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Abstract

Swarm robotic systems are often considered to be dependable. However,
there is little empirical evidence or theoretical analysis showing that de-
pendability is an inherent property of all swarm robotic systems. Re-
cent literature has identified potential issues with respect to dependabil-
ity within certain types of swarm robotic control algorithms. However,
there is little research on the testing of swarm robotic systems; this pro-
vides the motivation for developing a novel testing method for swarm
robotic systems. An evolutionary testing method is proposed in this thesis
to identify unintended behaviours during the execution of swarm robotic
systems autonomously. Three case studies are carried out on flocking con-
trol algorithm, foraging algorithm, and task partitioning algorithm. These
case studies not only show that the evolutionary testing method has the
ability to identify faults in swarm robotic system, but also show that this
evolutionary testing method is able to reveal failures in various swarm
control algorithms. The experimental results show that the evolutionary
testing method can lead to worse swarm performance and reveal more
failures than the random testing method within the same number of com-
puting evaluations. Moreover, the case study of flocking control algorithm
also shows that the evolutionary testing method covers more failure types
than the random testing method. In all three case studies, the depend-
ability of each swarm robotic system has been improved by tackling the
faults identified during the testing phase. Consequently, the evolution-
ary testing method has the potential to be used to help the developers of
swarm robotic systems to design and calibrate the swarm control algo-

rithms thereby assuring the dependability of swarm robotic systems.
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Chapter 1

Introduction

Swarm Robotics is the study of how to coordinate large numbers of robots
and is inspired by the emergent behaviour observed in nature such as
colonies of ants (Bonabeau, Dorigo, and Theraulaz, 1999; Labella, Dorigo,
and Deneubourg, 2006), mound-building of termites (Bonabeau, Dorigo,
and Theraulaz, 1999; Kube and Zhang, 1993), and information exchange
in bacteria (Sahin, 2004; Pugh and Martinoli, 2008). Swarms in nature
are well known for their abilities to coordinate their behaviour in order to
achieve tasks that are beyond the capabilities of a single individual. Even
though there are no centralised coordination mechanisms involved within
natural swarms, these swarms have been shown to be robust, flexible and
scalable (Camazine, 2003). Consequently, a desired swarm robotic system
should be able to work together in a collaborative manner in order to ac-
complish a task and produce significant results that an individual might
not be able to perform on its own.

However, swarm robotic systems are facing various challenges. For
example, they are not as robust to multiple failures of units as was first
thought (Winfield, Harper, and Nembrini, 2004) and there are significant
issues with the reliability and controllability of a swarm in complex tasks
(Wei, Timmis, and Alexander, 2017). Issues such as communication fail-
ures, obstacles between the line of sight and failing units are examples of
such problems (Wei, Timmis, and Alexander, 2017). In addition, swarms
might be deployed in challenging environmental conditions such as un-
derwater. The potential issues and challenges mentioned above require
the robots and the swarm to adapt in an autonomous and distributed man-
ner.

Due to the collective behaviour of swarm robotic systems, the whole
system might function incorrectly if any individuals start to exhibit unin-
tended behaviours. In computer system, a failure occurs if a system does
not function correctly and a fault is the potential cause of a failure (Laprie,
1985). Consequently, a failure occurs when any robots in a swarm func-
tion abnormally. In order to develop a real world swarm robotic system,
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TABLE 1.1: Differences between Swarm Robotics and
Other Multi-Robotics

Swarm Robotics Other Multi-Robotics
Population Size Varies in great range Relatively small
Control Autonomous and Decentralized Remote or Centralized
Environment Unknown Known or Unkown
Scalability High Low
Flexibility High Low

certain approaches should be taken to not only ensure that the system ex-
hibits expected behaviours but also ensure that no unintended behaviours

occur.

1.1 The Differences between Multi-Robot Systems

and Swarm Robotic Systems

Multi-robot systems are collections of two or more robots which works
together to achieve tasks (Dudek et al., 1996). Multi-robot systems are in-
troduced to overcome the spatial and information processing limitations
in single robot systems. Studies (Parker, 1994; Mataric, Nilsson, and Sim-
sarin, 1995) have shown that it would be more effective and efficient to
use a number of simple robots to perform some specific tasks, such as en-
vironment exploration and objects transportation, rather than using one
very complex robot.

