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ABSTRACT

3D shape modelling is a fundamental component in computer vision and computer graphics.
Applications include shape interpolation and extrapolation, shape reconstruction, motion capture
and mesh editing, etc. By “modelling” we mean the process of learning a parameter-driven
model.

This thesis focused on the scope of statistical modelling for 3D non-rigid shapes, such as human
faces and bodies. The problem is challenging due to highly non-linear deformations, high
dimensionality, and data sparsity. Several new algorithms are proposed for 3D shape modelling,
3D shape matching (computing dense correspondence) and applications.

First, we propose a variant of Principal Component Analysis called “Shell PCA” which provides
a physically-inspired statistical shape model. This is our first attempt to use a physically plausible
metric (specifically, the discrete shell model) for statistical shape modelling.

Second, we further develop this line of work into a fully Riemannian approach called “Shell
PGA”. We demonstrate how to perform Principal Geodesic Analysis in the space of discrete
shells. To achieve this, we present an alternate formulation of PGA which avoids working in the
tangent space and deals with shapes lying on the manifold directly. Unlike displacement-based
methods, Shell PGA is invariant to rigid body motion, and therefore alignment preprocessing
such as Procrustes analysis is not needed.

Third, we propose a groupwise shape matching method using functional map representation.
Targeting at near-isometric deformations, we consider groupwise optimisation of consistent
functional maps over a product of Stiefel manifolds, and optimise over a minimal subset of the
transformations for efficiency.

Last, we show that our proposed shape model achieves state-of-the-art performance in two very
challenging applications: handle-based mesh editing, and model fitting using motion capture
data. We also contribute a new algorithm for human body shape estimation using clothed scan
sequence, along with a new dataset “BUFF” for evaluation.
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CHAPTER 1

INTRODUCTION

1.1 Context and Setup

Computer representations of geometry are at the heart of many problems in digital design and
multimedia production. They are widely used in today’s computer games, film creation, 3D
printing, computer-aided design, augmented reality, simulation, ergonomics and many other areas.
Modelling 3D shapes (shape collections) is an important tool for analysing and understanding
natural objects and their variations. Real world objects are naturally perceived as 3D shapes.
Only recently however have these large 3D datasets [2, 20] become available and easily accessed
with the help of rapidly advancing techniques to capture objects such as Microsoft Kinect in the
consumer market and custom-built commercial solutions in the high end.

As the objects types increase and the size of datasets explodes, it becomes a necessity to study
the similarity and dissimilarity manifested in the data. For example, given tens of thousands of
human body scans, people may wonder what does the average male or female look like? Also, it
is of great interest to visualise how bodies vary from person to person. Thus, statistical studies of
3D shapes could offer us deep insights on people and many other creatures. Normally, a typical
3D scanned mesh has tens or hundreds of thousands of vertices and triangles, corrupted with
noise. At first glance, dealing with triangular meshes seems quite cumbersome due to its high
dimensionality and unordered nature. However, mesh simplification and registration approaches
are there to process acquired data and output clean, modest size 3D meshes with consistent
vertex semantics (i.e. a particular vertex has the same semantic meaning across different shapes).
It is now when the 3D modelling techniques come into play. Given a set 3D meshes of a
particular type, say, human faces, the essential goal of modelling is to learn the characteristic
shape variations of 3D faces. In parallel, research on 2D shape modelling also shed light on this
direction for understanding 3D shapes. Take 2D face recognition for instance, Active Shape
Models (ASM) show that the facial variations caused by identity changes could be captured
by many fewer modes compared to the number of pixels [21]. Along this line, an important
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school of methods called 3D parametric models emerged and become useful tools in dealing
with 3D data. Typical parametric models include Blend shapes [22], skeleton models [23] and
statistical models [24]. Hence, both the variability of shapes and nonlinear joints rotations could
be encoded as a low dimensional vector of coefficients. To this end, the problem becomes how
to learn such a suitable parametric model and use it for various applications instead of dealing
directly with high dimensional original shapes.

The most commonly used parametric models are statistical models. Statistical models of the
shape or appearance of shapes are widely used in computer vision and graphics. These methods
aim to extract an average shape and a series of orthogonal principal modes that are capable of
approximating original shapes. It has been successfully applied in various tasks of 3D objects,
such as human faces and bodies. Depending on the nature of objects and their variations, a
skeleton-based template has to be adopted to deal with articulations, e.g human poses.

Statistical models also bring some attractive properties for practical use. First of all, it is
straightforward to learn such a model on a given dataset (shapes in correspondence), especially
when a skeleton is not needed. However, bringing scanned shapes into correspondence is itself a
challenging problem already. Second, to approximate seen or unseen samples of the class, linear
combinations of the chosen modes are used. Therefore, most optimisation problems boil down to
the choice of a vector of coefficients. Third, due to the low dimensional prior nature, parametric
models can be used to constrain synthesis or analysis problems. Their parameter space provides
a compact representation which has been proved to be very useful in applications such as motion
tracking, shape reconstruction, image synthesis, mesh editing, landmarks detection and so on.

Several measures have been proposed to numerically evaluate statistical models. The first
is to capture the variability in the training data as efficiently as possible, measured by the
compactness. Hence, one purpose of statistical modelling is dimensionality reduction. The
second is to approximate unseen data as accurately as possible, measured by the generalisation

ability of the model. Third, it is required that the model exhibits high specificity, i.e. the model
only generate instances that are plausibly members of the object class being modelled.

1.2 Problems and Challenges

There are still many problems impeding the further applications of parametric 3D models. To
emphasise the goals of this thesis, several key challenges are listed below:

1. 3D scans have different number of nodes and topologies after capture and need to be
processed before building a parametric model. The common tool in use is “template-
fitting” in which a hand-crafted template is fitted to each individual scan. However, the
choice of template will influence the final shape representation. Also, individually aligning
shapes one by one will ignore the knowledge of the shape collection as a whole. A shape
that seems to be difficult to fit on its own, however may be easier once the context of other
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(a) Original 
shape

(b) Deformed 
shape

(d) Procrustes 
alignment

(c) Trimmed 
alignment

Figure 1.1: Different alignments result in different vertex representations (hence different vertex-
based models)

shapes is used. In other words, computing correspondence for multiple shapes of the same
object should benefit from each other. We would seek to match shapes in a groupwise
manner, and meanwhile avoid the computational expense.

2. Important sources of shape variability are often highly nonlinear. For example, it is
common to deal with nonlinear motion(such as articulation, bending, flapping and soft
tissue dynamics) and nonlinear shape changes(such as aging, gaining or losing weight
or shape differences between different individuals.) Vertex-based models are simple and
efficient to use, however, it is difficult to see how vertex displacements can be used to
describe highly nonlinear deformations. In practice, building such a model often requires
human-expert knowledge in order to create a hand-crafted skeleton model. We would like
to be able to capture these variations without using a data-specific skeleton.

3. Traditional vertex-based models often require a wealth of training data to be able to extract
meaningful variations. In practice, the dimensionality of the raw shape data is usually
orders of magnitude larger than the number of training samples. As such, we would like
parametric models that are physically valid and could interpolate between sparse training
shapes. Moreover, the model is expected to learn meaningful variations even training data
is sparse.

4. A widespread problem in shape modelling is that shapes have to be carefully aligned
to remove the effect of rigid body motion. Usually, generalised Procrustes analysis
[25] is used and the metric to be minimised is the sum of squared Euclidean distances
between landmarks (cf. Fig. 1.1). However, different metrics yield different alignments.
And, since variations are usually described in terms landmark or vertex displacements,
different alignments would yield different statistical shape models. Moreover, for nonrigid
deformations a meaningful rigid alignment may not exist. Instead of choosing a metric
to be minimised during alignment, we would like the model to be invariant to rigid body
motion completely.
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Figure 1.2: Interpolations between two human body poses.

(a) input data (b) average (c) principal mode

Figure 1.3: An example statistical model of human body shapes.

1.3 Contributions

The contributions of this work concern physically-inspired statistical shape models, multiple
shape matching (by which we mean computing dense correspondence), and their applications.
While the scope of the chapters differ by ingredient (correspondence, modelling, or applications),
they all illustrate techniques for better analysis of 3D shapes and the use of manifold representa-
tions and optimisation on manifolds is a recurring theme. These contributions will be discussed
in detail now.

1.3.1 Shape Modelling in the Space of Shells

First, we show how to perform statistical analysis in “shell space”. Thin shells, or their discrete
counterparts discrete shells, can be considered to reside in a shell space in which the notion of
distance is given by the elastic energy required to deform one shape into another. An example
of geodesic path in such a space is shown in Fig. 1.2. Concretely, the discrete shell model
equips a triangle mesh with a physical model in which deformation of the mesh dissipates energy.
Treating dissipated energy as a distance measure leads to a nonlinear manifold representation. It
is in this setting that we show how to perform statistical analysis of a set of shapes, providing a
hybrid between physical and statistical shape modelling.

In Chapter 3, we have presented an extension of Principal Component Analysis to operate
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Figure 1.4: Human body shapes in dense correspondence. (Same colour indicates corresponding
points)

in shell space, based on vertex-displacement. We introduce for a given set of input shapes (i) a
general notion of an average and (ii) a covariance operator as a generalisation of a covariance
matrix. Principal components are obtained via an eigen-decomposition of the Gram matrix
arising from an inner product based on the Hessian of an elastic energy.

In Chapter 4, we show how to learn nonlinear, physically plausible modes of shape variation
from a set of highly varying training shapes, which can be used for projection onto a low
dimensional submanifold and thus sparse representation by a small set of weights (cf. Fig. 1.3).
The model is fully Riemannian, works directly with meshes and does not require problem-specific
articulated skeletons yet it is able to handle different kinds of nonlinear deformation. Most
importantly, the whole framework is rigid body motion invariant and does not need alignment
step for preprocessing at all.

1.3.2 Groupwise Shape Correspondence via Functional Maps

Next, we contribute a method for computing dense correspondence for multiple non-rigid
3D shapes (cf. Fig. 1.4). In Chapter 5, we present a method for dense 3D correspondence
that addresses the scalability of groupwise methods and elegantly handles multiple notions of
equivalence between shapes. We heuristically design a set of real-valued functions that are
appropriate specifically to the problem of face correspondence, although the proposed method
could be applied to general non-rigid shapes of any class. Specifically, we adopt the functional
maps representation and show how groupwise optimisation of functional correspondence can be
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Figure 1.5: Estimated human body shapes and poses from motion capture markers data (in
Green) without using Skeleton model.

performed via cycle-consistent optimisation on the product of Stiefel manifolds.

1.3.3 Applications of Statistical Human Body Models

Finally, we demonstrate some interesting applications using either the state-of-the-art body
model [26] or the general shape model learned on human body data in Chapter 4.

One primary application using statistical body models is the estimation of human pose and
intrinsic shape from observations. In particular, we address the problem of estimating the body
shape and poses of a person wearing clothing from 3D scan sequences or visual hulls. We
contribute a new approach to recover a personalised shape of the person. The estimated shape
deviates from a parametric model to fit the 3D scans. We demonstrate the method using high
quality 4D data as well as sequences of visual hulls extracted from multi-view images. We also
make available “BUFF”, a new 4D dataset that enables quantitative evaluation.

Furthermore, we present two specific applications: model-constrained mesh editing and
reconstruction of a dense animated mesh from sparse motion capture markers using the statistical
knowledge as a prior. Our models are learned from much less training data and are entirely
mesh-based without using any articulation model. Nevertheless, our results are qualitatively very
similar to the state-of-the-art results.

1.4 Thesis Outline

The remainder of this thesis is organised as follows:
Chapter 2: Related Work: We describe related work both in 3D shape correspondence and in
3D shape modelling.
Chapter 3: PCA in Shell Space: An extension of Principal Component Analysis in shell
space is described and applied in extracting principal modes from sparse human shapes and
reconstructing 3D human faces.
Chapter 4: PGA in Shell Space: A rigid body motion invariant Principal Geodesic Analysis is
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developed to analyse shape variations without the need of alignment and to reconstruct articulated
deformations without the use of skeleton models.
Chapter 5: Groupwise Shape Matching via Functional Maps: A groupwise shape matching
framework is introduced to solve multiple non-rigid shape matching problem, with a special
treatment of 3D faces.
Chapter 6: Applications: A method to estimate body shape and poses from 3D scan sequences
is described using the state-of-the-art statistical body model. Two specific applications: data-
driven mesh editing and model constrained mesh reconstruction from motion capture markers
are demonstrated using our Riemannian statistical model.
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CHAPTER 2

RELATED WORK

2.1 Dense 3D Shape Correspondence

Given two 3D shapes represented as 2-manifold triangle meshes, by shape correspondence we
seek to establish a meaningful mapping between them. The mapping can be between the two
sets of mesh vertices, between two coarse sets of feature points selected on the meshes, or a
continuous one between all points on the two manifolds. This is a fundamental problem in
computer graphics and shape modelling, with such applications as texture mapping [27], mesh
morphing [28], and shape registration [29]. Both rigid shape matching and non-rigid shape
matching are relatively well-studied problems with several recent books and surveys such as
[4, 30]. It is out of scope for the thesis to review all existing shape matching methods. Instead,
this section concentrates on two categories of existing methods: 1) methods that use functional
maps as the correspondence representation; 2) methods that aim at multiple shape matching
(i.e. treating all shapes in a collection simultaneously). To begin with, a brief introduction to
existing methods is given to lay the foundation for the elaboration of the mentioned two aspects.

Point-based correspondence. A majority of shape matching methods represent the map-
ping between shapes as a point-to-point correspondence. This representation renders map
estimation intractable due to the exponential nature of the space of all possible correspondences.
Most methods choose to obtain a sparse landmarks point-to-point correspondence first, and then
extend it to dense correspondence [31–38].

Part or segment based correspondence. Another set of methods attempt to put shape parts
or segments into correspondence [39–43]. These techniques either pre-segment the shape and
try to compute correspondences, or seek to jointly solve the segmentation and correspondence
problems with a optimisation framework.

Alignment-based method. There are a few works which propose to optimise the deforma-
tion of one shape by aligning it with another [44, 45]. Nevertheless, in most cases, reliable point
correspondences are still required either in pre-processing stage as feature matches or during the
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alignment step.

2.1.1 Functional-maps based shape correspondence

A novel map representation for shape matching called “functional maps” was introduced in
[46]. Instead of building spatial point-to-point correspondence, this method turns to matching
real-valued functions defined over the surfaces of the shapes. Due to the linear nature of the
maps in functional space, multiple constraints can be incorporated into a linear system and the
solution could then be obtained by solving it in the least squares sense. Moreover, the functional
map representation is highly compact - the correspondence between high resolution meshes can
be captured in a matrix of typical size 30× 30.

In the functional map framework [46], the Laplacian-Beltrami eigenfunctions of the shapes
play a key role. It is used to represent the linear map as a matrix mapping the Fourier coefficients
from one shape to another. The assumption that the Laplacian bases computed from shapes
independently are compatible is often unrealistic. This is due to that eigenfunctions are only
defined up to sign flips, and the ordering of the eigenfunctions is not preserved across shapes,
especially in the higher frequencies. Moreover, harmonic bases are often incompatible for
shapes which are not isometric with each other. To fix this, Kovnatsky et al. [47] propose the
construction of common approximate eigenbases for multiple shapes using approximate joint
diagonalisation algorithms. The coupling between the joint approximate eigenbases depends on
a given set of corresponding functions on two shapes, e.g. sparse point correspondence.

The choice of functions also plays a crucial role in applying functional maps framework.
Rather than identifying and using the most stable functions (which might be not informative at
all), given a set of shapes with known correspondences (therefore ground truth functional maps
available), Corman et al. [48] apply a supervised learning approach to find the optimal weights
for those functions and to improve the quality of the obtained functional maps. Furthermore, they
demonstrate how to extract the most reliable functional subspaces across shapes by computing a
set of orthonormal basis with decreasing confidence values.

Assuming that shapes are nearly isometric, Pokass et al. [49] observe that the functional
maps are just sparse matrix exhibiting nearly diagonal structure. The method only uses some
repeatable regions and propose to optimise a permutation matrix and functional correspondence
in an alternative way. The problem is formulated as a permuted sparse coding one. To handle
partial matching, the method is extended to a robust permuted sparse coding by adding an
additional sparse coding term addressing outliers. This method successfully recovers dense
correspondence while using very limited information from two shapes, i.e. only a region detector
without a feature descriptor.

Jointly analysing shapes collection enables a variety of applications in data-driven shape
analysis such as shape co-segmentation. Unlike point-based maps, functional maps provide
a concise representation encoding similarities at multiple levels. Huang et al. [50] introduce
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a framework for computing consistent functional maps within man-made shape collections.
To allow for partially similar shapes, cycle-consistency via constrained matrix factorisation is
applied to allow the extraction of a small number of latent basis functions across shapes, and
therefore to enable the usage of low-rank matrix recovery method.

A particular challenging setting for shape matching is partial correspondence, where one
is shown only a subset of the shape and has to match it to a full version. Such applications
are common for instance in robotics where one has to match an object scanned by means of a
3D scanner with a reference shape known in advance. Rodola et al. [51]propose to exploit the
changes of the Laplacian-Beltrami basis as a result of part removal as a prior on the spectral
representation of the functional maps. In particular, the approach looks for the largest and most
regular parts that minimise correspondence distortion. Moreover, a new benchmark to evaluate
partial correspondence for deformable shapes is introduced.

While functional maps become a very successful representation in shape matching, it is also
noted that it is limited in recovering the point-to-point correspondence from such as map, by
mapping peaks on one shape to another. Rodolà et al. [52] consider the point-wise map recovery
problem as a point cloud alignment problem in the embedded space and use a regularised
probabilistic model to impose smoothness constraint. A simple symmetrisation of the standard
nearest neighbour approach is shown to improve the results consistently. Furthermore, in [53]
they extend the technique to solve the partial-to-full shape matching problem, and provide an
efficient GPU implementation to account for large shape matching problems.

Similar to partial functional correspondence, Litany et al. [54] consider a more general setup
where the shapes are allowed to undergo non-rigid deformations and only partial views are
available. The method simultaneously solves the segmentation of the reference shape, and for a
dense correspondence to (subsets of) the parts.

Although classical descriptor preservation constraints are used widely in [46] and its follow-
up works, this formulation requires many descriptor functions to obtain good results. Nogneng
and Ovsjanikov [55] pointed out this problem and showed that much more information can be
encoded into function preservation constraints via commutativity with an underlying map, which
is already seen in the original work but with Laplace-Bletrami operator. The new commutativity
constraints also help the functional map estimation process closer to point-to-point maps, while
maintaining the linear complexity of the optimisation.

Functional maps is not only a very useful tool for shape matching, but also an effective way to
many other map-based applications. Boscaini et al. [56] present a framework for reconstructing
shapes from intrinsic operators such as shape difference operator and Laplacian operator, using
functional maps to representing the correspondence.

Shape comparison is a fundamental operation in shape analysis, and most approaches use a
single scalar number to denote the similarity. A detailed understanding of how two shapes differ
goes beyond a single score. Rustamov et al. [57] develop a novel difference operator, derived
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from a shape map, aimed at providing detailed information about the location and nature of the
differences or distortions between the two shapes being compared.

2.1.2 Multiple shape correspondence

The problem of multiple shape correspondence is fundamental in many applications including
partially overlapping range scans [58], image keypoint matching [59], assembling fractured
surfaces [60] and structure from motion [61]. We only discuss approaches that are applied to
deformable 3D shapes.

The problem can be generally stated as: given n input shapes S1, S2, · · · , Sn, find a meaning-
ful relation (or mapping) between their elements. Traditional correspondence matching is often
done between a pair of shapes (one is called source shape, the other is target shape), and is thus
called pairwise shape matching. Recently, a specialised form of shape matching called multiple
shape matching is to work on a set of shapes simultaneously (i.e. N > 2). As 3D data increase
in size, multiple shape matching is preferred over traditional pairwise shape matching for several
reasons. First, the group of shapes can provide information to distinguish what structure or parts
are common to all the shapes and should be considered in the correspondence. Second, the output
of shape matching is often fed to a statistical shape modelling method and thus consistency is
vital. Moreover, pairwise methods using intrinsic nature of shapes could not resolve symmetry
ambiguity. For example, a common used invariant property geodesic distance is preserved both
in the straight match and its reflective version. Another point is that pairwise methods usually
work well if and only if the two shapes are similar and involve nearly isometric deformation.

Although multiple shape correspondence could be solved by simply computing pairwise
correspondence between all the pairs of shapes in the group, the brute force solution is not
used in practice because it results in a large number of pairwise maps. Compared to pairwise
methods, multiple shape matching could benefit from the contextual information of a shape
collection. It leads to improvements in terms of correspondence robustness, consistency and
efficiency as shown in [62]. Besides that, a full set of pairwise maps are often redundant and thus
not necessary. Assuming the deformation is nearly-isometric amongst the shape collection, the
mapping from j to i could be approximated as the inverse of i to j. Using mapping composition,
the mapping from i to k could be obtained with map i to j and map j to k. Another important
point made in [63] is that, unlike pairwise mapping, the mapping between two dissimilar shapes
could be obtained via a route passing more similar shapes, which reduces the accumulated error.

A classical method in solving multiple shape correspondence is called “minimum description
length” [64]. This method uses an objective function which is defined in an information theoretic
framework. They suggest that the optimal correspondence between a shape collection is the one
that gives the most “compressible” model - i.e. minimises the description length of the training
data. However, this attractive but highly computational-expensive approach is not suitable for
high resolution meshes.
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Most of the works on multiple shape matching choose to improve a given set of pairwise
maps rather than computing them directly. Nguyen et al. [62] propose to identify “bad” maps and
replace them by compositions of other maps, provided that most of the initial maps are accurate.
The method is based on the estimation of “inconsistency” and its connection with “accuracy”.
The work use model graph as the data structure, where each node denotes one shape and the
edge weight connecting two shapes is the “inconsistency”.

Huang et al. [63] employ similar cycle-consistency criteria as [62] to enforce neighbor-
preservation and alignment with the initial maps. The method proceeds by first building soft
maps from a set of automatically chosen base shapes to all other shapes in the collection, and then
computes a point-to-point map from each base to other shapes using a global optimisation. These
are used to create a compact graphical data structure from which globally optimal cycle-consistent
maps are extracted.

Huang et al. [65] propose to formulate the multiple shape matching problem as a semidefinite
program (SDP). Representing correspondence as a point-to-point map in a discrete way, the maps
are expected to be sparse and symmetric matrices. After convex relaxation, either full point-to-
point correspondence or only selected point-to-point correspondence could be recovered with
theoretical guarantees. A framework using functional maps as representation for cycle-consistent
correspondence is also presented in [50].

Aiming to explicitly minimise the distortion of the maps over all shape pairs, Sahillioğlu and
Yemez [66] present a multiple shape matching method based on dynamic programming. The
approach only works well when matching shape extremities, and it is sensible to outlier shapes.
Especially, its accuracy is order-dependent just like applying pairwise method sequentially.

