THE ENSEMBLE

TAGGER. ... 139

FIGURE 7.1 SEQ2SEQ MODEL (TOP) VS ONE-TO-ONE MODEL (BOTTOM) 146

FIGURE 7.2 THE BASIC ENCODER-DECODER NEURAL NETWORK 150

FIGURE 7.3 THE FULL NEURAL NETWORK FOR POS, SEGMENTATION, AND

MORPHOLOGICAL FEATURES ... 151

FIGURE 7.4 THE EFFECT OF USING WORD EMBEDDINGS ... 154

FIGURE 7.5 THE ACCURACY OVER THE TRAINING EPOCHS USING EMBEDDINGS (DENSE

VECTOR) FOR POS TAGS (RED) VS USING ONE-HOT ENCODING (BLUE). 156

FIGURE 7.6 THE EFFECT OF DIFFERENT TRAINING DATASET SIZES ON THE AVERAGE

ACCURACY. ... 158

FIGURE 7.7 THE EFFECT OF TRAINING DATASET SIZE ON THE ACCURACY OF POS

TAGGING, SEGMENTATION, AND MORPHOLOGICAL FEATURES 158

 - xviii -

FIGURE 7.8 WORD-BASED ACCURACY OF SINGLE-TAGGER VS ENSEMBLE TAGGERS . 160

FIGURE 7.9 THE HIERARCHY OF PRESENTED ENSEMBLE MODELS. ONLY MARKED

MODELS ARE INCLUDED IN THIS SECTION BECAUSE THEY SCORED THE BEST

ACCURACY IN PREVIOUS EVALUATION. .. 165

FIGURE 7.10 THE NETWORK USED FOR PIPELINED MODELS. THE INPUT CONSISTS OF A

LONG LIST OF FEATURES (8 FEATURES X 4 TAGGERS), AND OUTPUT INCLUDES ALL

TARGET FEATURES (THE COMPLETE LISTS ARE NOT SHOWN). CHARACTER-BASED

ENSEMBLE USES ONE-HOT ENCODING OF THE CHARACTER LETTER (BW_ONEHOT),

WHILE MORPHEME-BASED ENSEMBLE USES AN EMBEDDED VECTOR OF THE

MORPHEME FORM. .. 169

FIGURE 7.11 THE TRAINING, VALIDATION, AND TESTING SAMPLE-LEVEL ACCURACY OF

EACH APPROACH OVER THE TRAINING EPOCHS. .. 171

FIGURE 7.12 THE WORD-BASED ACCURACY OF FOUR ENSEMBLE APPROACHES THAT

PREDICT VALIDATION DATASET OUTPUTS. .. 172

FIGURE 7.13 SAMPLE-BASED MODEL ACCURACY OF THE FOUR APPROACHES 173

FIGURE 7.14 THE PERCENTAGE WORD FREQUENCY THAT HAS N PREDICTION ERRORS.

 ... 175

FIGURE 7.15 THE TYPE OF ERROR FOR WORDS THAT HAVE A SINGLE ERROR 175

FIGURE 7.16 THE FREQUENCY OF EACH POS TAG. ... 176

FIGURE 7.17 THE TAGGING F1-SCORE OF EACH POS TAG. 177

FIGURE 7.18 THE CONFUSION MATRIX OF POS TAGGING (EN MODEL). 177

FIGURE 8.1 XML VERSION OF ONE PAGE OF RIYAD BOOK EXTRACTED FROM ITS EPUB

VERSION. .. 192

FIGURE 8.2 A SAMPLE OF ONE ANNOTATED NARRATIVE IN CONLL-U FORMAT. 194

FIGURE 9.1 THE LIST OF POSSIBLE SOLUTIONS FROM A MORPHOLOGICAL ANALYSER. A

SOLUTION IS USUALLY A BUNDLE OF POS TAG, SEGMENTATION, LEMMA AND

MORPHOLOGICAL FEATURES. SELECTING ONE SOLUTION WILL REPLACE ALL ITS

CONTENT TO EACH PROPER ANNOTATION FIELD. .. 220

FIGURE 9.2 THE MAIN SCREEN FOR DOCUMENT ANNOTATION. 223

FIGURE 9.3 FEATURES ANNOTATION POPUP ONE-LINE INPUT WITH AN AUTO-COMPLETE

FEATURE OF A VERB TOKEN. .. 228

FIGURE 9.4 THE OVERVIEW DESIGN OF WASIM. ... 233

FIGURE 9.5 THE PAGE FOR MANAGING TOP-LEVEL PROJECTS. 234

FIGURE 9.6 THE PAGE FOR MANAGING PROJECT’S DOCUMENTS. 234

 - xix -

FIGURE 9.7 PROJECT'S SETTINGS EDITOR ... 235

FIGURE 9.8 MORPHOLOGICAL ANALYSER SELECTOR COMPONENT. 237

FIGURE 9.9 MORPHOLOGICAL FEATURE SELECTOR COMPONENT. 237

FIGURE 9.10 CONLL-U VIEWER AND EDITOR. .. 238

FIGURE 10.1 A SAMPLE OF THE OUTPUT OF ARAMORPH IN TWO VERSIONS JAVA AND

PERL. IN THE PERL VERSION, EACH SOLUTION HAS THE VOCALIZED WORD (IN

PARENTHESIS), LEMMA (IN SQUARE BRACKETS), ANALYSES OF EACH SEGMENTS

WHERE SEGMENTS ARE SEPARATED BY PLUS SIGN, AND FINALLY A HELPFUL

GLOSS IN ENGISH. ... 283

FIGURE 10.2 ALKHALIL OUTPUT OF ONE ANALYSIS OF THE WORD “JI}OTU” IS ON THE

FIRST ROW. WE ADDED A NEW ROW FOR TRANSLATING THE OUTPUT SHOWN IN

THE FIRST ROW. IT IS CLEAR THAT THE POS TAGS AND THE TYPE OF THE WORD

ARE NOT IN A GOOD REUSABLE FORMAT. .. 283

FIGURE 10.3 A SAMPLE OF THE OUTPUT OF ARACOMLEX. 283

FIGURE 10.4 A SAMPLE OF THE OUTPUT OF ELIXIR FM. EACH ANALYSIS HAS SEVEN

COLUMNS (E.G. FIRST COLUMN IS AN EIGHT-SLOT STRING THAT REPRESENT THE

POS TAG AND MORPHOLOGICAL FEATURES). .. 284

FIGURE 10.5 A SAMPLE OF THE XML OUTPUT OF THE QUTUF SYSTEM. 284

FIGURE 10.6 A SAMPLE OF THE OUTPUT OF ALMORGEANA. THE REPRESENTATION

OF THE ANALYSIS IS SIMILAR TO MADA AND MADAMIRA. 284

FIGURE 10.7 A SAMPLE OF THE OUTPUT OF MADA. IT IS IDENTICAL TO

ALMORGEANA EXCEPT ITS SOLUTIONS ARE RANKED. STARRED SOLUTIONS

ARE THE SELECTED SOLUTION. .. 285

FIGURE 10.8 A SAMPLE OF THE OUTPUT OF MADAMIRA: LIKE MADA OUTPUT

EXCEPT FOR SUFGLOSS (SUFFIX GLOSS) FEATURE. ... 285

FIGURE 10.9 A SAMPLE OF THE OUTPUT OF MARMOT. ... 285

FIGURE 10.10 A SAMPLE OF THE OUTPUT OF SAPA. ... 286

FIGURE 10.11 A SAMPLE OF THE OUTPUT OF THE STANFORD POS TAGGER, AMIRA,

AND FARASA. STANDFORD DOES NOT MARK SEGMENTED MORPHEMES (E.G FOR

REGROUPING LATER). .. 286

 - xx -

Part I

Introduction and Literature Review

 - 1 -

1 INTRODUCTION

1.1 This research
The topic of this research is the morphological analysis and POS tagging of

classical Arabic (CA) texts. Morphological analysis and POS tagging are two

preliminary steps in many text analytics applications from different disciplines.

Many systems were developed to identify and analyse the Arabic text

morphologically, i.e. by studying and analyzing the form of the word. They vary in

complexity from light stemmers, linguistically based stemmers, lemmatisers, simple

table-lookup analysers, complex morphology analysers, and POS taggers. These

analysers handle Arabic's morphological-rich problem, and are useful for many

downstream applications, such as syntax analysis, machine translation, information

retrieval, question answering, and ontology construction.

However, most of the Arabic morphological analysers are designed and

tuned for Modern Standard Arabic (MSA) and adapting these tools to under-

resourced domains/languages is challenging.

This research proposes a systematic method for adapting multiple MSA

morphological analysers to the domain of classical Arabic text, specifically for the

Sunnah texts. Instead of adopting a single tool, like (Almeman, 2015) for dialects, or

(Dukes and Habash, 2010) for Quranic Arabic, we pursue the method of combining

heterogeneous taggers for the purpose of more robust and accurate morphological

tagging of the Sunnah Arabic texts.

The Sunnah, also known as Hadith, is the collection of traditions and sayings

attributed to the prophet of the Muslims, Mohammed (peace be upon him). The

Sunnah, in particular, and classical Arabic, in general, with the exception of the

 - 2 -

Quranic text, lack many computational linguistic resources such as treebanks and

morphological annotation. In this research, we aim to fill the gap by implementing

an accurate tagger for classical Arabic and providing a semi-automatically

morphologically annotated corpus for a collection of Sunnah sayings.

While this research scope uses domain adaptation methods for adapting

MSA taggers to classical Arabic text, it is designed to be language-agnostic and

provide a systematic way for overcoming challenges of knowledge transfer. These

challenges include mismatch of labelling schema between individual taggers and

target classical text tagset. Besides, segmentation schemas of the input and target

output are not identical, which required some alignment between the two sequences

of words and morphemes. In this research, we report the performance of multiple

ways of ensemble methods that overcome these obstacles of heterogeneity.

1.2 Motivation and Aim
The field of Arabic Natural Language Processing (NLP) has received many

contributions recently. Most morphological analysers handle the morphological-rich

problem in Modern Standard Arabic text (MSA), and there are at least seven open

access morphological analysers. However, the choice between these taggers is

challenging, and there is no open-access tagger explicitly designed for CA to the

best of the author's knowledge.

Experiments that used these MSA-based taggers for classical Arabic

reported a significant drop in the accuracy. Even though the morphology of

classical Arabic is the father of MSA, some studies showed that CA texts are not

compatible with MSA taggers. Alrabiah (2014) compared two MSA-based taggers

both designed for MSA to annotate the KSUCCA classical Arabic corpus. Using

five samples from different genres of classical Arabic, an evaluation of these two

systems showed a drop in their accuracy by 10-15%. In addition, the semi-

annotation of the QAC corpus used an MSA morphological analyser (Buckwalter

analyser), but the manual verification step made corrections to at least 24% of

words, nearly a quarter of text words, although the text is fully diacritised. A more

comprehensive experiment tends to reaffirm similar findings for all MSA taggers

(See Chapter 4). These studies show that current taggers might need to be adapted

for classical Arabic and their dictionaries need to include a classical lexicon.

 - 3 -

For word segmentation and POS labelling, supervised learning has become a

dominant model. Its progress is due to the development of annotated corpora and

NLP techniques. Although many corpora are released in the literature, obtaining

sufficient amounts of high-quality training data remains a major obstacle, especially

for morphologically rich languages. Although most of Arabic annotated corpora are

for MSA, not exploiting these related corpora for classical Arabic seems

wasteful. Because underlying linguistic theories differ, annotation schemes for

corpora are adversarial, and consequently taggers trained on them. Sadly, although

there are multiple resources, it is not possible to merely collate such data for training

systems, since almost all existing NLP systems assume a homogeneous annotation.

Therefore, it is essential to consider how to use and exploit heterogeneous resources

to improve Arabic word annotation and segmentation.

Building a specific tagger or lexicon for CA is expensive and a waste of

existing resources. Inspired by the successful results of ensemble methods,

specifically (Qiu, Zhao and Huang, 2013; Alabbas and Ramsay, 2014), we decided

to pursue the idea of combining and reusing available morphological taggers to

adapt resources in rich languages to under-resourced languages.

1.3 Research Questions
My research questions are the following:

1 Do MSA-based taggers perform well on CA texts? Can the annotation

of CA texts benefit from existing MSA or unsupervised resources?

2 Is it feasible to transfer knowledge from MSA-based taggers to tag

classical Arabic texts through combining heterogeneous POS taggers?

3 Does aligning and mapping different segmentation and labelling

schemas help ensemble taggers? Can this alignment be learned

implicitly?

Chapters 4 and 5 try to answer the first question. It compares and evaluates

different taggers on a set of classical Arabic excerpts. The thesis overall illustrates

how reusing other resources, e.g. especially diacritised texts and morphological

analysers, can help in reducing the ambiguity and help in annotation. The remaining

chapters try to reply to the second and third research questions by developing

different combinations of strategies and assessing these combinations on a newly

 - 4 -

created Sunnah Arabic Corpus. They propose different ways for tackling the

annotation-style adaptation.

1.4 Thesis Contributions
In our PhD research, we provide the following contributions:

• A comprehensive comparison between open access Arabic POS taggers

and morphological analysers with the focus on classical text annotation.

This comparative evaluation should ease the choice of a tagger.

• A novel systematic way of combining multiple heterogeneous tagging

algorithms to achieve improved robustness.

• An ensemble POS tagger for classical Arabic from four open access

Arabic POS taggers designed for MSA.

• An open-access semi-automatic annotated Sunnah Arabic corpus of

Hadith collections (a genre of classical Arabic) using the built ensemble

tagger and manually verified.

• An easy-to-use web-based toolkit that aggregates available morphological

analysers and POS taggers. This should ease the usage of those POS

taggers for developers.

• An efficient web-based annotation tool for semi- and manual- annotation

of gold standard corpus which integrates a set of features needed in highly

inflectional languages.

• Arabic multi-tagged corpus, annotated with four POS taggers and

aligned to the morpheme-level. This corpus is useful for evaluation

purposes, presenting differences, and possibly learning mappings from one

tagger results to another.

• A novel method for increasing the diacritisation level of highly cited

classical Arabic text for the goal to reduce the word ambiguity level.

1.5 The scope of this research
While this research tried to provide a systematic way of transferring

knowledge from any language, the case study in this research is classical Arabic.

The results of this research need to be taken cautiously when it is directly applied to

other languages. Part of the methodology is tailored to Arabic specifications. An

example is the reuse of diacritised texts to reduce the morphological ambiguity.

 - 5 -

The results as well have a high correlation with the quality of individual

taggers. It is also influenced by the tagger similarity with the required target

morphological analysis schema. In this research, the target morphological analysis is

based on the traditional Arabic grammar while all individual MSA taggers do not.

However, there are evidences of similarity in different aspects (tagset, segmentation,

morphological features).

While the research aimed at the beginning to support non-deterministic

morphological analysers, they are excluded from this research and the scope is

narrowed to only deterministic analysers (taggers).

1.6 Thesis Outline
After a brief background in the following chapter, this thesis is divided into

three parts: evaluation and classical Arabic adaptation, morphosyntactic ensemble

analyser and corpus annotation.

The literature review covers four aspects of this research. It starts with a

survey of corpora as they play a critical role in tagging and segmentation. Then it

surveys the annotation tools used to create similar corpora that are adapted to Arabic

needs. Then it discusses the morphological annotation representation aspects such as

tagsets, mapping tagsets, segmentation, etc. Finally, it explores different methods in

the literature that combine and exploit heterogeneous annotation.

Then, in the first part of the thesis, open access Arabic taggers and analysers

are surveyed, Chapter 4. They are illustrated to contrast their differences using one

classical sentence. Then, the results of using several open access MAs and POS

taggers to tag classical Arabic are reported. A multi-tagged corpus by several MSA

taggers for the Quran is developed that is proofread and manually checked.

The second part introduces the ensemble tagger in more detail. It is divided

into three chapters: Chapter 5 describes the challenges of the ensemble method and

provides a common ground design for subsequent experiments. It gives the

necessary multi-component framework (named SAWAREF) that provides an easy

interface for running several taggers, comparing and evaluating between them, and

standardising the outputs of each component. Chapter 6 continues the work by

delivering concrete methods to tackle the alignment problem and illustrates the

effect of this alignment on a pipeline ensemble approach. Chapter 7 moves in

 - 6 -

another direction and provides an end-to-end systematic ensemble method for

morphological analysing using deep learning.

The third part is divided into two chapters: Chapter 8 provides the design,

structure, and annotation of the Sunnah Arabic corpus. It also includes the process of

decreasing the word ambiguity level of the original text using a novel method of

borrowing diacritisation from similar contexts. It also provides detailed guidelines of

the annotation. Chapter 9 presents an open-source web-based annotation tool that

aims to increase the annotation speed and consistency of several morphosyntactic

annotation tasks by reusing other resources like morphological analysers.

At the end of this thesis, the research is concluded by highlighting the

findings and providing a roadmap for future work.

 - 7 -

2 BACKGROUND

Chapter Summary:

This chapter aims to provide a brief background on different terminologies

discussed in this research. It starts with a brief background on Arabic and its

morphology. Then, it discusses the morphological analysis of the language in the

computational linguistic point of view and the challenges that face Arabic

morphological analysis.

 - 8 -

2.1 Introduction
Arabic is a major world language and is one of the six languages officially

recognised by the United Nations. It is the first language for around 250-300 million

people (Clive Holes, 2004). It is an official language for at least twenty independent

Middle Eastern and African countries. It is the language of Islam’s holy book: the

Quran, and Islam’s prophet, Mohammed. Verses attributed to his tradition and

sayings, i.e. the Sunnah or Hadith, are also reported in Arabic. Nearly a quarter of

the world’s population are Muslims, and they use classical Arabic, especially the

Quran and the Sunnah, in their prayer and worship.

2.2 Part-of-Speech Tagging and Morphological Analysis
Part of Speech (POS) tagging is a common and well-known problem in the

field of Natural Language Processing (NLP). It can be defined as the procedure of

identifying the morphosyntactic class for each lexical unit using its structure and

contextual information. POS tagging is usually done in the first steps of advanced

NLP tasks such as machine translation and text categorisation.

Morphological analysis is a more general term that tackles different aspects

of the word. It involves the identification of word segments, POS tags, lemma, and

morphological features. A morphological analyser (MA) is usually a context-free

tool that provides all possible morphological analyses based on a lexicon or

dictionary. Morphological analysers may also include a disambiguation component:

the solution set are ranked according to the context. In this case, we call such tools

taggers. The terms POS tagger and morphological analyser are sometimes used

interchangeably though. While POS taggers and morphological analysers both

analyse the word form (or sometimes its morphemes), POS tagging usually is a more

straightforward task that only predicts the POS tag from a set of tags.

2.3 Arabic Language
Arabic and Hebrew are the two most common examples of Semitic

languages. Arabic itself contains many different dialects. Arabic is the official

language of more than 20 countries, which covers most of the Middle East and

North Africa.

Classical Arabic is the “liturgical” language that Muslims around the world

use in religious practice. CA is also known as “Fussa” (the clearest), which Arabic

 - 9 -

Grammarians build their rules upon. One variant of CA is Quranic Arabic (QA),

which is worded from CA, but differs in the sense that it is believed by Muslims to

be the direct word of Allah. As time passes, different spoken variants of classical

Arabic emerged, and people needed a standard form of communication: Modern

Standard Arabic (MSA). MSA is recognised as the formal and standard written

Arabic. MSA is the language currently employed in media and education (Bin-

Muqbil, 2006).

MSA differs from CA. MSA inherits its syntax, morphology, and

phonology from CA; however, MSA's lexicon is much more modern (Habash, 2010)

and its stylistics are different (Bin-Muqbil, 2006). CA is not a spoken language

(neither is MSA) and is usually found in books and journals. Therefore, it is more

standardised in the form of writing. Because it is a classical language, CA had less

attention in the literature and is under-resourced compared with MSA, despite a

significant amount of Arabic heritage of ancient books. The classical text is usually

grammatically analysed with POS tagsets that are inspired from traditional Arabic

Grammar, Ia’rab (Elhadj, 2009; Dukes and Habash, 2010; Sawalha, 2011; Elhadj,

Abdelali and Ammar, 2014).

Almost all classical Arabic is low-resourced with one exception, the Quran.

There are at least 5 corpora that either completely focus on the Quran or at least

include it. Because of the Quran’s central position in Muslim lives, it grabs more

attention. However, in this research, we claim that the Quran is not a fully

representative sample of classical Arabic1. The Quranic script (a.k.a Uthmani) has a

different orthography and lacks some POS tags that normally appear in classical

Arabic such as punctuation and numbers.

2.4 Arabic Morphological Analysis
Morphology in linguistics can be defined as the study of the form (internal

structure) of the word (Kiraz, 2001). While there is some disagreement in the

literature about its definition, this research only cares about morphological analysis

in the sense of identification of some meaningful parts and aspects of word structure.

Specifically, it includes identifying inflectional and lexical features of word

1 Neither will the Sunnah corpus be a fully representative sample of classical Arabic. However, it is

in the direction of filling the gap of one classical Arabic genre.

 - 10 -

segments such as root, stem, affixes, part-of-speech, lemma, pattern, etc. For

example, the word (نوبرضیس /syDrbwn/ (They) will hit) has four meaningful

elements /s+y+Drb+wn/: /s/ indicates a future tense, /y/ is third person marker,

/Drb/ is the verb “hit”, /Drb/ is its root and lemma and / FaCaL/ is its pattern, and

/wn/ is a plural marker of the subject. These elements (a.k.a. morphemes) are the

smallest meaningful units of the word.

Morpheme function can be derivational or inflectional. Morphology

derivation is the procedure of building new words on the basis of an existing word,

e.g. unstable and stableness are both derived from stable. Inflectional morphology,

however, changes grammatical features of the same word, e.g. cats is the plural form

of cat. Unlike English which is mostly morphologically concatenative (or linear),

Arabic derivational morphology tends to be nonlinear or templatic (a root with some

vocalism injected into a pattern to form a word), and Arabic inflectional morphology

tends to be concatenative. However, there are some exceptions: for example, broken

plurals (inflectional) are templatic, and the Nisba phenomenon (a derivation of

relative adjective by attaching a suffix Yaa letter) is concatenative (Ryding, 2005, p.

263).

Morphology analysis includes the process of identifying each word's

morphemes and extracting their grammatical features: including inflectional and

lexical features. A morpheme is the minimal unit of the word that carries a meaning.

The term word is used to represent its orthographical purpose, i.e. one unit of a

sentence bounded by two whitespaces. Tokenisation is the process of transforming

the stream of input characters into a series of words. It includes separating

punctuations, grouping digits of one number or date, etc. In contrary, segmentation

is a more specific form of tokenisation: the morphological process of separating

clitics and affixes from the word according to some linguistic theory. Clitics and

affixes are not the same: An affix is a morpheme of a word, such as prefixes and

suffixes, that attach to a base or a stem while a clitic is a syntactically independent

morpheme that attaches after affixes (Habash, 2010).

The term feature is sometimes misleading. In this research, it is mostly used

to describe the morphological aspects or characteristics of one word or morpheme,

primarily inflectional and lexical features. It is also, however, later in the thesis used

in the Machine Learning sense of describing model parameters or factors.

 - 11 -

This research follows the convention of representing the morphological

features for each segment of the word, instead of the word. While feature inventories

can have an extensive list of features, morphological analysers usually limit the list

to morphosyntactic features: the features whose values are directly related to the

syntax of the word (either in agreement [ةیعبتلا] (e.g. gender agreement between

noun and verb) or government [لومعملاو لماعلا] (e.g. case (for nouns) and mood (for

verbs)).

Morphosyntactic features include:

- Gender [سنجلا]: a lexical2 feature for nouns, and inflectional feature for

verbs, adjectives, pronouns, etc. It does not necessarily denote the sex of the

entity but indicates the grammatical function. Values usually are either

masculine or feminine.

- Number [ددعلا]: usually an inflectional feature (although it is sometimes

derivational, e.g. broken plural nouns). It denotes the number of persons

(even though it is used for non-animate nouns) and usually singular, dual, or

plural. In traditional Arabic grammar, more values are defined (e.g. plural of

plural) (Sawalha and Atwell, 2013).

- Definiteness [فیرعتلا]: inflectional feature for nominals that determine

whether they are known or unknown. Usually, definite nouns are prefixed

with /Al+/. Nunation, the process of adding Tanween (/F/,/N/,/K/): a suffix

for nominals that is pronounced as an /n/ sound and usually marks nominals

as indefinite. However, diptotes (some specific classes of words) are

restricted from nunation (Ryding, 2005).

- Case [ءامسلأا بارعإ]: inflectional feature for nouns and adjective. It is related

to morphology as they are usually marked by a case marker (e.g. a diacritic),

and to syntax, as it indicates the role of the noun in the grammar. There are

three cases in Arabic: nominative [عوفرم], genitive [رورجم], and accusative

[بوصنم].

- Tense/Aspect [لعفلا عون]: a derivational feature of verbs that has three values:

perfect (or past) [يضام], imperfect (or present) [عراضم] and imperative [رمأ].

These types are profoundly influenced by traditional Arabic grammar.

Perfect verbs do not necessarily indicate the past occurrence of their actions.

2 See discussion of lexical features below.

 - 12 -

There are more tenses in Arabic, but they are compound tenses. The

imperative feature can be describe the mood of the verb (Ryding, 2005) as

imperative semantics can be expressed in other ways.

- Person [ریمضلا عون]: inflectional feature for imperfective verbs and pronouns:

first person [ملكتملا], second person [بطاخملا], and third person [بئاغلا].

- Voice [لوھجملاو مولعملل ءانبلا]: derivational feature for verbs and participles to

indicate whether the agent of the verb is known (active [لعاف مسا ،مولعملل ينبم],

or passive [لوعفم مسا ،لوھجملل ينبم])

- Mood [لاعفلأا بارعإ]: similar to the case feature of nouns, the mood is an

inflectional feature to determine the mode of the verb: indicative [عوفرم],

subjunctive [بوصنم], jussive [موزجم].

In addition to inflectional features, computational morphological analysis

usually include identifying some lexical features. Lexical features are the set of

features that describe the meaning of one word regardless of its inflexion (i.e.

abstracted from the morphological analysis) but from the language’s inventory

(lexicon). A lemma is a word form that represents a group of word forms that differ

only among themselves (Marton, Habash and Rambow, 2010). This group of word

forms are called lexeme. A lexeme is the smallest unit of language that bears some

meaning. One example of a lexeme is “describe”, and it includes the set of word

forms through inflexion: describing, describes, described. In English, the infinitive

form of the verb and the singular form of nouns are usually picked as lemmas. So,

the lemma is the central representation as it is used in a lexicon.

The most crucial lexical feature is the core part-of-speech, POS (or lexical

category): the category of words in the lexicon that has similar grammatical

properties. Because this grouping can be done using different linguistic theories,

there is no standard set of POS tags.

Other lexical features include the pattern (either the pattern of the word or

the lemma), the root of the word, number of root letters and noun finals. Arabic

word roots can be defined as “a relatively invariable discontinuous bound

morpheme, represented by two to five phonemes, typically three consonants in a

certain order, which interlocks with a pattern to form a stem and which has lexical

meaning.” (Ryding, 2005, p. 47)

Diacritics or short vowels are some phonological marks that are usually

underspecified (not written) in Arabic. Diacritisation is the process of adding those

 - 13 -

missing marks. Some diacritics are lexical, and some are inflectional and their type

usually correlates with their position (usually, last diacritic is inflectional, and others

are lexical). Lexical diacritics change the lexical word meaning, while inflectional

diacritics change mood, case and voice features. This process is close to

morphological analysis as both processes analyse an ambiguous word based on its

context and because of the effect of absence/appearance of diacritics on the

morphological analysis. It is worth noting that the above Arabic morphology terms

are not standardised; and they were sometimes used interchangeably in the literature

(Al-Sughaiyer and Al-Kharashi, 2004; Habash, 2010).

2.5 Computational Arabic Morphological Analysis
Arabic morphology analysis is usually essential to Arabic NLP tasks. It is

usually done in the first steps of advanced NLP tasks, such as machine translation

and text categorisation (Jurafsky and Martin, 2008). It is considered one of the most

studied topics in Arabic NLP. Arabic morphology has a high impact on

computational tasks.

However, the level of analysis needed depends on the target goal. Tasks

can be either contextual or non-contextual, analytical or/and generative, and shallow

or deep. For example, it may be sufficient for information retrieval (IR) tasks to

extract the stem or the lemma of the word. In contrast, traditional statistical machine

translation (MT) tasks require thorough morphological analysis (e.g. morphological

features play a critical rule such as the gender of the subject and the aspect of the

verb).

The traditional text analysis pipeline includes tokenisation, POS-tagging,

and parsing. The stages of analysis usually start from the surface text, and proceeds

through tokenization, lexical analysis, syntactic analysis, semantic analysis and

pragmatic analysis with the goal to fully grasp the speaker’s intended meaning

(Indurkhya and Damerau, 2010). This research is limited to the first two stages. To

support the subsequent downstream analyses, it is usually more beneficial to have a

fine-grained tagset than a course tagset3.

3 In fact, Kübler and Mohamed (2012) shows that tagging using a complex tagset then converting its

result to a smaller tagset leads to a higher accuracy than directly tagging using the smaller tagset.

 - 14 -

In this research, the task is contextual: the proposed tagger must determine

the most likely tag based on the context, analytical: it only cares about labelling a

sequence of text with morphological annotation, and deep: the level of

morphological analysis cares about functional morphology and extend core tags to

the set of inflectional features.

Computational Arabic morphological analysis techniques can be classified

into four categories: table-lookup, linguistic (using finite state automaton (FSA) or

traditional grammar), combinatorial and pattern-based (Al-Sughaiyer and Al-

Kharashi, 2004). Table-lookup approaches use a massive database of lexicon and

morphology. The linguistic approach uses hand-crafted or auto-generated rules to

analyse. The combinatorial technique determines the morphology by checking

combinations of letters against a root list. Pattern-based uses the word pattern to

find the stem of the word. Table-lookup and linguistic methods suffer from storing

and maintaining a high number of inflected forms or rules. Recent advances in the

literature seem to be more towards data-driven statistical methods like

combinational and pattern-based. However, these methods require creating costly

annotated corpora, which are missing in the case of under-resourced languages.

Computational morphological analysis may involve some of the following

tasks: POS tagging: identifying the morphosyntactic class for each lexical unit using

its structure and contextual information; morphological features prediction:

assigning each word a value of a specific morphological feature (e.g. gender);

segmentation: finding word segments boundaries; lemmatisation/stemming:

extracting the lexical origin (lemma, stem, pattern, or radical root) of each lexical

unit; and diacritisation: recovering unspecified lexical and inflectional diacritics

(i.e. short vowels) in each word’s orthography.

In this research, we interchangeably use morphological tagger and POS

tagger to refer to deterministic analysers that use the context to either choose the

most probable tag according to the context or at least provide an ordered list of tags.

Morphological analysers is a more general term and usually refer to non-

deterministic analysers. One more slight but important difference: morphological

analysers (non-deterministic analysers) are usually designed to be general-purpose

and therefore their tagset is usually rich. Taggers are usually designed for specific

purposes and use a reduced tagset for accuracy purposes.

 - 15 -

2.6 Computational Linguistic Resources
A number of Arabic linguistic resources are available in the computational

linguistic field. They are designed for different purposes: lexicography, Arabic

learning, investigating Arabic compounds, language modelling,

morphological/syntactic modelling, teaching, speech recognition, and much more.

This research focuses on linguistic resources that are related to morphological

analysis, namely: morphological modelling, morphological annotated corpora,

lexicon, and orthographical annotated corpora.

POS taggers are usually trained on a corpus. A corpus (pl. corpora) is “A

collection of pieces of language that are selected and ordered according to explicit

linguistic criteria in order to be used as a sample of the language” (Sinclair and Ball,

1996, p. 27). The corpus should be annotated with POS tags. Corpus annotation is

“the practice of adding interpretative, especially linguistic, information to a text

corpus, by coding added to the electronic representation of the text itself” (Leech

and Wilson, 1996, p. 3).

All corpora add some meta-information (annotation) for the collected

texts. This annotation varies depending on the goal of the corpus from document-

level such as marking document’s source and author, sentence-level such as parallel

bilingual corpora, to word-level or segment-level such as grammatical annotation,

i.e. morphological annotated corpora. The more deep the level of annotation, the

harder and more tedious the task, and probably the fewer and smaller corpora.

Morphological annotated corpora are usually word-level (sometimes

segment-level) annotated. They are useful for several applications such as

segmentation, grammatical tagging, diacritisation, lemmatisation, and

disambiguation. Annotated corpora vary in the richness of the annotation itself.

Usually, they are designed to be rich to give the flexibility to downstream

applications. However, this comes with a cost in time and money.

The annotation of morphological analysis is usually performed by

assigning each word (or a segment of the word) one or a set of tags that represent the

different aspects of the morphological analysis. One aspect is the POS tag, and the

annotation should have a set of possible POS tags in advance, a.k.a. POS tagset.

Annotated corpora serve as training datasets for data-driven POS taggers and as

evaluation datasets to measure the quality of one tagger.

 - 16 -

Other valuable linguistic resources are lexicons and dictionaries. In Collins

Dictionary, a lexicon is “the set of all the morphemes of a language”. In other words,

it is the entire inventory of the language lexemes. Dictionaries are a similar resource

but are intended usually for human readers. They usually are indexed by the root

word where some inflected words can be listed under the root word. Other inflected

forms are not listed as the dictionary assumes that the reader has enough grammar

on how they will be inflected. In contrast, lexicons are usually indexed by the

lexeme where all its inflections are listed.

Note that the root word are hard to define, especially in templatic languages.

In English dictionaries, words derived from other words are indexed separately. For

example, you do not expect to have PLAY and PLAYER in the same entry.

Classical Arabic dictionaries, however, usually index the entries using the three

radical letters (the root of the word). This indexation abstracts not only inflection

morphology but derivational morphology.

Lexicons are useful in morphological tagging, especially for determining

lexical features. For example, the gender of nouns is a lexical feature, so lexicons

can play a critical role in predicting a word’s gender. Because the number of

inflected forms in Arabic is high, morphological analysers usually encode the

lexicon in different ways (e.g. finite state automaton). Lexicons, however, are not

always optimal in terms of coverage, especially for under resourced languages and

varieties, such as classical Arabic and dialects.

2.7 Challenges of Arabic Morphology Analysis
Due to the morphologically-rich nature of the language, its highly

inflectional, non-linear morphology, and the absence of short vowels (phonological

information), the morphological analysis of Arabic is not an easy task. The analysis

involves handling an “exceptionally high degree of ambiguity” (Soudi et al., 2007).

Arabic is a morphologically rich language (MRL), as illustrated in previous

sections. It makes the interaction between syntax and morphology more

complicated. As for all MRLs, the rich morphology allows the language to have a

considerable degree of freedom in word order as some syntactic relations are

expressed in the morphology (Tsarfaty et al., 2010). This phenomenon explains why

case and mood features are of central importance in traditional syntactic theory

[وحنلا]. This is a remarkably essential difference in the computational analysis as this

 - 17 -

free order property makes algorithms less able to model the language given the same

set of examples (Heintz, 2014). Moreover, the case and mood diacritics are usually

not written, making such syntactic property ambiguous. Like other MRLs, the actual

usage of the free order property in Arabic is less than it could be in principle

(Habash, 2010).

As an effect, Arabic is highly inflectional. Much of the structural

information in Arabic sentences is encoded in inflectional features. Grammatical

features usually inflect the word in a concatenative way (prefixes and suffixes) but

sometimes in a templatic way. Inflected words do not have an orthographic marker

to distinguish affixes. Consequently, the number of possible inflected forms is high,

thus the vocabulary size can be enormous (leading to a data sparseness problem).

Since there is a high number of inflexions per word, Arabic's tagsets are

usually more extensive than a typical tagset for English. The size of compound

tagsets (that embody morphological features) in Arabic can reach an unusually high

number. The Buckwalter tagset, for example, can hypothetically reach over 330,000

tags (Habash, 2010). Tagset size is critical to the process of classification.

POS tagging is typically assigned to each morpheme instead of the whole

word as in English (Habash, 2007). Therefore, a pre-processing step of

morphological segmentation is usually required in order to reduce the data

sparsity. This pre-processing step leads to improvement in performance of statistical

machine translation (Lee, Papineni and Roukos, 2003; Lee, 2004; Habash and Sadat,

2006).

Written Arabic is highly ambiguous because some phonological

information, particularly short vowels (diacritics), are not usually written. The short

vowels were not introduced in the Arabic orthography system until the 2nd century

of prophet Mohammed’s date of migration. In fact, they are still absent in most of

the printed and handwritten materials in Arabic. As a result, the same word form can

correspond to different possible lexemes.

Concatenating a word with a morpheme sometimes results in the adjustment

of the original word form (form adjustment). For example, the prefix /l/ precedes the

definitive particle /al/, but this resulted on dropping its first letter /a/. This makes the

morphological segmentation more complex as it involves morphological awareness

of the word.

 - 18 -

Lastly, some letters like the Hamza and Yaa letters in Arabic script are

inconsistently spelt, which increases the ambiguity and sparsity (multiple forms

correspond to the same word) (Habash and Sadat, 2006). This problem is not limited

to MSA but is also applicable to classical Arabic (Mohamed, 2018).

2.8 Ensemble Tagging
In Collins English Dictionary, “An ensemble of things or people is a group

of things or people considered as a whole rather than as separate individuals.” (from

French word meaning: together). In Machine Learning, ensemble methods refer to

the process of combining multiple learning methods to obtain a higher accuracy in

classification prediction that was not achieved by any individual learning methods.

Instead of relying on one expert decision, ensemble methods tries to make a decision

based on the opinions of a collection of experts (Malmasi and Dras, 2018).

The main goal of combining classifiers it to have a more accurate

classification decision. This comes at the expense of increased complexity.

However, the question is “whether a combination of classifiers is justified”

(Kuncheva, 2014, p. 101).

There are at least four approaches to building classifier ensembles (see

Figure 2.1). Ensembles normally mean multiple learning algorithms trained on the

same training data-set, i.e. homogeneous ensemble. But in the case of the

combination in this thesis, the individual Arabic text taggers which are combined are

not trained on a common data-set, but separate “black boxes”5, where we have no

control over (or even knowledge of) the training set.

5 An alternative name for this combination might be “coalition” or “assembly”, cf. Collins English

Dictionary: “A coalition is a group consisting of people from different political or social groups who

are co-operating to achieve a particular aim.” “An assembly is a group of people gathered together for

a particular purpose. ... The assembly of a machine, device, or object is the process of fitting its

different parts together.”

 - 19 -

Figure 2.1 Approaches for building classifier homogeneous ensembles,

reproduced from (Kuncheva, 2014).

Figure 2.2 Two approaches of building heterogeneous ensembles.

Multiple types of ensemble exist in the literature, mostly for homogeneous

methods like bagging (equally-weighted models trained on random subsets of the

training data) and boosting (adaptive training where each new model focuses on a

subset of training data that was misclassified), including others.

Heterogeneous methods require adaptation or mapping steps

before/alongside combining and usually are more complex and prone to errors.

Since they use different datasets, the evaluation method for these ensemble cannot

be directly compared to original ones. Figure 2.2 listed two approaches to handle

 - 20 -

heterogeneous ensembles. The right approach combines jointly adversarial corpora

like (Qiu, Zhao and Huang, 2013; Chen, Zhang and Liu, 2016; Chen et al., 2017),

while the left approach builds a tagger for each corpus and combine these taggers.

Variants of this method is implemented in this thesis and by (Zavrel and Daelemans,

2000; Alabbas and Ramsay, 2012b; Albogamy and Ramsay, 2016).

In POS tagging, different techniques are used, including knowledge-based

models: (table lookup, syllable-based morphology, pattern morphology) and

empirical methods: (Hidden Markov Models (HMM), Support Vector Machines

(SVM), …). Each POS tagger is designed differently. However, without a full

understanding of the language, no POS tagger could ensure perfect accuracy.

Because of their different bases, taggers will typically produce different errors.

Some combinations of POS taggers exploit these differences, and have been

reported to achieve a better accuracy for several languages, including Arabic

(Alabbas and Ramsay, 2012a; Aliwy, 2015; Zeroual and Lakhouaja, 2017), English

(Marquez et al., 1999; Halteren, Zavrel and Daelemans, 2001; Schroder, 2002),

Italian (Søgaard, 2009), Icelandic (Henrich, Reuter and Loftsson, 2009), and

Swedish (Sjöbergh, 2003).

Most of the combination of POS-taggers in the literature are homogeneous

and based on training different models on a common training corpus. Each

individual model uses the same tagset and morphological segmentation as the one on

the training corpus. However, combining heterogenous black-box taggers, as the

approach chosen for this thesis, involves handling different issues, such as mapping

taggers' tagsets to one output tagset. The output of those taggers might need to be

aligned on the different levels: document, sentence, word, and even morpheme.

2.9 Evaluating Taggers
Several evaluation measures exist for evaluating POS taggers. One of the

most common and intuitive measures is the accuracy, the proportion of word forms

correctly tagged. This measure requires a method to decide whether a tagging is

“correct” or not. For POS tagging, it is common to use a reference corpus that is

manually annotated to check the validity of a tagging:

!""#$%"& =
no. correct	tags	
no. reference	tags

 - 21 -

However, three conditions need to be met:

• The tagger must use the same tagset used by the reference corpus,

otherwise, a mapping to the reference tagset is required;

• The tagger must produce same tokenisation as the reference corpus,

otherwise, a re-alignment to the tokenisation in reference corpus is

required; and,

• The tagger should output only one tag per token. In case of multiple tags

per token, some alternative measurements like ambiguity should be

provided.

Alongside the accuracy measure, ambiguity is used to determine the average

tags per word emitted by the tagger. It is common to drop reporting ambiguity if the

tagger is a single-tag tagger6, as its ambiguity is one. Ambiguity can be used to

measure the difficulty of POS disambiguation:

!4567#68& = 	
no. produced	tags	
no. reference	tags

An alternative method is the use of precision and recall measures inspired by

Information Retrieval. It is used for evaluating multiple-tag taggers. Both are usually

combined into F1-score that can be balanced or shifted toward precision or recall.

We assume here the frequent case where a single tag is assigned to each token in the

reference corpus. The recall measure is the proportion of words that have one correct

tag, i.e. it is the same as the accuracy. Precision can be seen as the accuracy but

punished by ambiguity.

<$="6>6?@ = 	
no. correct	tags	
no. produced	tags

= 	
no. correct	tags	

ambiguity ∗ 	no. reference	tags
=

Recall
ambiguity

	

	H="%II = 	
no. correct	tags	
no. reference	tags

	

J1LMNMOPQR = 2 ∗
precision ∗ recall	
precision + recall

In ensemble classifiers, we needed also to compare the error distribution of

different taggers. Precision, recall, accuracy and even ambiguity are global

6 In this thesis, we use the term tagger to refer to single-tag taggers, and analyser to refer to multi-tag

taggers.

 - 22 -

measurements. So, we use the known measurement for measuring the human

annotation agreement: (Kappa coefficient) (Carletta, 1996).

U =
VW − VQ
1 − VQ

where po is the relative observed agreement among raters (identical to accuracy),

and pe is the hypothetical probability of chance agreement. It can be computed as

following:

For classes k, number of samples N and @YZ number of times rater i predicted

class k:

p[=
1
\] 			^@Y_@Y]

Y

 Please note that this measurement requires that both taggers have the same

tagset.

2.10 Conclusion
This chapter gave a brief but essential summary on different background

aspects in this research with the aim to define key concepts and help the reader

understand challenges specific to the Arabic language. It started by defining and

explaining the problem of the research: Part of speech tagging and morphological

analysis. Then, it introduced the Arabic language with a focus on the similarities and

differences between classical Arabic and modern standard Arabic. We define the

scope of the Arabic morphological analysis and associated computational problems

and their challenges. After that, we introduce the reader to the concept of ensembles

in the sense of machine learning. In the next chapter, we explore related work in

four areas: classical Arabic corpora, annotation tools, morphological annotation

styles, and automatic annotation methods, with a focus on classical Arabic and

ensemble methods.

 - 23 -

3 LITERATURE REVIEW

Chapter Summary:

This chapter surveys existing morphological analysis methods with a focus on

ensemble methods and classical Arabic. It starts by exploring existing Arabic

corpora, especially morphologically and orthographically annotated corpora, as

these corpora serve as a basic requirement for data-driven morphological analysis

methods. Next, it explores and evaluates existing tools for annotating corpora, with a

focus on Arabic needs and requirements. Third, it investigates morphological

annotation representations in the literature with a focus on adapting between

different representations by methods such as mapping and alignment. Finally, it

examines the computational methods for segmentation, tagging, and diacritisation

with a focus on ensemble methods and how these methods are evaluated.

 - 24 -

3.1 Introduction
The computational analysis of the Arabic language started in the 1980s. The

morphological aspect of the language is an ongoing research theme, especially on

low-resource variants like classical Arabic and dialects. Adapting and reusing

existing resources to a new domain or language has shown advantages in many

fields.

This chapter surveys existing morphological analysis methods with a focus

on ensemble methods and classical Arabic. It starts by exploring existing Arabic

corpora, especially morphologically and orthographically annotated corpora, as

these corpora serve as basic requirement for data-driven morphological analysis

methods. Next, it explores and evaluates existing tools for annotating corpora, with a

focus on Arabic needs and requirements. Third, it investigates morphological

annotation representations in the literature with a focus on adapting between

different representations by methods like mapping and alignment. Finally, it

examines the computational methods for segmentation, tagging, and diacritisation

with a focus on ensemble methods and how these methods are evaluated.

Text corpora forms the basis for developing data-driven computational

models of one language. These corpora are designed to be representative samples of

one aspect of its language, e.g. its morphology. Treebanks, or morphologically

annotated corpora, are usually annotated to the word-level with grammatical

categories, lemma, and various grammatical features. Classical Arabic, in particular,

faces a lack in these type of valuable resources unlike its more modern variant:

MSA. The first part of this chapter presents a systematic review of the literature of

these corpora.

The next section focuses on tools for manual annotation of treebanks in

general and morphological annotation specifically. These tools aim at speeding up

the repetitve task of annotation by reusing predefined annotations with no

compromise on the quality and consistency. General methods exist, but Arabic

language and highly inflectional languages in general require more features that are

sometimes not implemented in general-purpose frameworks.

Computational annotation of written texts, POS tagging or morphological

annotation in particular, adds a layer to the text that is valuable to many downstream

processes in the field of Natural Language Understanding. This layer describes the

grammatical role of words for the purpose of a better understanding of the whole

 - 25 -

sentence. Different linguistic bases lead to different annotation schemas. Because of

the expensive and tedious characteristic of annotation, several methods that try to

adapt existing annotation to other languages exist. The third part surveys these

Arabic annotation schemas and review efforts to map and standardise tagsets and

align incompatible segmentation schemas.

The forth part of this chapter surveys existing computational systems for

morphological and orthographical annotation. It pays more attention on efforts to

combine or adapt several taggers, especially heterogeneous taggers. Existing open

access taggers are evaluated in detail in Chapter 4, for the purpose of selecting and

using the best ones in our ensemble approach.

3.2 Arabic Corpora

3.2.1 Corpora

A number of Arabic corpora are available in the computational linguistic

field. They are designed for different purposes: lexicography, Arabic learning,

investigating Arabic compounds, language modelling, morphological/syntactic

modelling, teaching, speech recognition, and much more. This survey focuses on

corpora that are related to morphological analysis, namely: morphological

modelling, morphological annotated corpora, lexicon, and orthographical annotated

corpora.

Most existing Arabic corpora are for written texts. There are few corpora that

are designed for spoken languages, although there is a recent shift in focus in the

research toward dialectics. The source of written texts is mostly newswire and the

web, and most of these corpora are not open-access and not freely downloadable

(Sawalha, 2011).

MSA Corpora form the majority of these corpora. Classical Arabic has

recently grabbed attention in the corpus creation field, with most work on the

Quranic texts. The most prominent resource for classical Arabic is the Shamela

Library. Shamela (http://shamela.ws) is a freely downloadable electronic library that

contains at least 5300 Arabic books in Islamic studies and has become the standard

e-library of Arabic classical books. It has been used to obtain Arabic classical text in

building several corpora for different purposes: language modelling corpora

(Alrabiah, 2014; Belinkov et al., 2016), orthographic modelling corpora (Zerrouki

 - 26 -

and Balla, 2017; Alosaimy and Atwell, 2018), and morphological modelling corpora

(Mohamed, 2012; Alosaimy and Atwell, 2017).

3.2.2 Morphologically annotated Corpora

In regards to Modern Standard Arabic, there are several existing corpora,

including:

• Khoja POS tagged corpus, 50,000 words of newspaper text with simple

POS tags, and 1700 words with detailed POS tags.(Khoja, 2001)

• The Penn Arabic Treebank (PATB), one million tokens annotated with

part of speech (POS), gloss, diacritisation and word segmentation.

(Maamouri et al., 2005)

• Prague Arabic Dependency Treebank (PADT) (Hajic et al., 2004),

morphologically annotated 113,500-tokens newswire texts.

• Columbia Arabic Treebank (CaTiB) (Habash and Roth, 2009). 273,000

tokens annotated plus 735,000 automatically converted from PATB;

collectively 1M tokens of newswire.

• Nemlar Written Corpus (Yaseen et al., 2006). Half-million words in a

balanced corpus of 13 genres where the time span goes from late 1990’s to

2005.

• AQMAR dependency corpus composed of 36,000 words of 10 Arabic

Wikipedia articles tagged using CaTiB tagset (Schneider et al., 2012).

One particular treebank is highly influencing the field of Arabic morphological

analysis: the PATB treebank. It not only has a large amount of annotated texts, but

its level of annotation is magnificent: the texts are segmented and each segment is

diacritised, lemmatised and labelled with its complex POS tag. Although PADT

treebank has a similar rich annotation, PATB treebank has been cited more in the

literature maybe due to its larger size. However, the fact that they do not conform to

one standard annotation schema limits their use in a combined corpus.

Universal Dependency (UD) project is a framework that aims to provide

treebanks in different languages with cross-linguistically consistent grammatical

annotation. There are three Arabic treebanks in UD: A converted PADT treebank to

UD standards, NYUAD treebank that is based on the PATB treebank but converted

to CaTiB annotation schema in UD format, and a newly released 20K-words Arabic-

part of the Parallel UD (PUD) project. Aside from their fine-grained tagsets, the

 - 27 -

three treebanks share the same coarse tagset (12-tag UD tagset) and morphological

features. In fact, the comparative statistics of Arabic treebanks published in their

website shows some differences such as the lemma definition.

As Albared, Omar and Ab Aziz (2009) pointed out: most corpora available

are derived from newspapers. Moreover, each corpus used its own tagset and

morphological segmentation scheme making it difficult to ensemble them into one

training dataset, which could lead to a better accuracy (Banko and Brill, 2001).

Classical Arabic on the contrary is low-resourced, especially in manually

annotated corpora. They are usually attached with POS tagsets that are inspired from

traditional Arabic Grammar, Ia’rab (Elhadj, 2009; Dukes and Habash, 2010;

Sawalha, 2011; Elhadj, Abdelali and Ammar, 2014; Zeroual and Lakhouaja, 2016;

Alosaimy and Atwell, 2017).

In regards to classical Arabic corpora, there are six annotated corpora as follows:

1. The morphological analysis of the Holy Qur'an by Al-Imam University

(Elhadj et al., 2010)

This project provides an indexed Quran text database of morphological

segmentation which has been done according to linguistic terms and rules. Each and

every word of the Holy Quran has been split into a prefix, a root, a stem and a

suffix, and then stored in a 4-column table. It was part of a larger project that

involves a search engine for similar pronunciation of words. The project as well

provides a manually verified text of the Quran that is written according to modern

orthography.

2. The Quranic Arabic Corpus (QAC)1 (Dukes, Atwell and Habash, 2013):

Developed at the University of Leeds, the QAC corpus is a morpheme-based

corpus that is fine-grained annotated with grammatical and syntactical annotation. In

addition to segmenting each word to its morpheme, each morpheme is annotated

with its POS tag, root, lemma and a set of morphological features.

The corpus covers the whole holy book which is 77,430 words. After

manually segmenting each word, the total number of segments is 128,220, where

each segment is given one POS tag out of about 45 tags, and a set of lexical and

grammatical features that includes each word’s lemma and root (assigned to its

stem) and eight grammatical features. In addition, various information about some

1 http://corpus.quran.com/

 - 28 -

types of words is given to define a finer group of POS like verb form, noun

derivation, special groups like the verb /kaana/ and its sisters.

The process of developing this corpus is well defined. It started by analysing

each word with a non-disambiguated list of possible analysis extracted from the

Buckwalter morphological analyser filtered to keep only analyses that match the

diacritised form. Some orthographic processes are required to convert the Quranic

script to the modern script expected by the analyser. Only 87% of verbs are analysed

by the morphological analyser. Then two paid annotators were assigned the task of

selecting and correcting the tagging according to the morphological guidelines and

tagset in two rounds. The first one completed the analysis of remaining words and

corrected 13% of words incorrectly analysed, i.e. only 76% of words are correctly

annotated by the morphological analyser. The second annotator reviewed the

corrected version and made changes to 1.3% of the words. Users of the corpus

corrected about 2.5% of words within the first six months of corpus release.

3. SALMA Annotated Quranic Text (Sawalha, 2011)

For the purpose of demonstrating the Standard Arabic Linguistics

Morphological Analysis tagset (SALMA), Sawalha and Atwell (2013) developed the

Gold Standard of Arabic - Quranic text (GSA-Q). They fully annotated the 29th

chapter of the Quran, where each word form is annotated with its root, lemma,

pattern, long stem and its morphemes tagged with its part-of-speech and sixteen

morphological features: gender, number, person, inflectional morphology, case or

mood, case or mood marks, definiteness, voice, emphasising, transitivity, rational,

declension and conjugation, augmentation, number of root letters, verb root type and

noun finals. The corpus is publicly available2.

 4. Emad’s Heritage Corpus (Mohamed, 2012, 2018)

The Heritage corpus is a recently published corpus of classical Arabic that

covers various genres of classical texts. The total number of annotated text increased

from 27k word of religious texts in 2012 to 58k words of broad classical texts in

2018. The text covers several topics that include: the Quran, Sunnah, Islamic law,

literature, philosophy, and psychology. The corpus will be publicly available.

The text is annotated with the PATB tagset, which allows the comparison of

a tagger trained on the corpus and the one trained on the PATB corpus. The tagset

2 http://www.comp.leeds.ac.uk/sawalha/

 - 29 -

used is a complex tag (morphological features are embodied) and has 133 segment-

level tags and 949 word-level compound tags.

The corpus was done in one round by the first author in an iterative way. The

first 2k words are initially tagged using a tagger trained on the PATB treebank and

then proofread and corrected. Then, for each proofread 2k words, they are added to

the PATB to create a new more-accurate model, and so on. The initial accuracy of

using only PATB to tag the corpus is 78.62%. This is due to the high rate of out of

vocabulary (OOV) words (43.39%) and the domain difference (Mohamed, 2012).

The author also developed a classical Arabic tagger based on this corpus

using the TiMBL toolkit, a memory-based learning toolkit. The accuracies of full

automatic segmentation and POS tagging on development and test datasets are

89.8% and 87.8%, respectively.

5. Evaluation Set of Joint Tagging and Parsing (Zhang et al., 2015)

A classical Arabic dataset is mentioned in (Zhang et al., 2015), where its

texts are obtained from the Shamela library and segmented and tagged by a

computational linguist. No clear mention of the used tagset is provided, nor its size;

however, the paper claims that the dataset is available at the Farasa website, but we

could not find a link to it.

The dataset size is 7.9k of words and 163 sentences. The dataset was used for

testing their joint parser trained on the MSA treebank, and showed that

incorporating syntactic information reduced the error rate significantly, especially

for OOV words.

6. Al-Mus’haf Corpus (Zeroual and Lakhouaja, 2016)

Al-Mus’haf is a new annotated corpus of the whole Quran that focuses more

on lexical features and uses a tagset that is more influenced by the traditional Arabic

grammar, Ia’rab. It covers all words of the Quran (~78k words) and tags each word

with a rich POS tag, lemma, stem and root. It does not specify the affixes of the root,

though.

The annotation is done semi-automatically using the AlKhalil

morphosyntactic analyser (Boudchiche et al., 2016). Since AlKhalil is a non-

deterministic analyser, a further treatment of its output is required. Experts in Arabic

morphological rules verified the results and completed non-analysed cases. Alkhalil

was able to tag a word with one analysis in 71% of cases. Other cases required either

 - 30 -

correction or disambiguation. The authors did not report the number of cases where

multi-analyses are incorrect.

7. Non-verified Corpora

Corpora that collect classical text usually add a layer of automatic

morphological annotation. Alrabiah et al. (2014) built the publicly available3

general-purpose King Saud University Corpus of Classical Arabic (KSUCCA). The

50-million-word corpus was designed originally for studying the distribution of

lexical semantics. The corpus was automatically POS-tagged using the MADA 3.2

toolkit. The corpus combines different genres: religion 45%, literature 15%,

linguistics 13%, science 12%, biography 7%, and sociology 5%. In a similar

approach, Belinkov et al. (2016) developed 1-billion words of classical Arabic

drawn as well from the Shamela Library with a focus on diachronic information of

the texts. It has been annotated using the MADAMIRA toolkit and is available

publicly but without the morphological annotation4.

Table 3.1 summarises the annotated classical Arabic corpora. Most

annotation is done to the Quranic text. Tagsets of these corpora are not the same nor

the segmentation schemas, which complicates the combination of these corpora into

one standard bigger corpus. With the exception of unverified corpora and Emad’s

work, all other works are done using tagsets that are influenced by the traditional

Arabic grammar. We noticed as well that the Sunnah texts are not annotated except

for a small part of Emad’s work, although the Sunnah is the second major source of

Islamic law and guidance. Most presented corpora are done semi-automatically, as

morphological analysers usually speed up the annotation greatly. However, the

number of needed corrections in these corpora can give us a measure of how well

these analysers fit to the classical Arabic. The percentage of corrections ranges

around ~25% of words, which is quite high, although the Quranic text is fully

diacritised.

3 https://mahaalrabiah.wordpress.com/2014/06/07/the-annotated-ksucca/
4 https://github.com/OpenArabic/

 - 31 -

Table 3.1 Summary of classical Arabic corpora

Name Reference Texts Word # Tagset Downloadable Verified

Imam (Elhadj et al., 2010) Quran 77k Only segmentation corpora No Yes

SALMA (Sawalha, 2011) Quran 1k (Sawalha and Atwell, 2013) Yes Yes

Religious (Mohamed, 2012) Quran, Sunnah, Philosophy 27k (Maamouri and Bies, 2004) No Yes

QAC (Dukes, Atwell and Habash, 2013) Quran 77k (Dukes and Habash, 2010) Yes Yes

Eval Set (Zhang et al., 2015) N/A 7.9k (Maamouri and Bies, 2004)1 No Yes

Al-Mus’haf (Zeroual and Lakhouaja, 2016) Quran 78k (Zeroual, Lakhouaja and Belahbib, 2017) Yes Yes

Heritage2 (Mohamed, 2018) Five-geners 58k (Maamouri and Bies, 2004) No Yes

Alrabiah (Alrabiah et al., 2014) General 50m (Habash, Rambow and Roth, 2009) Yes No

Shamela (Belinkov et al., 2016) General 1bn (Pasha et al., 2014) Yes No

1 It is not mentioned in the paper. However, since it is used for evaluating a trained model of MSA text annotated on PATB, we assume that it is annotated using the same tagset.
2 This is an expanded corpus of the Religious corpus developed by the same author.

 - 32 -

3.2.3 Orthographically annotated Corpora: Diacritised Corpora

Corpora may also be annotated by adding diacritics to the word form, which

is useful in reducing the ambiguity of the word in meaning and grammatical

category and features. This type of annotation can be seen as one type of natural

rewritings corpora, e.g. misspelling corpora; however, under-specification of word

forms in Arabic is not a mistake as it is a common practice. Natural rewritings

corpora are usually helpful in NLP tasks such as text correction, paraphrasing,

summarisation, and text normalisation.

This section focuses on diacritised corpora as it is highly related to

morphological annotation. One unique aspect of classical Arabic texts is that they

are often diacritised. This added specification was not done for no reason:

diacritisation should help the reader disambiguate each word by looking at its

diacritics. This disambiguation is needed more for classical texts, and in particular

religious texts where correct interpretation is much needed.

However, works that focus on MSA texts generally ignore the diacritisation

completely. It is common to normalise the text by removing all diacritics as they

only contribute to increasing the sparsity of words. In classical Arabic, this

information should be integrated in the morphological analysis. This section reviews

the available corpora and sources for diacritised texts.