The study of multi-robot systems has been extended to many differ-
ent sub-areas such as cellular robotics, distributed robotics and collective
robotics. Swarm robotics is one sub-area of collective robotics in which
swarm intelligence techniques are applied. Table 1.1 shows the major dif-
ferences between swarm robotics and other multi-robotics. The following
three desirable qualities of swarm robotics make swarm robotic systems
more beneficent than other multi-robot systems (Sahin, 2004):

e Robustness - The swarm robotic system should support a high level
of robustness towards failure of individuals and disturbances in the

environment.

o Flexibility - The swarm robotic system should possess the ability of
adapting to the changing requirements of the environment.

e Scalability - The coordination mechanisms of the swarm robotic sys-
tem should be able to operate properly under a wide range of group

sizes.
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1.2 Dependability of Swarm Robotic Systems

Study (Winfield, Harper, and Nembrini, 2006) introduced the notion of a
“dependable swarm”, which is “a complex distributed system, designed using
the Swarm Intelligence paradigm, which meets standards of analysis, design, and
test that would give sufficient confidence that the system could be employed in
critical applications.” From the point of view of dependability (Winfield,
Harper, and Nembrini, 2004), a dependable swarm robotic system should
have the following two properties: “liveness” and “safety”. Liveness is the
property of exhibiting desirable behaviours, which means that the system
should always do the right thing. Safety is the property of not exhibiting
undesirable behaviours, which means that the system should not do the
wrong thing.

1.3 Evolutionary Testing Method

One mechanism used for revealing failures is to observe the behaviour of
a running swarm in different environments, which can be treated as test
cases. In this thesis, a mechanism represents the instance (concrete occur-
rence) of a computing method or algorithm. The behaviour of a swarm is
the way in which the swarm behaves according to the mechanism, which
is implemented according to a certain swarm control algorithm, deployed
in the swarm.

Creating test cases for a swarm robotic system is challenging as the in-
puts for triggering failures are unknown, so a range of diverse test cases,
which should be able to cover as many circumstances as possible, are re-
quired in order to test the swarm properly. Because of the quantity, diver-
sity and challenging requirement of test cases for swarm robotic systems,
traditional methods such as manual test case generation and random test
case generation are not adequate.

Due to the large solution space of unexpected behaviours, it would be
helpful if the procedure of test cases generation could be automated. Evo-
lutionary testing method is a technique which is able to generate test cases
automatically by using optimising search techniques, such as genetic al-
gorithm (McMinn and Holcombe, 2003). It has been widely used to create
effective test cases for various forms of testing, such as structural testing
(Wegener, Baresel, and Sthamer, 2001), finite state machine testing (Derde-
rian et al., 2006), and autonomous agent testing (Nguyen et al., 2012). In
order to find solutions among the large solution space of failures in swarm
robotics, a novel testing method is proposed based on evolutionary testing
in this thesis.
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In computer system, the dependability of a system can be improved
using methods such as fault prevention, fault tolerance, fault removal, and
fault forecasting (Laprie, 1995) (see section 2.2.1.3). In swarm robotics re-
search, fault detection mechanisms (Bjerknes and Winfield, 2013; Chris-
tensen, OGrady, and Dorigo, 2009) are developed to improve the depend-
ability of swarm robotic systems by means of fault tolerance. In this the-
sis, fault removal method is used to improve the dependability of swarm
robotic systems.

1.4 Research Hypothesis

The objective of this thesis is to develop a testing method which is able to
identify faults in the control algorithm of a swarm robotic system. So the
research hypothesis of this thesis is proposed as follows:

It is possible to improve the dependability of a swarm robotic sys-
tem by involving testing process during its development. The testing
method presented in this thesis is more effective in revealing failures
during the testing process than the random testing method.

This testing method presented in this thesis builds severe environments
which are difficult for the swarm to operate. It also detects and records
the robots which exhibit unexpected behaviour, that is, failure. If a fail-
ure occurs during the execution of the swarm, the information recorded
can be used to determine which parts (mechanisms) of the swarm con-
trol algorithm are responsible for the failures. The mechanism responsible
for failures is treated as the fault in the swarm control algorithm. The
control algorithm might potentially be improved by replacing the weak
mechanism with a better one. As a result, the dependability of this swarm
robotic system can be improved.

1.4.1 Research Questions

The main research question is developed as follows in order to address the
research hypothesis proposed above:

What methodology should be used in order to find out weaknesses of
a swarm robotic control algorithm?

In order to answer the main research question, three sub-questions are
proposed below as a guidance in a step-by-step manner:
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o 1. How does the evolutionary testing method perform in identifying weak-
nesses of a swarm robotic control algorithm comparing to the random test-
ing method? This sub-question guides the research in Chapter 4, 5,
and 6.

o 2. Does the evolutionary testing method have the ability of testing different
types of swarm robotic control algorithms? Two swarm robotic control
algorithms are treated as different types when the swarm behaviours
emerged by them are different. For example, a flocking control algo-
rithm (see section 2.4.1) and a foraging control algorithm (see sec-
tion 2.4.2) are different types of swarm robotic control algorithms,
while static partitioning strategy proposed in (Pini et al., 2014) and
dynamic partitioning strategy proposed in (Buchanan, Pomfret, and
Timmis, 2016) (see section 2.4.3 for both strategies) are the same type
of swarm robotic control algorithm. This sub-question guides the
research in Chapter 4, 5, and 6.

o 3. Are the parameters of the evolutionary testing method reusable when
testing different types of swarm robotic control algorithms? This sub-
question guides the research in Chapter 5 and 6.