More recently, Cosmo et al. [67] introduce an approach to obtain cycle-consisitent matches
without requiring initial pairwise solutions by optimising a joint measure of metric distortion
directly. The formulation of the problem as a series of quadratic programs with sparsity-inducing
constraints also allows for partiality and outlier shapes.

2.2 Data-driven 3D Shape Modelling

2.2.1 Elastic shape modelling

Physically-based elastic energy models have been widely used for simulation, interpolation, mesh
editing and, more recently, statistical modelling. The classical model for elastically deformable
surfaces is the shell model, originally introduced in a graphics context by Terzopoulos et al. [68],
for thin, flexible materials. Grinspun et al. [69] introduced the discrete shell model in which a
triangle mesh is a spatially-discrete representation of the mid-surface of a shell. The model was
used for simulation of deformable materials under physical forces. In the direction of improving
efficiency, the as-rigid-as-possible (ARAP) framework [12] is based on alternating minimisation
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over vertex positions and local rotations of an energy that measures deviation from rigidity. Von
Radziewsky et al. [70] recently showed how model reduction can be used to efficiently evaluate
elastic deformation models, including the discrete shell energy. This enables elastic models to be
used in real-time applications (see also [71]).

2.2.2 Articulated models

The natural representation for deformations due to articulation is a skeleton model comprised of
joint locations and relative orientations. Heap and Hogg [72] extended classical 2D landmark-
based statistical modelling into the articulated domain by building linear models over joint angles
rather than vertex positions. For 3D shapes, skeletons are used to deform dense surface models
(usually meshes) via a process known as skinning [73]. In their Shape Completion and Animation
of People (SCAPE) framework, Anguelov et al. [3] learn a combined pose and deformation
model and a model of the variability in body shape. A skeleton is used to drive mesh deformation
using a method based on deformation transfer [74] and variations in body shape are learnt using
a linear model of bodies in a standard pose. The Dyna model [11] is built on top of SCAPE and
adds a linear dynamics model whose coefficients depend upon the skeleton pose. The SMPL
model [? ] shows that pose-dependent blend shapes can depend linearly on the rotation matrices
of the skeleton joints yet still achieve high realism of pose dependent shape and dynamics. A
drawback of all of these approaches is that articulated models must be handcrafted for a specific
object class and cannot capture general deformations.

2.2.3 Triangle deformation models

A popular approach is to build models based on the statistics of triangle deformations [75–77].
Instead of being trained to reproduce the input meshes directly, they are trained to reproduce the
local deformations that produced those meshes. Unlike elastic models, these are not physically-
motivated. Sumner and Popović [74] express deformation in terms of affine transformation and
a displacement - the same as the deformation model used in SCAPE. Sumner et al. [14] used
deformation gradients for mesh-based inverse kinematics. Hasler et al. [78] use a nonlinear
representation of triangle deformations with 15 DoF which captures the relationship between pose
and shape. Freifeld and Black [6] derive a 6D Lie group representation of triangle deformations
with no redundant degrees of freedom. None of these approaches are rigid body motion invariant.
Fröhlich and Botsch [15] additionally introduce a bending term, expressing deformations in
terms of changes to geometric quantities (triangle edge lengths and the dihedral angle between
adjacent triangles). Gao et al. [5] introduce a rotation-invariant mesh difference representation
in which plausible deformations often form a near linear subspace. The deformations produced
by all of these approaches will not in general be realisable by a connected triangle mesh. Hence,
these models require a further step to solve for the mesh that best fits the desired deformations,
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which might be unsatisfactory from a theoretical standpoint.

2.2.4 Riemannian shape modelling

There have been numerous attempts to cast shape modelling or statistical shape analysis in a
Riemannian setting, e.g. [79–81]. To this end, one considers the space of shapes, e.g. triangular
meshes, as a Riemannian manifold M with a metric g. Kilian et al. [80] showed how to
compute geodesic paths between triangle meshes using a metric that measures changes in
triangle edge lengths. Frequently, the underlying metric is based on measuring the lack of
isometry, [3, 6, 11, 74–78]. To avoid irregular, isometric shape deformation an additional
regularisation is required. Heeren et al. [1] take a similar approach but use the discrete shell
model which includes a bending term and leads to time-discrete geodesic paths with physical
meaning (they minimise the dissipation of thin shell elastic energy). The resulting shell space
was subsequently further explored [82] by introducing time-discrete versions of Riemannian
concepts such as the exponential and logarithmic maps and parallel transport.

2.2.5 Principal Geodesic Analysis

Let us briefly recall classical Principal Component Analysis (PCA) on RN before we consider
Riemannian manifolds. For data points s1, . . . , sn, the arithmetic average is given by

s̄ = arg min
s∈RN

n∑
i=1

‖s− si‖2 =
1

n

∑
i=1,...,n

si (2.1)

Then, Gram’s matrix is defined by G = 1
n
DDT ∈ Rn,n, where D ∈ Rn,N represents the data

matrix whose ith row is given by (si − s̄)T ∈ R1,N . In particular, the entries of G depend on
the underlying (Euclidean) scalar product as Gi,j = 1

n
〈si − s̄, sj − s̄〉. Since G is a symmetric

and positive semi-definite matrix we obtain non-negative eigenvalues {λj} and corresponding
orthonormal eigenvectors {wj}, i.e. Gwj = λjwj for j = 1, . . . , n. Finally, the principal modes
of variations of the data {s1 − s̄, . . . , sn − s̄} are obtained via vj = λ

−1/2
j DTwj ∈ RN .

PCA in Euclidean space easily translates to Riemannian manifolds [79]. To this end, one
considers data points s1, . . . , sn on the manifold M and performs a classical PCA for the
logarithms of the input shapes sj with respect to their Frechet mean - the Riemannian counterpart
of the arithmetic average. Thereby, the tangent vector uj represents the geometric variations of
sj relative to the average s̄ in an infinitesimal sense. Here, the metric gs̄ is taken into account
as the scalar product on these infinitesimal shape variations. Thus, Gram’s matrix is defined by
Gij = 1

n
gs̄(u

i, uj) and its spectral decomposition (vj, λj) is called Principal Geodesic Analysis
(PGA).

PGA models are now widely used. Fletcher et al. [79] originally propose the approach
for modelling medially-defined anatomical objects. Freifeld and Black [6] use PGA to build

37



statistical models on their Lie group representation of triangle deformations. Tournier et al.
[83] use PGA to build a statistical skeleton model. Sommer et al. [84] explore the effect of
this linearisation and proposed a numerical scheme for computing exact principal geodesics.
Similarly, Huckemann et al. [85] propose a scheme for exact geodesic PCA. Instead of formu-
lating a least-squares notion of PGA, Zhang and Fletcher [86] compute principal geodesics
with an explicit noise model leading to a probabilistic model. Rather than seeking geodesic
curves passing through the mean (principal geodesics), Hauberg [87] proposes to compute more
general principal curves in a Riemannian setting.

Besides discretised surfaces, curved shapes can be represented by parameterised functions
leading to an infinite dimensional shape space. This allows modelling in a way that is invariant
to re-parameterisation of the curves, essentially unifying registration and modelling. Srivastava
et al. [88] achieve this using a square-root velocity representation which simplifies evaluation of
an elastic metric. Kurtek et al. [89] model parameterised surfaces. Demisse et al. [90] model
curved shape variation in terms of deformations, again in a re-parameterisation invariant manner.

2.2.6 3D morphable models

3D Morphable Model (3DMM) is one of the most influential works in 3D statistical shape
modelling. Blanz et al. [24] directly use PCA (introduced in 2.2.5) for 3D face analysis and
synthesis. Any face sample is represented as the linear combination of all training data after mean
subtracted. In order to recover high-quality surfaces, Amberg et al. [91] propose a multiview
stereo method based on 3DMM. Rather than using the analysis by synthesis paradigm, they focus
on how to measure the distance from the observation to the hypothesis. To cope with expression
changes in modelling facial data, Amberg et al. [92] assumed that the parameters governing
identities and expressions are independent and therefore extended the 3D morphable model by
adding expression coefficients. However, the assumption seems problematic because expression
and identity are intercorrelated.

Besides global 3DMM, parts-based 3DMM like [93–95] are proposed to overcome some
drawbacks of the global model. These work built multiple 3DMM and therefore improved
the representational capabilities. The segmentation is done manually in most work, thus data
dependent. The key step is how to handle the segments boundaries. Instead of pre-segmentation,
an optimal segment is proposed in [96]. Lastly, the assembled model may not be a good
reconstruction as a whole.

2.2.7 Multilinear models

Let us now consider applying multilinear model on faces. Assume we have a database of
registered and rigidly aligned 3D faces of d2 identities performance d3 expressions, let S ∈
RN×d2×d3 denote a three-dimensional array. We center each s by substracting the mean s̄ over all
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shapes. Using semantic correspondence, the different identities are associated with the second
mode of S, and the different expressions are associated with the third mode. A higher order
singular value decomposition (HOSVD) decomposes S into a multilinear model tensor M and
orthogonal factor matrices U2 ∈ Rd2×m2 and U3 ∈ Rd3×m3 so that

S = M ×2 U2 ×3 U3,

where M ×n Un denotes the n-th mode product of tensor M and a matrix Un. Truncating
columns of Un could reduce the dimensionality of M , where mn ≤ dn defines the number of
remaining columns of Un. Reconstructing a 3D face f given coefficients for identity w2 ∈ Rm2

and expression w3 ∈ Rm3 could simply be done by

f = s̄+M ×2 w
T
2 ×3 w

T
3 .

Vlasic et al. [97] use multilinear model to separately parametrise the space of geometric
variations due to various attributes. Dale et al. [98] use 3D multilinear model to transfer the
facial performance between two videos, without manual operation or special acquisition device.
Mpiperis et al. [99] use the model for identity and expression recognition for 3D faces. Bolkart
and Wuhrer [100] represent each motion sequence compactly by decoupling identity and
expression variations. Cao et al. [101] generate user specific blendshapes and track the facial
performance in 2D videos. Brunton et al. [102] use multiple localized multilinear models to
reconstruct 3D faces from noisy and partially occluded face scans.

2.2.8 Applications

The most successful application of statistical shape model is due to Blanz and Vetter [24], in
which a technique for modelling textured 3D faces is introduced. Thereafter, many face-related
applications have been developed. In [103], face recognition across variations in poses and
illuminations is presented by simulating the process of image formation in using a 3D face
model. Statistical models also play a key role for robust human pose and shape estimation. A
popular body model is SCAPE [3], which factors triangle deformations into pose and shape
variations. Recent work has proposed to make SCAPE more efficient by approximating the
pose dependent deformations with Linear Blend Skinning (LBS) [104, 105]. SMPL model [26]
simulates variations due to pose and shape using linear functions. Additionally, Dyna model
[11, 106] incorporate dynamic soft-tissue deformations.

The body and the hands have often been studied separately for several reasons. SCAPE [3]
are learned from subjects making a tight fist, while more recent SMPL [26] assumes an open
rigid hand. The resolution of most body scanners makes the hands too small and renders the
fingers hard to recognise. Also, occlusion of the hand by the body often leads to missing data.
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A triangulated mesh with LBS [73] provides a realistic model and fits image data better [107].
Despite the fixed shape, meshes are useful for computing contact points during interaction [108].
A recent hand model [109] employs smooth loop subdivision surfaces, which facilitate efficient
and accurate computation of derivatives.

Apart from many significant work on learning realistic, articulated, 3D models of the human
body, there are few such models of animals. Unlike human body model, real scans in a large
quantity of a specific pose are not available. Zuffi et al. [110] learn a 3D animal model from a
small set of 3D scans of toy animals from quadruped families.

2.2.9 Connection with functional maps

Taking advantage of functional maps [46], a novel shape difference operator is proposed in
[57]. Instead of using a single number to represent the dissimilarity/similarity, the difference
operator provides much more information on where two shapes are different and how they are
different. Multiple applications of such as shape difference operator are shown, Among them,
a fundamental one is exploration of intrinsic shape space. Shape difference operator naturally
provides the differences between the base shape and all others. Then, standard PCA is applied
on the vectorized shape differences. Therefore, the deviation of distortions from the average is
depicted by summing up all principal components using a indicator function at a specific point.
Boscaini et al. [56] showed how to reconstruct shapes from these shape difference operators,
enabling shape analogy synthesis and style transfer. While the original shape differences operator
captures only intrinsic distortion, Cormen et al. [111] use offset surfaces to capture extrinsic
distortion.

As an alternative representation to 3D mesh, functional maps provide more flexibility and
possibility to explore matrix form of correspondence. It also raise the question whether statistical
modelling could be done in this space so that point-to-point correspondence is no longer needed.
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CHAPTER 3

PRINCIPAL COMPONENT ANALYSIS IN

SHELL SPACE

3.1 Introduction

The dimensionality of the 3D shapes is orders of magnitude greater than the number of samples
in the training set. Typical meshes may contain tens of thousands of vertices. In contrast, the
number of training samples that can feasibly be collected is typically only in the tens or hundreds.
Hence, the underlying shape space is sampled very sparsely.

In such a scenario, the quality of the model is dependent on the validity of the assumed
or learnt structure of the manifold on which the data is assumed to lie. For example, PCA
assumes that the input data lies on (or can be well approximated by) a hyper-planar manifold,
the axes of which are those that capture maximal variance. This makes it optimal with respect
to compactness in Euclidean space but a poor choice when the data contains highly nonlinear
variations.

In this chapter, we use a physically-motivated, nonlinear model of surfaces, thin shells,
to represent 3D deformable objects. Geodesics in the space of shells have already shown
great promise in realistically interpolating and extrapolating between sparse samples of shapes
undergoing complex deformations [15, 69, 82]. In other words, shell space potentially provides
a useful constraint in modelling the nonlinear variability in a sparsely sampled set of shapes.
This motivates our idea of performing statistical shape analysis in shell space.

We consider a linear space of nodal displacements and not the tangent space in a Riemannian
setup of infinitesimal displacements. This is computationally much more efficient, as no higher
resolution of the paths from the average to each input shape is required. We define a notion of
covariance based on the Hessian of an elastic energy term. In analogy to PCA, we extract principal
components based on an eigendecomposition of the resulting Gram matrix. The resulting
principal components are able to capture nonlinear articulations and complex deformations.
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We provide results on human face and body data and evaluate the resulting models in terms of
compactness, generalisation and specificity.

The remainder of this chapter will be organised as follows: a physical material called “thin
shell” and its deformations will be introduced in Sec. 3.2. Then, based on shell deformations,
averaging and covariance operators are described in Sec. 3.3 before PCA in shell space is
developed. The implementation aspect of this method is summarised in section Sec. 3.4. In the
end, we demonstrate the experimental results applying Shell PCA in Sec. 3.5, with comparison
to traditional Euclidean PCA.

3.2 Shells and shell deformations

A thin shell sδ is a physical material with tiny but positive thickness δ. Mathematically, this shell
is represented by a smooth surface s embedded in R3 which is thought of as the middle layer of
the physical material, i.e.

sδ = {p+ z n(p) | p ∈ s , z ∈ (−δ/2, δ/2) } ,

where n : s→ S2 denotes the unit normal field.
In the following we will consider a reference material s̄δ ⊂ R3 which is in a stress-free state

and an elastic deformation φδ thereof. All quantities corresponding to s̄δ and its middle layer s̄,
respectively, will be labelled with a bar, e.g. ḡ denotes the first fundamental form of s̄. For the
sake of clarify, we omit the thickness δ in the following without causing confusion.

The corresponding elastic deformation energy is given by

Wδ[φδ] =

∫
s̄δ
Wmem(Dφδ) dx , (3.1)

where Dφδ ∈ R3,3 and Wmem denotes some elastic energy density.
LeDret and Raoult [112] have shown in the context of Γ-convergence that to leading order,

the energy Eq. (3.1) scales linearly in the thickness parameter δ and after rescaling with 1
δ

is
given by the membrane energy

Wmem[s̄, φ] =

∫
s̄

Wmem(G[φ]) da , (3.2)

where φ : s̄→ R3 is the deformation of the middle layer and da =
√

det ḡ dt denotes the area
element. The Cauchy-Green strain tensor G[φ] ∈ R2,2 is given by

G[φ] = ḡ−1gφ , (3.3)

where gφ is the intrinsic first fundamental form on the deformed shell φ(s). The membrane
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Figure 3.1: Membrane (left) and bending (right) distortion of Shell deformation. (Figure courtesy
of Heeren et al. [1])

energy density in Eq. (3.2) can be chosen e.g. as

Wmem(A) =
µ

2
trA+

λ

4
detA− (

µ

2
+
λ

4
) log detA− µ− λ

4
.

Here the trace accounts for local length changes while the determinant accounts for local change
of area.

Friesecke et al. [113] demonstrated that for isometric deformations φ (for whichWmem[s̄, φ] =

0) the leading order term of Eq. (3.1) is cubic in the thickness δ and after rescaling with 1
δ3

is given by an energy term that solely depends on the so-called relative shape operator. This
bending energy is supposed to account for out of plane bending and changes in curvature. One
particular choice is the Willmore energy

Wbend[s̄, φ] =

∫
s̄

|H̄ −H ◦ φ|2 da , (3.4)

which measures changes in the mean curvature H . Note that H can be regarded as the trace of
the matrix-valued relative shape operator.

As shown in Fig. 3.1, the corresponding elastic energy could be divided into two kinds of
deformation: membrane deformation and bending energy. Approximating thin shell energy by
summing up these two types of deformation is widely used in the computer graphics community
[1, 82] and we follow this representation and this could be written as

Ws̄[φ] =Wmem[s̄, φ] + γWbend[s̄, φ] (3.5)

where the physical parameter γ is a bending weight which can be viewed as a parameter that
balances between membrane energy and bending energy.

For two shells s̄, s we define

W [s̄, s] = min
φ:φ(s̄)=s

Ws̄[φ] . (3.6)

We might consider this as an approximation of the squared Riemannian distance in the shell
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space although it is not symmetric. However, for infinitesimal small deformations the Hessian of
W allows us to retrieve a symmetric, positive-definite Riemannian metric on the space of shell
[82].

3.2.1 Discrete shell and its deformations

The above description of shell deformation is based on a “smooth shell”. In practice, we discretise
a smooth shell s by a triangular mesh S. Furthermore, we assume a fixed connectivity constraint
that means there is a one-to-one mapping (dense correspondence) between all vertices and all
faces of two meshes as e.g. in [80]. Hence we will represent a triangular mesh S by the vector of
its vertex positions x ∈ R3n, where n is the number of vertices in the mesh, and each vertex has
three degrees of freedom in 3D space, i.e. x, y, z.

We can think of each triangle T ⊂ R3 being parametrised over the unit triangle ω ⊂ R2

consisting of the nodes (0, 0), (1, 0) and (0, 1). If q0, q1, q2 ∈ R3 are the nodes of T we consider
the local linear parametrisation XT : (t1, t2) 7→ t1q1 + t2q2 + (1− t1− t2)q0 with 0 ≤ t1, t2 ≤ 1.
Hence we have

DXT = [∂t1XT | ∂t2XT ] = [q1 − q0 | q2 − q0] ∈ R3,2

and can deduce an element-wise constant discrete first fundamental form (to allow surface prop-
erties such as length and area) viaGT = (DXT )TDXT ∈ R2,2. Due to the dense correspondence
we can define the discretisation of the distortion tensor elementwise via

G[Φ]T̄ = Ḡ−1
T̄
GT .

Hence the discrete membrane energy is

Wmem[x̄, x] =
∑
T̄∈s̄

|T̄ |Wmem(G[Φ]T̄ ) , (3.7)

where the membrane energy density Wmem characterises the edge length and area changes. |T̄ |
denotes the area of T̄ . As a result, discrete membrane energy amounts to the edge length and
area changes considering all the triangles of the reference mesh S̄.

Next, we consider discrete bending energy. Concretely, we make use of the discrete shells
energy proposed in [69]:

Wbend[x̄, x] =
∑
ē∈s̄

(θē − θe)2|ē|2
Dē

, (3.8)

where the sum is over all undeformed edges ē ∈ S̄. If T and T ′ share one edge e we have
De = 1

3
(|T | + |T ′|) and θe denote the complement of dihedral angle at the undeformed and

deformed edge, respectively, illustrated in Figure 3.2. Analogously to Eq. (3.5), the discrete
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Figure 3.2: Illustration of geometric quantities used in discrete bending energy computation

deformation energy is given as the sum of Eq. (3.7) and Eq. (3.8):

W[x̄, x] = Wmem[x̄, x] + γWbend[x̄, x] (3.9)

Note that due to the dense correspondence there is a natural element-wise linear deformation
between two meshes x̄ and x. Hence, different from Eq. (3.6), we do not need to optimise for
deformations in Eq. (3.9).

Briefly, discrete shell energy is effectively measuring changes in triangle edge length, area
and dihedral angle between undeformed shell and deformed one, and potentially is a well-
suited metric candidate for deformation modelling. Hence, this direction will be explored in the
following sections.

3.3 Principal component analysis in shell space

PCA is among statistical tools to modelling 3D meshes. A principal component analysis (PCA)
relies on the notions of averaging and covariance. It then uses an eigen-decomposition of the
covariance matrix to extract linear principal components. Following [114], we will now introduce
for a given set of input meshes (i) a general notion of an average (depending on a distance measure
d) and (ii) a covariance operator as a generalization of a covariance matrix (depending on an
inner product g). We will introduce two particular choices for d and g, respectively, namely the
standard Euclidean distance/metric and a physically-based distance/metric induced by the shell
deformation energy. The corresponding PCA will be referred to as Euclidean PCA in the former
and as Shell PCA in the latter setup.

Averaging. Consider a given set of input data S1, . . . , Sm which we now consider as triangu-
lar meshes that are in dense correspondence. Hence we can represent each mesh Si by its vector
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of vertex positions xi ∈ R3n. For a given (squared) distance measure d2 : R3n × R3n → R, the
group average x̂ ∈ R3n is given by the Fréchet mean (we admit there exist many options for the
mean as shown in [81], Fréchet mean is chosen here for its simplicity).

x̂ := arg min
x

m∑
i=1

d2[xi, x] . (3.10)

In the Euclidean setup we have d2[xi, x] = ‖xi − x‖2 and hence

x̂euc = 1
m

m∑
i=1

xi .

However, in the Shell PCA setup we have d2[xi, x] = W[xi, x] and Eq. (3.10) becomes a
nonlinear optimization problem and the average x̂shell has to fulfil the necessary condition

F [x̂shell] :=
m∑
i=1

∂2W[xi, x̂shell] = 0 . (3.11)

Here ∂2 denotes differentiation with respect to the second argument of W.
Covariance operator. Covariance operator is a generalisation of covariance matrix. Inher-

ently a PCA is defined on a linear space. As a result, we will consider the linear space of vertex
displacements ui = xi − x̂ ∈ R3n, i = 1, . . . ,m, from the average x̂. Given an inner product g
on R3n we define the covariance operator

Cov v =
1

m

m∑
i=1

g(v,ui)ui (3.12)

and an associated matrix C = (Cij)ij ∈ Rm,m via

Cij := g(ui,uj) . (3.13)

Obviously, C is symmetric and positive semi-definite, that means there exist a spectral decompo-
sition so that

C = OΛOT , Λ = diag(λ1, . . . , λm) ,

where λ1 ≥ . . . ≥ λm ≥ 0 are eigenvalues of C and O is an orthogonal matrix, i.e. OOT =

OTO = idm. Then, we define w1, . . . ,wm via

wk :=
1√
λk

m∑
i=1

Oikui (3.14)
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if λk > 0 and wk = 0 else. A straight forward calculation reveals that

Cov wk =
λk
m

wk

and g(wk,wl) = δkl, i.e. w1, . . . ,wm are in fact eigenvectors of Cov . Formally, we can extend
w1, . . . ,wm to an orthonormal basis of R3n with Cov wk = 0 for k > m.