1. PATB Treebank (Maamouri and Bies, 2004)

Rich-annotated treebanks are one source of diacritised corpora (in particular:

PATB treebank) (Maamouri and Bies, 2004). The PATB treebank is one million

tokens (~750k words) annotated with part of speech (POS), gloss, and word

segmentation; however, not all words are fully diacritised.

In fact, the diacritisation on the PATB treebank has passed through different

decisions. The first corpus was lexically diacritised, with no case marks for nouns,

no voice nor mood marks for verbs. The second corpus diacritisation considered the

case and voice marks and was governed through some guidelines that allow a

consistent annotation schema. The third corpus added mood for verbs.

This treebank has been used in many diacritisers as a training and testing

dataset. However, the dataset is only available through an expensive membership of

 - 33 -

the Linguistic Data Consortium (LCD). Its data is newswire and all the text is in

MSA.

2. OptDiac Project (Zaghouani et al., 2015)

OptDiac stands for Optimal Diacritisation Scheme for Arabic Orthographic

Representation. The project aims to improve readability and comprehension rates for

Arabic text through NLP. It is the only annotation project that is dedicated to

diacritisation. It proposes different schemas for partial diacritisation for the purpose

of achieving optimal readability scores. One contribution of the project is the

annotation of the Corpus of Contemporary Arabic (CCA) (Al-Sulaiti and Atwell,

2006), a balanced 1-million words corpus of MSA texts. There is no clear mention

of the availability of the annotated corpora nor the licence.

3. Tashkeela (Zerrouki and Balla, 2017)

Tashkeela is a corpus of 75 million words semi-automatically extracted from

several sources. Classical Arabic constitutes about 98% to the corpus, with 97 books

extracted from the Shamela Library. The estimated average number of diacritics per

word is 2.05, an indicator of partially diacritised texts. The process of text selection

is basic and does not ensure that all texts in that book is diacritised.

Although MSA orthography is largely standardised (Habash, Diab and

Rambow, 2012), the presented corpora cannot be assumed consistent because of

four reasons:

1. The level of diacritisation varies: fully (every single letter), semi-fully

(except deterministic letters), and partially.

2. The schema for diacritisation may differ which affects how one letter is

diacritised: e.g. position of nunation and the diacritisation of the final letter

proceeded by a vowel-starting word.

3. Some corpora truncate syntactic vowels (i.e. last short vowels) for the

purpose of keeping only lexical diacritics. An automatic process usually

results in inconsistent results, e.g. when word is fused with a suffix.

4. Some lemmas can have multiple correct lexical diacritisations (this does not

include case marks nor mood marks). For example, (/>SbE/, “finger”) can

be diacritised in eight ways (Mandhour, 1994): /<iSobaE/, /<iSobiE/,

/<iSobuE/, />aSobiE/, />aSobuE/, />uSobaE/, />uSobiE/, />uSobuE/.

 - 34 -

3.3 Annotation Tools
Recent research developments in, and uses of, Arabic annotated corpora

were the main inspiration behind building a new tool for manual annotation. These

corpora play a growing role in some linguistic and computational research areas

such as part-of-speech tagging, segmentation, and diacritisation. Additionally, the

need of a freely available annotated corpus of classical Arabic increases the

importance, which may encourage researchers to conduct more studies in the

aforementioned research areas.

Annotation tools play a critical role in the development of annotated

resources. Annotation is known to be tedious; but because it is done by humans, it is

prone to errors. All tools should aim to be efficient in terms of time and accuracy.

The annotation of Arabic text is even more tedious and time-consuming than its

equivalent in morphologically-poor languages, as the annotation richness is usually

higher.

Morphosyntactic annotation of highly inflectional language corpora requires

additional specialised functionality:

1. Segmentation of one word into a set of segments

2. Addition of orthographical accents or diacritics

3. Listing a set of solutions from a lexicon dictionary (internally or

externally using a morphological analyser)

4. Consistency validation and integrating annotation guidelines (e.g.

homographs).

5. Adaptive prediction based on historical tagging

6. Efficient keyboard-based navigation and labelling

In this literature review, we focus on four aspects, i.e. tools that:

1. Are open access and available to download for research purposes.

2. Are web-based: to integrate it with other systems, and to allow easier access

through browsers.

3. Annotate text tokens with morpho-syntactic tags in CoNLL-U v.2 format1.

1 CoNLL-U format has been used in the Universal Dependencies project (Nivre et al., 2017), and is

described in detail on their website (http://universaldependencies.org/). The choice of this format is to

constrain tools that: do not allow morpheme-based annotation, do not restore adjusted-form, and do

not have POS+features representation.

 - 35 -

4. Support right-to-left languages.

Annotation tools can be classified in two categories. General-purpose tools

aim to provide a single framework to all annotation tasks of one text and support

different languages. Task-specific tools aim to give specific features for the

annotation of one layer, e.g. morphological annotation or to specific features of one

languages, e.g. Arabic. The first usually support a variety of file formats, while the

second may not. We noticed that task-specific tools are usually done in research

groups to suit their needs, and are usually not available.

3.3.1 General Annotation Tools
These annotation tools are not designed for a specific language. In addition,

they aim to support a range of annotation tasks. The summary of each tool’s support

of our set of criteria is shown in Table 3.2.

1. Brat Annotation Tool (2012)

The Brat tool (Stenetorp et al., 2012) is a generic tool that has an excellent

visualisation component for syntactic annotation. It has a morpho-syntactic

annotation layer as well, but it suffers greatly from not supporting right-to-left

languages. We can use transliterated Arabic instead, but it is still sub-optimal.

2. WebAnno (2013)

WebAnno (Yimam et al., 2014) is a set of well-documented tools for

multiple annotation tasks. It uses brat annotation for visualisation and supports RTL

languages as well. However, it does not allow changing or inserting nodes to the

basic layer and assumes that input is a gold-standard segmented text. Moreover, a

number of clicks are required to just change one element’s information.

3. Arborator (2013)

Arborator (Gerdes, 2013) a dependency annotation tool that supports RTL

languages. One significant advantage of this is the synchronisation between the

CoNLL-U and the visualisation, allowing the annotator to edit CoNLL-U text and

check the result in the visualisation. It has a simple drag-and-drop interface for

syntactic relations editing. However, it is not well documented, and it is more suited

for syntactic annotation than morphological annotation.

 - 36 -

4. CorA (2014)

CorA (Bollmann et al., 2014) is a web-based tool publicly available2 for

morpho-syntactic annotation of non-standard texts. It offers token-based annotation

of lemmatisation, POS tags and morphological features in addition to normalisation

and modernisation. The modernisation layer can be used for diacritisation in our

case. A significant advantage of this tool is its support of immediate retraining of

taggers on newly annotated data. The tool assumes tokenised morphemes as input,

and does not allow the annotator to segment on the fly.

Table 3.2 Comparative analysis of open access annotation tools.

Features Brat WebA Arb CorA

Segment one word into segments. P

Diacritics P P P

Suggest a set of solutions from a lexicon dictionary

Consistency validation P

Adaptive predicting based on historical tagging P P

Efficient Keyboard-based navigation and labelling P

3.3.2 Arabic Morphological Annotation Tools

1. Fassieh (2009)

Fassieh (Attia, Rashwan and Al-Badrashiny, 2009) is a tool used internally

in the RDI company and is not available for download. It was used in the

development and annotation of the NEMLAR written corpus. It aims to provide a

one-for-all framework for all types of annotations including morphological, POS

tagging, phonetic (diacritisation), and semantic annotation. The annotation tool is

one part of the whole system which includes diacritiser, tagger and segmenter. It is a

standalone application that shows the context of the sentence and provides a set of

possible analyses in a tabular format. The features of annotation tools like searching,

output format and consistency checking is not specified in the article. The tool

seems to only work with RDI settings, including the tagset and taggers.

2. SAWT (2016)

2 https://github.com/comphist/cora

 - 37 -

Sequence Annotation Web Tool (Samih, Maier and Kallmeyer, 2016) is a

web-based tool for the annotation of token sequences with an arbitrary set of labels

(e.g. POS tags). It is simple and efficient but suffers from segmentation assumption

as well. It is yet not available.

3. MADARi (2018)

MADARi (Obeid et al., 2018) is a web-based annotation tool for

morphological analysis with an emphasis on spelling corrections. The authors target

annotating the MADAR project, a multi-Arabic dialect corpus (Bouamor et al.,

2018). Arabic dialects are often misspelt or at least do not conform to standards.

They plan to release the tool and make it available but no specific timeline or licence

is stated. The tool as well does not support CoNLL-U format. Specifically, it does

not support morpheme-based annotation. Although this tool does not match our

criteria, this tool is recently published (concurrently with Wasim tool (introduced in

Chapter 9) in LREC 2018 conference) and have common tasks and needs with

Wasim.

3.4 Morphological Annotation Representation

3.4.1 Tagsets

Arabic traditional grammar, and school textbooks, state that there are three

POS tags: nouns, verbs and particles. This classification is criticised for being too

coarse and confusing. It does not state how to define the three categories and how to

handle borderline cases. Instead the classification sometimes was based on

examples; for example, Sibawayh, the father of traditional grammar, introduced this

classification by saying (translated from Arabic): “the speech consists of nouns,

verbs or particles which are not nouns nor verbs. A noun is like a man, a horse, a

farm” (Sibawayh, 1988, p. 12). But later scholars tried to define this classification

by stating some features like only nouns can have nunation and the definitive article.

Traditional scholars were not unanimous on the tripartite classification and some

introduced a forth class, e.g. Abdel Qahir (Al-saqi, 1975).

The most famous modern classification is the one introduced by Tamam

Hassan (Hassan, 1994) and his PhD student (Al-saqi, 1975). They proposed a two-

dimensional morphological analysis system where the first dimension is POS tags,

and the second dimension is the morphological features. The POS tagset has two

layers and consists of seven main categories: nouns, verbs, adjectives, adverbs,

 - 38 -

pronouns, particles and interjections. Each category has its own subcategories. This

new tagset is based on two principles: word form and function, which can be seen as

the word features that should be used for classifying one word. Word form considers

the word’s ability to have some grammatical marks (Ia’rab marks, e.g. case and

mood marks), its order, possible pattern, inflections system, coupling and its

orthography. Word function includes morphological and grammatical functions like

naming, action, tense, dependency, and grammatical meaning. Main categories have

to have a difference not only in form or in function, but in both principles. This

classification is not adopted in computational linguistics; however, Al-jundi (2016)

tried to map some existing resources to this tagset and claim that it is possible.

Traditional classifications, and Tamam’s in particular, lack the evaluation of

proposed systems: e.g. there is no tagged corpus with such a classification.

Arabic tagsets in computational linguistics can be divided into two groups:

traditional and “English-centric”. English-based tagsets (Hajic et al., 2004;

Maamouri and Bies, 2004; Diab, 2007) emerge when resources for Arabic was

limited, and an agreed-upon tagset is required for resource development. These

tagsets use a minor modified tagset from standard English. However, as Wintner

(2014) stated: “Such an adaptation is problematic for Semitic languages”. For

example, the distinction between adjectives and nouns is blurry (See 5.7). Unlike

English, they have common morphological properties, e.g. inflection, which suggest

they could be a subcategories of nominal (Wintner, 2014). On the other hand,

traditional tagsets follow the long history of morphological studies that spans

fourteen years in their names and classification. They usually are central to the

explanation of grammatical marks (case and mood). Several traditional-based tagsets

are proposed (Khoja, 2001; Dukes and Habash, 2010; Sawalha, Atwell and

Abushariah, 2013; Elhadj, Abdelali and Ammar, 2014; Zeroual, Lakhouaja and

Belahbib, 2017). However, the main challenge is the construction of a language

resource, e.g. an annotated corpus, which is fundamental in computation linguistics.

Since many tagsets are introduced in the literature, we will focus on tagsets used in

classical corpora.

Classical corpora, in general, do not conform to a standard tagset and are

relatively small. As shown in Table 3.1, almost every corpus has its own tagset and

the largest annotated corpus is the Quran, ~77k words. This might be due to the lack

of commercial interest and the limited uses of such annotation. However, religious

 - 39 -

corpora, e.g. the Quranic Arabic Corpus, demonstrate their usefulness not only for

NLP studies, but for end users who use the tagged corpus for the purpose of

understanding the Quran.

1. Khoja’s Tagset (Khoja, 2001)

It is a complex hierarchical tagset that is based on traditional Arabic

grammar. Figure 3.1 shows the list of the main POS tags. The hierarchical

aspect of the tagset implies inheritance such that all subclasses inherit

properties from parent classes. There is a 1.7k-words newswire MSA corpus

that uses this tagset.

Figure 3.1 Khoja's Tagset, taken from (Aliwy, 2013).

2. Penn Arabic Treebank (Buckwalter) Tagset (Maamouri and Bies, 2004)

The tagset used in PATB is the most widely used (Sawalha and Atwell,

2013), and has been recently applied to classical texts (Mohamed, 2018). The

tagset, which consist of ~70 basic tags, is the untokenised version of the

Buckwalter morphological analyser. Because this tagset is rich, several

reduced tagsets emerged, e.g. (Diab, 2007). Figure 3.2 shows the token-

based basic tagset.
ABBREV

ADJ

ADJP

ADV

CASE

CONJ

CVSUFF

IV2FP

IV2FS

IV2MP

IV2MS

IV3FD

IV3FP

IV3FS

PART

POSS_PRON

PREP

PRON

PUNC

PVSUFF_DO

PVSUFF_SUBJ

 - 40 -

DEM

DET

EMPHATIC_PA

RT

EXCEPT_PART

FUT

FUT_PART

INTERJ

INTERROG_PAR

T

IV1P

IV1S

IV2D

IV3MD

IV3MP

IV3MS

IVSUFF

LATIN

NEG_PART

NOUN

NOUN_PROP

NO_FUNC

NSUFF

NUM

REL_ADV

REL_PRON

RESULT_CLAUSE_PA

RTICLE

SUBJUNC

SUB_CONJ

VERB

VERB_IMPERATIVE

VERB_IMPERFECT

VERB_PART

VERB_PASSIVE

VERB_PERFECT

Figure 3.2 PATB Tagset3.

3. Quranic Arabic Corpus Tagset (Dukes and Habash, 2010)

QAC tagset is two-dimensional and used to tag the Quranic texts, so the

tagset is tailored to Quranic texts. It is designed to capture long-established

traditional Arabic grammar, Ia'rab. The first dimension has ~45 tags: nine

tags for nominals, one for verbs, 34 tags for particles and one for Quranic

initials. The second dimension represent affixes and morphological features

including gender, person, number, aspect, mood, verb form, state, case,

derivation and voice. The tagset is published online4. This tagset is discussed

in detail when we introduce the Sunnah Arabic corpus (see Chapter 8).

4. SALMA tagset (Sawalha and Atwell, 2013)

SALMA is the most fine-grained tagset in two dimensions: the number of

features (~ 15 features) and the number of possible tags of each word (~ 91

distinct tags). The POS tags has two levels where the first level is the three

traditional categories (noun, verb, particle) plus two categories: affixes, and

punctuations. The SALMA tagset has thirty-four possible tags for nouns,

three for verbs (which matches the aspect feature in other tagsets), twenty-

two for particles, twenty for others, and twelve for punctuations. It is the

3 Each part has a slightly different tagset. This tagset is for Part 2. The original tagset (with

compound tags, with morphological features) can be found in: https://catalog.ldc.upenn.edu/

docs/LDC2004T02/
4 http://corpus.quran.com/documentation/tagset.jsp

 - 41 -

most finely-grained tagset in Arabic regarding tagset size and feature set

size.

The tagset has been applied to two small corpora (~1000 words each): MSA

and Quranic. While this tagset is rich and follows the traditional Arabic

grammar, it does not define the characteristics of each tag. This evaluation is

based on the feedback from two linguists in one experiment (see Section

5.5). This results in many borderline cases, e.g. some particles can belong to

two categories like (/mn/ from).

3.4.2 Mapping of tagsets
Mapping between tagsets is useful in reusing and accessing existing

heterogeneous annotated corpora. It is one of the first attempts to exploit the existing

heterogeneous corpora and collate them into one big dataset which can increase the

quality of training for statistical methods. Also, it is useful for standardising corpora

with different annotation schemas. There will be no need to know and memorise

each corpus tagset.

Mapping from one tagset to another tagset has been adopted in many

applications. It has been adopted to achieve better accuracy by reducing tagset size

(Brants, 1995; Dienes and Oravecz, 2000; Giesbrecht and Evert, 2009), to build a

universal tagset (Petrov, Das and McDonald, 2012; Zhang, Reichart and Barzilay,

2012), to evaluate a proposed tagset (Sawalha and Atwell, 2013), to easily use other

corpora (Atwell, Hughes and Souter, 1994), to standardise languages resources

(Leech and Wilson, 1996; Schmidt et al., 2006), and to merge an existing annotated

corpus into a new one (Habash and Roth, 2009).

Mapping a tag to a different tagset can be seen in one of the following

situations (Teufel, 1995):

• 1-to-1 mapping: This is just renaming of the tag.

• n-to-1 mapping: Many tags can only be mapped to one tag in target tagset.

We lose some information from the source tagset. For example, mapping

perfect, imperfect and imperative verbs to V will entail losing the aspect of

the verb.

• 1-to-n mapping: The tag is ambiguous. However, the source tag will have

less information than possible target tags.

• m-to-n mapping: This case is the most challenging one.

 - 42 -

Most of the proposed mappings in the literature involve a reduction in the

tagset size; i.e. mostly mappings are many-to-one or one-to-one mappings. We will

not go into detail on those mappings, as those mappings are just “renaming” of the

tagset. However, several attempts have been made to “standardize” tagsets (map

tagsets to a standard one) or “cross" map existing tagsets. In the following sections,

we will explore and describe each approach.

3.4.3 Cross Mapping of Tagsets

Automatic Mapping Among Lexico-Grammatical Annotation Models

(AMALGAM) project (Atwell et al., 2000) was a pioneer project that tried to

provide a full-featured mapping. AMALGAM aimed to provide a “POS-tagset

conversion” method for English annotation schemas; i.e. given a text tagged with

one tagset, it outputs the text tagged with another tagset, no matter how the two

tagsets differ in their formalism, size, etc.

The AMALGAM project maps the tagset A to tagset B by doing the

following steps: First, it builds a POS-tagger trained on the corpus tagged with

tagset B. Next, it uses the tagger to predict the tag of the word in a corpus tagged

with tagset A. In other words, there are no mapping rules from tagset A to tagset B.

This decision was made as the authors discovered in earlier experiments that the n-

to-m and 1-to-n mapping “predominated” over the simple 1-to-1 and n-to-1

mappings.

Teufel (1995) proposed a mapping tool which maps morphosyntactic tags to

a specification language. This language is typed, constraint-based, and editable. The

paper did not handle multiple tags per word, i.e. words that have clitics, each with a

tag, which is a very common pattern in Arabic.

Pîrvan and Tufi (2006) proposed a cross-tagging generic algorithm that

allows mapping one tagset to another. The algorithm uses four components: two

gold standard corpora. Each one is tagged using a tagger learned from the other

corpus. The four components then get involved in a stochastic process that builds

what they called cross-mapping by finding probabilities of the contingency table of

tokens. The paper claims that it is possible to merge the two corpora confidently

tagged with either of the tagsets. It claims even that gold standards can be improved.

However, the algorithm seems to assume that the two corpora are aligned when

constructing the contingency table. In the paper, the authors mentioned a

 - 43 -

tokenisation inconsistency within a gold standard, but they did not mention how the

corpus and its cross-tagged version were aligned.

In Arabic, most of the mappings of tagsets consider a reduction or renaming

of some tagset, to match the target application such as POS tagging (Toutanova et

al., 2003; Diab, 2007; Habash, Rambow and Roth, 2009; Pasha et al., 2014), parsing

(Kulick, Gabbard and Marcus, 2006), universal representation (e.g. UD treebanks),

or faster treebank production (Habash and Roth, 2009). The link between the

reduced tag and the set of fine-grained tags is usually maintained. There are some

cases where reduction is followed by expanding some tags using some manual

correction, e.g. the QAC tagset (Dukes and Habash, 2010). Similarly, the SALMA

sample of the Quran was developed using a mapping procedure from the QAC

corpus (Sawalha and Atwell, 2013). To the best of our knowledge, there is not any

existing work that handles the mapping of two independent tagsets without manual

intervention at the word level.

3.4.4 Standardizing Tagsets

One appealing solution to the diversity of tagsets is the standardisation of

annotation schemes. The most famous example of this approach is the EAGLES5

initiative, which aimed to build standards for large-scale language resources. One of

the outcomes of the initiative is the EAGLES meta scheme (Leech and Wilson,

1996) which provides three levels of constraint (obligatory, recommended and

optional) and in each constraint, a set of attributes and their possible values are

defined. For example, it is ‘recommended’ to have an attribute number for noun

tagging, and its value can be singular or plural. These guidelines urge that tagsets

should be mappable to the provided framework, i.e. the tag should be mappable to

one or more attribute/value pairs.

In collaboration with EAGLES, the Multext-East Project built a similar

project for central and eastern European languages (Dimitrova et al., 1998). The

project built parallel and comparable corpora POS tagged and aligned to the English

version of the original text.

While these two frameworks provide a detailed set of standard

morphosyntactic terminology, they are only applicable to Indo-European languages.

5 The Expert Advisory Group on Language Engineering Standards.

 - 44 -

For example, Arabic nouns can be dual but in EAGLES they are either singular or

plural. Additionally, EAGLES aims to increase tagging comparability of taggers, but

a tagger must map its tagset to EAGLES’s course tagset. This mapping would

reduce the quality of such comparison. EAGLES does not constitute an interlingua

tagset for translating between existing tagsets, as it is not resolving the problem of

tokenisation (Hughes, Souter and Atwell, 1995). Applying EAGLES standards to

Arabic in a tagset will “seem alien to Arabic linguists and grammarians” (Atwell,

2008, p. 517).

Similarly, in a joint project between three research centres in Germany,

(Schmidt et al., 2006) presented a new initiative to “standardize” existing linguistic

resources. They addressed the diversity in the language resources and proposed a

solution to the integration of linguistic terminology. In contrast to the EAGLES

project, they propose a “terminological backbone” that is well-defined, does not

integrate language-specific tags, is not limited to European languages, and is a more

thorough terminological resource.

Additionally, Petrov, Das and McDonald (2012) developed a mapping of

twenty-five different treebanks tagsets from twenty-five languages (including

Arabic) to a single universal tagset, initially for unsupervised part of speech tagging.

The tagset is a course annotation scheme that has twelve tags: ADJ, ADP, ADV,

CONJ, DET, NOUN, NUM, PRON, PRT, VERB, X denoting others, and DOT (.),

denoting punctuation marks. These tags were chosen to be the most useful tags to

exist among different languages. The mapping was done manually by a high level

analysis of tagset. This mapping does not solve one-to-many mapping cases; they

map to a courser tagset, whereas the majority of treebanks are “very fine-grained”.

However, this project has since been adopted as a widely used standard for

mapping diverse tagsets to a common standard. It has been used later as a standard

tagset in the famous Universal Dependencies Project along with other projects like

the Interset (Zeman, 2008), a tool for converting morphosyntactic tagsets of

different languages. We used this universal tagset as a course tagset version of

taggers' fine-grained tagsets on several occasions.

3.4.5 Segmentation Schemas

Different schemes in POS tagging assume a different tokenisation of the

input text. This tokenisation varies from tagging compound names with one tag to

 - 45 -

tagging each affix of a word. In the same manner, some taggers do not tag some of

the text, punctuation, dates, numbers, etc.

In the Arabic language, Habash and Sadat (2006) defined three ordered

degrees of segmentation structure: [CONJ+ [PART+ [Al+ BASE +PRON]]]. The

degrees are ordered, which means that CONJ+ cannot appear after a PART+. The

authors constructed several schemes, amongst which are: D1 which separates

CONJ+ from the BASE, D2 which separates CONJ+ and PART+ from the BASE,

and D3 which separates CONJ+, PART+ and Al+ from the BASE, respectively. The

ST scheme is the baseline, where a word is tokenised by splitting off punctuations,

numbers and diacritics. More schemes can be defined, as Arabic is highly

inflectional. As a consequence, taggers can have varied tokenisation schemes.

Taggers differ, however, in some more details. Some taggers segment not

only clitics but affixes as well. For example, the first character on imperative verbs

is segmented and tagged with some tags that indicate the person and number of that

verb: >u/IV1S + bAliy/VERB_IMPERFECT. Some taggers segment proclitic

pronouns that indicate the subject and some do not. Traditionally, Arabic grammar

segments these pronouns in the “Ia’rab” system: 'aAma/V + n~aA/PRON. More

details are presented in 4.5.

3.4.6 Segmentation Alignment

Because of different schemes of segmentation, it is necessary to align the

results of those taggers for proper evaluation and voting. However, this alignment is

“quite sophisticated” (Atwell et al., 2000). Segmentation alignment, in general, is a

requirement for evaluating different taggers that assume different

tokenisation/segmentation. Combination techniques vote between aligned tokens as

well.

Morphological alignment can be defined as a sequence alignment problem.

Any algorithm that tries to solve the problem will compute a score of similarity

(a.k.a. distance) between the two sequences and tries to minimise that distance. The

output of that algorithm is an alignment, a series of operations (e.g. addition,

deletion, substitution) where each operation has a cost with the goal of transforming

one sequence into the other. The optimal alignment is the alignment that has

minimum cost.

 - 46 -

In the GRACE evaluation task (Adda et al., 1998), the organisers used a

reference corpus that uses text tokenisation different than the one returned by a

participant. They give the participants complete freedom in the tokenisation scheme.

The total number of tokens returned from participants after processing the test

dataset varied from 416,193 to 463,596 tokens. The “realignment” was done using a

token-level comparison using each token’s lexical form. Specifically, they used the

UNIX command diff (after putting each token in a new line) which finds the

difference between two files. The number of reference tokens is always larger than

or equal to the number of tokens of any participant; i.e. reference tokenisation is the

most fine-grained one. The result was then realigned (substring matching in two

runs), by first adding “ghost” characters then rebuilding the original tokens. In case

a token could not be realigned, it is omitted from the evaluation (Adda et al., 1998).

This alignment assumes that there are limited changes to the word when it has been

tokenized; however, it is very common in Arabic to have orthographical changes

when tokenizing the word: such as words with final Taa Marbutah /p/ which is

converted to Taa /t/ (N. Y. Habash, 2010, p. 60).

In contrast, the AMALGAM project used a neutral tokenisation scheme. In

order to simplify comparisons, they used just one tokeniser for all schemes. This

produced errors in tokenizing and tagging negatives (aren’t), enclitics (where’s), and

expressions like (for example, have to, set up…) (Atwell et al., 2000). This is only

possible because they built a Brill tagger for each participating corpus. It is,

however, not possible if the POS-tagger has an integrated tokeniser with no option

to configure it.

To the best of the author’s knowledge, there is no work that described the

problem of morphological alignment in Arabic or suggested a systematic mapping

from one to another. However, several studies presented the biword alignment of

bilingual parallel corpus (Lee, 2004; Elming and Habash, 2007; Nguyen and Vogel,

2008). Those studies inspired us to develop and learn the alignment from a multi-

tagged corpus.

3.4.7 Word Form Similarity

The distance between two text strings can be measured using one of the

string metrics (or string distance measurements). One of the most commonly used

metrics is the edit distance (also called Levenshtein Distance) (Levenshtein, 1966)

 - 47 -

which counts the number of deletions, additions, and substitution operations

required to transform one string to the another. A smaller number indicates greater

similarity between strings. We are using string metrics for the alignment purposes

on the level of word and morpheme between different taggers and/or reference

corpora.

Damerau (1964) extended Levenshtein distance algorithm to include the

transposition operation. Many other string metrics exist including Longest Common

substring, Jaro and Jaro-Winkler (Cohen, Ravikumar and Fienberg, 2003; Gomaa

and Fahmy, 2013). However, those string matchings are character-based algorithms

and treat all letters with an equal weight.

Arabic words can be optionally diacritised, and therefore a simple string

metric is not a perfect metric for comparing two Arabic words. Freeman et al.

(2006) extended the Levenshtein algorithm for the purpose of matching Arabic

Romanised names by mapping possible English equivalence class to Arabic letters.

Abdel Ghafour et al. (2011) proposed a string matching algorithm for the purpose of

name matching by defining different levels of similarity scores. In each level, groups

of letters are categorised based on their phonetic similarity. Similarly, it defines

groups based on letter form similarity. Finally, a function is defined to report the

keyboard distance between two characters. The algorithm then computes the

similarity based on the three criteria.

However, none of the algorithms appears to solve the problem of comparing

two partially voweled strings. Diacritisation systems (even human-based ones) use a

variety of conventions for diacritizing certain letters, e.g. the final Alef letter with

nunation. While some put the nunation vowels (◌ ً , Fatha nunation) on the Alef

letter, some put it in the previous letter. Similarly, a letter preceding an Alef letter is

always vocalised with a (◌ َ , Fatha) vowel, and linguists debate whether it should be

written or not.

3.5 Automatic Annotation

3.5.1 Taggers

Several previous studies surveyed the linguistic resources available for

researchers in the field of Arabic NLP. In these surveys, the aim is to come up with

a list of morphological analysers that one can use for downstream applications.

Atwell et al. (2004) conducted a survey on the Arabic MAs and came up with a list

 - 48 -

of 10 different analysers. They concluded their survey pointing out that most of

those analysers are not freely available or they are hard to use. Maegaard (2004)

surveyed the state-of-the-art language resources including MAs and POS taggers.

The Basic Language Resource Kit (BLARK) project in 2010 listed 7 MAs, three of

which are commercial software. Sawalha (2011) listed 6 MAs with his proposal of a

new fine-grained morphological analyser, three of which are freely available. A

noticeable inconsistency can be seen in the literature, maybe due to the lack of a

regularly updated directory of NLP tools, or due to the fact that some tools become

unavailable. In a survey of the literature on POS tagging techniques, Albared (2009)

surveyed the “POS tagging” techniques with a focus on Arabic: MSA and dialects.

None were explicitly designed for classical Arabic. Those techniques were criticised

as assuming closed-vocabulary and low generalisation with OOV words which is the

major challenge with domain adaptation to classical Arabic.

However, because our goal is to combine different taggers, these taggers

should be freely available to be included in our ensemble. Chapter 4 surveys Arabic

POS taggers and morphological analysers that matches four constraints: availability,

generality, credibility and normality (i.e. designed for standard Arabic). It evaluates

surveyed taggers on a classical Arabic dataset. We refer the reader to this chapter for

more details.

3.5.2 Domain Adaptation
Supervised tagging and segmentation methods usually score the best

accuracies. However, these methods are usually hard to port to other languages or

variants since they requires a training dataset that is usually costly and expensive.

There exist several other methods in the literature to tackle this problem, which

includes bootstrapping training datasets which assumes partially tagged training

corpus, and unsupervised methods (Freeman, 2001; Clark, 2007; Albared, Omar and

Ab Aziz, 2009).

Another approach is exploit existing tagged corpora and adapt these corpora

to different languages. One example is lemmatization using translation from a

second language. Another example is the reproduction of morphological analysis

through exploiting existing taggers designed for a related language, which is

discussed in this thesis.

 - 49 -

Experiments that used these MSA-based taggers for classical Arabic reported

a significant drop in the accuracy. Even though the morphology of classical Arabic

is the father of MSA, some studies showed that CA texts are not compatible with

MSA taggers.

Alrabiah (2014) compared two MSA-based taggers both designed for MSA

to annotate the KSUCCA classical Arabic corpus. Using five samples from different

genres of classical Arabic, an evaluation of these two systems showed a drop in their

accuracy by 10-15%.

In addition, the semi-annotation of the QAC corpus (Dukes, Atwell and

Habash, 2013) used an MSA morphological analyser (Buckwalter analyser), but the

manual verification step made corrections to at least 24% of words, nearly a quarter

of text words, although the text is fully diacritised.

The Heritage Corpus (Mohamed, 2018) used a tagger trained on the PATB

treebank to tag one part of his corpus (2000 words). The accuracy achieved is only

78.62% and referred to the high percentage of out of vocabulary words (43.39%).

This finding is not limited to POS tagging. For example, tag-based text

compression using Prediction-By-Partial Matching exploits the morphological

analysis to improve the compression performance. The method tagged the text to be

compressed, and the tagged files then compressed and compared against baseline

character-based compression. In (Alkhazi and Teahan, 2017), the tag-based

compression (using MSA tagger) shows improvements in MSA texts over the

character-based compression. However, for classical Arabic texts it does not show a

similar pattern, which suggests that “the quality of tagging of classical Arabic has

dropped”.

3.5.3 Combining Taggers
In Machine Learning, ensemble methods refer to the process of combining

multiple learning methods to obtain a higher accuracy in classification prediction

that was not achieved by any of individual learning methods. Multiple types of

ensemble exist in the literature, including bagging (equally-weighted models trained

on random subsets of the training data) and boosting (adaptive training where each

new model focus on a subset of training data that were misclassified). Many other

combination techniques are available.

 - 50 -

In POS tagging, different techniques were used, including: knowledge-based

models– table lookup, syllable-based morphology, pattern morphology; and

empirical methods– Hidden Markov Models (HMM), Support Vector Machines

(SVM). Each POS tagger is designed differently; however, without a full

understanding of the language, no POS tagger could ensure perfect accuracy.

Because of their different knowledge bases and diverse inference methods, taggers

will typically produce different errors (Halteren, Zavrel and Daelemans, 2001).

The combination of heterogeneous POS taggers exploits these differences,

and it is reported to achieve a better accuracy for several languages, including

English (Marquez et al., 1999; Halteren, Zavrel and Daelemans, 2001; Schroder,

2002), Italian (Søgaard, 2009), Icelandic (Henrich, Reuter and Loftsson, 2009),

Polish (Śniatowski and Piasecki, 2012; Kobyliński, 2014), and Swedish (Sjöbergh,

2003) and even for Arabic (Zribi, Torjmen and Ahmed, 2007; Aliwy, 2013; Albared

and Hazaa, 2015; Zeroual and Lakhouaja, 2017).

Most of the combination of POS-taggers are based on training different

models inferred from one training corpus, i.e. homogeneously annotated texts.

Therefore, each model uses the same or reduced tagset and morphological

segmentation as the one on the training corpus. However, heterogeneous

combination of black-box taggers or heterogeneous corpora involves handling

different issues (see Section 5.2).

3.5.4 Exploiting Heterogenous Resources
For word segmentation in Arabic and POS labelling, supervised learning has

become a dominant model. Its progress is due to the development of annotated

corpora and NLP techniques. Although many corpora are released in the literature,

obtaining sufficient amounts of high-quality training data remains a major obstacle,

especially for morphologically rich languages. Annotation schemes for corpora are

adversarial since underlying linguistic theories differ. Sadly, although there are

multiple resources, it is not possible to merely collate such data for training systems,

since almost all existing NLP systems assume a homogeneous annotation.

Therefore, it is essential to consider how to use and exploit heterogeneous resources

to improve Arabic word annotation and segmentation.

A second related problem is that existing corpora are usually drawn from

some specific domains, e.g. newswire data. Adapting these corpora to a new

 - 51 -

domain, e.g. classical Arabic, usually is not trivial. The second problem is well-

studied, e.g. adapting MSA to dialectal Arabic (Monroe, Green and Manning, 2014;

Albogamy and Ramsay, 2016). However, we agree with Jiang et al. (2009) and

argue that the two approaches are related but the underlying problem is different.

Domain adaptation assumes that the annotation guidelines are the same in terms of

tagging and segmentation and only the distribution is different (Jiang, Huang and

Liu, 2009). Contrarily, annotation-style adaption, as defined by Jiang et al., assumes

the guidelines themselves are different and tries to exploit the shared knowledge,

and the distribution might be the same or different.

3.5.4.1 Annotation-style Adaptation: combining heterogeneous corpora

Exploiting heterogenous resources in annotation-style can be done by

developing a tagger from heterogeneous corpora or by combining heterogeneous

black-box taggers. They both exploit the annotation which is costly in terms of time

and money. However, there are some differences. First, the evaluation of black-box

taggers is not always possible because of the lack of evaluation datasets. Second,

these taggers are not always tuneable, as they come pretrained on a specific dataset

with specific guidelines.

There are a growing number of efforts that address the reusability of

heterogeneous corpora, especially in Chinese6. Most of these are done toward

integrating different corpora instead of adversarial taggers. There are two main

approaches: stacking and multi-view learning. Stacking methods, e.g. (Jiang, Huang

and Liu, 2009), pile up independently trained models where each model is trained

based on the predicted values of the previous model. These methods suffer from an

error propagation problem. Recent works shift to Multi-view models, which, in

contrast, model the problem jointly by sharing common feature representations and

treat the problem as a multi-class problem.

Qiu et al. (2013) uses a multi-view model and trains two homogeneous

corpora simultaneously, using a manually-extracted loose mapping between the two

6 The Chinese language shares some features with Arabic, namely the need to segment the text

sequences to reduce the word form sparsity. Chinese words comprise several characters, up to four or

five characters (Teahan et al., 2000). In Arabic, a surface word form comprises several morphemes,

up to four morphemes, and five-morpheme words exist but are rare. The segmentation is not standard

in both languages, which results in corpora annotated with adversarial segmentation schemas.

 - 52 -

corpora tagsets. Chen et al. (2017) recently published an ACL award-winning paper

that proposes an adversarial method to exploit heterogeneous segmentations in

Chinese corpora using deep neural models. The integration of shared knowledge

from different segmentation schema is done by regarding the problem as a multi-

task learning problem. A shared layer is used to extract shared features (using a

custom adversarial objective function), and a private layer is used to extract

segmentation-specific features. The two methods are shown to be effective in

improving the performance of Chinese word segmentation.

3.5.4.2 Annotation-style Adaptation: Reusing Adversarial Taggers
Building an ensemble tagger from heterogenous corpora might be more

appealing since it does not restrict the ensemble to the taggers’ constraints, e.g. how

they expect the input. However, taggers might employ sophisticated techniques like

the use of external resources (e.g. lexicons), which the state-of-the-art Arabic

taggers do. It is worth exploiting Arabic heterogenous corpora, especially with the

growing number of classical annotated corpora, but we have left it for future work.

Most works in Arabic ensemble segmentation and tagging used

homogeneous settings (Zribi, Torjmen and Ahmed, 2007; Aliwy, 2013; Albared and

Hazaa, 2015; Zeroual and Lakhouaja, 2017). To the best of the author’s knowledge,

four works in Arabic utilize adversarial and homogeneous tagging and domain

adaptation from MSA to classical texts. The following detailed review will only

discuss studies that combined heterogeneous ensembles in Arabic language analysis.

1. Alabbas and Ramsay (2014)

Alabbas and Ramsay (2012a, 2014) performed a simple method for

combining three Arabic taggers: MADA, AMIRA and a simple home-made

maximum likelihood tagger (MXL). They examined five strategies of combining the

results: three strategies of majority voting (with backoff to MADA, AMIRA or

MXL), majority voting with backoff to the most confident, and most confident as

the primary strategy. To define the most confident tagger, they examined how likely

a tagger is correct when tagging with one particular POS tag (e.g. noun), e.g.

MADA is 95% correct when it is tagging as a noun. The most-confident strategy

achieved the highest accuracy with 0.995 with a coarse-grained tagset and 0.96 with

a fine-grained tagset.

To recover from the mismatches between the reference corpus used (PATB

Part 1 v. 3) and AMIRA tagset, the authors used transformation-based retagging

 - 53 -

(TBR) which improves the score from 90% to 95%. However, AMIRA and MADA

tokenise sometimes differently. To solve this problem, the PATB was translated to a

coarser version of AMIRA's tagset, and compared with AMIRA's output: the output

is used if it is compatible with the translated tag; otherwise, the translated tag is

used. This edit ensured that AMIRA and MADA will use the same token number as

the PATB. The accuracy of this study is encouraging. The combination of taggers

boosts the accuracy by 2-4%.

Although this work is encouraging to our research, testing on a subset of the

ATB is problematic as the individual tools are trained on the ATB– “due to its

limited lexical diversity and the similarity between the training and test sets”

(Darwish and Mubarak, 2016, p. 1070). This generally leads to results that are often

artificially high.

The technique does not propose a systematic method for homogeneous

segmentation schemas. In fact, the AMIRA toolkit uses a reduced tagset from the

PATB tagset, which means that there is a direct link between the two outputs7. The

handling of segmentation differences makes this technique inapplicable to unseen

text as it relies on a pre-processing step on the tagged corpus (to enforce same

tokenisation).

2. Albogamy and Ramsay (2016)

This work does not introduce an ensemble tagger; however, it uses

heterogenous taggers for the purpose of improving POS taggers using agreement-

based bootstrapping on noisy microblogging texts (Twitter). Using three off-the-

shelf Arabic taggers (Stanford, MADA, AMIRA) for such text reports leads to a

drop in performance; their accuracies range from 49-65%. The best approach to

improve their performance was to retrain on a small twitter dataset, pre- and post-

process texts, add MSA annotated corpora and use agreement-based bootstrapping.

The novel agreement-based bootstrapping aims to increase the training

dataset size by adding words that the three taggers agree upon. However, since the

three taggers use different tagsets, their tagsets were reduced to a collapsed tagset,

which is used to evaluate the predicted outputs of the three taggers instead of the

original ones.

7 POS tags are from “the collapsed set of tags included in the Arabic treebank distribution

(known as the Extended Reduced Tag Set or ERTS)” [README file in AMIRA package].

 - 54 -

This work is related to our research as it utilizes heterogenous taggers and

adapts them to a new domain, microblogging. However, this work lacks more details

about the segmentation alignment between the three taggers. Its evaluation is word-

based but there is no clear mention of handling heterogeneous clitics. In addition,

the agreement-based addition of words will introduce incomplete or ill-formed

sentences, which might affect the final tagging performance. Constraining to only

sentences with full agreement is not practical; as the agreement between tagger is

low (60.4%) according to the authors. The chance of a 5-word sentence to have a

full agreement is very low: 7%.

3.5.5 Classical Arabic Tagging

1. Rabiee (2011): Adapting from QAC to MSA

Rabiee (2011) tried to adopt several taggers by training them on the QAC

and then applying the learned model on tagging an MSA sample. He used BAMA as

a morphological analyser and used TreeTagger to train a model from the QAC.

Tagging then was constrained by the solutions of BAMA. The tagset of BAMA was

reduced to only a 9-tag tagset that was comparable with the QAC tagset. However,

his mapping encountered one-to-many cases (e.g. mapping ADV tag). In that case,

he chose to map to the most common tag. The accuracy achieved in tagging a 66-

word MSA sample was 76%.

This tagging can be seen as a novel sequential tagging scheme as it uses the

output of BAMA to constrain TreeTagger. The coarse mapping of the tagset is

justified as the author needs to compare taggers with different tagsets. However,

errors were raised from this mapping: LOC is about 38% of ADV cases, and the

mapping of ADV to the other more common tag T constrains the TreeTagger to an

incorrect tag. Additionally, the author used a test sample with only 66 words, which

does not count as a representative sample of the MSA. The sample’s origin, genre,

and how it was annotated were not even clear. The author used an earlier version of

QAC which has word-based annotation, and thus the morphological alignment was

not an issue.

2. Alrabiah (2014): Adapting from MSA to Classical Arabic

This work compared two MSA-based taggers both designed for MSA –

Alkhalil and MADA - to annotate the KSUCCA corpus. Ten samples were

randomly extracted from KSUCCA from different genres, and each sample is of 100

 - 55 -

words. Seven annotations are used to evaluate each tagger: root, pattern, lemma,

stem, POS tag, number and gender, only two of which is common between the two

taggers. Because Alkhalil does not disambiguate between proposed solutions,

Alrabiah proofread all of them and whenever one of them was correct it was marked

as a success. The evaluation of these two systems showed a drop in their reported

accuracy by 10%-15%.

A comprehensive experiment in Chapter 4 tends to confirm similar findings.

These studies show that current taggers might need to be adapted for classical

Arabic and their dictionaries need to include classical lexicon.

Table 3.3 The accuracy of MADA and Alkhlalil (Alrabiah, 2014)

Tool Stemming POS tagging

AlKhalil v.1 75.1% 77.6%

MADA v3.2 84.9% 83.40%

3. Alashqar (2012): Various Taggers on Quranic Arabic

Alashqar conducted a comparison between POS techniques using the

Quranic Arabic Corpus. He compared four techniques: N-Gram, Brill, HMM, and

TnT taggers. The experiments were done on two versions: diacritised and

undiacritised Quranic text using NLTK toolkit.

After pre-processing a diacritised QAC file to match NLTK format, an

undiacritised file was generated. Next, the author mapped the tags into the 9-tag

simplified tagset, resulting in four cases of the experiment: diacritised vs.

undiacritised and 9-tag vs. 33-tag tagsets. He trained several models using 97% of

the corpus and reported the accuracy of each model in POS tagging the remaining

3% of the text.

According to the authors, N-Gram (particularity Bi-Gram) taggers

outperform other taggers. The best model accuracy is 83.2%, a Brill tagger on the

undiacritised version. Tagging undiacritised text also outperforms diacritised ones,

especially in the case of Brill Tagger. The mapping to 9-tag tagset increased the

accuracy for all experimented taggers, with the exception of TnT tagger.

This experiment shows that off-the-shelf taggers are not always capable of

handling Arabic specific problems: diacritisation and high inflection. Diacritisation

causes the word sparsity to be high, and for the Brill tagger, for example, accuracy

on the diacritised version is as low as 38.6%. In addition, the segmentation problem

 - 56 -

is not discussed in the paper. The author formalized the problem as a word-based

tagging POS tag, i.e. no prior segmentation is required.

3.6 Conclusion
In this chapter, we first provided a survey of available corpora with a focus

on morphologically-annotated corpora. We show that there are several open access

manually annotated corpora of classical Arabic, but most of them are on Quranic

texts and none for Hadith. There is a need for manually-annotated corpora of general

classical Arabic as well. We showed the need for an open access annotation tool that

is designed for Arabic specifications.

The survey of mapping tagsets reveals that most approaches are reductive.

Although there are several initiatives to standardise PoS tagsets for Indo-European

languages, Arabic tagsets are still highly incompatible.

We surveyed the literature for methods that exploits heterogeneous corpora

and taggers. A few works are done in Arabic, although almost every corpus is

tagged using its own tagset. In the next chapter, we survey the open access Arabic

taggers and evaluate them on tagging classical Arabic excerpts.

 - 57 -

4 MORPHOSYNTACTIC
TAGGING OF CLASSICAL
ARABIC

Chapter Summary8:

Focusing on classical Arabic, this chapter in its first part surveys morphological

analysers and POS taggers that are open access, are designed for Modern Standard

Arabic (MSA) or classical Arabic (CA), can analyse all forms of words, and from a

credible academic research group. This chapter lists and compares the supported

features of each tool, and how they differ in the format of the output, segmentation,

Part-of-Speech (POS) tags and morphological features. A sample output of each

analyser is used to demonstrate the differences using one CA fully-vowelised

sentence. This part serves as a guide in choosing the best tool that suits research

needs.

The second part reports the accuracy and coverage of tagging a set of classical

Arabic vocabulary extracted from classical texts. The results show a drop in the

accuracy and coverage and suggest an ensemble method might increase accuracy

and coverage for classical Arabic.

8 Some parts of this chapter are based on:

Alosaimy, A. and Atwell, E. (2017) ‘Tagging Classical Arabic Text using Available Morphological

Analysers and Part of Speech Taggers’, Journal for Language Technology and Computational

Linguistics. German Society for Computational Linguistics & Language Technology (GSCL), 32(1),

pp. 1–26.

 - 58 -

4.1 Introduction
Arabic morphological analysis is essential to Arabic NLP tasks, and part-of-

speech (POS) tagging is usually done as one of the first steps of advanced NLP tasks

such as statistical machine translation and text categorisation. It derives its

importance as its accuracy impacts other subsequent tasks. Arabic morphology is

one of the most studied topics in Arabic NLP. Due to the nature of the language,

being highly inflectional, and the lack of short vowels, morphological analysis of

Arabic is not an easy task. The analysis involves handling a high degree of

ambiguity.

POS tagging usually uses the information provided by the morphological

analyser. A morphological analyser (MA) is a context-independent tagger that

provides all possible solutions based on a lexicon or dictionary. While POS taggers

and MAs label the word morphosyntactically, some POS taggers use the context to

either choose the most probable tag according to the context or at least provide an

ordered list of tags.

Surveys of the literature show that multiple morphological analysers and

POS taggers exist. The accuracy and features of those taggers vary, and errors are

generated for every tagger. No tagger shows a perfect performance, and no tagger

has been adopted as a standard. Therefore, choosing between available taggers can

be challenging.

Even though the morphology of MSA is inherited from CA, two studies

showed that classical Arabic is not compatible with MSA taggers and vice versa.

Rabiee (2011) tried to adopt several taggers by training them on a classical Arabic

Corpus: the Quranic Arabic Corpus (QAC), and then tested them on MSA. The

accuracy achieved in tagging a 66-word MSA sample was “not impressive”–73%

was achieved. Alrabiah et al. (2014) compared MADA and AlKhalil (both designed

for MSA) in order to annotate the KSUCCA corpus. Using five samples from

different genres of classical Arabic, an evaluation of these two systems showed a

drop in their accuracy by 10-15%. It shows that current taggers need to be adapted

for classical Arabic and their dictionaries need to include more classical vocabulary.

This evaluation is extended to examine the coverage and accuracy of the surveyed

tools.

The next section discusses the survey design and criteria. The third and

fourth sections list surveyed POS taggers and MAs in detail. The fifth section

 - 59 -

compares those tools by their features and demonstrates such differences on one

tagged sentence. The last section reports the accuracy and coverage on a collection

of classical vocabulary.

4.2 Survey Methodology and Criteria
Focusing on open access MAs and POS taggers, we performed a

comprehensive search, which adds to previous surveys, an in-depth literature review

of available MAs and POS taggers. We limited the search to MAs and POS taggers

that:

• are designed for MSA or CA, i.e. either designed for Arabic but not

intended for dialectal Arabic or has a model for MSA or CA;

• are able to analyse all forms of words, i.e. not designed for verb only for

example;

• are open access, i.e. available freely for research purposes; and

• have a credible academic establishment, i.e. either has at least one

published academic paper or published by a well-known research group.

The result of this survey includes seven MAs and eight POS taggers listed in Table

4.1.

For the sake of completeness, Table 4.2 lists some tools that do not conform

with the availability condition. However, as other researchers have used them, they

might have been available, and someone may get hold of them in future. However,

we contacted their owners to receive a copy for research purposes, but we did not

get any response.

4.3 Survey of Open Access Morphological Analysers
Seven morphological analysers (MA) match our criteria. MA differs than

POS tagger in that they do not perform any disambiguation; therefore, they provide

a list of analyses with no order. MA typically do not consider the context in the

analysis.

One common phenomenon is the lack of proper documentation that does not

only include installation guides but a technical documentation of tagset and tools

features. When the tagset is listed, it is sometimes not comprehensible, as tags are

always shortened for representation purposes.

 - 60 -

Table 4.1 The list of MAs and POS Taggers that have been studied

Name Code

Main

Category Sub-category

Tagset

Size9

Mada MD POS-tagger
knowledge-based: BAMA. SVM using

SVMTools for disambiguation
36

AMIRA AM POS-tagger data-driven: SVM using YAMCHA 25

MadaAmira MX POS-tagger
knowledge-based: BAMA. SVM for

disambiguation
36

Stanford ST POS-tagger Data-driven: 25

ATKS' POS

Tagger
MP POS-tagger Data-driven: SVM with CCA features N/A

MarMoT MR POS-tagger Data-driven: CRF 25

SAPA WP POS-tagger Data-driven: CRF 24

Farasa FA POS-tagger Data-driven: Joint prediction with syntax 16

AraComLex AR MA FST 14

ElixirFM EX MA Haskell, functional programming 23

BAMA

(AraMorph)
BP MA Dictionary 70

Almorgeana AL MA Dictionary 36

ATKS' Sarf MS MA N/A 70

AlKhalil KH MA Dictionary > 118

Qutuf QT MA Dictionary N/A

Table 4.2 The list of MAs and POS Taggers that have been excluded.

Name Main Category Sub-category Excluded

MORPH2 MA knowledge-based: XML lexicon Yes10

Khoja

ArabicTagger
POS-tagger

Hybrid: Statistical and Rule-based.

Vetrabi for disambiguation
Yes10

SAMA MA Dictionary Yes11

SALMA MA N/A Yes10

Xerox MA FST Yes12

9 Tagset size might be different from published numbers. This is the output of the process of finding

core tags (or basic tags), removing embedded inflectional features and splitting compound tags.

Complex tags refer to tags with embedded inflectional features. Compound tags refer to tags that

aggregate all morphemes tags in a single tag. For example, NNS and VBZ are a complex tag, while

NN is a core tag. DTNN (an article and a noun) is a compound tag.
10 Authors did not respond to our request for their system.
11 Only available to LDC members.

 - 61 -

4.3.1 AraMorph (BP)
AraMorph (a.k.a BAMA, stands for Buckwalter Arabic Morphological

Analyser) is free GNU-licenced software initially written in Perl by Tim Buckwalter

in 2002 and published in www.qamus.org. The software was later optimised by Jon

Dehdari in 2005 to support UTF-8 encoding and speed up the processing time.

AraMorph has been ported to Java by Pierrick Brihaye and published on

www.nongnu.org. AraMorph received further work in 2012 by Hulden and Samih

(2012)13 that converts original table-based procedural AraMorph software into a

finite-state transducer (FST) parser using his Foma Software (Hulden, 2009)14. The

authors claim that it is faster and more flexible, i.e. a more extensive range of

applications can use the FST such as spell checkers. Tim Buckwalter released

BAMA 2 and later SAMA 3, but they need the Linguistic Data Consortium (LDC)

licence to be used; therefore, they have been excluded from our list.

AraMorph views the Arabic word as a concatenation of prefix+stem+suffix,

where prefix and suffix can be null. It has a lexicon where each lexeme is assigned a

category (in addition to its POS tag and gloss). This categorisation is the most

important part in the analyser and it embodied all morphological decisions. For

example, some categories allow the addition of Taa Marbouta to mark feminine

noun, but some do not. The analysis is straightforward: using the list of possible

prefixes, suffixes, and a compatible table, it extracts all possible compatible

substrings that match these affixes and returns all matched candidates.

However, infixes are common in Arabic, and thus it fails to identify them

correctly (e.g. identify the plurality of a “broken” plural noun). BAMA does not

make use of partially diacritics inputs (Hulden and Samih, 2012).

TAGSET: Tags are mixed with morphological features to form complex

tags such as IV_PASS (imperfective passive verb). The tagset has about 70 basic tags

(Habash, 2010).

12 The demo website is working but its web service produces 501 error which makes it impractical to

annotate large corpora.
13 https://code.google.com/p/buckwalter-fst/
14 Foma is software for constructing finite-state automata and transducers for multiple purposes.

https://code.google.com/p/foma/

 - 62 -

4.3.2 AlKhalil (KH)
The AlKhalil Morphological Analyser (Boudchiche et al., 2016) is a

morphosyntactic analyser of MSA shipped with a broad set of lexicon and rules. It is

free open-source software written in Java and in Perl. The latest version 2 was

released in 201615 which improved the lexicon and added lemma and its pattern to

the list of features. The standard way to interact with AlKhalil is using its graphical

user interface that accepts raw text in UTF8 encoding. El-Haj and Koulali (2013)

reported that AlKhalil (v1.1) reached an accuracy of 96%.

OUTPUT: The system results can be either shown in the browser or saved

as a comma-separated file. Given one word, AlKhalil returns a list of solutions of

possible tags of the stem with features. Noun features are its nature, root and pattern

in addition to functional features of a noun: gender and number. Verb features are

aspect, form and voice in addition to syntactic features: form, root, permittivity16,

transitivity and conjugation's gender, person and number. For every solution, the

system determines its voweled form, and its prefix and suffix whenever those exist.

TAGSET: AlKhalil is not consistent in identifying the possible tags of the

word, and its results are not in readily reusable form: morphological and

grammatical features are embedded within a plain text that describes the analysis.

To the best of our knowledge, AlKhalil does not have a predefined set of tags. For

example, for some functional words that have different possible analyses, it returns

one analysis with a description such as: “conditional or negative particle”, instead of

returning two analyses: “conditional particle” and “negative particle”. The estimate

number of the possible tags for the base form of the word is at least 118 basic tags.

4.3.3 AraComLex (AR)
AraComLex (Attia, 2006) is a morphological analyser and generator that

uses finite state technology shipped with a contemporary dataset of news articles. It

uses the rule-based approach with the stem as the base form in its lexicon. The last

version published is 2.117. The analyser uses Foma (Hulden, 2009) to construct a

model and then lookup for matches.

15 http://oujda-nlp-team.net/?p=1299&lang=en
16 Verbs are traditionally classified into two categories: "primitive" which all of its characters are

primitive and "derived" where one or more characters have been added to the original primitive verb
17 sourceforge.net/projects/aracomlex/

 - 63 -

A distinguishing feature in AraComLex is the identification of multi-word

expressions. However, since AraComLex assumes a tokenised input provided by

author's tokeniser which was not working18, we could not find a suitable tokeniser

that makes it able to detect and identify multi-word expressions.

INPUT: With the lack of technical documentation and after some trial-and-

error: AraComLex expects undiacritised UTF8-encoded text with each word in a

line. The system fails to find proper analysis if diacritics are present.

OUTPUT: The output of AraComLex is a set of solutions for every input

word in a custom format as can be seen in Appendix B. No description of the tagset

is provided: “past” tag, for example, is not lucid (tense or aspect feature). The tagset

size is about 14 basic tags.

4.3.4 ALMORGEANA (AL)
ALMORGEANA (Habash, 2007) is a lexeme-based morphological analyser

and generator. It uses Buckwalter's lexicon with a different engine that can

additionally generate the proper inflected word given a feature-set. In the analysis

task, it differs from AraMorph in the output lexeme-and-feature representation. In

addition, it has a back-off step where it looks for compatible substrings of prefix and

suffix, and if found, the stem is considered a degenerate lexeme.

ALMORGEANA is used in MADA and MADAMIRA toolkits to generate

all possible morphological analysis of a given text. This step follows the

preprocessing step of normalisation. ALMORGEANA can be used with either the

Buckwalter Arabic Morphological Analyser (BAMA) or the Standard Arabic

Morphological Analyser (SAMA). The latter is only available to LDC members, so

BAMA is used instead. MADA authors reported that using BAMA instead of

SAMA will result in a slight drop (2-4%) in word disambiguation.

18 The author also published a set of relevant tools in his web page including a guesser and a

tokeniser in a compiled format for Mac and Windows. However, they did not work on current

operating systems (at least on MAC OSX 10.10). One tool is Arabic Morphological Guesser, with the

back-off feature; that is, if a word is not found in the lexicon, it guesses a correct morphology rather

than returning none.

 - 64 -

4.3.5 Elixir Functional Morphology (EX)
Elixir Functional Morphology (Smrz, 2007) is an analyser and generator tool

that reuses and extends the functional morphology library for Haskell. Elixir has two

interfaces to the core Haskell system written in Perl and Python. Its lexicon is

designed to be abstracted from the actual program which allows an easy addition to

the lexicon. It was initially derived from the form-based Buckwalter dictionary, but

it has been enriched with syntactic annotations from Prague Arabic Dependency

Treebank (PADT) and adapted to support function-based morphology.

TAGSET: Elixir uses the same tagset as PADT (23 basic tags). The tags

consist of a 10-position string with first two characters reserved for POS tag and the

remaining eight includes morphological and grammatical features like gender,

person, case and mood.

4.3.6 SARF from Arabic Toolkit Service (MS)

Microsoft Research Lab in Cairo has developed a set of linguistic tools

targeting the Arabic language. Among eight tools, they provide free of charge access

to a morphological analyser (SARF) and a POS tagger for academic researchers,

professors and students only. We could not find an academic paper that describes the

morphological analyser methodology. The toolkit can be accessed using the SOAP

web service.

The morphological analyser (SARF) provides all possible analyses of an

input word: affixes, stem, diacritised form and morphological features such as

gender. One distinguishing feature of SARF is that it ranks its solutions based on the

actual language usage of each analysis.

TAGSET: The tagset contains 109 possible complex tags, making it the

second largest tagset. The tagset has some combination of morphological features in

it. For example, pronouns can be suffixed with _MOTAKALLEM to denote a first-

person. The tagset has about 70 basic tags.

4.3.7 Qutuf (QT)

Altabba (2010) proposed an NLP framework written in Python that has a

morphological analysis component. The latest version of Qutuf is 1.01. Qutuf used

the Alkhalil dictionary after enriching it. Qutuf extends Alkhalil by making the

output more easily reusable and by assigning each solution with a probability.

 - 65 -

TAGSET: A tag has 10 slots separated by a comma that represents the base

POS tag and some morphological and syntactical features. Some slots serve different

meanings depending on the main POS tag. For example, slot 2 represents the

punctuation mark (if the main POS is “other”), particle (if “particle”) type or gender

(if “verb” or “noun”).

Table 4.3 The features of each of the morphological analysers for each given

word/segment.

Name AR EX BP AL MS KH XE QT

Base POS tag Yes Yes Yes Yes Yes Yes Yes Yes

Aspect Yes19 Yes Yes Yes Yes Yes Yes Yes

Person - Yes Yes Yes Yes Yes Yes Yes

Gender Yes Yes Yes Yes Yes Yes20 Yes Yes

Number Yes Yes Yes Yes Yes Yes Yes Yes

Transitivity Yes - - - - Yes - Yes

Voice Yes Yes Yes Yes Yes Yes Yes Yes

State - Yes Yes Yes Yes Yes Yes Yes

Mood - Yes Yes Yes Yes Yes Yes Yes

Case - Yes Yes Yes Yes Yes Yes Yes

Pattern - Yes - - Yes Yes Yes -

Root Yes Yes - - Yes Yes Yes -

Stem - Yes Yes Yes Yes Yes - -

Lemma - - Yes Yes - Yes - -

Diacritisation - Yes Yes Yes Yes Yes Yes Yes

Glossing - Yes Yes Yes - - Yes -

Tokenisation Yes Yes Yes Yes Yes Yes Yes Yes

Segment-based21 - Yes - - - - Yes Yes

4.4 Survey of Open Access POS taggers
POS taggers assign one POS tag to every word-form or every word's

segments. Unlike MAs, POS taggers assign a tag that is contextually suitable. Some

POS taggers return only one tag, a ranked list of possible POS tags or a list with

each tag assigned with a probability. Some POS taggers use MAs as a preprocessing

19 Tense (past, present, and future) is used instead of the aspect of the verb, but they are highly

related.
20 Only for nominals.
21 Whether morphosyntactic features are for each morpheme or not. See Section 6.9 for examples.

 - 66 -

step (e.g. MD, MX, MR, etc.) and thus they disambiguate and rank different

proposed analyses. Some POS taggers use MAs even in the tokenisation process,

e.g. MADA and MADAMIRA.

While some POS taggers do word-based tagging, e.g. (Mohamed et al.,

2010), all POS taggers in our list do morpheme-based tagging. Because of Arabic's

rich morphology, word sparsity is high, and consequently, word segmentation

becomes essential. Studies have shown that word segmentation lowers data

sparseness and achieves better performance (Diab, Hacioglu and Jurafsky, 2004;

Benajiba and Zitouni, 2010). A POS tagger usually has a component that does the

segmentation or relies on the user to provide segmented input. However, this

segmentation increases the ambiguity as a word may be segmented into multiple

candidate sets of segments.

4.4.1 MADA+TOKAN suite (MD)
MADA (Habash, Rambow and Roth, 2009) is a popular suite that has

multiple tools for Arabic NLP. MADA processes raw Arabic text to provide a list of

applications: POS tagging, diacritisation, lemmatisation, stemming and glossing.

MADA is written in Perl and uses Support Vector Machines (SVM) trained on Penn

Arabic Treebank (PATB) to select a proper analysis from the list provided by

Buckwalter Arabic Morphological Analyser (BAMA). MADA uses 19 features, 14

of which are morphological features, to rank the list of possible analyses. The

reported accuracy of predicting the correct POS tag is 96.1% (Pasha et al., 2014).

A remarkable feature of MADA is how it models the problem. The

prediction is word-based: it predicts its clitics by predicting the value of four

features: article, preposition, conjunction and question proclitics. It assumes that no

two proclitics of one type can co-occur in one word. Predicting the value of each

type will result in the word segmentation. In addition, clitics POS tags are complex

and embodies some morphological features. This modelling allows the full analysis

to be done in “one fell swoop”. No segmentation is required in advance.

TAGSET: MADA “targets the finest possible POS tagset” (Habash,

Rambow and Roth, 2009). It supports the mapping to four different possible tagsets:

ALMORGEANA, CATiB, Reduced PATB, or Buckwalter. The default tagset has a

size of 36 tags for tagging the base of the word. Five, eighteen, seven, and two tags

are dedicated to article, preposition, conjunction and questions proclitics

 - 67 -

respectively; and twenty-two tags for enclitics. The tagset used by MADA is well

documented in the manual shipped with the suite.

4.4.2 AMIRA (AM)

AMIRA (Diab, 2009) is a toolkit of three main tools: tokeniser, POS tagger,

and base phrase chunker. The POS tagger uses YamChi toolkit, an SVM-based

sequence classification toolkit. The toolkit does not depend on in-depth morphology

information; instead, it learns from the surface data. AMIRA was trained on PATB.

The reported accuracy of predicting the correct POS tag using default tagset is 96%

(Diab, 2009).

TAGSET: AMIRA can output the tags in one of three tagsets: RTS,

Extended RTS, Extended RTS with the 'person' information. Extended RTS has

about 72 complex tags, and those tags encode gender, number and definiteness.

After removing features from the tag, the tagset is about 25 basic tags.

4.4.3 MADAMIRA suite (MX)

MADAMIRA (Pasha et al., 2014) is a suite that combines two previously

mentioned systems: MADA and AMIRA. MADAMIRA ported the two systems into

the Java programming language allowing it to be portable, extensible and even

faster. MADAMIRA supports MSA and Egyptian Arabic. One added feature to

MADAMIRA is the server mode feature, which allows the user to run MADAMIRA

in the background and then send HTTP requests for different tasks. While the

accuracy has not improved, the speed of tagging has improved over MADA

substantially (16-21 times faster). The reported accuracy of predicting the correct

POS tag is 95.9% (Pasha et al., 2014).

TAGSET: The tagset used by MADAMIRA extends the MADA tagset by

having some tags for Egyptian Arabic processing.

4.4.4 Stanford POS tagger and Segmenter (ST)
Stanford NLP group released a list of Arabic NLP tools including a POS

tagger (Toutanova et al., 2003) and Arabic word segmenter (Diab et al., 2013). The

POS tagger is shipped with a model for Arabic trained on the Penn Arabic Treebank

(PATB). It uses the Maximum Entropy approach to assign a POS tag to a segmented

text (using Stanford Arabic Word Segmenter). The Stanford Arabic Word

Segmenter uses the Conditional Random Fields (CRF) classifier to normalise the

 - 68 -

text and split off clitics from base words in a similar segmentation schema to one

used in the PATB. El-haj (El-haj and Koulali, 2013) reported that the Stanford

Tagger reached an accuracy of 96.5%.

TAGSET: This tagset is the (augmented) Bies tagset of 25 basic tags.

Authors augmented the tagset by adding DT (determiner) to the beginning of

nominal tags.

4.4.5 MarMoT (MR)

MarMoT (Mueller, Schmid and Schütze, 2013) is a generic CRF

morphological tagger written in Java. MarMoT provides a pre-trained model that

was trained on the PATB provided by SPMRL2013 shared task. MarMoT does

backwards-forward computations by incrementally increased order to prune the size

of possible morphological analyses. MarMoT is efficient in training high order CRF

classifiers even with large tagsets and does some approximation using coarse-to-fine

decoding. MarMoT assumes a transliterated and tokenised input according to the

PATB transliteration and tokenisation. We used the TOKAN segmentation tool to

pre-process the input. The reported accuracy of predicting the correct POS tag is

96.43%.

TAGSET: This tagset is the 25-tag RTS tagset. Additionally, MarMoT

provides morphological features identical to AraMorph.

4.4.6 Arabic Toolkit Service POS Tagger (MT)
The Arabic Toolkit Service (ATKS) also have a POS tagger (Kim, Snyder

and Sarikaya, 2015) that identifies the part-of-speech of each word in a text. A

distinguishing feature in this tagger is the use of the Canonical Correlation Analysis

method to find a multi-lingual word representation in the prediction of the POS tag.

They do not state the use of their morphological analyser (SARF) in the process of

tagging. This tool identifies the grammatical features like mood and case; also, it

resolves the nunation, the addition of nun sound that indicates a noun's indefinite

case. Instead of normalising, the tagger uses a spelling corrector as a preprocessing

step which helps in decreasing the ambiguity caused by normalising Hamza and Alif

letters.

 - 69 -

TAGSET: This tagset has a complex compound tagset: (>3000 tags22). Each

particle has its own tag (Laam particle is tagged Laam). Without official

documentation and because of the limited usage quota, it is hard to estimate the

number of core tags.

4.4.7 Segmenter and Part-of-speech tagger for Arabic (WP)
Segmenter and Part-of-speech tagger for Arabic (Gahbiche-Braham et al.,

2012) is a tool that uses a CRF model trained on PATB using the Wapiti toolkit23.

The tool has two components: one to predict the POS tag and the second is to split

the enclitics. The reported accuracy of predicting the correct POS tag is 96.38%.

TAGSET: WP used the list of main 24 POS tags of PATB, with 3, 6, and 2

for conjunctions, prepositions, and determiner prefixes respectively.

4.4.8 Farasa POS tagger (FA)
Farasa (Zhang et al., 2015) is a toolkit for segmentation/ tokenisation

module, POS tagger, Arabic text diacritiser, and dependency parser. Farasa is

different from other POS taggers as it can jointly segment, POS-tag, and parse the

text which avoids error propagation in the pipelined structure and should exploits

syntactic information for POS tagging. It is particularly useful for tagging CA as CA

is different in vocabulary from MSA, but it shares similar syntax. The reported

accuracy of predicting the correct POS tag of MSA is 97.43% and of CA is 84.44%.

TAGSET: Farasa has a tagset of 16 basic tags.

4.5 Discussion
While POS taggers and morphological analysers predict the main POS tag,

they vary in fine-graininess of tagset and segmentation. They differ in many aspects:

tagset used, output format, the method used, and tokenisation. Most taggers adopt

their own tagset, and they subsequently assume their tokenisation scheme. Table 4.3

and Table 4.4 lists supported features by each morphological analysers and POS

tagger. Most taggers produce their results in their customised format as shown in

Appendix B.

22 https://www.microsoft.com/en-us/research/project/part-of-speech-pos-tagger/
23 https://wapiti.limsi.fr/

 - 70 -

Table 4.4 The result of POS taggers, for each input word.

Name MD AM MX ST MT MR WP FA

Base POS

tag
Yes Yes Yes Yes Yes Yes Yes Yes

Glossary Yes - Yes - - - - -

Aspect Yes Yes Yes Yes24 Yes - - -

Person Yes Yes Yes - Yes - - -

Gender Yes Yes Yes - Yes - - Yes25

Number Yes Yes Yes Yes26 Yes - - Yes25

Transitivity - - - - - - - -

Voice Yes Yes Yes Yes Yes - - -

State Yes - Yes - Yes - - -

Mood Yes - Yes - Yes - - -

Case Yes - Yes - Yes - - -

Pattern - - - - - - - -

Root - - - - - - - -

Stem Yes - Yes - - - - -

Lemma Yes - Yes - - - - -

To show the differences in context, Appendix A presents one Hadith (an

utterance attributed to prophet Mohammed often called “prophet sayings”) sentence

annotated by each tagger. The sentence was extracted from the prophet Mohammed

sayings (classical Arabic): ا و ھ نو ك ی ى ت ح م ك د ح أ ن م ؤ ی لا ِ ِ ُْ ِ َ ِ ً ََ ُ ھ ب ت ئ ج ا م ل ا ع ب ت ه َ َ َ ُ َ َّ َ ْ ُُ َ َ ُ ِ ُْ , /lA yu&ominu

>aHadukumo Hat~aY yakuwna hawaAhu tabaEFA limaA ji}otu bihi/ (None of you

[truly] believes until his desires are subservient to that which I have brought). The

sentence is fully vowelized, including the ending vowel. However, some taggers

(ST, MR, AR, BP, KH) performed better when vowels are completely removed,

probably because they were trained on undiacritised texts or the ending vowel is not

expected.

We used a slightly edited version of CoNLL-U format to represent the

tagged sentence using MAs and POS taggers. We added one column (the 1st) to

represents the tagger name and dropped the 3rd, 7th, 8th, and 9th irrelevant columns.

24 Yes unless it is passive: verb mood cannot be determined.
25 only for nominals.
26 Number is either singular or plural.

 - 71 -

Since MAs do not disambiguate, we manually picked the most-correct analysis. The

last column shows the selected analysis and the number of alternative analyses.

This conversion is not straightforward. We had to deal with a number of

different output formats. In addition, the morphological features values were unified

for a direct comparison. We had to deal with different transliterations and

representations: e.g. we extracted clitics from word-based taggers, we extracted

morphological features from compound-tag (e.g. word #5 and IV3MS) taggers. The

converter software to CoNLL-U format, XML and JSON is freely available and

open-source27.

In the following excerpts, a simpler format is used that highlights only the

morphological analysis aspect in the discussion, using a list of word form and POS

tag separated by a slash. The plus sign at the beginning/end of word form indicates a

proclitic/enclitic.

The results presented on Appendix A shows that:

i. Not only POS tags are different, but the word segmentation as well (word

#2).
One Segment Two Segment

AL: yu&omin/verb

AR: >Amn/verb

BP: yu+/IV3MS &omin/VERB_IMPERFECT

MS:

_+/PREFIX_YA2_ANAIT_MA3LOOM_MAGHOOL

yu&omin/FE3L_MODARE3_MAZEED

ii. Word #10 shows that the definition of the main segment is not standard: is it

the PREP or the PRON? This can cause problems when evaluating different

lemmatisers/stemmers for example.
Two proclitic Stem + Enclitic

FA: b+/PREP +h/PRON

ST: b+/NN +h/NN

AM: b+/IN +h/PRP_MS3

BP: bi/PREP +hi/PRON_3MS

MD: bihi/prep +/3ms_pron

iii. Some taggers do not recover the word's clitics. Instead, it reports the POS tag

of such clitics. Some others try to recover the original form of the word

before concatenation. Aligning such taggers with others cannot be done

intuitively.

27 http://github.com/aosaimy/sawaref-web

 - 72 -

No Form

MT: hawaAhu/Ed -/N -/Poss

MX: hawAh/noun -/3ms_poss

Form Segmentation
ST: hwA/NN +h/PRP$

FA: hwA/NOUN +h/PRON

Form Restoration
AM: hwY/NN +h/PRP

MR: hwy/NN +h/PRP

EX: hawaY/N- hu/SP

iv. Two tokens sometimes are given one tag (KH analysis of word #10) even

though the tag explains the two tokens: “a preposition and its pronoun”.
Two POS tags KH: bihi/jAr_wmjrwr

Single Tag/Segment
EX: bi/P- hi/SP

FA: hwA/NOUN +h/PRON

v. Some segmentations are for affixes, not clitics (word #7). INDEF tag is

related to the first segment though.

Affix-based
FA: tbE/NOUN-MS +A/CASE

BP: tabaE/ADV AF/NSUFF

Clitic-based
AM: tbEA/NN

MX: tabaEAF/noun_(CASE=ACC)

vi. The convention of diacritisation is not standard. For example, look at short

vowels before long vowels (word #1) and tanween location (before or after

Alif letter) (word #2). Normalisation is required if a comparison is to be

performed.
Long vowels BP: lA/NEG_PART EX: laA/F-

Tanween
AL: tabaEAF/adv

BP: tabaE/ADV AF/NSUFF
EX: tabaEFA/N-

MS: tiboEFA/Asm_jAmd

vii. Features and POS tags are not always consistent between different taggers.

For example, the morphosyntactic features of verbs and its subject may be

segmented and not.

 Single

AL: ji}ota/verb_(Gender=M|Number=S|Mood=IND|

Aspect=PERF|Voice=ACT|Person=2)

EX: ji}tu/VP_(Gender=M|Number=S|Aspect=PERF|Voice=ACT|Person=1)

AR: jA'/verb_(Aspect=PERF|Voice=ACT|Person=1)

Segmented

ABP: ji}/VERB_PERFECT_(Aspect=PERF)

tu/PVSUFF_SUBJ:1S_(Number=S|Voice=ACT|Person=1)

MS: ji}otu/FE3L_MADI_MOGARRAD_(Aspect=PERF)

_/SUFFIX_TA2_FA3EL_MOTAKALLEM_(Person=1)

MT: ji}out/V_(Number=S|Aspect=PERF|Voice=ACT)

/Subj(Number=S|Person=1)

viii. Some diacritics are dropped in the morphological analyser. It is not due to

input normalisation at the beginning of the morphological process but in the

 - 73 -

tool’s processing of the word form. The processing includes some spelling

changes in short vowels, Hamza letters, and Alif/Yaa Maqsourah. This

inconsistency complicates the comparison of outputs using lexical forms.

Word

Form

AM: j}t

FA: j} +t

MX: ji}otu

MD: ji}otu

MR: jt

ST: j}t

WP: ji'tu

MT: ji}out

We noticed that in many cases, the first suggested analysis is the correct one: this

is because of some ways MAs sort alternative analyses. However, this should not

be confused with POS taggers as POS taggers use the context to rank alternative

analyses.

4.6 Tagging Classical Texts
In optimal cases, evaluating a list of POS taggers requires a gold standard

test dataset, that has a standard tagset and segmentation (tagger’s output should be

mapped, otherwise). However, the reported accuracies of taggers fail to adhere to

these three conditions. Besides, most surveyed tools are designed primarily for

MSA, including their test datasets. The commonly-used dataset for testing is parts of

PATB, which has most of its content is news articles. In this thesis, the performance

of these tools is analysed in classical Arabic. The goal is to compare more taggers on

a sample of CA concerning accuracy and coverage. A direct automatic evaluation is

not possible (Paroubek, 2007).

4.6.1 Methodology

As mentioned earlier, Alrabia (2014) showed that CA has a worse POS

tagging accuracy for MD and KH tools. They overcome the issue of different tagsets

by learning each tagset and validating each tagger against its own tagset. Therefore,

the reported accuracy can be compared to their published accuracies. However, the

reported accuracies should be taken with caution when comparing taggers to each

other as they adhere to different linguistic schemas.

Their work is limited to only two taggers. In this thesis, more taggers are

included. The approach is similar to their approach, but with a smaller data set. Our

approach focuses on a subset of words that looks classical. This decision is to

minimise the effort and improve the quality of the analysis. A word is assumed to

 - 74 -

be classical if it appeared on a classical Arabic corpus but not a contemporary

corpus. To formalise this assumption, let ! be the set of words in a classical corpus,

and " be the set of words in an MSA corpus, the set of classical words are # =
! −".

This methodology makes performance measures intentionally biased to

classical Arabic and not necessarily comparable to their previously published work.

For example, frequent words (usually not (out of vocabulary) OOV) contributes to

good accuracy, but these words are excluded in our case. This methodology should

as well give some insights into the similarity between classical Arabic and MSA and

the richness of Arabic lexicon of classical Arabic.

Since the word list is extracted with no context, their POS tags are not

determined. It is common for one word in Arabic to have a list of possible tags

which is required for reporting accuracy as it is a contextual measure. The accuracy

measure is defined by the average prediction accuracy of the POS tag of the word in

10 occurrences, i.e. 10 concordances are extracted from the classical corpus subset,

and checked if the proper POS tag is given correctly by the analyser.

4.6.2 Data

The classical corpus used for ! is a subset of OpenArabic Corpus (Dmitriev,

2016). It categorised classic books into centuries and provided word frequencies for

each book with and without normalisation. The subset is conditioned books that are

written in the first seven centuries (1075 books). The contemporary corpus used for

" is the Corpus of Contemporary Arabic (Al-Sulaiti and Atwell, 2006). W is capped

to the top 500 words.

The final list of words have some issues: 30% of the words are proper nouns

which may suggest the need for gazetteers for classical Arabic proper nouns. It is

particularly useful because Proper nouns in Arabic are not marked (i.e. they are not

capitalised). Unlike common nouns, grammatical features of proper nouns are

sometimes lexical.

The word frequencies reported by OpenArabic is a simple word frequency,

instead of the term frequency-inverse document frequency (TF/IDF). This choice

raised some words that are highly frequent but only on certain books (e.g.

dictionaries like (مضب /bDm/ with a Dammaah vowel), prophet sayings like (انث /vnA/

he reported), bibliography like some proper nouns).

 - 75 -

One drawback of this methodology is the incapability of handling different

inflexions, especially with highly inflectional languages like Arabic. Some

contemporary words are found in the final list, as they appear in inflected forms that

did not appear in the contemporary corpus.

4.6.3 Evaluation
In this experiment, we report the performance in two folds: the performance

of morphological analysers and POS taggers. In morphological analysers, we

compare the accuracy and coverage of these analysers, while in POS tagger we only

report the accuracy. POS taggers tag each word even if it is OOV, so no coverage is

reported. The OOV rate is not available due to the unavailability of their training

dataset.

In the morphological analysers, the accuracy of tagging these words is

reported, in addition to the rate of out of vocabulary (OOV) words, analysis time

measured in seconds, average number of analyses per word, and the average number

of lemmas per word. See Table 4.5. AL used backoff strategy when no analysis was

found in the dictionary (so OOV rate is zero). QT does not provide lemmatisation.

Table 4.5 The rate of out of vocabulary (OOV), accuracy, analysis time,

average number of analyses/lemmas of analysing 50 common classical words.

Tool AR AL KH EX BP MS QT

OOV rate 0.228 0 0.058 0.076 0.084 0.052 0.82

Accuracy 56% 88% 90% 84% 88% 82% N/A

Analysis Time (in secs) 0.255 4.324 3.453 177.465 1.061 N/A28 0.766

Avg. Analysis/Word 2.06 7.32 14.25 17.89 2.44 1.86 4.27

Avg. Lemmas/Word 1.5 2.53 4.51 2.61 2 1.53 1

The second fold is evaluating the performance of POS taggers. Because of

the high appearance of proper nouns, the accuracy of tagging this specific tag is

reported. Table 4.6 shows the overall and proper nouns accuracies.

Proper nouns were rarely tagged correctly by MAs. Alkhalil seems to have a

list of classical proper nouns (gazetteers) as it performed the best in this matter. The

identification of personal names is challenging for several reasons: the absence of a

proper mark, nominals acting as proper nouns (adjectives, nouns, participles, and

28 Not available as it is a web-based service.

 - 76 -

even inflected verbs), and phrasal names (teknonymics, patronymics,

matronymics)29 (Ryding, 2005).

Since each tagger has its own labelling schema, marking the tag as either

correct or not is not easy, as it requires a thorough understanding of the tagset. The

marking was done by the author of this thesis, who manually checked each tagger’s

output. A tagger has to identify all clitics correctly and assign each clitic its proper

POS tag. No other morphological analysis is included in this experiment.

Some sources of incorrect tagging were as follows:

- Obsolete forms: One adverb was only tagged correctly by one analyser, as

this adverb is obsolete. Some patterns as well were not identified as the broken

plural pattern is obsolete (like ةأرقلا Alqr>p (the readers))

- Normalisation: e.g. Converting Yaa Maqsourah to Yaa, a proper noun was

not tagged properly.

- Orthography and spelling: e.g. Classical tokenisation of اھیأ ای /yA >yhA/

(O (mankind)) was written jointly unlike it usually is in MSA.

Table 4.6 gives evidence that one POS tagger performs better in some tags

than the other. The MADAMIRA toolkit (MX) performed poorly with classical

proper nouns; however, it outperforms other taggers in tagging other words. On the

contrary, the Stanford POS tagger (ST) (and Alkhalil tagger, KH) performed better

in proper nouns. These different tag-specific accuracies suggest that an ensemble

POS tagger could increase the accuracy of POS tagging, maybe with some attention

to tagger’s strengths.

Table 4.6 The accuracy of POS taggers of tagging 50 classical words within

three sentences per word extracted from classical books.

Tool MD MX ST MR WP AM MT FA

Overall 30 69.6% 70.6% 78.4% 66.7% 68.6% 79.4% 67.6% 74.5%

No Prop Nouns (57%) 80.0% 78.5% 71.4% 52.8% 58.5% 74.2% 87.1% 74.2%

Prop. Nouns (43%) 46.8% 53.1% 93.7% 96.8% 90.6% 90.6% 25.0% 75.0%

Reported Accuracy 96.1% 95.9% 96.5% 96.43% 96.38% 96% N/A 97.43%31

29 It is not uncommon in Arabic to have proper names derived from mother’s child name

(matronymics), father’s child given name (patronymics), or father’s given name (teknonymics).
30 This accuracy can be seen as the OOV accuracy, as our methodology limits the test dataset to

words that have not appear in a contemporary corpus. Therefore, it should not be directly compared

to reported accuracies, but to their OOV accuracies, which are not reported for most of these tools.

 - 77 -

4.7 Conclusion
POS taggers and morphological analysers differ in many aspects. While they

both predict the main part of speech tag, they vary on what morphological and word

features they also predict. Most taggers adopt their own tagset, and they

subsequently assume its tokenisation scheme. With a focus on tagging classical

Arabic, the accuracy and coverage have dropped to a low score. The average drop is

at least 20%. As a result, annotation of classical Arabic text should either adopt its

own new morphological analyser or improve current ones to support classical

Arabic. One potential solution is to combine those taggers into one system which

should increase the coverage and accuracy levels.

31 FA was tested on a classical Arabic corpus as well and the reported accuracy is 84.44%.

 - 78 -

Part II
Ensemble Morphosyntactic Tagger for Classical Arabic

 - 79 -

5 ENSEMBLE TAGGER
DESIGN FOR CLASSICAL
ARABIC

Chapter Summary1:

In Modern Standard Arabic text (MSA), there are several morphological resources,

but none is designed and tuned primarily for classical Arabic. The goal of our

language resource is to build a freely accessible multi-component toolkit (named

SAWAREF2) for part-of-speech tagging and morphological analysis that can

provide an easy interface for several taggers, compare and evaluate between them,

standardise their outputs of each component, combine different solutions, and

analyse and vote for the best candidates. We illustrate the use of SAWAREF in

tagging adjectives of classical Arabic. This chapter describes the research method

and design and discusses the critical issues and obstacles.

1 Some parts of this chapter are based on:

Alosaimy, A. and Atwell, E. (2015) ‘A Review of Morphosyntactic Analysers and Tag-Sets for

Arabic Corpus Linguistics’, in Eighth International Corpus Linguistics conference (CL2015), pp. 16–

19.

Alosaimy, A. and Atwell, E. (2016) ‘Ensemble Morphosyntactic Analyser for Classical Arabic’, in

Second International Conference on Arabic Computational Linguistics. Konya, Turkey.

Alosaimy, A. and Atwell, E. (2018) ‘Diacritisation of a Highly Cited Text: A Classical Arabic Book

as a Case’, in 2nd IEEE International Workshop on Arabic and derived Script Analysis and

Recognition (ASAR 2018). London, UK.
2 SAWAREF toolkit: sawaref.al-osaimy.com.

 - 80 -

5.1 Introduction
The Arabic language has several variants where each has its own

characteristics in morphology, lexicon and syntax. Classical Arabic, Modern

Standard Arabic (MSA) and Dialectal Arabic have been written in different genres

and media: from social networks to newspapers to journals. Researchers tend to

build POS taggers for specific variant or dialects. Adapting one or several existing

taggers to another domain/genre saves time and effort. While several POS taggers

for MSA exist, none exist for classical Arabic to the best of the author's knowledge.

Moreover, many of them are incompatible: incompatible tokenisation and various

tagsets. The ultimate goal of our system is to build a methodology of combining

black-box POS taggers; hence, a more robust tagger.

The outline of this chapter is as following. First, we formally define the

problem and propose a general design and methodology of a black-box ensemble

system for transferring the knowledge to a low-resource variant of Arabic: e.g.

classical Arabic. Then, we start this chapter by describing the challenges that faced

the development of the ensemble system (Section 5.3). Section 5.4 describes each

stage in more detail.

Then, we report the results of three experimental studies. In Section 4.5, we

report and analyse the results of mapping one tagset to another. In Section 5.6, we

take a closer look at the approach of one stage: Diacritisation. Next, one potential

use of the system (comparative evaluation of taggers) is illustrated by evaluating the

case study of tagging adjectives (Section 5.7).

5.2 Problem Definition and System Overview
The tasks in this thesis can be divided into high-level and low-level

categories. The high-level, i.e. the final system outcomes, are: the prediction of the

word segments (or segmentation), and various predictions of POS tags and

morphological features (or generally tagging).

The segmentation problem can be seen as either boundary identification or

word segments restoration. The boundary identification problem is a classification

problem where the task is to mark the first letter of each segment. For example, the

position of the first segmental letters of cannot are the underlined first and fourth

letters. However, word segment restoration recovers the word segments; e.g. the

word don't is recovered into two segments: do and not. In this thesis, segmentation is

 - 81 -

referred to the latter definition. However, it is worth mentioning that most taggers

use the former definition. In the former word boundary identification, the problem is

a binary supervised sequence labelling. Given a sequence of characters, & =
{&(… &* … &+} where n is word length, the task is to predict a sequence of labels with

length n with the label set - = {0,1}. The latter definition is more complicated: the

task is to predict an unknown-length set of unknown-length sequences of characters.

Similar to translating one sentence to another, it translates the lexical form of one

word to its original word form. Some work such as Darwish and Mubarak (2016)

formed the problem as a classification problem: the task is to rank and select the

most probable segmentation from a list of possible segmentations. The list can be

edited to help restore the original segments.

The tagging problem is a set of predictions on the segments of the word, i.e.

segmentation problem outcomes are pipelined in to the tagging problem. Although

this problem could be performed on the word level (some tools already do that), we

define the tagging problem as a supervised multioutput-multiclass labelling problem

of each segment.

The two problems can be done simultaneously, i.e. joint segmentation and

tagging by defining the problem as a character-based classification task of character

position and label. Each character is tagged according to its corresponding

morpheme label in addition to a boundary tag that indicates its relative position.

More details will be discussed in form-based ensemble (Section 6.5). This method,

however, does not recover adjusted word form.

In both high-level tasks, the feature selection (in the sense of machine

learning) can vary according to the design of the model. In our ensemble problem,

all the outputs of individual taggers may be used, including segmentation and

tagging. In this chapter, the overall design of this model is described. Some

adaptation to the model is proposed in the following chapters.

High-level tasks involve several low-level tasks including the alignment

problem, diacritics restoration, word form-based similarity measurement, and tagset

mapping. These tasks will be defined later to put them in context.

 - 82 -

The framework that combines all individual taggers is called SAWAREF3.

SAWAREF has an interface web-based system that can run seven morphological

analysers, namely:

• AlKhalil (KH) (Boudlal et al., 2010),

• Buckwalter (BJ) (Buckwalter, 2002b),

• Elixir-FM (EX) (Smrz, 2007),

• Microsoft ATKS Sarf (MS),

• ALMORGEANA (AL)(Habash, 2007),

• AraComLex (AR)(Attia, Pecina and Toral, 2011), and

• Xerox (XE) (Beesley, 1998).

Also, it can run seven POS taggers, namely:

• Madamira (MX) (Pasha et al., 2014), MADA (MD) (Habash, Rambow and

Roth, 2009),

• AMIRA (AM) (Diab, 2009),

• Stanford POS tagger (ST) (Toutanova et al., 2003),

• Microsoft ATKS POS Tagger (MT) (Kim, Snyder and Sarikaya, 2015),

• Farasa (FA) (Zhang et al., 2015),

• MarMoT (MR) (Mueller, Schmid and Schütze, 2013), and

• Wapiti Arabic Model (WP) (Gahbiche-Braham et al., 2012).

The framework provides a simple convenient interface for comparing

between taggers and evaluating them. It is not meant to be compared with those

taggers: instead, it provides a range of useful tools to compare them against each

other. The toolkit contains several tools:

• a parser4 tool that reads the different formats of these taggers,

• a standardiser component that converts them to a standard morphological

representation using mapping rules,

3 The name is not an acronym. It is a transliteration of the Arabic word فراو .(distractor) ,ص

Morphology in Arabic is called فرص /sarf/ and its plural form is /soruof/, although both share the

same root. The name is meant to show how the pattern of the word plays a critical role in the

comprehension of Arabic words.
4 Parsing and parser should not be confused with the linguistic meaning of syntax analysis. Syntax

analysis is not out of the scope of this thesis. Parsing refers to the computational process of

converting raw text outputs from one tagger into a machine-readable format.

 - 83 -

• a Mapper web-based interface for mapping rules creation,

• a CoNLL-U format converter,

• a word alignment tool that preserves the same number of words from each

tool,

• a morphological alignment tool that tries to map a series of morphemes to

their equivalent on another tagger,

• a disambiguation tool, or the ensemble tagger that predicts the proper

analyses given the taggers’ analyses, and

• finally a web-based viewer to compare and check results interactively (see

Figure 5.1).

These tools are written to be used independently following the Unix tools

philosophy. Each tool is designed to perform a specific task, and one tool output can

be pipelined in to another tool. This philosophy allows the task to be developed and

tested independently and its output to be examined easily.

 - 84 -

Figure 5.1 A screenshot of the SAWAREF web-based interface. The top bar is for navigation through documents and running analysers on
a given text. The tabs represents different outputs of the analysers. The tabular view shows how each analyser is analyzing the sentence
presented on a vertical mode.

 - 85 -

Figure 5.2 The overall process of the ensemble system: SAWAREF.

Figure 5.2 illustrates the overall process of the ensemble system. The process

starts with the text to be tagged being sent to a pre-processing component for each

participating tagger. The results are parsed using the parser tool and then sent to a

word-aligner tool that aligns the results at the word level. Next, the system may use

the mapping list to standardise the outputs. Each solution is then optionally aligned

with other solutions using the morphological aligner tool. Finally, we use different

ensemble methods to produce the most confident tagging and segmentation.

The framework can be useful for other applications in different stages. For

example, it provides a high-end interface to individual taggers, which can be used to

perform evaluation of taggers and ease the choice of a tagger for specific research

needs.

5.3 Challenges
Any heterogeneous ensemble faces the problem of projecting input (or

individual) components into one standard schema. Specifically, ensemble

morphological analysers face problems due to the variance in spelling and

orthography, labelling standards and segmentation schemas.

5.3.1 Diverse Output Format
Almost every tool has its own format of the output. Some tools use popular

machine-readable formats like table-like CSV (Alkhalil), XML (Qutuf,

 - 86 -

MADAMIRA), or JSON (Xerox). MADA returns a sequence of feature:value pairs.

However, some tools have a more complex output like BAMA and AraComLex. We

needed to build a custom parser explicitly designed for their outputs.

The parser component of SAWAREF translates the custom outputs of each

tool to an open standard format: JSON and CONLL-U. This standard format eases

the exchange of the output of these tools with other downstream products. As a

consequence, the infrastructure needs to be updated every time one of the tools

changes its output scheme.

5.3.2 Tools and Resources Availability
Although many researchers published papers about their morphology tools,

many of these are either not available, require a licence or are limited to specific

uses or bandwidth. For example, although the MADA toolkit is freely available, it

requires lexicon tables that are only available with membership of the LDC until

version 3.2 is released. Besides, some web services such as Xerox and Microsoft

toolkits are limited to some usage quotas.

5.3.3 Different Data Distributions
Although CA is considered the father of MSA, MSA and classical Arabic

have different data distributions. Many lexical words and phrases that were used in

classical Arabic are no longer used in MSA. Because of that, the ensemble case in

this thesis considers another aspect of adaptation: domain adaptation. Please note

that some taggers are provided as black-box taggers and are not retrainable on a new

training dataset. Some others are, as well, limited to specific annotation style,

because they integrate external lexicon and morphological analysers.

5.3.4 Different Word Segmentation
For a valid comparison, words need to be similarly segmented. One approach

is to segment the input in advance and supply the POS tagger with a segmented

input. However, most tools jointly segment and tag the input, and therefore they

cannot accept a segmented text. Even in cases where a segmented input is expected

(e.g. Stanford POS tagger), the input has to conform to a specific segmentation

schema.

 - 87 -

5.3.5 Different Labelling Systems
Although there are many suggested tagsets in the literature, e.g. (Khoja,

2001; Sawalha and Atwell, 2013; Elhadj, Abdelali and Ammar, 2014; Zeroual,

Lakhouaja and Belahbib, 2017), Arabic POS taggers suffer from not having a

standard tagset. One reason is that researchers have different intentions and different

views of the rich morphological nature of the language. The differences of

heterogenous tagsets are derived from four aspects: their representation,

comprehension, size, and convention.

First, tagsets are different in their representations. They can be classified into

two categories: pos+features tagsets (e.g. CONLL-U tagset) and complex one-word

tagsets (e.g. Buckwalter tagset). In pos+features, tagsets are explicitly distinguished

from morphological features (which is named explicitly): noun, Gender=Masc. In

complex tagsets, the tag encodes multiple information with no predictable format:

NSUFF_FEM_SG.

Second, The non-standard tagsets introduces a challenge of understanding

each one. Each tagset is developed using some underlying linguistic theory.

However, tagsets usually do not name nor explain this theory. See Section 5.7 for an

example of different definitions of Arabic adjectives.

Third, tagsets vary wildly in their sizes. The Buckwalter tagset, for example,

can hypothetically reach over 330,000 tags (Habash, 2010), while the Stanford

tagger used a reduced Bies tagset that has around 20+ tags.

Lastly, tagsets usually have implicit conventions. Tags tend to be short for

presentation purposes, and sometimes they are misleading or incomprehensible, e.g.

the “NSUFF” tag which stands for a nominal suffix. Fully understanding one tagset

requires a good documentation.

Some tagsets use the notion of default value for compactness purposes, e.g.

“NN” stands for singular common nouns, which may confuse users with other

situations where the number is not applicable. Another example: the PRON_2D tag

for Arabic (a second-person dual pronoun) is missing the gender feature which

might be assumed to be masculine. However, the gender feature is not applicable in

this dual case due to the nature of Arabic. These sometimes are not mentioned in the

documentation, which makes the mapping between tagsets or standardising them a

challenge. Some tagsets are improved or developed over time, and the published

tagset in an academic article is incomplete.

 - 88 -

5.3.6 Converting Complex POS Tags
Although some tools do not explicitly present some essential features such as

gender, number and person, these features can be extracted from their complex one-

word POS tagset; however, this extraction process needs a careful understanding of

the POS tags.

Complex tags usually do not name the feature, which makes tags less

comprehensible. For example, V.past could refer to a past tense verb or a perfect

aspect verb (called past in traditional Arabic).

5.3.7 Different Possible Configurations
Some tools have different possible hyperparameters for different stages of

morphological analysis, e.g. MADA input can be preprocessed in three different

ways. Different configurations lead to different tokenisation, and therefore different

analysing and performance. Although these configurations are documented, the

different combination of configuration values may have some impact on the

ensemble analyser. However, this increases the hyperparameter space to a high

degree. We choose to use the default settings and leave comparing different

configurations for future work.

5.3.8 Expectancy of Input
While some tools expect unvoweled text data (AraComLex), some accept

wholly or partially voweled data such as AlKhalil. ATKS uses these short vowels to

filter the best analyses if it fits or the diacritics will be ignored. Mada expects the

input text to be text-only one sentence per line with no tags or metadata.

AraComLex expects every word to be in a single line. The Stanford tagger expects

tokenised words.

5.3.9 Different Transliteration Schemes
Different tools encode the results in either ASCII or UTF-8. Some use a one-

to-one transliteration scheme like Buckwalter transliteration (which has received

several extensions, and determining which extension can be tricky). Other tools like

Elixir uses ArabTex encoding whose transliteration is governed by a set of

complicated rules.

 - 89 -

5.3.10 Different Spelling Schema
There are some differences in the processing of the spelling of the input, due

to different standards in processing Hamza, Taa Marbouta and diacritics. The

spelling inconsistency complicates the matching between their output. A post-

processing normalisation step is sometimes required. For example, the convention of

diacritizing /F/ when it is attached to /A/. More details are in Section 8.9.

5.4 Tagging Stages

5.4.1 Diacritisation
One optional preprocessing step of the input text to all taggers is improving

the phonological information of the text, i.e. diacritizing the text by adding short

vowels to its non-diacritised letters.

In this stage, we do not aim at automatic diacritisation; instead, we aim to

raise the diacritisation coverage level by “borrowing” diacritisation from similar

contexts with high confidence of accuracy. Raising diacritisation level reduces the

word ambiguity level, which improves taggers accuracy (See Section 5.6 for

experiment results).

5.4.2 Pre-processing
Most of the time, each component does the required pre-processing step on

its own. That is, it transliterates, normalises, spell corrects, and tokenises the input

text in the format suitable for the component's needs.

However, after a series of tests to maximise the accuracy, we found that

some poorly-documented taggers assume input in certain conditions. Some

components work better when diacritics, digits, or punctuations are deleted, the text

is normalised, or text is transliterated. In general, we followed the documentation

requirements, if such existed, and pre-processed the input the way it achieves

maximal accuracy (by iterative random samples evaluated manually).

TOKENISATION: Tokenisation is well-known to be difficult in Arabic

because writers often omit word spaces next to non-joining letters. Tokenisation on

whitespace and punctuation, therefore, introduces many errors on all but the most

carefully written texts. However, our system assumes that every tool has its own

word and morpheme tokenisation. One tool–MarMoT–required the input to be

tokenised and we used the AMIRA word tokeniser. Some adaptions are required: we

 - 90 -

deleted signs that indicate affix type. The Stanford POS tagger requires the text to be

tokenised using the Stanford Word Segmenter (Monroe, Green and Manning,

2014)1. AraComLex assumed the text to be tokenised–each word in a line.

TRANSLITERATION: We transliterate the input if the tagger does not

support the UTF-8 format (e.g. MarMoT and BAMA) using the two-way table-

lookup transliteration system based on the Buckwalter convention.

5.4.3 Component Manipulation
Running: Most of the tools are runnable through the command line. Some

components have an API (e.g. Madamira and Stanford Segmenter) that allows them

to be integrated into the developer's code. One component (Alkhalil) is only

runnable through a Graphical User Interface (GUI). To integrate into the

SAWAREF system, we added the functionality to permit it to be run from the

command line without interfering with the analysis code.

Wrap-To-Service: Since we plan to allow the usage of these tools from the

web, we wrap each component in a service. The goal here is to speed up the

processing of texts by having the morphology model loaded and ready for each

subsequent request. We build a web service for each tagger. It accepts HTTP

requests and returns component output while maintaining dictionaries in memory.

Special Modifications: In the Alkhalil morphological analyser, if a word

reappears in the text, it will be ignored, and no analyses will be given. We modified

the Alkhalil toolkit source code to print the analyses of each word on every

occasion, allowing us to align the analyses with other components’ results.

Besides, the word’s type and POS tag in the Alkhalil toolkit are printed in

free text as it is meant to be easily read for Arabic linguistics. Free text is converted

into a structured format by carefully examining the source code and some pattern

lookups.

5.4.4 Standardizing Results and Extracting Morphological Features
Every component has its own format of output (Appendix B). We built

several parsers that extract analysis for each tagger and transform them to a standard

JavaScript Object Notation (JSON) object. This representation can be converted into

1 The Stanford Word Segmenter processes raw text input according to the Penn Arabic Treebank

standard (Diab et al., 2013).

 - 91 -

comma-separated-values (CSV), CoNLL-U, and XML formats. The goal is to

standardise the format so that they can be reused for evaluation and ensemble

tagging purposes.

For each morpheme, SAWAREF maintains the following outputs, whenever they

exist:

Morpheme-based Basic POS tag: The part of speech tag XPOS (given by

the analyser) and its matching universal POS tag (UPOS).

Morphological Features: Person, gender, number, aspect, definiteness,

state, voice, mood and case.

Morphological Segmentation: How the word has been segmented.

Word-level Analysis: Root, Stem and Lemma.

Since the outcomes of each tagger are standardised, we were able to show them in a

convenient side-by-side way on the web interface that allows any researcher to study

these taggers and see their features (what features they are extracting), the accuracy

of POS disambiguation, its tokenisation scheme, and more.

Within this step, the result of taggers with a one-word complex tagset is

translated into the pos+features representation. Since our reference corpora

(SALMA (Sawalha and Atwell, 2013) and QAC (Dukes, Atwell and Habash, 2013))

use the lemma-plus-features representation, we extract those morphological features

and map the complex tag to its base tag. For example, AMIRA has a tag NNS_MD

that represents a masculine dual noun. We mapped this to NN and assigned

morphological features (gender, number) as appropriate (see Table 5.2 and Table

5.3). The goal of this transformation is twofold: to compare morphological features

with other taggers, and to reduce the sparsity in the POS tagging. It should as well

ease the mapping between the tagsets and improve the quality of the evaluation of

those taggers.

5.4.5 Word and Morphological Alignment
It is apparent that we must align (morphologically and by token) the output

of participating taggers before their tagging can be compared. However, what is not

apparent is how this can be done, especially since we have diverse tagsets and a

word is sometimes altered when segmented. In other words, there is no apparent link

between the morphemes of different taggers.

 - 92 -

The alignment problem here is a low-level task: given two sequences of

words, the alignment task is to produce a series of links between the elements of two

sequences. The result is a bipartite graph where the vertices of each partite are the

words of each sequence, and the edges are the links.

Alignment should be done in multiple levels: document, paragraph, sentence,

word and morpheme (or segment). The first three levels are controlled from the

input to the tagger. Taggers are fed with a sentence, so the first three levels are

maintained.

Alignment at the level of the word is a relatively easy job. Taggers’ output is

usually aligned: they rarely span a tag over two words. No single case is

encountered in which two words were tagged with a single tag, as opposed to

English, where “sometimes compound names or idiomatic phrases are given a single

wordtag” (Atwell et al., 2000, p. 11). However, some taggers drop punctuation

marks from their analyses or split words without marking it as a clitic. Therefore, a

word aligner module is required. It checks against the input text to align it correctly.

It is a simple aligner that assumes an alignment window of three words, that is, the

analysis should correspond to either the current word, the previous or the next word.

It aligns the word with the one with the most similar form.

Morphological alignment is a harder problem as the link between

morphemes is not clear. The link between morphemes can be the morpheme form or

the tagging features. However, using these links is not straightforward. The

morpheme form, for example, is in some tools (with compound tags) missing or

altered. The POS tag or morphological features can be used; however, these feature

labels are not standard. In Chapter 6, the problem and four experimental alignment

methods are described and evaluated. See Table 5.1 for an example of the desired

output.

For supervised morphological alignment (i.e. alignment of the morphemes of

a single word), there is a need for training and evaluation datasets. They should have

each word tagged by some taggers, i.e. “multi-tagged corpus”. We developed a new

multi-tagged corpus which is tagged by several taggers and manually aligned and

proofread (any incorrect solution is marked) (See Sections 6.4.2 and 6.4.3).

 - 93 -

Table 5.1 Aligned morphemes of the word دقلو walqd tagged by several taggers

5.4.6 Voting and Final Prediction
The final stage is voting between aligned candidates. The voting problem is a

multioutput-multiclass classification problem that aims to predict the target

segmentation, POS tag, and morphological features. The given input to this stage is

different according to the different configuration of the previous stages.

This problem can be modelled in different ways: voting vs. prediction,

sequence labelling vs. independent-variable labelling, multi-output vs. single-output,

multiview vs. stacking, or one-to-one sequence vs. sequence-to-sequence labelling.

Voting vs. prediction: Mapping the input tagset to a standard tagset is

necessary for voting. Mapping should allow having a higher weight for common

tags between taggers outputs. Without mapping, the problem should be named

prediction not voting, and the outputs of individual taggers is considered as features

(in the sense of ML).

Sequence labelling vs. independent-variable labelling: Since the

individual taggers have already encoded the sequence (or the context), the problem

arguably does not have to be expressed as a sequence classification problem. It

could predict the required output given a set of features aligned at the morpheme

level. However, contextual information may be used in the prediction, i.e. a

sequence labelling problem.

Multi-output vs. single-output: One specific problem in morphological

analysis, in general, is the prediction of correlated multiple outputs: segmentation,

POS tagging, and each morphological feature. This problem can be modelled such

that segmentation prediction is independent of the output of tagging. This may result

in an output with mismatching number of segments and tags. The required outputs

can be as well encoded into a single complex tag, but this makes the classification

problem more complex due to the large size tagset.

Multiview vs. stacking: Stacking methods pile up independently trained

models where each model is trained based on the predicted values of previous

model. These methods suffers from the error propagation problem. Multi-view

 - 94 -

models, in contrast, model the problem jointly by sharing common feature

representations.

One-to-one sequence vs. sequence-to-sequence labelling: Since the

segmentation and tagging are heterogeneous, two ways of modelling the problem

exist. The first approach is the pipelined approach where the outputs of individual

taggers are pre-processed to ensure they are aligned, then each morpheme is tagged.

The second approach jointly aligns and tags the individual tagger’s output by

encoding each tagger’s output and concatenating all features, then decoding the

concatenated vector to the desired output (see Figure 5.3).

Figure 5.3 Sequence-to-sequence prediction

Since the black-box taggers are systematically heterogenous, there should be

a systematic method that exploits the shared information between these taggers. In

this thesis, we experiment with different ways for the voting stage. Unlike Alabbas

and Ramsay (2014), we define the problem as a prediction problem (see Section 5.5

for reasons and mapping results). In Chapter 6, we experiment with a systematic

pipelined design that defines the problem as a prediction, multi-view, independent-

variable, single-output (only POS tag is evaluated), one-to-one labelling problem.

This definition required a prior explicit alignment at the morpheme level which is

discussed in detail. In Chapter 7, the problem is defined as an end-to-end joint

prediction, multi-view, sequence-labelling, multi-output, sequence-to-sequence

problem.

In the following sections, two attempts are discussed in detail to improve the

overall robustness of the ensemble tagger. The first attempt is to map tagsets into a

standard tagset, and the second is to enrich the input text with diacritics.

 - 95 -

5.5 Experimental Study for Mapping Two Tagsets
Mapping means the conversion from one format or value described in the

source tagger to the standardised or target format. Mapping can be formalised as

another alignment problem where each side is a tagset and the goal is to find a link

between the two sides. The link is, however, less apparent in the mapping problem,

especially with different linguistic theories and segmentation schema.

The mapping stage is optional. Ensemble taggers may not require a standard

tagset unless it involves some comparisons (i.e. voting). Other applications may

need the mapping process such as evaluating taggers to one ground truth. Some

methods in the morpheme-based pipelined ensemble approach, proposed in Chapter

6, require mapping to resolve the morphological alignment problem.

The next section defines the reference tagsets. Sections 4.5.2 and 4.5.3 define

the methodology of the mapping of morphological features and core POS tags.

Section 4.5.4 shows and discusses the lessons learned from an experiment of

mapping one tagset to another.

5.5.1 Tagsets
Two tagsets are chosen for mapping: the SALMA tagset (Sawalha and

Atwell, 2013) and the MADAMIRA tagset. SALMA is the most fine-grained tagset

and is proposed to be a standard tagset in the literature. The MADAMIRA tagset is

as well the most fine-grained possible POS tagset in participating taggers. Two

reasons for choosing the two tagsets are as follows: they are well documented (thus,

easily grasped by mapping annotators), and they are fine-grained.

The SALMA tagset is two-dimensional and is fine-grained in two aspects: its

number of features (~ 15 features) and the possible tags of each word (~ 91 distinct

tags). The SALMA tagset has thirty-four possible tags for nouns, one for verbs2,

twenty-two for particles, twenty for others, and twelve for punctuations. Unlike the

MADAMIRA tagset, this tagset is designed to capture long-established traditional

Arabic grammar, I'rab (بارعإ /<ErAb/ morphology).

The default tagset of MADAMIRA is used which has 36 tags for tagging the

base of the word. In addition, five, eighteen, seven, and two tags are dedicated to

2 Originally three values that represents the aspect of the verb: perfect, imperfect, and imperative, but

we decided to consider them as a morphological feature.

 - 96 -

article, preposition, conjunction and questions proclitics respectively; and twenty-

two tags for enclitics. The tagset used by MADA is well documented in the manual

shipped with the suite.

5.5.2 Mapping Morphological Features
The mapping involves two components: Morphological features and POS

tags. Morphological features are mapped to the values of the SALMA tagset.

Although the naming of morphological features is heterogeneous, this mapping is

straightforward and is mostly a one-to-one renaming, e.g. mapping from

gender=male to gender=m. The mapping between ALL taggers and SALMA tagset

is done by the author.

We made some necessary modifications to the SALMA tagset. In addition to

the typical three values of the number feature: singular, dual and plural, the

SALMA tagset, for example, has six more possible values (i.e. sound plural,

broken, etc.). These additions are removed, and a single value for all plurals is used:

“p”. For the full mapping rules of morphological features, please see Table 5.2 and

Table 5.3.

 - 97 -

Table 5.2 The first part of mapping rules of morphological features from all

participating taggers to the SALMA convention. The table is divided into five

parts: Mood, Gender, Case, Voice and State columns. Rows in each part are

trios: the tool’s label, the tool acronym, the equivalent label in SALMA.

 - 98 -

Table 5.3 The second part of mapping rules of morphological features from all

participating taggers to the SALMA convention. The table is divided into three

parts: Aspect, Person, and Number columns. Rows in each part are trios: the

tool’s label, the tool acronym, the equivalent label in SALMA.

5.5.3 Mapping POS tags
The second mapping is the mapping of core POS tagsets. While many

mappings in the literature involve reducing the tagset size, this experiment is

designed to find all possible links between the two tagsets.

 - 99 -

We chose not to reduce the tagset because it will cause a loss of information.

Reducing tagset size maybe is mostly straightforward, even though it requires the

understanding of both tagsets. However, when tagset size is reduced, the full

tagging performance of the tagger will not be evaluated and exploited. Also, such

mapping would force our ensemble tagger to use its reduced tagset which contradict

with the stated fine-grained goal.

This mapping process can be divided into two stages: building a helper tool

and manually mapping tagsets. The first stage should help the linguists in the

second stage to see the tags in context. It helps as well to see how likely they co-

occur in one word.

In the first stage, a list of co-occurrences is constructed. The MADAMIRA

tagger is asked to tag the SALMA corpus to build the list. For each word, a pair of

its MADAMIRA tag and its SALMA tag is defined. From this long list of tag pairs,

pairs that do not past a certain threshold are deleted. Correlation statistics are

computed from the rest of the list. A set of examples are maintained for every

mapping pair (to help later in decisions). This list is fed into the SAWAREF mapper

tool, a web-based graphical interface that eases the mapping process, where the

second stage involves manually choosing target tags that are most appropriate.

Figure 5.4 illustrates the main components of the Mapper screen layout.

 - 100 -

Figure 5.4 A screenshot of the mapper tool. The tool consists of three parts: the first part is the top bar which shows the current tagger

(MA)

 - 101 -

5.5.4 Ambiguity in Mapping Experiment
This experiment examined the possibility of mapping one tagset to another

for the ensemble voting component between taggers’ output.

Two volunteer linguists mapped the two tagsets. They have a background in

teaching Arabic as a second language and pursuing a PhD degree in computational

linguistics. Mapping one tagset to another tagset requires a thorough understanding

of both tagsets. They used the ‘Mapper' tool from the SAWAREF toolkit (see Figure

5.4), which was designed especially for this mapping experiment. For each tag in the

SALMA tagset, the linguists were asked to select all possible tags in the SALMA

tagset to map to.

They had the following in hand:

1. a description of each tag (extracted from the manual or the paper of the

tagset),

2. in-context examples of the tag, and

3. some statistical correlation information about the target tag (no. of inward

maps, the probability of such tagging).

Among possible mappings from the MADAMIRA tagset (59 tags) to the

SALMA tagset (77 tags) (theoretically 4543 possible mappings), 228 (5%) were

selected: 130 by both, 33 and 65 by each linguist. The average number of mappings

for one tag in MADAMIRA is 1.88-2.57, in SALMA is 1.98-2.15 for each linguist

respectively.

This experiment indicates that the mapping between the two tagsets is mostly

n-n mapping. Although the linguistic theory of the two tagsets are different, it is

surprising to see that the average number of SALMA tags from one tag in

MADAMIRA range from 1.88 to 2.57. The SALMA tagset was assumed to be a

much finer grained tagset. Some tags in MADAMIRA were not mapped to a single

tag in SALMA. Linguists by mistake did not map some tags (e.g. date, currency, and

not-separated affixes like Taa Marbouta, feminine suffix).

Because SALMA is the finer tagset, we wanted the mapping to only have

one-to-one and one-to-many situations. That is, a tag can be mapped to one or many

tags in the reference tagset (SALMA), but no tag on the reference tagset can

originate from two tags. If a congestion is found on one tag (many-to-one), the

reference tagset should be extended to break this congestion. For example, the two

tags (from QAC tagset): EXP and RES tags (exception and restriction particles) map

 - 102 -

to one tag in SALMA (p---x- exceptive particle), therefore, the SALMA tagset

was extended to maintain our reference tagsets being the most fine-grained.

However, this experiment showed that this methodology is not practical. The n-to-n

mapping does not mean that MADAMIRA is finer than SALMA at some tags;

instead, it is because they adhere to different underlying linguistic theories which

prevent us from having an “extended” version of SALMA.

Our method expands the solution set of each tagger and increased ambiguity

significantly. The goal was to maintain the level of granularity which could make for

fairer voting between taggers. However, with this level of added ambiguity, the high

variance between the two mappings, and the error rate, the mapping between tagsets

might increase the error rate which will be propagated to subsequent stages.

Therefore, we decided to not pursue the mapping of taggers. However, we found

that these links is helpful in morphological alignment for the similarity measure of

outputs, as will be shown later.

5.6 Experimental Study of Reducing Ambiguity through

Diacritisation

In the Arabic language, a high amount of phonological information is

missing such as short vowels, Shaddah, tanween, Maddah, and sometimes hamzah1

as well (see Table 5.4 for details). They (collectively called diacritics) are not

usually written. It is common as well in NLP to normalise them to reduce the

sparseness of the data. As a result, the ambiguity at the word level is high in Arabic.

There is an average of 11.5 diacritisations/word (Debili and Achour, 1998). For

example, a vowelised form of the word مھف (fhm) can be one of the following “non-

comprehensive” list (Figure 5.5):

َ ََ م ھ ف .1 /fahama/ (v.) to understand

َ ََّ م ھ ف .2 /fahhama/ (v.) to teach

ْ َُ م ھ ف .3 /fa+humo/ (conj. + pron.) and they

َّ ََ م ھ ف .4 /faham~a/ (conj. + v.) and (he) intend

َ مَْ ھ ف .5 /fihom/ (n.) understanding

1 In cases where Hamza is considered a diacritic, only different shapes of Hamza on Alif is

considered.

 - 103 -

Figure 5.5 Ambiguity of one Arabic word.

 Arabic diacritisation is the computational process of recovering missing

diacritics to the orthographic word. This process is known for improving readability

(e.g. children books and educational textbooks), automatic speech recognition

(ASR) (Vergyri and Kirchhoff, 2004), text to speech (TTS) (Ungurean et al., 2008),

information retrieval (IR), and morphological annotation (Habash, Shahrour and Al-

Khalil, 2016).

Words can be fully diacritised, where diacritics for all letter are specified, or

partially, where diacritics for part of the letters are specified. Texts are usually fully

diacritised for children’s educational purposes, or when the great precision of

pronunciation is required e.g. the Quran. (Hermena et al., 2015). On the other hand,

the text is mostly partly or completely unwritten, due to three reasons: to speed up

the reading speed (Hermena et al., 2015), not to strain the eyes, and to speed up the

typing by one third (required for typing diacritics).

A special type is the minimal where some diacritics are specified in which

these specifications are enough to avoid word’s ambiguity. But the sufficient level

of the diacritisation is ambiguous, and the minimal level depends on the audience

(e.g. reader’s level of education) and target; for morphological annotation in Natural

Language Processing (NLP), a minimal diacritisation is the minimal partial

diacritisation that is sufficient to eliminate other possible diacritisations produced by

a lexicon or morphological analyser.

 - 104 -

Table 5.4 Diacritics

Group Diacritic Buckwalter Arabic Notes

Short vowels

Fatha /D/ /a/ ض َ

Dhammah /D/ /u/ ض ُ

Kasrah /D/ /i/ ض ِ Optionally written for Hamzah Maksorah

No vowel Sokun /D/ /o/ ض ْ All letters. Indicates that the consonant is not followed by a vowel.

Shaddah (emphasis,

geminate)

Shaddah /D/ /~/

ّ ض

All letters except the beginning word. Marks a long consonant. Equivalent to writing the constant twice (first is

.

Tanween (Nunation)

Tanween Fatha /D/ /F/ ا ض / ً اض ً

Tanween

Dhammah

/D/ /N/

ٌ ض

Tanween

Kasrah

/D/ /K/

ٍ ض

No diacritic

/D/

 ض

1. The letter preceding long vowels. 2. Long vowels 3. On the lam of the definite article. 4. When the letter is

Hamzah Maksorah Otherwise, it indicates unspecified vowel.

Hamzah (glottal

stop)

Hamzah Up />/ أ Can have any short vowel. If it starts a word and has a Kasrah, Hamzah Down is used.