Remark 1: Usually eigenvectors of Cov are found by a spectral decomposition of the
(3n)-by-(3n) covariance matrix. However, as in most applications m� 3n it is more efficient
to decompose C ∈ Rm,m as defined in Eq. (3.13) and obtain eigenvectors via Eq. (3.14).

Remark 2: Due to the rigid body motion invariance the representation of a discrete shell
S by its vertex positions x is not unique. In fact, S is represented by an equivalence class of
vertex position vectors induced by rigid body motions. This issue becomes crucial when defining
vertex displacements u = x− x̂, as we can construct an arbitrary large displacement by a simple
translation. However, this obstacle is overcome by taking x such that ‖x− x̂‖2 ≤ ‖y− x̂‖2 for
all y in the equivalence class.

Computing principal modes. For a data set u1, . . . ,um the first component v(1) of a
principal component analysis (PCA) is defined as

v(1) = arg max
‖v‖=1

m∑
i=1

g(v,ui)2

= arg max
‖v‖=1

g(Cov v, v) (3.15)

where we used the definition Eq. (3.12) of Cov in the second equality. If we now write
v =

∑
k αkwk, i.e. represent v in the orthonormal basis as defined in Eq. (3.14), we get

g(Cov v, v) =
∑

k α
2
kλk. Hence Eq. (3.15) is equivalent to solving

ᾱ = arg max
‖α‖=1

m∑
k=1

α2
kλk .

As λ1 is the largest eigenvalue we have ᾱ = (1, 0, 0, . . .) and hence v(1) = w1. Similarly we
obtain further components v(k) as v(k) = wk for k = 2, . . . ,m. Hence the principal components
are given by the eigendisplacements of Cov as defined in Eq. (3.14).

47



Algorithm 1 Computation of Shell PCA principal modes
1: Input: s1, . . . , sm ∈M
2: Output: elastic average ŝ, principal modes w1, . . . ,wm

3: // initialise first input s1 as elastic average
4: ŝ = s1

5: // compute elastic average
6: solve for elastic average ŝ using (Eq. 3.10)
7: // rigid body alignment
8: align each shape to average ŝ
9: // compute vertex displacement u

10: for i := 1 to m do
11: ui = si − ŝ
12: end for
13: // assemble Gram’s matrix
14: compute G using (Eq. 3.13)
15: // compute principal modes
16: calculate principal modes w using (Eq. 3.14)

Choice of metric. We have not specified an inner product g on the space of discrete shells
yet. For the Euclidean setup we can define g as the standard scalar product on R3n, i.e.

geuc(u, v) = uTv .

It has been shown in [82] that for a deformation energy as defined in Eq. (3.9) the bilinear form

gshell(u, v) =
1

2
uT (Hess W)[x̂, x̂]v (3.16)

in fact defines a metric on the space of discrete shells modulo rigid body motions. Here
Hess W = ∂2

2W ∈ R3n,3n denotes the Hessian matrix w.r.t. the second argument of W which is
a positive semi-definite symmetric matrix.

Visualising of principal modes. A PCA model amounts to an average shape Ŝ represented by
its vertex positions x̂ ∈ R3n and its eigendisplacements wk obtained by the PCA. A simple linear
visualization of these dominant modes is to compute meshes via x̂ + twk, where t ∈ [−T, T ].

However, a more reasonable way to express pure nonlinear variations is to use the nonlinear
shooting method via the time-discrete exponential map EXPx as proposed in [82]. On a smooth
manifoldM the exponential map expx maps a tangent vector v at some point x to the endpoint
x(1) of the geodesic t 7→ x(t) with x(0) = x and ẋ(0) = v. Here, we use the exponential
map on shell space as a natural extrapolation of shell variations and pick up the corresponding
time-discrete definition from [82]. In fact, for the visualizing of (nonlinear) principal modes of
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variation we consider the elastic average x̂ as start point x and a (possibly scaled) mode αwk,
α ∈ R, as the initial velocity v.

Projection and reconstruction. In an analogous fashion to Euclidean PCA, Shell PCA can
also be used for reconstructing shapes from a set of PCA coefficients. Given the elastic average
x̂, the eigenvectors wk and some (possibly unseen) shape x ∈ R3n, we first compute the vertex
displacement u = x − x̂. We then project u onto the Shell PCA spaceWm, whereWm is the
linear subspace spanned the principal modes wk, k = 1, . . . ,m. The projection is given by

PWm : u→ PWmu :=
m∑
k=1

gshell(wk,u)wk ,

where gshell is the Shell Eq. (3.16). Finally we are able to get the reconstruction x̃ via nonlinear
shooting:

x̃ := EXPx̂(PWmu) .

Elastic vs. Riemannian PCA We consider a linear space of (possibly large) nodal displace-
ments and not the tangent space in a Riemannian setup of infinitesimal displacements. This is
computationally more efficient (no higher resolution of geodesic paths from the average x̂ to
each input shape xi is required) and sufficient also for large displacements due to the involved
nonlinear elastic deformation energy and its invariance w.r.t. rigid body motions. However, the
input displacements ui = xi− x̂ as well as the resulting principal modes wk can be considered as
approximate tangent vectors in the Riemannian tangent space at the average shape x̂ whereas this
approximation is only valid in a neighbourhood of x̂. Furthermore, this motivates the nonlinear
shooting of principal modes using the discrete exponential map.

3.4 Implementation and optimization

The implemention is realized as an extension of the open source C++ library QuocMesh1.
Computationally, the most demanding part is evaluating the shell mean x̂shell ∈ R3n in Eq. (3.11).
This is done by means of Newton’s method, i.e. for F [.] as defined in Eq. (3.11) and an initial
guess x0 we compute iteratively

DF [xk] Dk = −F [xk] , xk+1 = xk + τkDk ,

until ‖DF [xk]‖ < ε for some k < Kmax and set x̂shell = xk. The stepsize τk is determined by
Armijo’s backtracking line search [115]. Note that each iteration step requires (i) an evaluation
of F and DF , i.e. the assembling and addition of m Hessian matrices ∂2

2W[., .] ∈ R3n,3n, and
(ii) solving a linear system in 3n dimensions. To improve the robustness and efficiency of the

1http://numod.ins.uni-bonn.de/software/quocmesh/index.html
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Figure 3.3: Human bodies data with large nonlinear, articulated deformations from FAUST
dataset [2]. These 5 samples are used in our experiment for evaluating the principal modes in
section Sec. 3.5.1

optimization we make us of an hierarchical scheme based on progressive meshes [116, 117] as it
was used in [80]. The computation of the nonlinear mean for the input data shown in Fig. 3.3
with m = 5 and n ≈ 6000 takes 5 minutes on an Intel Core 3.40GHz. However, the running
time can be improved substantially by picking up the two-level hierarchical method proposed in
[15]. Note that the spectral decomposition of Eq. (3.13) by means of a standard QR algorithm is
fast as m is usually small.

3.5 Experiments

In this section we provide an experimental evaluation of our model. We begin with a qualitative
evaluation of the Shell PCA model by visualising the principal components. Next we compare
reconstructions using Euclidean and Shell PCA . Finally, we provide a quantitative comparison in
terms of compactness, generalisation and specificity. We use two datasets in our experiments. The
first contains scans of human bodies drawn from the FAUST dataset [2]. The 5 training shapes are
shown in Fig. 3.3. The meshes are watertight, genus zero and we apply groupwise simplification
to reduce their resolution to 6,000 vertices. For this data, Euclidean PCA fails to obtain a
meaningful average, let alone principal components due to the articulated motion. The second is
the B3D(AC)2 [118] dataset containing facial motion sequences in dense correspondence. From
this dataset, we extract a subset consisting of 40 expressions of a single subject. The meshes
are genus three (holes for the mouth and eyes) with a boundary. Again, we apply groupwise
simplification to reduce the mesh resolution to 3,000 vertices. Note that in both cases, the training
data is extremely sparse and that there are large, nonlinear deformations between shapes.

3.5.1 Qualitative evaluation of PCA

In Fig. 3.4, we show the first two principal components for the body data. The elastic average for
Shell PCA and the linear average for Euclidean PCA are depicted in the middle column (shapes
in dark grey), respectively. In each row, we show a geodesic path traversing from the average
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(a) Shell PCA modes (elastic average in dark grey)

(b) Euclidean PCA modes (linear average in dark grey)

Figure 3.4: Top 2 modes of body data with (a) Shell PCA and (b) Euclidean PCA. The mean
shape in dark color is placed in the middle, and negative and positive shooting (linear combination
for Euclidean PCA) results are shown on the left and the right, respectively.

in each direction along the principal component. Note that the shell PCA modes successfully
capture the nonlinear, articulated motion. The first mode appears to capture the raising and
lowering of the arms and the second the bending of the leg, while Euclidean PCA fails to capture
meaningful deformations and leads to degenerated surfaces.

To emphasise the nonlinear nature of the Shell PCA modes, we show the vertex trajectories
for the first principal component in Fig. 3.5. This is done by generating a sequence of shapes by
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Figure 3.5: Vertex trajectories of Shell PCA and Euclidean PCA. Note that the vertices follow a
curve with the Shell PCA (red) and a straight line with the Euclidean PCA (blue).

nonlinear shooting and plotting the resulting trajectories in red. For comparison, the Euclidean
PCA trajectories are shown in blue. Shell PCA clearly leads to nonlinear trajectories.

In Fig. 3.6, we show the first three principal components for the facial expression data. We
show Euclidean PCA in the first row, Shell PCA with linear combination in the second row, and
Shell PCA with nonlinear shooting in the third row. Note that, while both Euclidean and Shell
PCA capture similar characteristics in their principal three modes, Shell PCA with nonlinear
shooting prevents the surface from folding over itself and retains a more plausible face shape
(for example, mode 1 of Euclidean PCA appears to correspond approximately to mode 3 of Shell
PCA but Shell PCA preserves a more plausible chin shape in the positive direction).

3.5.2 Shape reconstruction

In Fig. 3.7 we show the result of reconstructing a face using an increasing number of model
dimensions. The results in the top row are for Euclidean PCA and in the bottom row for Shell
PCA. While PCA is optimal in terms of minimising Euclidean distance, it is clear that there is a
perceptual improvement in the reconstruction results using Shell PCA. Using only 5 dimensions
(column 2), Shell PCA has successfully reconstructed the strong elastic deformation of the smile
while the Euclidean PCA reconstruction does not successfully convey the smiling expression.

We also show some results of human pose reconstruction using SCAPE dataset. The failed
case in reconstructing human poses further supports our claim that displacement is not meaningful
to be used for large deformations.
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mode 1 mode 2 mode 3

Figure 3.6: Top 3 modes of the face expression data. (Top: Euclidean PCA; middle, Shell PCA
with linear combination; bottom: Shell PCA with nonlinear shooting. Col. 1 and 2 show mode 1,
col. 3 and 4 show mode 2, col. 5 and 6 show mode 3.)

3.5.3 Quantitative evaluation

We now provide a quantitative comparison between a Euclidean PCA and Shell PCA model
using the facial expression data.

Compactness measures how efficiently a model captures the variability in the training data.
Specifically, it is the cumulative variance captured by the top K principal components as a
proportion of the total variance within the training data. Hence, we define the compactness
as α(K) =

∑K
i=1 λi∑n
i=1 λi

. We show compactness as a function of K for the expression dataset for
Shell and Euclidean PCA in Fig. 3.9. Euclidean PCA is optimal in the sense of least squares,
i.e. measuring in the (squared) Euclidean norm. Shell PCA is optimal in the sense of (squared)
Riemannian distance in shell space. It is clear that Euclidean PCA is superior in terms of
compactness, implying that Euclidean variance in the expression data is more easily captured
than elastic variance. However, we should be cautious in how we interpret these plots since the
variances in the two models are computed under different distance measures. Generalisation
evaluates the ability of a shape space to represent unseen examples of the class. Given a set
of m training shapes, generalisation is measured using leave-one-out cross reconstruction of
training samples, i.e. the model is learned using m− 1 samples and the model is then fitted to the
excluded sample. The fitting error is measured using two distances: the mean vertex-to-vertex
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dim=1 dim=5 dim=10 dim=39 GT

Figure 3.7: Reconstruction results of using increasing number of parameters. (Top: Euclidean
PCA reconstruction results, bottom: Shell PCA reconstruction results. From left to right:
dimension = (1,5,10,39), and the last column for ground-truth.)

Euclidean distance, and the elastic deformation energy. Generalisation is then reported as mean
fitting error averaged over all trials and is a function of the number of model parameters. It is
expected that the mean error decreases until convergence as the number of shape parameters
increases. In the following experiment, the training data consists of m = 40 shapes.

The generalisation error results are shown in Fig. 3.10a (measured in terms of Euclidean
distance) and Fig. 3.10b (measured in terms of elastic deformation energy). The errors are
computed between the reconstructed and ground truth shape.

It is unsurprising that Shell PCA outperforms Euclidean PCA in terms of minimising elastic
deformation energy. However, perhaps more surprising it that Shell PCA seems to perform better
in terms of Euclidean distance once more than 7 model dimensions are used. This implies that
the Shell principal components are more successfully modelling the underlying shape space,
enabling better reconstructions of unseen data.

Specificity measures how well a model is able to generate instances that are similar to real
data. Firstly, a set of instances are sampled from the learned shape space. Then, for each sample,
the error to closest real sample is computed and an average taken over all samples. It is expected
that the mean distance increases until convergence with increasing number of parameters. This
is because increasing numbers of model dimensions gives the model more flexibility to create
more variable shapes, increasing the likelihood that they lie a long way from real samples. In
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Figure 3.8: Failed cases in reconstructing human poses of SCAPE [3]. Top: ground truth shape;
bottom: reconstructions.

practical applications, generalisation ability and specificity are traded off against each other.
To measure specificity, we consider a PCA model as a probabilistic model by assuming that

the data forms a Gaussian cloud in either Euclidean or shell space. Hence, we consider the shape
parameter vector to be drawn from a multivariate normal distribution zero mean and standard
deviations given by the eigenvalues. We generate 10,000 random samples for both the Euclidean
and Shell PCA models. We show the specificity error as a function of the number of parameters
in terms of Euclidean distance ( Fig. 3.11a) and elastic deformation energy (Fig. 3.11b). In both
cases, Shell PCA converges more slowly but gives better specificity for > 20 dimensions. Again,
this suggests that the shell principal components are a better model of the underlying shape space.

3.6 Summary and limitations

In this chapter, we presented a nonlinear (elastic) deformation based covariance analysis which
is a variant of Principal Components Analysis to operate in shell space, providing a hybrid
between physical and statistical modelling of shape variation. Principal components are obtained
via an eigendecomposition of a covariance matrix arising from an inner product based on the
Hessian of an elastic energy. We have shown that such a model is better able to capture the
nonlinear variations present in articulated body pose data and facial expression data with complex
deformations.
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Figure 3.9: Compactness of Shell PCA and Euclidean PCA.

(a) Error in Euclidean distance (b) Error in deformation energy

Figure 3.10: Generalisation error of Shell PCA and Euclidean PCA.

(a) Error in Euclidean distance (b) Error in deformation energy

Figure 3.11: Specificity error of Shell PCA and Euclidean PCA.
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Our method is capable of capturing non-linear deformations without using hand-crafted
skeleton (Challenge 2) and is physically-inspired due to the usage of thin shell deformation
energy (Challenge 3). However, the model is still based on vertex displacement and hence is
alignment-dependent. As a result, we chose to minimise rigid alignment error, i.e. Procrustes
analysis, before computing the displacement between input shapes and the average. This choice
is arbitrary and affects effective shape variations extraction. Furthermore, thin shell deformation
energy only behaves like a Riemannian distance within a small deformation. To this end, the
shell PCA model allows for not-very-large deformations. In our experiments, facial expression
is shown suitable to be modelled with Shell PCA, while human poses not. Taking uplifting
arms and laying them down for an example, the displacements are not good representation for
the pose changes and so it is not considered in our evaluation. In the next chapter, we would
overcome these drawbacks by proposing a PGA variant that avoids performing any operations in
the tangent space and works directly with objects lying on Riemannian manifold.
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CHAPTER 4

PRINCIPAL GEODESIC ANALYSIS IN SHELL

SPACE

4.1 Introduction

The analysis of principal variations on shape spaces has attracted a lot of attention. Classical
tools from PCA on linear vector spaces has been transferred to shape spaces considered as
Riemannian manifolds and applied, for instance, to tasks such as classification, reconstruction
and clustering [119–124].

Such “statistical” shape models seek to learn principal modes that compactly capture shape
variability within or between classes. The classical approach to statistical shape modelling is due
to Kendall [125] and deals with objects represented by a configuration of landmark points. A
point in Kendall’s shape space corresponds to a configuration of landmarks in which the effect
of rotation, translation and (optionally) scaling have been “factored out”. Usually, linear PCA is
performed in the tangent space to this Riemannian manifold. Great advances have been made in
the decades since, including dense modelling of discretely sampled surfaces [24, 126], modelling
of continuous curves on infinite dimensional Riemannian manifolds [88], hybrid articulated and
statistical models [3, 26] and state-of-the-art human body models that capture dependencies
between body shape, pose and dynamic deformations [11]. However, there remain important
challenges in learning statistical models of nonlinear shape variation.

Shape space must be viewed in a Riemannian setting and statistical notions have to be
adapted from the Euclidean setup. The method in the previous chapter did not do this. There
was no underlying manifold representation and the model was built using vertex displacement
that are not meaningful for large, nonlinear deformations. We introduce a nonlinear Riemannian
principal component analysis and propose an effective time-discretisation thereof.

We take into account a Riemannian structure on the space of triangular surfaces, which
reflects the physics of viscous shells with a metric measuring the energy dissipation caused by
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Figure 4.1: Visualisation of physically sound bending (col. 3) and membrane (col. 5) energy
dissipation between resting pose (col. 1) to sample poses (col. 2 and col. 4).

membrane distortion and normal bending (see Fig. 4.1 - note the high bending energy in the
armpits and membrane energy associated with stretching at the knee).

The shell space in which we work is a space of equivalence classes of shapes that differ
only by rigid body motions (see Fig. 4.3) and we take special care to transfer this invariance to
our time-discrete statistical analysis. Therefore, our whole framework is invariant to rigid body
motion and does not require a preprocessing alignment step.

The use of the words “learning” and “manifold” in this chapter should not cause confusion
with manifold learning. Unlike manifold learning, we work with manifolds that arise as a natural
property of the discrete shell model. We endow our input meshes with a physical model (the
discrete shell model) so that we have a notion of the energy required to deform each shape. Then,
we treat each input shape (now a shell) as a point on a high dimensional, nonlinear, Riemannian
manifold - this is shell space. In this space, we perform statistical learning in a way that
respects its known Riemannian geometry. In practice, our treatment of the manifold uses a time-
discretisation for reasons of computational tractability. So, another potential source of confusion
here is the use of the word “discrete”. In the context of the discrete shell model, “discrete” refers
to spatial discretisation of a continuous surface using a triangular mesh representation. In the
context of our proposed time-discrete statistical model, “discrete” refers to discretisation of
geodesic paths.

4.2 Review of principal geodesic analysis

Let us briefly recall classical Principal Components Analysis (PCA) before we translate the
concept to Riemannian manifolds. For data points si ∈ R3n with i = 1, . . . ,m, one defines the
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Figure 4.2: Visualisation of discrete geodesic spider connecting mean shape to sparse input data
exhibiting highly non-linear soft-tissue deformations.

covariance operator

Cov : R3n → R3n; y 7→ 1
m

∑
i=1,...,m

〈y, si − s̄〉(si − s̄)

where s̄ = 1
m

∑
i=1,...,m si is the arithmetic average of the data and 〈·, ·〉 denotes the Euclidean

scalar product. The covariance operator generalises the concept of covariance from finite to
infinite dimensional settings. Note that in the Euclidean case, the covariance operator applied to
y is nothing other than the matrix-vector product between the covariance matrix C the vector y.

On the linear subspace spanned by displacements of the data points from the mean, i.e.
span({si − s̄ | i = 1, . . . ,m}), there exists a sequence of nonnegative, monotonically decreasing
eigenvalues λj and associated eigenvectors vj such that Cvj = λjvj for j = 1, . . . ,m. The
eigenvectors are orthonormal, i.e. 〈vi,vj〉 = δij , and are referred to as the principal components
of the data set. In order to perform PCA efficiently, one uses the fact that the spectrum of
C ∈ R3n×3n coincides with the spectrum of the Gram matrix G ∈ Rm×m, where Gij =
1
n
〈si − s̄, sj − s̄〉 for i, j = 1, . . . ,m. The jth principal component vj can then be obtained

from the jth eigenvector of the Gram matrix wj = (wj,1, . . . , wj,m)T via the relation vj =

(
√
λj)
−1
∑

i=1,...mwj,i(si − s̄).
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Figure 4.3: Equivalence classes of discrete shells incorporating rigid body motion invariance.

By definition PCA operates on a linear vector space with a scalar product. To transfer it to
a manifoldM, a suitable vector space and an associated inner product need to be identified.
Furthermore, the arithmetic average has to be replaced by a suitable average on the manifold.

4.2.1 Riemannian geometry

Let us denote by (M, g) a (smooth) Riemannian manifold with metric g, i.e. gs(., .) is an inner
product on TsM for each s ∈ M. For a differentiable path s : [0, 1] →M the path energy is
defined by

E [(s(t))t∈[0,1]] =

∫ 1

0

gs(t) (ṡ(t), ṡ(t)) dt , (4.1)

where the velocity ṡ(t) at time t is an infinitesimal variation of s(t). Given two points sA, sB ∈M
a minimizing path (s(t))t∈[0,1] of Eq. (4.1) among all paths with s(0) = sA and s(1) = sB is
called shortest geodesic. For fixed sA, existence and uniqueness of a shortest connecting geodesic
to sB is given as long as sB is in the vicinity of sA. In particular, a geodesic path s : [0, 1]→M
solves the Euler–Lagrange equation associated with the path energy. The latter is given by
the boundary value problem ∇ṡ(t)ṡ(t) = 0 subject to s(0) = sA and s(1) = sB. See Fig. 4.4
for an illustration. Here ∇ṡ(t) denotes the covariant derivative along the curve. This basically
implies that at each point of the curve, there is no way to further reduce the segment energy.
If s : [0, 1] → M represents the solution to this problem, the exponential map is given by
expsA(v) = s(1) which is well-defined for sufficiently small v. Furthermore, for t ∈ R the
exponential map fulfills the scaling law

expsA(tv) = s(t) .
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M

sA sB
ṡ(t)

Figure 4.4: Two points sampled from a Riemannian manifold. The shortest geodesic path is
shown with the initial velocity at sA.