Hamzah Down /</ إ Can only be at the beginning of has an obvious short vowel Kasrah

Hamzah Madd

 Indicates glottal stop, followed by a long Alif. Cannot appear at the end of a word (its components will be آ /|/

written separately).

Hamzah Wasl

 Not available in Standard Arabic keyboards. It indicates explicitly the special type of beginning Alif which is ٱ /}/

not pronounced as a glottal stop when connected to previous word. Usually written as normal Alif.

 - 105 -

Arabic diacritisation has grabbed the attention of Arabic NLP researchers,

and much work has already been done. Previous approaches have focused on

improving the quality of automatic diacritisation to produce a fully diacritised

version of the text, either using a rule-based approach (El-Imam, 2004), statistical

approaches using, for example, recurrent networks (Abandah et al., 2015), n-gram

model (Hifny, 2012), hybrid approaches which usually perform the best (Rashwan et

al., 2009; Pasha et al., 2014; Darwish, Mubarak and Abdelali, 2017) or using the

prominent deep learning approaches (Al Sallab et al., 2014; Abandah et al., 2015;

Rashwan et al., 2015).

Diacritisation in this experimental study focuses on diacritizing text with

high quality (near gold standard quality) for the purpose of manual annotation later.

That is, the diacritisation approach seeks a high accuracy in diacritisation but is not

necessary to diacritise the full text. Habash et al. (2016) exploits diacritizing to

improve morphological annotation. In their work, they re-rank the solution set from

the morphological analyser based on the similarity of the input diacritisation and the

solution predicted diacritised form. In a similar approach, SAWAREF toolkit filters

the solution set based on the input diacritised form. Additionally, the SAWAREF

preprocesses the input text to standardise its diacritisation and might borrow and

merge diacritisation from similar contexts. In this section, we present a robust and

accurate diacritisation method of highly cited texts by automatically “borrowing”

diacritisation from similar contexts.

Since the text in classical Arabic is highly cited and quoted in successive

texts, we were motivated to increase its text diacritisation level, by automatically

“borrowing” diacritisation from other books within the same genre.

As part of the Sawaref toolkit, we developed an open-source diacritiser1 that

matches the undiacritised version of one word with its equivalent in other books

using their word n-gram concordance.

5.6.1 Methodology
The diacritisation of each word in the target corpus is done simply by

searching for all locations of similar n-gram words in the target corpus. Then, these

locations are merged to form a single diacritisation of the centric word. In the

1 Available freely at http://github.com/aosaimy/arabic-vowelizer

 - 106 -

extended version of this method, we asked a morphological analyser if it can help.

Finally, we replaced the word with the new diacritised word.

Algorithm 1 describes the method formally:

1. !"#$%& = ()!*+,(., ()	for . ∈)"#$%&

The first step is to convert the training text)"#$%& into a list of word (-

grams, with reference to its locations in the text, diacritised and

undiacritised versions of the centre word. Documents are read in the

training corpora in parallel to speed up the development of the lexicon

data.

2. 345
%

"$#67"
8 ⊂ !"#$%& where :;

"#$%& = ()!*+,45
%

"$#67"
, (8

For each n-gram :;"#$%&	that is on our list (after normalisation), it builds a

list of matching word-ngrams 345
%

"$#67"
8 from the training corpus where

each element :;"#$%& has the same n-gram ()!*+,45
%

"$#67"
, (8.

3. <% = {…?(.)… },��()!*+,(., () ∈ 345
%

"$#67"
8	

For matching n-grams 345
%

"$#67"
8, it extracts all found diacritisations of

the centre word ?(.)	and counts the number of occurrences of that

diacritisation.

4. <% = 	AB*C(<%)
Once finished, variants are sorted by the number of occurrences in

descending order. The goal of this sorting is to prevent infrequent

diacritisation from bubbling up to the surface diacritisation in the next

step.

5. while D	 < 	 |<%| ; do

?(5%) = 	,G*:G4?(5%), ?(H%)8	

od

Centre words diacritisation variants ?(H%)	are merged recursively: the

merge procedure (Algorithm 2) is done letter by letter. For every letter,

only candidate diacritics that do not contradict with one existing are

merged.

6. ?(5%) = 3IJ(5%)	DKK	|3I(5%)| = 	1

 - 107 -

This step only applicable to extended version which uses the

morphological analyser (MA) to improve the results if possible. Merged

centre words are replaced by a more thorough diacritisation 3IJ(5%) (if it

exists) by consulting a morphological analyser if and only if it matches

one candidate diacritisation |3I(5%)| = 	1.

7. The centre word’s locations in the text are replaced with the new

diacritised version.

This methodology assumes the following:
1. The diacritisation of the source corpora is done manually, i.e. not

artificially,

2. Diacritisation of both target and source is standard,

3. Word diacritisation is only based on a window of n,

4. The target text is quoted or reused in the source corpora, and

5. There is no other diacritised form if morphological analyser says so (only

applicable in the extended version)

As stated before, the goal is to fully diacritise words in a classical Arabic text

to increase the robustness of the morphological annotation of the corpus. In the next

subsections, we show how these assumptions are valid for our case.

 - 108 -

5.6.2 Assumption #1: Non-Artificial Diacritics in Source Corpora
For the first assumption, no sign of automatic diacritisation could be found in

the Shamela Library. Moreover, some diacritised corpora like (Zerrouki and Balla,

2017) used some of its books as a source for verified diacritisation.

Algorithm 1. BorrowBasedDiacritise
DEFINE:

) = {5M,5N, . . } is a series of words 5.

P(5)	 is a series of letters P% of word 5.

?(5) = {?M, ?N, . . } where ?% is a series of diacritics of

letter P% and |?(5)| = |P(5)|.

 ()!*+,(5%, () 		= {5%Q&, 5%Q&RM, … , 5%, … , 5%R&QM, 5%R&}

3I(5) is a series of ?(5) from a morphological analyser.

INPUT:)"#$%&,)"$#67"	, (

OUTPUT: ?`(5) for all 5 ∈)"$#67" such that |?%| ≤ |?`%| for

all D.

1. !"#$%& = ()!*+,(., ()	for . ∈)"#$%&

2. 345
%

"$#67"
8 ⊂ !"#$%& where :;

"#$%& = ()!*+,45
%

"$#67"
, (8

3. <% = {…?(.)… },��()!*+,(., () ∈ 3(5%)

4. <% = 	AB*C(<%)

5. while D	 < 	 |<%| ; do

 ?(5%) 	= 	,G*:G(?(5%), ?(H))

 od

6. ?(5%) = 3IJ(5%)	DKK	|3I(5%)| = 	1

end;
Algorithm 2. Merge

INPUT: ?(5M), ?(5N)	where	P(5M) = P(5N)

OUTPUT: ?`(5M) such that ∑|?%| ≤ ∑|?`%|.

 ?%(5M): = 	?%(5N) iff ?%(5M) ≤ 	?%(5N)

end;

 - 109 -

5.6.3 Assumption #2: Diacritics Standardisation
To enforce the same standard in source and target, we perform diacritisation

normalisation as illustrated in Table 5.5. The terminology in the second column is in

‘regex' notation. Regex is a search pattern that is translated later by a regular

expression engine into a non-deterministic finite automaton. We use the notion of

regular expressions, as it is commonly used and quite efficient for text substitutions.

For example, Fatha Tanween (Rule number 5) should always be before Alif and Alif

Maqsorah, so the regular expression search for AF followed by a space \s and

replace it with FA instead. The (?=)symbol makes sure that spaces are not

captured, so it is not substituted.

 - 110 -

Table 5.5 Normalisation of diacritisation Rules

Rule Find Pattern Replace With Example

 From To

1.Remove starting diacritics /(?=\s)([aiuoFKN~]+)/g None /amkAnA/ /mkAnA/

2.Remove space-surrounded diacritics / [aiuoFKN~]*(?=\s)/g None /a/ //

3.Add Sokun diacritic on the long vowel Alif /aA/g aAo /mkAnA/ /mkAonA/

4.Remove duplicates of the same diacritic /([aiuoFKN~]){2,}/g $1 /maakAnA/ /makAnA/

5.Tanween then end /AF(?=\s)/g FA /mkAnAF/ /mkAnFA/

/YF(?=\s)/g FY

6.Shaddah should always be before other diacritics /([aiuFKN])~/g ~$1 /vma~/ /vm~a/

7.Remove incompatible diacritics /([aiuFKN])[aiuFKN]+/g $1 /vNam/ /vm/

8.Tanween not at the end of word /[FKN]([^][^])/g $1 /mkFAnA/ /mkAnA/

9.Shaddah at the beginning of a word / ~/g None /~mkAnA/ /mkAnA/

10.Bottom Hamza /<[auFKN]/g <i /<srA'/ /<isrA'/

11. Bottom Hamza not the beginning /<([^][^])/ >i /AlxT</ /AlxT>i/

 - 111 -

5.6.4 Assumption #3: Word diacritisation is the same for n surrounding
words

Changing one final diacritic from a full sentence might change its meaning

completely (Azmi and Almajed, 2015). While this contradicts our assumption, we

examine the quantity of these cases in the full corpus.

To validate prior assumptions (mainly the last), we extracted word five-

grams that have variant diacritisation of its centre word. Then, we examined the top

of the list (top 100), ranked based on the number of variants in descending order.

Table 5.6 lists a sample of top 5-grams.

All variants did not show a sign of artificial diacritic, nor show a non-

standard diacritisation. The centre word has no conflicting diacritisation for 98% of

the top 100 on the list. Conflicting diacritisation is due to different pronunciation of

proper nouns, misspelt diacritics, or improper last diacritic.

Table 5.6 The possibility to merge diacritisations of variants forms.

Word Possibilities Context Can be

Merged?

*r *r, *r~, *rK, *arK, *ar wEn >aby *r rDy Allh Y

lnby Alnaby~, Alnby,

Alnbyi, Alnby~

wEnh En Alnaby~ SlY Allh Y

w>n w>na, wa>na, wa>n~ <lAa Allh w>na muHmadFA rswlu Y

wrhbp warahbapF,

warahobapF,

warhobapF

<layoka ragbapF warahbapF <layoka

lA

Y

5.6.5 Assumption #4: The similarity between the source and target corpora

The reliability of the optional diacritisation step depends widely on the

availability of another similar context. As such, this assumption highly depends on

the text to be analysed. However, classical texts, especially the Quran and the

Sunnah, are quoted more often than modern texts.

In the case study of the Sunnah Arabic Corpus, SAC is mostly a collection of

religious text which is widely quoted. Several authors have explained its narrations,

which increases the chance that its text has been quoted. The results of our

experiment show that at least 84.34% of the corpus word n-grams has been found in

the source corpora.

 - 112 -

5.6.6 Assumption #5: The morphological analyser covers all diacritised forms

Using the SAWAREF toolkit (Alosaimy and Atwell, 2016), we run four

morphological analysers, namely Elixir Functional Morphology (EX) (Smrz, 2007),

ALMORGEANA (included in MADA toolkit) (AL) (Habash, Rambow and Roth,

2009), AraMorph (BP) (Buckwalter, 2002a), and AlKhalil (KH) (Boudchiche et al.,

2016), on the lexicon of Riyadh Asslaheen (17600 distinct words). The average

number of possible diacritised forms is shown in Table 5.7.

We used four morphological analysers to increase the diacritisation coverage

for our corpus. By merging the output of analysing each word, we built a list of

possible diacritisation of each word. After close examination of the results, their

level of diacritisation is different. The diacritised format is not usually full. Table 5.7

showed the diacritisation coverage for each analyser. While merging analysers'

results should increase the word coverage, similar words do not merge together as

taggers’ diacritisation is homogeneous. As a result, we have more than one form of

diacritisation when in fact there should only be one. This explains the jump in the

number of possible diacritisation from 10.38 (at maximum) to 17.42.

Table 5.7 Possible Diacritisation Statistics Per Morphological Analyser.

MA Max Mean Median Coverage

EX 124 8.46 6 67.46%

KH 96 10.38 7 80.64%

BP 20 2.38 2 47.67%

AL 23 3.69 3 42.65%

We only use MA diacritisation if it matches only one form. Using a random

sample (of 100 enhanced words), we could not spot a single error in the enhanced

diacritisation. It suggests that it is safe to assume there is no other diacritised form if

the morphological analyser says so.

5.6.7 Evaluation
Our evaluation uses two metrics: accuracy, and coverage, both in terms of

character level. Accuracy is measured by Diacritic Error Rate (DER), i.e. the

fraction of letters that do not have the same diacritics in the original text. Coverage

measures the fraction of letters that has at least one diacritic.

 - 113 -

!"# =
no. incorrect diacritcs

no. diacritics

%&'()*+(=
no. diacritised letters

no. letters

In addition, we introduce an ambiguity measure defined as the practical

average of the possible number of diacritisations per word. In theory, if a word of

three letters has no diacritics, there are at least eight possible diacritisation for each

letter (final letter can have more). However, we report the practical number of

diacritisations only, extracted from a lexicon (or in our case, morphological

analysers). In case a partially diacritised word is provided, the morphological

analyser will only return the subset of possible diacritisations of that word with

respect to the given diacritisation. If the word is not in the lexicon, we exclude that

word from the average.

*,-.+/.01(3) = no. analyses returned by MA

*,-.+/.01 =
∑ *,-.+/.01(3)6

7&.3&)9:

We test on the part of the text that is already diacritised. In other words, we

used our models to diacritise a completely undiacritised version of Riyad, and later

test the accuracy and coverage of our assumption on the diacritised version.

However, since this method does not diacritise the full text, we only evaluate based

on the subset of letters that has a diacritic. We do not consider Hamza nor Maddah

as a diacritic, because in classical Arabic they are usually written according to the

standards. Hamza in Modern Standard Arabic is misspelt or omitted in many cases.

Similarly, Maddah is omitted in some frequent words. We only count short vowels

including Shaddah and Tanween.

Table 5.8 reports the coverage, diacritic error rate, and average word

diacritisation ambiguity of baseline, three n-gram models (3,5,7-grams) with/without

help from morphological analyser. The baseline is the original form of the text.

We can see that accuracy improves when the word's context is broader, but

on the other hand, the coverage drops. Word ambiguity does not change after using

MAs, as MAs’ diacritisation is not used unless word diacritisation only matches one

candidate. The accuracy increased very slightly (about 0.0001) when using MAs;

however, the coverage increased by ~0.2%.

 - 114 -

Table 5.8 Evaluation of N-gram Diacritisation Models.

Model Coverage DER Ambiguity

Undiacritised 0 N/A 17.42

Baseline 48.66% N/A 4.83

3-gram 80.32% 0.007 1.56

3-gram+MA 81.26% 0.007 1.56

5-gram 76.41% 0.004 1.91

5-gram+MA 77.70% 0.004 1.91

7-gram 73.97% 0.003 2.13

7-gram+MA 75.59% 0.003 2.13

In terms of word-level, the source of Riyad is about 47.1% fully diacritised,

and after borrowing diacritisation, the percentage jumps to 87.1%. However, this

measure is not precise in our case, because of the different definition of the fully-

diacritised word.

Additionally, we compare our results to two major open access diacritisers:

MADAMIRA (Pasha et al., 2014) and FARASA (Darwish, Mubarak and Abdelali,

2017). Diacritisation is normalised for both toolkits. Our 5-gram model slightly

surpasses both tools, and FARASA scored an error rate of 0.006 while

MADAMIRA was not performing well–0.214, which is because MADAMIRA

removes original diacritics before processing the text. For a fair comparison, we re-

compute the error rate given the undiacritised version. The FARASA error rate

jumped to 0.263, and the DER of our 5-gram model increased slightly to 0.008.

While the two tools are expected to diacritise the text thoroughly, we found

that MADAMIRA only diacritised 61.73% of letters, and FARASA only diacritised

65.36%, and 67.68% for undiacritised, and diacritised input text respectively. Using

our method, the 5-gram model diacritised 71.81% of letters, due to diacritisation

standards of final letter, article AL and long vowels in addition to the fact that our

measure does not tolerate letters with obvious diacritics (such as Alif Madd (آ), Alif

 ,Even the Quran text (extracted from Tanzil Project) .((إ) and Lower Hamza (ا)

which is known to have a full diacritised form, covers only 77.83% of letters. Table

5.9 summarises these findings.

 - 115 -

Table 5.9 Comparison with major off-the-shelf diacritisers.

Tool Coverage DER Input Text

MADAMIRA N/A N/A Diacritised

61.73% 0.214 Undiacritied

FARASA 67.68% 0.006 Diacritised

65.36% 0.263 Undiacritied

5-gram 76.41% 0.004 Diacritised

71.81% 0.008 Undiacritied

Interestingly, using Riyad itself as the only source for diacritisation, we

found different diacritisation of the same n-grams. 2330 word 5-grams has different

diacritisation of its centre word. The diacritisation coverage increased from 48.66%

to 58.48% using the same text as a source for diacritisation.

5.7 Experimental study: Tagging Adjectives
While the ensemble of morpho-syntactically taggers aims to provide a robust

way of tagging text, it is useful for some other purposes: e.g. linguistic comparaison

of input taggers. This study aims to highlight the differences in the underlying

theories of tagset.

Adjectives are commonly mistagged as nouns. The cause of this confusion is

the definition of adjectives in Arabic. In traditional Arabic grammar, an adjective is

marked when it qualifies its preceding corresponding noun, i.e. attributive adjective.

In this case, attributive adjectives agree with the definiteness, number, case and

gender of their corresponding noun. For example, (لیوط لجر /rjl Twyl/ a tall man).

Taggers agree mostly on tagging “tall” as an adjective. However, taggers often vary

in tagging “tall” in predicative adjectives: (لیوط لجرلا اذھ /h*A Alrjl Twyl/ This man

is tall).

Table 5.10 The agreement of tagging adjective morphemes between two

manually annotated corpora. Recall = 0.38, Precision=0.85.

SALMA

nj---- Others

Q
A

C
 ADJ 11 2

N 18 N/A

 - 116 -

Using the parallel annotated corpus (PAC) (See Section 6.3.5), we evaluate

and analyse each tagger and the two corpora in the sense of tagging adjectives.

Surprisingly, the two manually annotated corpora were not in agreement in tagging

adjectives. Table 5.10 shows the confusion matrix of tagging adjectives. In only 11

out of 31 cases, the two manually annotated corpora agree on the tagging. In the

other 18 cases, QAC tagged them as NOUN. One reason behind this low recall and

precision is the incompatibility of tagsets: QAC’s definition of adjectives is

“syntax”-driven while SALMA is morphologically driven.

Table 5.11 One sentence shows how linguists do not agree on tagging

predicative adjectives.

Word Transliteration QAC SALMA Translation

ُ َّ ھ نإ /<n~ahu/ <n~a/ACC+hu/PRON <n~a/pa+hu/rr Indeed,

و ھ ُ /huw/ huw/PRON huw/np He is

زیزعلا /AlEzyz/ Al/DEF+Ezyz/N Al/rd+Ezyz/nj The Exalter in Might

میكحلا /AlHkym/ Al/DEF+Hkym/ADJ Al/rd+Hkym/nj The Wise

Table 5.11 illustrates the difference in tagging adjectives of one verse

(29:26). QAC tagged the word alaziz as a noun as it is acting as a predicate (called

khabar in Arabic traditional grammar). SALMA tagged it however as an adjective.

However, QAC is not always consistent in this matter; verse 29:19 says: { ىلع كلذ نإ

ریسی الله } “that for Allah is easy/ADJ” is not consistent with its following verse: { الله نإ

ریدق ءيش لك ىلع } “Indeed Allah, over all things, is competent/N”. The words:

“easy/ADJ” and “competent/N” are both adjectives acting as predicate (khabar) and

should be treated similarly.

The same confusion carried over to SAWAREF participant taggers: when

QAC is the gold standard, the average f-score is 0.11 (precision=0.14, recall= 0.2).

With SALMA, the average f-score is 0.12 (precision=0.22, recall= 0.14). These very

low scores show how hard is the problem of adjective tagging. The full precision

and recall of each tagger is reported in Table 5.12. We used QAC’s tag: ADJ and

SALMA’s tag= nj---- as the only tags of adjectives.

As a conclusion, even though adjectives play an important role in the

semantic level, they need a more robust definition and warrant more investigation on

how to predict them in Arabic specifically.

 - 117 -

Table 5.12 The precision, recall and f-score of predicting adjectives in chapter

twenty-nine of the holy Quran.

Tool QA as Gold Standard SW as Gold Standard

 Precision Recall f-score Precision Recall f-score

MT 0.11 0.62 0.19 0.16 0.41 0.24

KH 1 0.08 0.14 1 0.03 0.07

AR 0.07 0.15 0.1 0.07 0.07 0.07

EX 0.04 0.23 0.07 0.05 0.14 0.08

MD 0.03 0.08 0.05 0.13 0.14 0.14

MX 0.12 0.23 0.16 0.24 0.21 0.22

AL 0.07 0.15 0.1 0.07 0.07 0.07

BP 0.05 0.15 0.08 0.08 0.1 0.09

BJ 0.11 0.23 0.15 0.14 0.14 0.14

ST 0.18 0.46 0.26 0.29 0.34 0.32

WP 0 0 0 0.03 0.03 0.03

AM 0.14 0.31 0.2 0.21 0.21 0.21

QA N/A N/A N/A 0.85 0.38 0.52

SW 0.38 0.85 0.52 N/A N/A N/A

5.8 Conclusion
This chapter defined the set of problems and subproblems in this thesis

including segmentation and tagging. It listed the challenges that face the

development of such an ensemble tagger. Then, it identified the critical parts of the

SAWAREF system and showed the stages of the ensemble POS tagger process. It

briefly showed the methodology for overcoming obstacles in the ensemble method,

namely morphological alignment, diversity in tagset.

In an experiment of mapping one tagset to another, results showed a high

error rate and disagreement between annotators, which suggests that tagsets should

be used without mapping. Careful borrowing of diacritics in similar context shows

an excellent opportunity to reduce the word ambiguity level. The open-source

SAWAREF toolkit runs multiple taggers, standardises their results, and aligns the

result of each analysis. An expected issue is low agreement among Arabic linguists

on the definitions of grammatical categories, as exemplified by the tagging of

adjectives.

 - 118 -

6 PIPELINED ENSEMBLE
TAGGER

Chapter Summary1:

An ensemble of black-box taggers requires that they conform to a standard

segmentation schema. Because of the absence of this standard, a systematic

alignment method should be applied. Our pipelined ensemble combined four

heterogeneous POS-taggers and evaluated on a classical Arabic corpus. Two models

of the ensemble tagger are presented: morpheme-based ensemble, and form-based

ensemble.

In the first part, we opt to align tagger output using tagger labels. Four methods of

alignment between segments using individual tagger’s POS tags are presented and

compared. The problem is not trivial as it is tackling five different tokenisation and

labelling standards (the tagsets of four input taggers and the target tagset). The

supervised learning using a unigram model scored the best segment alignment

accuracy, correctly aligning 96.75% of morpheme segments. Using the best

approach to align input POS taggers, the ensemble tagger has correctly segmented

and tagged 88.09% of morphemes.

In the second part, we opt to align tagger output using word forms in a character-

based setup. Unlike the first ensemble, this ensemble allows a parallel prediction of

segmentation and labelling problems as it goes deeper and does not rely on the

tagger’s segmentation. This ensemble scores a slightly better accuracy: 88.73%.

We show that increasing the number of individual taggers raises the accuracy,

suggesting that input taggers make different errors.

1 Some parts of this chapter are based on:

Alosaimy, A. and Atwell, E. (2017) ‘Joint Alignment of Segmentation and Labelling for Arabic

Morphosyntactic Taggers’, International Journal of Computational Linguistics. CSC Journals.

Alosaimy, A. and Atwell, E. (2017) ‘Ensemble Joint Segmentation and POS Tagger for Arabic" in

The Workshop on Computational Approaches to Morphologically Rich Languages CAMRL. Leeds,

UK. (presentation).

 - 119 -

6.1 Introduction
There is a need for a Part-of-Speech (POS) tagger for under-resourced

classical Arabic, the language of the Quran and other Arabic texts from the 7th to

9th centuries CE. Using gold standard samples from the Quran and the Sunnah and

several morphological taggers, the goal is to adapt these tools to analyse non-

Quranic classical Arabic texts, including the Sunnah. This chapter shows different

models for the pipelined approach of combining existing POS-taggers for Modern

Standard Arabic (MSA), adapted to input classical Arabic words and texts, and to

output classical Arabic POS-tags.

The adaptation used some ensemble methods, which have proven to be more

effective than an individual algorithm in many cases. Because input (or individual)

POS-taggers are heterogeneous, methods for alignment of segmentation and

labelling in parallel is a necessity. POS-taggers have been developed for Modern

Arabic, but they do not conform to shared standards in morphological segmentation

or morphosyntactic tagsets for labelling.

The alignment between taggers serves another goal: an evaluation of taggers.

When evaluating an automatic part-of-speech (POS) tagging, the segmentation

scheme of words of the gold standard (the sequence of morphemes) should match

the segmentation scheme of the tagger (Paroubek, 2007). For example, if the gold-

standard corpus strips the suffix in he’s, a tagger should strip it too.

Sequence alignment is a well-known problem in several computational

fields. It is the process of identifying tokens that correspond in some manner in the

source and the target sequences. Bitext word alignment in Machine Translation is an

example that identifies translation relationships between words to limit or constrain

the set of translation rules learned from a bilingual parallel corpus. The problem in

this chapter is very similar. Unlike bitexts alignment, which aims for linking related

words in terms of meaning, our aim is to find a link between elements (segments) of

one sequence (the list of word’s segments) to another in terms of morphological

analysis. The link, however, is not clear and can be defined in several ways.

After briefly formalising the problem, this chapter presents two approaches

of alignment: morpheme-based and form-based (or character-based). The

 - 120 -

morpheme-based approach links morphemes using their labels, while form-based

links them using their characters.

6.2 Problem Definition
The goal of the ensemble tagger is to use output from taggers to predict the

correct class. However, since these taggers conform to different tokenisation

schema, morphemes are not appropriately aligned. For example, as one tagger A

split off DEF article and another tagger B does not, from the word /Alkitab/, the

following incorrect input will be fed to the ensemble classifier:
Word Features Class

Al DEFA NB Def

Kitab NA N

6.2.1 Morpheme-based Alignment

The alignment problem can be formally defined as the following: having two

sequences of tagged words ; = {*=, *?, . . . } and A = {-=, -?, . . . } where *B is a

vector that represents a word in a sentence and ∀	* ∈ 	;;	GH 	= 	 {,=,,?, . . . } is the

sequence of morphemes in that word, the problem is to find 	, → 	7,, ∈ 	GH, 7 ∈

	GJ, * → 	-. The result of the mapping is a set of pairs: % = 	 KL,B, 7MN, . . . O, ,B ∈

	GH, 7M ∈ 	GJ. Indices in pairs appear just once, limiting pairs to 1-1 mappings. In

other words, the result of the alignment is a bipartite graph G=(V, E) where each

edge (= (,, 7) and each vertex is a leaf vertex.

The Needleman–Wunsch algorithm (see Section 6.2.3) is used to compute

the optimal global alignment between two sequences of tags using a variety of

scoring matrices.

Two sequences of morphemes are regionally-aligned: words (delimited by a

space) are aligned to their corresponding words on the other sequence, i.e. There is

already an existing alignment mapping of * → 	-, * ∈ 	;, - ∈ 	A. Therefore, a link in

the alignment cannot pass word’s boundaries. Such existing constraint should raise

the baseline accuracy as the number of possible mappings is limited.

To illustrate the problem, the word (دقلو , /walaqado/, and indeed) has two

possible tokenisations shown in Figure 6.1. Two gold-standard corpora segmented

the word into three segments, and four taggers segmented it into two segments. This

tokenisation problem can vary from tagging compound names (with one tag) to

 - 121 -

tagging a single word with multiple segments. Therefore, it is necessary to align the

results of those taggers for proper evaluation and voting.

Figure 6.1 A sample of morpheme-aligned POS tags of one word that has

two/three morphemes.

In the first part of this chapter, three morpheme-based methods are compared

(in addition to a simple baseline approach). Four taggers' output is aligned to two

gold-standard corpora using:

1. Rule-based: Manually mapping tagsets from each one to the others, then

aligning matched tags;

2. Unsupervised: Learning the alignment based on the possibility that two tags

appear in the same word;

3. Supervised: Predicting the alignment using a parallel corpus of manually

aligned tags; or

4. Baseline: Aligning the core or primary morpheme of the word, then aligning

affixes starting from the closest ones to the primary morpheme one-by-one.

6.2.2 Form-based Alignment

The second part of this chapter follows a different method of alignment. It

uses the morpheme's form for linking. Because segmentation form overlap between

input, this instead goes to a deeper level: word’s characters (the set of its letters).

The deeper level allows the ensemble to overcome the one-to-one prediction

limitation of the previous approach. The problem becomes a sequence problem

Segment Form MA ST AM FA SAL QAC

w+ conj CC CC CONJ p--c-- CONJ

la+
part_verb RP RP PART

p--z-- EMPH

qado p--b-- CERT

MA: wa+/conj laqad/part_verb

ST: w+/CC lqd/RP

AM: w+/CC lqd/RP

FA: w+/CONJ lqd/PART

SAL: wa+/p--c-- la+/p--b-- qado/p--b--

QAC: wa+/CONJ la+/EMPH qado/CERT

 - 122 -

where the goal is to predict the label of each character. This model of the problem

makes the output segmentation free from input segmentation schemas.

A character-based model jointly segments and tags the text using Inside-

Outside-Beginning (IOB) format (Kudo and Matsumoto, 2001). The joint approach

was successfully applied to Arabic (Diab, Hacioglu and Jurafsky, 2004; Kübler and

Mohamed, 2012; Abdul-Mageed, Diab and Kübler, 2013; Algahtani and McNaught,

2015). However, previous work does not reuse other taggers for language

adaptation.

In the character-based approach, the ensemble classifier is trained on the

character-level instead of morpheme-level. IOB format encodes the character

position in the sequence. Each character c is tagged with its POS tag prefixed by a

character to indicate character position. Spaces between words are labeled as O. For

example, a tagged sentence: “He/PRON play/V +s/CASE” will be encoded as:
H/B-PRON e/I-PRON <SPACE>/O p/B-V l/I-V a/I-V y/I-V <SPACE>/O s/B-CASE

The input to our system is a sequence of words: P = [3R, 3=, 3?, …] which

is split into characters % = [UR, U=, U?, . .]	3ℎ()(UB ∈ W, , where W is the alphabet.

The goal is to predict its IOB-augmented tag. Then the predicted tag is decoded into

morpheme-based tagged text.

Figure 6.2 A sample of character-aligned POS tags of one word that has

two/three morphemes.

Segment Form MA ST AM FA SAL QAC

w conj CC CC CONJ p--c-- CONJ

l part_verb RP RP PART p--z-- EMPH

a part_verb RP RP PART p--z-- EMPH

q part_verb RP RP PART p--b-- CERT

a part_verb RP RP PART p--b-- CERT

d part_verb RP RP PART p--b-- CERT

o part_verb RP RP PART p--b-- CERT

MA: wa+/conj laqad/part_verb

ST: w+/CC lqd/RP

AM: w+/CC lqd/RP

FA: w+/CONJ lqd/PART

SAL: wa+/p--c-- la+/p--b-- qado/p--b--

QAC: wa+/CONJ la+/EMPH qado/CERT

 - 123 -

6.2.3 Needleman–Wunsch Algorithm

For the morpheme-based alignment approaches, the Needleman–Wunsch

algorithm (Needleman and Wunsch, 1970) is used to compute the optimal global

alignment between two sequences of tags.

The Needleman–Wunsch algorithm is a dynamic programming algorithm

that maximises a score computed by summing the weights of matches and penalising

for each gap inserted. The alignment depends on:

1. the penalty associated with an insertion of a gap, and

2. the weights associated with a match.

The Needleman–Wunsch alignment is projective, i.e. there are no two

mappings such that:

1. mY → 	mZ	where	mY ∈ 	M`	and	mZ ∈ 	Md	and	i < j, and

2. mY → 	mZ	where	mY ∈ 	M`	and	mZ ∈ 	Md	and	j < i.

This property is helpful as taggers produce tags in the same order.

The scoring system was adapted to the problem. The score does not only

count the cost of operation but also the two tokens involved in alignment. Using the

similarity matrix hi,j, the cost of one operation depends on the distance between A

and B. Matching between noun and N may be given a full score, but matching

between noun and proper_noun may be given a lower score. hi,j = (0 ≤ 	mY,Z ≤

	1)

This algorithm is only used in two of morpheme-based methods (supervised

and rule-based). The similarity matrix hi,j of the rule-based approach is based on

the hand-crafted mapping rules. The aligned corpus (PAC) is used to infer the

similarity matrix using unigrams and bigrams methods in the data-driven approach.

6.3 Data and Tools
This section briefly describes the input taggers and the reference corpora

used throughout the thesis experiments of ensembles. It also contrasts the tagsets

and segmentation schemas. It introduces the parallel-aligned corpus used to derive

the required mappings for rule-based and supervised alignments. It also describes

the orthographic adaptation of one specific corpus for character-based alignment.

 - 124 -

6.3.1 Taggers

The ensemble used different combinations of four POS-taggers designed

primarily for modern standard Arabic. Namely, they are:

1. MADAMIRA (MX) (Pasha et al., 2014),

2. Stanford Tagger (ST) (Toutanova et al., 2003; Monroe, Green and

Manning, 2014),

3. AMIRA (AM) (Diab, 2009), and

4. Farasa (FA) (Zhang et al., 2015).

They are chosen for the high reputation in the research community. They are

the best four in our experiment of tagging classical Arabic (see Table 4.6). All of

them are deterministic: they provide one analysis per word or at least rank its

analyses. Non-deterministic taggers were excluded as it is beyond the scope of this

thesis.

The taggers use statistical methods, and they relied on the Penn Arabic

Treebank for training their model. MX is different in a sense it is a disambiguation

tool and relies on a morphological analyser. The predicted analysis is used to rank

morphological analysers outputs.

Each tagger treats the segmentation and tagging differently. MADAMIRA

does not segment the raw text in advance. Instead, it formulates the problem as a

word-based multioutput-multiclass classification problem, where four of the classes

are for proclitics and one for enclitics. The Stanford tagger uses a pipelined structure

where the segmentation results are piped to the tagger. The AMIRA tagger uses a

character-level joint segmentation and tagging, where each character is labelled with

the POS tag with a reference to its position of the segment. Farasa uses another

pipelined structure with a different learning method and lexicons. Table 6.1 shows

the supported output classes for each tagger.

Table 6.1 Features of Participating POS taggers.

Name AM MX ST FA

Base POS

tag
Yes Yes Yes Yes

Aspect Yes Yes Yes2 -

Person Yes Yes - -

2 Unless it is passive.

 - 125 -

Gender Yes Yes - Yes3

Number Yes Yes Yes4 Yes2

Voice Yes Yes Yes -

State - Yes - -

Mood - Yes - -

Case - Yes - -

6.3.2 Training and Testing Data

A subset of the QAC chapters is used in addition to the manually annotated

part of SAC. The chapters chosen are namely: 2, 3, 4, 10, 15, 30, 45, 60, 75, 90 and

105. The total number of words is 17.8k with 5.7k and 5k diacritised and

undiacritised word types. The SAC text5 is randomly chosen prophet sayings with a

total of 4.5k words with 1.5k and 1.2k diacritised and undiacritised word types. The

SALMA corpus was not chosen because the annotated data is small compared to the

QAC. It is, however, used in the intrinsic alignment evaluation between different

tagsets.

The dataset size in all experiments are split into 80/10/10. The data is

shuffled in advance, and exact splits are then determined. For experiment

replicability and fair comparison between experiments, the rearranged data could be

replicated as the seed of the random generator is set in advance at the start of the

code (setting the seed makes the random sequences predictable).

6.3.3 Segmentation

Different segmentation schemes are introduced in the literature with no one

defined as a standard because “there is no single optimal tokenisation” (Habash,

2010).

QAC and SALMA followed a fine-grained tokenisation that is influenced by

traditional Arabic text. For example, QAC segment an emphatic (ن /n/ noun letter)

suffix that attach to verbs. This segmentation is influenced by traditional Arabic

3 Only for nominals.
4 Number is either singular or plural.
5 Please note that SAC was not used in this chapter as it was not fully annotated when these

experimental studies were conducted. For the sake of fairer comparison between proposed

approaches, which includes a reimplementation of all proposed architures in neural networks, please

refer to 7.5.

 - 126 -

grammar as this letter changes the mood of the verb (becomes [ينبم] “invariant

mood”). None of the taggers segment this emphatic letter.

MX and AM can be configured to segment the text in different “tokenisation

aliases” (Pasha et al., 2015). They use a very similar engine (MADAMIRA is the

successor of MADA and AMIRA). D3 segmentation is used where basically all

clitics are tokenised. It is the most fine-grained segmentation schema. Similarly, AM

allows the user to choose which prefixes and suffixes to split off. Its “default”

scheme is chosen where conjunctions, prepositions, determiners, suffixes and future

markers are all individually separated. ST and FA do not allow the change in

segmentation scheme. ST follows ATB schema: all clitics are tokenised except

determiners.

In a more in-depth look, FA is a bit different: e.g. it segments off nominal

suffix that marks the plurality of a noun. It segments the Alif tanween that marks the

accusative case of nominals. Unlike traditional Arabic, the others do not segment the

attached nominative pronouns (that acts as a subject). These differences contribute

to the increase in the number of tokens in FA. ST does not segment the Al+ article

from nominals. The significant portion of the rest of the differences is due to errors

in the model's predictions.

The difference in the number of segments shows that both QAC and

SALMA used more fine-grained segmentation schemes. It shows the challenge of

adapting MSA segmentation schemas to traditionally influenced segmentation. It

also indicates that segmentation varies widely between different Arabic POS-

taggers.

6.3.4 Tagset

The tagsets used by the two reference corpora differ: The QAC tagset is

more syntactically-driven while the SALMA tagset is more focused on the internal

morphology of the words and has more morphological features (total of 22

elements). The QAC tagset is designed only for the Quran; thus it does not have tags

for punctuation for example. Regarding basic tags, the possible number of part of

speech categories (without any associated features such as gender or person) in the

QAC is 45: 9 tags for nominals, one for verbs, and 34 tags for particles. The

SALMA tagset is more fine-grained (77 tags): 34 for nouns, one for verbs, 22 for

 - 127 -

particles, and 20 for residuals (others). Irrelevant tags (e.g. punctuation) were

excluded.

Tagset of the four taggers range from 16 (FA) to 26 (AM, ST) to 59 tags

(MX). Table 6.2 illustrates a mapping from each tag of each tagset to the universal

dependencies tagset. This mapping is a rough mapping and is carried out by the

author with no validation. It is not used in any alignment methods. The goal is to

show how tagsets are widely different in some groups. For example, relative

pronouns are considered a particle in FA. It does not have a proper_noun tag either.

It also has tags that are a morphosyntactic feature, e.g. NSUFF. ST and AM have a

very similar tagset. MX uses a separate tagset for enclitics (24) and proclitics (28)

that are not included in the table. These tagsets not only consist of POS tags; they

sometimes encode the form of the clitic and some morphosyntactic features. Some

tags are specific for Egyptian Arabic dialect clitics.

 - 128 -

Table 6.2 Rough Mapping of Tagsets with Universal Dependencies tagset

UPOS QAC MadaAmira Stanford AMIRA FA

Open

NOUN N noun NN, NNS NN,NNS NOUN

PROPN PN noun_prop NNP,NNPS NNP,NNCD

ADJ ADJ adj JJ,VN JJ,JJCD,JJR,VN ADJ

ADV T,LOC adv,adv_interrog,adv_rel RB RB ADV

VERB V verb VB,VBD,VBG, VBN,VBP VB,VBD,VBG,VBN,VBP V

Closed

ADP P prep IN IN PREP

AUX *

NSUFF,CASE

DET DET part_det DT,NOUN_QUANT DET DET

PRON PRON pron,pron_exclam PRP,PRP$ PRP PRON*

REL pron_rel WP,WRB WP,WRB

CCONJ CONJ conj CC CC CONJ

NUM NUM noun_num,noun_quant,adj_num ADJ_NUM,CD ADJ_NUM,CD NUM

SCONJ SUB conj_sub

CJP PART

PART
IMPN,DEM,EXL,FUT,INTG,NEG,RES,VOC,

EMPH,IMPV,PRP,ACC,AMD,ANS,AVR,CAUS,

CERT,CIRC,COM,COND,EQ,EXH,EXP,INC,

INT,INTG,PREV,PRO,REM,RET,RSLT,SUP,

SUR

pron_dem, pron_interrog,

part_focus,adj_comp,part_dem, part,

verb_pseudo, part_fut,

part_interrog, part_neg,

part_restrict, part_verb, part_voc

RP DT,RP,CJP FUTPART

INTJ N/A interj UH UH

Other

PUNCT N/A punc,latin PUNC PUNC,FP PUNC,FOREIGN

SYM N/A

X N/A abbrev,digit

ABBREV

 - 129 -

6.3.5 Parallel-Aligned Corpus (PAC)
The alignment problem needs a source of information for its decisions, i.e.

our parallel-aligned corpus. Similar to the role of bilingual dictionaries in machine

translations, supervised alignment methods, that try to align the output of individual

taggers of the ensemble, use this corpus to infer the best alignment candidate.

Because assessing the generalization capability of the alignment methods is a

key goal in our study, and since the alignment is sensitive to the similarity between

the source and target aligned tagsets, we chose the 29th chapter of the Holy Quran as

the gold standard corpus for alignment. This specific chapter is annotated by QAC

(Dukes, Atwell and Habash, 2013) and SALMA (Sawalha, Atwell and Abushariah,

2013) which makes it a good candidate for a parallel-annotated corpus. The corpus

is enriched with semi-automatic tagging using the four taggers. Although one

reference corpus might be enough for comparing different alignment methods, it is

preferable to test the alignment on multiple corpora as alignment is dependent on the

similarity between the tagger and reference tagset.

The reference corpus is nearly 1000 words, morphologically segmented to

produce 1709 (QAC) or 1942 (SALMA) morphemes. FA, ST, MX, and AM produce

a different number of morphemes: 1615, 1448, 1426, 1409 morphemes respectively.

The goal of this PAC is to evaluate the alignment methods. In pipelined

ensemble, each component is tuned independently. Assessing the alignment method

is required to optimise the ensemble tagger to achieve the best accuracy. Another

aim of this language resource is to construct a reference data for evaluating taggers

based on one test dataset.

The corpus development process is simple: Input taggers re-tag the corpus

using their own labels. These morphemes were manually aligned by the author of

this thesis to SALMA and QAC. The alignment is done per word for all taggers. A

single morpheme can be aligned to only one reference morpheme, which assumes

that QAC and SALMA are finer in the segmentation process. If one morpheme can

be aligned to multiple reference morphemes, the most similar morpheme is chosen

in terms of POS tag similarity and is judged solely by the author. The other

morpheme is aligned to a gap in the reference word. The whole process was done on

the SAWAREF web-interface. The morphemes are shown in tabular format with

 - 130 -

easy navigation and keyboard shortcuts. The corpus is open access at the

SAWAREF data repository1.

6.3.6 QAC Orthographic Adaptation

The script used by the QAC corpus differ significantly from the text used by

input taggers (see Section 8.2.3 for a list of differences). The QAC corpus used the

Othmani script, where 43.16% of the verses and 52.80% of the words are written

differently from a version written using Modern Standard Arabic script. It requires

special handling and manual verification to convert it to the modern orthographical

standard Arabic script. As taggers assume text to be written in modern standard

orthography, we used the Tanzil Project2 to retrieve an authenticated modern script

version of the Quran text.

To rewrite each segment to its MSA form, we perform the following

procedure:

1. If the word is composed of one segment, we replace it with Tanzil’s

form.

2. Else if there is only one segment that differs in the form, we find and

use the proper substring from Tanzil’s form.

3. Else, we try to rewrite each segment in the QAC using attached ordered

regular expressions which convert Hamza, Yaa, Special characters,

madd, and missing diacritics to the required format.

4. We repeat step 2, unless no new changes are made.

5. If there are still two different segments, we raise an error, and manual

handling is required.

6. Any remaining mismatching segments are treated manually.

The final result of this adaptation is a version of the Quranic Arabic Corpus

that conforms with modern Arabic orthography. This adaptation, however, does not

claim that the QAC is now perfect for training machine learning models for classical

Arabic. In Section 8.2, a more detailed evaluation of the QAC is presented.

1 https://github.com/aosaimy/sawaref-data
2 http://tanzil.net/

 - 131 -

6.4 Morpheme-based Alignments Methods

6.4.1 Baseline Alignment
This approach is a simple method to jointly align the output of two

sequences. one element (called primary) is selected from each side and are linked;

then, other elements are aligned with respect to their relative position to the primary

element, assuming taggers will produce a sequence of morphemes with one

morpheme marked as a `primary'. Formally, let the primary morpheme be: !" ∈

	%, '(∈) . The result of the mapping is the set of pairs: * = {. . , (!"/0	, '(/0),

(!"/2, '(/2), (!", '(), (!"32, '(32), (!"30, '(30), . . }.If !" or '(do not exist in their

respectful sets, they are substituted by a gap (or 5).	

To illustrate this method: Assume we have two sequences: % =

{6789, :;<:, =<;'}) = {:6, :9, ;!, =6, ;'} where =<;' and =6 are the primary

morphemes. The alignment result will be: {(5, :6), (6789	, :9), (:;<:, ;!),

(=<;', =6), (5, ;')}.
This method makes three assumptions:

1. The definition of primary morphemes is standard: An example that

illustrates the lack of this standard is the case of PREP + PRON which is

common in Arabic; an example is (ھیف /fyh/ in it).

2. A word has only one primary stem which is invalid when two morphemes

are equal in rank. (ا م ن إ ِ َّ َ /<in~amaA/ but) was segmented by QAC into two

primary morphemes: <in~a/ACC + maA/PREV.

3. Taggers will explicitly mark one morpheme as primary: Some taggers do

not.

To overcome these issues, tags in the tagset are ranked. The top-ranked

morpheme in one word is marked as primary. This method should solve the three

problems; for example, a higher priority might be given to PRON than PREP, and to

ACC than PREV.

The noticeable difference in the segmentation schemes makes this baseline

algorithm not efficient, so we investigated three different approaches to improve the

alignment.

 - 132 -

6.4.2 Rule-based Alignment
In this approach, rules that map one tagset to the other guide the alignment

algorithm. They are used to constrain the alignment to only mapped pairs (if such

exist).

Two linguists performed the task. See 5.5 for the experimental study of

mapping. The scoring matrix >?,@ is constructed as follows:

A",(
?,@ = A(,"

?,@ = B
1	DE	E(D, 9) = 2
0.5		DE	E(D, 9) = 1
0	7Iℎ<;KDA<

	

where E(D, 9)	is the number of mappings from tag D to tag 9.

6.4.3 Data-driven Supervised Alignment
The second approach uses an aligned corpus to learn the probability of

aligning one morpheme in one sequence to another, using its POS tag. We used our

parallel annotated and aligned corpus (PAC)3. Incorrectly-tagged words were

marked and skipped from learning.

To construct the scoring matrix, we use two basic methods: weighted count

unigram and bigram. Then, these counts are normalised by dividing them on the

total number of POS tag occurrences. The scoring matrix >?,@ is constructed from

the co-occurrence matrix C as follows: A",(
?,@ = A(,"

?,@ = LM,N
∑ PM,QQ

6.4.4 Unsupervised Alignment

This approach uses a method adapted from the word alignment task in

Statistical Machine Translation (SMT). Similarly, our corpus is multilingual (in the

sense of annotation style), and is parallel at the word-level. The unsupervised

alignment is done by linking POS tags of the two sides of the word-level parallel

aligned corpus using the likelihood of co-occurrences.

Using our PAC corpus, we use the fast_align method (Dyer, Chahuneau and

Smith, 2013) which uses the expectation-maximisation algorithm to maximise the

likelihood of a parallel corpus. The input to the aligner looks like the following ("|||"

denotes the delimiter between source and target languages):

wa_conj li_prep verb ||| p--c-- p--z-- r---a- v-c--- r---z-

3 http://github.com/aosaimy/sawaref-data

 - 133 -

The result of this approach is a pairs of links, that depends on the likelihood

of having two tags appearing on the same word. These links may intersect, i.e. the

alignment output is not necessarily projective. For example, an enclitic in one side

may be linked to a proclitic on the other side. The used method, fast_align, is

designed for word alignment of a bilingual parallel corpus, and intersection is

possible in SMT. By using a priority that favours arrangements that are close to

“diagonal”, we could force the alignment to respect the projectivity property.

Post-processing the output was necessary to convert n-n mappings to one-to-

many mapping. Among the m possible mappings, and rather than basically choose

the first one, we pick the most confident mapping, i.e. the most-frequent pair in the

whole training.

6.5 Form-based Ensemble
Previous morpheme-based approaches do not assume same tokenisation

schema of the gold standard corpus. Some tokens in the gold standard corpus (ex.

EMPH) will not be identified, as no input tagger assumed the same tokenisation.

When tagging the word /yatyn/, if tagger A produced “yAtyn/VBP km/PRB” and

tagger B produced “yAtyn/V km/PRON”, then the following input and output will

be expected from the morpheme-based ensemble classifier:
Input Output

Word Features Class May be predicted

yAtyn VBPA VB V Yes

 EMPH No

km PRPA PRONB N Yes

The form-based approach extends POS tagset of the gold standard with a

character that indicates a character's position: B for the first character of morpheme,

I for other characters. Spaces between words are tagged as O. The previous example

will be:
Word Features Class

y VBPA VB B-V

A VBPA VB I-V

t VBPA VB I-V

y VBPA VB I-V

n VBPA VB B-EMPH

k PRPA PRONB B-N

m PRPA PRONB I-N

 - 134 -

This approach can combine different taggers with no assumption of the same

tagset or segmentation. Please note that this approach aligns segments based on the

characters of the segment's form; i.e. it assumes that for each segment, the tagger

will output the segment form and the part-of-speech tag. It does not apply to word-

based taggers like MADAMIRA (by default4). For example, the word (ُ ََ َ ھ ن ت ف /fatanahu/

entice;torment (him)) is tagged by MADAMIRA as follows: pos="verb"

enc0="3ms_dobj".

A form-based ensemble requires inputs to be aligned at the character-level.

Character-based alignment uses the lexical form of the segments provided by

segmenter/tagger to align the output. This approach was used in the GRACE

evaluation campaign (Adda et al., 1998) to align several participating taggers using

a word-based “diff” tool.

6.6 Alignment Evaluation
We evaluate different approaches to alignment using an intrinsic metric: The

accuracy of aligning morphemes. Using 80-20 split for training and testing, we

report overall accuracy: the fraction of morphemes that have been correctly aligned

to the PAC gold-standard corpus. An incorrect alignment will cause at least a

doubled penalty in this metric.

Table 6.3 The morpheme-based accuracy of aligning morphemes using five

approaches of alignments.

Mapping Ru unigram bigram baseline unsup unsup*
AM à QA 0.91 0.97 0.83 0.95 0.9 0.91
AM à SW 0.90 0.96 0.72 0.94 0.83 N/A
FA à QA 0.91 0.99 0.84 0.95 0.95 0.95
FA à SW 0.97 0.99 0.95 0.95 0.96 N/A
MX à QA 0.92 0.95 0.81 0.91 0.92 0.92
MX à SW 0.93 0.94 0.71 0.90 0.83 N/A
ST à QA 0.94 0.98 0.82 0.92 0.89 0.90
ST à SW 0.93 0.96 0.72 0.91 0.82 N/A
Average 0.93 0.97 0.80 0.93 0.89 0.92

4 One of the outputs of MADAMIRA is the original Buckwalter complex tag. The tag shows the

segments of the word, but its segmentation schema is finer than MADAMIRA.

 - 135 -

Since there is a chance that one tool tags a word incorrectly, and this word

will contribute to the error rate of the alignment, these erroneous words are excluded

them from our training and evaluation. While sometimes just one morpheme is

marked incorrectly, the whole word is excluded.

We performed 5-fold cross-validation for the supervised approach and the

reported accuracy is the average of the five folds. The unsupervised model used the

full unaligned corpus for training. However, evaluation is based on the same test

portions as the supervised approach. In the unsup* column, we report the accuracy

of unsupervised learning from a larger training data (nine times original size), and

accuracy has increased by around 0.5-1%.

The results in Table 6.3 show that the unigram model outperforms all other

models in all our tagsets mappings. We can see that aligning taggers with SALMA

is more difficult than with QAC because QAC uses segmentation and labelling

schemes that are more compatible with input taggers. One exception is FA which

seems to be more compatible with SALMA than QAC.

The bigram model suffered from the insufficient training corpus even though

the bigram model uses more contextual information to predict alignment. One

solution to this problem is back off strategies to unigram model, e.g. using Katz's

backoff model (Katz, Lamel and Adda, 1987).

The unsupervised method suffered from the post-processing step which

converts n-n mappings to 1-1. Both basic and most-confident strategies suffer from

cases where a tag is more associated with another tag, e.g. verbs frequently collocate

with pronouns. For example, using the basic method, the tag verb would have paired

with ra (imperfect particle) instead of vc (imperfect verb). Since the pair (verb, vc)

is more common, the most-confident method will pick this pair instead. While the

most-confident method should improve the accuracy, it fails to choose the right pair

when there are affixes that appear more than their stem. For example, the tag noun

was paired with nu (active participial noun) and rm (masculine plural sound suffix),

but since the SALMA tagset is finer grained, a noun can be mapped to at least 15

possible tags, which lowers the probability of noun à nu. Thus, this method chose

the incorrect pair (noun, rm).

 - 136 -

6.7 Morpheme-based Ensemble Evaluation
We evaluated different approaches to alignment using an extrinsic metric:

The effect of alignment methods using an application of the alignment (one-to-one

POS tagging). In this evaluation, we used the QAC POS-tagging of ten randomly-

selected chapters. We compare alignment methods with an ensemble tagger with

“no” alignment; i.e. no intervention is done to the natural order of morphemes. The

Random Forest method implemented in the WEKA toolkit (Breiman, 2001) is used

for the morpheme-based ensemble development. Random Forest has been widely

used for classification problems, e.g. the gender and number tagging of Arabic

words (Darwish, Abdelali and Mubarak, 2014).

We extend the alignment algorithm to work with multiple input taggers. We

used a simple method: having randomly ordered two sets, aligned and non-aligned,

we sequentially align one from the non-aligned set with the last-added tagger in the

aligned set.

Formally, let R be the set of taggers and S be the set of aligned taggers with

a size m initialised by randomly adding one tagger from R to it. Then, we select and

align a randomly picked tool from R − S and align it with :U/2 then add it to S.

While this greedy algorithm does not ensure optimal multi-sequence

alignment, it performs well enough in our PAC corpus, and its decrease in accuracy

seems negligible: 0.025. However, this method makes errors of prior alignment are

propagated to the next pair. The reduction in accuracy was caused mainly from

incorrectly labelled words; i.e. aligning two incompatible outputs.

Only aligned labels were provided to the classifier. We do not edit

mislabelled segments, nor ignore them in training. Note that our individual data

points were assumed to be independent, and we rely on input taggers to consider the

context for classification. A sample of the input to the classifier is Table 6.4.

Table 6.4 A sample of input to the ensemble POS tagger.

MX AM FA ST QAC
verb VBD V VBD V
prep NN PREP IN P

2ms_pron PRP PRON IN PRON
det DET DET DT DET

noun NN NOUN NN N
prep IN PREP IN P
det ----- DET DT DET

noun NN NOUN NN N

 - 137 -

The results show that as we increase the number of taggers, the accuracy

improves, (see). We can see that the effect of alignment decreases as we increase

the number of input taggers though. Errors generated from the greedy method might

have cancelled the gain of more taggers in the ensemble tagger. The ensemble tagger

improved the accuracy over the best input tagger by at least 1.7%. The best

ensemble tagger was an ensemble of AM, ST, and MX taggers with an accuracy

88.09%, 88.07%, 87.88%, 87.74% (using unigram, rule-based, baseline, and without

any alignment respectively). However, the ensemble of all four input taggers

performed a little bit worse: 87.80%, 88.06%, 87.92% and 87.90%.

Figure 6.3 The average accuracy of each input tagger against different

alignment approaches.

●

●

●

●

85.5

86.0

86.5

87.0

87.5

no ru sp1 st
approach

ac
cu
ra
cy

tool
● AM

FA
MA
ST

 - 138 -

Figure 6.4 The effect of increasing the number of input taggers against

different alignment approaches.

The alignment between taggers seems to increase the tagger performance

slightly. Overall, the average improvement in accuracy is 0.01 and 0.036 for the

unigram and rule-based approaches respectively. The fact that the rule-based

approach performed better than the unigram approach does not contradict the

intrinsic evaluation, as erroneous words are removed in the intrinsic assessment. The

training dataset for the ensemble tagger is considerably larger than one used in the

intrinsic assessment. Unseen tags might contribute to the difference as well.

●

●

●

●

83

84

85

86

87

88

no ru sp1 st
approach

ac
cu

ra
cy

number
● 1 tools

2 tools
3 tools
4 tools

 - 139 -

Figure 6.5 Input taggers differ in their contribution to the ensemble tagger.

The Figure 6.5 shows the average accuracy of all combinations of ensemble

taggers that include the selected input tagger. It indicates that MX contributes the

most to the ensemble, and alignment improved its accuracy noticeably. This

contribution might be due to its fine-grained tagset. While FA used a more fine-

grained segmentation scheme, its small tagset makes it less helpful to the ensemble

tagger.

One significant disadvantage of this alignment is the dropping of segments

that never appear in input taggers. One example is the EMPH tag, which was used in

the QAC to mark the EMPH enclitic in verbs (see Table 6.7). Input taggers never

segment this enclitic; instead, they tag it as a part of the verb.

6.8 Form-based Ensemble Evaluation
In this experiment, the used evaluation metric is accuracy, the fraction of

correctly tagged characters (AccMorpheme) and morphemes (AccCharacter). Since

character-based methodology preprocesses the input to convert it to a suitable

●

●

●

●

85.5

86.0

86.5

87.0

87.5

no ru sp1 st
approach

ac
cu
ra
cy

tool
● AM

FA
MA
ST

 - 140 -

format for training, the results are post-processed such that we can compare it to

other morpheme-based results.

The form-based method used a Java-based package called MALLET for

sequence tagging using Conditional Random Fields. The form-based method

required us to redefine the problem as a sequence problem as character positional

tags plays a critical role in prediction. In the next chapter, we reimplement the two

approaches and evaluate them on a common dataset and platform with the end-to-

end approach proposed there.

In the character-based method, our results are comparable with the advantage

that we do not require the prior assumption of similar segmentation scheme between

taggers. The best combination is the ensemble that includes all four taggers and

scored 88.73%.

Table 6.5 A comparative accuracy between morpheme-based and character-

based approaches

Method AccMorpheme AccCharacter

Morpheme-based Ensemble 88.09 N/A

Form-based Ensemble 88.73 92.44

Note that morpheme-based accuracy is computed by recovering the

morpheme from the character-level labelling. However, this does not produce

necessarily the same number of morphemes in the gold-standard corpus. This results

in a mismatching morpheme number between the two sequences of morphemes. The

morpheme-based accuracy marks a morpheme as correctly labelled if all its

characters are tagged correctly.

6.9 Morpheme-based vs Character-Based Alignment
We will start this comparison by dividing POS taggers for Arabic into two

categories:

1. Word-based Taggers where the word as a whole is given a compound tag

with no explicit mark for segmentation in the form; i.e. there is no link

between segments’ lexical form and their POS tags in the compound tag.

Examples include the MX tagger and the Microsoft POS tagger (see 4.4.6).

The tagset for enclitics might even be different than ones for the stem.

2. Segment-based taggers: Each segment is clearly defined by its

morphological information. Some taggers mark enclitics by adding a plus

 - 141 -

sign to indicate that it was split off from the previous/next segment.

Examples that include ST, FA, and AM taggers.

Table 6.6 Word-based vs. Morpheme-based tagging. For the word /kunna/,

word-based do not specific the mark of where the word is split.
W

or
d-

ba
se

d

MADAMIRA

Toolkit

<morph_feature_set diac=" ا ن ك ُ ّ " lemma=" 1_ناك "

bw="kun/PV+nA/PVSUFF_SUBJ:1P" gloss="was;were" pos="verb"

prc3="0" prc2="0" prc1="0" prc0="0" per="1" asp="p" vox="a"

mod="i" gen="m" num="p" stt="na" cas="na" enc0="0" source="lex"

stem=" ن ك ُ "/>

Microsoft

POS Tagger
V.Dual.Plu.Pst.Act*Subj.Plu.1

M
or

ph
em

e -
ba

se
d

Elixir FM
VCJ---MS-- kun "k w n" "" >>| FuL

|<< ""

kun نك ن ك ُ

SP---1MD4- nā ان َ ا ن

QAC
ku V STEM|POS:V|PERF|LEM:kaAna|ROOT:kwn|1P

n~aA PRON SUFFIX|PRON:1P

Using the character-based approach for aligning segments between taggers is

challenging because some of the input taggers to the ensemble tagger were word-

based. Table 6.6 shows the two ways of tagging the word: (ا ن ك ُ َّ , kuna~A, we were).

Even though the tag in the second row indicates that there are two segments in the

word: V and Subj (separated by the star sign), there is no mark to indicate where

the word form should be divided; i.e. the segment form is missing.

Segment-based taggers have their own issues. One issue is the effect of

segment form adjustment when it is attached. When a word is split off into

segments, the segments might require some modification to recover their original

form. There are at least four reasons for such differences:

1. Taa Marbouta letter: the Ending Taa Marbouta is converted to normal

Taa when concatenated to another segment, as it never appears in the

starting/middle state. Splitting off segments might require recovering the

Taa Marbouta letter.

2. Maddah diacritic: This is originally constructed from two letters: (“ ا+ أ َ ”,

/>a+A/, “Hamza with fatha and Alif letters”). For example, questioning

Alif is converted into Alif with Maddah when concatenated to word with

starting Alif. When splitting off segments, the Maddah diacritic should

be recovered to its original two letters.

 - 142 -

3. Concatenation of Prepositional Lam and the determiner Al: This

concatenation drops the Alif of the determiner, and in exceptional cases

drops both letters. Recovering those dropped letters depends on the

context.

4. Consonant gemination mark (i.e. Shaddah): This indicates consonant

doubling of the letter. However, it happens that the gemination is caused

by attaching a clitic to the word; thus, the letter correlates with both

segments. For example, possessive Yaa is converted into a consonant

gemination mark when attached to a nominal word that ends by /y/.

Prepositional segment /mino+/ when concatenated with relative /+maA/

is shortened as /mimaA/.

These differences result in different forms of the same segment between

taggers; for example, Table 6.7 illustrates how the inflected word “wa+mi+mA” is

morpheme-based aligned and recovered by various tools.

Table 6.7 Different recovery of word’s segments

 MX ST AM FA

wa wa/conj w/conj w/CC w/CONJ

mi mino/prep m/IN mmA/NN mmA/part

m~aA mA/rel mA/WP - -

This illustrates incompatible segmentation schemas, and more importantly, it

shows that MX recovered the /mino/ original form and therefore an extra letter /no/

is added that was not originally in the word form. QAC, the gold standard corpus, is

segment-based tagged but converted letters were not recovered after splitting off

segments. As a result, a few segments do not have a segment form (as the segment

form was part of another segment, e.g. possessive Yaa).

Besides, not all taggers report the segment fully voweled (with diacritics).

Back to the “wa+mi+mA” example, only MX reports segment diacritics (letters: a,

o, i, u).

Furthermore, taggers do not always follow the same procedure of

normalisation. The ST tagger, for example, by default normalises all Alif shapes

into the normal Alif. This results in a mismatch between characters. In Appendix A,

one full sentence (Hadith verse) is tagged by several taggers, and changes that are

made to the segment form can be seen in context.

 - 143 -

Morpheme-based alignment requires external resources to find the links

between morphemes. These resources are usually not perfect and prone to errors. It

also suffers in the case of multiple tagger alignment, as the optimal alignment is

computationally expensive. However, it can work with word-based taggers and

segment-based taggers. Other related work seems to prefer character-based

approach, especially for Chinese.

6.10 Conclusion
This chapter presented and compared two approaches of heterogenous

pipelined ensembles of part-of-speech taggers: morpheme-based and form-based.

Morpheme-based ensembles using three methods of alignment were evaluated. The

supervised learning method using a unigram model had the best morpheme-based

alignment accuracy evaluated on the specific aligned PAC corpus. However,

morpheme-based ensembles using a rule-based approach were better in terms of

accuracy. This might show that individually-tuned pipeline ensembles might not be

the best model. Using alignment improved the ensemble POS-tagger accuracy by

3.6%.

For future work, a more complex vector that includes morphological features

might be considered in the alignment methods, especially for the unsupervised

approach. Additionally, this work should be extended to include morphological

analysers so that the ensemble tagger jointly disambiguates and votes for the correct

analyses.

The next chapter introduces a new model for the ensemble problem: a joint

ensemble with an implicit alignment using an encoder-decoder architecture. The

goal is to overcome the problem of individual tuning of alignment and the

requirement of explicit mapping (data-driven or rule-based).

 - 144 -

7 END-TO-END ENSEMBLE
TAGGER

Chapter Summary:

Pipeline one-to-one ensembles suffer from the requirement of explicit alignment of

segmentation schemes and independent tuning of each component in the pipeline.

Inspired by neural machine translation advances, this chapter introduces a joint

end-to-end ensemble using an encoder-decoder approach.

A series of experiments are executed to evaluate the approach with consideration

of the model of encoder-decoder models, the use of word embedding, the

contribution of each input tagger, coarse vs fine-grained tagsets, and different train

dataset size.

The second part involves a comparative analysis of the proposed approaches:

pipelined morpheme-based, form-based and joint end-to-end ensembles. The

results are compared with related work in the literature.

Before concluding, errors generated from these ensembles are examined and

discussed. In light of these errors, this chapter concludes with some suggestions for

future work.

 - 145 -

7.1 Introduction:
So far, all experiments of the ensemble tagger have been made on parts of

the Quranic Arabic Corpus (QAC) and were limited to the POS tag only. In this

chapter, different setup configurations are evaluated for the ensemble tagger

trained on parts of the Sunnah Arabic Corpus (SAC). The experiments are

evaluated on the test part of the SAC. The goal is to predict the POS tag,

segmentation and eight morphological features.

Pipeline one-to-one ensembles suffer from several problems:

- the requirement of explicit alignment of segmentation schemes;

- independent tuning of each component in the pipeline; and

- propagated errors in subsequent tasks.

Inspired by neural machine translation advances, this chapter implements a

joint end-to-end ensemble using an encoder-decoder approach.

In this chapter, we use Deep Learning algorithms for the prediction,

specifically recurrent neural networks. Deep Learning is a machine learning

method that uses layers of processing units where the output of a layer cascades to

be the input of the next layer. Recurrent Neural Networks (RNN), where iterative

function loops are used to store information, have been successfully applied to

sequence labelling problems in Arabic such as Arabic diacritisation (Abandah et

al., 2015; Rashwan et al., 2015), Word Segmentation and Morphological

Disambiguation (Darwish and Abdelali, 2017; Zalmout and Habash, 2017).

In the first part of this chapter, different parameters and machine learning

features are examined. It inspects the effect of using word embedding, illustrates

each input tagger contribution to the ensemble tagger, shows the effect of different

coarse and fine-grained tagsets, and finally plots the effect of the train dataset size.

Since the configuration space is vast in our case, a greedy approach is followed to

find the best model for annotating the rest of the Sunnah Arabic corpus.

In the second part, previous approaches were reimplemented in neural

network architecture with the goal to evaluate them using the same platform and

datasets.

Before concluding, errors generated from the best model are examined and

discussed. We compare the ensemble errors with the input taggers outputs. In light

of these errors, we give our suggestions for future work.

 - 146 -

7.2 Sequence Labelling: One-to-One vs Sequence-to-
Sequence

Sequence labelling usually involves the prediction of the next label based

on sequence of input and the predicted labels so far, e.g. POS tagging. Sequence

labelling is distinguished from pattern labelling by the fact that individual data

points (or time steps; words in POS tagging) cannot be assumed independent from

other data points.

In sequence labelling, one or many input data points is often transcribed

with one label (1-to-1, or many-to-1). However, there is a more challenging

problem in sequence labelling that takes a sequence of input data points and

transcribes them with a sequence of labels (many-to-many), e.g. machine

translation. However, this problem might not be defined as sequence labelling, as it

is no longer labelling “each” token in the input sequence.

Figure 7.1 Seq2Seq model (top) vs One-to-one model (bottom)

In chapter 5, we formulated our problem as one-to-one sequence labelling.

It required alignment between the predicted morphemes in the participating

individual taggers. Pipeline architecture suffers from error propagation: errors

generated from one alignment are propagated to subsequent tasks (e.g. another

alignment in multi-tool settings, POS tagging, segmentation). It also suffers from

independently tuning each task: the alignment in chapter 6 was not tuned for POS

tagging. Neural networks offer an End-to-End solution and show significant

advances in neural machine translation (NMT) over the traditional pipelined

statistical machine translation (SMT).

RNNs are flexible in their inputs and outputs, and it is one of the reasons

for choosing them. Many-to-many sequence labelling with neural networks is often

 - 147 -

done using RNN Encoder-Decoder architecture (sometimes called seq2seq),

illustrated in Figure 7.1 as introduced by Cho et al. (2014).

The use of Encoder-Decoder architecture removes the dependency on input

shape, which is valuable in two needed outputs: recovering adjusted letters and

recovering mismatches in the segmentation of the target tagset. It not only recovers

dropped/converted items like the recovery of adjusted Taa Marbouta and Yaa

Maqsoura letters, but it recovers mismatches in segmentation between input and

output like the case of a missing EMPH tag.

In the encoder-decoder model, which has become the standard for seq2seq

models, the alignment between the morphemes in advance is not required. The

tagger should learn it implicitly. The input sequence (i.e. the output of the tagger)

is read in entirety and encoded to a fixed-length internal representation. This

representation is then used to extract the final required output tasks: POS tags and

morphological features.

7.3 End-To-End Experiment Settings
The goal of these experiments is to build an ensemble of morphosyntactic

taggers that predicts the POS tag, segmentation, and morphological features for

automatic annotation of classical Arabic.

Both QAC and SAC follow the same POS tagset. The extended tags

introduced in SAC (see 8.10.3) are for word categories that never appear in

Quranic texts, e.g. digits.

7.3.1 Data, Participating Tools, Tagset and Morphological Features
The data used for training and testing and the participating tools are the

same ones used in the previous experiment using pipelined alignment. Please refer

to 6.3 for the details.

7.3.2 Network Architecture
The problem, as stated before, is a supervised sequence labelling. POS

tagging and the prediction of every morphological feature are examples of

sequence labelling problems where there are sets of labels for each problem.

Segmentation can be seen as binary sequence labelling at the character level. A

character is labelled as either a start mark of a new morpheme or not.

 - 148 -

In sequence labelling, Recurrent Neural Networks (RNN), where a network

uses iterative function loops to store information, has shown some advantages over

standard feed forward neural networks. They are flexible in how they deal with

contextual information. They can recognise sequential patterns better (Graves,

2012) as they use their internal memory to process sequences of inputs. It has been

successfully applied to sequence labelling in Arabic such as Arabic diacritisation

(Abandah et al., 2015; Rashwan et al., 2015), Word Segmentation and

Morphological Disambiguation (Darwish and Abdelali, 2017; Zalmout and

Habash, 2017).

From the class of RNN, the TensorFlow implementation of the Long Short-

Term Memory (LSTM) architecture (Hochreiter and Urgen Schmidhuber, 1997) is

used in all experiments. LSTM is a modified design of the standard RNN to

overcome one serious flaw: the inability to store information for a long time.

LSTM was the choice for the previously cited studies in Arabic diacritisation and

morphological disambiguation, and therefore is the layer of choice to encode and

decode sequences.

In all the experiments of joint end-to-end ensemble, we use a sequence-to-

sequence (seq2seq) (Cho et al., 2014; Sutskever, Vinyals and Le, 2014) neural

network that is composed of an LSTM encoder and decoder. Although dynamic

NNs perform well when sufficient training data is provided, it has required

encoding the inputs and targets with vectors of fixed dimensionality. However, the

dimensionality is not always known in advance in some of the tasks. This

architecture allows mapping one sequence to another using two LSTMs: an

encoder and a decoder. The first encodes the whole sequence in a fixed

dimensional vector, and the latter decodes this vector into a newly generated

sequence. This method proved to be useful in complex problems such as machine

translation (Sutskever, Vinyals and Le, 2014).

The fundamental architecture is composed of an input layer, an encoder,

and a decoder. An input layer is a 3-dimensional vector: (samples, time steps,

features). There are two types of inputs: character-based input, which includes the

lexical form, and categorical-based input, which includes POS tags and

morphological features. In character-based input, the time steps are the characters

 - 149 -

of the words, and each character is represented in a one hot encoding61. In

categorical input, the time steps are the morphemes of one word, and the features

are represented as well as one hot encoding.

The representation of input values as one-hot encoding implies that we

have the same distance between different values of one feature. However, this is

not always the case; for example, nouns and proper nouns might be closer to each

other than a particle. One solution is to encode the sparse categorical vector in a

dense vector of a fixed length. In one experiment, we evaluate the effect of using

POS embeddings instead of the one hot encoding.

Note that the input sequences might not have the same length of time steps.

However, in practice, it is required to pad the sequences to have the same length in

Keras with TensorFlow backend. Unlike PyTorch62, graphs in TensorFlow are

defined statically. We pad string inputs with spaces, and categorical inputs with a

null value to represent padding.

The next layer is a bidirectional LSTM encoder that maps the input shape

(the time steps and the features) into a vector of 256 dimensions. In this layer, we

use the hyperbolic tangent (tanh) as the activation function and a dropout rate of

0.01 (i.e. a fraction 0.01 of input units are set to 0 to help prevent overfitting). The

output shape of this layer is a vector of 256 for each sample. The next layer repeats

this vector to the number of time steps which is required for the next LSTM

decoder layer, as it expects a 3-dimensional input.

The idea of bidirectional RNNs (Schuster and Paliwal, 1997) is

straightforward. It duplicates the first RNN layer such that the input is fed to both

layers, but with a reversed input order for the second layer. The output of the two

layers can be merged via several methods, e.g. by concatenation. This approach

requires that all timesteps of the input are available. Bidirectional LSTMs, in

particular, were used in POS tagging (Plank, Søgaard and Goldberg, 2016;

Darwish and Abdelali, 2017), and thus are used in our experiments.

61 One hot encoding (a.k.a. dummy encoding) is a numerical encoding of categorical feature where

a feature value is converted to a vector of 0 and 1. The vector size equals the length of labels set

size. The vector is all zeros except for the label's index. For more details:

https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
62 https://pytorch.org/

 - 150 -

The decoder layer is another LSTM that expects a sequence of fixed-length

(256) vectors and will transfer the learned encoded internal representation into the

output sequence. A regular feedforward dense layer is used to transform the output

of each time step (morphemes) into the final label. The same weights are shared

for all timesteps as the same dense layer is applied for each timestep. The network

for predicting the segmentation is illustrated in Figure 7.2. The full network used

in the experiments with all categorical and character information (POS tags,

segmentation, and morphological features) is presented in Figure 7.3.

Figure 7.2 The Basic Encoder-Decoder Neural Network

 - 151 -

Figure 7. 3 The full neural netw

ork for PO
S, segm

entation, and m
orphological features

 - 152 -

7.3.3 System Settings

All algorithms are implemented in Python using the Keras Framework

(version. 2.1.4) with a TensorFlow backend (version. 1.4.1). Keras is a high-level

neural networks API. TensorFlow is an open source dataflow library in Python that

is used for machine learning using neural networks. It was developed by Google

Brain and seems to be the most widely-used deep learning framework.

Experiments are run on a MacBook Pro laptop with a processor 2.3 GHz

Intel Core i7 and 16 GB of RAM. All experiments were run on the CPU, as

TensorFlow no longer supports GPU in MacOS as of version. 1.2.

7.4 End-To-End Experiments

7.4.1 Word and Morpheme Embeddings

In the following experiments, pre-trained word embeddings are used as an

input to the network. Words (and subwords) are represented as continuous vectors

of real numbers, a.k.a. word embeddings. This word representation is a

distributional model that allows words with similar meanings to be closer to each

other.

One method for this representation is the classical distributional co-

occurrence sparse matrix. It counts the number of times one word co-occurred with

another word in a given text. Using a decomposing technique like PCA or SGD, a

word is represented in a single vector of real numbers. However, this model suffers

from storing a substantial sparse matrix.

Prediction-based word embeddings (e.g. word2vec (Mikolov et al., 2013))

overcomes this issue by iteratively predicting a representation of a word from its

context. However, this model ignores the morphology of the words as it treats each

word form independently. Another issue is that it is not generalised as it is limited

to the trained vocabulary; vectors for other words do not exist and cannot be

generated.

Subword Embeddings allows guessing the meaning of one word even if it

is out-of-vocabulary. This models the embedding to take the morphology of a word

into consideration. For example, the suffix “-borough” should indicate the meaning

 - 153 -

of a location. Subword approaches assume that word meaning can be recreated

from its components. The fastText tool (Bojanowski et al., 2017), for example,

does so from word character n-grams. A vector representation is generated for each

character n-gram, and the word-representation is the sum of these representations.

The fastText tool is used in the following experiments. Subword

embeddings are more applicable to Arabic language as it is a morphologically rich

language, and the morphology plays a critical role. Besides, the number of

inflected words in Arabic makes the word2vec approach insufficient without a

prior segmentation. Lastly, we generate embeddings for the input word to the

system in addition to the segments generated from participating taggers, so we

want fastText to be consistent in each case.

The word vectors were built using fastText on a random subset of classical

Arabic corpus (the texts in the corpus that were authored from eighth to eleventh

centuries) that were extracted from the Shamela library (Belinkov et al., 2016).

The subset’s total number of words is 160 million words, and the vocabulary size

is 662K. The model was trained using a minimum and maximum of two and seven

character n-gram lengths. The size of the word vectors is 200. The text was

cleaned, and diacritics were removed. All annotation in the texts were removed,

and the model was trained on the book texts only.

In Figure 7.4, we have six models: emb models use the trained fastText

model on the input word in addition to encoding the original word as one hot

vector, only_emb does not include the original word, baseline does not use

embeddings at all, both for small and large training dataset. It shows that the

embedding input did not contribute much in emb cases, even though it contributes

slightly more to the model with a small training dataset. It also shows that

embeddings did not represent the original word and did not encode all input word

features. It was developed using the undiacritised corpus, so the lack of diacritics

might cause the drop in accuracy.

 - 154 -

Figure 7.4 The effect of using word embeddings

7.4.2 POS Embeddings
Embeddings do not only apply word form or characters. They can be also

used as an alternative way for encoding categorical Embeddings. Instead of

encoding each category in one-hot encoding, these categories can be encoded

jointly with the network, using embedding layers at the beginning of the network.

Feature vectors, particularly the POS tag, in one hot encoding are

independent, but this is not always the case in some of the features. Some POS

tags, for example, may behave similarly (e.g. nouns and proper nouns). The main

benefit for this representation is in “generalisation power” (Goldberg, 2017, p. 92)

which might help the network in the combination process. Also, the dense

encoding reduces the computation cost of sparse vectors as shown with syntactic

parsing (Chen and Manning, 2014).

We evaluate this setting in this section. In Figure 7.5, dense vectors for

POS tags (POS embeddings) did not improve the overall accuracy. The effect does

not show improvements in segmentation and POS tagging (the two charts on the

right side). The effect is slightly noticeable in morphological features but is very

limited (less than 0.015% at maximum). The embeddings might not have sufficient

training data (no external resources were used), and thus the dense vector did not

encode the dependency between tags to the full extent. The dense representation

requires fewer parameters to be trained (1.08 millions vs 1.19 millions), and the

training should be faster (in theory). However, the training only converged on the

50th epoch vs. the 39th epoch (in the baseline). The evaluation of the generated

 - 155 -

embeddings requires an evaluation dataset of pairs of POS tagsets. So, we leave

this task for the future.

The feature vectors might be helpful as well in the mapping between

different tagsets. The embeddings are trained though monolingually (each feature

in its space). Embeddings can be transformed linearly (or using Procrustes

alignment) in a supervised approach using a set of pairs of matching tags (bilingual

dictionary) or in an unsupervised approach by iteratively refining the alignment

(Conneau et al., 2018). This method has proven to be useful in word translation,

and it might also help in finding the mapping between different tagsets. This work,

however, is beyond the scope of this thesis.

 - 156 -

Figure 7.5 The accuracy over the training epochs using embeddings (dense vector) for POS tags (Red) vs using one-hot encoding (Blue).

 - 157 -

7.4.3 The Effect of Training Dataset size

To remind the reader, our ensemble approach aims to help under-resourced

variants by reusing existing resources. The two adaptations in this ensemble

(annotation-style and domain) require a corpus of under-resourced variant

annotated with the required target annotation style. However, the required size of

this corpus is unknown in advance, so we evaluate our ensemble using different

sizes.

The training dataset size plays a critical rule in the adaptation of the input

of individual taggers. In this experiment, we show that training data size is directly

proportional to the accuracy as shown in Figure 7.6. The training dataset is

iteratively set to be 10, 20, .., 80% of the data, the validation split is always 10%,

and the rest is for the testing dataset. The model will not be trained on the

validation dataset, however, it prevents the training from overfitting the training

dataset by allowing to monitor progress and providing early stopping when the

validation loss is not improving. The test dataset is an entirely independent data

split that we use to evaluate the model. The validation dataset in our case is not

used for development or hyperparameter tunings; therefore validation and test plots

should have similar patterns.

In Figure 7.6, we can see clearly that the more data is used for training, the

better the accuracy. The accuracy is averaged from all outputs: POS tagging,

segmentation, and morphological features. Over the training, the larger training

dataset converges faster (in the number of epochs). However, the time of training

for one epoch is higher with larger datasets (1 min compared to 27sec). We capped

the number of epochs to 30 for time constraints.

 - 158 -

Figure 7.6 The effect of different training dataset sizes on the average

accuracy.

In Figure 7.7, we can see that the segmentation accuracy primarily and

POS tagging are the two outputs that suffer from small datasets. It confirms that

participating taggers have different segmentation and POS tagsets, and annotated

data is needed to adapt these schemas to the required schemes. As the training data

get larger, the effect on the accuracy is less. There is no significant difference in

many features when the training dataset size is increased.

Figure 7.7 The effect of training dataset size on the accuracy of POS tagging,

segmentation, and morphological features

 - 159 -

It is notable that even with small amount of data63, the accuracy is still

high. It suggests that the annotation process for adapting low-resource languages

should be iterative, and smaller dataset might be sufficient for the purpose. The

amount of data required is highly dependent on the quality of input taggers and the

difference between the two languages, though.

7.4.4 Different Combinations of Individual Taggers

In this section, different combinations of individual taggers are examined.

This section aims to show the contribution of input taggers to the overall ensemble

tagger. A baseline tagger could be created by learning from the training corpus

given only the sequences of the lexical forms (no tagger’s output is provided).

One-tagger model can be created as well by adding the features of one tagger. The

goal here is to contrast the contribution of each input tagger (or the combination of

taggers) to the overall accuracy.

63 The dataset used in all experiments is already relatively small. The whole training data is just a

subset of the QAC (~30%).

 - 160 -

Figure 7.8 Word-based accuracy of single-tagger vs ensemble taggers

Figure 7.8 shows that the four-tagger ensemble improved the accuracy of

most of the features by an average of 1%. MX tagger accuracy is the best

compared to others and scored a very competitive accuracy measure.

Since accuracy is a global performance measurement, it does not give any

information on the error distribution. Remember that the ensemble method exploits

the differences in errors generated in each tagger, so we need to report the

similarity between two taggings of the same text. Taggers have different linguistic

0.97

0.93

0.91

0.95

0.90

0.94

0.88

0.93

0.94

0.98

0.95

0.93

0.96

0.92

0.95

0.89

0.94

0.95

0.98

0.95

0.92

0.96

0.92

0.94

0.89

0.94

0.95

0.97

0.94

0.92

0.96

0.91

0.94

0.89

0.94

0.95

0.96

0.94

0.92

0.96

0.91

0.94

0.88

0.94

0.95

0.98

0.96

0.94

0.96

0.93

0.95

0.90

0.95

0.95

0.70 0.75 0.80 0.85 0.90 0.95 1.00

QAaspect

QAcase

QAgender

QAmood

QAnumber

QAperson

QApos

QAstate

QAvoice

ST+AM+FA+MX ST AM FA MX Baseline

 - 161 -

theories as illustrated before, but since these taggers are “adapted” to produce a

similar segmentation/tagging schema, this adaption may make them more

“homogeneous”. The kappa (κ) coefficient (Cohen, 1960) implemented in the

Scikit-learn package (Pedregosa et al., 2011) is used to compute the similarity

between each pair of one-tagger models. Note that this metric (and similar metrics)

do not operate on homogeneous tagging, so the effect of our adaption on error

distribution may not be efficiently computed.

Since the adaptation of each tagger might make them act similarly, so we

report the kappa of these taggers (for POS tagging) in Table 7.1. The table shows a

high agreement between the four taggers. This high agreement might be due to the

adaptation technique, the knowledge bases of this taggers, or just because MX

tagger simply is superior to the other taggers (the MX tagger is more fine-grained

significantly).

Table 7.1 The kappa coefficient for POS tagging between one-tagger models.

MX FA AM ST

MX 1 0.935633 0.933771 0.932335

FA 0.935633 1 0.929587 0.920686

AM 0.933771 0.929587 1 0.926287

ST 0.932335 0.920686 0.926287 1

Although the accuracy of the ensemble might not improve the overall

accuracy of individual taggers significantly, the ensemble introduces a robust way

for tagging. Researchers might not know the suitability of one tagger to their

research against the others, so running an ensemble tagger does improve the

accuracy over the baseline, and will adapt itself to at least the best of these taggers.

The future work section suggests multiple ways to improve the performance of this

ensemble such as including an Attention mechanism and stateful networks.

7.5 Segmentation Model
The accuracy of predicting the correct segmentation using the Encoder-

Decoder model is quite low (75%). This section introduces a new modelling of the

segmentation problem.

 - 162 -

Segmentation in our case involves recovering adjusted forms, so it is not

surprising that it scores the lowest. Errors in Encoder-Decoder segmentation model

come from changes in letters and diacritics, with no constraints on how letters can

be converted. This results in many words that are not even in the Arabic

vocabulary, e.g. /fa+>aHokumu/ à /fa+>aHomu+kum/. Some words have

multiple incompatible diacritics in some letters which is not valid in Arabic, e.g.

/sabiyli/ à /sabiylii/. In addition, the task involves diacritics changes, and it makes

the sequence length larger, i.e. harder to predict well.

The current model suffers from high sequence length and high possible

number of characters. However, many characters (or letters) should remain

unchanged. Therefore, the segmentation problem should be treated differently: it

could be treated as a classification problem at the word level (like (Darwish and

Mubarak, 2016)) or by predicting word clitics like (Pasha et al., 2014) using a

predefined set of clitics.

Pasha et al. (2014) uses a predefined set of clitics and the trained model

predicts one of them. This method is not suitable for our case as it does not recover

the transformations on the word segments. Darwish and Mubarak (2016) pre-

processes the word form and generates a list of possible segmentations, and then

the trained model will pick the correct segmentation. We follow a similar method

but at the character level.

In other words, we decided to use one-to-one prediction at the character

level. The problem is transformed into three problems: prediction of the character’s

segment position (SEG), prediction of the character’s output letter(s) (LET), and

prediction of the character’s output diacritic(s) (DIAC). Table 7.2 illustrates the

one-to-one segmentation on the way it segments two words: “it’s” and يلإ ّ /<ly~a/

(to me). For each character, it should predict the target letter (LET) and diacritic

(DIAC) after transformation, and the character’s segment number (SEG).

Before training the model, we had to align every input word in the training

corpus to its segmented version, at the character level. We used Levenshtein

Distance between the two sequences (original and segmented) of each word’s

letters (not including diacritics). Then, diacritics are moved according to thier

letter’s position. The input letter and the output letter does not have to match; for

example the apostrophe in the word “it’s” is transformed into “ha”, making “ha” a

 - 163 -

new class in the classification problem. Rarely, a letter in the original form can be

deleted after segmentation, i.e. transformed to an empty string.

In our training dataset, there was 52 unique letters that have been

transformed into 189 different combinations of letters or an empty string and 16

unique diacritics that have been transformed into 72. The segmentation problem

assigns to a letter its position which can be one of 16 possible positions. Please

note that if one letter (e.g. /y/ in our example) is assigned the segment “1+2”, then

the segment “1+2” is one possible class of the SEG classification problem, not two

segments “1” and “2”.

While the accuracy of predicting the SEG is 95.73%, LET 97.99%, and

DIAC 96.26%, the accuracy that one word had a complete successful segmentation

SEG+LET+DIAC, i.e. letters and diacritics are transformed correctly, and each

letter is assigned the correct segmentation, is 92.16% (see Table 7.3). Only the

latter accuracy can be compared to our previous model of Encoder-Decoder (75%)

and it shows a great improvement in the accuracy.

The result of our model may not directly be comparable to other works in

the literature, due to different segmentation schemas. Mohamed’s (2018) work on

the development of religious corpora scored better accuracy on SEG prediction64:

96.32% (compared to 95.73). However, as mentioned by the authors: “The real

merit is in the ability of the classifier, and its features, to go beyond what it is

trained on”. The accuracy of the segmentation of OOV in Emad’s work is 81.56%,

but it is 86.80% in our case (17.96% of words are OOV in our case and 16.4% in

Mohamed’s case).

64 Mohammed assumed that each character does not undo the assimilation and instead keep the

conventional written form. That is, in cases like “it’s” is not recovered to “it has or it is”. Instead,

the only goal is to mark each letter with its proper segment. This is similar to QAC original settings,

which lead to empty-form segments. It is similar to our SEG problem except that one character

cannot be assigned to different segments; so, the segmentation classes are equal to the maximum

segments number.

 - 164 -

Table 7.2 One-to-one Segmentation.

Input word it’s يلإ َّ /<ly~a/

Target Segmentation it has it is ي + ىلإ

INP LET SEG LET SEG INP LET DIAC SEG

i i 1 i 1 < i < i 1

t t 1 t 1 l a l a 1

‘ ha 2 i 2 y ~a Y+y o+a 1+2

s s 2 s 2 Arabic Word

In future work, we might improve the current model to include more

contextual information, as it is currently work at the word-context only, although

this extension seems not to improve Mohamed’s work significantly (at most 0.2%).

The current EN model (unlike other models) does not use information on how

input taggers have segmented the text, i.e. it is not an ensemble of these taggers.

So, another option is to encode how they are segmented and use an ensemble of

these inputs (maybe each sequence associated with an LSTM layer).

Table 7.3 The overall, and out-of-vocabulary word-level accuracy of

segmentation (SEG), letter transformation (LET), and diacritic

transformation (DIAC).

Overall OOV

SEG+LET+DIAC 92.16 79.86

SEG+LET 94.65 84.56

SEG 95.73 86.80

DIAC 96.26 92.17

LET 97.99 95.97

7.6 Ensemble Approaches Comparison
This research has presented mainly two approaches: Pipelined and End-to-

End ensembles, with two primary methods for morphological alignment:

morpheme-based and form-based methods. The morpheme-based method tried

several ways for alignment including rule-based and supervised ways of alignment.

However, these experiments were done over two years and there are several

mismatches between experiment factors. This section presents a re-implementation

of these approaches on a common ground and same platform (Neural Network

 - 165 -

implementation using Keras with TensorFlow backend, same training and test

datasets). The code of all experiments is published at the author's Github

page65.This section as well summarises the differences between these approaches

and analyses the error generated from each model.

7.6.1 Models

This section compares between four proposed models: pipelined

morpheme-based rule-based ensemble (RU), pipelined morpheme-based

supervised-alignment ensemble (SP), pipelined form-based ensemble (CH), and

end-to-end ensemble (EN), as shown in Figure 7.9. These four models had the best

scores in previous evaluations. Table 7.4 presents a summary of the differences

between the four models.

Figure 7.9 The hierarchy of presented ensemble models. Only marked models

are included in this section because they scored the best accuracy in previous

evaluation.

65 https://github.com/aosaimy/sawaref-rnn

Ensemble
Models

Pipelined

Morpheme-
based

Rule-based

Supervised

Unigram

Bigram

Unsupervised

Baseline

Form-based

End-To-End

 - 166 -

Table 7.4 Summary of differences of presented models.

 RU SP CH EN

Definition

An ensemble that uses rules

generated from experts to map

morphemes of different

taggers. The ensemble uses

this aligned input one by one

to predict the morpheme

label(s).

An ensemble that uses rules

generated from an aligned

dataset to map morphemes of

different taggers. The

ensemble uses this aligned

input one by one to predict the

morpheme label(s).

An ensemble that uses the word form to

map the form characters (with their

labelling information) of each input

tagger. The ensemble uses aligned

character-based information one-by-one

to predict the character label(s). Character

labels encode morpheme boundaries.

An ensemble that utilises an Encoder-

Decoder network to encode the sequences

of each input tagger, concatenate these

encoding, and decode the results into a new

sequence of morphemes.

Sequence

labelling

type

One-to-one: Each morpheme (or character) is labelled individually with respect to the context. Unlike seq-to-

seq models, the final segmentation is restricted to input form length (in the CH model) or input segmentation

models.

Seq-to-seq: A sequence of word morphemes

is encoded, then decoded to predict another

sequence of labels.

Pipelined vs

Joint

Fully Pipelined: Alignment precedes tagging, segmentation is the

result of voting between aligned morphemes.

Partially Pipelined: Alignment precedes

tagging, segmentation is jointly predicted

with tagging.

Fully Joint: Alignment and segmentation is

done jointly in the embedding model.

Error

propagation

Pipelined models suffer from errors generated from previous steps. Errors generated from prior alignment

methods result in lower consistency of input data.
Fewer changes to input data are required.

Alignment

Tuning

Pipelined models tune previous steps on an evaluation dataset of aligned inputs. This tuning is abstracted from

the final goal: the tagging results of the ensemble.

Tuning of network weights is done at the

same time as training the ensemble.

Alignment

Evaluation

Dataset

Morpheme-based models require a dataset that is aligned on the

morpheme level. Morpheme boundaries are not explicit, and this

alignment is prone to errors. The evaluation is not necessary for

the ensemble, but it can help to spot errors.

No prior dataset is required. However,

some rules for adapting mismatches

might be required.

No alignment is required.

Alignment

method

Rule-based requires a mapping

between tagsets, which in turn

The supervised method

requires an aligned dataset to

Alignment is form-based using string

similarities algorithms. However, it

The alignment does not need any human

intervention.

 - 167 -

requires a thorough

understanding of both tagsets.

the morpheme-level from

which the alignment rules are

generated.

assumes that the form for each output is

the same, or some adaptation is required.

Dropping

some labels

Morpheme-based models suffer from the limitation on the output

segmentation. They are limited to the intersection between input

and target segmentation. Finer segmentation in the output will

not be reproduced.

Mapping to character-level solves the

problem of morpheme-based models.

End-to-end model mimics the output

sequence of the training dataset and does

not have a similar limitation.

Same form

output

Morpheme-based models vote for one input’s segmentation,

which does not guarantee adapting output segmentation to the

target segmentation.

Form-based assumes no additional

character is inserted in the form; i.e. form

adjustment is not supported.

The end-to-End model mimics the output

sequence of the training dataset.

 - 168 -

7.6.2 Implementation

The (re)-implementation of these models is done using the latest version of

the Keras package (v2.1.4) with a backend of the latest version of TensorFlow

(v.1.4.1). The end-to-end neural network is the same as reported earlier in this

chapter.

Pipelined models were implemented with a single LSTM layer that returns

states of each timestep, which ensures having a one-to-one model.

All networks are multi-output networks. The set of outputs are 9 outputs:

POS tag, and eight morphological features1. Instead of training each output

individually, the network benefits from sharing layers by utilizing information from

other morphosyntactic features. We adopt a multi-task approach similar to

approaches done by Søgaard and Goldberg (2016) and Inoue, Shindo and

Matsumoto (2017).

The network (illustrated in Figure 7.10) starts with a set of input layers that

represent eight features in the four input taggers (resulting in 36 features). In

addition, one input layer that represents the lexical form is defined. It is either an

inline one-hot encoding of the character (in form-based models) or a predefined

embedding of the morpheme (in morpheme-based models), using the FastText

model (see Section 7.4.1).

These inputs are concatenated into a single layer that is fed into a

bidirectional LSTM layer with 256 hidden units. Unlike seq-to-seq models, the full

sequence is returned (vs. only the last output), which ensures having the same

timesteps in following layers.

The output of the LSTM layer is supplied to each required target feature. In

each feature, a dense layer for every temporal slice of the input (using

TimeDistributed wrapper) is applied to predict the final values of outputs.

1 The set of features used at this comparison is the nine features (i.e. tagging). Three more

segmentation related outputs (SEG, LET, and DIAC) are only used and evaluated for EN model.

Segmentation is not included in this comparison because the segmentation problem does not utilize

the segmentation results from input taggers, because they adhere to different segmentation schemas.

 - 169 -

Figure 7.10 The network used for pipelined models. The input consists of a long

list of features (8 features x 4 taggers), and output includes all target features

(the complete lists are not shown). Character-based ensemble uses one-hot

encoding of the character letter (bw_onehot), while morpheme-based ensemble

uses an embedded vector of the morpheme form.

The model used adaptive moment estimation (ADAM) (Kingma and Ba,

2014) as the optimizer, instead of the classical stochastic gradient descent procedure.

Unlike stochastic gradient descent, ADAM does not maintain a single learning rate;

instead, it adaptively update the learning rate associated for each weight in the

network (between batches). It is widely-used in the recent research for its efficiency

in achieving optimized network weights in a shorter time. The details are not

relevant to the research.

The set of outputs are evaluated in each epoch, and weights are updated

accordingly. Because each one of the outputs is a categorical feature, we used

categorical cross-entropy as the cost (or loss) function to measure the performance

of the classification. The output of each final node (after activation2) is a probability

of each class. For example, the node “QAgender” outputs a probability for each

2 The actual output of the last dense layer is actually a set of numbers which are “softmaxed”, i.e.

each output is assigned a decimal probability (between 0 and 1), where all probabilities add up to

exactly 1).

 - 170 -

class: “male”, ”female”, “irrelevant”. Categorical cross-entropy is a generalization

of log loss to multi-class classification problems, and it quantifies the difference

between actual and prediction distribution. The loss increases as the predicted

probability diverges from the actual label. It is defined for multi-class classification

problems as follows:

CrossEntrpy =	−	$%&log	(+&)
-

&./

Where L the set of labels, %0 is the actual label (either 0 or 1), and +0 is the

predicted probability.

7.6.3 Padding Sequences

TensorFlow operates on tensors where the network is a directed acyclic

graph (DAG). However, TensorFlow requires the definition of the graph before a

model can run. The sequence length must be fixed (usually the maximum length of

training sequences). Shorter sequences are usually padded with zeros to fill the

fixed-length requirement.

Without a careful treatment of output, the padding requirement may lead to a

biased cost function (the predicted outputs of padded elements may bias the loss).

This is especially relevant in this comparative evaluation as the padding is different

between the four approaches.

Two approaches are used to solve the problem: masking and custom sample

weights. The masking layer masks timesteps that are equal to a certain value from

all downstream layers. However, when a sequence is encoded using LSTM, the

masked timesteps will no longer be effective to downstream layers. The sample

weights technique allows the definition of custom weights for each sample,

including its timesteps. For training purposes, the weight of padded timesteps is

0.05, but in validation is 0. This configuration allows the training process to not

completely ignore padded timesteps (as they should be marked as padded), but give

more priority to other timesteps. Padded timesteps in the validation dataset are

ignored when computing the accuracy of the prediction on the validation dataset (by

zero-weight configuration) which isolates the evaluation metrics from any padding

side effects. This configuration explains the high difference in training accuracy

compared with validation and test datasets (see Figure 7.11).

 - 171 -

Figure 7.11 The training, validation, and testing sample-level accuracy of each

approach over the training epochs.

7.6.4 Evaluation

Accuracy is the most used metric in the literature (Paroubek, 2007), so it is

used to report the ratio of the number of words/segments that are correctly tagged

over the total number of word/segment forms tagged.

Overall precision and recall are meaningless since every morpheme can be

tagged with exactly one tag (i.e. ambiguity =1). They will both just equal the

accuracy measure, as the tagger and the reference datasets are one-tag based.

Accuracy of the models is reported in two ways: sample-level and word

level. Sample level is the one used internally for defining the loss (cost function),

but the sample is different between approaches (e.g. morpheme-level vs character-

level). Therefore, the word-level is the metric used to compare different approaches,

i.e. the portions of words that are predicted correctly.

Word-based accuracy is reported for each output (see Figure 7.12 and Table

7.5). The best scoring model is the end-to-end model for all outputs features. A very

similar pattern between test and validation can be seen.

 - 172 -

Table 7.5 The accuracy of each output for all four proposed ensemble models

EN SP RU CH (Marton, Habash and Rambow, 2013)3

Aspect 97.85% 95.12% 94.41% 92.53% 99.1%

Case 95.75% 82.68% 82.82% 79.60% 86.3%

Gender 93.56% 88.46% 88.95% 83.09% 98.6%

Mood 96.42% 94.09% 94.23% 90.65% 98.6%

Number 92.53% 83.49% 83.62% 77.49% 99.2%

Person 94.63% 91.50% 91.72% 87.20% 99.1%

POS tag 90.20% 85.32% 85.64% 81.79% N/A

State 94.63% 88.86% 89.26% 84.25% 95.6%

Voice 95.21% 92.04% 91.72% 89.35% 98.9%

Aggregate 74.87% 55.41% 55.01% 45.97% N/A

Figure 7.12 The word-based accuracy of four ensemble approaches that predict

validation dataset outputs.

3 Their experiments used Penn Arabic Treebank, i.e. MSA Arabic, which is 19.3 times larger training

dataset. The accuracies of functional gender and number are used instead of form-based ones.

0.98

0.96

0.94

0.96

0.93

0.95

0.90

0.95

0.95

0.95

0.83

0.88

0.94

0.83

0.91

0.85

0.89

0.92

0.94

0.83

0.89

0.94

0.84

0.92

0.86

0.89

0.92

0.93

0.80

0.83

0.91

0.77

0.87

0.82

0.84

0.89

0.75 0.85 0.95 1.05

QAaspect

QAcase

QAgender

QAmood

QAnumber

QAperson

QApos

QAstate

QAvoice

Test Set

CH RU SP EN

0.98

0.96

0.93

0.96

0.92

0.95

0.90

0.95

0.95

0.94

0.83

0.90

0.94

0.84

0.92

0.85

0.90

0.92

0.94

0.83

0.90

0.94

0.84

0.93

0.86

0.90

0.92

0.93

0.79

0.85

0.91

0.79

0.88

0.81

0.86

0.89

0.75 0.85 0.95 1.05

QAaspect

QAcase

QAgender

QAmood

QAnumber

QAperson

QApos

QAstate

QAvoice

Validation Set

CH RU SP EN

 - 173 -

Sample-based accuracies are higher than word-based accuracies in all

approaches, see Figure 7.13. Word-based accuracy marks a word as correctly

predicted if all of its samples are correct.

Word-based and sample-based accuracies show that number, gender and case

features in addition to POS tag scores the lowest. Number and gender are two

functional features which makes their prediction more complex. These two features

are under-specified in the annotation of the QAC (Please see discussion in next

chapter and Table 8.1 on page 186). They are underspecified for nouns, proper

nouns and adjectives with different rates; for example, the number is only specified

for 36% of nouns.

The case feature is a known problematic feature. Some approaches in the

literature ignore it in parsing (Marton, Habash and Rambow, 2013), although it was

the most helpful feature in the gold standard in their experiments.

Figure 7.13 Sample-based model accuracy of the four approaches

 - 174 -

The real OOV (out-of-vocabulary) metric is not computable because it is not

possible to determine what are the OOV words in the input taggers (as we have no

access to their training dataset). However, ensemble OOV words that have not

appeared in our training dataset constitute about 17.96% of words. The OOV

accuracy for each output is provided in Table 7.6.

Table 7.6 The overall accuracy and Out-of-Vocabulary accuracy.

EN EN-OOV Drop Difference

number 92.53% 72.93% 19.60%

person 94.63% 78.08% 16.55%

voice 95.21% 80.98% 14.23%

gender 93.56% 79.42% 14.14%

case 95.75% 83.89% 11.86%

aspect 97.85% 86.58% 11.28%

mood 96.42% 85.23% 11.19%

PoS Tag 90.20% 79.64% 10.56%

SEG 95.73% 86.80% 8.93%

state 94.63% 88.14% 6.49%

DIAC 96.26% 92.17% 4.09%

LET 97.99% 95.97% 2.02%

The aggregated accuracy is the percentage of words that had a completely

correct tagging in all output classes. It is 45.97%, 55.41%, 55.01%, and 74.87% for

CH, SP, RU, and EN approaches, respectively.

It is clear that the EN model surpasses other models in all of the tests.

Several improvements can be made to this model specifically and for other models.

The next section discusses and analyses the ensemble errors in prediction and

suggests actions for future improvements.

7.7 Error Analysis

This section discusses the errors produced by the ensemble analysers. Most

discussion will be on the EN model as it scored the best in all features.

The aggregated accuracy of the EN model is 74%. The remaining 26% of

words are incorrectly tagged (i.e. has at least one error in their tagging, e.g. male is

incorrect). The total number of outputs in the EN model is 12 which includes POS

 - 175 -

tag, eight morphological features, and three segmentation-related features (SEG,

LET, DIAC). Figure 7.14 shows the percentage frequency distribution of the

incorrect words. We can see that words with a single error makes the majority of the

incorrectly labelled words. This might suggest for future work that using a lexicon

(or a morphological analyser) filtered or ranked based on the prediction might fix

some of the erroneous outputs. The source of the error in single-error words is

illustrated in Figure 7.15.

Figure 7.14 The percentage word frequency that has n prediction errors.

Figure 7.15 The type of error for words that have a single error

7.7.1 POS Tagging

POS tagging word accuracy (90%) is significantly better than other

approaches.

 - 176 -

Most of the errors come from predicting ADJ (adjectives) as N (nouns), RES

(restriction) as EXP (exception), PRO (prohibition) as NEG (negation), REM

(resumption) and CIRC (circular) as CONJ (conjunction), or vice versa. Please see

Figure 7.18 for full confusion matrix. Please see Section 8.2.1 for more details about

the similarity between these tags.

The overall POS accuracy does not show the performance of tagging a

specific tag. Many tags are naturally under-sampled in the QAC tagset. Figure 7.16

and Figure 7.17 show the F1 score for each tag and the frequency of each tag. The

lowest scored tags suffer from ambiguity at the word level, inconsistent/incorrect

tagging in the reference corpora (see 8.2.1), and under-representation in the

training/validation corpus. The figure as well shows the imbalance problem where

some classes are under-sampled. Two ways are usually used to handle the

imbalance: oversampling and custom loss function. Oversampling usually is hard as

the samples in text classification are related. The other option is to give higher

weight to samples from a certain class, which results in paying more attention to

these classes. However, tuning these hyperparameters (weights) requires a

development set and we will leave it for future work.

A reduced tagset obviously is one option to improve the accuracy, but this

should be done based on the needs of the target downstream application. Using the

universal dependencies tagset (UD), a coarser tagset mapped to the QAC tagset in

Table 8.8, the accuracy improved to 92.96%. Another option is to jointly learn the

prediction of segmentation, POS tagging, and dependency parsing (like (Zhang et

al., 2015)), which shows a significant improvement on OOV words. Options

regarding our model include using stateful NN and custom class weight.

Figure 7.16 The frequency of each POS tag.

0

0.05

0.1

0.15

0.2

PR
O

CI
RC RE

S
SU

P
EX

P
RE

M
IM

PV IN
C

EX
L

IN
L

AD
J

RS
LT

IN
TG

PR
EV

CO
ND

CO
NJ

NE
G T

EM
PH FU

T
RE

L
SU

B
PR

P
CE

RT PN N
LO

C V
DE

M P
PR

ON DE
T

EX
H

AM
D

RE
T

NU
M

VO
C

AC
C

PU
NC

 - 177 -

Figure 7.17 The tagging F1-score of each POS tag.

Figure 7.18 The confusion matrix of POS tagging (EN model).

7.7.2 Morphological Features

Morphological features can be divided into two categories: functional and

form-based. Form-based features scored better results as all input taggers are form-

based. The choice to functionally tag the number and gender features makes its

0
0.2
0.4
0.6
0.8
1

PR
O

CI
RC RE

S
SU

P
EX

P
RE

M
IM

PV IN
C

EX
L

IN
L

AD
J

RS
LT

IN
TG

PR
EV

CO
ND

CO
NJ

NE
G T

EM
PH FU

T
RE

L
SU

B
PR

P
CE

RT PN N
LO

C V
DE

M P
PR

ON DE
T

EX
H

AM
D

RE
T

NU
M

VO
C

AC
C

PU
NC

 - 178 -

prediction more complex. Morphological features infrequently predict a value that is

incompatible with the POS tag. Instead of predicting each morphological feature

independently, it might be beneficial if the predicted POS tag is used as input for

predicting the feature’s value. Some errors in morphological features come from

missing values in the reference corpora or inconsistency between the two datasets

(see Section 8.2.1). The presence of diacritised input text seems to improve mood

and case accuracies compared to previous works in MSA. Some features are only

related for specific POS tags, and errors come from incorrectly tagging their POS

tags.

7.8 Comparative Evaluation

The accuracy of the ensemble taggers can be compared with other related

POS taggers. This comparison is, however, challenging because of different

standards in annotation and training and testing datasets.

In regards to tagging classical Arabic text, Alashqar (Alashqar, 2012) used

six different taggers (Unigram, Bigram, Trigram, Brill, HMM, and TnT) trained on

the Quranic Arabic Corpus. The best word-based accuracy achieved was 80.4%

using the full QAC tagset. His result might not be directly comparable since it uses

an older version of QAC which is word-based. In addition, the training/testing splits

are not specified, except the ratio of training to testing. The reported word-based

accuracy might be comparable cautiously as there might be some edits to the newer

versions of QAC.

Mohamed (Mohamed, 2018) recently published a new classical Arabic fine-

grained corpus of 60k words annotated with PATB-like tagset. The tagset used is

complex and has 133 segment-level tags and 949 word-level compound tags. Using

TiMBL toolkit, a memory-based learning toolkit, the accuracies of full automatic

segmentation and POS tagging on development and test datasets are 89.8% and

87.8%, respectively. These accuracies are not directly comparable as settings such as

test and training datasets, tagset, segmentation are different.

In regards to an Arabic heterogeneous ensemble, Alabbas (Alabbas, 2013)

reported a high accuracy (99%) of an ensemble tagger that combines AMIRA,

MADA, and maximum-likelihood taggers to predict the tagging of MSA text. The

work is not directly comparable to our results as his training/test datasets and tagset

 - 179 -

are different; the author used an ensemble tagger on Modern Standard Arabic, which

means that only annotation-adaptation is required.

Comparing with input POS taggers might be appealing. POS taggers (MX,

ST, AM, FA) used different tagsets when reporting their accuracy (see Chapter 4),

which make a direct comparison with our ensemble system unfair. They used

various data splits which makes them even incomparable among themselves. Most

of them used data splits from the PATB, but the data split is different: the test

dataset of MX is 10% of Part 3, and of AM and ST are 10% of each part; and Farasa

used a WikiNews corpus for testing as “Testing done on a subset of the ATB is

problematic due to its limited lexical diversity, leading to artificially high results”

(Darwish and Mubarak, 2016, p. 1). We do not have access to the PATB as it

requires an expensive Linguistic Data Consortium (LDC) membership.

However, adapting their results to match our test dataset (with QAC

annotation style) is an option. This is done by training morpheme-based or end-to-

end models that have only one input tagger. These models that has only the tagger

are no longer ensembles, but they are adapted to label using the QAC annotation

style. The morpheme-based model of adapted MX, ST, AM, and FA taggers

correctly predicted 83.86%, 84.78%, 83.28%, and 80.22% respectively (see Section

6.7). The end-to-end model of adapted MX, ST, AM, and FA taggers correctly

predicted 89.44%, 87.92%, 88.81%, and 89.26% respectively (see Section 7.4.4).

This should as well give a rough estimation of how likely an input tagger can help

our ensemble tagger.

Another option is to compare the ensemble results to off-the-shelf taggers.

This is only possible to taggers that are not customized to their own tagset or

segmentation schema, e.g. our input taggers. In addition, we want to compare with

taggers that support lexical form adjustment at the morpheme level (word form

assimilation). We used a state-of-the-art tagger that is built for usage with Universal

Dependencies schema: namely UDPipe (Straka and Straková, 2017). Default

settings for training are used: 100 epochs for segmentation, 20 for tagging, 0.1

dropout, 0.005 learning rate, 50 batch size. We do not use the lemma as a feature or

ask the model to predict it for fair comparison. Table 7.7 shows the F1 measure of

UDPipe and the accuracy of EN-ensemble. Please note that UDPipe does not use

accuracy like our work, instead they used F1 measure as described in CoNLL 17

shared task (Zeman et al., 2017). In UDPipe and the shared task, the number of

 - 180 -

nodes (word segments) differ between the gold standard and system output. So, the

precision is the correct tagging nodes percentage of system nodes, while the recall is

the correct tagging node percentage of gold nodes. In our case, the nodes are words

whose alignment are maintained at evaluation. In almost all accuracies produced by

the UDPipe toolkit, the ensemble scores better except in morphological tagging.

Obviously, input taggers are trained on a larger training dataset than our

training dataset which is exploited by the ensemble tagger.

Table 7.7 The accuracy of UDPipe vs. EN ensemble

 UDPipe F1 EN-Ensemble Accuracy4

Segmentation 88.50% 92.16%

UD POS Tagging 83.55% 93.44%

X POS Tagging 82.38% 90.20%

Morph. Features 76.67% 76.16%

Overall Tagging 73.16% 77.16%

7.9 Conclusion

This chapter introduced a novel method for ensemble tagging by using an

encoder-decoder architecture to perform a sequence-to-sequence learning. In the

first part of this chapter, different configurations of this model are introduced. It

shows that the sequence-to-sequence method clearly surpasses the one-to-one

modelling of the problem. POS embedding did not improve or worsen the accuracy

significantly although it reduced the parameters of the network, thus the training

speed. Word embedding in Arabic needs to care more about optional characters

(diacritics). Embeddings trained using undiacritised texts do not improve the overall

accuracy as well. Intuitively, the larger training dataset, the better adaptation and

tagging. However, an acceptable accuracy can be achieved with comparably small

datasets, the usual case of under-resourced languages. The ensemble tagger

introduces a robust method for tagging and it can either match or improve the

accuracies of one-tagger models. Re-using other tools improves the accuracy over

the baseline, which makes these tools a valuable linguistic resource regardless of

heterogeneity. These results suggest that researchers should consider re-using

existing methods although their required tagset/segmentation schema is different.

4 The accuracy in our case equals the F1 measure because recall and precision are equal since the

system tags and gold standards tags are equal by definition.

 - 181 -

In the second part, a re-implementation of the previous methods with a

neural network is done to ensure similar and fair comparison. An end-to-end model

of the problem surpasses previously proposed pipelined methods in all accuracy

measures. Not only does it have the freedom from manual feature engineering, the

end-to-end model is superior to other models almost in all classes. It suggests that

manual alignment or mapping is not needed with the existence of a large enough

training dataset.

The error analysis section discussed the errors generated from proposed

models in detail. It suggested several guidelines for future work for improving the

overall accuracy and robustness. For future work, the attention mechanism may be

used to pay more attention to some features or timesteps. In addition, encoding one

tagger’s outputs should be contrasted with the current encoding of all input taggers.

A stateful network should be used in production stages as the current network

discards the states between batches, thus losing the context information. One

direction for improvement is the integration of lexicons, and it could easily be

achieved in several ways, e.g. by concatenating a vector that represents the sum of

one-hot encoding of the lexicon results, as shown beneficial by Inoue, Shindo and

Matsumoto (2017). Another direction for improvement is combining presented

ensembles, i.e. ensemble of ensembles, although this approach should be evaluated

first to ensure that they produce different errors.

The next part discusses the annotated data used in this thesis and introduces a

new linguistic resource for the Hadith genre of classical Arabic. It also presents a

novel tool for annotation that aims to speed up the tedious annotation process while

maintaining the consistency and accuracy.

 - 182 -

PART III
Sunnah Corpus Annotation

 - 183 -

8 SUNNAH ARABIC CORPUS

ANNOTATION: DESIGN

AND METHODOLOGY

Chapter Summary5:

Sunnah Arabic Corpus is an annotated linguistic resource that consists of 144K

words of the Hadith narratives (an utterance attributed to prophet Mohammed),

extracted from the Riyāḍu Aṣṣāliḥīn book (a.k.a. The Meadows of the Righteous), a

compilation of 1896 hadith narratives written by Al-Nawawi and compiled on 1334.

The book is widely known to Muslims and has been studied and translated into

several languages.

The first section of this chapter examines whether the Quranic corpus is a good

representative sample of the classical Arabic texts in general. It illustrates the need

for an additional manually annotated corpus for classical Arabic.

This chapter presents the design of the corpus collection and the methodology of its

annotation. The annotation has been done through several layers: orthography,

segmentation, and morphology. The diacritisation level is increased to the level that

all words in the corpus are diacritised. Clitics from each word’s free morpheme are

detached. All tokens are assigned a part-of-speech tag in addition to eight

morphological features.

5 Some parts of this chapter are based on:

Alosaimy, A. and Atwell, E. (2017) ‘Sunnah Arabic Corpus: Design and Methodology’, in

Proceedings of the 5th International Conference on Islamic Applications in Computer Science and

Technologies. Semarang, Indonesia. (in press)

 - 184 -

8.1 Introduction and Motivation

Language resources (LRs) are recognised as critical components in the

development of Natural Language Processing. Annotated corpora, as one example of

LR, are used to perform statistical analysis, hypothesis testing, accent verification,

verifying grammar within a language domain and for building statistical

computational models. Several scholars show the need for freely available Arabic

resources, e.g. (Yaseen et al., 2006; Albared, Omar and Ab Aziz, 2009), especially

gold standard annotated corpora. In the case of classical Arabic, there are very little

available annotated corpora, but they are limited to Quranic texts. Mohamed (2012)

built a small corpus of religious texts (all texts are considered classical) and

confirmed the need for a larger classical corpus.

The Sunnah Arabic Corpus (SAC) is a corpus of Arabic Hadith (prophet

sayings) that is a freely available morpho-syntactically annotated corpus using a

fine-grained tagset that conforms with traditional Arabic grammar.

The SAC is tagged with a fine-grained tagset as it aims to take advantage of

showing very subtle grammatical differences, the reflects the interest of the experts

in syntax and morphology, rather than some unknown specific needs of the end

users (e.g. information retrieval). Fine-grained tagsets can always be reduced so that

they can support a broader range of downstream applications. Studies show that

tagging using fine-grained tagsets and then converting them to reduced tagset is

more effective (Kübler and Mohamed, 2012; Zeroual, Lakhouaja and Belahbib,

2017).

After arguing that the Quranic Arabic Corpus is not sufficient, the rest of the

chapter is divided into two parts: the first part is an overview of the corpus content,

where the second part is more about its annotation. In the first part, we will list the

main features and potential uses of SAC, its design and structure, and its availability

and accessibility. In the second part, we explain in more details our annotation

guidelines on three levels: orthographical, lexical, and morphological. Besides, we

talk about the alignment of translations. We conclude by evaluating our collection

and annotation process.

8.2 Quranic Arabic Corpus As a Training Corpus

The Quranic Arabic Corpus is a semi-automatic morphologically annotated

corpus of the text of the Holy Quran. The annotation of the Quran Arabic Corpus

 - 185 -

was done using an automatic tagger then each predicted analysis is examined by two

linguists. The second linguist reviewed the annotation after changes made by the

first. After that, the public was asked to check the correctness of the annotation.

In this section, we discuss several issues of using the plain Quranic Arabic

Corpus as a training dataset, which includes text and style variance, different

orthography standard, annotation inconsistencies, and annotation representation

problems.

8.2.1 Annotation Consistency

The Quranic Arabic Corpus annotation is very accurate. However, we were

able to spot some inconsistency in tagging some POS tags, namely ADJ vs N (e.g.

word 2:35:9, 50:24:5 vs 2:276:10, see Section 5.7), REM vs CONJ (e.g. look at

2:74), and RES vs EXP (e.g. same sentence “ وھ لاإ ھلإ لا ”: 9:31:19 vs 59:22:6). These

cases including others make their prediction erroneous.

The QAC annotation used an Arabic book of grammatical analysis of the

Quran (Salih, 2007) for reference for borderline cases, i.e. the annotator is asked to

follow the book for all the annotation. However, the book and the corpus lack the

guidelines for handling borderline cases. This makes reusing the same tagset harder

for the case of SAC.