In particular, for sufficiently small r > 0 the exponential map expsA is a bijection defined in the
neighbourhood ball. The inverse operator is given by the geometric logarithm logsA , i.e.

logsA(s(t)) = tv ,

for t ∈ R.
For sB ∈ M the logarithm logsA(sB) can be considered as an infinitesimal representation

of the geometric variation sB with respect to sA. Finally, the (squared) Riemannian distance is
defined by

dist2(sA, sB) = min
s:[0,1]→M

s(0)=sA, s(1)=sB

E [s] . (4.2)

4.2.2 Fréchet mean

In fact, the arithmetic average of input objects s1, . . . , sm ∈ R3n can be characterized as
the minimizer of the functional s 7→ ∑

i=1,...,m dist2(s, si) with dist(·, ·) being the Euclidean
distance. If we now consider instead a set of input objects s1, . . . , sm ∈M where the Euclidean
distance is simply replaced by the distance on the manifold Eq. (4.2). To this end, we obtain a
Riemannian mean s̄, also called Fréchet mean [127]. In particular, Eq. (4.2) implies that s̄ is the
minimizer of

s̄ = arg min
s∈M

m∑
i=1

min
si:[0,1]→M

si(0)=s,si(1)=si

E [si] (4.3)

which is the sum of all path energies of a spider of paths (si(t))t∈[0,1] centered at s and ending at
the input objects si (cf. Fig. 4.2). For small Riemannian distances shortest geodesics are unique
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and the Fréchet mean of nearby objects onM is unique as well [128].

4.2.3 Gram matrix and principal components

Given a sequence of data points s1, . . . , sm ∈ M and a corresponding Fréchet mean s̄, the
tangent vector uj = logs̄ sj represents the geometric variation of sj relative to the average s̄
in the linear vector space Ts̄M. A Riemannian analogue of PCA (called Principal Geodesic
Analysis (PGA) following [79]) can be obtained by taking the Riemannian metric gs̄ as the
natural scalar product on the space Ts̄M.

The corresponding Gram matrix G ∈ Rm×m is then defined with its entries as Gij =
1
m
gs̄(ui, uj) in analogy to the Euclidean case and the associated covariance operator is given by

Cov : Ts̄M→ Ts̄M; u 7→ 1
m

∑
j=1,...,m

gs̄(u, uj)uj.

As for PCA on R3n we obtain a monotonically decreasing sequence of nonnegative eigenvalues
λj and associated eigenvectors vj ∈ Ts̄M such that Cvj = λjvj for j = 1, . . . , J . In particular,
the eigenvectors are orthonormal with respect to gs̄(., .), i.e. gs̄(vi,vj) = δij . Again, the
spectrum of C ∈ R3n×3n coincides with the spectrum of Gram’s matrix G ∈ Rm×m, hence
it is advantageous to compute the latter one. The jth principal component is then obtained
via the relation vj = (

√
λj)
−1
∑

i=1,...m wj,iui, where wj = (wj,1, . . . ,wj,m)T denotes the jth
eigenvector of Gram’s matrix (corresponding to the eigenvalue λj).

4.2.4 Interpolation and extrapolation

Computing geodesics enables a straightforward, geometrically sound interpolation and extrap-

olation operation. Indeed, given sA and sB, we define I(sA, sB, t) = s(t) for t ∈ R, where
s(t)t∈[0,1] is the minimizer of the path energy Eq. (4.1) subject to s(0) = sA and s(1) = sB, and
outside [0, 1] we use exponential map to extrapolate the geodesic, i.e. s(t) = expsA(t logsA(sB)).

In particular, for the case I(sA, sB, 0.5) we obtain the geodesic midpoint (i.e. Fréchet mean)
of sA and sB. For the case I(sA, sB,−1) = expsA(− logsA(sB)) we obtain the Riemannian
reflection of sB about sA, such that sA is the geodesic midpoint of I(sA, sB,−1) and sB. For
the case I(sA, sB, 2) we extrapolate beyond sB, such that sB is the geodesic midpoint between
sA and I(sA, sB, 2).

4.3 PGA in shell space

In the previous section, we review the classical Principal Geodesic Analysis (PGA). We will now
transfer the concepts of Riemannian geometry and statistical PGA to a manifold defined by a
physical model such that we could eventually build hybrid physical/statistical models.
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We aim at developing a principal geodesic analysis on the space of triangular surfaces
considered as a Riemannian manifold reflecting the physics of viscous shells. In particular, we
regard a discrete shell as a triangular mesh approximation. For fixed mesh topology a discrete
shell can be identified with a vector of vertex positions in R3n, where n is the number of vertices.
This subset of R3n is then equipped with a Riemannian metric which measures the energy
dissipation caused by infinitesimal membrane and bending distortion. The subset turns out to be
the manifoldM we will be working on. The tangent space at some discrete shell s consists of
vector fields v ∈ R3n acting on the vertices of the triangular mesh. Next, we will describe the
manifold of discrete shells.

4.3.1 The manifold of discrete shells

Riemannian metric on the space of discrete shells. To derive a metric we start with an elastic
deformation model for the thin material layer. Let W[s, s̃] be the elastic energy that is needed to
deform s ∈M into s̃ ∈M. To account for the physical properties of thin elastic shells, i.e. to
measure membrane and bending distortions, we take into account a splitting of the energy

W[s, s̃] = Wmem[s, s̃] + Wbend[s, s̃] .

On the discrete shell space we make use of the following definitions (Here, quantities with a
tilde always refer to the deformed configuration):

Wmem[s, s̃] = δ
∑
t∈T (s)

atW (Gt) ,

Wbend[s, s̃] = δ3
∑
e∈E(s)

(θe − θ̃e)2

ae
l2e ,

where T (s) and E(s) denote the set of triangles and edges of s. For more details on shell
deformation energy, please refer to previous chapter (3.2.1).

Rigid body motion invariance. The key property of elastic energy is that it is strictly rigid
body motion invariant, i.e.

W[s, s̃] = W[s,Qs̃+ b] (4.4)

for Q ∈ SO(3) (the space of rotation matrices in R3) and b ∈ R3 (3D translation). The elastic
energy W[s, s̃] can be rewritten in terms of the underlying deformation φ of the discrete shell
s, i.e. WD

s [φ] = W[s, φ(s)]. Furthermore, Heeren et al. [82] showed that this leads to a
Riemannian metric. The naturally appearing rigid body motion invariance is an indispensable
feature of our model which requires a careful treatment from the computational perspective.
At first, we no longer treat single discrete shells s but equivalence classes of shells [s] =
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SO(3)s+R3. As a consequence our manifold of discrete shellsM is a space of such equivalence
classes and tangent vectors are equivalence classes of vector fields. In fact an explicit treatment
of equivalence classes of vector fields as tangent vectors of our discrete shell manifold in the
principal geodesic analysis would be extremely cumbersome. Our observation that the underlying
elastic energy W is rigid body motion invariant will help us to derive a suitable, strictly rigid
body motion invariant algorithmic alternative. Indeed, we will base all components of the
algorithm solely on discrete shells and avoid any appearance of vector fields.

A local approximation of the squared distance. It has been shown in [129] that for
sufficiently smooth W, there exists the approximation property

W[s, s̃] = dist2(s, s̃) +O(dist3(s, s̃)) . (4.5)

Hence, we will think of W as a local approximation of the squared Riemannian distance in the
following.

4.3.2 Principal variations and local submanifold

We now look at deriving a principal geodesic analysis (PGA) on the space of discrete shells that
is invariant with respect to rigid body motions. However, as discussed above, metric evaluations
are based on tangent vectors and thus require to treat (infinitesimal) rigid motions explicitly. To

avoid this explicit treatment we shall derive an alternative representation of PGA which omits

any operations in the tangent space but works directly with objects lying on the manifold. To
this end, our formulation will be solely based on the squared distance and hence inherently rigid
motion invariant.

We propose to study a Riemannian submanifold of M which is associated with the J
dominant modes of the principal geodesic analysis given m input objects si onM. In particular,
we introduce an approximate submanifold which relies on an approximate Gram matrix and does
not require tangential quantities at all.

Approximation of Gram’s matrix. First, we substitute metric evaluations by evaluations of
the squared distance as follows. Paths that minimise the path energy are known to have constant
absolute velocity, i.e.

gs(t)(ṡ(t), ṡ(t)) = gs(0)(ṡ(0), ṡ(0)) = dist2(s(0), s(1)) (4.6)

for all t ∈ [0, 1]. This enables us to write

gs̄(uj, uj) = dist2(s̄, sj) = ε−2dist2(s̄, sj(ε)) ≈ ε−2W[s̄, sj(ε)] (4.7)

for some generic scaling factor ε > 0. Here uj = logs̄(sj) ∈ Ts̄M are the tangent vectors usually
used in PGA whereas sj(ε) = I(s̄, sj, ε) ∈ M are objects on the manifold, lying a distance ε
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along the geodesic path from s̄ to the sj . In a more general case, metric evaluations between a
pair of tangent vectors are obtained by using the polar formula

gs̄(uj, ui) =
1

2
(gs̄(uj, uj) + gs̄(ui, ui)− gs̄(uj − ui, uj − ui)) (4.8)

and to approximate the last term we use

gs̄(uj − ui, uj − ui) ≈ ε−2dist2(sj(ε), si(ε)) ≈ ε−2W[sj(ε), si(ε)], (4.9)

Altogether, we are able to replace evaluations of the metric with squared distances onM via
combining Eq. (4.7), Eq. (4.8) and Eq. (4.9). We define the entries of an approximative Gram’s
matrix G

Gε
ij =

1

2ε2

(
dist2(s̄, si(ε))+dist2(s̄, sj(ε))−

1

2
(dist2(si(ε), sj(ε)) + dist2(si(ε), sj(ε)))

)
.

(4.10)

for i, j = 1, . . . ,m. The additional symmetrisation in the last terms ensures symmetry of G.
Again, due to the rigid body motion invariance the resulting G does not depend on the chosen
representation of the equivalence classes of discrete shells. As before we obtain approximate
eigenvalues λεj and corresponding eigenvectors wε

j ⊂ Rm.
Principal variations versus principal components. Next, we define an approximate (non-

linear) principal variation pεj on M as a replacement of the principal component (modes)
vj ∈ Ts̄M. Given u =

∑
i=1,...,m αiui for a coefficient vector α ∈ Rm with

∑
i=1,...,m αi = 1,

u can obviously be characterized as the minimizer of the quadratic energy functional u 7→∑
i=1,...,m αigs̄(u − ui, u − ui). Using Taylor expansion for a given coefficient vector α this

implies that for

pε := pε[α] := arg min
p∈M

∑
i=1,...,m

αidist2(si(ε), p),

This is just a weighted elastic average on theM. Here, we have used the smoothness of the
metric, in particular that s 7→ gs(·, ·) is smooth. Hence, pε ∈M can be considered as a nonlinear

variation of s̄ corresponding to the linear infinitesimal variation u ∈ Ts̄M.
Now, we apply this replacement procedure to the (rescaled) principal components vεj =

(
√
λεj)
−1
∑

i=1,...,m wε
j,iui for j = 1, . . . , J , where {λεj}j are eigenvalues of Gε with corre-

sponding eigenvectors {wε
j}j ⊂ Rm. Actually, we assume a uniform rescaling of the vector

wε
j = (wεj,1, . . . , w

ε
j,m)T such that

∑
iw

ε
j,i =

√
λεj , however, we shall make use of the same
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Figure 4.5: Approximative manifoldMε,J (yellow) spanned by nonlinear combinations of the
principal variations {pεj}j and their negative reflections {pε−j}j , respectively. Note that the input
shapes {sn}n ⊂M do not lie onMε,J in general. The boundary of the Riemannian polyhedron
defined by the vertices {pεj, pε−j}j and positive weights α ≥ 0 is shown in red.

variable. Then we define the principal variation by

pεj := pε[wε
j] := arg min

p∈M

∑
i=1,...,m

wεj,idist2[si(ε), p], (4.11)

for j = 1, . . . , J as a point onM close to s̄ with 1
ε

logs̄ p
ε
j → vj for ε→ 0.

Defining the submanifold. Finally, we are able to define a local submanifold Mε,J

“spanned” by these principal variations. This is analogous to the linear subspace spanned
by the principal components in classical PCA. Futhermore we consider Eq. (4.11) for the J
dominant principal variations and also their associated reflections pε−j = I(s̄, pεj,−1) (the sign
of a principal component is arbitrary so our submanifold includes variations in both directions).
Points lying within our submanifold are obtained by taking a Riemannian combination (param-
eterization) of pεj with a vector of weights α = (α−J , . . . , α−1, α1, . . . , αJ) ∈ R2J subject to∑

j=−J,...,J αj = 1. Therefore, we define the submanifold as

Mε,J =

{
arg min

p∈M

J∑
j=−J

αjdist2(p, pεj)
∣∣∣ J∑
j=−J

αj = 1

}
,

with the notational convention α0 = 0, i.e. a definition of pε0 is not necessary. Note that
in particular s̄ ∈ Mε,J . Geometrically, Mε,J is a submanifold of M. If we additionally
impose αj ≥ 0 for all j, we obtain a convex Riemannian polyhedron with vertices pεj for
j = −J, . . . ,−1, 1, . . . , J . In either case, we might allow for non-vanishing α0 and pε0 := s̄,
which does not alter the definition ofMε,J . Let us emphasize that we are interested in a small
ball onMε,J around s̄. The tangent space Ts̄Mε,J is spanned by the logs̄ p

ε
j (which converge
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to vj for ε→ 0). Altogether, we get that 1
ε

logs̄
(
Mε,J

)
→ span({v1, . . . , vJ}) for ε→ 0. This

approximation property holds even if α0 6= 0 is allowed. That both principal variations pεj and
their reflections pε−j are indispensable to our construction reflects the fact that the infinitesimal
counterpart, the principal components vj , generate one dimensional subspaces rather than rays.

Algorithm 2 Computation of discrete Shell PGA principal variations
1: Input: s1, . . . , sm ∈M, K ∈ N, J ∈ N, T ∈ N
2: Output: geodesic average s̄, geodesic paths si=1,...,m, principal variations v1, . . . ,vm

3: initialise elastic average as geodesic average s̄0

4: // optimise geodesic average and geodesic paths
5: for t : 1 to T do
6: for i : 1 to m do
7: optimise geodesic path si to minimise (Eq. 4.12)
8: end for
9: update geodesic average s̄t as elastic average of s1

i=1,...,m

10: end for
11: s̄ = s̄T

12: // computation of Shell PGA principal variations
13: compose discrete approximation Gram’s matrix GK using (Eq. 4.17)
14: do SVD decomposition of Gram’s matrix GK

15: compute principal variations using (Eq. 4.18)

4.3.3 Time-discrete principal geodesic analysis

We have derived a representation of PGA which is solely based on the squared distance. In
particular, our formation is based on the local approximation property Eq. (4.5). However,
each single evaluation of dist2(·, ·) via Eq. (4.2) requires the minimisation of the path energy,
which might be infeasible e.g. from the computational point of view. Following [129] we
would introduce a variational time-discretization of the path energy which is computationally
advantageous. At its heart, this discretisation is invariant to rigid body motions by construction.
Building on this scheme we finally propose a corresponding time-discrete setting for our PGA
model.

Discrete geodesic path. For some integer K a time-discrete sampling (s0, s1, . . . , sK) of
a given continuous path s = (s(t))t∈[0,1] onM is given by sk = s( k

K
). Then the path energy

Eq. (4.1) satisfies the estimate

E [s] ≥ K
∑

k=1,...,K

dist2(sk−1, sk) ,
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Figure 4.6: Sample geodesic path

where equality holds if and only if s is already a shortest geodesic. This could be easily
verified through a circle example shown in Fig. 4.6 where the circle length is estimated using
segments. Now, we replace dist2(·, ·) by a suitable approximation. Since for the elastic energy
W introduced above, the approximation property Eq. (4.5) is valid. This motivates the definition
of the discrete path energy

E[s0, . . . , sK ] = K
K∑
k=1

W[sk−1, sk] (4.12)

of a discrete path (s0, . . . , sK). For given shells sA and sB in M we call the discrete path
(s0, . . . , sK) a discrete shortest geodesic, if (s0 = sA, . . . , sK = sB) is a minimizer of the
discrete path energy Eq. (4.12). Physically, we could consider a discrete path as a chain of
springs connecting subsequent shells on the manifold. Then, E[s0, . . . , sK ] is the total elastic
energy of this chain and a discrete geodesic is obtained when relaxing this energy via adjusting
the intermediate shells s1, . . . , sK−1 on the manifold. A discrete geodesic must satisfy the system
of Euler–Lagrange equations given by

W,2[sk−1, sk] + W,1[sk, sk+1] = 0 (4.13)

for k = 1, . . . , K − 1, where W,i denotes the variation with respect to the ith argument. This
implies that for any three-point geodesic sk−1, sk, sk+1, the mid-point sk has to be the stationary
point.

Discrete Fréchet mean. Next, in analogy to Eq. (4.3) we define the associated discrete

Fréchet mean s̄ as the minimizer of

s 7→
∑

j=1,...,m

s0
j
=s̄, sK

j
=sj

E[s0
j , . . . s

K
j ] , (4.14)

which is the sum of all discrete path energies of a spider of discrete paths (s0
j , s

1
j , . . . s

K
j ) centered

at s (cf. Fig. 4.7). We denote skj as kth shell along the discrete path associated with the jth
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Figure 4.7: An example of geodesic spider centered at S̄ with three inputs.

input shape sj . The degrees of freedom (DOFs) are the shells defining the m polygonal paths
(s0
j , s

1
j , . . . s

K
j ) (with 3mn(K−1) DOFs) connecting the input shells si and s̄ (with its 3n DOFs).

Each arc of the polygonal spider has to solve the system of Euler–Lagrange equations for a single
discrete K-geodesic (i.e Eq. (4.13) for 0 < k < K) and the coupling at the center is described
by the Euler–Lagrange equation Eq. (4.14).

Discrete interpolation and extrapolation. Analogous to the continuous setup we require a
discrete geodesic interpolation and extrapolation method for given sA, sB ∈M.

Easy: For t = k/K for some 0 ≤ k ≤ K we set IK(sA, sB, k/K) = sk, where (s0, . . . , sK)

is solution of the system Eq. (4.13) subject to s0 = sA and sK = sB.
Medium: For t = r/K with arbitrary r ∈ Z we define a discrete extrapolation by an iterative

scheme based on the following induction: Assume k ≥ K, such that sk−1 and sk are already
known, then we define sk+1 to be the solution of Eq. (4.13). Likewise, for k ≤ 0, such that sk
and sk+1 are already known, we define sk−1 to be the solution of Eq. (4.13). Hence for two
arbitrary integer R1, R2 ∈ N we construct a sequence (s−R1 , . . . , s−1, s0, s1, . . . , sR2) iteratively
and set IK(sA, sB, r/K) = sr for −R1 ≤ m ≤ R2. Note that this sequence solves Eq. (4.13) for
−R1 < k < R2, hence represents a discrete geodesic by construction.

Hard: Finally, for general t ∈ R we denote t(K) = tK − btKc (where b·c is the usual
floor function returning the largest integer less than or equal to the argument). We now define
IK(sA, sB, t) as the minimizer of

(1− t(K))W[sbtKc, s] + t(K)W[s, sbtKc+1] , (4.15)
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where sr = IK(sA, sB, r/K) for r ∈ Z, as described above. Intuitively, Eq. (4.15) is a
weighted average of the two shells on the discrete path between which the desired t lies.

s−1
s0

sK

sA
sB t

sbtKcsbtKc+1

In analogy to the continuous case IK(sA, sB,−1)

defines a discrete Riemannian reflection of
sB about sA. It has been shown in [129]
that this discrete interpolation and extrapo-
lation scheme converges to its continuous

counterpart—subject to suitable assumptions.
Discrete Gram matrix and principal variations. One could immediately derive a discrete

Gram matrix just by replacing the continuous logarithms uj ∈ Ts̄M by a corresponding dis-
cretisation, i.e. a discrete tangent field. However, this would require us to take explicit care to
retain rigid body motion invariance by dealing with equivalence classes of discrete tangent fields.
To avoid this, we exploit the concept of principal variations introduced in Sec. 4.3.2. To this
end, we adapt Eq. (4.10) by replacing dist2(·, ·) by w[·, ·], s̄ by s̄K as well as I by IK , i.e. sεj by
sε,Kj = IK(s̄K , sj, ε), and obtain

Gε,K
ij =

1

2mε2

(
W[s̄K , sε,Ki ] + W[s̄K , sε,Kj ] −

W[sε,Ki , sε,Kj ] + W[sε,Kj , sε,Ki ]

2

)
. (4.16)

for i, j = 1, . . . ,m. The additional symmetrisation in the last terms ensures symmetry of the
resulting approximate Gram matrix Gε,K . Let us emphasize that W is rigid body motion invariant
by Eq. (4.4). Thus Gε,K can be computed based on any representations of the equivalence classes
of discrete shells. Following the discrete calculus developed in [129], we know that s̄K converges
to s̄ and Gε,K to Gε for K →∞ and ε→ 0. This convergence is demonstrated empirically in
Fig. 4.8.