ADJ (adjectives) and NOUN (nouns) are very similar in Arabic. Adjectives

function as a noun just like in English, and both categories inflect for four

categories: gender, number, definiteness, and case. Participles functioning as

adjectives inflect as well for voice. Tagsets differ in their definition of adjectives:

QAC marks a word as an adjective when it qualifies its preceding corresponding

noun, i.e. attributive adjective. QAC usually does not tag predicative adjectives;

however, it is not consistent in this matter; for example, verse 29:19 is not consistent

with its following verse. The words: “easy/ADJ” and “competent/N” are both

adjectives acting as predicate (khabar) and should be treated similarly.

RES (restriction) and EXP (exception) are two particles for expressing

exception. In traditional Arabic, they differ in their effect on the case mark of the

postposition phrase. Usually, if the sentence is complete and sound after removing

the exception particle and negative particle, the exception particle is tagged as RES.

Because the variance between REM and COND is minimal and only affects the case

mark, we suggest reducing the tagset to include one of them.

 - 186 -

In a similar matter, REM (resumption) and CONJ (conjunction) are two

particles to connect clauses or sentences or to coordinate words in the same clause.

In Arabic grammar, conjunction particles cause the word to grammatically follow

the previous status of a word (i.e. they come after a word and follow it in status).

REM does not; however, this distinction is minimal and does not apply to the

majority cases where REM and CONJ are connecting sentences.

Another issue in this matter is the inconsistencies in the features list.

Morphological features for one POS tag should always be tagged, e.g. case feature

for nouns. However, in some words, some values of features are missing. For

example, the number feature is tagged for 85.13%, 35.81%, 92.74%, 1.62% and

100% of ADJ, N, PRON, PN, and V, respectively. For the full coverage of feature

annotation vs. the respective UPOS tags, see Table 8.1. Some features have a

“default” value, e.g. the mood and aspect features of verbs. Some features have a

neutral value, but this value is not explicitly specified and is not documented.

Because we would like to train a model to predict the value of these features,

we do not want to have unknown values. After a close look into the corpus, we

decided to fill the missing values with the most common value (singular for number

and masculine for gender) for the gender and number of nominals. In Table 8.1, the

starred percentages can be filled using Arabic knowledge: the case, number and

person of pronouns can be inferred from the form of the pronoun, and the gender is

neutral in first-person or dual pronouns. The gender of verbs and voice for adjectives

are neutral when it is unspecified. However, the rest of underspecified features

(underlined percentages) are not easily recoverable. These percentages contributed

to the errors of our ensemble analysis.

Table 8.1 Missing Features in Specific UPOS tags

 UPOS NOUN PROPN ADJ VERB PRON

1 Gender 4% 81% 0.8% 13%* 22%*

2 Number 64% 98% 15% 0% 7%*

3 Person N/A N/A N/A 0% 15%*

4 Voice N/A N/A 83%* 0% N/A

5 Case 0% 0% 0% N/A 100%*

6 Definite 0% 0% 0% N/A N/A

7 Mood N/A N/A N/A 0% N/A

 - 187 -

8.2.2 Text and Style Differences

The Quranic text is a unique classical text. It was preserved through many

years away from any changes. It is segmented in verses (6236 numbered verses).

There is no mark for sentence boundaries except verses. However, verses can have

multiple sentences, and one sentence can span into two verses (e.g. 2:119 and

2:220). It has no punctuation marks; however, its text is annotated with pause marks

which were removed from the text in the QAC. It is worth mentioning that Brierley,

Sawalha and Atwell (2012) developed an open-source boundary-annotated corpus

that the Quran text is segmented into 8230 sentences using pause marks. However,

this work does not concatenate sentences that span multiple verses and is not

combined in the QAC.

8.2.3 The Quranic Orthography

Quranic Arabic Corpus is an annotated resource where each word in the

Quran is morphologically segmented and annotated. While there are authenticated

scripts of the Quran that follow current orthographical writing rules in MSA (e.g.

Tanzil Project and (Elhadj et al., 2010)), the script used in the QAC is the original

Othmani script. The Tanzil format of each word/segment is not given, and there is

no direct mapping between these formats.

Some words in Othmani script are a compound of two or three words in the

Tanzil format. The number of words in Othmani is slightly lower than the Tanzil

version (77430 vs 77797 respectively) due to the concatenation of vocative particles

Ya (361 cases) and Ha (4 cases) with their nominals, and two rare cases. For

example, the latter word is written as three words in Tanzil project:

“ya+bona+&um~a” but in QAC, is written as “yaA Abona >um~a”. We can notice

that there are even orthographical changes when splitting. Since POS taggers were

trained on MSA format (which Tanzil project follows); these instances in QAC are

split off and realigned to Quranic script in MSA format.

Additionally, QAC follows Quranic diacritics which is an extended set of

diacritics. There is a relationship between these diacritics and the Tajweed (the rules

which govern and help the pronunciation during the recitation of the Quran). For

example, the constant Noon letter is not given a sokun diacritic when it is in

“Ikhfaa” mode. Additionally, some letters are written indifferently (e.g. Yaa->Alif

Maqsoura, Alif Madd-> Hamza+Alif, Yaa and Waw as special small diacritics). In

 - 188 -

the Tanzil project, diacritics are written according to MSA standards. These

differences in word orthography resulted with segments in the QAC needing to be

rewritten according to MSA orthographical rules. However, the Tanzil project does

not provide segmentation as QAC does.

Finally, some words even in the Tanzil project do not conform to modern

writing standards. This applies to variability situations such as when Taa and Taa-

Marbouta are written interchangeably (تأرما/ةأرما), and for dropped Alif (مساب ،مسب),

dropped Waw وعدی ،عدی().

To recover from this mismatches, we aligned the text in the QAC text with

the text in the Tanzil project, as shown in the algorithm in Section 6.9.

8.2.4 Annotation Representation Scheme

In QAC, the tagset was chosen to comply with the Arabic traditional tagset.

It is represented as a CoNLL-like lemma-and-feature format: it consists of four

columns–id, form, POS tag, and features separated by vertical bars. The annotation

was word-based; then was converted in later versions to morpheme-based. It has a

main tagset size of 23 tags appended with a comprehensive feature list. Converting

its annotation to morpheme-based required introducing some tags that only appear

as a suffix (which was tagged previously as features), e.g. DET. A morpheme does

not span over words except for a single case, where a proper noun that spans two

words but treated as one morpheme: 37:130:3, نی سا ی ل إ ِ ْ َ ِ َ /PN.

While there is some redundancy in the feature list with the POS tags, some

feature values are underspecified (maybe to obtain small size file). Since the features

are written together, it is not easy to spot missing features (as previously described

in 8.2.1). It is not easy to know that there are default values for some features.

Values for each morphological feature is written in the documentation.

However, features sometimes have a “neutral” value. For example, the gender of

dual verbs is neutral. The value in these cases is left unspecified, and it is hard to

know that missing features are neutral without having a background in the Arabic

morphology system.

To handle these problems, the annotation scheme required us to build a

custom file reader. It handles missing values, and more importantly aligns and

 - 189 -

provides Tanzil's text in addition to Othmani script. The QAC (v.2) can be obtained

in CoNLL-U format from Sawaref project in Github6.

8.2.5 Morpheme Form Adjustment

The annotation scheme chose a segmentation that does not recover fused

morphemes. For example, attaching a pronoun “ مھ /hm/them” to the “ ىلع /ElY/ to”

preposition makes it “ يلع /Ely/to+ مھ /hm/them” (which makes the first segment a

homograph for a famous proper noun). The /y/ in the first segment is not recovered

to /Y/ in the QAC. When segmenting one word, the annotation guidelines should

deal with two problems: shared letter between two morphemes, and reshaping of

letters.

As described in 6.9, morphemes can be fused in Arabic into one word with a

geminate (double) or maddah diacritic. The geminate and maddah diacritic belongs

to two morphemes. We found that this decision is not consistent. In most cases, the

doubled letter belongs to the first morpheme (e.g. 41:15:11 ن م ِ َّ /P+ا/PRON) but

sometimes it belongs (e.g. 41:12:11 ي ز َ َّ /V+ .(PRON/ َّ ا ن

Besides, this decision produces some zero-length (or null) morphemes such

as Yaa-ending words followed by Yaa Alnesbah (first-person possessive pronoun),

e.g. 44:18:3 ى ل إ ِ َ َّ /P+(null)/PRON. There are 208 zero-length forms in the corpus, all of

which are either PRONs or INTG.

Some specific letters are changed when attached to another morpheme. It is

usually the case of ending letters (letters that only appear at the end of a word): the

Taa Marbouta /p/ and the Yaa Maqasorah /Y/. They are replaced by their sisters’:

Taa Maftouha /t/ and Yaa letters /y/.

Although annotating the word with its lemma might be efficient in some

annotation guidelines, as the lemma recovers the original letters, we hypothesis that

machine learning, especially character-based methods can benefit significantly from

recovering original form. They can model the effect of attaching morphemes on the

level of inflected form, not the lemma. However, recovering original form is not

supported by QAC.

6 https://github.com/aosaimy/sawaref-data

 - 190 -

8.2.6 Form vs Function Features

Two morphosyntactic features (the gender and the number of nominals) can

be in disagreement between their form-based and functional morphology. Broken

plurals, particularly, are singular morphemically (regarding its form) but they

function as plural. Broken Feminine nouns do not use the usual feminine suffix (Taa

Marbouta), but they use pattern-based. Some nouns are morphemically feminine but

they function as masculine, and many feminine nouns do not have their gender

morpheme. For more information about gender and noun features in Arabic, please

refer to (Habash, 2010, p. 53).

QAC says that the annotation of gender feature of nouns is functionally

annotated: “nouns are tagged for gender according to grammatical gender, since this

determines how the noun will function syntactically”7. However, there is no similar

note about the number feature. After some inspection of the corpus, there are

number of form-based annotation.

Functional features seem more useful for parsers in agreement and

assignment interactions. Even though the accuracy of predicting functional features

is less than form-based, the contribution of functional features are more (Marton,

Habash and Rambow, 2013).

8.3 SAC Design

The Sunnah Arabic Corpus currently has only one book: Riyāḍu Aṣṣāliḥīn, a

compilation of 1896 hadith narratives written by Al-Nawawi and published in 1334.

The book will henceforth be referred to as Riyad. Riyad was chosen for several

reasons:

1. It has been widely accepted as a valid source of prophet sayings.

2. Its codex was validated and investigated by several scholars by a scientific

paleographical process.

3. A small subset (42 narratives, 4479 words, ~5% of the book) has been

studied linguistically in traditional Ia’rab Arabic grammar (by two books).

4. It has been translated into at least 18 languages.

5. Its narratives have been explained by six written books, at least by 11

scholars (spoken explanation).

7 http://corpus.quran.com/documentation/gender.jsp

 - 191 -

6. It is a good representative sample of the Hadith texts in general as it is

quoting narratives from other significant books (see Section 8.9)

While it is available through many websites (e.g. IslamHouse.com8,

Sunnah.com9), we chose to download an e-book version of the book from the

Shamela10 library, a downloadable repository that contains at least 5300 Arabic

books in Islamic studies, as this library has become the standard library of classical

Arabic books. It has already been used to obtain classical Arabic text in building

several corpora (Alrabiah et al., 2014; Belinkov et al., 2016; Zerrouki and Balla,

2017).

Two versions of Riyad were available in the Shamela library, and we chose

the version with ID# 2348 (Alfahal, 2007). This version is the one investigated by

Maher Alfahal who made his investigation and commentaries open freely. Both

versions have the same numbering, hadith text (with some slight differences), but

they both differ significantly in the commentaries.

Diacritisation of both versions is not full (not every letter has its short

vowel). Maher's version is more thorough and accurate using a sample of five

narratives randomly chosen. Quranic verses are fully diacritised in both versions (a

standard in book editing). Diacritisation has been merged as described in section 7.6.

Shamela books are available in three formats: PDF, EPUB, and BOK (used

for their downloadable desktop software). The PDF format is used for the scanned

images of the book, and the text is not easily extractable. The BOK version is not

suitable as it requires their software to open. Therefore, we chose to proceed with

the EPUB format, an e-book file cross-platform widely-used format to view and

read the book. Since EPUB format is XML-based, the extraction of the XML

version of the book is easy. However, we found that the XML version of Riyad does

not tell the difference between different components of the text (like footnotes' co-

reference, and page numbers). It does not separate the chain of narrators, prophet

sayings, and citation. Neither does it provide a table of contents (see for an

example). Therefore, we developed custom software11 to extract the narratives and

verses in a structured format which identifies footnotes, chapters, and sections,

8 https://islamhouse.com/ar/books/111275/

9 https://sunnah.com/riyadussaliheen

10 library http://shamela.ws/index.php/book/2348

11 http://github.com/aosaimy/riyadh-corpus-collection/

 - 192 -

remove inline annotations (for example page break of the original book: “[p.34]”)

and separate footnotes from the original text and links it with co-reference. It also

merges narratives that span into multiple pages. It also imports Quranic units

annotations from the QAC corpus.

8.4 Corpus Content

Riyad is a collection of 2330 units (precisely 435 Quranic verses and 1896

hadith narratives). It is classified into 20 chapters, and each chapter contains several

sections, with a total of 372 sections the covers Islamic morals, acts of worship, and

manners. Each section covers a specific topic, and verses and narratives that support

the topic.

Figure 8.1 XML version of one page of Riyad book extracted from its EPUB

version.

The corpus consists of ~144K Arabic words of which about 110K words

compose Hadith narratives. The rest compose either the author’s commentaries, his

introduction, or Quranic verses. More statistics about the corpus are in Table 8.2.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xml:lang="ar" lang="ar" dir="rtl"
xmlns="http://www.w3.org/1999/xhtml"
xmlns:epub="http://www.idpf.org/2007/ops">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-
8"/>
<link href="../style.css" rel="stylesheet" type="text/css" />
<title> لحفلا ت نیحلاصلا ضایر </title></head>
<body class="rtl"> <div dir="rtl" id="book-container"><hr/>

(6) - ةلا صلاو ت ی ملا عییشت و ضیرملا ةدا یع باتك َ َ َ ّ ّ

ھنف د دع ب هربق د ن ع ثكملا و ھنف د روضح و ھیلع َ َ ِ َ ِ ْ َ ِ َ َ َ
<span
class="red">144 - ةدایع باب

ضیرملا
894 - ِ َ َ نب ءا ر بلا نع
 ِ َ َ ِ ة دا ی عب - ملسو ھیلع T ىلص - ُ َ َ َ َ َ ٍ ِ T لوسر ا ن ر مأ : لا ق ،امھنع T يضر ب زاع

 ِ ْ َ َ ِ ِ ْ ُ ْ ر ص ن و ، م س ق م لا ِ َ ْ َ ِ ِ َ ِ ِ ْ َ َ را ر بإ و ، س طا علا تی م ش ت و ،ِ َ َ َ ِ َ ِّ َ ِ َ ْ ة زا ن جلا عا ب تا و ، ضیر م لا
(. ھ ی ل ع قفتم . م لا سلا ءا ش فإ و ،ي عا دلا ة با جإَ ِ ُ ْ َ و ، مو ل ظ ملا َ َ ِ َّ ِ َ ْ َ ِ َّ َ ِ ٌ َ َ ْ ِ 1)<span

class="footnote-hr"> (1) رظنا
239(ثیدحلا).

</div><hr/>
<div class="center"> :ةحفصلا ¦ 1 :ءزجلا ¦ 894 :ثیدحلا
273</div></body></html>

 - 193 -

After removing short vowels and punctuations, the number of word types of hadith

narratives is ~17K. The word frequency list is presented in Table 8.3.

Table 8.2 Some statistics about the Sunnah Arabic Corpus.

Counts Counts

Tokens 170453 Word Types 17786

Words 144106 Fully diacritised Words 102746

Sentences 7670 Fully diacritised Words 86.08%

Paragraphs 2075 Distinct 5-grams 90347

Documents 372 Hadith Narratives 1896

Ann Tokens 7602 Ann Words 4528

Ann Sentences 406 Ann Docs (Narratives) 60

Table 8.3 The frequency list of Sunnah Arabic Corpus.

Word Count Word Count Word Count Word Count

 160 تلق 251 اذھ 528 ىلإ 7883 الله

 157 سنأ 243 ىلاعت 528 ای 3476 ھیلع

 157 اھب 243 موی 523 ناك 3182 لاق

 145 و 237 يأ 516 ھل 2528 ىلص

 142 اذإف 218 رمع 450 لاو 2470 ملسو

 141 ھنم 213 ھیف 447 ىتح 2068 نم

 139 نیب 212 يذلا 412 نإ 1990 لوسر

 138 امو 210 حیحص 405 وأ 1856 يضر

 137 رانلا 206 يل 373 اذإ 1419 ھنع

 134 ةشئاع 206 مل 347 وبأ 1417 يف

 132 ھنأ 206 يذمرتلا 339 لاقو 1406 نعو

 130 املف 205 تلاق 337 نبا 1173 نأ

 130 ءيش 202 لجر 336 ةریرھ 1151 هاور

 128 اللهو 200 نإف 331 امھنع 876 ام

 127 ينإ 195 وھو 319 ثیدح 867 لا

 124 عم 194 وھ 303 لوقی 833 لاقف

 124 تلقف 192 اھنع 297 نسح 829 نب

 123 لجرلا 192 ةنجلا 282 دبع 825 نع

 122 ةلاصلا 188 دق 275 ةیاور 808 ىلع

 122 لھأ 185 ھنعو 274 يفو 804 يبأ

 121 دحأ 177 لك 269 يراخبلا 747 قفتم

 - 194 -

 120 مكدحأ 174 مھللا 266 ھب 650 يبنلا

 118 يلع 174 نإو 266 كلذ 615 ملسم

 118 دنع 169 نمو 258 سانلا 564 مث

ائیش 165 تعمس 255 دواد 530 لاإ 117

Figure 8.2 A sample of one annotated narrative in CoNLL-U format.

For each unit, we keep a record of its numbering, chapter and page in the

original printed book, and automatically split its text into sentences with tags to

describe the purpose of that sentence using a simple rule-based segmenter.

Hadith units were POS tagged and annotated semi-automatically using the

Wasim annotation tool, and Quranic units are matched with their QAC annotation.

The format for storing annotation is CoNLL-U format v2.0, which is used by the

Universal Dependencies project (Nivre et al., 2017). See Figure 8.2 for an example

of an annotated sentence.

8.5 Potential Uses

Potential uses for the corpus are as follows:

- It will help Arabic learners by understanding the interaction of sentence

components since it follows the traditional Arabic grammar, ʾiʿrāb (بارعإ).

- It will help linguistic researchers interested in Hadith to study the stylistic

and vocabulary and other linguistic studies.

- It will help researchers in translation studies to compare different translations

of the same Hadith.

newdoc chapter_id=4 hadith=189

newpar

sent_id=1

text = ملسو ھیلع الله ىلص -ِ ِ ُ َ َ َ ُ ْ َّ َ َ َ ُ َ ُ َ ِ َ الله لو س ر ع م ت ی ل ص : لا ق , ام ھن ع الله ي ض ر رمع نبا نع

َْ ن ع 1 ن ع َ ±from;about ADP P _

ِ ْ ِ ن ب ا 2 ن ب ٱ ِ ْ ±son NOUN N Case=Gen|Definite=Ind|Gender=Masc

َ َُ ر م ع 3 ر م ع َُ ±Omar;Umar PROPN PN Case=Nom|Gender=Masc|Number=Sing

َ ِ َ ي ض ر 4 َ ِ َّ ى ض ر VERB V Aspect=Perf|Number=Sing|Person=3|Voice=Act

ُ الله 5 َّ ‘ٱ PROPN PN Case=Nom|Definite=Def |Number=Sing

م ھن ع 6-7 اُ َ _ _ _ _ _

َْ ن ع 6 ن ع َ ±from;about ADP P _

ام ھ 7 ُ _ PRON PRON Case=Gen |Number=Dual|Person=2

8 , , PUNCT PUNC _

َ لاق 9 َ َ لا ق ±say VERB V Aspect=Perf|Gender=Masc|Mood=Imp

10 : : PUNCT PUNC _

 - 195 -

- For researchers of Arabic Language Processing, it will help in improving

machine translation and classical Arabic understanding using morphological

and syntactical annotations.

Moreover, Mohamed (2012) confirms “the need for building religious Arabic

linguistic resources” by showing that a POS tagger trained using a small corpus of

classical Arabic outperforms another one trained on the Penn Arabic treebank which

is 21 times larger.

8.6 Corpus Website

The corpus website aims to offer:

- Part-of-speech concordance search results organised by lemma or surface

form.

- A morpheme-based part-of-speech tagged corpus with its morphological

features.

- I‘rāb of a sample of hadiths in a novel visualised way12.

- Morphological and lemma-based search for the corpus.

- A parallel text of English-Arabic aligned on the Hadith level.

- A parallel text of Arabic-Arabic commentaries aligned on the hadith level.

8.7 Accessibility and Availability

The Sunnah Arabic Corpus is freely available under the Creative Commons

Attribution-ShareAlike 4.0 International License. This permissive licensee allows

commercial uses and allows adaptations of the work to be shared as long as others

share alike. The corpus will be also available online13 which allows easy to use

corpus functionalities.

8.8 Annotation Setup

The annotation of the SAC has been done using the Wasim toolkit (see

Chapter 9). The toolkit was configured to use the MADAMIRA toolkit in the

backend as a lexicon resource. To recover from the mismatch between

MADAMIRA and the QAC tagsets, we mapped each tag in the MADAMIRA tagset

12 Left for future work.

13 http://corpus.al-osaimy.com

 - 196 -

into a set of tags in the QAC. These mappings were initially from work carried in

6.4.2, 6.4.3, and the parallel annotated corpus. Solutions with tags in the

MADAMIRA tagset that map to n tags in the QAC are copied n times and displayed

in the selection panel (morphological analyser solution picker pop up).

Besides, if a word was annotated previously (either in the Quranic Arabic

Corpus or annotated parts of narratives), its previous possible annotations will be

displayed at the top. We build an offline lexicon of annotated parts of narratives in

addition to the QAC corpus. This practice increased the consistency and reliability

of the annotation. The context of this annotation is shown next to the analysis to help

the annotator understand why it was annotated in such a way. Sometimes, errors in

previous documents are spotted using this helper tool.

Documents were chosen randomly from a particular set of the Riyadh

Asslaheen book: the intersection set of documents that are also in the Nawawiah

Forty Hadiths book (Nawawiah) (An-Nawawi, 1976). Nawawiah has been wholly

annotated in the traditional Arabic grammar (Ia`rab) by two works (Yosef, 2003;

AlOmari, 2005). These set of documents are reserved for validation of the

morphological annotation.

The annotation was done semi-automatically. Models were built and used for

initial annotation, and the annotator performed corrections. Models used are built on

a cumulative basis. The first model was trained on the only QAC corpus. Next,

models were trained with each 1000 additional annotated words in the SAC in

addition to the QAC. Models show good improvements as the training dataset

increases.

Models are trained using the UDPipe toolkit. The tokeniser component is

trained with 100 epochs with a batch size of 50 per iteration (with a dropout of 0.1)

and a learning rate of 0.005. Character embeddings are 24 dimensions. For the

tagger component, we train two models separately: one for lemma and one for POS

tag and morphological features.

To help the annotator find the proper POS tag of closed set words (words

that have not been tagged as nominals/verbs), Wasim shows possible annotation of

these words derived from the QAC corpus. It is mostly useful for homographs,

where some can have up to seven possible tags. For example, the clitic 'w' in the

QAC tagset can be CONJ, REM, CIRC, SUP, PRON, COM, or P. In each case, the

 - 197 -

annotator is given a set of examples and the possibility of that tag (without taking

the context in consideration).

8.9 Orthographical Annotation: Diacritisation

“Borrowing” diacritisations from similar contexts have raised the percentage

of diacritised characters of the corpus, which in return reduced the word ambiguity.

This section shows the diacritisation ambiguity level on the case of the Sunnah

Arabic Corpus, brief results of the experimental study of automatic diacritisation

previously proposed in 5.6, and the guidelines for standard diacritisation of Arabic.

8.9.1 Ambiguity in Sunnah Arabic Corpus

In this section, we demonstrate the ambiguity level by expressing the number

of possible diacritisation within the language (expressed by morphological

analysers). Using the SAWAREF toolkit, we ran four morphological analysers,

namely Elixir Functional Morphology (EX) (Smrz, 2007), ALMORGEANA

(included in MADA toolkit) (AL) (Habash, Rambow and Roth, 2009), AraMorph

(BP) (Buckwalter, 2002a), and AlKhalil (KH) (Boudchiche et al., 2016), on the

lexicon of SAC (17.7K distinct words). The average number of possible diacritised

forms is shown in Table 8.4. It shows the maximum, mean, and median of the

number of possible diacritisations per morphological analyser. The coverage column

refers to the average percentage of diacritised letters.

Table 8.4 Possible Diacritisation Statistics Per Morphological Analyser.

MA Max Mean Median Coverage

EX 124 8.46 6 67.46%

KH 96 10.38 7 80.64%

BP 20 2.38 2 47.67%

AL 23 3.69 3 42.65%

Differences in statistics do not necessarily imply better coverage.

Diacritisations of one example word, as analysed by each tool, are shown in Table

8.5. We can see that BP and AL do not recover the last diacritic (/u/, /a/, /i/), and

therefore different moods and cases of verbs and nouns are not iterated. Some tools,

like KH, produce diacritisations with Tanween if it is suitable (like in indefinite

nouns). However, KH sticks to the Hamza form and does not produce other possible

 - 198 -

Hamza locations. EX produces all shapes of the Hamza letter which led to the

largest possible number of diacritisations. AL makes a similar pattern of iterating

possible Hamza, Madda, or plain Alif shapes.

Table 8.5 Possible diacritisations of the word (مثآ , /|vm/, “a sin”) from four MAs.

Tool Possible Diacritisation

EX |vam |vama |vamu |vimN |vimK |vima

|vimu |vimi >avamN >avamK >avama

>avamu >avami >avima >av~ama

>av~im >uvima >uv~ima <ivmN

<ivmK <ivma <ivmu <ivmi

أ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ
أ م ث أ م ث أ م ث

 َُ َ ََ َ ٍَ َ ٌَ َ ِ ِ ُ ِ َ ِ ٍ ِ ٌ ِ َُ ََ َ م ث

أ َ ِ َ َِ َ م ث أ م ث أ
أ م ث

أ م ث أ م ث
 َ َ َّ َ مث إ مث إ مث إ مث إ مث إ م ث

ّ ِ ُِ َ ُ
ّ ِ َ ِ ٌ ِ ٍ ِ َ ِ ُ ِ ِ

KH |vama |vamu |vamo |vuma |vumu |vumo

|vimN |vimK |vima |vimu |vimi |vimo

ثآ م ثآ م ثآ م ثآ
ثآ م

ْ ِ ِ ِ ُ ِ َ ِ ٍ ِ ٌ ِ ُْ ُُ َُ َْ َُ ََ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م

BP |vim م ثآ ِ

AL |vim >avam >avima >av~ama <ivom أ م ث أ م ث أ م ثآ
ث إ م ث

م ِ َ َ َ ِ َ َ
َّ َ ِ ْ

ALL <ivmK <ivmN <ivma <ivmi <ivmu

<ivom >avam >avamK >avamN

>avama >avami >avamu >avim >avima

>uvima |vam |vama |vamo |vamu |vim

|vimK |vimN |vima |vimi |vimo |vimu

|vuma |vumo |vumu

ث إ مث إ مث إ َ ِ ٌ ِ ٍ ِ مث إ مث إ مث إ
أ م ث أ م ث أ م ث أ م ث أ م

 َُ َ َِ َ ََ َ ٌَ َ ٍَ َ َ َ ْ ِ ُ ِ ِ ِ م ث أ م ث

أ م ث أ م ث أ
 ِ ِ َ ِ ٌ ِ ٍ ِ ِ َُ َْ ََ َ َ ُِ َ ِ َ ِ َ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ثآ م ث

ثآ َُ ُ ِ ْ ِ م ثآ م ثآ م ثآ
ُُ ُْ م ثآ م

Even though all these morphological analysers produce full diacritisation, we

notice that diacritisation is not standard in multiple notions: for example, the place

of the tanween, diacritizing the letter that precedes a long vowel or not, and

diacritizing the Alif and Lam letter of AL article for definition (the difference

between sunny and moony AL).

We merged all diacritised forms from these after standardizing their

diacritisation (see 5.6.3 for rules). One example is shown in Table 8.5 (last row).

After removing duplicates, the average ambiguity per word is 17.42 possible

diacritisations/word.

8.9.2 Automatic Diacritizing

Diacritisation reduces the degree of ambiguity of morphological annotation,

and thus increases the accuracy of part-of-speech tagging (Dukes and Habash, 2010;

Habash, Shahrour and Al-Khalil, 2016). Since we have multiple

 - 199 -

versions/investigations of the same book, and the same narrative might be recited or

quoted in other books as well, we merge the diacritisation by combining words that

have similar 5-gram context.

The SAC satisfies the five assumptions in our methodology and is a good

candidate for our diacritisation process due to several reasons:

1. It compiles narrations reported in other Hadith books (e.g. Albukhari)

which make these books a good source for diacritisation.

2. Its codex was validated and investigated by several scholars by a

scientific palaeographical process; at least there are two digitally available

validated versions of the same text.

3. Its narratives have been explained in 6 written books.

The details of this methodology and the evaluation on the case of Sunnah Arabic

Corpus can be found in section 5.6. In short, the source text is initially about 48.66%

diacritised, and after borrowing diacritisation, the percentage jumps to 76.41% with

low diacritic error rate (DER=0.004), compared to 61.73% (DER=0.214) using the

MADAMIRA toolkit, and 67.68% (DER=0.006) using the Farasa toolkit. More

importantly, this method has reduced the word ambiguity from 4.83 diacritised

forms/word to 1.91, which suggest that it is useful for the morphological annotation

task.

8.9.3 Manual Diacritisation

In this section, we introduce the guideline section for diacritizing the Sunnah

Arabic Corpus. As illustrated before, several diacritisation standards exist, and for

consistency and stability, we write a short list of guidelines for annotators to follow.

The guidelines cover diacritizing multi-word tokens (before segmentation) and

morphemes (after segmentation).

Rules:

General

- Each letter should have two diacritics at most.

- In case a letter has two diacritics, one of them should be the Shaddah

diacritic.

- A Sokun diacritic cannot be accompanied with a Shaddah diacritic.

- There should be no duplicate diacritics.

 - 200 -

- Diacritics cannot standalone. Any diacritic must accompany a letter.

Long Vowels

1. Diacritizing a constant letter that precedes long vowels is necessary,

including the Shaddah diacritic if the constant is a long consonant

(geminate).

Goal: This is to facilitate a way to find long vowels in the future.

2. Diacritizing a long vowel (includes Alif, Alif Maqsorah, non-consonant

Waw and Yaa letters) is unnecessary. Never diacritise Alif and Alif

Maqsorah letters.

Goal: This is to save annotators' time.

3. DiacritiseWaw and Yaa letters if they are not long vowels.

Goal: This is to draw a distinction between long vowels.

4. The Sokun diacritic should be placed on the Waw letter when it marks a

group of people (Waw Aljamaha)

Goal: This is to differentiate it from A-Muthanna.

Definite Article AL

5. Diacritizing the Lam letter in the article AL is unnecessary.

Goal: All Lam letters that are undiacritised are part of articles, and this saves

time.

6. Diacritisethe long consonant letter after AL with Shaddah (only if multi-

token).

Goal: This is to distinguish between Soony and Moony articles.

7. Shaddah diacritic should be removed when segmenting it from the solar AL

article.

Goal: This is to reduce the sparseness of the words.

Tanween

 - 201 -

8. The tanween diacritics should be placed on the letter it modifies (tanweened

letter), not on the Alif or the Alif Maqsoura letters.

Goal: This is the correct place of tanween. Incorrect placement contradicts

with Rule 2.

Shaddah

9. The Shaddah diacritic should always be written before other diacritics.

Goal: This is for consistency reasons.

10. The Shaddah diacritic should always be companioned with other diacritics

except with (Rule 1, Rule 11).

Goal: This is to ensure no missing diacritisation.

11. The Shaddah diacritic should be placed after the solar AL article (Rule 5).

Goal: This is because it is long consonant (geminate).

12. The Shaddah diacritic should be removed when segmenting it from the solar

AL article.

Goal: This is to reduce the sparseness of the words.

13. The Shaddah should be segmented into its two origin diacritics (a Sokun and

a diacritic) if it is formed because of inflexion.

Goal: This is to reduce the sparseness of the words.

Maddah

14. Maddah can only be with Alif.

Goal: Alif with Maddah is considered a different letter (in the Unicode

representation). However, it is actually the result of two letters merged with a

diacritic. It should not be misspelt as a normal Alif.

15. Maddah should be segmented into its two origin diacritics (a Hamazah with

Fatha and a long vowel Alif) if it is formed because of inflexion.

Goal: This is to reduce the sparseness of the words.

 - 202 -

Diacritic of Declined/Conjugated nouns/verbs

16. Diacritizing of the “last” diacritic (the case and mood marks) of a declined

noun or a conjugated verb is optional but is strongly encouraged.

Goal: This is to save the annotator time and to reduce the sparseness of the

words. The correct case/mood mark is not easily recovered though. We plan

later to extend the tagging by adding case/mood mark to morphological

features.

17. Diacritise invariable nouns or verbs.

Goal: This is to reduce the sparseness of the words.

Hamzah Wasel

18. Do not diacritise the Alif if it is a Hamza Wasel.

Goal: This is to mark Hamzah Wasel as it affects pronunciation. It is a long

vowel alif but sometimes is dropped to avoid the double unvoweled letters.

19. The diacritisation of the last letter of a word should not differ according to

the subsequent word (the meeting of two vowels).

Goal: This is to reduce the sparseness of the words.

Hamzah

20. The lower Hamzah on the Alif can only occur at the beginning of a word.

Goal: This is for consistency reasons.

21. Do not diacritise lower Hamzah.

Goal: This is to save the annotator’s time as it is obvious.

8.10 Morphological Annotation

In this section, we provide the official guidelines used for the annotation of

the Sunnah Arabic Corpus. These guidelines are meant for the consistency and

stability of the annotation of the corpus and are meant to be used for human

annotators. Since the annotation is done in a semi-automatic process, we tried to

adapt the automatic part of the process to follow these guidelines. However,

 - 203 -

automatic processing is prone to errors and do not necessarily comply with our

guidelines. Annotators should always correct these errors.

The morphosyntactic annotation aims to build a dependency treebank for

classical Arabic eventually. In a dependency treebank, each node/token is tagged

with one tag that represents a dependency relationship between a governor and a

dependent. The syntax annotation is beyond the scope of this thesis; however, the

annotation guidelines are designed to allow continuing the annotation process with

syntactic annotation in future.

In segmentation, tokens are systematically segmented so that the annotation

is done to syntactic words (not orthographic words), which means that we want to

split off clitics (not affix) such as the w+/CONJ from nouns. In contrast, we

generally do not split off Y+ from imperfect verbs, as this affix does not contribute

to the traditional Arabic grammar (بارعلإا نم اھل لحم لا), i.e. is not dependent (not a

complement or modifier to the head).

In other morphological features, we select a subset of features from the

recommended morphological and lexical feature set from (Marton, Habash and

Rambow, 2013), which explored the contribution of possible morphological sets to

parser’s accuracy in the context of Modern Standard Arabic.

The guidelines here is a collection of the best practices of the annotation of

the Quranic Arabic Corpus and the Universal Dependency version. 2. POS tagset is

an extended version of the QAC, and the morphological and lexical features comply

with the Universal Dependency guidelines. In all of these guidelines, we do not

include the guidelines of the syntax annotation due to irrelevance.

8.10.1 Segmentation

In addition to dividing the text into a group of words separated by spaces and

punctuation (i.e. tokenisation), SAC divides the words into their morphological

segments (i.e. segmentation), if applicable.

Although we rely on morphological analysers for the segmentation of the

corpus text, they do sometimes fail to identify the correct segmentation, because the

word is homogeneous. Non-diacritised (i.e. underspecified) texts have more

orthographical homogeneity than the diacritised texts.

We can segment a word into prefixes, the stem of the word and suffixes.

Prefixes and suffixes are bound morphemes, while the stem is a free morpheme.

 - 204 -

Usually, an inflected word consists of one free morpheme and one or more bound

morphemes. However, some combinations of a prefix and suffixes can form a valid

word like (bi+hi, PREP+PRON, with+him).

Unlike the QAC, we decided not to mark segments as either a bound or free

morpheme nor as a stem or affix. We followed the CoNLL-U guidelines published

by the Universal Dependency project. In the CoNLL-U format, a list of morphemes

is listed with no requirement of labelling a morpheme as either an affix, stem, bound

or free.

The primary reason is to save annotators time. Even though this information

might be helpful (e.g. in morphological alignment, see Section 5.4.5), it can be

recovered for most of the morphemes with a little manual work for some ambiguous

morphemes. The second reason is the lack of a standard definition of stems which

adds more confusion, as illustrated in our comparative evaluation of taggers in

Chapter 4. For example, stems of words that consist of two bound morphemes are

arbitrarily chosen. We do not have the resources to check its contribution to the

parser's quality, and we leave it for future work.

In general, there are five proclitics and one enclitic that should be detached

(see Table 8.6). The content of this table is originally automatically generated by

analysing the Quranic Arabic Corpus. From the list of all inflected tokens, we

extract the possibility of attaching these clitics to other POS tags. We utilise the

PREFIX/STEM/SUFFIX mark used in the QAC to determine the possibility of

attaching one affix to a free morpheme. We expect that the tokeniser to split off non-

Arabic characters of the form of the bottom four tags (13-16).

In Table 8.6, prefixes and suffixes are necessarily bound morphemes, while

the 16 categories are the free morphemes. Pronouns, for example, can be a free or

bound morpheme; however, bound pronouns only inflect nouns, adjectives, verbs

and adverbs. Determiners are always bound morphemes, and therefore the

determiner’s row is all empty. Table 8.6 does not list all possible inflexions. Rarely,

two particles can be inflected such as (ا م ن إ ِ َّ َ , <in~amaA, “no more than; only”), and

both particles are free morphemes. The table shows all possible inflexions regardless

of the state of the morpheme (free or bound).

Table 8.6 The compatibility table of affixes and UPOS tags.

 Bound Clitics

 - 205 -

Bound

morpheme
UPOS

XPOS

(Examples)

Q
uestion P

article
14

C
onjunctions

15

P
repositions 15

C
om

plem
ents

16

D
efinite article 15

P
ronouns 15

1 Nouns NOUN N ✓ ✓ ✓ ✓ ✓

2 Proper Noun PROPN PN ✓ ✓ ✓ ✓

3 Adjectives ADJ ADJ/IMPN ✓ ✓ ✓ ✓

4 Verbs VERB V ✓ ✓ ✓ ✓

5 Adverbs ADV T/LOC ✓ ✓ ✓

6 Pronouns PRON PRP/DEM/REL ✓ ✓ ✓ 17

7 Particles PART
ACC,AMD,ANS

,…
✓ ✓ ✓

8 Prepositions ADP P ✓ ✓

9 Conjunctions CCONJ CONJ ✓ ✓

10 Subconjunctions SCONJ SUB ✓ ✓ ✓

11 Determiner DET N/A18

12 Interjection INTJ INTJ

13 Symbols SYM SYM

14 Punctuations PUNCT PUNCT

15 Numbers NUM NUM

16 Other X X

Any combination of two morphemes that do not follow this table will show a

warning in the Wasim annotation tool (see Chapter 9). Wasim will also display an

online subset of the guidelines that are related to the highlighted word.

Please note that the 12th to 16th categories should always be tokenised and

separated from other words by the tokeniser. Punctuation should be separated from

14 The Question Particle is the token that is tagged XPOS:INTJ and UPOS:PART. It attaches to any

free morphemes.

15 Conjunctions and prepositions, the definite article, and pronouns are tagged as UPOS:CONJ,

UPOS:ADP, UPOS:DET, UPOS:PRON.

16 Complements are a subset of particles (XPOS:CAUS, XPOS:CIRC, XPOS:COM, XPOS:EMPH,

XPOS:EQ, XPOS:FUT, XPOS:IMPV, XPOS:INTG, XPOS:REM, XPOS:RSLT) that can attach to

verbs.

17 Pronouns do not attach to other pronouns unless both are bound morphemes.

18 Determiner are used in the QAC only for the definite article, which is not a free morpheme.

 - 206 -

each other, for example, a double quotation and a colon. Numbers, however, should

not be separated into its digits. The date should be marked as one token.

Table 8.7 The possibility of attaching one UPOS tag to another.

 UPOS

N
O

U
N

P
R

O
P

N

A
D

J

V
E

R
B

A
D

V

P
R

O
N

P
A

R
T

A
D

P

C
C

O
N

J

SC
O

N
J

D
E

T

1 NOUN 29.45 3.05 12.63 11.86 43.01
2 PROPN 15.51 32.59 25.39 26.5

3 ADJ 0.17 0.17 99.65
4 VERB 68.61 14.42 16.97

5 ADV 42.87 26.49 27.77 0.21 2.66

6 PRON 15.36 37.47 1.22 7.45 10.97 16.86 10.67

7 PART 3.53 1.13 17.48 1.67 24.35 33.77 2.73 14.57 0.37 0.4

8 ADP 22.07 3.57 56.47 4.12 4.72 0.83 8.22

9 CCONJ 16.14 2.17 0.01 24.17 2.06 27.83 17.11 3.68 0.17 6.66

10 SCONJ 1.24 34.16 50.93 13.66

11 DET 74.05 2.86 5.72 0.25 0.59 8.1 8.43

8.10.2 Lemmatisation

In addition to tagging inflectional features, we annotate the Sunnah Arabic

Corpus with one lexical feature. Arabic is a Semitic language that inherits the

templatic characteristic, so a word can be described by its root and pattern. Lexical

features usually include the word lexeme (or its representative: the lemma), pattern

(either the pattern of the word or the lemma) and the root of the word. Some

research in the literature (Smrz, 2007; Sawalha and Atwell, 2013) include the

number of root letters, verb root (or form), and noun finals.

In Arabic, there is no infinitive form of verbs. We chose the represented

word form that is most commonly used in the traditional dictionaries. While words

are traditionally grouped by their roots, the different senses are iterated using one

representative word (the lemma). For verbs, it is usually the perfective third-person

masculine singular form of the verb. For nouns, it is nominative singular masculine

(if possible) form.

Similar to the QAC, we have tagged words with their roots19. The root of a

word is the original consonants letters of the word before injecting it into a vocalised

19 The root feature is set on the MISC column. It is automatically generated and not yet validated.

 - 207 -

pattern. Arabic derivational morphology is mostly templatic (see Section 2.4). The

root provides a more profound abstraction than lemma as it abstract over the

derivational and inflectional morphology while lemma abstracts over inflectional

morphology.

This abstraction seems handy: Marton et al. (2013) found that the

combination of lemma and root increased the parsing accuracy by 0.03. The gain is

attributed to the reduction in data sparseness, and the grouping of semantically

related words together.

In addition to parsing, lemma and root annotation is useful in the context of

information retrieval. It is useful for finding all occurrences of a particular word,

especially for highly inflectional languages like Arabic, where one word can have

hundreds of possible inflected forms. For example, the lemma kataba can be found

in “over 400 different forms” (Kübler and Zinsmeister, 2015, p. 43).

8.10.3 POS Tagging

Instead of using the well-known coarse traditional three-way tagset

(nominals, verbs, particles), we implemented a two-level tagset: coarse (UPOS) and

fine-grained (XPOS) tagsets. Each segment is tagged with two tags from each tagset.

We followed and extended the fine-grained tagset of the Quranic Arabic Corpus,

coupled with the Universal Dependency Tagset. The original tagset of the Quranic

Arabic corpus has about 45 tags: nine tags for nominals, one for verbs, 34 tags for

particles and one for Quranic initials. The universal tagset is 17 tags (with one tag

(AUX) never used in Arabic text). Each XPOS tag is mapped to one UPOS tag as

shown in Table 8.8.

Because the original tagset used in the QAC is dedicated to the Quranic text,

which has no punctuation or numbers, we have extended the tagset by adding some

tags encountered in the SAC. This extension has been designed to suit classical

Arabic texts in general. Added tags are marked with a star in Table 8.8.

We decided to support universal tagset annotation by adapting the Universal

Dependency tagset. The project develops cross-linguistically consistent treebank

annotation, and its tagset is used to annotate treebanks in many languages. At least

there are over 60 supported languages with more than 100 treebanks. This

annotation facilitates the use of other taggers and parsers.

 - 208 -

Arabic grammarians have studied classical Arabic since the centuries of the

prophet and his companions. They developed a grammar known as “I3rab”. Since

we plan to annotate the corpus using such grammar in the future, we found that two

tagsets follow its terminology: The SALMA tagset (Sawalha and Atwell, 2013) and

the QAC tagset (Dukes and Habash, 2010).

The QAC tagset has been used over the SALMA tagset for several reasons:

- The QAC tagset is designed for the syntax annotation.

- The QAC tagset is used and tested in the QAC.

- The QAC corpus is larger in terms of the number of words.

The detailed classification scheme requires that each tag be clearly defined, giving

examples in the annotated document. This guideline should include how to identify

difficult borderline situations so that all the examples in the group can be

consistently marked. Tagset schemes must specify how to select a label if a word

may have different labels in a different context (Atwell 2008). The SALMA tagset is

described in more detail compared to the QAC. However, both tagsets suffer from

missing guidelines for difficult borderline situations.

The QAC annotation used an Arabic book of grammatical analysis of the

Quran (Salih, 2007) for reference for borderline cases, i.e. the annotator is asked to

follow the book for all the annotation. However, the book and the corpus lack

guidelines handling for borderline cases and is only limited to the Quran. This

makes reusing the same tagset harder for the case of SAC.

For this purpose, we implemented a consistency checker and helper

component in the Wasim annotation tool. The QAC tagset should be easily grasped

for annotators with strong traditional Arabic grammar background. For the

borderline situations, we ask the annotator to mark these situations for later

judgment, and plan to write detailed guidelines for these situations.

Table 8.8 Two-level part of speech tagset used in SAC.

UD Tag

(UPOS)

QAC Tag

(XPOS)

ملاكلا مسق Description

NOUN N مسا Noun

PROPN PN ملع مسا Proper Noun

 - 209 -

UD Tag

(UPOS)

QAC Tag

(XPOS)

ملاكلا مسق Description

ADJ ADJ ةفص سیلو(فصو(Adjective

IMPN رمأ لعف مسا Imperative verbal noun

PRON PRP ریمض Personal Pronoun

DEM ةراشإ مسا Demonstrative Pronoun

REL لوصوم مسا Relative Pronoun

ADV ADV نامز فرظ* Time Adverb*

ADV ناكم فرظ* Location Adverb *

VERB V لعف Verb

ADP P رج فرح Preposition

CCONJ CONJ فطع فرح Coordinating Conjunction

SCONJ SUB يردصم فرح Subordinating Conjunction

PART ACC بصن فرح Accusative particle

AMD كاردتسا فرح Amendment Particle

ANS باوج فرح Answer Particle

AVR عدر فرح* Aversion Particle

CAUS ةیببس فرح Causal Particle

CERT قیقحت فرح Certainty Particle

CIRC لاح فرح Circumstantial particle

COM ةیعملا واو Comitative particle

COND طرش فرح Conditional particle

 - 210 -

UD Tag

(UPOS)

QAC Tag

(XPOS)

ملاكلا مسق Description

EQ ةیوست فرح Equalisation particle

EXH ضیضحت فرح Exhortation particle

EXL لیصفت فرح Explanation particle

EXP ءانثتسا ةادأ Exceptive particle

FUT لابقتسا فرح Future particle

INC ءادتبا فرح Inceptive particle

INT ریسفت فرح Particle of interpretation

INTG ماھفتسا فرح Interrogative particle

NEG يفن فرح Negative particle

PREV فاك فرح Preventive particle

PRO يھن فرح Prohibition particle

REM ةیفانئتسا فرح Resumption particle

RES رصح ةادأ Restriction particle

RET بارضا فرح Retraction particle

RSLT طرشلا باوج يف عقاو فرح Result particle

SUP دئاز فرح Supplemental particle

SUR ةءاجف فرح Surprise particle

VOC ءادن فرح Vocative particle

INL ةعطقم فورح Quranic initials

EMPH دیكوتلا ملا Lam emphasis

 - 211 -

UD Tag

(UPOS)

QAC Tag

(XPOS)

ملاكلا مسق Description

IMPV رملاا ملا Lam Imperative

PRP لیلعتلا ملا Lam explanation

DET DET فیرعتلا لا The definite article

INTJ INTJ* ةفلاخ Violation

X X* ىرخأ Other

SYM SYM* زمر Code

PUNCT PUNCT* میقرت ةملاع Punctuation mark

NUM NUM ماقرأ Digits

8.10.4 Morphological Features

Morphological features play a critical role in helping parsers to determine the

correct parsing tree. These features distinguish lexical and grammatical properties

that are not covered by a POS tag. The line, however, between a POS tag and a

morphological feature is cloudy. Sometimes, morphological features are explicitly

or implicitly encoded in a POS tag, e.g. NNS.

Parsers use word order, POS tag and morphological features to find the

syntactic role of one word. However, in morphologically rich languages, which are

known to have free word language, the role of the word order is limited, and the role

of morphological features is prominent. Morphological features help parsers in two

ways: agreement (like noun-adjective and verb-noun agreements) and assignment

(assign the subject label to nominative noun) (Marton, Habash and Rambow, 2010).

The morphological features space is vast in morphologically rich languages.

Universally, there are 48 morphological features, but most of them do not apply to

Arabic, with an average of 5.2 possible values for each feature. In the SALMA

tagset, a tagset designed to be a standard tagset that “adds more fine-grained details

to the existing tagsets” (Sawalha and Atwell, 2013, p. 63), the author presented at

least 16 morphological features with an upper limit of about 2 million possible

values for one word. The average number of morphological values is 4.2.

 - 212 -

Consequently, designers of the parsing model should aim to carefully select

morphological features for annotation that contribute to the accuracy of the parsing.

Optimally, a feature should be considered when it is accurately predictable and

useful for making an attachment or labelling decision; however, the feature should

be omitted if its added information is redundant to another feature (Marton, Habash

and Rambow, 2013). For example, the GENDER feature might help determine the

attachment of an ADJ in the following example: (ةعساو ةمحر وذ مكبر /rbkm *w rHmp

wAsEp/ Your Lord is full of mercy all-embracing). While the CASE is very relevant,

it might not be accurately predicted. CASE and CASE_MARKS in the SALMA

tagset are mostly redundant.

The selection of supported morphological features in our corpus is initially

based on Marton, Habash and Rambow (2013). In one part, the authors explored the

contribution of ten distinct inflectional features, namely DET, PERSON, ASPECT,

VOICE, MOOD, GENDER, NUMBER, STATE, CASE, and RAT. They contrast

the contribution of functional vs form-based features of GENDER and NUMBER.

The best model contains five features: DET, PERSON, FN-NUMBER, FN-

GENDER, FN-RAT.

Their results were presented in the context of undiacritised Modern Standard

Arabic text. The included tagsets are not based on traditional Arabic grammar. In

traditional Arabic grammar, four more morphological features play critical roles:

CASE, MOOD, ASPECT, and VOICE. For example, the labelling of the subject in a

passive sentence is different than an active sentence (لعاف vs لعافلا بئان).

Additionally, the CASE feature specifies the role of the noun phrase in the sentence.

We expect these four features to be more accurately predictable with an input of

fully diacritised classical text, so we add them to the list. Therefore the final set of

features is DET, PERSON, FN-NUMBER, FN-GENDER, VOICE, ASPECT and

CASE (see Table 8.9).

Table 8.9 The included morphological features and their values.

Arabic Name English Name Possible Values

سنجلا 1 يوحنلا Gender Masc Fem -

ةیبارعلإا ةلاحلا 2 Case Nom Acc Gen -

 - 213 -

يوحنلا ددعلا 3 Number Sing Dual Plur -

فیرعتلا 4 Definiteness Def Ind Cons -

دانسلإا 5 Person 1 2 3 -

ءانبلا 6 Voice Act Pass -

لعفلا عون 7 Aspect Perf Impf Imp -

We decided to use functional features instead of form-based features for

gender and number. The broken plural form of nouns is tagged as plural even though

it does not have one of the sound number suffixes. Similarly, the gender of nouns is

tagged such that it satisfies grammatical agreements: e.g. adjective-noun

agreements. Functional features seem more useful for parsers in agreement and

assignment interactions. Even though the accuracy of predicting functional features

is less than form-based, the contribution of functional features is more (Marton,

Habash and Rambow, 2013).

8.11 Meta-Annotation

Classical corpora represent an interesting and challenging use case because

they are the basis of empirical studies in many disciplines. They shows a wide

variety of reuse possibilities. General annotation of classical corpora requires

different meta-data that reflects the relationship between the original historical text

and their interpretation (Odebrecht, 2018). Luckily, all annotations of the original

text are in footnotes which we kept at the document level.

Hadith corpora should as well reflect the science of Hadith principals

(Najeeb et al., 2015). We follow an abstract level of classification at the sentence

level. Each narration (Hadith) is composed of three components: Isnad (the chain of

narrators), Matn (the text of the narration), and the Takhreej (the list of reporters nad

their comments). Each hadith in the Sunnah Arabic corpus is segmented at the

sentence level, and sentences are meta-annotated with the class of which Hadith

component they belong to.

The morphological annotation is not always perfect. In many cases,

annotators can be confused by different possible annotations, and a further

examination by another expert should be done in the future. Annotators can mark

 - 214 -

these using the NOTSURE tag. Additionally, some annotations need further

justification for other people. For example, the choice of a lemma, a case value or a

POS tag might need a justification to remove the misinterpretation.

This is more important when we deal with highly respected (or religious)

texts. People tend to have different interpretations of the holy text, and these

interpretations originates from ambiguities in orthography, morphology, syntax, or

semantics. For example, the prophet saying: (ءامحرلا هدابع نم الله محری امنإ /<nmA yrHm

Allh mn EbAdh AlrHmA'/ Allah is Compassionate only to those among His slaves

who are compassionate [to others]) has three valid morphological analyses (Table

8.10) (Akbari, 1986, p. 75). With the limit of one possible annotation, some meta

information about the annotation is required, e.g. justification, other possible

annotations.

Table 8.10 Different valid annotations of one prophet saying.

 Form Form One Two Three

امنإ 1-2 <nmA

َّ نإ 1 <n ACC بصن ACC بصن ACC بصن

ام 2 Ma PREV فاك REL SUB ةلوصوم ةیردصم

محری 3 yrHm V V V

…

ءامحرلا 8 AlrHmA'
NOUN

CASE=Acc
NOUN CASE=Ind

NOUN

CASE=Ind

Meta information is written in the same file. The CoNLL-U format allows

miscellaneous information to be written on different levels: segment, multi-token,

sentence or document. Segment and multi-token miscellaneous information are

stored in the eighth column: MISC. Document- and sentence-based meta

information are stored as prior lines with a leading hash symbol. In the MISC

column, we store whether the analysis (via mark FROM_MA=1) is initially from a

morphological analyser, though some edits might have been made later. We mark

NOTSURE=TRUE segments to allow further investigation later. Annotators can put

some notes (e.g. for justification) on different levels: document, sentence or

elements. Wasim, by default, stores an annotator identifier and session annotation

information such as the start, finish, breaks date and time. Also, before the start of

the sentence, its text and its id are written as a comment to ease reading of the full

sentence. In the last resort, the saved text also helps in finding changes of words or

segments (e.g. missing words).

 - 215 -

8.12 Conclusion

This chapter introduced the corpus and described its collection process,

content, and its distribution and availability. It argued that the Quranic Arabic

corpus needs some adaptation before it can be used for training machine learning

models. It described briefly the project’s potential uses in different fields including

linguistics studies, natural languages processing, and translation studies. In the

second part, it introduced the process of orthographical and morphological

annotation with in-depth description of the process and tagsets.

For future work, we aim to continue the process of semi-automatically

annotating the corpus and include other books as well. It will be very helpful to

manually align the corpus to different languages/commentaries at the sentence level.

In addition, word-to-word translation proved to be helpful in Quran understanding,

and we might consider automatic word alignment with other languages.

In the following chapter, we present a new linguistic resource: Wasim, an

annotation toolkit that was used in annotating the Sunnah Arabic corpus.

 - 216 -

9 WEB-BASED ANNOTATION

TOOL FOR INFLECTIONAL

LANGUAGE RESOURCES

Chapter Summary1:

We present Wasim, a web-based tool for semi-automatic morphosyntactic

annotation of inflectional languages resources. The tool features high flexibility in

segmenting tokens, editing, diacritizing, and labelling tokens and segments. Text

annotation of highly inflectional languages (including Arabic) requires key

functionality which we could not see in a survey of existing tools. Wasim integrates

with morphological analysers to speed up the annotation process by selecting one

from their proposed analyses. It integrates as well with external POS taggers for

kick-start annotation and adaptive predicting based on annotations made so far. It

aims to speed up the annotation by completely relying on a keyboard, with no mouse

interaction required. Wasim has been tested on four case studies and these features

proved to be useful. The source-code is released under the MIT license2.

1 Some parts of this chapter are based on:

Alosaimy, A. and Atwell, E. (2018) ‘Web-based Annotation Tool for Inflectional Language

Resources Major features’, in LREC: Proceedings of the International Conference on Language

Resources and Evaluation. Miyazaki, Japan: European Language Resources Association (ELRA), pp.

3933–3939.

2 The source code and a demo are available at http://wasim.al-osaimy.com

 - 217 -

9.1 Introduction

Inflectional languages or fusional languages are a group of languages where

they tend to inflect words to express grammatical features such as the person,

gender, and number features. Inflexions can be constructed with an affix (prefix,

suffix, or even infix) or as a vowel change. For example, the word cats is inflected

with a suffix for the number feature to indicate the plural form of a noun. Words are

often inflected by at least one free morpheme and at least one bound morpheme.

Free morphemes can stand by itself (e.g. “cat”) while bound cannot (e.g. “-s”).

Because of their tendency to inflect words, POS tagging text in inflectional

languages is usually hard. A typical problem is substantial lexical data sparseness

due to the high number of possible inflexions of a single word. To reduce sparseness

and number of Out-of-Vocabulary (OOV) words, inflected words are often

segmented before or in parallel with POS tagging. However, the segmentation

process is prone to errors. Inflexion boundaries are often not marked which

increases the number of homographs (two or more words spelt in the same form but

with different POS tag or pronunciation (e.g. due to differences in diacritisation).

Some orthographical changes are caused by inflexions, making it hard to recover the

original word form. As a result, a segmentation process sometimes fails to detect

morphemes.

Wasim is a web-based tool for semi-automatic annotation of text for gold

standard corpus production. It was developed for the annotation of our Sunnah

Arabic Corpus (SAC) (see Chapter 7), a collection of classical Arabic sayings

ascribed to the prophet Mohammad. It has also been tested in four case studies.

The tool features high flexibility in segmenting tokens, editing, diacritizing,

and labelling tokens and segments. It can be integrated with morphological analysers

to ease the annotation by selecting from its proposed analyses. It aims to speed up

the annotation by entirely relying on a keyboard, with no mouse interaction required.

The source-code is released under the MIT license, which means it is free to use,

copy, or modify for any purpose, including commercially.

 - 218 -

9.2 Motivation

Recent research developments in, and uses of, Arabic annotated corpora

were the main inspiration behind this tool. These uses have allowed these corpora to

play a growing role in some linguistic and computational research areas such as

part-of-speech tagging, segmentation, and diacritisation. Additionally, the lack of

freely available annotated corpus of classical Arabic increases the importance of

creating such a resource, which may encourage researchers to conduct more studies

in the aforementioned research areas.

The chapter aims to develop an open-source language-agnostic annotation

tool for textual corpora that is efficient in terms of time and accuracy. The

annotation of Arabic text is more tedious and time-consuming than its equivalent in

poor morphological languages. The development of Wasim increased the efficiency

of the annotation project of the Hadith Arabic corpus, which aims to annotate about

80k words of classical Arabic text with morpheme-based POS tag, lemma,

morphological features in addition to adding missing orthographic vowels of the text

(diacritisation).

For the project, we analysed the required set of features needed for

annotating SAC and used these as criteria in a survey of existing tools.

Morphosyntactic annotation of SAC (and other highly inflectional language corpora)

requires additional specialised functionality:

1. Segmentation of one word into a set of segments

2. Addition of orthographical accents or diacritics

3. Listing a set of solutions from a lexicon dictionary (internally or

externally using a morphological analyser)

4. Consistency validation and integrating annotation guidelines (e.g.

homographs).

5. Adaptive prediction based on historical tagging

6. Efficient keyboard-based navigation and labelling

9.3 Major features

The annotation of text in a highly inflectional language is usually harder because:

1. Words are highly ambiguous, which results in many homographs (i.e. more

need of a lexicon),

2. Words need to be segmented into a set of morphemes, and

 - 219 -

3. As a result, taggers performance is usually poorer and mostly rely on a

lexicon or a morphological analyser to improve the accuracy.