More concretely, we omit K and replace sε,Ki with s1
i , where ε = 1

K
. In such case, the first

node along the discrete K-geodesic from s̄ to si is retrieved. Hence, we have the following

Gij =
K2

2m

(
W[s̄, s1

i ] + W[s̄, s1
j ] −

W[s1
i , s

1
j ] + W[s1

j , s
1
i ]

2

)
. (4.17)

for i, j = 1, . . . ,m.
Next, we consider a discrete counterpart of the principal variation pεj in Eq. (4.11). The

eigenvalues and eigenvectors of Gε,K are denoted by (λε,Kj )j and (wε,K
j )j , respectively, with

wε,K
j = (wε,Kj,1 , . . . , w

ε,K
j,n )T . We have to proceed with special care when replacing dist2(·, ·)

by W[·, ·] in Eq. (4.11). If wε,Kj,i < 0 for some i and j we replace wε,Kj,i by |wε,Kj,i | and sε,Ki
by its discrete geometric reflection at s̄K using the discrete exponential shooting in negative
time direction, i.e. IK(s̄K , si,−ε). This is necessary because W is no longer quadratic (unlike
squared distance) and there is no a priori control of the growth of W for general coefficients
wε,Kj,i ∈ R. Therefore, we have to enforce all coefficients to be non-negative in the objective
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Figure 4.8: Convergence of the discrete Gram matrix and its eigenvectors and eigenvalues
as K → ∞ for the SCAPE dataset shown in Fig. 4.11. We show RMS relative error, using
Kmax = 16 as pseudo ground truth. Second order convergence is illustrated by the green triangle.

function. Altogether we obtain discrete principal variations by

pε,Kj :=arg min
p∈M

∑
i=1,...,m

|wε,Kj,i |W
[
IK
(
s̄K, si, sgn(wε,Kj,i )ε

)
, p
]
. (4.18)

Let us remark that for ε = 1
K

the shells sε,Ki are just an evaluation of the first shell of the discrete
K-geodesic connecting s̄K and si. The definition of a discrete Riemannian submanifoldMε,K,J

is straightforward. We just have to replace once more dist2(·, ·) by W[·, ·] and pεj by pε,Kj in the
definition ofMε,J . Finally, discrete geodesic reflections are defined as pε,K−j = IK(pε,Kj , s̄K , 1)

for j = 1, . . . , J .
The geometric average and the principal variations are representations of the underlying

equivalence classes. Following the convergence theory in [129] we expect that for an eigen-
value of multiplicity 1 and for K → ∞ and ε → 0 the eigenvalues λε,Kj converge to their
continuous counterpart λj and ε−1 logs̄K p

ε,K
j converges (up to scaling) to a representative of the

corresponding principal component vj .
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Algorithm 3 Reconstructing an unseen shape using Shell PGA

1: Input: principal variations {p1, . . . , pJ}, geodesic average s̄, K ∈ N, unseen shape q ∈M
2: Output: reconstruction of shape P [q]

3: // obtain reflections of principal variations
4: p−j = I(s̄, pj, 1)

5: // compute scaling length so that scaled local input could be well-reconstructed
6: solve for ρε using (Eq. 4.3.4)
7: // compute geodesic path for input shape q
8: optimise path {s̄, q1, . . . , qK = q}
9: // scaling local variation of input shape

10: scale q1 via qε1 = I(s̄, q1, ρ
ε)

11: // reconstruct scaled local variation (the first shape along the geodesic)
12: reconstruct qε1 using (Eq. 4.19)
13: // reconstructing local input via rescaling
14: P [q1] = I(s̄, qε1, 1/ρ

ε)

15: // reconstruct input shape by shooting
16: reconstruct q as P [q] = expK−1

s̄ P [q1]

4.3.4 Compression via submanifold projection

In this section we will derive a suitable approximate projection of a given shell s ∈M onto the
(approximate) submanifoldMε,J resp.Mε,K,J induced by the geometric mean s̄ and the set of
the J dominant principal variations for a set of input shells.

The classical Riemannian projection given the dominant J principal components v1, . . . ,vJ

would work as follows: First compute an infinitesimal representation v = logs̄ s of s in
Ts̄M, then project v (locally) onto the subspace span{v1, . . . ,vJ} via the formula vJ =∑

j=1,...,J g(v,vj)vj and finally compute the projection P [s] = exps̄ v
J . Note that this closed-

form projection identity for vJ only holds if {v1, . . . ,vJ} is an orthonormal system.
Again, the incorporation of rigid body motion invariance needs to be delicately handled.

Just replacing the scalar products on Ts̄M in the above projection by the approximation used in
the definition of the discrete Gram matrix in Eq. (4.16) does not lead to a satisfactory solution.
Actually, the expected orthogonality relation of the principal variations holds only approximately
and that deteriorates as operations such as scaling and optimisation involve in (4.18). Instead,
we propose to perform a nonlinear projection onto the local approximating manifoldMε,K,J .
To derive this projection we first rewrite the orthogonal projection onto an affine subspace in
Euclidean space.
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Figure 4.9: SubmanifoldMJ (yellow) and polyhedron CJ ⊂MJ (with red boundary) spanned
by nonlinear combinations of principal variations {pj}j . Note that the input shapes {sk}k ⊂M
do not lie onMJ in general. The polygonal spider connecting input shapes and Fréchet mean is
drawn in grey.

Let

U =

{
J∑

j=−J

αjqj

∣∣∣ J∑
j=−J

αj = 1

}

be the J dimensional subspace of RN containing the vertices qj with q−j being the reflection of
qj with the notational convention α0 = 0, q0 = 0. Then the orthogonal projection PEuc[p] ∈ U
for a point p ∈ RN is given by

PEuc[p] = arg min
q∈U

dist2(p, q)

where dist2(·, ·) is the squared Euclidean distance. As above the constraint q ∈ U can be
rephrased as q = arg minq̃∈RN{

∑
j αjdist2(qj, q̃) |

∑
j αj = 1}.

This formulation translates 1 − 1 to the local projection of a shell s ∈ M onto the local
submanifoldMε,J “spanned” by the principal variations {pεj}j and their geodesic reflections
{pε−j}j as illustrated in Fig. 4.9. First, in order to make sure the given shape s could be locally
represented within the submanifold, we scale s by defining sε = I(s̄, s, ρε) where

ρε :=
1

2

minj dist(s̄, pεj)

dist(s̄, s)
.

Note that ρε ∼ ε since dist(s̄, pεj) ∼ ε dist(s̄, si). Second, we compute a local projection as the
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best approximation of sε on the submanifoldMε,J , i.e. we define

Pεloc[sε]=arg min
q∈Mε,J

dist2(sε, q) , (4.19)

where dist2(·, ·) is the Riemannian distance onM. Finally, we rescale the local projection to
define an approximate projection Pε[s] = I(s̄,Pεloc[sε], 1/ρε) . Now, we take into account the
discrete geodesic calculus. As before, we set sε,K = IK(s̄K , s, ρε) and replace dist2(·, ·) by
W[·, ·] as well as pεj by pε,Kj in the definition of the local projection. In explicit define

Pε,Kloc [sε,K ] = arg min
q∈Mε,K,J

W[sε,K , q] , (4.20)

which is equivalent to

q = arg min
q̃∈M

{ J∑
j=−J

αjW[pε,Kj , q̃]
∣∣∣ J∑
j=−J

αj = 1
}
, (4.21)

for some α ∈ R2J and set the requested approximate projection

Pε,K [s] = IK(s̄K ,Pε,Kloc [sε,K ], 1/ρε) . (4.22)

Again as shown in [129] we obtain a rigorous relation of this nonlinear projection on the local
submanifoldMε,K,J and the classical Riemannian projection, i.e. we obtain

Pε,K [s]→ P [s]

for ε→ 0 and K →∞ (for instance with ε = N/K for a small N ∈ N. Let us emphasize that
the constrained optimisation problem incorporated in the projection Pε,Kloc does not require any
treatment of tangent vectors and is built on the rigid body motion invariant functional W.

Quasi Newton method and Lagrangian formulation. We solve the constrained optimisa-
tion problem Eq. (4.21) using a Quasi Newton method. As a reminder, sε is the local version of s
to be reconstructed, and q[α] is the projection on the local manifold, represented as the weighted
elastic average of principal variations pj .

To this end, we define the objective functional

J [α] = W[sε, q[α]] , (4.23)

for (α−J , . . . , α−1, α1, . . . , αJ) ∈ R2J and q = q[α] ∈ R3n as the (locally unique) minimiser of

q 7→ A[α, q] =
J∑

j=−J

αjW[pε,Kj , q] . (4.24)
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In order to apply a Quasi Newton scheme we have to evaluate the cost functional and its
gradient (∂αjJ [α])j=−J,...,−1,1,...,J . To this end let us consider the Lagrangian formulation of the
constrained optimisation problem Eq. (4.21).

1

2

3MJ

Given

G : R2J × R3n → R3n , (4.25)

G[α, q] := ∂qA[α, q] =
J∑

j=−J

αj W,2[pε,Kj , q] ,

the Euler–Lagrange condition on q is given by G[α, q] =

0 for fixed α (with α0 = 0). Hence we define the
Lagrangian

L : R3n × R2J × R3n → R (4.26)

L[q, α;µ] := W[sε, q] + G[α, q] · µ

where µ is the associated vector of Lagrange multipliers.
The solution of Eq. (4.21) is linked to a saddle point of

Eq. (4.26) and thus to the nonlinear system of equation

0 = D(q,α,µ)L[q, α;µ] , (4.27)

which leads to

0 =DqL[q, α;µ] = W,2[sε, q] +
J∑

j=−J

αjW,22[pε,Kj , q]·µ , (4.28)

0 =DαjL[q, α;µ] = W,2[pε,Kj , q]·µ , j = 1, . . . , J , (4.29)

0 =DµL[q, α;µ] =
J∑

j=−J

αjW,2[pε,Kj , q] , (4.30)

where W,22 denotes the Hessian with respect to the second argument. Here, Eq. (4.28) defines the
dual variable µ, Eq. (4.30) coincides with Euler–Lagrange condition of the constraint Eq. (4.25),
and by a classical result of constrained optimisation the right hand side of Eq. (4.29) returns
the derivatives of the cost functional J with respect to actual degrees of freedom αj . Thus, to
evaluate the derivative of the cost functional we first solve the nonlinear equation Eq. (4.30) for
q, the linear equation Eq. (4.28) for µ and then apply Eq. (4.29) to obtain

∂αjJ [α] = W,2[pε,Kj , q] · µ .
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Alternatively, one could directly solve Eq. (4.27) by means of Newton’s method with the
drawback that one has to compute third derivatives of W.

Due to the proper scaling with ρε in the definition of sε,K , the local projection in Eq. (4.20)
is supposed to lie in the convex Riemannian polyhedron with vertices (pε,Kj )j . Hence we have
αj ≥ 0 in practice which renders the minimisation of Eq. (4.24) numerically feasible.

4.4 Experiments

4.4.1 Datasets

To evaluate our proposed method, three datasets of different objects are used. The first one
is high resolution “cat” shapes undergoing non-rigid deformations (10 poses in total) taken
from [4]. Although cat data exhibit strong non-linear deformations, there might not exist much
articulations as seen in human body shapes. Therefore, we look at human subject performing
various poses and use totally 71 poses from [3] to study articulation movements at a very
high level. Moreover, another 30 high quality human alignments taken from [11] is used for
pose reconstruction purpose. Note that all the shapes used in our experiments are in dense
correspondence as provided and have the same mesh topology across different poses.

4.4.2 Principal variations

Two time-discrete shell PGA models (Fréchet mean and first five principal variations for K = 4)
learned on the Cats [4] and the SCAPE dataset[3], respectively, are shown in Fig. 4.11. The
principal variations are visualised by using the geodesic interpolation operator I(s̄, pj,±t) with
t = 3 to sample along the one dimensional principal geodesic and overlay the resulting shapes
with Fréchet mean.

In Fig. 4.12, the model compactness as a function of the number of retained modes for these
two models and the one learned on Dyna [11] are shown.

4.4.3 Shape reconstruction

Several qualitative examples of submanifold projection are shown in Fig. 4.13. The input shape
(gray) is projected onto the submanifold obtained by building a discrete PGA model using the
Dyna dataset. By varying the model dimensionality over J = 5, 11, 17, reconstructed shapes are
shown in yellow. The subtleties of the shape are correctly recovered as J increases, yielding a
smooth residual energy.

We evaluate the generalisation ability of our model in Fig. 4.15. We compare against [6] with
60 dimensions retained, the data-driven approach of [5] using all training shapes and the Shell
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Figure 4.10: TOSCA cats [4] and SCAPE [3] training data.

Figure 4.11: Time-discrete PGA models built on TOSCA cats [4] and SCAPE [3]. Mean shape
(orange) and first five principal variations (green).

PCA model (Chapter 3). Using only 20 dimensions, our model generalises almost as well as [5]
and outperforms the other two models substantially.
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Figure 4.12: Model compactness with respect to W for models built on the TOSCA cats, the
SCAPE dataset and a subset of Dyna dataset. Number of retained model dimensions on x axis,
proportion of variance captured on y axis.

Dataset n / J Offline Online

Fig. 4.11
SCAPE 71 / - 73 m -

TOSCA Cat 10 / - 66 m -
Fig. 4.13 Dyna 50009 29 / 10 21 m 70 s
Fig. 4.15 SCAPE 70 / 20 72 m 232 s

Table 4.1: Timings for model building and shape reconstruction using fixed K = 4, but different
numbers of training shapes n and principal variations J .

4.5 Summary

In this chapter, we have shown how to perform principal geodesic analysis in the space of discrete
shells. In doing so, we derived an alternate formulation of PGA that avoids performing any
operations in the tangent space and works directly with objects lying on the manifold. The
whole approach is based on an elastic energy functional measuring membrane and bending
distortion, so it is promising to interpolate and extrapolate between sparse sample shapes in a
physically-meaningful way (Challenge 3). The result is a physically-guided statistical shape
model, that is able to generalise across datasets containing large nonlinear articulations and
deformations (Challenge 2). The central tool - the projection onto a submanifold of discrete
shells - is well suited as the key ingredient in mesh editing or model fitting. Most importantly,
the whole framework does not require any alignment step to get rid of rigid body motion which
is notorious in shape modelling (Challenge 4).

In comparison to the original PGA model [79], which deals with a low dimensional medial
axis description, we consider high dimensional shape manifolds. Furthermore, we extend PGA
to the time-discrete setting and introduce a rigid body motion invariant distance measure. This
invariance is also a substantial advantage over the Shell PCA model proposed in the previous
chapter, which is based on vertex displacement and hence alignment-dependent. To this end,
Shell PCA model only allows for small deformations, i.e. mesh editing and motion tracking
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Figure 4.13: Qualitative visualisation of input shape (gray) projected onto model with (cols 2-4)
J = 5, 11, 17 dimensions. Col 5 shows residual energy of projection with J = 17.

applications are out of reach of this purely elastic PCA approach.
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Figure 4.14: Qualitative reconstructions of input shapes from SCAPE [3]. Top: ground truth;
bottom: reconstructions using J = N − 1 = 70.
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Figure 4.15: Leave-one-out evaluation of generalisation error on the SCAPE data set compared
to [5] (using all shapes), Lie body [6] (60 dimensions) and Shell PCA (Chapter 3).
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CHAPTER 5

GROUPWISE SHAPE CORRESPONDENCE

VIA FUNCTIONAL MAPS

5.1 Introduction

Computing dense correspondence for shapes in a collection (represented as discrete 3D meshes)
is a fundamental problem in computer vision research. It arises in a number of applications
including statistical shape modelling [24], face morphing [130], motion capture [131], perfor-
mance driven animation [132] and face transfer [97]. In essence, dense correspondence allows
a collection of 3D shapes to be treated as vectors, and facilitates subsequent analysis such as
Principal Component Analysis.

There are two distinct classes of dense correspondence problem. The first version of the
problem (which we term within-subject correspondence) is to compute correspondence between
scans of the same subject. This is a non-rigid registration problem which, in principle, has a well
defined correct solution. Given enough information, it should be possible to uniquely describe a
local region of one scan and find its corresponding region in another. A special case (and more
constrained version) of this problem is where the scans come from a motion sequence where
the shape non-rigidly deforms over time. In this context, temporal consistency means that dense
correspondence can be viewed as a tracking problem.

The second version of the problem (which we term between-subject correspondence) is
computing dense correspondence between scans of different subjects (i.e. faces with different
identities). This is a much harder problem and arguably not well defined. In general, correspon-
dence is a hypothesis of equivalence and defining the objective of the correspondence requires a
definition of equivalence. Defining a meaningful notion of equivalence may only be possible
in a sparse or low frequency sense. For example, sparse landmark points can be identified
across different shapes [133] or it may be meaningful to talk of correspondence between parts or
segments [134]. In this case, the correspondence in the remaining regions is interpolated (either
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explicitly or implicitly). An alternate view is to impose some external desirable criterion on the
correspondence. For example, we may require that the correspondence is smooth [24] or that it
is optimal with respect to an information theoretic measure (e.g. minimum description length
[64]).

In both within-subject and between-subject correspondence, another important distinction is
between pairwise and groupwise methods. Pairwise methods compute correspondence between
each shape in the collection and a reference shape. This includes all template-based methods.
To solve the problem in a different way, groupwise methods explicitly optimise such an objec-
tive function that measures the quality of the correspondences across the whole set of shapes
simultaneously. The advantage of this is that the result is not dependent on a choice of reference
shape or the order in which samples are processed. Furthermore, groupwise information can
help resolve ambiguities that would be present in pairwise correspondence. For a long time,
groupwise approaches to computing correspondence have had limited practical application. This
is because the size of the problem space grows very rapidly with the number of samples in the
set, leading to a very high dimensional nonlinear optimisation problem.

A recent paradigm shift in non-rigid shape analysis is based on the notion of “functional
maps”. The idea is to correspond real-valued functions on the mesh rather than points on the
mesh directly [46]. A functional map can be converted to a point-to-point correspondence and
they have recently been shown to perform very well for point-to-point shape matching [52, 53].
In this chapter, we pick up functional maps as representation to solve the problem of dense
correspondence for 3D shapes. Specifically, we propose a groupwise variant of functional maps.
The functional map representation overcomes the problem of the computational expense of
groupwise methods in two ways. 1). functional maps are of much lower dimensionality than
the mesh geometry themselves. We show in our experiments that functional maps of dimension
as low as 30 are enough for high quality correspondence between face meshes containing 250k
vertices. 2). functional maps can be composed meaning that, in our approach, only a minimal
subset of maps need to be optimised with the remainder maps being constructed by compositions
of these minimal subset of maps.

We apply our method to both between-subject and within-subject correspondence problems.
This includes high resolution, high quality static facial expression scans and, large non-linearly
deformed general objects, such as human bodies.

5.2 Review of functional maps

The eigenfunctions of the Laplace-Beltrami operator (manifold harmanics) of a 3D shape play
the role of the Fourier basis in the Euclidean space [135, 136]. Several papers have studied
consistent discretization of the Laplace-Beltrami operator [137, 138]. Taubin [135] made the
analogy between the classical signal processing theory and manifold harmonics, showing that
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(a) source (tr reg 000) (b) ground-truth map (c) target (tr reg 005)

(d) source (tr reg 000) (e) ground-truth map (f) target (tr reg 007)

Figure 5.1: Sample ground-truth functional maps between meshes on FAUST [7]. Maps are
computed using n = 100 eigenfunctions of Laplace-Beltrami operator. Top row shows a map
between a pair of shapes with small deformation, while bottom row shows a more deformed
case.

Figure 5.2: First 6 Laplace-Beltrami basis functions computed on a human body shape.

standard tools such as analysis and synthesis of signals in signal processing can be carried out on
manifolds.

Let T : M → N be a bijective mapping between manifolds M and N . Given a scalar
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function on M , f : M → R, we obtain a corresponding function on N , g : N → R, by
composition g = f ◦ T−1. The induced transformation TF : F(M,R) → F(N,R) is the
functional representation of the mapping T , where F(·,R) is a generic space of real valued
functions. We remark that knowledge of TF is equivalent to knowledge of T . And while T may
be a complicated mapping between surfaces, TF acts linearly between function spaces.

Let {φMi } and {φNi } be bases for F(M,R) and F(N,R) respectively (in the discrete case,
these are basis vectors as shown in Fig. 5.2). We follow Ovsjanikov et al. [46] and use as our
basis the eigenfunctions of the Laplace-Beltrami operator. Any function f : M → R can be
approximated as a linear combination of basis functions f =

∑n
i aiφ

M
i , where we use the first n

Laplace-Beltrami eigenfunctions as the basis. The functional mapping TF can be expressed in
terms of these bases as:

TF

(∑
i

aiφ
M
i

)
=
∑
j

∑
i

aicijφ
N
i , (5.1)

where C = cij is a possibly infinite matrix of real coefficients.
Given a pair of functions f : M → R and g : N → R, the correspondence between f and g

can be written simply as Ca = b with C being the functional representation of the map, a and
b the representation of f and g in the chosen bases of M and N . When C is unknown but a
number of corresponding functions on M and N are provided, C can be found given enough
constraints of type Cai = bi. This is called function preservation constraint.

5.3 Groupwise functional maps

In this section, we replace pairwise map inference with a groupwise objective function that
measures the quality of functional correspondence across the whole set of shapes. We show how
to optimise all maps simultaneously whilst guaranteeing inversion and transitivity constraints are
satisfied. A variant which enforces orthonormality of the maps as a hard constraint is presented.
Furthermore, a groupwise refinement step applying ICP in the embedded space is shown to
improve the correspondence quality, in particular, in terms of point-to-point correspondence.

5.3.1 Groupwise optimisation

Now consider a collection of shapes, i.e. a set of surfaces Mi (i ∈ 1 . . .m). If we compute
pairwise functional maps between all pairs of shapes, we ignore the context provided by the
collection as a whole. Previously, this has been addressed by post-processing the pairwise maps
to encourage cycles of compositions of maps to be close to the identity. Instead, we replace
pairwise map inference with a groupwise objective function that measures the quality of the
functional maps across the whole set of shapes simultaneously. We show how to optimise all
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Figure 5.3: Groupwise optimisation of functional maps are done on a minimal set. Initial maps
are edges in black on the right side, and unknown maps (in blue or red) could be obtained by
either using map inverse or map composition.

maps simultaneously whilst guaranteeing inversion and transitivity constraints are satisfied (i.e.
any cycle of maps will be guaranteed to be equal to the identity). Moreover, we describe a variant
which enforces orthonormality of the maps as a hard constraint.

We denote by Cj←i (or Cji for short) the functional map from shape i to j. We denote by
aip the low-rank representation of the pth function in the chosen basis of Mi with i ∈ 1 . . . s and
p ∈ 1 . . . t. The set of unknown functional map matrices is C = {Cij|i, j ∈ [1, . . . ,m] ∧ i 6= j}.

The groupwise objective function is as follows:

ε(C) =
∑
i

∑
j

∑
p

‖Cijajp − aip‖2
F (5.2)

This is quadratic in the unknown functional map matrices. It could be solved using linear least
squares with independent matrix variables. However, in order to strictly satisfy the constraint
that any cycle of compositions of maps is identity, we need to impose two constraints between
maps leading to a nonlinear optimisation problem.

First, we require that maps in either direction between a pair of views are the inverse of each
other:

∀i, j ∈ [1..s],Cij = C−1
ji . (5.3)

Second, they are subject to a transitivity constraint:

∀i, j, k ∈ [1..s],Cki = CkjCji (5.4)

This ensures that all 3-cycles are identity and, by construction, all n-cycles are also identity. See
Fig. 5.3 for an illustration.

If we optimise over all transformations and explicitly enforce these two constraints, then
this leads to a constrained optimisation with quadratic equality constraints, i.e. a non-convex
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QCQP optimisation problem. We propose instead to optimise over a minimal subset of the
transformations which allows us to express the problem as an unconstrained optimisation yet to
guarantee that all constraints are satisfied.

We optimise Ck1 for all k > 1, where shape 1 is an arbitrarily chosen reference shape. We
emphasise that the solution is independent of the chosen reference shape. In order to evaluate the
objective function in (5.2), we can compute the map between any pair of shapes i and j, in terms
of maps from shape 1 by using the construction:

Cji = Cj1C1i = Cj1C
−1
i1 . (5.5)

Hence, we can construct the set of maps C = {Cij|i, j ∈ [1, . . . ,m] ∧ i 6= j} from the reduced
set R = {Ck1|k ∈ [2, . . . ,m]} by applying the appropriate construction from (5.5) which we
denote C(R). In doing so, we guarantee that the constraints in (5.3) and (5.4) are satisfied.