Semi-automatic annotation should help to remove the ambiguity of words as it

should be able to correct tagger errors. Many times, these errors are in the ranking of

the solution set provided by the morphological analyser. Therefore, the most needed

feature is the integration of a morphological analyser, which allows the annotator to

re-select the proper analysis in case of incorrect automatic tagging.

In addition, an efficient way to segment words into a set of morphemes is a

necessity. For example in Arabic, one word in six words is inflected, and an

inflected word (multi-word token) consists of an average of 2.06 syntactic words (or

morphemes)3.

9.3.1 Morphological Analyser Integration

Wasim integrates with morphological analysers to speed up the process of

annotation. Morphological analysers take a word as input and produce a list of

possible analyses (which include word’s segmentation and lemma and segment’s

POS tag and features). By providing a set of possible analyses, Wasim allows

annotators to select one analysis. Once a solution is chosen, all its values of POS tag,

lemma, segmentation, and morphological features will be reflected in the word

analysis. The chosen solution can be edited though.

In the SAC project, the number of morphological features are ten features, in

addition to segmenting the word into its set of morphemes and marking its POS tag.

We hypothesise that it will be more efficient to select a solution instead of doing

them all from scratch. However, this hypothesis depends on the quality of the

morphological analyser. Annotators have to mark all features though if the analyser

returns no results. Once a newly-created analysis is detected, it will be saved in the

server for possible later requests.

Wasim provides two ways of morphological analyser integration: first, using

an embedded supplementary tool that acts as a pure lexicon memory, it reads the

annotated part of the corpus and index words with their annotations. Then, it allows

HTTP requests to be made from Wasim, and it will return all possible solutions of

the token in hand.

3http://universaldependencies.org/treebanks/ar-comparison.html

 - 220 -

Figure 9.1 The list of possible solutions from a morphological analyser. A

solution is usually a bundle of POS tag, segmentation, lemma and

morphological features. Selecting one solution will replace all its content to each

proper annotation field.

Second is using an external morphological analyser. Analyser outputs must

be in CoNLL-U format with word id in the MISC column that maps to the original

word index of the submitted sentence (e.g. WID=2). The reason is to allow Wasim

to group the MA’s analyses of one word.

A mapping between the MA’s tagset and the project tagset may be required,

and this can be easily defined in the configuration. If the mapping results in an

ambiguous tag in the project’s tagset, Wasim will duplicate the analysis for each

possible tag. For example, if “NOUN” is mapped to PN and N, two analyses will be

presented to the annotator.

9.3.2 Consistency Reinforcement

Consistency (a.k.a. “stability” when measuring the consistency of one

annotator alone over time) of corpus annotation process is critical to ensure that all

annotators in all texts follow the same procedure of annotation over time. High

consistency means very little disagreement in the annotation, and this helps to train

machine learning algorithms successfully.

To increase the consistency of the segmentation and tagging of a corpus,

Wasim followed three approaches: First, it allows the use of automatic POS tagger.

 - 221 -

Second, it integrates with morphological analysers. Third, it generates a list of

common homographs periodically. Homographs are associated with their possible

POS tags and segmentation. Possible segmentations are only shown when the token

in hand is a homograph.

Usually, in annotation guidelines, there are some guides of specific words,

usually homographs. However, in highly inflectional languages, those homographs

are overwhelming, and such offline guideline may miss some homographs, or

guidelines document will be lengthy. This feature serves as an online guideline for

annotators, which is automatically built up.

In the segmentation layer, Wasim warns the annotator when a segmentation

of a word differs from previous segmentation of the same word. If the annotator

insists, its new segmentation will be added. A similar process is happening for

morphological tagging.

The list is generated periodically from the annotated part of the corpus, and

the possible segmentations/POS tags of homographs are kept. Each homograph will

have a set of examples in context for each sense. Moderators can edit the list, and

add guideline notes of tagging such cases. The list will appear in Wasim with its

notes when selecting a word in the list. See Table 9.1 for example.

Table 9.1 Example of ambiguous part-of-speech helper.

Ambiguous

Word

POS

tag Frequency Example

The reason for choosing

POS tag.

mina P 78%

wamaA < unozila mino

qabolika wabiAlo|xirapi

When it is a preposition

followed by a genitive

noun.

EalaY hudFY mino

rabi~himo wa<uwla}ika

REL 16%

wamina Alna~Asi mano

yaquwlu |mana~A

When it means a relative

pronoun “Al*y”.

<atajoEalu fiyhaA mano

yufosidu fiyhaA

 …

 - 222 -

9.3.3 POS Tagging Integration

Instead of starting the annotation process of a corpus from scratch, Wasim

integrates with UDPipe to provide a kick start in the annotation process. UDPipe

delivers trained models for more than 60 languages that tokenise, tag, lemmatise and

dependency parse raw text and save results in CoNLL-U formatted files. UDPipe

can be trained on the part of the corpus that has been annotated as well. Other tools

can be used as long as they generate CoNLL-U formatted files. For Arabic for

example, Sawaref, Madamira, Stanford, Farasa and AMIRA tools can all be used

(translation into CoNLL-U format can be done using Sawaref tools).

9.4 Data Representation

Wasim follows the Universal Dependencies v 2.0 (UD)4 (Nivre et al., 2017)

in the same way it represents sentence segmentation, POS tagging, morphological

features, segmentation, and lemmatisation. In the UD project, segmentation of text is

based on a “lexicalist view of syntax”. Texts are segmented into syntactic words;

this should not be confused with phonological or orthographical words. That means

clitics like CONJ should be separated from VERBs, even though they appear in the

same orthographic word (with a space boundary). However, in this chapter, syntactic

words are called tokens and orthographic words are called words.

UD does not have a standard for diacritisation. Wasim follows its own

representation of diacritisation of Arabic (see Section 8.9). We enforce such

representation by performing a series of transformation using “regex” expressions5.

Moderators can implement a similar approach for other languages.

9.5 Tool Description

The Wasim tool has mainly two components: a front-end interface which

allows interacting with annotator and provide warnings and feedbacks, and a back-

end server that manages sessions and storage of CoNLL-U files.

The front-end web-based tool is built using the Ionic framework using the

Typescript/Javascript programming language. The main screen for document

annotation () contains four sections: 1) A toolbar at the top is used for warnings and

4 http://universaldependencies.org/

5 A regular expression, or regex is a favourite way to define a search and replace pattern.

 - 223 -

helpful shortcuts. 2) The middle column shows the words in small boxes (with its

XPOS tag and lemma beneath it) with the current word in process highlighted in a

different colour. Multi-word tokens show their morphemes linked by a “+” symbol.

Instead of displaying words in a tabular format (like in CorA, SAWT), we display

words in natural paragraph flow, allowing the annotator to examine each word's

context easily. 3) The left column shows key-value pairs of the lemma, and

morphological features. 4) The tab-based right column shows the synchronised

CoNLL-U format of the current document, and some useful statistics about the

document. Closed features are a dropdown list with an auto-complete feature.

shows a screenshot that shows the main components of Wasim.

The screenshot shows the annotation page for one document. The middle

part represents one sentence where each box is a token (with its XPOS tag). The left

side shows feature annotation. The top bar represents file-level actions including

advanced search engine, previous annotations, save to the cloud, download to the

drive, undo and redo actions. On the right side, CoNLL-U synchronised

representation of the sentences is presented for the current sentence.

CoNLL-U representation on the right side is editable at any time, as Wasim

synchronise changes. Changes will be validated, and errors are reported in an error

log box below it. In case of valid changes, such changes are reflected in the Wasim

widgets. Wasim give an option to the annotator to make changes in bulk like

copying previous annotations, though it should be rarely used.

Three useful subviews are displayed on demand: A. a list of other alternative

solutions retrieved from a morphological analyser. B. a tabular format of

morphological features and possible values. C. a segmentation view that allows

segmenting words easily. The front-end of Wasim can be seen as a CoNLL-U file

editor: it parses the file, validates the syntax and visualises the sentences with a

synced side by side view of CoNLL-U file.

The back-end is a server operated using Node.js Express server, and is

responsible for authentication and managing annotated and raw files. A connection

with the server using WebSocket is established for the several reasons: such as

morphological analyser requests, sessions, diacritisation requests, and temporary

session backup.

 - 224 -

Figure 9.2 The main screen for document annotation.

 - 225 -

Each project is a folder in the system that contains document files,

configuration files, a database of homographs and a file of the corpus lexicon. It

manages the versioning of files using the popular Git version control system. Git

system tracks all the changes that are made to files, and allow multiple operations,

e.g. diff to show changes to a file in the colourful interface. Annotated documents

are moved to a subfolder.

All annotations are stored in CoNLL-U format as plain text files. Accessing

one file from an annotator will grab a copy of that file; however, this might allow

other annotators to work on the same file. To prevent this, Wasim implements a

simple lock system where a file is locked while a connection is maintained with the

server (using WebSocket). We only release the lock if the annotator accessed

another file or the connection is closed.

Wasim is designed to be configurable to support preferences and project

related setup. Project setup includes its name, language, remote Git repository,

UDPipe model, morphological analyser path and several other preferences. Projects

must define their own fine-grained tagset (unless UD tagset is used), with their

morphological features. Wasim allows custom key-binding for actions. The

configuration files are saved in the project level as JSON files.

The annotation process can be entirely manual or semi-manual. In the case of

semi-manual, the corpus is first tagged using UDPipe models. Automatically

generated tags can be then checked and manually edited using Wasim. In the next

section, we will describe the supported morphosyntactic layer in more details.

9.6 Morphosyntactic tasks
Wasim provides an easy interface for the annotation of six tasks. While these

tasks can be processed sequentially, we allow annotators to work on any of the tasks

at the same time. Tasks sometimes are interrelated, e.g. if the automatic tagger

produced the wrong POS tag, it might also produce the wrong morphological

segmentation or lemma. Since Wasim uses morphological analysers, if the annotator

chose one solution, it will affect multiple tasks at the same time. Therefore, we

allow the annotator to edit previous tasks without leaving the screen. However, we

expect the annotator to use the MA feature at the beginning of the word

segmentation, diacritise then segment the word, mark POS tag, and finally mark

morphological features.

 - 226 -

Since Wasim allows annotation of text on many levels at the same time, the

annotator might skip a task accidentally. Wasim provides a guide to go through tasks

in keyboard mode. It highlights tasks sequentially to grab the annotator’s focus on

the current task.

However, depending on the corpus annotation goals and preferences, the

annotator can customise the view; e.g. deactivates one/multiple tasks, or disables

CoNLL-U view. The annotator can write post-process rules to check the validity and

consistency of different tasks as well as constraints on different tasks.

Wasim is designed to increase productivity for these particular annotation

tasks while sacrificing some amount of simplicity (many shortcuts/buttons on the

screen). While the learning curve (the rate of a person's progress in gaining

experience) is steep, we hypothesised that Wasim features would improve the time

required for annotating one word.

9.6.1 Morphological segmentation

Inflectional languages tend to inflect morphemes to express different

grammatical features. Unlike many other annotation tools, we do not assume the text

to be tokenised/segmented. Annotators can easily tokenise words by editing their

forms. Word can be segmented as well by placing a pointer in the proper position

and inserting a particular character (“+” sign by default). The two generated

morphemes will clone the data from the original word except for its form which will

be divided. The multi-token form will remain the same though. The original word in

the main screen will be replaced by two morphemes linked by “+” symbol. The

annotator can remove segmentation by simply hitting the “backspace” button in one

morpheme, and it will merge to the previous morpheme.

With the integration of morphological analysers, annotators should mostly

select the proper segmentation/tagging from its provided list. Manually segmenting

one word should be resorted to as a last choice, the case when there is no proper

segmentation.

Since we follow CoNLL-U representation, UD representation keeps the form

of both the word and the token in its two-level indexing scheme. The form of one

token can be rewritten as if it was not inflected. Free morpheme form can be altered

because of the inflexion, and annotators can recover its original form, e.g. “John's”

 - 227 -

can be recovered to either “John+has” or “John+is”. The original form (John+'s) will

be written in the MISC column.
1-2 John’s _ _ _ _ _ _ _ _

1 John _ NOUN N _ 0 _ _ _

2 has has AUX BE _ 0 _ _ ORG=’

Unlike other formats, the format as illustrated above keeps two forms of one

morpheme: inflected form (e.g. John’s) and free form (e.g. has).

9.6.2 Diacritisation
A diacritic (sometimes called accents or short vowels) is an optional small

glyph added to letters to change the sound of the letter. Diacritisation is the process

of adding those glyphs. In our Sunnah project, we asked for this addition as

diacritics reduces the ambiguity of words.

This process is tedious as it requires to add diacritics for each letter. Since

the number of the possible diacritisation patterns is low, we enable the use of

morphological analysers to generate the possible diacritisation of a word. The

annotation process is then eased by only selecting the correctly-diacritised word.

The annotator has the ability, though, to edit the form if no solution is provided.

Additionally, Wasim uses a diacritisation tool (Alosaimy and Atwell, 2018)

that borrows more thorough diacritisation from similar context (see section 5.6 for

details). This method is different from significant diacritiser as it does not “guess”

diacritisation, but rather “borrows” it if it exists from a similar context. Context can

be defined in different ways: e.g. n-word gram.

Wasim allows moderators to enforce some standard on the diacritisation. For

example, in Arabic, it can be configured to ignore diacritisation of letters proceeded

by a long vowel. These transformation rules can be enforced using a set of regular

expressions (regex). These rules will only be applied to a subset of morpheme/words

that conform to certain conditions. For example, in the guidelines of SAC, we

require no diacritisation on the Lam letter of the definite article “Al-”. We had a rule

that removes such diacritisation of the subset morphemes that has a POS tag: DET.

9.6.3 POS tagging

POS tagging in Wasim is morpheme-based. We assume that the tagset is

assignable to any morpheme regardless of its location (e.g. prefix or base). Tags can

be easily chosen from a list of POS tags ordered by their frequency or

 - 228 -

alphabetically. The most common POS tags are shown at the top, and pressing its

associated number will assign it to the current in hand morpheme.

9.6.4 Morpheme-based morphological features

Morphological features can be easily marked through a popup that offers a

single input line for all morphological features together. This popup offers keyboard

navigation to select the features. It also acts as a search input, so that only features

that match the input text is visible.

Figure 9.3 Features annotation popup one-line input with an auto-complete

feature of a VERB token.

Only the subset of morphological features that is compatible with the

segment's POS tag is shown (see Figure 9.3). For example, “Mood” is only shown

with VERBs. The compatibility table is configurable, and by default, we used the

compatibility of the UPOS tag and UD morphological features.

Once the input gets the focus of the user, it shows a drop-down list of all

possible values. Once a value is selected (e.g. “MASC” for gender), other

incompatible values hide accordingly. The goal is to speed up the annotation by

selecting values in one place and asking for relevant morphological features only.

9.6.5 Lemmatisation

Wasim offers a simple interface for lemmatisation. If it is integrated with a

morphological analyser, the lemma of the chosen solution will be assigned. The

lemma, however, can be edited manually.

9.6.6 Sentence Segmentation layer
Wasim provides the ability to alter the text and separate one sentence into

two. By convention, the CoNLL-U format leaves an empty line as an indicator of

 - 229 -

sentence start/end. Also, words of each sentence are numbered orderly starting from

1. CoNLL-U also allows the tagging on the sentence level by allowing comments at

the beginning of the sentence. These are reflected in Wasim, and the ID numbers of

words will be reordered. Sentences can have multiple tags, and a tag can be assigned

to sentences.

9.7 Case Studies
We provide four case studies to show the use of four languages. In each case,

we evaluate one major feature and the effect of that feature on the speed and

accuracy.

In each case, we annotate a couple of sentences (an average of 70 words)

depending on the target language of the case. While the text size is small and might

not clearly show the improvement, these experiments are for illustration purposes

rather than to actually measure the difference. The annotator who has done these

four experiments is the author of the tool; therefore, most of the effect of the

learning curve is excluded.

For each case, the text is divided into two halves, H1 and H2, and both

halves are tagged twice (two rounds). In all cases and for both rounds, the annotator

is the same person. Both halves are tagged with the feature enabled (F=True) and

then disabled (F=False) but in a different order for each half. The steps are

{H1F=True,H2 F=False,H1 F=False,H2 F=True }, and the first two steps are in the first round.

In the last two steps, the annotator already knows the texts and should annotate it

faster. However, the results between step 3 and 4 are comparable as the word counts

are similar.

In Arabic cases, we used the QAC tagset and asked the annotation to follow

its annotation guidelines. UDPipe is trained as well on the Quranic Arabic Corpus

(Dukes and Habash, 2010) (converted to CoNLL-U by the author and available

here2). The morphological analysers used here is MADAMIRA, and its results are

parsed and converted to CoNLL-U format using Sawaref toolkit. A manual mapping

from MADAMIRA tagset to QAC is defined and used.

Time is used as a metric for efficiency. The Intra-rater reliability is high in

all cases which shows that using features does not affect the accuracy. Mismatches

2 https://github.com/aosaimy/sawaref-data

 - 230 -

between the two rounds are reviewed and corrected in a third round. The accuracy

concerning the fraction of correctly annotated words is then used to evaluate the

correctness of the two rounds compared with the gold standard (third round). More

metrics are reported per case requirement. In all cases, we only evaluate the

accuracy of segmentation and POS tagging, although all tasks are done.

Diacritisation, lemmatisation, and other features accuracy are not included. In the

end, we show brief statistics on our Sunnah Arabic Corpus Annotation.

9.7.1 Modern Standard Arabic and Morphological Analyser
In this case, the annotator used the morphological analyser to select one

candidate analysis from a list of proposed analyses. “Uses of MA” report the case of

annotators selecting an analysis even though such analysis was corrected later. We

report the number of times that the annotator used the MA and the number the

proposed analysis is edited. Clearly, the results show that using MA is helpful in

speed and accuracy, but in most cases, it is prone to errors. Using MA improved the

annotation accuracy and speed significantly. All the texts used in these experiments

are appended to the thesis.

Table 9.2 Comparison between using and not using MA in accuracy and speed.

 Using MA Without

 Step 1 Step 4 Step 2 Step 3

Word count 50 51 51 50

Morphs count 72 70 70 72

Accuracy 96% 100% 84% 84%

Time (secs) 1358 635 1819 1729

Time (s/m) 18.86 9.07 25.99 24.01

Uses of MA 39 43 - -

Number of edits 30 31 - -

9.7.2 Quranic Arabic and Consistency Reinforcement
In this case, we show how the warning and helper guidelines help to improve

the accuracy. The consistency Reinforcement feature used the whole QAC corpus to

build the list of homographs and their segmentation and tagging. We report the

number of homographs that has been displayed on the screen, Table 9.3. 5-8 out of

25-24 morphemes shows that homographs in the Quranic Arabic (a case of highly

inflectional language) is relatively frequent. Using this feature increased the

 - 231 -

accuracy in step 3 compared to step 4. We expect the effect of this feature to be

more apparent in large corpora.

Table 9.3 The accuracy and speed when using CR feature.

 Using Consistency Helper Without

 Step 1 Step 4 Step 2 Step 3

Word count 15 16 16 15

Morphs count 25 24 24 25

Accuracy 100% 100% 100% 93%

Time (secs) 269 278 331 284

Time (s/m) 10.76 11.58 13.79 11.36

homographs 5 8 - -

9.7.3 Sunnah Arabic and Keyboard Navigation

In this case, the annotator does not use the keyboard for navigation. He can

use it for typing in the correct form or segmentation. We also report the number of

mouse clicks vs the number of uses of keyboard shortcuts. Table 9.4 shows that

using keyboard shortcuts reduced the annotation time by about 30% (9.34 vs. 6.89

and 8.3 vs. 18.3), even though the number of presses are higher than the number of

clicks.

Table 9.4 The accuracy, speed, keyboard presses and mouse clicks comparison

with two modes.

 Using Keyboard Using Mouse

 Step 1 Step 4 Step 2 Step 3

Word count 31 30 30 31

Morphs count 38 37 37 38

Accuracy 100% 100% 100% 100%

Time (secs) 355 307 677 262

Time (s/m) 9.34 8.3 18.3 6.89

Presses/clicks 131 166 147 87

9.7.4 English and UDPipe
In this case, we used a trained model of Linguistic Data Consortium English

Web Treebank LDC2012T13 to kick-start the annotation process. We compare the

process of assigning (only) POS tags and show that Wasim is language agnostic and

can work for left-to-right languages as well. Since the text excerpt is too small, we

do not show the effect of using an adaptive training UDPipe model. Table 9.5

 - 232 -

shows that semi-automatic tagging advances the speed of the general annotation

task. This is, however, highly dependent on the quality of the automatic tagger.

Table 9.5 The effect of using a tagger (semi-automatic vs manual annotation)

 Using Tagger Without

 Step 1 Step 4 Step 2 Step 3

Word count 31 30 30 31

Accuracy 96% 100% 96% 90%

Time (secs) 67 47 170 203

Time (s/w) 2.16 1.57 5.67 6.55

No. of Edits 0 0 1 3

9.7.5 General Case: Sunnah Arabic Corpus

Wasim is used as well for the project of morphological annotation of SAC.

So far, words have an average of 1.3 morphemes, and we spend 10.9 secs/morpheme

on average to annotate a morpheme with all features enabled3, i.e. 9.17 morphemes

per minutes.

In SAC, the speed of the annotation is rising over time due to two reasons:

the automatic tagger become more accurate over time, the annotators are gaining

experience. Apparently, the speed of annotation depends on several factors such as

text, language, course vs fine-grained tagging, and annotator experience. Therefore,

reported speed measures should be taken with caution.

9.8 Wasim vs other annotation tools
The comparison with other tools needs similar experimental settings in all of

the annotation tools. However, morphological annotation is known to be time-

consuming and costly, so repeating the same experiment was not an option.

The authors of MADARi, however, reported a similar (but not identical)

experiment. They used their tool on annotating one dialectical corpus. The task is

divided into two tasks: spelling corrections and morphological tagging.

Morphological tagging involve tokenisation, POS tagging, lemmatisation and

English glossing and the annotation rate is 277 words/hour or 4.61 words/min. This

is not directly comparable to Wasim experiment with annotating SAC (average rate

of 7.05 words/min) as SAC used classical Arabic (vs. dialectical), did not lemmatise

3 Features include POS tagging, segmentation, and six morphological features.

 - 233 -

nor provide English gloss of the words, and did not have a look into the corpus

before (vs prior spelling correction step).

9.9 Wasim Front-End Modular Design
Wasim is implemented using version 3 of Ionic Framework4. Ionic is a

modular design for mobile and web application. In our case, Wasim has mainly

three types of modules: providers, components, pages. Wasim is self-packaged

which make it easier for others to install. shows the overview design of Wasim.

Figure 9.4 The overview design of Wasim.

Wasim has four pages: a control panel for managing all projects and is only

authorised to the Wasim administrator (). The project page is used for managing

project documents and properties (and Figure 9.7). The last page is the main page

for annotation (). Project pages can be shared with other annotators by a direct URL

link.

4 Ionic is an open-source free SDK for developing native and progressive web apps using familiar

web technologies (HTML, CSS, and JavaScript). https://ionicframework.com/

Wasim

Control
Panel

Project
Page

Uploader Text Input

UDPipe
Tagger

Config
Editor

Document
Annotation

Conllu
Viewer

MA
Selector

MA List
Provider

M Feature
Selector

Word
Viewer

Help Page

Config
Provider

 - 234 -

Figure 9.5 The page for managing top-level projects.

Figure 9.6 The page for managing Project’s documents.

 - 235 -

Figure 9.7 Project's Settings Editor

9.9.1 Control Panel

In this page, an administrator with the proper authentication can control the

projects and users. When a new project is initiated, a folder in the server is created,

and git repository is initiated to track all changes to the project.

9.9.2 Project Page
In this page, a list of all documents is shown and searchable. Project

documents can be downloaded as a CoNLL-U formatted document. Project

moderator (with proper authentication access) can manage the documents and

change project's settings as well. Project settings include customising keyboard

shortcuts, project language, access credentials, MA settings, POS tagset,

morphological features, and the mapping from MA tagset and values to project

settings.

 - 236 -

9.9.3 Document Annotation page
The Document annotation page has four main components: 1) morphological

analyser selector, 2) morphological feature selector, 3) word sequence viewer, and

4) manual CoNLL-U format editor.

The first component is the morphological analyser selector. A text input for listing

the morphological analyses is used which allows the annotator to search quickly

through the list using the POS tag, morphological feature, form, number of segments

and lemma. Once a text is entered, the list will be filtered to only those that match

the input.

Figure 9.8 illustrate the use of the component when tagging one word in Arabic.

It shows as well the search functionality.

This component contacts the morphological analyser by the MA list

provider. It is used to send requests (an HTTP request) to the morphological

analyser and handle its response. The response is a slightly modified CoNLL-U

format of the sentence. We add the position of the word in the sentence as a value to

the miscellaneous column. The word provider then assigns each word in the

sentence with the list of analyses that match word's position.

 - 237 -

Figure 9.8 Morphological Analyser selector component.

The second component is the morphological feature selector. It allows the

annotator to quickly choose the correct value of all morphological features that are

compatible with the chosen POS tag. Similar to the last component, it filters the list

once a text input is entered. Morphological features are ordered in columns, and

once a value of a feature is chosen, the column disappears.

Figure 9.9 Morphological feature selector component.

The third component is the CoNLL-U viewer and editor. This component

periodically syncs the internal representation of document to its representation in

CoNLL-U format. It allows the annotator to double check that their edits are

reflected in the CoNLL-U representation. It allows manual editing of the CoNLL-U

text. Edits are parsed and validated to make sure it does not violate the formal

format rules5 using a publicly available validator and parser6.

5 http://universaldependencies.github.io/docs/format.html
6 https://github.com/spyysalo/conllu.js

 - 238 -

Figure 9.10 CoNLL-U viewer and editor.

This component maintains an internal object-oriented representation of the

document. A Document object has an array of Sentence object. A Sentence object

has an id, comments (both parsed from the comment at the beginning of the

sentence) and an array of Elements. An Element can be one of several types:

Multiword, word, or a segment (part of a multiword element). A Multiword has only

a form and range of segments ids with reference to its segments. A Word has an id

(used later for syntactic representation), form, lemma, two levels of POS tags

(universal and detailed), a list of key-value pairs for morphological features in

addition to three properties for syntactic. A Segment is a Word except the form is

modified as it will appear if not attached and a reference to its parent (a Multiword

object) and the segment's position in the parent is saved. The original text of the

sentence can be covered by the form of Multiword and Word elements.

The last component is the main viewer of the annotator. A sentence is

represented as a sequence of words. If a word is a Multiword object, its segments are

shown separated by a plus sign. One word is active, and its list of properties (lemma,

form, parent form (if a segment), morphological features, etc.) is shown on the side.

Each sentence is separated from the next sentence.

9.10 Wasim Back-End Design
The backend part of the tool has two major components: document

management, morphological analyser, tagger (UDPipe), result parser, and result

mapper.

 - 239 -

Wasim used the Git tool for managing documents and versioning. Git7 is a

free and open-source system that track changes of files (or documents). In Wasim,

we use Git for several reasons: It offers off-the-shelf file tracking and maintenance.

Wasim clones the original repository for every user. For every save to the

document, Wasim pushes the changes to the remote repository.

Besides, we use Git to show the difference between two annotations using

the git diff subcommand. This feature is handy for project moderators, as it allows a

simple curation. The differences are highlighted, and one can be chosen as the best

human analysis.

9.11 Conclusion
We presented Wasim, an open-source web-based tool efficiency-oriented for

semi-automatic annotation of inflectional languages resources. It supports multiple

tasks including segmenting tokens, diacritizing and labelling tokens and segments. It

is integrated with UDPipe to kick-start the annotation process. It can be integrated

with a morphological analyser to speed up the annotation process.

For future work, we might add additional layers for syntax, co-referencing,

and named entities. We also might as well support other formats (e.g. XML) in the

future. Unlike deterministic (i.e. one-tag) morphological taggers, morphological

analysers and lexicon, which produce multiple possible solutions, do not have an

official format for encoding results. However, recent work done by More et al.

(2018) , which encodes morphological analyses as lattices, seems appealing. We

might consider adapting this format in future or any other standard format, if it is

adopted by the UD community.

7 https://git-scm.com/

 - 240 -

10 CONCLUSION

10.1 Overview
The Classical variant of Arabic has received less attention in the field of

Arabic NLP. Although it is considered the father of Modern Standard Arabic (MSA)

and it has wide liturgical usage by Muslims around the world, this variant is under-

resourced and underexplored, especially classical texts beside the Quran.

Most approaches have involved the development of new corpora, tools, and

standards for classical Arabic. These approaches are limited in terms of resource

size, because the creation of new resources is usually costly. Some approaches ease

the contribution of the public and allow them to be involved in the resource

development, but it shows that the quality of this approach is not optimal. Generally,

the development of new resources is usually costly in terms of money and time. We

aimed in this thesis to follow a different approach: reuse available resources in

MSA. MSA and classical Arabic share many aspects in the language, and not

benefiting from these resources is wasteful.

Although there are a number of great and thorough resources in MSA, these

resources are not optimal for classical Arabic, and need some adaptation. This thesis

explored computational ways that adopt existing available heterogeneous resources

in Modern Standard Arabic and combine and adapt them. This adoption tackles two

types of adaptation: annotation-style adaptation and domain adaptation. Firstly,

existing MSA taggers are not standard in their underlying linguistic theories, nor the

computational implementation. They use different annotation tagsets and adversarial

segmentation schemas. They are implemented as well in different programming

languages, and their output format is not standard. Secondly, these resources are

trained to be used optimally in MSA language. The two languages have different

 - 241 -

distributions, and we aim at learning from the MSA distribution an accurate model

for classical Arabic.

The first part of this thesis explored and surveyed the literature and

implemented a systematic way for evaluating available MSA taggers. Although the

results should be taken cautiously, this evaluation reaffirmed other works in the

literature: classical Arabic texts vary greatly from newswire data, i.e. MSA. The

drop in the accuracies of these taggers varies from 10% to 20%.

Using best-scoring taggers in the first part, we designed a systematic

approach that combines and adapts several taggers to other domains and annotation-

styles. This systematic approach is done through several stages of format

standardisation, tagset and segmentation conversion, and advanced techniques for

prediction and disambiguation. Each stage has its own challenges and different

techniques were compared and contrasted.

Several experimental studies were conducted throughout the thesis. One

experiment showed that cross mapping of tagsets is mostly n-to-n and tagsets cannot

be easily contained or mapped to one very-fine-grained tagset. Another successful

experiment utilised freely available naturally-annotated texts to reduce the

ambiguity level by increasing the diacritisation level of words. A third experiment

illustrated how tagsets are not compatible in a case study of tagging adjectives.

Although the ensemble of heterogeneous taggers is shown to be challenging,

especially when used to adapt to another domain, an ensemble of four MSA-based

taggers that uses a relatively small corpus (~25k) for adaptation is found to be

effective in terms of robustness and accurateness. The best ensemble method does

not require prior alignment rules and scored an accurate POS tagging (90.2%).

The third part introduced two contributions to the Arabic linguistic

resources. A new data resource is publicly released, the 144K words

morphosyntactically-annotated Sunnah Arabic corpus (SAC) where 5k of the corpus

is annotated manually using an extended QAC tagset. In addition, an open-source

annotation tool that aims to speed up the tedious annotation process through four

major features is introduced and shown to be effective.

10.2 Thesis Achievements
At the commencement of this thesis, we aimed to answer three research questions:

 - 242 -

1 Do MSA-based taggers perform well on CA texts? Can the annotation

of CA benefit from existing MSA or unsupervised resources?

2 Is it feasible to transfer knowledge from MSA-based taggers to tag

classical Arabic texts through combining heterogeneous POS taggers?

3 Does aligning and mapping different segmentation and labelling

schemas help ensemble taggers?

10.2.1 First Research Question

This thesis tries to answer these three questions, through novel scientific approaches.

For the first question:

• A new framework that runs a comprehensive list of MSA taggers is

introduced. The framework can install, run, and standardise the output of

these taggers. The framework covers almost all open access and

downloadable MSA taggers and analysers.

• Tested on some classical Arabic sentences and words, taggers performed

below their published accuracy. Taggers differ, however, on their

performance on classical Arabic and were shown to make different errors,

which motivated us to combine these resources.

• An experimental study on mapping one tagger’s tagset to a classical Arabic

tagset shows that mapping is mostly n-to-n, and the underlying linguistic

theories are different, which is illustrated on the case of tagging adjectives.

• An experimental study shows that classical Arabic texts can greatly benefit

from the availability of large resources of diacritised classical texts. Word

ambiguity was reduced greatly by borrowing diacritics from similar contexts.

MSA taggers do not fully exploit this opportunity, and some completely drop

these diacritics.

10.2.2 Second Research Question
For the second question, this thesis introduced a systematic way for adapting

heterogeneous taggers by combining and exploiting them to perform well on a new

domain.

There are many low-resourced languages that share many aspects with some

high-resources languages, and developing new corpora without exploiting existing

recourses is wasteful. However, direct usage of these resources is not practical as

 - 243 -

they face the problem of heterogeneity. We illustrate this heterogeneity on classical

Arabic texts.

• Three robust systematic ways for reusing existing taggers to a new domain

with heterogeneous annotation style are introduced: morpheme-aligned

ensemble using labelling information, character-aligned ensemble using

form information, and joint end-to-end ensemble using deep learning and

neural networks.

• The thesis presented the SAWAREF ensemble tagger. It is the first

heterogenous ensemble tagger for Arabic that can be used with unseen texts

and adapt to any arbitrary annotation style. The tagger was able to tag 90.2%

of the words with their POS tag correctly. Although this accuracy is not

directly comparable to other approaches due to different forms of data,

language and annotation, it is higher than any adapted-form of participating

taggers.

• A new one-thousand-word corpus that is tagged and aligned by different

heterogeneous taggers is introduced. It can be used for evaluating and

aligning the output of four taggers. This dataset can serve as well to induce

mapping between taggers. The dataset is shown conveniently in tabular

format and is the first of its kind in Arabic.

• The Quranic Arabic corpus has been adapted to serve a broader use of

classical Arabic. We modified the orthography and morphological

representation and introduced a newer version of the corpus to make the

corpus more usable in the sense of machine learning.

• Since the thesis targeted general classical Arabic, a different genre of

classical Arabic texts other than Quranic texts is needed. We presented the

Sunnah Arabic Corpus, an annotated linguistic resource that consists of

144K words of the Hadith narratives (an utterance attributed to prophet

Mohammed) extracted from Riyāḍu Aṣṣāliḥīn book (aka The Meadows of

the Righteous), a compilation of 1896 hadith narratives written by Al-

Nawawi and compiled on 1334. Because the morphological annotation

conforms to traditional Arabic grammar, this resource should be helpful to

Arabic students. The book has been studied extensively in the literature and

translated into several languages, and the corpus (and its website) presents a

 - 244 -

framework that combines all these studies coupled with the morphological

analysis of the Arabic hadith.

10.2.3 Third Research Question

For the third question, we present three models of combining heterogeneous

taggers. The presented models use different intrinsic ways of handling

heterogeneity.

• Although some work in the literature (Hughes, Souter and Atwell, 1995;

Alabbas and Ramsay, 2012b) suggested combining existing taggers using

mapping rules, the mapping strategy requires a considerable linguistic

background and is prone to errors. An experimental study of mapping one

tagset to another performed by two students in computational linguistics

confirmed that the inter-agreement of the mapping is very low.

• The study also shows that mapping tagsets with different underlying theories

is not effective. However, mapping morphological features to one standard

representation is shown effective in ensembles. These morphological

features are sometimes extracted from complex tagsets.

• A new web-based tool for helping linguists map one tagset to another is

introduced. The tool is designed to learn possible mappings by running

taggers on a corpus.

• Another web-based tool is created to develop our Parallel Aligned Corpus,

which allows users to align the outputs of different taggers at the morpheme

level.

• We presented different ways of aligning morphemes of input taggers.

Alignment using mapping rules extracted from aligned corpus performed the

best: 96.75%, then manually crafted mappings 92.62%. However, errors

propagated from this alignment hurt the ensemble tagger, especially when

aligning multiple taggers. The best ensemble tagger using these methods is

88.09% accurate.

• The form-based method used a novel approach for aligning taggers using

their form. The ensemble tagger that used this approach performed slightly

better: 88.73%.

• This thesis introduced an end-to-end method that does not require any prior

alignment or mapping. It not only has the freedom from manual feature

 - 245 -

engineering, the end-to-end model is superior to other models in almost all

classes.

10.3 Challenges And Limitations
This section discusses the main obstacles during the research. We were able

to handle some of these obstacles and some remain limitations of the study and need

rethinking of different approaches. One of the main challenges of this study is the

limited ability to download, run, and standarise different tools. Many of the tools are

designed in research labs and not designed as an end-user product. They are usually

not documented at all or the documentation falls short in many aspects. Some tools

require specific environments and libraries to run, and figuring out how to install

these tools and its input-shape expectancy is often time-consuming. In addition,

standardizing these valuable tools requires a thorough understanding of the tool

outputs, and with the lack of documents that describe its tagset, it become very

challenging.

Although we were determined to combine not only deterministic taggers but

also morphological analysers, we needed to focus on deterministic taggers because

of time limits. The path for combining morphological analysers should be much

easier now as this project has already shown how to run, map, and standardise

several analysers. The alignment part of the combination is left for future work.

Another challenge was the availability of classical Arabic corpus texts. The

only corpus that is large enough and reasonably documented is the Quranic Arabic

corpus at the time of the research. However, the Quranic text does not constitute a

valid corpus for our final goal of annotating a collection of the Hadith narratives,

because of different text, orthography, and distribution. In addition, in contrast to

other annotation projects, we did not have funds for annotating the Sunnah Arabic

Corpus, which required us to develop it in our spare time.

Although there are many annotation projects in Arabic, the annotation tools

used are generally not accessible or not available unfortunately. The development of

the open-source Wasim tool is a necessity for efficient and consistent annotation of

the Sunnah Arabic corpus. Although this development was time and effort

consuming, we hope that it will speed up and help other annotation projects around

the world, especially projects in inflectional languages. We aim to use it extensively

in other projects in the future.

 - 246 -

 In contrast, we encounter different challenges during the research which we

have not addressed. As mentioned before, the alignment between taggers assumes

that they are deterministic and only one label is given per morpheme. However, this

makes many taggers unusable as there are many taggers (i.e. morphological

analysers) that are not deterministic and produces multiple analysis per morpheme.

Another challenge that we faced throughout the thesis is the absence of

benchmark dataset. Beside the known split of the Arabic Treebank (PATB), we have

not found any other data split that we can compare our results with, especially

classical texts. The Arabic Treebank split even requires adhering to its labelling

schema. The Arabic Treebank is not freely available and requires a membership of

the Linguistic Data Consortium. Because of this absence, we implemented several

approaches and compared them against each other. We are publishing our data split

and code and hope it will be considered as a benchmark for classical Arabic.

10.4 Future Work
Many different adaptations, configurations, tests, and experiments are left for

future work, and it is mainly because of lack of time. Experiments with

larger/different datasets, and/or different configurations are usually very time and

computational power consuming. We look forward to continuing exploring two

topics in particular in addition to extending the annotation of the Sunnah Arabic

Corpus and its website development.

The Sunnah Arabic Corpus is developed in this thesis in response to the lack

of other annotated corpora beside the Quran. The Sunnah, being the second source

of Islamic law and morals, is an under-resourced valuable text. We aim to continue

the annotation of the Riyadh Asslaheen and include other books. Now that we have

an annotation tool that is efficient in time and accuracy, we aim to access some

funds to annotate the remaining parts of the corpus. We hope as well to syntactically

annotate the corpus using available resources. In addition, the current website for

SAC does not make the most of the resource for the end-users. We aim to enrich it

with translations of the Hadith and utilise and group many scattered resources in an

intuitive user interface.

In addition, the current ensemble approaches do not make use of

morphological analysers. As shown before, the best analysers do not only rely on

statistical methods of information extraction of training corpora, but they have

 - 247 -

access to external resources such as lexicon and morphological databases. Since the

number of classical Arabic resources are growing (e.g. Hadith Science Lexicon

(Najeeb et al., 2015) and Heritage corpus (Mohamed, 2018)) and our paradigm is to

reuse and exploit available resources, we plan to incorporate them in our neural

network architecture. Instead of only incorporating a single morphological analyser,

we plan to continue our deferred work of combining multiple heterogeneous

morphological analysers and use the ensemble instead. This work is halfway

completed, and we have now experience of merging and aligning heterogeneous

labels.

One important improvement is experimenting to exploit existing

heterogenous annotated corpora, instead of exploiting heterogenous POS taggers,

especially since we have a number of recently introduced classical Arabic annotated

corpora. The two problems look similar but there are some critical differences. The

adaptation of ensemble POS taggers is dependent on the quality of the POS taggers

on the samples of the training dataset; however, annotated corpora are verified and

assumed to have correct annotations. Exploiting heterogeneous annotated corpora

can be converted to our problem: an ensemble of POS taggers, simply by training a

tagger on each corpus. However, to fully exploit the differences, the training of these

taggers can be done simultaneously and some information can be shared for the

benefit of all taggers. A similar approach (Qiu, Zhao and Huang, 2013) has been

done for Chinese which has some common features with Arabic. We have

experienced a less similar approach when combining the two problems:

segmentation and labelling in one network. Although they have different input and

output, they share information (by encoding the sequence and concatenating the two

encodings) that is useful for both tasks.

The ensemble methods are designed to be language neutral. We would like

to experiment how our ensemble may be applied to other domains/languages. For

example, we can make use of the AMALGAM project (Atwell et al., 2000) which

aggregated several existing rival taggers, and build an ensemble on top of these

taggers. The Chinese language has rival segmentation schemas and we might

compare our ensemble to related work on exploiting corpora-based heterogeneous

annotation style.

The end-to-end approach using deep learning is actually a hot topic in the

literature. It has been proven to be one of the most successful approaches in several

 - 248 -

classification problems. In this thesis, the two ends of the approach start from the

output of the input taggers, and conclude with the morphological analysis of one

word. As a future work, we plan to extend this process from both ends. Using

existing taggers that are tuned to some other domains is not optimal, so one possible

adaptation is to tune these taggers within the ensemble process, thus making the end-

to-end process start from the corpora itself. Another extension can be done to the

other end, i.e. syntactic parsing of the text. One study in the literature shows that

MSA and classical Arabic share similar syntax which can be exploited (Zhang et al.,

2015).

The current network architecture can be improved in several ways. The

stacking of LSTM hidden layers has been successfully applied in POS tagging (thus

earning the description as deep learning) (Goldberg, 2017). For example, we could

map a word from its embedding representation. But, with a deeper network, a word

can be represented more efficiently from its characters. Similarly, we would like to

experiment with a deeper representation of input taggers by exploring their outputs

in the different levels: character, morpheme, and word. Another way is to stack tasks

where the output of one task (e.g. POS tag) can happen in the different layers, not

only on the outermost layer. This approach has been reported in (Søgaard and

Goldberg, 2016) that it is worthwhile to make higher-level tasks make use of lower-

level representation, especially when a hierarchy between tasks exists. This might

also apply to our task with POS tagging and morphological feature prediction.

Diacritics in the input text is not fully exploited in our ensemble. In almost

all input taggers, these taggers are designed to ignore these marks (because they

contribute to increasing word sparsity). We plan to retune these input taggers so that

analyses are ranked based on the similarity in diacritics. In addition, the experiment

of diacritization of classical Arabic can be enhanced by exploiting larger diacritics

corpora, flexible fuzzy matching of words, and better representation of contexts.

 - 249 -

LIST OF REFERENCES
Abandah, G. A., Graves, A., Al-Shagoor, B., Arabiyat, A., Jamour, F. and Al-Taee,

M. (2015) ‘Automatic diacritization of Arabic text using recurrent neural networks’,

International Journal on Document Analysis and Recognition. Springer Berlin

Heidelberg, 18(2), pp. 183–197. doi: 10.1007/s10032-015-0242-2.

Abdel Ghafour, H. H., El-Bastawissy, A. and Heggazy, A. (2011) ‘AEDA: Arabic

edit distance algorithm - Towards a new approach for Arabic name matching’, in

Proceedings - ICCES’2011: 2011 International Conference on Computer

Engineering and Systems, pp. 307–311. doi: 10.1109/ICCES.2011.6141061.

Abdul-Mageed, M., Diab, M. T. and Kübler, S. (2013) ‘ASMA: A System for

Automatic Segmentation and Morpho-Syntactic Disambiguation of Modern

Standard Arabic.’, in Proceedings of the International Conference Recent Advances

in Natural Language Processing RANLP 2013, pp. 1–8.

Adda, G., Mariani, J., Lecomte, J., Paroubek, P. and Rajman., M. (1998) ‘The

GRACE French part-of-speech tagging evaluation task.’, in International

Conference on Language Resources and Evaluation, Granada, May., pp. 433–441.

Akbari, A. A. (1986) Grammatical Analysis of The Prohetic Hadith (Arabic). Edited

by A. Nabhan. Damascus: The Center of Arabic Langage.

Al-jundi, A. (2016) Towards an evalutation of POS taggers in view of Tamam’s

tagset. Available at: http://www.hamassa.com/2016/09/19/ -وحن-يبرعلا-ملكلا-ماسقأ-لیمحتلل

مییقت /.

Al-saqi, F. (1975) Arabic Part-of-Speech: Structure and Functionality (Arabic). Dar

Al Uloom.

Al-Sughaiyer, I. A. and Al-Kharashi, I. A. (2004) ‘Arabic morphological analysis

techniques: A comprehensive survey’, Journal of the American Society for

Information Science and Technology. Wiley Subscription Services, Inc., A Wiley

Company, 55(3), pp. 189–213. doi: 10.1002/asi.10368.

Al-Sulaiti, L. and Atwell, E. S. (2006) ‘The design of a corpus of contemporary

Arabic’, International Journal of Corpus Linguistics. John Benjamins Publishing

Company, 11(2), pp. 135–171.

Alabbas, M. A. S. (2013) Textual Entailment for Modern Standard Arabic, PhD

thesis. The University of Manchester, UK.

Alabbas, M. and Ramsay, A. (2012a) ‘Combining black-box taggers and parsers for

modern standard Arabic’, in Federated Conference on Computer Science and

 - 250 -

Information Systems (FedCSIS). Wroclaw, Poland, pp. 19–26.

Alabbas, M. and Ramsay, A. (2012b) ‘Improved POS-Tagging for Arabic by

Combining Diverse Taggers’, in 8th International Conference on Artificial

Intelligence Applications and Innovations (AIAI). Halkidiki, Greece: Springer

(Artificial Intelligence Applications and Innovations), pp. 107–116. doi:

10.1007/978-3-642-33409-2_12.

Alabbas, M. and Ramsay, A. (2014) ‘Combining strategies for tagging and parsing

Arabic’, in Proceedings of the EMNLP 2014 Workshop on Arabic NLP (ANLP).

Doha, Qatar: Association for Computational Linguistics, pp. 73–100.

Alashqar, A. M. (2012) ‘A comparative study on Arabic POS tagging using Quran

corpus’, in Informatics and Systems (INFOS). IEEE, pp. 29–33.

Albared, M. and Hazaa, M. A. S. (2015) ‘N-attributes stochastic classifier

combination for Arabic morphological disambiguation’, Saba Journal Of

information Technology And Networking (SJITN)-ISSN: 2312-4989, 3(1).

Albared, M., Omar, N. and Ab Aziz, M. J. (2009) ‘Arabic part of speech

disambiguation: A survey’, International Review on Computers and Software, 4(5),

pp. 517–532.

Albogamy, F. and Ramsay, A. (2016) ‘Fast and Robust POS tagger for Arabic

Tweets Using Agreement-based Bootstrapping’, in LREC: Proceedings of the

International Conference on Language Resources and Evaluation. Portorož,

Slovenia, pp. 1500–1506.

Alfahal, M. Y. (2007) Riyad-us-Saliheen with commentary on Ahadith (Arabic). Dar

Ibn Katheer, Damascus, Syria.

Algahtani, S. and McNaught, J. (2015) ‘Joint Arabic Segmentation and Part-Of-

Speech Tagging’, in Second Workshop on Arabic Natural Language Processing, p.

108.

Aliwy, A. H. (2013) Arabic Morphosyntactic Raw Text Part of Speech Tagging

System, PhD thesis. University of Warsaw.

Aliwy, A. H. (2015) ‘Combining Pos Taggers in Master-Slaves Technique for

Highly Inflected Languages As Arabic’, in 2015 International Conference on

Cognitive Computing and Information Processing(CCIP), pp. 1–5. doi:

10.1109/CCIP.2015.7100682.

Alkhazi, I. S. and Teahan, W. J. (2017) ‘Classifying and Segmenting Classical and

Modern Standard Arabic using Minimum Cross-Entropy’, IJACSA) International

 - 251 -

Journal of Advanced Computer Science and Applications, 8(4), pp. 421–430. doi:

10.14569/IJACSA.2017.080456.

Almeman, K. A. (2015) Reducing Out-of-Vocabulary in Morphology to Improve the

Accuracy in Arabic Dialects Speech Recognition, PhD Thesis. University of

Birmingham.

AlOmari, O. (2005) The Grammatical Analysis Of The Nawawi Forty Book

(Arabic). Onizah.

Alosaimy, A. and Atwell, E. (2016) ‘Ensemble Morphosyntactic Analyser for

Classical Arabic’, in Second International Conference on Arabic Computational

Linguistics. Konya, Turkey.

Alosaimy, A. and Atwell, E. (2017) ‘Sunnah Arabic Corpus: Design and

Methodology’, in Proceedings of the 5th International Conference on Islamic

Applications in Computer Science and Technologies. Semarang, Indonesia.

Alosaimy, A. and Atwell, E. (2018) ‘Diacritization of a Highly Cited Text: A

Classical Arabic Book as a Case’, in 2nd IEEE International Workshop on Arabic

and derived Script Analysis and Recognition (ASAR 2018). London, UK.

Alrabiah, M. (2014) Building A Distributional Semantic Model for Traditional

Arabic & Investigating its Novel Applications to The Holy Quran, PhD thesis. King

Saud University.

Alrabiah, M., Al-Salman, A., Atwell, E. S. and Alhelewh, N. (2014) ‘KSUCCA: a

key to exploring Arabic historical linguistics’, International Journal of

Computational Linguistics (IJCL). CSC Journals, 5(2), pp. 27–36.

Altabbaa, M., Al-zaraee, A. and Shukairy, M. (2010) An Arabic Morphological

Analyzer and Part-Of-Speech Tagger, M.S. thesis. Arab International University,

Damascus, Syria.

An-Nawawi, Y. I.-Š. (1976) ‘An-Nawawi’s Forty Hadith: Matn Al-arbaʿin An-

nawawiya’. Holy Koran Publishing House.

Attia, M. (2006) ‘An Ambiguity-Controlled Morphological Analyzer for Modern

Standard Arabic Modelling Finite State Networks’, in The Challenge of Arabic for

NLP/MT Conference. London: The British Computer Society.

Attia, M., Pecina, P. and Toral, A. (2011) ‘An open-source finite state

morphological transducer for modern standard Arabic’, in Proceedings of the 9th

International Workshop on Finite State Methods and NLP, pp. 125–133.

Attia, M., Rashwan, M. and Al-Badrashiny, M. (2009) ‘Fassieh®, a Semi-Automatic

 - 252 -

Visual Interactive Tool for Morphological, PoS-Tags, Phonetic, and Semantic

Annotation of Arabic Text Corpora’, IEEE Transactions on Audio, Speech and

Language Processing, 17(5), pp. 916–925. doi: 10.1109/TASL.2009.2019298.

Atwell, E. (2008) ‘Development of tag sets for part-of-speech tagging’, Corpus

Linguistics: An International Handbook, Volume 1. Berlin, Germany: Walter de

Gruyter, pp. 501–526.

Atwell, E., Al-Sulaiti, L., Al-osaimi, S. and Shawar, B. A. (2004) ‘A Review of

Arabic Corpus Analysis Tools’, in Proceedings of JEP-TALN Arabic language

processing. Fez, Morocco, pp. 229–234.

Atwell, E., Demetriou, G., Hughes, J., Schiffrin, A., Souter, C. and Wilcock, S.

(2000) ‘A Comparative Evaluation of Modern English Corpus Grammatical

Annotation Schemes’, ICAME Journal: International Computer Archive of Modern

and Medieval English Journal, (24), pp. 7–23.

Atwell, E., Hughes, J. and Souter, C. (1994) ‘AMALGAM: Automatic Mapping

Among Lexico-Grammatical Annotation Models’, in Proceedings of ACL workshop

on The Balancing Act: Combining Symbolic and Statistical Approaches to

Language, pp. 11–20.

Azmi, A. M. and Almajed, R. S. (2015) ‘A survey of automatic Arabic diacritization

techniques’, Natural Language Engineering, 21(03), pp. 477–495. doi:

10.1017/S1351324913000284.

Banko, M. and Brill, E. (2001) ‘Scaling to Very Very Large Corpora for Natural

Language Disambiguation’, in Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics, pp. 26–33. doi:

10.3115/1073012.1073017.

Beesley, K. R. (1998) ‘Arabic Morphology Using Only Finite-State Operations’, in

Proceedings of the Workshop on Computational Approaches to Semitic languages,

pp. 50–57. doi: 10.3115/1621753.1621763.

Belinkov, Y., Magidow, A., Romanov, M., Shmidman, A. and Koppel, M. (2016)

‘Shamela: A Large-Scale Historical Arabic Corpus’, in LT4DH: Language

Technology Resources and Tools for Digital Humanities workshop.

Benajiba, Y. and Zitouni, I. (2010) ‘Arabic Word Segmentation for Better Unit of

Analysis’, in LREC: Proceedings of the International Conference on Language

Resources and Evaluation. Valletta, Malta, pp. 1346–1352.

Bin-Muqbil, M. S. (2006) Phonetic And Phonological Aspects Of Arabic Emphatics

 - 253 -

And Gutturals, PhD thesis. University Of Wisconsin-madison.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2017) ‘Enriching Word

Vectors with Subword Information’, Transactions of the Association for

Computational Linguistics, 5(1), pp. 135–146. doi: 1511.09249v1.

Bollmann, M., Petran, F., Dipper, S. and Krasselt, J. (2014) ‘CorA: A web-based

annotation tool for historical and other non-standard language data’, in Proceedings

of the 8th Workshop on Language Technology for Cultural Heritage, Social

Sciences, and Humanities (LaTeCH). Gothenburg, Sweden, pp. 86–90.

Bouamor, H., Habash, N., Salameh, M., Zaghouani, W., Rambow, O., Abdulrahim,

D., Obeid, O., Khalifa, S., Eryani, F., Erdmann, A. and Oflazer, K. (2018) ‘The

MADAR Arabic Dialect Corpus and Lexicon’, in LREC: Proceedings of the

International Conference on Language Resources and Evaluation. Miyazaki, Japan,

pp. 3387–3396.

Boudchiche, M., Mazroui, A., Bebah, M., Lakhouaja, A. and Boudlal, A. (2016)

‘AlKhalil Morpho Sys 2: A robust Arabic morpho-syntactic analyzer’, Journal of

King Saud University-Computer and Information Sciences. Elsevier.

Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A., Bebah, M. and Shoul, M.

(2010) ‘Alkhalil morpho sys1: A morphosyntactic analysis system for arabic texts’,

in International Arab Conference on Information Technology.

Brants, T. (1995) ‘Tagset Reduction Without Information Loss’, in 33rd Annual

Meeting of the Association for Computational Linguistics. Cambridge, MA, USA,

pp. 287–289.

Breiman, L. (2001) ‘Random Forests’, Machine Learning, 45(1), pp. 5–32.

Brierley, C., Sawalha, M. and Atwell, E. (2012) ‘Open-Source Boundary-Annotated

Corpus for Arabic Speech and Language Processing’, in LREC: Proceedings of the

International Conference on Language Resources and Evaluation. Istanbul, Turkey,

pp. 1011–1016.

Buckwalter, T. (2002a) ‘Arabic Morphological Analyzer (AraMorph) version 1.2’.

Buckwalter, T. (2002b) ‘Buckwalter Arabic Morphological Analyzer Version 1.0’.

Carletta, J. (1996) ‘Assessing agreement on classification tasks: the kappa statistic’,

Computational Linguistics, 22(2), pp. 249–254. doi: 10.1.1.48.4108.

Chen, D. and Manning, C. (2014) ‘A Fast and Accurate Dependency Parser using

Neural Networks’, in Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). Doha, Qatar, pp. 740–750. doi:

 - 254 -

10.3115/v1/D14-1082.

Chen, H., Zhang, Y. and Liu, Q. (2016) ‘Neural Network for Heterogeneous

Annotations’, Emnlp 2016, pp. 731–741.

Chen, X., Shi, Z., Qiu, X. and Huang, X. (2017) ‘Adversarial Multi-Criteria

Learning for Chinese Word Segmentation’, in Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Vancouver, Canada: Association for Computational Linguistics, pp. 1193–1203. doi:

10.18653/v1/P17-1110.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H. and Bengio, Y. (2014) ‘Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation’, in Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP).

Doha, Qatar, pp. 1724–1734. doi: 10.3115/v1/D14-1179.

Clark, A. (2007) ‘Supervised and Unsupervised Learning of Arabic Morphology’, in

Soudi, A., Bosch, A. van den, and Neumann, G. (eds) Arabic Computational

Morphology. Dordrecht: Springer Netherlands, pp. 181–200. doi: 10.1007/978-1-

4020-6046-5_10.

Clive Holes, R. A. (2004) Modern Arabic: Structures, Functions, and Varieties.

Revised Ed. Georgetown University Press (Georgetown Classics in Arabic

Languages and Linguistics series).

Cohen, J. (1960) ‘A coefficient of agreement for nominal scales’, Educational and

psychological measurement. Sage Publications Sage CA: Thousand Oaks, CA,

20(1), pp. 37–46.

Cohen, W., Ravikumar, P. and Fienberg, S. (2003) ‘A Comparison of String

Distance Metrics for Name-Matching Tasks’, Proceedings of IJCAI-03 Workshop on

Information Integration on the Web, pp. 73–78. doi: 10.1002/spe.4380120106.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L. and Jégou, H. (2018) ‘Word

Translation Without Parallel Data’, in International Conference on Learning

Representations, pp. 1–14.

Damerau, F. (1964) ‘A technique for computer detection and correction of spelling

errors’, Communications of the ACM, pp. 171–176.

Darwish, K. and Abdelali, A. (2017) ‘Arabic POS Tagging : Don’t Abandon Feature

Engineering Just Yet’, in Third Workshop on Arabic Natural Language Processing

(WANLP 2017). Valencia, Spain, pp. 130–137.

 - 255 -

Darwish, K., Abdelali, A. and Mubarak, H. (2014) ‘Using Stem-Templates to

improve Arabic POS and Gender/Number Tagging’, in LREC: Proceedings of the

International Conference on Language Resources and Evaluation. Reykjavik,

Iceland, pp. 2926–2931.

Darwish, K. and Mubarak, H. (2016) ‘Farasa: A New Fast and Accurate Arabic

Word Segmenter’, in LREC: Proceedings of the International Conference on

Language Resources and Evaluation. Portorož, Slovenia, pp. 1070–1074.

Darwish, K., Mubarak, H. and Abdelali, A. (2017) ‘Arabic Diacritization: Stats,

Rules, and Hacks’, in Proceedings of The Third Arabic Natural Language

Processing Workshop, pp. 9–17.

Debili, F. and Achour, H. (1998) ‘Voyellation automatique de l’arabe’, in

Proceedings of the Workshop on Computational Approaches to Semitic Languages.

Montreal, Canada, pp. 42–49.

Diab, M. (2009) ‘Second generation AMIRA tools for Arabic processing: Fast and

robust tokenization, POS tagging, and base phrase chunking’, in Conference on

Arabic Language Resources and Tools. Cairo, Egypt, pp. 285–288.

Diab, M., Habash, N., Rambow, O. and Roth, R. (2013) LDC Arabic Treebanks and

Associated Corpora: Data Divisions Manual.

Diab, M., Hacioglu, K. and Jurafsky, D. (2004) ‘Automatic Tagging of Arabic Text:

From Raw Text to Base Phrase Chunks’, in HLT-NAACL 2004: Short Papers.

Boston, USA, pp. 149–152.

Diab, M. T. (2007) ‘Improved Arabic base phrase chunking with a new enriched

POS tag set’, in Proceedings of the 2007 Workshop on Computational Approaches

to Semitic Languages Common Issues and Resources - Semitic ’07. Prague, Czech

Republic, p. 89. doi: 10.3115/1654576.1654592.