5.3.2 Hard orthonormality constraint

The Stiefel manifold Vk(Rn) is the set of all orthonormal k-frames in Rn, i.e. the set of all n× k
orthonormal matrices:

Vk(Rn) = {X ∈ Rn×k|XTX = Ik}. (5.6)

If we require our functional map matrices to be orthonormal then Cij ∈ Vt(Rt), ∀i, j ∈ [1..s].
We can use the same optimisation strategy as in the previous section. Since the product of two

orthogonal matrices is still an orthogonal one, the construction in (5.5) ensures that any Cij will
be orthonormal, so long as Ck1 for all k > 1 is orthonormal. There is also an efficiency saving
in evaluating the objective function and its gradient since the matrix inverse can be replaced with
a matrix transposition. In order to guarantee that Ck1 for all k > 1 are orthonormal, we perform
optimisation over a product of m− 1 Stiefel manifolds:

arg min
R∈

∏s−1
i=1 Vt(Rt)

ε(C(R)). (5.7)

The objective function could be written as :

ε =
∑
i,j

‖CijPj −Pi‖2
F + α

∑
i,j

‖QjCij −CijQi‖2
F (5.8)

where the first term encodes the functional preservation constraint with Pi the corresponding
functions in shape i, and the second term enforces operator commutativity constraint with Qi

the functional representation of Laplacian operator. The weight α is to balance between the
two terms. Cij = Ci1C

T
j1 is the matrix representation of functional maps from shape j to i,

constructed from the minimal set of optimisation variables Ck1, for all k > 1.
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Algorithm 4 Groupwise functional maps optimisation

1: Input: a set of m triangular meshes {M1, . . . ,Mm}, dimension of functional map n ∈ N,
number of vertex N

2: Output: functional maps matrices Cji ∈ Rn×n, where 1 ≤ i, j ≤ m

3: // compute Laplacian-Beltrami basis for each shape
4: for i := 1 to m do
5: ΦMi = get LB basis(Mi, n)

6: end for
7: // compute shape functions DMi ∈ Rp×N, and project on basis
8: for i := 1 to m do
9: DMi = get feature functions(Mi)

10: PMi = project LB basis(DMi ,ΦMi)

11: QMi = get diag evals(Mi)

12: end for
13: // initialise pairwise functional maps with a chosen reference shape
14: Ci1 = get pair map(PMi , PM1)

15: // optimise groupwise functional maps using Manopt
16: Cij = get groupwise map(Ci1, P

Mi , QMi) using (Eq. 5.8), 1 ≤ i, j ≤ m

5.3.3 Groupwise refinement

There exists a natural transformation between functional maps and point-to-point map. Therefore,
one can consider improving a given functional map with the help of its associated point-to-point
map. Ovsjanikov et al. [46] use this observation to propose an iterative refinement scheme to
encourage an estimated functional map to be closer to a point-to-point map. The idea is to move
from computing functional map matrices based on coefficient vectors representing functions
on the surfaces to computing them directly from point correspondences (provided by nearest
neighbour matching in the embedded functional space). This procedure can be expressed as
classical Iterative Closest Point (ICP) algorithm, after S is determined via NN search:

εicp(C) = ‖CΦMj − SΦMi‖2
F (5.9)

This is an orthogonal Procrustes problem, which can be seen as a rigid alignment in the embedded
space.

If a shape collection is being analysed and it is believed that there is a point-to-point
correspondence between any pair of shapes then we can perform iterative refinement in a
groupwise manner. We do so by iterating between computing nearest neighbour correspondences
and updating the functional map matrices by optimising a groupwise objective function.

Groupwise functional map ICP:
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1. ∀i, j ∈ [1..s] ∧ i 6= j, compute nearest neighbour matches between columns of CijΦ
Mj

and ΦMi . Represent matches using a selection matrix Sij such that the nearest neighbour
of a column of CijΦ

Mj is found in the same column of SijΦ
Mi .

2. Recompute functional map matrices by solving the groupwise optimisation problem:

arg min
R

εicp(C(R)) (5.10)

where the objective function is given by:

εicp(C) =
∑
i

∑
j

‖CijΦ
Mj − SijΦ

Mi‖2
F (5.11)

3. Return to 1 until convergence.

Note that in step 2, the optimisation can be initialised using the previous estimates of the
functional map matrices (at first, these are the estimates using function preservation constraints).

5.3.4 Point-to-point correspondence

Ultimately, for applications such as face morphing, statistical modelling or motion capture, we
require a dense point-to-point correspondence. Functional correspondence can be converted to a
dense point-to-point correspondence in a straightforward manner. The naive approach is to pass
an indicator function through the map and select the point with maximal value. Concretely, to
find the point y ∈ N that corresponds to x ∈M , we chose y as the point at which g(y) obtains a
maximum, where g = TF (δx) and δx the delta function around x ∈M . This is computationally
expensive. A more efficient alternative is to perform nearest neighbour (NN) matching in the
embedded functional space.

Observe that the delta function δx has coefficients ai = φMi (x) in the basis of M . Hence,
given a matrix ΦM ∈ Rt×v, where v is the number of vertices, and a functional map matrix C,
the image of all delta functions centred at points of M is given by CΦM . Finding corresponding
maxima amounts to performing NN matching between the columns of CΦM and ΦN , i.e. in
t-dimensional space.

This approach has been proposed in the work of Ovsjanikov et al. [46] and we use the
same method for point-to-point maps for between-subject correspondence. We choose one of
the meshes to provide the reference topology, apply NN matching between each mesh and the
reference in the functional embedding space and use this correspondence to consistently remesh
each input mesh. The drawback of this approach is that correspondence obtained will not be
bijection. In other words, each point from one shape may not have a unique counterpart. In
addition, matches found in terms of nearest neighbour search in the embedded space is not
reliable.
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5.3.5 Implementation and optimisation

Optimisation on a product manifold of Stiefel manifolds is implemented with the Manopt toolbox
[139]. Specifically, groupwise cost objective function and the gradient w.r.t. the minimal set of
matrix variables are provided. The trust-regions solver is used to solve the manifold optimisation
problem. The weight α is set to be 1.0 in all cases. In our experiment, the optimisation problem
involving two 30× 30 matrices takes less than 50 seconds to converge on an Intel Core 3.40GHz.
Note that the optimisation problem is non-convex since the Stiefel manifold is not a convex set.
Hence, a good initialisation is important.

To initialise, we begin by solving the problem without orthogonality constraints, transform
each map Ck1 to its closest orthogonal matrix and then refine by performing manifold optimi-
sation of the groupwise objective function. Again, an alternative unbiased initialisation would
be to use identity matrices. A further alternative is to use each shape in turn as the reference
shape and then take the solution which gives lowest error overall (in other words, use a number
of different initialisations and pick the best result).

5.4 Choice of functions

Key to the functional map framework is the a set of functions that are assumed to be approximately
preserved between shapes. Depending on the applications, it is quite flexible to choose the
functions to be used. In this section, we first list several feasible candidate functions for general
shape matching, and then take faces as an example to design some face-specific functions.
Basically, each function can be seen to capture a different notion of equivalence between shapes.
The functional map framework attempts to satisfy all of these notions via the function preservation
constraint. In general, we aim to choose smooth functions that will be well approximated by the
low frequency basis provided by the truncated eigenfunctions of the Laplace-Beltrami.

5.4.1 General functions

Prior work on functional maps has almost exclusively used functions derived from intrinsic shape
properties. Many of these functions are appropriate for shape matching with deformations being
known to be approximate isometries [4].

Curvature We use mean (g) and Gaussian (h) curvature and some functions derived from
these intrinsic curvatures. Specifically, we follow [48] and use the logarithm of the absolute value
of the mean (i) and Gaussian (j) curvature. Shape index [140] is a continuous characterisation of
local surface shape and previous work [141] has shown that it is useful for face shape matching
problems. Shape index is derived from the principal curvatures and is shown in (k).

Shape descriptor Following the original work of Ovsjanikov et al. [46], we also use the
Wave Kernel Signature (l) and Heat Kernel Signature (m) to provide shape-dependent functions.
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Source'shape'and'texture' Intermediate'func4ons'

Shape5derived'func4ons'

Texture5derived'func4ons'

(a)' (b)' (c)' (d)' (e)'

(g)' (h)' (i)' (j)' (k)' (l)' (m)'

(o)' (p)' (q)' (r)' (s)' (t)' (u)'

(f)'

(n)'

(v)'

Figure 5.4: Candidate functions for face matching using functional maps framework. (See text
for details)

By varying the time parameter, these signatures provide a sequence of functions.
Landmarks If we are given landmark point correspondences, we can translate this knowl-

edge as functional constraints by considering distance functions to the landmarks or normally
distributed functions around landmarks.

Segmentations Similarly to landmarks, correspondences between parts or segments can
also induce functional correspondence in terms of distance or segment descriptors.

5.4.2 Face-specific functions

A prominent advantage of shape matching for faces over other shapes is the availability of
high-quality texture maps. We are not aware of any previous attempts to use texture-derived
functions for functional map estimation between meshes. For dense face correspondence, texture
provides a rich source of intrinsic face properties and correspondence cues.

Texture and edges First, there is the raw texture itself, i.e. we use the raw RGB channels
(p)-(r) as scalar functions on the mesh. For within-person correspondence, we expect this to
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remain exactly constant apart from changes in appearance due to lighting. The 3DRFE dataset
that we use was captured in a lightstage meaning that texture is diffuse albedo - an intrinsic
property of the surface. Between-person, we do not expect texture to remain constant although
there are still useful cues. For example, lips will be redder than the rest of the skin and the whites
of the eyes have a consistent colour between people. Nevertheless, it may be more appropriate to
preserve texture edges rather than texture itself. Intuitively, this will encourage features such as
the lips and eyebrows to have consistent boundaries. To do so, we apply an edge detector to the
texture in UV space and transfer the binary edges to mesh (a). To represent the edges using a
smooth function, we apply a geodesic distance transform to the edges (o) so that each vertex is
assigned a value corresponding to the geodesic distance to the closest texture edge vertex.

Facial segmentations In the same vein, texture provides a useful cue for segmenting a
face into semantically meaningful regions (f). One robust way to do this for faces is to use
a biophysically inspired colour transformation to identify non-skin regions. Tsumura et al.
[142] have shown that Independent Components Analysis can be used to estimate melanin
and haemoglobin maps from face textures. We show the two ICA channels in (b) and (c)
corresponding to melanin and haemoglobin respectively. The haemoglobin map can be used to
segment the lips. Further, by thresholding the relative error between the original colour values
and their reconstruction using two ICA channels, we can compute binary segmentations that
highlight eyebrows and eyes (i.e. non-skin regions). Another simple segmentation is threshold
the image saturation which allows the white of the eyes to be located (t). Segmentations can
either be used directly as indicator functions or transformed into smooth functions by computing
geodesic distance maps. For example, (u) shows geodesic from the right iris segment.

Fiducial landmarks Perhaps the most powerful use for texture is in the accurate detection
and matching of landmark points. Between-person, landmarks are fiducial points with anthropo-
metric meaning (manually or automatically labelled). The automatic labelling of such points in
images has recently received a lot of attention [133]. Applying a facial landmarking algorithm in
UV texture space or to a rendered image of the textured mesh, provides fiducial points that can
be mapped to the corresponding vertex (d). Since each landmark has the same meaning they are,
by design, groupwise consistent. For within-person correspondence, landmarks can be provided
by any local feature detector (e.g. SIFT). In (e), we show SIFT features detected in UV space
and mapped to the mesh.

Boundaries During face shape capture, certain regions of the face may not be captured.
For example, many capture methods do not accurately capture the interior of the mouth, interior
of the nostrils or the highly specular eye surface. These regions may be missing from the scan
or manually removed. The internal boundaries caused by these holes provides a useful cue for
correspondence. For example, in (n) we show a function derived from the mouth boundary
(geodesic distance from the closest mouth boundary point).
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5.5 Experiments

5.5.1 Evaluation on Face Datasets

Evaluation of dense face correspondence is difficult. Since there is no meaningful source of
“ground truth” correspondence, quantitative evaluation can only indirectly measure the quality
of the correspondence. For this reason, we focus on qualitative evaluation, although we also
provide a meaningful quantitative evaluation for within-person correspondence.

We use several datasets for our evaluation. For between-person correspondence we use the 10
out-of-sample meshes provided with the Basel Face Model [8]. These meshes have been put into
dense correspondence using non-rigid ICP fitting of a template mesh, allowing us to qualitatively
compare our correspondence to the original. We subsample the meshes to 6K vertices. For
within-person correspondence we use a subset of the 3DRFE [7] dataset. These models were
captured using a lightstage and are of very high quality. The resolution of each mesh is over
250K vertices and the texture is diffuse albedo, obtained using cross-polarised illumination.
These meshes have genus 1 as the mouth has been manually removed. We choose 6 scans of a
same person from BU3D [143] for a quantitative comparison. In all cases, we use functional
maps of dimension 30× 30.

Between-person correspondence. In order to evaluate between-person correspondence we
visualise texture transfer results allowing qualitative assessment of the correspondence quality. In
Figure 5.5 we compare texture transfer results for the pairwise version of our proposed method,
the groupwise version and non-rigid ICP [9]. Non-rigid ICP introduces some artefacts around
the eyes and eyebrows where the result lacks symmetry. The functional map results are improved
in the eye regions but show some artefacts around the lips, though the groupwise variant slightly
reduces these. We believe that the source of these errors is the reliance on nearest neighbour
matching in the functional embedding space, particularly as the deformations are non-isometric
in this case.

Within-person correspondence. We now evaluate within-person correspondence. Again,
in Figure 5.6 we provide qualitative evaluation via texture transfer and provide comparison with
non-rigid ICP [9]. Under large non-rigid deformations, non-rigid ICP introduces large artefacts
in the eyebrows and lips. Groupwise functional maps with simple nearest neighbour matching
improves in the eyebrow region but still shows problems in the lip region. Groupwise functional
maps with our proposed point-to-point conversion using filtered feature matches provides a
convincing texture transfer. Following [132] we can evaluate this correspondence quantitatively
under the assumption that texture remains constant under expression changes. By measuring
the variance of the colour at each vertex over the expression changes, we get a measure of
correspondence quality. We expect the variance to be zero under perfect correspondence. In
other words, a small value of the variance indicates a better correspondence. The variances
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texture 1 texture 2 texture 3

non-rigid ICP pairwise groupwise

2→ 1

3→ 1

Figure 5.5: Texture transfer results on BFM meshes [8]. Row 1: original textures. Rows 2 and 3:
textures transferred from shape 2 and 3 to shape 1 respectively. Col. 1: non-rigid ICP [9]; col. 2:
pairwise functional maps; col. 3: groupwise functional maps.

averaged over colour channels and vertices are reported in Table 5.1. The functional map methods
outperform non-rigid ICP, while requiring several orders of magnitude less running time. The
qualitative improvement of our feature match warping method is evident again in the quantitative
results.

Method Texture consistency Running time
Non-rigid ICP[9] .0103 6 hours
Ours (with NN) .0101 55 seconds
Ours (Sec.5.3.3) .0099 120 seconds

Table 5.1: Texture consistency and running time on 3DRFE subset

Visualising functional maps error. We visualise the error of correspondence by using a
SVD decomposition of the functional maps [144]. Three kinds of functional maps are compared:
ground truth map, pairwise map and groupwise map. Only the first two modes are shown. Facial
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texture 1 texture 2 texture 3

non-rigid ICP pairwise groupwise

2→ 1

3→ 1

Figure 5.6: Texture transfer results on 3DRFE [7]. Row 1: original textures. Rows 2 and 3:
texture transfer results from shape 2 and 3 to shape 1 respectively. Col. 1: Non-rigid ICP [9]; col
2: groupwise functional map with nearest neighbour point-to-point; col 3. groupwise functional
map with feature match warping.

regions undergoing large error are highlighted in the Fig. 5.7.
Comparing to pairwise map, the errors of groupwise variant are more local and more close

to ground truth error in locations. Note, groupwise method is applied on shapes of multiple
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Texture GT Pairwise Groupwise GT Pairwise Groupwise

Error	heat	map	(mode	1) Error	heat	map	(mode	2)

Figure 5.7: Visualising correspondence errors via SVD decomposition of the maps.

identities from [8], while only two of them used by the pairwise method are shown.

5.5.2 Evaluation on TOSCA dataset

In addition to shapes of human faces, our method can also be applied on general shapes such as
TOSCA [4] dataset. TOSCA contains 80 meshes representing humans and animals in a variety
of poses. The meshes appear in 9 categories with same topology. Per-vertex ground truth map
for each class is provided. We show the performance of our method with comparisons to other
methods in this section, both qualitatively and quantitatively.

Candidate descriptors We use both point descriptors and landmarks for the functional maps
computation. These include: Wave Kernel Signature (step = 100), and Wave Kernel Map for
landmarks (step = 130). For landmarks, we manually choose 3 landmarks for each class of
objects.

Evaluation measures. We provide a quantitative evaluation of our method based on the
predicted map, f : M1 → M2 with respect to a “ground truth” map, ftrue : M1 → M2. We
compute for every point, p on M1 in the ground truth correspondence the geodesic distance,
dM2(f(p), ftrue(p)), between its image f(p) and its true correspondence ftrue(p). We aggregate
the geodesic distances into a error measure:

Err(f, ftrue) =
∑
p∈M1

dM2(f(p), ftrue(p))

where dM2(f(p), ftrue(p)) is normalized by
√

(Area(M2))

Distributions of errors are plotted as well to show the performance of different methods.
X-axis represents a varying geodesic distance threshold, D, and the y-axis shows the average
percentage of points for which smaller than D (or called correspondence percentage).

Quantitative results. We show the performance of correspondence mapping in 5.8 and
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5.9. Our groupwise functional map outperforms pairwise functional map substantially. It
also outperforms baseline method CSP [65] by a large margin. Instead of recovering dense
correspondence directly, CSP first estimates the correspondence of a small number of sampled
landmarks using Farthest Point Sampling, and then interpolated them to dense ones. This is why
CSP does not perform well. Furthermore, when ICP refinement step is applied, both pairwise
and groupwise variant gain performance improvement. In particular, double-directional ICP
performs slightly better than single-directional ICP in groupwise refinement. Generally speaking,
groupwise ICP has similar performance than pairwise ICP, except for the case “Michael”.

Qualitative results. In Figure 5.10, we show the dense correspondence (same color meaning
correspondence) of several pairs of shapes from TOSCA. In each row, the source shape is shown
at the beginning. From left to right, correspondence of the target shape found by Pairwise
Functional Map ([46]), Groupwise Functional Map, and with additional ICP step are presented.
Our method significantly improves over pairwise version of functional maps, although the
difference of variants using ICP is very small.

5.6 Summary

In this chapter, we developed a groupwise extension to the functional maps paradigm. The
goal is to computing dense correspondence for a given set of 3D meshes. The method is
particularly suitable for non-rigid shapes. The deformations between them are expected to
be close to near-isometric ones, including facial expressions as an example. The map-based
representation overcomes many drawbacks of classical point-based methods. For example,
point-based representation easily leads to combinatorial NP-hard problem when the size of
meshes increases. Also, point-to-point correspondence may not exist in many scenarios and
hence soft or fuzzy correspondence were introduced. There are also many advantages when
comparing groupwise to pairwise ones. First, pairwise methods only make sense when two
similar shapes are considered. Second, results of pairwise methods are not consistent for multiple
shapes. In all, the proposition of groupwise functional maps alleviate these limits. The method
uses functional maps as a multi-scale, flexible, low-dimensional representation. The optimisation
improves the correspondence accuracy because it’s objective is groupwise. It also guarantees
cycle-consistency by map-construction which is computational cheap. To solve the optimisation,
Manopt toolbox is utilised. It also allows one to implement ICP-based refinement step easily
within the same framework.
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(a) Cat (b) Wolf

(c) Dog (d) Gorilla

(e) Horse

Figure 5.8: Comparison between the proposed method and the baseline approaches on TOSCA
(Part 1)
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(a) Centaut (b) David

(c) Michael (d) Victoria

Figure 5.9: Comparison between the proposed method and the baseline approaches on TOSCA
(Part 2)
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Source pFM gFM pFM+pICP gFM+gICP

Figure 5.10: Qualitative comparison between the proposed method and the baseline approaches
on TOSCA
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CHAPTER 6

APPLICATIONS OF STATISTICAL HUMAN

BODY MODELS

6.1 Introduction

As a variety of statistical human body models presented high quality results in literature, many
applications followed with successful performance in computer vision and computer graphics
area. For example, motion capture using MoCap markers and mesh editing applications are
highlighted in Sec. 6.2 and Sec. 6.3. Furthermore, we demonstrate a novel application of
estimating detailed human body shape and pose from 3D scan sequences in Sec. 6.4. Note also
that two different statistical models are used in this chapter: Shell PGA developed in Chapter 4
for Sec. 6.2 and Sec. 6.3, state-of-the-art vertex-based SMPL[26] model for Sec. 6.4.

6.2 Model Fitting via Soft Constraints

Marker-based motion capture (MoCap) is widely used to animate human characters in films and
games. In this section, an application of fitting the Shell PGA model to motion capture data
is presented by means of a soft penalty approach. In particular, this allows us to reconstruct
a discrete shell from (potentially noisy) input data from a motion capture device. In this
case, the input data is given as a vector of L sparse marker positions, i.e. x = (x`)`=1,...,L,
corresponding to vertex positions X`(s) on the mesh s. Knowing these correspondences, we
measure the mismatch of some discrete shell s ∈ M and the given landmarks by Fx[s] =∑L

`=1 ‖X`(s)− x`‖2
R3 . Following Chapter 4, we consider shell deformation energy W[s,P [s]]

as a prior for the identification of a reconstructed discrete shell. Hence, we seek a minimizer s of
the model fitting energy given by

W[s,P [s]] + γFx[s] (6.1)
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M

γ=0

γ=∞

x=(x`)`

R3L

Ploc[sloc]

P [s]

sloc
s

MJ

s∗

Figure 6.1: Right: Projection of an unseen shape s onto the model spaceMJ : scale s to sloc,
project sloc locally to Ploc[sloc] ∈ CJ , and finally rescale to get P [s] ∈MJ . Left: Model fitting
of s∗ driven by sparse landmarks X ∈ R3L depending on fitting parameter γ > 0.

for some weight γ > 0, which controls the strength of markers fitting. In other words, a large
value of γ will encourage exact matching of the markers and their correspondence of s. Please
refer to Fig. 6.1 for the visual illustration of model fitting.

Algorithm 5 Motion capture using Shell PGA model

1: Input: MoCap markers xf=1,...,F = (x`)`=1,...,L ∈ R3, average s̄, principal variations p−J,...,J ,
marker weight γ

2: Output: reconstructed dense shape sf=1,...,F

3: initialise P [sf=1] with average shape s̄
4: // optimise s for frames f = 2, . . . , F

5: for f := 2 to F do
6: minimising W[sf ,P [sf−1]] + γFx[sf ]
7: update P [sf ] by projecting sf on p−J,...,J
8: re-estimate sf using (Eq. 6.1)
9: end for

For the numerical solution of this problem, we make use of the following alternating scheme
(based on the initial guess P [s] = s̄ or using temporal information): First, we minimise Eq. (6.1)
in s for fixed P [s]. If necessary, we re-compute P [s] (see Sec. 4.3.4) and go back to the first step.
In our experiments this scheme quickly converges and only very few iterations already give very
satisfactory fitting results. In practice, we use two iterations for the results shown.
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Figure 6.2: Qualitative results of fitting to motion capture data. Frames from original sequence
(top) shown with corresponding reconstruction (bottom).