Dienes, P. and Oravecz, C. (2000) ‘Bottom–up tagset design from maximally

reduced tagset’, in Proceedings of the COLING-2000 Workshop on Linguistically

Interpreted Corpora. Centre Universitaire, Luxembourg, pp. 42–47.

Dimitrova, L., Ide, N., Petkevič, V., Erjavec, T., Kaalep, H. J. and Tufis, D. (1998)

‘Multext-East: Parallel and Comparable Corpora and Lexicons for Six Central and

Eastern European Languages’, in The 17th International Conference on

Computational Linguistics. Montreal, Canada, pp. 315–319. doi:

10.3115/980845.980897.

Dmitriev, K. (2016) Open Arabic Project, GitHub repository. GitHub. Available at:

 - 256 -

https://github.com/OpenArabic/Annotation.

Dukes, K., Atwell, E. and Habash, N. (2013) ‘Supervised collaboration for syntactic

annotation of Quranic Arabic’, Language Resources and Evaluation, pp. 33–62. doi:

10.1007/s10579-011-9167-7.

Dukes, K. and Habash, N. (2010) ‘Morphological Annotation of Quranic Arabic’, in

LREC: Proceedings of the International Conference on Language Resources and

Evaluation. Valletta, Malta.

Dyer, C., Chahuneau, V. and Smith, N. A. (2013) ‘A Simple, Fast, and Effective

Reparameterization of IBM Model 2’, in Proceedings of the 2013 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Atlanta, Georgia, pp. 644–648.

El-haj, M. and Koulali, R. (2013) ‘KALIMAT a Multipurpose Arabic Corpus’, in

Second Workshop on Arabic Corpus Linguistics (WACL-2). Lancaster, UK, pp. 22–

25.

El-Imam, Y. A. (2004) ‘Phonetization of Arabic: rules and algorithms’, Computer

Speech & Language, 18(4), pp. 339–373. doi: https://doi.org/10.1016/S0885-

2308(03)00035-4.

Elhadj, Y. (2009) ‘Statistical Part-of-Speech Tagger for Traditional Arabic Texts’,

Journal of Computer Science, 5(11), pp. 794–800. doi: 10.3844/jcssp.2009.794.800.

Elhadj, Y., Abdelali, A. and Ammar, A. (2014) ‘Revisiting Arabic Part of Speech

Tagsets’, in IEEE/ACS 11th International Conference on Computer Systems and

Applications (AICCSA), pp. 793–802.

Elhadj, Y., Al-Sughaiyer, I. A., Khorsi, A. and Alansari, A. (2010) ‘The

Morphological Analysis of the Holy Qur’an: A Database of the Entire Quranic Text

(Arabic)’, International Journal of Computer Science and Engineering in Arabic,

3(1).

Elming, J. and Habash, N. (2007) ‘Combination of Statistical Word Alignments

Based on Multiple Preprocessing Schemes’, in Human Language Technologies

2007: The Conference of the North American Chapter of the Association for

Computational Linguistics; Companion Volume, Short Papers. Rochester, New

York, pp. 25–28. doi: 10.3115/1614108.1614115.

Freeman, A. (2001) ‘Brill’s POS tagger and a Morphology parser for Arabic’, ACL

2001 Workshop on Data-Driven Machine Translation, p. 7.

Freeman, A., Condon, S. and Ackerman, C. (2006) ‘Cross Linguistic Name

 - 257 -

Matching in English and Arabic’, in Proceedings of the Human Language

Technology Conference of the NAACL, Main Conference. New York City, US, pp.

471–478. doi: 10.3115/1220835.1220895.

Gahbiche-Braham, S., Bonneau-Maynard, H., Lavergne, T. and Yvon, F. (2012)

‘Joint Segmentation and POS Tagging for Arabic Using a CRF-based Classifier’, in

LREC: Proceedings of the International Conference on Language Resources and

Evaluation. Istanbul, Turkey, pp. 2107–2113.

Gerdes, K. (2013) ‘Collaborative Dependency Annotation.’, in Proceedings of the

Second International Conference on Dependency Linguistics (DepLing 2013).

Prague, Czech Republic, pp. 88–97.

Giesbrecht, E. and Evert, S. (2009) ‘Is Part-of-Speech Tagging a Solved Task? An

Evaluation of POS Taggers for the German Web as Corpus’, in Web as Corpus

Workshop WAC5. San Sebastian, Spain, pp. 27–35.

Goldberg, Y. (2017) Neural Network Methods for Natural Language Processing,

Synthesis Lectures on Human Language Technologies. Morgan & Claypool

Publishers.

Gomaa, W. and Fahmy, A. (2013) ‘A survey of text similarity approaches’,

International Journal of Computer Applications, 68(13), pp. 13–18.

Graves, A. (2012) Supervised Sequence Labelling with Recurrent Neural Networks,

Image Rochester NY. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-

24797-2.

Habash, N. (2007) ‘Arabic Morphological Representations for Machine

Translation’, in Arabic Computational Morphology. Springer, Dordrecht (Text,

Speech and Language Technology), pp. 263–285. doi: 10.1007/978-1-4020-6046-

5_14.

Habash, N. (2010) Introduction to Arabic Natural Language Processing, Synthesis

Lectures on Human Language Technologies. doi:

10.2200/S00277ED1V01Y201008HLT010.

Habash, N., Diab, M. and Rambow, O. (2012) ‘Conventional Orthography for

Dialectal Arabic’, in LREC: Proceedings of the International Conference on

Language Resources and Evaluation. Istanbul, Turkey, pp. 711–718.

Habash, N., Rambow, O. and Roth, R. (2009) ‘MADA+TOKAN: A Toolkit for

Arabic Tokenization, Diacritization, Morphological Disambiguation, POS Tagging,

Stemming and Lemmatization’, in Proceedings of the Second International

 - 258 -

Conference on Arabic Language Resources and Tools. Cairo, Egypt, pp. 102–109.

Habash, N. and Roth, R. M. (2009) ‘CATiB: the Columbia Arabic Treebank’, in

Proceedings of the ACL-IJCNLP 2009 Conference Short Papers. Suntec, Singapore,

pp. 221–224.

Habash, N. and Sadat, F. (2006) ‘Arabic Preprocessing Schemes for

StatisticalMachine Translation’, in Proceedings of the Human Language Technology

Conference of the NAACL, Companion Volume: Short Papers. New York City, US.

Habash, N., Shahrour, A. and Al-Khalil, M. (2016) ‘Exploiting Arabic Diacritization

for High Quality Automatic Annotation’, in LREC: Proceedings of the International

Conference on Language Resources and Evaluation. Portoroz, Slovenia, pp. 4298–

4304.

Hajic, J., Smrz, O., Zemánek, P., Šnaidauf, J. and others (2004) ‘Prague Arabic

dependency treebank: Development in data and tools’, Intern. Conf. on Arabic ….

ufal.mff.cuni.cz.

Halteren, H. Van, Zavrel, J. and Daelemans, W. (2001) ‘Improving Accuracy in

Word Class Tagging through the Combination of Machine Learning Systems’,

Computational Linguistics, 27(2), pp. 199–229. doi: 10.1162/089120101750300508.

Hassan, T. (1994) Arabic language its sense and structure (Arabic). Casablanca:

Dar Ath-Thaqafa.

Heintz, I. (2014) ‘Language Modeling’, in Zitouni, I. (ed.) Natural Language

Processing of Semitic Languages. Springer, pp. 161–196. doi: 10.1007/978-3-642-

45358-8.

Henrich, V., Reuter, T. and Loftsson, H. (2009) ‘CombiTagger: A System for

Developing Combined Taggers’, in Proceedings of the Twenty-Second International

Florida Artificial Intelligence Research Society Conference. Sanibel Island, USA:

AAAI Press, pp. 254–259.

Hermena, E., Drieghe, D., Hellmuth, S. and Liversedge, S. P. (2015) ‘Processing of

Arabic Diacritical Marks: Phonological-Syntactic Disambiguation of Homographic

Verbs and Visual Crowding Effects’, Journal of Experimental Psychology: Human

Perception and Performance, pp. 494–507.

Hifny, Y. (2012) ‘Higher Order n-gram Language Models for Arabic Diacritics

Restoration’, in Proceedings of the Twelfth Conference on Language Engineering

(ESOLEC’12). Cairo, Egypt, pp. 1–5.

Hochreiter, S. and Urgen Schmidhuber, J. (1997) ‘Long Short-Term Memory’,

 - 259 -

Neural Computation, 9(8), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Hughes, J., Souter, C. and Atwell, E. (1995) ‘Automatic Extraction of Tagset

Mappings from Parallel-Annotated Corpora’, in Proceedings of the ACL-SIGDAT

Workshop From Text to Tags: Issues in Multilingual Language Analysis. Dublin,

Ireland, pp. 10–17.

Hulden, M. (2009) ‘Foma: a Finite-State Compiler and Library’, in Proceedings of

the Demonstrations Session at EACL 2009. Athens, Greece, pp. 29–32.

Hulden, M. and Samih, Y. (2012) ‘Conversion of Procedural Morphologies to

Finite-State Morphologies: a Case Study of Arabic’, in Proceedings of the 10th

International Workshop on Finite State Methods and Natural Language Processing.

San Sebastián, Spain: Association for Computational Linguistics, pp. 70–74.

Indurkhya, N. and Damerau, F. (2010) Handbook of Natural Language Processing.

2nd Editio, Antimicrobial agents and chemotherapy. 2nd Editio. Chapman and

Hall/CRC.

Inoue, G., Shindo, H. and Matsumoto, Y. (2017) ‘Joint Prediction of

Morphosyntactic Categories for Fine-Grained Arabic Part-of-Speech Tagging

Exploiting Tag Dictionary Information’, in Proceedings of the 21st Conference on

Computational Natural Language Learning (CoNLL 2017). Vancouver, Canada:

Association for Computational Linguistics, pp. 421–431.

Jiang, W., Huang, L. and Liu, Q. (2009) ‘Automatic adaptation of annotation

standards: Chinese word segmentation and POS tagging’, in Proceedings of the

Joint Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP. Suntec,

Singapore, pp. 522–530. doi: 10.3115/1687878.1687952.

Jurafsky, D. and Martin, J. H. (2008) Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition. Second Edi. doi: 10.1162/089120100750105975.

Khoja, S. (2001) ‘APT: Arabic part-of-speech tagger’, in Proceedings of the Student

Workshop at NAACL. Pittsburgh, PA, USA, pp. 20–25.

Kim, Y.-B., Snyder, B. and Sarikaya, R. (2015) ‘Part-of-speech Taggers for Low-

resource Languages using CCA Features’, in Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing. Lisbon, Portugal:

Association for Computational Linguistics, pp. 1292–1302.

Kingma, D. P. and Ba, J. (2014) ‘Adam: A Method for Stochastic Optimization’, in

 - 260 -

Proceedings of the 12th annual conference on Genetic and evolutionary

computation - GECCO ’10. New York, New York, USA: ACM Press, p. 103. doi:

10.1145/1830483.1830503.

Kiraz, G. A. (2001) Computational Nonlinear Morphology: with Emphasis on

Semitic Languages. Cambridge University Press.

Kobyliński, L. (2014) ‘PoliTa: a Multitagger for Polish’, in LREC: Proceedings of

the International Conference on Language Resources and Evaluation. Reykjavik,

Iceland, pp. 2949–2954.

Kübler, S. and Mohamed, E. (2012) ‘Part of speech tagging for Arabic’, Natural

Language Engineering. Cambridge Univ Press, 18(04), pp. 521–548. doi:

10.1017/S1351324911000325.

Kübler, S. and Zinsmeister, H. (2015) Corpus linguistics and linguistically

annotated corpora. Bloomsbury Publishing.

Kudo, T. and Matsumoto, Y. (2001) ‘Chunking with support vector machines’, in

Proceedings of the Second Meeting of the North American Chapter of the

Association for Computational Linguistics. Pittsburgh, Pennsylvania. doi:

http://dx.doi.org/10.3115/1073336.1073361.

Kulick, S., Gabbard, R. and Marcus, M. (2006) ‘Parsing the Arabic treebank:

Analysis and improvements’, in Proceedings of the 5th International Treebanks and

Linguistic Theories. Prague, Czech Republic, pp. 31–42.

Kuncheva, L. I. (2014) Combining Pattern Classifiers. Hoboken, NJ, USA: John

Wiley & Sons, Inc. doi: 10.1002/9781118914564.

Lee, Y.-S. (2004) ‘Morphological analysis for statistical machine translation’, in

Proceedings of HLT-NAACL 2004: Short Papers. Boston, Massachusetts, pp. 57–60.

doi: 10.3115/1613984.1613999.

Lee, Y., Papineni, K. and Roukos, S. (2003) ‘Language model based Arabic word

segmentation’, in Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics. Sapporo, Japan, pp. 399–406. doi:

10.3115/1075096.1075147.

Leech, G. and Wilson, A. (1996) ‘Eagles Recommendations for the Morphosyntactic

Annotation of Corpora, EAG-TCWG-MAC/R’, in EAGLES Guidelines. Pisa:

Consiglio Nazionale delle Ricerche. Istituto di Linguistica Computazionale.

Levenshtein, V. (1966) ‘Binary Codes Capable of Correcting Deletions, Insertions

and Reversals’, Soviet Physics Doklady, 10.

 - 261 -

Maamouri, M. and Bies, A. (2004) ‘Developing an Arabic Treebank: Methods,

Guidelines, Procedures, and Tools’, in Proceedings of the Workshop on

Computational Approaches to Arabic Script-based Languages. Geneva,

Switzerland, pp. 2–9.

Maamouri, M., Bies, A., Buckwalter, T., Jin, H. and Mekki, W. (2005) Arabic

Treebank: Part 3 (full corpus) v 2.0 (MPG + Syntactic Analysis) LDC2005T20.

Available at: https://catalog.ldc.upenn.edu/LDC2005T20.

Maegaard, B. (2004) ‘NEMLAR-An Arabic Language Resources Project’, in LREC:

Proceedings of the International Conference on Language Resources and

Evaluation. Lisbon, Portugal, pp. 109–112.

Malmasi, S. and Dras, M. (2018) ‘Native Language Identification With Classifier

Stacking and Ensembles’, Computational Linguistics, 44(3), pp. 403–446. doi:

10.1162/coli_a_00323.

Mandhour, I. (1994) Lisan Al-Arab (Arabs Tongue Dictinary,Arabic). Third Edit.

Turath For Solutions.

Marquez, L., Rodriguez, H., Carmona, J. and Montolio, J. (1999) ‘Improving POS

Tagging Using Machine-Learning Techniques’, in Joint SIGDAT Conference on

Empirical Methods in Natural Language Processing and Very Large Corpora.

College Park, USA, pp. 53–62.

Marton, Y., Habash, N. and Rambow, O. (2010) ‘Improving Arabic Dependency

Parsing with Lexical and Inflectional Morphological Features’, in Proceedings of

the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-

Rich Languages. Los Angeles, CA, USA, pp. 13–21.

Marton, Y., Habash, N. and Rambow, O. (2013) ‘Dependency Parsing of Modern

Standard Arabic with Lexical and Inflectional Features’, Computational Linguistics,

39(1), pp. 161–194. doi: 10.1162/COLI_a_00138.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013) ‘Distributed

Representations of Words and Phrases and their Compositionality’, in Advances in

Neural Information Processing Systems 26 (NIPS 2013). Lake Tahoe, USA, pp. 1–9.

Mohamed, E. (2012) ‘Morphological Segmentation and Part of Speech Tagging for

Religious Arabic’, in Fourth Workshop on Computational Approaches to Arabic

Script-based Languages (CAASL4). San Diego, USA, pp. 65–71.

Mohamed, E. (2018) ‘Morphological Segmentation and Part-of-Speech Tagging for

the Arabic Heritage’, ACM Transactions on Asian and Low-Resource Language

 - 262 -

Information Processing. New York, NY, USA: ACM, 17(3), pp. 1–13. doi:

10.1145/3178459.

Mohamed, E., Kübler, S., Sandra, K. and Hall, M. (2010) ‘Is Arabic Part of Speech

Tagging Feasible Without Word Segmentation?’, in Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics. Los Angeles, California, pp. 705–708.

Monroe, W., Green, S. and Manning, C. D. (2014) ‘Word Segmentation of Informal

Arabic with Domain Adaptation’, in Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics. Baltimore, Maryland, pp. 206–211.

More, A., Etino˘ Glu, O. Ç., A˘ Grı Oltekin, Ç., Habash, N., Sagot, B., Seddah, D.,

Taji, D. and Tsarfaty, R. (2018) ‘CoNLL-UL: Universal Morphological Lattices for

Universal Dependency Parsing’, in LREC: Proceedings of the International

Conference on Language Resources and Evaluation. Miyazaki, Japan.

Mueller, T., Schmid, H. and Schütze, H. (2013) ‘Efficient Higher-Order CRFs for

Morphological Tagging’, in Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing. Seattle, Washington, USA: Association

for Computational Linguistics, pp. 322–332.

Najeeb, M., Abdelkader, A., Al-Zghoul, M. and Osman, A. (2015) ‘A Lexicon for

Hadith Science Based on a Corpus’, International Journal of Computer Science and

Information Technologies, 6(2), pp. 1336–1340.

Needleman, S. B. and Wunsch, C. D. (1970) ‘A General Method Applicable to the

Search for Similarities in the Amino Acid Sequence of Two Proteins’, Journal of

Molecular Biology, 48(3), pp. 443–453. doi: 10.1016/0022-2836(70)90057-4.

Nguyen, T. and Vogel, S. (2008) ‘Context-based Arabic morphological analysis for

machine translation’, in Proceedings of the Twelfth Conference on Computational

Natural Language Learning - CoNLL ’08. Morristown, NJ, USA: Association for

Computational Linguistics, pp. 135–142. doi: 10.3115/1596324.1596348.

Nivre, J., Agic, L. ˇZeljko, Agić, Ž., Ahrenberg, L., Aranzabe, M. J., Asahara, M.,

Atutxa, A., Ballesteros, M., Bauer, J., Bengoetxea, K., Bhat, R. A., Bick, E., Bosco,

C., Bouma, G., Bowman, S., Candito, M., Cebiroğlu Eryiğit, G., Celano, G. G. A.,

Chalub, F., Choi, J., Çöltekin, Ç., Connor, M., Davidson, E., de Marneffe, M.-C., de

Paiva, V., Diaz de Ilarraza, A., Dobrovoljc, K., Dozat, T., Droganova, K., Dwivedi,

P., Eli, M., Erjavec, T., Farkas, R., Foster, J., Freitas, C., Gajdošová, K., Galbraith,

D., Garcia, M., Ginter, F., Goenaga, I., Gojenola, K., Gökırmak, M., Goldberg, Y.,

 - 263 -

Gómez Guinovart, X., Gonzáles Saavedra, B., Grioni, M., Grūzītis, N., Guillaume,

B., Habash, N., Hajič, J., Hà Mỹ, L., Haug, D., Hladká, B., Hohle, P., Ion, R., Irimia,

E., Johannsen, A., Jørgensen, F., Kaşıkara, H., Kanayama, H., Kanerva, J., Kotsyba,

N., Krek, S., Laippala, V., Lê Hồng, P., Lenci, A., Ljubešić, N., Lyashevskaya, O.,

Lynn, T., Makazhanov, A., Manning, C., Mărănduc, C., Mareček, D., Martínez

Alonso, H., Martins, A., Mašek, J., Matsumoto, Y., McDonald, R., Missilä, A.,

Mititelu, V., Miyao, Y., Montemagni, S., More, A., Mori, S., Moskalevskyi, B.,

Muischnek, K., Mustafina, N., Müürisep, K., Nguyễn Thị, L., Nguyễn Thị Minh, H.,

Nikolaev, V., Nurmi, H., Ojala, S., Osenova, P., Øvrelid, L., Pascual, E., Passarotti,

M., Perez, C.-A., Perrier, G., Petrov, S., Piitulainen, J., Plank, B., Popel, M.,

Pretkalniņa, L., Prokopidis, P., Puolakainen, T., Pyysalo, S., Rademaker, A.,

Ramasamy, L., Real, L., Rituma, L., Rosa, R., Saleh, S., Sanguinetti, M., Saulīte, B.,

Schuster, S., Seddah, D., Seeker, W., Seraji, M., Shakurova, L., Shen, M.,

Sichinava, D., Silveira, N., Simi, M., Simionescu, R., Simkó, K., Šimková, M.,

Simov, K., Smith, A., Suhr, A., Sulubacak, U., Szántó, Z., Taji, D., Tanaka, T.,

Tsarfaty, R., Tyers, F., Uematsu, S., Uria, L., van Noord, G., Varga, V., Vincze, V.,

Washington, J. N., Žabokrtský, Z., Zeldes, A., Zeman, D. and Zhu, H. (2017)

Universal Dependencies 2.0. LINDAT/CLARIN digital library at the Institute of

Formal and Applied Linguistics ({{\\’U}FAL}), Faculty of Mathematics and

Physics, Charles University. Available at: http://hdl.handle.net/11234/1-2184

(Accessed: 22 September 2017).

Obeid, O., Khalifa, S., Habash, N., Bouamor, H., Zaghouani, W., Oflazer, K. and

Ag, J. A. (2018) ‘MADARi : A Web Interface for Joint Arabic Morphological

Annotation and Spelling Correction’, in LREC: Proceedings of the International

Conference on Language Resources and Evaluation. Miyazaki, Japan: European

Language Resources Association (ELRA).

Odebrecht, C. (2018) MKM – ein Metamodell für Korpusmetadaten (German), PhD

Thesis. Humboldt-Universität zu Berlin, Sprach- und literaturwissenschaftliche

Fakultät. doi: http://dx.doi.org/10.18452/19407.

Paroubek, P. (2007) ‘Evaluating Part-of-Speech Tagging and Parsing’, in Dybkjær,

L., Hemsen, H., and Minker, W. (eds) Evaluation of Text and Speech Systems.

Dordrecht: Springer Netherlands (Text, Speech and Language Technology), pp. 99–

124. doi: 10.1007/978-1-4020-5817-2_4.

Pasha, A., Al-Badrashiny, M., Diab, M., Habash, N., Pooleery, M., Rambow, O. and

 - 264 -

Roth, R. (2015) ‘MADAMIRA v2.0 User Manual’. Center for Computational

Learning Systems, Columbia University.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N.,

Pooleery, M., Rambow, O. and Roth, R. M. (2014) ‘Madamira: A fast,

comprehensive tool for morphological analysis and disambiguation of arabic’, in

LREC: Proceedings of the International Conference on Language Resources and

Evaluation. Reykjavik, Iceland.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011) ‘Scikit-learn:

Machine Learning in Python’, Journal of Machine Learning Research, 12, pp.

2825–2830.

Petrov, S., Das, D. and McDonald, R. (2012) ‘A Universal Part-of-Speech Tagset’,

in LREC: Proceedings of the International Conference on Language Resources and

Evaluation. Istanbul, Turkey, pp. 2089–2096.

Pîrvan, F. and Tufi, D. (2006) ‘Tagset mapping and statistical training data cleaning-

up’, in LREC: Proceedings of the International Conference on Language Resources

and Evaluation. Genoa, Italy, pp. 385–390.

Plank, B., Søgaard, A. and Goldberg, Y. (2016) ‘Multilingual Part-of-Speech

Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss’,

in Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). Stroudsburg, PA, USA: Association for

Computational Linguistics, pp. 412–418. doi: 10.18653/v1/P16-2067.

Qiu, X., Zhao, J. and Huang, X. (2013) ‘Joint Chinese Word Segmentation and POS

Tagging on Heterogeneous Annotated Corpora with Multiple Task Learning.’,

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, (October), pp. 658–668.

Rashwan, M. A. A., Al Sallab, A. A., Raafat, H. M. and Rafea, A. (2015) ‘Deep

Learning Framework with Confused Sub-Set Resolution Architecture for Automatic

Arabic Diacritization’, IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 23(3), pp. 505–516. doi: 10.1109/TASLP.2015.2395255.

Rashwan, M., Al-Badrashiny, M., Attia, M. and Abdou, S. M. (2009) ‘A Hybrid

System for Automatic Arabic Diacritization’, 2nd International Conference on

Arabic Language Resources and Tools, (June 2014), pp. 54–60. doi:

 - 265 -

10.1109/TASL.2010.2045240.

Ryding, K. C. (2005) A reference grammar of modern standard Arabic, Language.

Cambridge University Press. doi: 10.1353/lan.2008.0050.

S. Rabiee, H. (2011) ‘Adapting Standard Open-Source Resources To Tagging A

Morphologically Rich Language: A Case Study With Arabic’, in Proceedings of the

Second Student Research Workshop associated with RANLP 2011. Hissar, Bulgaria,

pp. 127–132.

Salih, B. (2007) A Detailed Grammatical Analysis of the Recited Quran using i’rāb

(Arabic). Beirut: Dar Al-Fikr.

Al Sallab, A., Rashwan, M., M. Raafat, H. and Rafea, A. (2014) ‘Automatic Arabic

diacritics restoration based on deep nets’, in Proceedings of the EMNLP 2014

Workshop on Arabic Natural Language Processing (ANLP). Stroudsburg, PA, USA:

Association for Computational Linguistics, pp. 65–72. doi: 10.3115/v1/W14-3608.

Samih, Y., Maier, W. and Kallmeyer, L. (2016) ‘SAWT: Sequence Annotation Web

Tool’, in Proceedings of the Second Workshop on Computational Approaches to

Code Switching. Stroudsburg, PA, USA: Association for Computational Linguistics,

pp. 65–70. doi: 10.18653/v1/W16-5808.

Sawalha, M. (2011) Open-source resources and standards for Arabic word structure

analysis: Fine grained morphological analysis of Arabic text corpora, PhD thesis.

University of Leeds.

Sawalha, M. and Atwell, E. (2013) ‘A standard tag set expounding traditional

morphological features for Arabic language part-of-speech tagging’, Word

Structure, 6(1), pp. 43–99. doi: 10.3366/word.2013.0035.

Sawalha, M., Atwell, E. and Abushariah, M. a M. (2013) ‘SALMA: Standard Arabic

Language Morphological Analysis’, in 2013 1st International Conference on

Communications, Signal Processing, and their Applications (ICCSPA). IEEE, pp. 1–

6. doi: 10.1109/ICCSPA.2013.6487311.

Schmidt, T., Witt, A., Hinrichs, E., Rehm, G., Chiarcos, C. and Lehmberg, T. (2006)

‘Avoiding Data Graveyards: From Heterogeneous Data Collected in Multiple

Research Projects to Sustainable Linguistic Resources’, in E-MELD Workshop on

Digital Language Documentation: Tools and Standards: The State of the Art.

Lansing, MI, USA.

Schneider, N., Mohit, B., Oflazer, K. and Smith, N. (2012) ‘Coarse lexical semantic

annotation with supersenses: an Arabic case study’, in Proceedings of the 50th

 - 266 -

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers). Jeju Island, Korea, pp. 253–258.

Schroder, I. (2002) A case study in part-of-speech- tagging using the ICOPOST

toolkit. Department of Computer Science, University of Hamburg.

Schuster, M. and Paliwal, K. K. (1997) ‘Bidirectional recurrent neural networks’,

IEEE Transactions on Signal Processing, 45(11), pp. 2673–2681. doi:

10.1109/78.650093.

Sibawayh, A. B. A. (1988) Kitab Sibawayh (Arabic). Third Edit. Edited by A.

Haron. Ar Riyad - Saudi Arabia: Alkhanji.

Sinclair, J. and Ball, J. (1996) ‘Eagles: Preliminary Recommendations on Text

Typology, EAG-TCWG-TTYP/P’, in EAGLES Guidelines. Pisa: Consiglio

Nazionale delle Ricerche. Istituto di Linguistica Computazionale.

Sjöbergh, J. (2003) ‘Combining POS-taggers for improved accuracy on Swedish

text’, in Proceedings of 14th Nordic Conference of Computational Linguistics,

NoDaLiDa 2003. Reykjavik, Iceland.

Smrz, O. (2007) Functional Arabic Morphology. Formal System and

Implementation, PhD thesis, The Prague Bulletin of Mathematical Linguistics.

Charles University in Prague.

Śniatowski, T. and Piasecki, M. (2012) ‘Combining Polish Morphosyntactic

Taggers’, in Bouvry, P., K\lopotek, M. A., Leprévost, F., Marciniak, M.,

Mykowiecka, A., and Rybi\’nski, H. (eds) Security and Intelligent Information

Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 359–369. doi:

10.1007/978-3-642-25261-7_28.

Søgaard, A. (2009) ‘Ensemble-based POS tagging of Italian’, in 11th Conference of

the Italian Association for Artificial Intelligence. Reggio Emilia, Italy.

Søgaard, A. and Goldberg, Y. (2016) ‘Deep multi-task learning with low level tasks

supervised at lower layers’, in Intergovernmental Panel on Climate Change (ed.)

Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). Stroudsburg, PA, USA: Association for

Computational Linguistics, pp. 231–235. doi: 10.18653/v1/P16-2038.

Soudi, A., Bosch, A. van den, Ide, N., Jean, V. and Kiraz, G. (2007) ‘Arabic

Computational Morphology : Knowledge-Based and Empirical Methods’, Arabic

Computational Morphology, 38(11), pp. 3–14. doi: 10.1007/978-1-4020-6046-5.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S. and Tsujii, J. (2012)

 - 267 -

‘BRAT: a web-based tool for NLP-assisted text annotation’, in Proceedings of the

Demonstrations at the 13th Conference of the European Chapter of the Association

for Computational Linguistics. Avignon, France: Association for Computational

Linguistics, pp. 102–107.

Straka, M. and Straková, J. (2017) ‘Tokenizing, POS Tagging, Lemmatizing and

Parsing UD 2.0 with UDPipe’, in Proceedings of the CoNLL 2017 Shared Task:

Multilingual Parsing from Raw Text to Universal Dependencies. Vancouver,

Canada: Association for Computational Linguistics, pp. 88–99.

Sutskever, I., Vinyals, O. and Le, Q. V. (2014) ‘Sequence to Sequence Learning

with Neural Networks’, Mathematical Programming, 155(1–2), pp. 105–145. doi:

10.1007/s10107-014-0839-0.

Teahan, W. J., Wen, Y., McNab, R. and Witten, I. H. (2000) ‘A Compression-based

Algorithm for Chinese Word Segmentation’, Computational Linguistics, 26(3), pp.

375–393. doi: 10.1162/089120100561746.

Teufel, S. (1995) ‘A Support Tool for Tagset Mapping’, in Proceedings of the

Workshop SIGDAT: From Text to Tags (EACL95).

Toutanova, K., Klein, D., Manning, C. D. and Singer, Y. (2003) ‘Feature-Rich Part-

of-Speech Tagging with a Cyclic Dependency Network’, in Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology - NAACL ’03. Morristown, NJ, USA:

Association for Computational Linguistics, pp. 173–180. doi:

10.3115/1073445.1073478.

Tsarfaty, R., Seddah, D., Goldberg, Y., Kuebler, S., Versley, Y., Candito, M.,

Foster, J., Rehbein, I. and Tounsi, L. (2010) ‘Statistical Parsing of Morphologically

Rich Languages (SPMRL): What, How and Whither’, in Proceedings of the NAACL

HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich

Languages. Los Angeles, CA, USA: Association for Computational Linguistics, pp.

1–12.

Ungurean, C., Burileanu, D., Popescu, V., Negrescu, C. and Dervis, A. (2008)

‘Automatic diacritic restoration for a TTS-based e-mail reader application’, in UPB

Scientific Bulletin, Series C. Bucharest, Romania, pp. 3–12.

Vergyri, D. and Kirchhoff, K. (2004) ‘Automatic Diacritization of Arabic for

Acoustic Modeling in Speech Recognition’, in Proceedings of the Workshop on

Computational Approaches to Arabic Script-based Languages. Stroudsburg, PA,

 - 268 -

USA (Semitic ’04), pp. 66–73.

Wintner, S. (2014) ‘Morphological processing of Semitic languages’, in Natural

language processing of Semitic languages. Springer, pp. 43–66.

Yaseen, M., Attia, M., Maegaard, B., Choukri, K., Paulsson, N., Haamid, S.,

Krauwer, S., Bendahman, C., Fersøe, H., Rashwan, M., Haddad, B., Mukbel, C.,

Mouradi, A., Shahin, M., Chenfour, N. and Ragheb, A. (2006) ‘Building Annotated

Written and Spoken Arabic LR’s in NEMLAR Project’, in LREC: Proceedings of

the International Conference on Language Resources and Evaluation. Genoa, Italy,

pp. 533–538.

Yimam, S. M., Biemann, C., Eckart de Castilho, R. and Gurevych, I. (2014)

‘Automatic Annotation Suggestions and Custom Annotation Layers in WebAnno’,

in Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations. Stroudsburg, PA, USA: Association for

Computational Linguistics, pp. 91–96. doi: 10.3115/v1/P14-5016.

Yosef, H. A. (2003) The Iarab of Al-Nawawi’s Forty Hadith (Arabic). Cairo:

AlMukhtar.

Zaghouani, W., Bouamor, H., Hawwari, A., Diab, M., Obeid, O., Ghoneim, M.,

Alqahtani, S. and Oflazer, K. (2015) ‘Guidelines and Framework for a Large Scale

Arabic Diacritized Corpus’, in LREC: Proceedings of the International Conference

on Language Resources and Evaluation. Portorož, Slovenia, pp. 3637–3643.

Zalmout, N. and Habash, N. (2017) ‘Don’t Throw Those Morphological Analyzers

Away Just Yet: Neural Morphological Disambiguation for Arabic’, in Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing.

Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 704–713.

doi: 10.18653/v1/D17-1073.

Zavrel, J. and Daelemans, W. (2000) ‘Bootstrapping a Tagged Corpus through

Combination of Existing Heterogeneous Taggers’, in LREC: Proceedings of the

International Conference on Language Resources and Evaluation. Athens, Greece,

pp. 17–20.

Zeman, D. (2008) ‘Reusable Tagset Conversion Using Tagset Drivers’, in LREC:

Proceedings of the International Conference on Language Resources and

Evaluation. Marrakech, Morocco, pp. 213–218.

Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Ginter, F., Luotolahti, J.,

Pyysalo, S., Petrov, S., Potthast, M., Tyers, F., Badmaeva, E., Gokirmak, M.,

 - 269 -

Nedoluzhko, A., Cinkova, S., Hajic jr., J., Hlavacova, J., Kettnerová, V., Uresova,

Z., Kanerva, J., Ojala, S., Missilä, A., Manning, C. D., Schuster, S., Reddy, S., Taji,

D., Habash, N., Leung, H., de Marneffe, M.-C., Sanguinetti, M., Simi, M.,

Kanayama, H., DePaiva, V., Droganova, K., Martínez Alonso, H., Çöltekin, Ç.,

Sulubacak, U., Uszkoreit, H., Macketanz, V., Burchardt, A., Harris, K.,

Marheinecke, K., Rehm, G., Kayadelen, T., Attia, M., Elkahky, A., Yu, Z., Pitler, E.,

Lertpradit, S., Mandl, M., Kirchner, J., Alcalde, H. F., Strnadová, J., Banerjee, E.,

Manurung, R., Stella, A., Shimada, A., Kwak, S., Mendonca, G., Lando, T.,

Nitisaroj, R. and Li, J. (2017) ‘CoNLL 2017 Shared Task: Multilingual Parsing from

Raw Text to Universal Dependencies’, in Proceedings of the CoNLL 2017 Shared

Task: Multilingual Parsing from Raw Text to Universal Dependencies. Stroudsburg,

PA, USA: Association for Computational Linguistics, pp. 1–19. doi:

10.18653/v1/K17-3001.

Zeroual, I. and Lakhouaja, A. (2016) ‘A new Quranic Corpus rich in

morphosyntactical information’, International Journal of Speech Technology.

Springer, pp. 1–8.

Zeroual, I. and Lakhouaja, A. (2017) ‘Feature-rich PoS Tagging through Taggers

Combination : Experience in Arabic’, Transactions on Machine Learning and

Artificial Intelligence, 5(4). doi: 10.14738/tmlai.54.2981.

Zeroual, I., Lakhouaja, A. and Belahbib, R. (2017) ‘Towards a standard Part of

Speech tagset for the Arabic language’, Journal of King Saud University - Computer

and Information Sciences, 29(2), pp. 171–178. doi: 10.1016/j.jksuci.2017.01.006.

Zerrouki, T. and Balla, A. (2017) ‘Tashkeela: Novel corpus of Arabic vocalized

texts, data for auto-diacritization systems’, Data in Brief. Elsevier, 11, pp. 147–151.

doi: 10.1016/j.dib.2017.01.011.

Zhang, Y., Li, C., Barzilay, R. and Darwish, K. (2015) ‘Randomized Greedy

Inference for Joint Segmentation, POS Tagging and Dependency Parsing’, in

Proceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies.

Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 42–52. doi:

10.3115/v1/N15-1005.

Zhang, Y., Reichart, R. and Barzilay, R. (2012) ‘Learning to Map into a Universal

POS Tagset’, in Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning. Jeju

 - 270 -

Island, Korea, pp. 1368–1378.

Zribi, C., Torjmen, A. and Ahmed, M. (2007) ‘A Multi-Agent System for POS-

Tagging Vocalized Arabic Texts.’, The International Arab Journal of Information

Technology, 4(4), pp. 322–329.

 - 271 -

Appendices

 - 272 -

APPENDIX A: ANNOTATED HADITH EXAMPLE BY
SEVERAL TAGGERS

In this appendix, we show a full sentence of one Hadith (prophet sayings)

annotated in parallel by several morphological analysers and POS taggers. Columns

represent 1) the abbreviation of the tool, 2) word id with morpheme id (if detected),

3) word form, 4) lemma, 5) assigned POS-tag, and 6) analysed morphological

features such as gender (if available).

 - 273 -

A.1 The Hadith Sentence (by MAs)

T
O
O
L

C
O
D
E

W
o
r
d

N
o
.

W
o
r
d

F
o
r
m

L
e
m
m
a

/

S
t
e
m

P
O
S

t
a
g

M
o
r
p
h
o

F
e
a
t
u
r
e
s

AL 1 lA lA_1 part_neg -

AR 1 lA - part_neg -

BP 1 lA - NEG_PART -

EX 1 laA laA F- -

KH 1 laA laA Hrf nfy -

MS 1 laA laA HARF_NAFY -

QT 1 lAa - pc -

AL 2 yu&omin |man_1 verb Gender=M| Number=S|

Aspect=IMPF|

Voice=ACT| Person=3

AR 2 >Amn - verb Gender=M| Number=S|

Aspect=IMPF|

Voice=ACT| Person=3

BP 2-0 yu - IV3MS Gender=M| Number=S|

Aspect=IMPF|

Voice=ACT| Person=3

BP 2-1 &omin |man_1 VERB_IMPERFECT -

EX 2 yu&minu |man VI Gender=M| Number=S|

Mood=IND|

Aspect=IMPF|

Voice=ACT| Person=3

KH 2 yu&am~in

u

>am~ana fEl mDArE mbny

llmElwm

Case=NOM|

Aspect=IMPV|

Person=3

MS 2-0 - - PREFIX_ YA2_ ANAIT_

MA3LOOM_ MAGHOOL

-

MS 2-1 yu&omin yu&omin FE3L_MODARE3_MAZEED Aspect=IMPF

QT 2 UNK-WORD

AL 3-0 >aHadkum >aHad_1 noun Gender=M| Number=S|

Case=-

AL 3-1 - - 2mp_poss Gender=M| Number=P|

Person=2

 - 274 -

AR 3-0 >Hd - noun Gender=M| Number=S

AR 3-1 _km - genpron Gender=M| Number=P|

Person=2

BP 3-0 >aHad >aHad_1 NOUN -

BP 3-1 kum - POSS_PRON_2MP Gender=M| Number=P|

Person=2

EX 3-0 >aHadu >aHad N- Number=S| Case=NOM

EX 3-1 kum huwa SP Gender=M| Number=P|

Case=ACC| Person=2

KH 3-0 >aHadaku

mo

>aHad Asm jAmd Gender=M| Number=S|

Case=ACC

KH 3-1 - - kumo: Dmyr AlmxATbyn -

MS 3-0 >aHad~ak

umo

>aHad~a AF3AL_TA3AGOB -

MS 3-1 - - SUFFIX_ KUM_

MOKHATAB_ GAM3_

MOTHAKAR

Number=P| Person=2

QT 3 UNK-WORD

AL 4 Hat~aY Hat~aY_

1

prep -

AR 4 HtY - prep -

BP 4 Hat~aY - PREP -

EX 4 Hat~aY Hat~aY P- -

KH 4 Hat~aY Hat~aY Hrf ETf -

MS 4 Hat~aY Hat~aY HARF_GARR -

QT 4 HatY~a - pp -

AL 5 yakuwn kAn_1 verb Gender=M| Number=S|

Aspect=IMPF|

Voice=ACT| Person=3

AR 5 - kaw~an verb Gender=M| Number=S|

Aspect=IMPF|

Voice=PASS| Person=3

BP 5-0 ya - IV3MS Gender=M| Number=S|

Aspect=IMPF|

Voice=ACT| Person=3

BP 5-1 kuwn kAn_1 VERB_IMPERFECT -

EX 5 yakuwna kaAn VI Gender=M| Number=S|

Mood=SUBJ|

Aspect=IMPF|

 - 275 -

Voice=ACT| Person=3

KH 5 yukowun~

a

>akowaY fEl mDArE m&kd mbny

llmElwm

Aspect=IMPV|

Person=3

MS 5-0 - - PREFIX_YA2_ANAIT_MA3L

OOM

Voice=ACT

MS 5-1 yakuwn yakuwn FE3L_MODARE3_MOGARRAD Aspect=IMPF

QT 5 UNK-WORD

AL 6-0 hawAh hawaY_1 noun Gender=M| Number=S|

Case=-

AL 6-1 - - 3ms_poss Gender=M| Number=S|

Person=3

AR 6-0 hwY - noun Gender=M| Number=S

AR 6-1 _h - genpron Gender=M| Number=S|

Person=3

BP 6-0 hawA hawaY_1 NOUN -

BP 6-1 hu - POSS_PRON_3MS Gender=M| Number=S|

Person=3

EX 6-0 hawaY hawaY N- Number=S| Case=NOM

EX 6-1 hu huwa SP Gender=M| Number=S|

Case=ACC| Person=3

KH 6-0 hawaAhu hawFY Asm jAmd Gender=M| Number=S|

Case=NOM

KH 6-1 - - hu: Dmyr AlgA}b -

MS 6-0 hawaAhu hawaY MASDAR_MOGARRAD -

MS 6-1 - - SUFFIX_ HA2_ MODAF_

GHA2EB_ MOTHAKKAR

Gender=M| Person=3

QT 6 UNK-WORD

AL 7 tabaEAF tabaEAF

_1

adv Gender=M| Number=S|

Case=ACC

AR 7 tbEAF - adv -

BP 7-0 tabaE tabaEAF

_1

ADV -

BP 7-1 AF - NSUFF_MASC_SG_ACC_IND

EF

-

EX 7 tabaEFA tabaE N- Number=S| Case=GEN

KH 7 tiboEFA tiboE Asm jAmd Gender=M| Number=S|

Case=ACC

MS 7-0 tabaEFA tabaEFA MASDAR_MOGARRAD -

 - 276 -

MS 7-1 - - SUFFIX_ALEF_TANWEEN -

QT 7 UNK-WORD

AL 8-0 li - prep -

AL 8-1 mA mA_1 pron_rel Gender=M| Number=S|

Case=-

AR 8-0 l_ - prep -

AR 8-1 mA - rel Number=S

BP 8-0 li - PREP -

BP 8-1 mA limA_1 REL_PRON -

EX 8-0 li li P- -

EX 8-1 maA maA S- -

KH 8-0 - - li : Hrf Aljr -

KH 8-1 limaA maA Asm mwSwl -

MS 8-0 - - PREFIX_LAM_GARR -

MS 8-1 limaA maA ESM_MAWSOOL -

QT 8 limaA - nc Case=GEN

AL 9 ji}ota jA'_1 verb Gender=M| Number=S|

Mood=IND|

Aspect=PERF|

Voice=ACT| Person=2

AR 9 jA' - verb Aspect=PERF|

Voice=ACT| Person=1

BP 9-0 ji} jA'_1 VERB_PERFECT -

BP 9-1 tu - PVSUFF_SUBJ:1S Number=S|

Aspect=PERF|

Voice=ACT| Person=1

EX 9 ji}tu jaA' VP Gender=M| Number=S|

Aspect=PERF|

Voice=ACT| Person=1

KH 9 ji}otu jaA'a fEl mAD mbny llmElwm Person=1

MS 9-0 ji}otu jaA'a FE3L_MADI_MOGARRAD Aspect=PERF

MS 9-1 - - SUFFIX_TA2_FA3EL_MOTA

KALLEM

Person=1

QT 9 UNK-WORD

AL 10-

0

bihi bi_1 prep -

AL 10- - - 3ms_pron Gender=M| Number=S|

 - 277 -

1 Person=3

AR 10-

0

b_ - prep -

AR 10-

1

_h - objcon Gender=M| Number=S|

Person=3

BP 10-

0

bi bi-_1 PREP -

BP 10-

1

hi - PRON_3MS Gender=M| Number=S|

Person=3

EX 10-

0

bi bi P- -

EX 10-

1

hi huwa SP Gender=M| Number=S|

Case=ACC| Person=3

KH 10 bihi bihi jAr wmjrwr -

MS 10-

0

bihi bi HARF_GARR -

MS 10-

1

- - SUFFIX_ HA2_ MODAF_

GHA2EB_ MOTHAKKAR

Gender=M| Person=3

QT 10 UNK-WORD

 - 278 -

A.2 The Hadith Sentence (by POS taggers)

T
O
O
L

C
O
D
E

W
o
r
d

N
o
.

W
o
r
d

F
o
r
m

L
e
m
m
a

/

S
t
e
m

P
O
S

t
a
g

M
o
r
p
h
o

F
e
a
t
u
r
e
s

AM 1 lA - RP -

FA 1 lA - PART -

MA 1 lA lA_1 part_n

eg

-

MD 1 lA lA_1 part_n

eg

-

MR 1 lA - RP -

ST 1 lA - RP -

WP 1 lA - part_n

eg

-

MT 1 lA - Laa

AM 2 y&mn - VBP Aspect=IMPF|Voice=ACT|Person=2

FA 2 y&mn - V -

MA 2 yu&omin |man_

1

verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3

MD 2 yu&omin |man_

1

verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3

MR 2 ymn - VBP -

ST 2 y&mn - VBP Aspect=IMPF|Voice=ACT

WP 2 yu'minu - verb -

MT 2 yu&omin

u

- V Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Mood=Ind

AM 3-0 >Hd - NN -

AM 3-1 km - PRP Person=2

FA 3-0 >Hd - NOUN Person=1

FA 3-1 km - PRON -

MA 3-0 >aHadak

um

>aHad

_1

noun Gender=M|Number=S|Case=ACC

MA 3-1 - - 2mp_po

ss

Gender=M|Number=P|Person=2

MD 3-0 >aHadku

m

>aHad

_1

noun Gender=M|Number=S|Case=-

MD 3-1 - - 2mp_po

ss

Gender=M|Number=P|Person=2

 - 279 -

MR 3-0 AHd - NN -

MR 3-1 +km - PRP$ -

ST 3-0 AHd - NN Number=S

ST 3-1 km - PRP$ -

WP 3 AHaduku

m

- noun -

MT 3-1 >aHaduk

umo

- Ed

MT 3-2 - - N.Qnt Gender=M|Number=S|Case=Nom|Qnt=True

MT 3-3 - - Poss

AM 4 HtY - CJP -

FA 4 HtY - PREP -

MA 4 Hat~aY Hat~a

Y_1

prep -

MD 4 Hat~aY Hat~a

Y_1

prep -

MR 4 Hty - AN -

ST 4 HtY - IN -

WP 4 Hat~ay - noun -

MT 4 Hata~Y - Prp

AM 5 ykwn - VBP Aspect=IMPF|Voice=ACT|Person=2

FA 5 ykwn - V -

MA 5 yakuwn kAn_1 verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3

MD 5 yakuwn kAn_1 verb Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Person=3

MR 5 ykwn - VBP -

ST 5 ykwn - VBP Aspect=IMPF|Voice=ACT

WP 5 yakwna - verb -

MT 5 yakuwna - V Gender=M|Number=S|Aspect=IMPF|Voice=ACT

|Mood=Sub

AM 6-0 hwY - NN -

AM 6-1 h - PRP Person=2

FA 6-0 hwA - NOUN Person=1

FA 6-1 h - PRON -

MA 6-0 hawAh hawaY

_1

noun Gender=M|Number=S|Case=-

MA 6-1 - - poss Gender=M|Number=S|Person=3

 - 280 -

MD 6-0 hawAh hawaY

_1

noun Gender=M|Number=S|Case=-

MD 6-1 - - poss Gender=M|Number=S|Person=3

MR 6-0 hwy - NN -

MR 6-1 +h - PRP$ -

ST 6-0 hwA - NN Number=S

ST 6-1 h - PRP$ -

WP 6 hawAhu - noun -

MT 6-1 hawaAhu - Ed

MT 6-

2

- - N Gender=M|Number=S|Case=Nom

MT 6-3 - - Poss Gender=M|Number=S|Person=3

AM 7 tbEA - NN -

FA 7-0 tbE - NOUN Person=1

FA 7-1 A - CASE -

MA 7 tabaEAF tabaE

_1

noun Gender=M|Number=S|Case=ACC

MD 7 tabaEAF tabaE

_1

noun Gender=M|Number=S|Case=ACC

MR 7 tbEA - NN -

ST 7 tbEA - NN Number=S

WP 7 tabaEAF - verb -

MT 7 tabaEFA - N Gender=M|Number=S|Case=ACC|Nunation=Tru

e

AM 8-0 l - IN -

AM 8-1 mA - WP -

FA 8-0 l+ - PREP -

FA 8-1 mA - PART -

MA 8-0 li - prep -

MA 8-1 mA mA_1 pron_r

el

Gender=M|Number=S|Case=-

MD 8-0 li - prep -

MD 8-1 mA mA_1 pron_r

el

Gender=M|Number=S|Case=-

MR 8-0 l# - IN -

MR 8-1 mA - WP -

ST 8-0 l - IN -

ST 8-1 mA - WP -

WP 8 limA - noun_p -

 - 281 -

rop

MT 8-

1

limaA - Le

MT 8-2 - - RelMaa Number=S

AM 9 j}t - VBD Aspect=PERF|Voice=ACT|Person=2

FA 9-0 j} - V -

FA 9-1 t - PRON -

MA 9 ji}otu jA'_1 verb Gender=M|Number=S|Mood=IND|Aspect=PERF|

Voice=ACT|Person=1

MD 9 ji}otu jA'_1 verb Gender=M|Number=S|Mood=IND|Aspect=PERF|

Voice=ACT|Person=1

MR 9 jt - VBD -

ST 9 j}t - VBD Aspect=PERF|Voice=ACT

WP 9 ji'tu - noun_p

rop

-

MT 9-1 ji}out - V Number=S|Aspect=PERF|Voice=ACT

MT 9-2 - - Subj Number=S|Person=1

AM 10-

0

b - IN -

AM 10-

1*

h - PRP Person=2

FA 10-

0

b+ - PREP -

FA 10-

1

h - PRON -

MA 10-

0

bihi bi_1 prep -

MA 10-

1

- - 3ms_pr

on

Gender=M|Number=S|Person=3

MD 10-

0

bihi bi_1 prep -

MD 10-

1

- - pron Gender=M|Number=S|Person=3

MR 10-

0

b# - IN -

MR 10-

1

+h - PRP -

ST 10-

0

b - IN -

 - 282 -

ST 10-

1

h - PRP -

WP 10 bihi - noun_p

rop

-

MT 10-

1

bihi - Prp

MT 10-

2

- - Poss Gender=M|Number=S|Person=3

 - 283 -

APPENDIX B: OUTPUT FORMAT DIFFERENCES
Figure 10.1 A sample of the output of AraMorph in two versions Java and Perl.

In the Perl version, each solution has the vocalized word (in parenthesis),

lemma (in square brackets), analyses of each segments where segments are

separated by plus sign, and finally a helpful gloss in Engish.

Figure 10.2 Alkhalil output of one analysis of the word “ji}otu” is on the first

row. We added a new row for translating the output shown in the first row. It is

clear that the POS tags and the type of the word are not in a good reusable

format.

Figure 10.3 A sample of the output of AraComLex.

 - 284 -

Figure 10.4 A sample of the output of Elixir FM. Each analysis has seven

columns (e.g. first column is an eight-slot string that represent the POS tag and

morphological features).

Figure 10.5 A sample of the XML output of the Qutuf System.

Figure 10.6 A sample of the output of ALMORGEANA. The representation of

the analysis is similar to MADA and MADAMIRA.

 - 285 -

Figure 10.7 A sample of the output of MADA. It is identical to

ALMORGEANA except its solutions are ranked. Starred solutions are the

selected solution.

Figure 10.8 A sample of the output of MADAMIRA: Like MADA output except

for sufgloss (suffix gloss) feature.

Figure 10.9 A sample of the output of MarMoT.

 - 286 -

Figure 10.10 A sample of the output of SAPA.

Figure 10.11 A sample of the output of the Stanford POS Tagger, AMIRA, and

Farasa. Standford does not mark segmented morphemes (e.g for regrouping

later).

 - 287 -

APPENDIX C: SOURCE TEXT OF WASIM CASE STUDIES

1 Modern Standard Arabic and Morphological Analyser
Arabic excerpt:

اشتم اتناك ة یموقلا ة یوھلاو ةغللا نإف ،لآملا نع رظ نلا ضغبو َ ْ ، كبتشا دقف .لیدیزروأ ىلإ ةبسنلاب ن یتكب ّ َ ّ َ ّ ّ ّ

ف رقتسا نأ دعب نیرخلآا نامللأا نییفنملا با تكلا مظعم نم ریثكب رثكأ" َّ ُ ى نبت ملا ھنطو ةفاقث عم ،اكیرمأ ي ّ امك ،" ّ

- ّ ٍ َ ّ ً ّ ٌ َ نییكیرملأا با تكلا ةمارصب أرقو .ة یزیلجنلإل امامت يفیظو كاردإ لیدیزرولأ لصح دق ناكو .ناھوج ينربخأ

 مھنع تلااقم رشنو -نامتیو تلاوو ،نروثوھ لیناثانو ،وروث دیفید يرنھو ،نوسرمیإ ودلاو فلار لثم

ة یكیرملأا ةرعاشلا مجرت دقو .ة ینامللأاب ّ َ َ ّ (H.D) ق لاخ وحن ىلع ة یزیلجنلإا يف رشنی مل ھ نأ دیب . ملأا ھتغل ىلإ ّ ّ ّ ّ .

English translation.

Whatever the fate, language and national identity were intertwined with

Orziedel. After settling in America, he clashed with the culture of his adopted

homeland "much more than most other exiled German writers," Johan told me.

Orzidl had a very functional grasp of English. He read the books of the American

writers - such as Ralph Waldo Emerson, Henry David Thoreau, Nathaniel

Hawthorne, and Walt Whitman - and published articles about them in German. The

American poet (H.D.) was translated into his mother tongue. However, it was not

published in English creatively.

Reference:

http://midan.aljazeera.net/intellect/literature/2017/5/27/%D9%84%D9%85%

D8%A7%D8%B0%D8%A7-%D9%86%D8%B1%D8%B3%D9%85-

%D8%A8%D9%84%D8%AF%D8%A7-

%D8%AE%D9%8A%D8%A7%D9%84%D9%8A%D8%A7-

%D8%AD%D9%8A%D9%86%D9%85%D8%A7-

%D9%86%D9%81%D9%82%D8%AF-

%D8%A7%D9%84%D9%88%D8%B7%D9%86

2 Quranic Arabic and Consistency Reinforcement
Arabic verses from chapter 18 (Alkahf, the cave):

ا د ش ر ا ن ر م أ ن م ا ن ل ْ ِّ ئ یَ َ ً َ ْ َ َ ُ َّ ِ َ ِ َ َّ َ ُ َ َ ِ ْ َ ْ َ ِ ُ َْ ِ ْ َ َ ْ ِ ھ و ة م ح ر كن د ل ن م ا ن تآ ا ن ب ر او لا ق ف ف ھ ك لا ى ل إ ة ی ت ف لا ى و أ ذ إ .10 َ َ ِ ْ َ ْ ِ َ َ َ ً

ا د د ع نی ن س ف ھ ك لا ي ف م ھ ناَ َ َ َ ْ َ ََ ذآ ى ل ع ا ن ب ر ض ف .11 ِ ِ ْ ِ ْ َ ْ ِ ِ ِ َ َ َ ً

ا د م أ اوُ ِ َ َ ِ َ ْ َ ِ ْ َ ْ ِ ْ ُّ َ َ َ ْ َ ِ ْ ُ َْ َ َ َُّ ث ب ل ا م ل ى ص ح أ ن ی ب ز ح لا ي أ م ل ع ن ل م ھا ن ث ع ب م ث .12 َ َ ً

ى د ھ م ھا ن د ز و ْ ِ م ھِّ َ ِ ُ َ ٌ َْ ِ ْ ُ َّ ِ ِّ َ ْ ِ َُ َ َ َ ْ َ َ ُُّ َ ُ ْ َّ ب ر ب او ن مآ ة ی ت ف م ھ ن إ ق ح لا ب م ھ أ ب ن ك ی ل ع ص ق ن ن ح ن .13 َ ِ ْ َ ُ ْ ُ ً

 - 288 -

 ً ِ َ ا ذ إ ا نُْ َْ َّ ً َ ِ ِ ِ ُ ِ َ ُ ْ َّ َ ِ َْ ْ َ ِ َ َ َّ ُّ َ َ ُّ َ ُ َ َ ُ َ ْ ل ق د ق ل ا ھ ل إ ھ نو د ن م و ع د ن ن ل ض ر لأا و تا وا م سلا ب ر ا ن ب ر او لا ق ف او ما ق ذِ ْ ِ ِ ُُ َ َ َ ْ َ َ َ إ م ھ بو ل ق ى ل ع ا ن ط ب ر و .14

ا ط ط ش َ َ ً

ا ب ذ ك - ى ل ع ى رَ ْ ِ َّ ِ ُ َ ْ َ ْ ََ ٍ ِّ َ ٍ َ ْ ُ ِ ت فا ن م م م ل ظ أ ن م ف ن ی ب نا ط ل س ب مِ ْ َ ھ ی لَ َ ُ ْ َ َ ْ َّ ً َ ِ ِ ِ ُ ِ ُ َ َّ َ ُ َْ ِ َ ُ َ ع نو ت أ ی لا و ل ة ھ لآ ھ نو د ن م او ذ خ تا ا ن م و ق ء لا ؤ ھ .15 َ َ َ َّ ِ َ ِ ً

English translation:

10. [Mention] when the youths retreated to the cave and said, "Our Lord, grant

us from Yourself mercy and prepare for us from our affair right guidance."

11. So We cast [a cover of sleep] over their ears within the cave for a number of

years.

12. Then We awakened them that We might show which of the two factions was

most precise in calculating what [extent] they had remained in time.

13. It is We who relate to you, [O Muhammad], their story in truth. Indeed, they

were youths who believed in their Lord, and We increased them in guidance.

14. And We made firm their hearts when they stood up and said, "Our Lord is

the Lord of the heavens and the earth. Never will we invoke besides Him any

deity. We would have certainly spoken, then, an excessive transgression.

15. These, our people, have taken besides Him deities. Why do they not bring for

[worship of] them a clear authority? And who is more unjust than one who

invents about Allah a lie?"

Reference:

http://tanzil.net/#18:10

3 Sunnah Arabic and Keyboard Navigation
Arabic hadith from The Book of Miscellany (Alkahf, the cave):

 ،ھسأر لجرم ،ھسفن ھبجعت ةلح يف ىشمی لجر امنیب”:لاق ملسو ھیلع الله ىلص الله لوسر نأ ھنعو

 .))ھیلع قفتم((“ ةمایقلا موی ىلإ ضرلأا يف لجلجتی وھف ،ھب الله فسخ ذإ ،ھتیشم يف لاتخی

English translation:

Messenger of Allah (peace be upon him) said, “While a man was walking,

dressed in clothes admiring himself, his hair combed, walking haughtily when Allah

caused the earth to swallow him. Now he will continue to go down in it (as a

punishment) until the Day of Resurrection.”

[Muslim].

 - 289 -

4 English and UDPipe
English excerpt:

“Brazil's government has abolished a vast national reserve in the Amazon to

open up the area to mining.

The area, covering 46,000 sq km (17,800 sq miles), straddles the northern

states of Amapa and Para, and is thought to be rich in gold, and other minerals.

The government said nine conservation and indigenous land areas within it

would continue to be legally protected.

But activists have voiced concern that these areas could be badly

compromised.”

Source: http://www.bbc.co.uk/news/world-latin-america-4103322