Figure 6.3: Comparison of reconstruction from motion capture data with the MoSh model [10].
Although MoSh (top) is trained on more than 5,000 scans and uses an additional skeleton model,
our method with K = 4 (bottom) obtains similar results using 10 principal variations only.

105



Qualitative results of model fitting. In Figures 6.2 and 6.3 we show qualitative results
of fitting to 41 markers in sequences from the CMU mocap dataset and 89 markers from MPI
MoSh dataset [10]. Fig. 6.2 shows the result in which the learnt body model has quite different
geometry to that of the performer. Note that the video frames are just shown for comparison - we
use only the 3D markers positions as input. Our fitted model is still able to capture the dynamic
poses of the performance.

In Fig. 6.3 we compare against the method [10]. It should be noted that their method uses
a model of substantially higher complexity than ours. In particular, it is trained on 3,803 body
scans in neutral pose and 1,832 body scans in dynamic poses and uses a 19 parameter skeleton
model and retains up to 300 dimensions of the statistical deformation model (10 used in Fig. 6.3).
Our result is obtained using a model trained on 20 scans of a single person (chosen to match the
body shape of the performer), is entirely mesh-based (we have no articulation model) and we
also use only 10 principal variations (J = 10). Nevertheless, our results are qualitatively very
similar to [10].

γ = 0.1

γ = 1.0

γ = 5.0

Figure 6.4: Selected frames to demonstrate the effect of marker weight (Top: 0.1; middle: 1;
bottom: 5). Red: model correspondence; Green: MoCap markers.

Effect of parameter γ. To analyse the effect of γ which controls the strength of markers
fitting term in our application, a series of values for γ are tested in the model fitting process.
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Several frames are selected and shown in Fig. 6.4 for illustrations. As γ gets bigger, we can see
that MoCap markers (in red) and the model correspondence (in green) are getting closer, while
the downside is that it can also distort the model. For example, in face and arm elbows areas we
can observe some undesired artefacts. Therefore, it is vital to choose a suitable γ for nice results.
In our model fitting experiments, we empirically choose γ = 0.5 to have a trade-off between
marker closeness and overall model quality.

50021

50002

50009

Figure 6.5: Selected frames to show the results of fitting different characters to a “Dance”
sequence. Characters from top to bottom correspond: 50021, 50002, and 50009, from Dyna [11]
dataset.

Fitting with different characters. Given some motion capture data, the model fitting pro-
cess is quite robust and not restricted to the underlying identities of the performer. Theoretically,
we can fit the model learned from an arbitrary character to the marker data, provided that the
correspondence between model mesh and markers are determined in a meaningful way. Indeed,
we consider this to be a very nice property for animating motion capture data with a chosen
character.

In Fig. 6.5, we show such a comparison of fitting three different characters to the same
“dance” sequence. The reconstructed meshes in each case look physically valid and retain the
character details of a high level thanks to the efficient multi-resolution optimisation scheme.
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6.3 Mesh Editing via Hard Constraints

The model we learned can also be used for physically plausible model-constrained mesh editing.
Assume we are given a discrete PGA model and a set of handle vertex positions. Now, one
positions the handle vertices manually and asks for a shell satisfying the new handle positions
strictly or approximately while being a physically valid deformation of a shell lying on the
statistical submanifold. Using the submanifold projection introduced in Section 4.3.4, we define
this shell as the minimiser s of the energy

W[s,P [s]]

subject to the constraint positions of the deformed handle vertices. Thus, we ask for the “closest”
(in terms of the elastic energy functional W) discrete shell s to the nonlinear submanifold
associated with the dominant J modes of variation of our training data. Taking into account
the elastic energy functional as a dissimilarity measures ensures once again that membrane and
bending distortion are taken into account and is consistent with the involved local projection.
Depending on the application one can either regard s or P [s] as a solution. Indeed, s exactly
obeys the prescribed handle vertex positions but s /∈ MJ in general, whereas P [s] ∈ MJ

and can be represented by the 2J weights αj but the constraint of the prescribed handle vertex
positions is usually fulfilled only approximately. Note that this mesh editing too comes with a
selection of a particular representative s from its equivalence class [s], which is determined by
the handle vertex positions (as long as there are at least 3 handle vertices not lying on a line).

We emphasise that the proposed mesh editing method is different from those classical editing
methods, where only initial mesh and a set of target handles positions are provided. More like
the work of [5], the edited mesh is dependent on the feasible deformation space learned from
the training data. Concretely, the space is well-captured with our submanifold in terms of a set
of J principal variations. Fig. 6.6 shows a comparison of our approach to four classical mesh
editing methods and a very recent data-driven approach [5]. The challenging configuration of
handles causes classical methods to fail. Gao et al. obtain a plausible body pose but lose details,
cause the arms to thin and the back to curve and deform the head. Our result preserves details
and retains plausible arms and head and a straight back. Note though that the thickening of the
left foot is an artefact.

In Fig. 6.7, we show an example of mesh editing using the SCAPE dataset. The methods
[14] and [15] produce visible distortions due to large rotations. Results of [5] and [16] show
plausible mesh deformations, but do not capture sufficient details. Our result outperforms these
methods in both producing physically valid deformation and retaining high quality details.

To obtain the desired result of the edit, it might be necessary to take into account sufficiently
many handles as indicated in Fig. 6.8. Here, we consider the cat model first with five handles
and fit to modified handle positions in which the tail tip is moved. To minimise in particular the
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Figure 6.6: Comparison of mesh editing results. Row 1, cols 2-5: [12], [13], [14], [15]. Row 2,
cols 1-2: [5]. Row 2, cols 3-4: Ours (with K = 4).

Figure 6.7: Comparison of deformation results using the SCAPE dataset. (a) input shape, (b)
[14], (c) [15], (d) [5], (e) [16], (f) Ours.

bending energy our method significantly bends the whole body. This can easily be prevented by
adding a sixth handle on the back of the cat (cf Fig. 6.8, col. 3-4).
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Figure 6.8: Mesh editing with five (col. 1-2) vs. six (col. 3-4) handle positions to be fitted, where
the handle at the tail is shifted.

Dataset n / J Offline Online
Fig. 6.6 SCAPE 71 / 20 73 m 919 s
Fig. 6.8 TOSCA Cat 10 / 5 66 m 154 s
Fig. 6.2 Dyna 50009 29 / 10 21 m 100 s
Fig. 6.3 Dyna 50021 20 / 10 99 m 321 s

Table 6.1: Timings for motion capture and mesh editing with K = 4, but different numbers of
training shapes n and principal variations J .

6.4 Human Body Shape Estimation from Clothed Sequence

6.4.1 Introduction

We address the problem of estimating the body shape of a person wearing clothing from 3D scan
sequences or visual hulls computed from multi-view images. Reliably estimating the shape under
clothing is useful for many applications including virtual try-on, biometrics, and fitness. It is also
a key component for virtual clothing and cloth simulation where garments need to be synthesised
on top of the minimally-clothed body. Furthermore, most digital recordings of humans are done
wearing clothes and therefore automatic methods to extract biometric information from such
data are needed. While clothes occlude the minimally-clothed shape (MCS) of the human and
make the task challenging, different poses of the person provide different constraints on the
shape under the clothes. Previous work [17, 145] exploits this fact by optimising shape using
different poses. They use the statistical shape model SCAPE [3] that factorises human shape into
subject identity and pose. The main limitation of such approaches is that only the parameters of
the statistical model are optimised and so the solutions are constrained to lie on the model space.
While statistical models provide powerful constraints on the human shape, they are typically
overly-smooth and important identity details such as face features are lost. More importantly,
constraints such as “the cloth garment should lie outside the body shape surface” are difficult to
satisfy when optimising model parameters. This is because shape deformations in most statistical
body models are global, so a step in model space that, for example, shrinks the belly might have
the “side effect” of making the person shorter. Therefore, we propose a novel method to estimate
the MCS, that recovers accurate global body shape as well as important local shape identity
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details. Our hypothesis is that several poses of a person wearing the same clothes provide enough
constraints for detailed body shape capture. Moreover, if identity details are visible, e.g. the face,
the method should capture them.

To do so, we propose to minimise a single-frame objective function that (i) enforces the scan
cloth vertices to remain outside of the MCS, (ii) makes the MCS tightly fit the visible skin parts,
and (iii) uses a robust function that snaps MCS to close-by cloth vertices and ignores far away
cloth points.

In contrast to previous work, where only model shape parameters are optimised, we directly
optimise the N = 6890 vertices of a template in a canonical “T” pose (unposed template).
This allows us to capture local shape details by satisfying the objective constraints. To satisfy
anthropometric constraints, we regularise the optimisation vertices to remain close to a statistical
body model. We use SMPL [26], a publicly available vertex-based model that is compatible with
standard graphics pipelines. While this formulation has a larger number of variables to optimise,
we show that it leads to more accurate and more detailed results.

While simple, the proposed single-frame objective is powerful, as it can be adapted to
different tasks. To leverage the temporal information one would like to optimise all scans in the
sequence at once. However, given high resolution scans, this is computationally very expensive
and memory intensive. Hence, we first register/align all scans by deforming one template to
explain both, skin and cloth scan points. These cloth alignments are obtained by minimising
a special case of the single-frame objective treating all scan vertices as skin. Since the model
factors pose and shape, all cloth alignment templates live in a common unposed space; we call
the union of these unposed alignments the fusion scan. Since the cloth should lie outside the
body for all frames we minimise the single-frame objective using the fusion scan as input and
obtain an accurate shape template (fusion shape) for the person. Finally, to obtain the pose and
the time varying shape details, we optimise again the single objective function using the fusion
shape as a regulariser. The overview of the method is described in Fig. 6.9. The result is a
numerically and visually accurate estimation of the body shape under clothing and its pose that
fits the clothed scans.

To validate our approach we use an existing data set [17] and collected a new data set (BUFF:
Bodies Under Flowing Fashion) that includes high resolution 3D scan sequences of 3 males and
3 females in different clothing styles. We make BUFF publicly available for research purposes at
http://buff.is.tue.mpg.de/. BUFF contains in total 11, 054 high resolution clothed
scans with ground truth naked shape for each subject. Qualitative as well as quantitative results
demonstrate that our method outperforms previous state of the art methods.

6.4.2 SMPL Body Model

SMPL [26] is a body model that uses a learned rigged template T with N = 6890 vertices. The
vertex positions of SMPL are adapted according to identity-dependent shape parameters and
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a b c d e

Figure 6.9: a) Cloth alignments b) Unposed alignments c) Fusion scan d) Fusion shape e) Posed
and tracked shape. Overview: three example frames are shown. Notice the match in the cloth
wrinkles between posed a) and unposed b) alignments. Different time frames provide different
constraints in the unposed space. The fusion scan is the union of the frame wise unposed
alignments. Colour code indicates variance for that region. From the fusion scan c) we obtain
the fusion shape d).

the skeleton pose. The skeletal structure of the human body is modelled with a kinematic chain
consisting of rigid bone segments linked by n = 24 joints. Each joint is modelled as a ball
joint with 3 rotational Degrees of Freedom (DoF), parametried with exponential coordinates ω.
Including translation, the pose θ is determined by a pose vector of 3× 24 + 3 = 75 parameters.

To model shape and pose dependent deformations SMPL modifies the template in an additive
way and predicts the joint locations from the deformed template. The model, M(β,θ) is then

M(β,θ) = W (T (β,θ), J(β),θ,W) (6.2)

T (β,θ) = Tµ +Bs(β) +Bp(θ) (6.3)

where W (Tµ,θ,J) : R3N × R|θ| × R3K 7→ R3N is a linear blend skinning function that takes
vertices in the rest pose Tµ, joint locations J, a pose θ, and the blend weights W, and returns the
posed vertices. The parameters Bs(β) and Bp(θ) are vectors of vertex offsets from the template.
We refer to these as shape and pose blend shapes respectively. We useM to refer to the mesh
produced by SMPL. Note that this is different from M , which only refers to the vertices. See
[26] for more details.

6.4.3 Method

Our goal is to estimate the naked shape and pose of a subject from a sequence of clothed scans
{S}k. If the scans have color information, we use it to split the scan vertices into two sets: the
skin (Sskin) and the cloth (Scloth), otherwise we consider all vertices as cloth (Scloth = S). Here
we use the segmentation method in [146]. The outputs of our method are: a personalised static
template shape TFu, the per frame poses θk, and the per frame detailed template shapes Tk

Est.
Ideally, pose dependent shape changes should be explained by TFu and the pose deformation
model; however, in practice models deviate from real data. Therefore, we allow our result Tk

Est

to slightly vary over time. This allows us to capture time changing details, e.g. facial details,
present in the data, which the model can not represent.
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Figure 6.10: Skin term weights. a) alignment segmentation (red: skin, blue: cloth) b) geodesic
distance to the closest cloth vertex on the alignment c) broken result with unsmooth neck and
arms d) smooth result.

Given a single scan we obtain the shape by minimising a single-frame objective function that
constrains the scan cloth points to be outside of the body, and penalises deviations from the body
to skin parts. However, estimating the shape from a single scan is an under-constrained problem.
Fortunately, when all the information in a sequence is considered, the underlying shape is more
constrained, as different poses will make the cloth tight to the body in different parts. In order to
exploit such rich temporal information we first bring all input scans into correspondence. As
a result we obtain a set of posed registrations and unposed template registrations (see Fig. 6.9
a and b). The union of the unposed templates creates the fusion scan (Fig. 6.9 c). We use it to
estimate a single shape, that we call the fusion shape (Fig. 6.9 d). Since all temporal information
is fused into a single fusion scan, we can estimate the fusion shape using the same single-frame
objective function. Using the fusion shape template as a prior, we can accurately estimate the
pose and shape of the sequence. In Fig. 6.9 we show the different steps of the method. The
results of each stage are obtained using variants of the same single-frame objective.

We define the single-frame objective function as:

E(TEst,M(β, 0),θ;S) = λskinEskin + Ecloth + λcplEcpl + λpriorEprior, (6.4)

where Eskin is the skin term, Ecloth is the cloth term, Ecpl is the model coupling term and Eprior

includes prior terms for pose, shape, and translation. M(β, 0) = Tµ +Bs(β); Tµ is the default
template of the SMPL model, and β are the coefficients of the shape space, see Eq. (6.3). Next
we describe each of the terms.

Skin term: We penalize deviations from the model to scan points labelled as skin si ∈ Sskin

(see Fig. 6.10). A straightforward penalty applied to only skin points creates a discontinuity at the
boundaries, which leads to poor results (Fig. 6.10 c). In order to make the cost function smooth,
we first compute the geodesic distance of a point in the alignment to the closest cloth point, and
we apply a logistic function to map geodesic distance values between 0 and 1 (Fig. 6.10 b). We
name this function g(x) : R3 7→ [0, 1]. The resulting value is propagated to the scan points by
nearest distance, and used to weight each scan residual. This way, points close to skin-cloth
boundaries have a smooth decreasing weight. This effectively makes the function smooth and
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robust to inaccurate segmentations (Fig. 6.10 d).

Eskin(TEst,θ;S) =
∑

si∈Sskin

g(si)ρ(dist(si,M(TEst,θ))), (6.5)

where dist is a point to surface distance, and ρ(·) is Geman-McClure penalty function. Note
that dist() is computing the closest primitive on the meshM(TEst,θ), triangle, edge or point;
analytic derivatives are computed accordingly in each case.

Cloth term: The cloth objective consists of two terms: Ecloth = λoutsideEoutside + λfitEfit.
The outside term penalises cloth points penetrating the mesh and the fit term encourages the
mesh to remain close to the cloth surface. This is in contrast to previous work [17] that assumes
a closed scan and pushes the model inside. Since scans are not closed surfaces we just penalise
cloth points penetrating our closed registration surface. Therefore, the approach is general to
point clouds. The outside term is mathematically the sum of penalties for every scan point
labelled as cloth s ∈ Scloth that penetrates the shape mesh:

Eoutside(TEst,θ;S) =
∑

si∈Scloth

δidist(si,M(TEst,θ))2, (6.6)

where δi is an indicator function returning 1 if the scan point si lies inside the mesh and 0
otherwise. The activation δi is easily obtained by computing the angle between the mesh surface
normal and the vector connecting the scan vertex and the closest point in the mesh. Minimisation
of the outside term alone can make the shape excessively thin. Hence, the fit term Efit is used to
maintain the volume of the naked model. Every cloth scan vertex pays a penalty if it deviates
from the body. Since we want to be robust to wide clothing, we define Efit as a Geman-McClure
cost function. With this robust cost function, points far away (eg. points in skirt or wide jacket)
pay a small nearly-constant penalty. The resulting cloth term is illustrated in the left part of
Fig. 6.11.

Coupling term: Optimising only Eskin and Ecloth results in very unstable results because no
human anthropometric constraints are enforced. Therefore, we constrain the template TEst to
remain close to the statistical shape body model

Ecpl(TEst,M(0,β)) = ‖diag(w)(TEst,e −M(0,β)e)‖2 (6.7)

where the diagonal matrix diag(w) simply increases the coupling strength for parts like hands
and feet where the scans are noisier. Coupling is performed on edges indicated by underscript e.
Since we are jointly optimising TEst, and β, the model of the shape is pulled towards TEst and
vice versa. The result of the optimisation is a detailed estimation TEst and a model representation
of the shape β.

Prior term: The pose is regularised with a Gaussian prior computed from the pose training
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Figure 6.11: Left: Cloth term. The x-axis is the signed distance between s ∈ Scloth and
M(TEst,θ). Points inside (negative) have a quadratic penalty, while points outside are penalised
using a robust Geman-McClure function. Right: Root mean squared error and standard deviation
between single-frame estimations and the ground truth. Results have significant dispersion
depending on pose. (Results for subject 00005, motion “hips” and clothing style “soccer”.)

set of [26]. Specifically we enforce a Mahalanobis distance prior on the pose:

Eprior(θ) = (θ − µθ)TΣ−1
θ (θ − µθ) (6.8)

where the mean µθ and covariance Σθ are computed from the pose training set. A similar prior
can be enforced on the shape space coefficients β but we found it did not make a significant
difference.

To optimise the single-frame objective we compute the derivatives using the auto-differentiation
tool Chumpy [147]. We use the “dogleg” gradient-based descent minimisation method [148].

The problem with the single-frame objective is two fold: the temporal information is disre-
garded and the frame wise shape changes over time depending on the pose. This can be seen
in the right part of Fig. 6.11. The straightforward approach is to extend the single-frame objec-
tive to multiple frames and optimise jointly a single TEst, β and the Nframes poses {θk}Nframes

k=1 .
Unfortunately, our scans have around 150, 000 points, and optimising all poses jointly makes
the optimisation highly inefficient and memory intensive. Furthermore, slight miss-alignments
in pose make the shape shrink too much. Hence, we propose an effective and more efficient
solution. We first sequentially register all the scans to a single clothed template. For registration
we use the single-frame objective function with no cloth term. From this we obtain a template
clothed per frame Tk

cloth. The interesting thing is that the set of Tk
cloth templates contain the

non-rigid cloth motion with the motion due to pose factored out, see Fig. 6.9. The naked shape
should lie inside all the clothed templates. Hence we gather all templates and treat them as a
single point cloud that we call the fusion scan SFu = {Tk

cloth}Nframes
k=1 . Hence, we can easily obtain
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a single shape estimate by using again the single-frame objective

TFu = arg min
TEst,β

E(TEst,M(β, 0), 0;SFu). (6.9)

The obtained fusion shapes are already quite accurate because the fusion scan carves the volume
where the naked shape should lie.

Finally we use the fusion shape to perform tracking regularising the estimated shapes
to remain close to the fusion shape. We achieve that by coupling the estimations towards
the fusion shape instead of the SMPL model shape space. So the coupling term is now
Ecpl(TEst,M(0,β)) 7→ Ecpl(TEst,TFu). Detailed shapes are obtained minimising

Tk
Est = arg min

TEst,θ
E(TEst,TFu,θ;Sk). (6.10)

6.4.4 Datasets

In this section we present our new BUFF dataset. We start by introducing the previous dataset.
INRIA dataset. The INRIA dataset [17] consists of sequences of meshes obtained by

applying a visual hull reconstruction to a 68-color-camera (4M pixels) system at 30fps. The
dataset includes sparse motion capture (MoCap) data of 6 subjects (3 female, 3 male) captured
in 3 different motions and 3 clothing styles each. The texture information of the scans is not
available. Fig. 6.12 a) and b) show frames from the dataset. As shown in Fig. 6.12 c) and d),
their statistical body model does not capture the individual details of the human shape. The main
drawback of this “ground truth shape” is that it biases the evaluation to the model space. All
recovered details, that fall outside the model, will be penalised in the quantitative evaluation.
Alternatively, one could compare the obtained shape directly with the visual hull. Unfortunately,
visual hulls are not very accurate, sometimes over-estimating, sometimes under-estimating the
true shape. While relevant for qualitative evaluation of the shape estimates, we believe that this
dataset is limited for quantitative evaluation. This motivated us to create BUFF, which preserves
details and allows quantitative evaluation of the shape estimation.

BUFF. To create BUFF, we use a custom-built multi-camera active stereo system (3dMD
LLC, Atlanta, GA) to capture temporal sequences of full-body 3D scans at 60 frames per second.
The system uses 22 pairs of stereo cameras, 22 colour cameras, 34 speckle projectors and arrays
of white-light LED panels. The projectors and LEDs flash at 120fps to alternate between stereo
capture and colour capture. The projected texture pattern makes stereo matching more accurate,
dense, and reliable compared with passive stereo methods. The stereo pairs are arranged to give
full body capture for a range of activities, enabling us to capture people in motion. The system
outputs 3D meshes with approximately 150K vertices on average. BUFF consists of 6 subjects, 3
male and 3 female wearing 2 clothing styles: a) t-shirt and long pants and b) a soccer outfit, see
Fig. 6.13. The sequence lengths range between 4 to 9 seconds (200-500 frames) totaling 13,632
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a) b) c) d)

Figure 6.12: INRIA Dataset: a) and b) scan samples; c) estimated “ground truth” shape for b); d)
overlay of b) and c).

Figure 6.13: BUFF Dataset: To validate our method we captured a new dataset including 6
subjects wearing different clothing styles and different motion patterns.

3D scans. As shown by previous state of the art methods [145], skin colour is a rich source of
information. We thus include texture data in our dataset. All subjects gave informed written
consent before participating in the study. One subject did not give permission to release their
data for research purposes. Consequently, the public BUFF dataset consists of 11,054 scans.

In order to estimate the “ground truth” shapes in our dataset we capture the subjects in
“minimal clothing” (tight fitting sports underwear). Participants performed an “A-T-U-Squat”
motion (first row of Fig. 6.14). For all frames, we use our method to fit the data considering all
vertices as “skin” . We obtain N template meshes Ti

µ, which do not perfectly match, because the
pose and the shape are not perfectly factorised in the SMPL model [26]. We define the TGT as
the mean of the estimates of all frames.

We quantitatively estimated the accuracy of our “ground truth” MCS estimations. More than
half of the scan points are within 1.5mm distance of TGT and 80% closer than 3mm. Because
the scan point cloud has some noise (e.g. points of the scanning platform, poorly reconstructed
hands, hair,...), we believe the computed TGT provides an accurate explanation of the subjects
“minimally clothed shape”. In the bottom row of Fig. 6.14 we qualitatively show the visual
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Figure 6.14: Top row: Subject 03223 performing the “A-T-U-Squat” motion in “minimal
clothing”. These scans are used to compute the ground truth MCS TGT. Bottom row: triplet of
scan, estimated ground truth model and both overlayed (frame 000150). The proposed ground
truth shape captures the details present in the scan point cloud.

accuracy of the computed ground truth MCS.

6.4.5 Experiments

In this section we present the evaluation measures and the obtained qualitative and quantitative
results.

Evaluation on INRIA dataset. We evaluate our results quantitatively on pose estimation,
and qualitatively on shape estimation in the INRIA dataset [17]. We estimated the shape for all
tight clothes sequences. To initialised the pose we use the automatically computed landmarks of
[149]. We compare the MoCap marker locations to the corresponding vertices of our results and
[17]. 10 frames sampled evenly from the first 50 frames of each sequence are used to obtain 10
correspondence sets. In Fig. 6.15 we report the average errors for all frames and correspondence
sets; our method achieves state of the art results in pose estimation. In the first row of Fig. 6.16
we present qualitative results for the INRIA dataset. Our results are plausible estimates of
minimally-clothed shapes. In the second row of Fig. 6.16 we qualitatively compare our results to
previous work on the dancer sequence from [18]. Our results visually outperform previous state
of the art. Results are best seen in the video included at http://buff.is.tue.mpg.de/.

Evaluation on BUFF dataset. To quantitatively evaluate the results in BUFF, we compare
the estimated body shapes with the computed ground truth meshes. We define the “registration
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t-shirt, long pants soccer outfit Avrg.
tilt twist left 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
[17] 17.29 18.68 13.76 17.94 17.90 15.42 16.77 16.96 18.52 20.41 16.40 17.27
fusion mesh 2.58 2.89 2.39 2.53 2.43 2.38 2.50 2.63 2.37 2.28 2.28 2.47
detailed 2.52 2.83 2.36 2.44 2.27 2.31 2.44 2.59 2.28 2.17 2.23 2.40
hips 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
[17] 21.02 21.66 15.77 17.87 21.84 18.05 22.52 16.81 19.55 22.03 17.54 19.51
fusion mesh 2.81 2.71 2.66 2.66 2.54 2.65 2.65 2.63 2.58 2.50 2.57 2.63
detailed 2.75 2.64 2.63 2.55 2.40 2.56 2.58 2.59 2.50 2.38 2.51 2.55
shoulders mill 00005 00096 00032 00057 03223 00114 00005 00032 00057 03223 00114 Avrg.
[17] 18.77 19.02 18.02 16.50 18.15 14.78 18.74 17.88 15.80 19.47 16.37 17.59
fusion mesh 2.56 2.92 2.74 2.46 2.42 2.69 2.89 2.87 2.37 2.44 2.58 2.63
detailed 2.49 2.85 2.72 2.37 2.26 2.59 2.83 2.82 2.28 2.33 2.51 2.55

Table 6.2: Numerical results for the estimated naked shapes. We report the root mean squared
error in millimeters of point to surface distance between the posed GT mesh and the method
result. The best value is highlighted in bold.
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Figure 6.15: Pose estimation accuracy on INRIA dataset. Left: Percentage of landmarks with
error less than a given distance (horizontal axis) in mm. Right: per frame average landmark error.
EHBS is [17].
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Figure 6.16: Top: Qualitative results on the INRIA dataset; scan (pink), our result. Bottom:
Qualitative comparison on Dancer sequence [18]. From left to right: scan, Wuhrer et al. [19],
Yang et al. [17], our result.
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error” of the estimated body shape as the scan-to-model distance with respect to the ground-truth
MCS. Given a result mesh S, we optimise for pose θ so that the posed TGT best fits S. Then
the error between S and the posed TGT is computed as the Euclidean distance between each
vertex in TGT and its closest point on the surface S. In Tab. 6.2 we show the numerical results
obtained by [17], our fusion mesh, and our detailed mesh. The results obtained with our method
systematically outperform the best state of the art method. In Fig. 6.17 we show qualitative
results on the pose estimations. Our method properly recovers the scan pose, and visually
outperforms [17], especially in elbow and shoulder estimations. In Fig. 6.18 we show qualitative
results of the shape estimations. The proposed fusion shape accurately recovers the body shape,
while the detailed shape is capable of capturing the missing details. While the detailed shape
is visually closer to the ground truth, quantitatively, both results are very similar, see Tab. 6.2.
In order to evaluate the robustness of the method when skin/cloth segmentation is not available
we evaluate our method labelling the scans of BUFF as all cloth. While the obtained shapes are
less detailed, they are still accurate. The obtained mean error is ≈ 3mm (all cloth) compared to
≈ 2.5mm (detailed) when using our proposed full method.

Computation time and parameters. The single-frame objective computation takes ∼10
seconds per frame, fusion mesh is computed in ∼200 seconds. The detail refinement takes ∼40
seconds per frame. Sequences are computed in parallel and computations are executed on an
3GHz 8-Core Intel Xeon E5. Shapes on BUFF were estimated using λskin = 100, λoutside = 100,
λfit = 3 and λcpl = 1. For INRIA data we decreased the fit term λfit = 1 to be more robust to
wide clothing.
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Figure 6.17: Qualitative pose estimation results on BUFF dataset. Left to right: scan, Yang et al.
[17], our result.
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Figure 6.18: Qualitative shape estimation results on BUFF dataset. Left to right: ground truth
shape, Yang et al. [17], fusion shape (ours), detailed shape (ours).
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summaries

This thesis explores “unconventional” spaces for 3D shape modelling. We perform statistical
shape analysis in the space of discrete shells. The approach is based on a physically-inspired
energy functional measuring membrane and bending distortion. The result is a physically sound
statistical shape model, which is able to handle large nonlinear articulations and deformations. As
of shape correspondence, we provide a method to optimise correspondence across a whole shape
collection in the space of functional maps. This is more flexible and efficient than point-wise or
segment-wise map representations. We now revisit the contributions of each work in turn.

The contribution of Shell PCA in Chapter 3 is to show that an extension of PCA in shell space
is better to capture nonlinear deformations even when the training data is very sparse. This is our
first attempt to provide a hybrid between physical and statistical model. The squared distance is
replaced by the elastic energy required to deform one shape to another. Shape reconstruction
results are shown for a given set of facial meshes of various expression. This method is limited in
that the learned statistics are based on vertex-displacement, therefore it is alignment-dependent
and would not work with data that exhibits large deformations.

In Chapter 4, we propose another method Shell PGA in the same shell space. Unlike Shell
PCA, this method directly works with shapes rather than displacement between input shapes
and the average. One advantage of using elastic energy is that it is rigid body motion invariant.
Therefore, the whole approach is carefully crafted to maintain this property and eventually
becomes an alignment-free approach. This is vital in shape modelling because a choice of
the “best” alignment may not exist in many cases, especially for articulated shapes with large
nonlinear deformations.

A groupwise functional maps approach presented in Chapter 5 is applied to optimise the
minimal set of functional maps between one reference shape and each of other shapes. The
functional maps between arbitrary two shapes can be composed using the minimal set maps. In
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particular, a set of candidate functions are proposed for obtaining correspondence for 3D face
shapes. Besides the theoretical contribution, we believe that our work was the first to apply the
functional maps framework in a practical setting using real scanned data.

Finally, several applications are demonstrated in Chapter 6. We show that the human body
model learned as described in Chapter 4 is well suited for model-constrained mesh editing, and
mesh reconstruction from sparse landmarks from motion capture data. The performance of our
model learned from only 20 scans is qualitatively comparable to the method that trained on
thousands of scans, with an explicit Skeleton model. In addition, we contribute a new algorithm
for estimating human body shape and poses from clothed 3D sequence. Based on SMPL model,
the state-of-the-art vertex-based human body model, we achieve detailed personalised human
body shape estimation.

All the these works are accompanied by online materials: Groupwise Functional Maps and
Shell PCA are released and publicly available in GitHub, Shell PGA will become available in
GitHub shortly after the associated paper becomes available online. “BUFF” dataset is freely
available online for research purpose.

7.2 Conclusions

We can draw a number of general conclusions after exploring novel spaces for both 3D shape
modelling and matching problems:

1. Introduction of a physical model allows highly plausible interpolation between and extrap-
olation beyond a very sparse data sample.

2. Given any measure that locally approximates Riemannian distance, time-discrete statistics
can be used to build a Riemannian model.

3. Functional maps are applicable to real data with typical systematic noise.

4. The reduced dimensionality of functional maps makes groupwise optimisation feasible
and brings a lot of benefits.

5. A good statistical model solves very challenging applications that are not addressable with
deep learning methods that would require much larger samples of training data.

7.3 Future work

Integration of Functional Maps and Shell space. Intuitively, shell energy provides a richer
shape difference measure in terms of meaningful deformation energy. The question is whether we
can bring functional maps and shell space together. Jointly matching and modelling a collection
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of shapes would be a very interesting direction for future work. Current groupwise shape
matching methods do not output point-to-point correspondence directly, and a post-processing
conversion step is needed. To this end, a robust groupwise point-to-point conversion method is
worth more research so that the output could be picked up by existing modelling approaches.

Computational efficiency. The current Shell PGA model implemented using MATLAB
could not provide reconstruction or model fitting within interactive timing requirements. To
improve this, a more efficient language such as C++ could be considered for re-implementing
this. Alternatively, the derivative could be computed using GPU array to gain more speed up. At
a deeper level, approximations that work in a transformed space of triangle edge lengths, areas
and angles could be applied to our framework for a substantial speed up.

Machine learning. It is notable that the current framework of shell PGA employs a discrete
version of elastic deformation energy as an approximation of Riemannian distance. Theoretically,
any other metric could also be plugged in as well. Any invariance property of the chosen metric
would be transferred to the learnt models. In a broader view, not limited to 3D shape modelling,
extension of our method to other modalities such as images is also a sensible direction for future
work. In addition, only PCA is exploited as an example in shell modelling, there exist much
more sophisticated manifold learning methods that we could apply in shell space, e.g. Principal
Component Regression and Linear Discriminant Analysis.

Applications. Based on the current shell PCA/PGA models, there are many potentially
interesting follow-up applications. First, model transport is a solution to effectively achieving
“rig personalisation”. For example, expression data captured from one character could be easily
transferred to a different person while at the same time adapting blendshapes. Second, the shell
submanifold is perfect for blendshape fitting and non-linear blendshape learning where rigid
body motion invariance becomes a built-in property. However, this also poses a problem that the
reconstructed shapes are only determined up to a rigid body motion, a.k.a. motion stabilisation.
Third, non-rigid alignment combining global physical constraint and local feature descriptors is
practically a very useful technique. Shell space provides an effective physical constraint allowing
only minimal distortion, while local feature matching would be critical especially in the early
stages. Finally, can we reduce data requirements for deep learning based applications? As shown
in our experiments, shell model requires much less data to learn the principal variations than
traditional Euclidean space model. Therefore, we can either plug in the shell model or use the
model to generate realistic, continuous shapes given sparse training data. The latter is guaranteed
to be working thanks to the robust interpolation and extrapolation capacity of shell space.
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APPENDIX A

APPENDIX

A.1 Computation of geodesic mean and geodesic paths

Notation convention: As before, input shapes are denoted by si, i = 1, . . . ,m, the geodesic
average is denoted by s̄ and discrete (geodesic) paths of length K + 1 connecting s̄ and si are
given by si0, s

i
1, . . . , s

i
K . In particular, we have si0 = s̄ and siK = si for all i.

A.1.1 Pseudo code

The core ingredient is the update function defined below. Here either the geodesic mean or the
geodesic segments are updated. We assume that references to all free shapes (i.e. s̄ and (sik)i,k)
are accessible within the main Algo. 8.

update(k,∆l) :


s̄← arg mins FK

∆l
[s] if k = 0

∀i : sik ← Av
(
sik−∆l

, sik+∆l
; 1

2

)
if k > 0

Algorithm 6 v-cycle
1: Input: max ∈ N, ∆l ∈ N
2: Output: some error δ > 0

3: for k := 0, k < max, k += ∆l do
4: update(k,∆l);
5: end for
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Algorithm 7 w-cycle
1: Input: max ∈ N, ∆l ∈ N
2: Output: some error δ > 0

3: for j := ∆l, j ≤ max, j += ∆l do
4: v-cycle(j,∆l);
5: end for

Algorithm 8 Geodesic mean by cascadic Gauss-Seidel updates

1: Input: L ∈ N, s1, . . . , sn ∈M
2: Output: s̄ ∈M (and sik for 0 < k < K and ∀i)
3:

4: Set K := 2L;
5:

6: // initialize s̄ as elastic average
7: update(0, K);
8: // initialize (sik)i,k for all i = 0, . . . , n in parallel:
9: for k := 1 to K − 1 do

10: sik ← Av
(
s̄, si; k

K

)
11: end for
12:

13: // cascadic approach in time
14: for l := 1 to L do
15: set ∆l := 2L−l;
16: δ :=∞;
17: // Gauss-Seidel updates
18: while δ > εl do
19: δ = cycle(K,∆l); // either v-cycle or w-cycle:
20: end while
21: end for
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A.2 Derivatives of groupwise functional maps objectives

The core part to our groupwise functional maps lies in solving for the optimisation problem
in matrix manifold space. More specifically, our optimisation objective is composed of two
terms: preservation of descriptors and basis commutativity. Next, we describe the deviation of
the gradient of both terms, as used by the Trust-region solver.

A.2.1 Solving for descriptor preservation constraints

Let Pi ∈ Rn,N and Pj ∈ Rn,N be the descriptors coefficients of shape i and j, respectively. Here,
n denotes the dimension of Laplacian-Beltrami basis, and N denotes the number of descriptors.
Let Ti denote the matrix representation of the map from shape i to the reference shape (without
loss of generality, this could be the first shape). To get the matrix mapping from shape j to shape
i, we have Ci,j = T−1

i Tj .
The objective for this term is

O =
∑
i,j

‖Pi −T−1
i TjPj‖2

F (A.1)

we then introduce a dummy index k:

Ok =
∑
i,k

‖Pi −T−1
i TkPk‖2

F +
∑
k,j

‖Pk −T−1
k TjPj‖2

F (A.2)

then replace i with j:

O=

∑
j,k

‖Pj −T−1
j TkPk‖2

F +
∑
k,j

‖Pk −T−1
k TjPj‖2

F (A.3)

then replace k back with i:

Ok =
∑
j,i

‖Pj −T−1
j TiPi‖2

F +
∑
i,j

‖Pi −T−1
i TjPj‖2

F (A.4)

As matrix frobenius norm could be written as dot product form, we could rewrite the above:

O = Oji +Oij

= Tr (Pj −T−1
j TiPi)

T (Pj −T−1
j TiPi) + Tr (Pi −T−1

i TjPj)
T (Pi −T−1

i TjPj) (A.5)
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Then we proceed to get the gradient of the above term with respect to Tis which are our variables.

∂O

∂Ti

=
∂Oji

∂Ti

+
∂Oij

∂Ti

=< Pj −T−1
j TiPi,Pj −T−1

j TiPi > + < Pi −T−1
i TjPj,Pi −T−1

i TjPj > (A.6)

We first show how to get the gradient w.r.t. Ti for the former part, then it applies to the latter
part as well.

< Pj −T−1
j TiPi,Pj −T−1

j TiPi >

= < Pj −T−1
j (Ti + H)Pi,Pj −T−1

j (Ti + H)Pi >

=− 2 < Pj −T−1
j TiPi,T

−1
j HPi >

=− 2 Tr((Pj −T−1
j TiPi)

TT−1
j HPi) (A.7)

=− 2 Tr(Pi(Pj −T−1
j TiPi)

TT−1
j H)

=− 2 < T−Tj (Pj −T−1
j TiPi)P

T
i ,H >

Thus,
∂Oji

Ti

= −2T−Tj (Pj −T−1
j TiPi)P

T
i (A.8)

Note, the latter term involves the inverse of Ti, the trick (A+H)−1 = A−1−A−1HA−1 +O(H)

is then used. The gradient w.r.t. Ti of Oij is then obtained as

∂Oij

Ti
= 2T−Ti (Pi −T−1

i TjPj)P
T
j TT

j T−Ti (A.9)

A.2.2 Solving for basis commutativity constraints

Let Cj,i be the functional mapping matrix from shape i to shape j, and Qi be the low-rank
representation of Laplacian-Beltrami basis of shape i. LB basis commutate under functional
maps, i.e. ‖QiCj,i − Cj,iQj‖2

F = 0. In the groupwise functional map, the objective of this
constraint could be written as:

O =
∑
i,j

‖Qj(T
−1
i Tj)− (T−1

i Tj)Qi‖2
F

=
∑
i,j

‖Qi(T
−1
j Ti)− (T−1

j Ti)Qj‖2
F +

∑
i,j

‖Qj(T
−1
i Tj)− (T−1

i Tj)Qi‖2
F (A.10)

= Oji +Oij

132



Now, we separately deviate the gradient of Oji and Oij . The objective is:

Oji = Tr (QiT
−1
j Ti −T−1

j TiQj)
T (QiT

−1
j Ti −T−1

j TiQj)

=< QiT
−1
j Ti −T−1

j TiQj,QiT
−1
j Ti −T−1

j TiQj > (A.11)

The gradient is:

∂Oji

∂Ti

=< QiT
−1
j (Ti + H)−T−1

j (Ti + H)Qj,QiT
−1
j (Ti + H)−T−1

j (Ti + H)Qj >

= 2 Tr (QiT
−1
j Ti −T−1

j TiQj)
T (QiT

−1
j Ti −T−1

j TiQj) (A.12)

= 2< T−1
j QT

i (QiT
−1
j Ti −T−1

j TiQj)−T−Tj (QiT
−1
j Ti −T−1

j TiQj)Q
T
j , H >

Similarly, we get ∂Oij
Ti

as follows:

Oij = Tr (QjT
−1
i Tj −T−1

i TjQi)
T (QjT

−1
i Tj −T−1

i TjQi)

=< QjT
−1
i Tj −T−1

i TjQi,QjT
−1
i Tj −T−1

i TjQi > (A.13)

The gradient is:

∂Oij

∂Ti

=< Qj(Ti + H)−1Tj − (Ti + H)−1TjQi,Qj(Ti + H)−1Tj − (Ti + H)−1TjQi >

= 2 < QjT
−1
i Tj −T−1

i TjQi,T
−1
i HT−1

i TjQi −QjT
−1
i HT−1

i Tj > (A.14)

= 2 < T−Ti (QjT
−1
i Tj −T−1

i TjQi)Q
T
i TT

j T−Ti −T−Ti QT
j (QjT

−1
i Tj −T−1

i TjQi)T
−T
j T−Ti ,H >
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[33] Y. Lipman and T. Funkhouser, “Möbius voting for surface correspondence,” ACM Trans-

actions on Graphics (TOG), vol. 28, no. 3, p. 72, 2009.

[34] O. Kin-Chung Au, C.-L. Tai, D. Cohen-Or, Y. Zheng, and H. Fu, “Electors voting for fast
automatic shape correspondence,” in Computer Graphics Forum, vol. 29, no. 2. Wiley
Online Library, 2010, pp. 645–654.

137
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[54] O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers, “Non-rigid
puzzles,” in Computer Graphics Forum, vol. 35, no. 5. Wiley Online Library, 2016, pp.
135–143.

[55] D. Nogneng and M. Ovsjanikov, “Informative descriptor preservation via commutativity
for shape matching,” in Computer Graphics Forum, vol. 36, no. 2. Wiley Online Library,
2017, pp. 259–267.

[56] D. Boscaini, D. Eynard, D. Kourounis, and M. M. Bronstein, “Shape-from-operator:
Recovering shapes from intrinsic operators,” in Computer Graphics Forum, vol. 34, no. 2.
Wiley Online Library, 2015, pp. 265–274.

[57] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. Guibas,
“Map-based exploration of intrinsic shape differences and variability,” ACM Transactions

on Graphics (TOG), vol. 32, no. 4, p. 72, 2013.

139



[58] D. F. Huber and M. Hebert, “Automatic three-dimensional modeling from reality,” Ph.D.
dissertation, Citeseer, 2002.

[59] D. Pachauri, R. Kondor, and V. Singh, “Solving the multi-way matching problem by
permutation synchronization,” in Advances in neural information processing systems,
2013, pp. 1860–1868.

[60] Q.-X. Huang, S. Flöry, N. Gelfand, M. Hofer, and H. Pottmann, “Reassembling fractured
objects by geometric matching,” ACM Transactions on Graphics (TOG), vol. 25, no. 3,
pp. 569–578, 2006.

[61] C. Zach, M. Klopschitz, and M. Pollefeys, “Disambiguating visual relations using loop
constraints,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on. IEEE, 2010, pp. 1426–1433.

[62] A. Nguyen, M. Ben-Chen, K. Welnicka, Y. Ye, and L. Guibas, “An optimization approach
to improving collections of shape maps,” Computer Graphics Forum, vol. 30, no. 5, pp.
1481–1491, 2011.

[63] Q.-X. Huang, G.-X. Zhang, L. Gao, S.-M. Hu, A. Butscher, and L. Guibas, “An optimiza-
tion approach for extracting and encoding consistent maps in a shape collection,” ACM

Transactions on Graphics (TOG), vol. 31, no. 6, p. 167, 2012.

[64] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor, “A minimum
description length approach to statistical shape modeling,” IEEE Trans. Medical Imaging,
vol. 21, no. 5, pp. 525–537, 2002.

[65] Q.-X. Huang and L. Guibas, “Consistent shape maps via semidefinite programming,”
Computer Graphics Forum, vol. 32, no. 5, pp. 177–186, 2013.
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ics/SIGGRAPH Symposium on Computer Animation, 2003.

140



[70] P. von Radziewsky, E. Eisemann, H.-P. Seidel, and K. Hildebrandt, “Optimized subspaces
for deformation-based modeling and shape interpolation,” Computers & Graphics, vol. 58,
pp. 128–138, 2016.

[71] C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt, “Real-time nonlinear shape
interpolation,” ACM Trans. Graph., vol. 34, no. 3, pp. 34:1–34:10, 2015.

[72] T. Heap and D. Hogg, “Extending the point distribution model using polar coordinates,”
Image Vis. Comput., vol. 14, no. 8, pp. 589 – 599, 1996.

[73] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation,” in Proceedings of the 27th annual

conference on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 2000, pp. 165–172.
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