1.5 Thesis Contributions

This section summarizes a number of original research contributions of

this thesis as follows:

Evolutionary Testing Method for Swarm Robotic Systems - This the-
sis introduces the first known method for solving the testing problem in
swarm robotics. Evolutionary testing methods in computer systems and
autonomous agents are adapted to identify faults in swarm control algo-
rithm. This testing method can be used as the basis of a testing method
for specific swarm behaviour, which is work published in (Wei, Timmis,
and Alexander, 2017). The experimental infrastructure introduced in this
thesis can be used as an assistance tool in developing a swarm robotic

system. This contribution is presented in Chapter 3.

Three Case Studies for Evolutionary Testing Method - Three case stud-
ies are carried out on flocking control algorithm, foraging algorithm, and
task partitioning algorithm. The experimental results not only show that
the evolutionary testing method has a better ability to identify faults in

swarm robotic systems than the random testing method, but also show



6 Chapter 1. Introduction

that the evolutionary testing method is able to to reveal failures in differ-
ent types of swarm control algorithm. This contribution is presented in
Chapter 4, Chapter 5, and Chapter 6.

Save Human Effort on Parameter Analysis - The experimental results of
case studies for foraging algorithm and task partitioning algorithm show
that the parameters of the evolutionary testing method are reusable when
testing similar (but different types) of swarm control algorithms. In such
circumstances, the human effort on parameter analysis can be saved. This
contribution is presented in Chapter 5 and Chapter 6.

Fault Removal to Improve The Dependability of Swarm Robotic Sys-
tem - In all three case studies, the dependability of each swarm robotic
system has been improved by the means of fault removal. This shows
the viability of using the evolutionary testing method to help the devel-
opers to assure the dependability of their swarm robotic systems. This
contribution is presented in Chapter 4, Chapter 5, and Chapter 6.

Metrics for Measuring The Performance of Flocking Behaviour - A new
set of metrics is developed to measure the performance of flocking be-
haviour. A fitness function is then defined according to these metrics to
calculate the performance of a flocking swarm in the experiments. This

contribution is presented in Chapter 4.

Failure Classification - Failure Classification for flocking behaviour is
proposed in this thesis to identify the diversity of the failures discov-
ered during the execution of the swarm. The experimental results show
that the evolutionary testing method covers more failure types than the
random testing method when testing flocking control algorithm. This
contribution is presented in Chapter 4.

1.6 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 - Background and Related Work

This chapter is divided into four sections. The first section
provides an introduction to fundamentals and current state of
swarm robotics. Then the design problem and the methodolo-
gies used to solve it are respectively discussed. The concepts
of dependability in the context of computer systems are intro-
duced at the beginning of the second section. A discussion of
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the dependability of swarm robotic systems is then presented.
At the end of second section, fault detection techniques used
to ensure the dependability of swarm robotic systems are dis-
cussed. In the third section, the processes of analysis and test-
ing of the design problem for swarm robotics are discussed. In
the last section, the background and related work of the swarm
behaviours which are tested in this thesis are introduced.

Chapter 3 - Evolutionary Testing Method for Swarm Robotic Systems

The testing problems in current swarm robotics research are
specified at the beginning of this chapter. The evolutionary
testing method is proposed in order to solve the testing prob-
lems. Following this, the simulator used throughout this the-
sis, the external assistance tools developed for the simulator,
and test case generator developed in this thesis are introduced
at the end of this chapter.

Chapter 4 - Testing Method for Flocking Behaviour

This chapter carries out a case study for testing flocking be-
haviour. Metrics for measuring the performance of the flock-
ing behaviour, failure classification used to categorize failures,
chromosome, and fitness function are all defined. The flock-
ing behaviour is then implemented in the simulator. Param-
eter analysis and experimental results are then discussed. At
the end of this chapter, fault removal approach is applied to
flocking control algorithm and the corresponding experimen-
tal results are discussed.

Chapter 5 - Testing Method for Foraging Behaviour

This chapter carries out a case study for testing ant foraging be-
haviour. It begins with the decisions taken with regard to the
metrics, chromosome, fitness function, and control algorithm
of ant foraging behaviour. Following this, the parameter analy-
sis and experimental results are discussed. Then fault removal
approach is applied to ant foraging behaviour and finally the
experimental results are discussed.

Chapter 6 - Testing Method for Task Partitioning Behaviour
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A case study for testing task partitioning behaviour is carried
out in this chapter. First, the metrics for task partitioning algo-
rithm are introduced and the control algorithm for task parti-
tioning algorithm is developed in the simulator. Experiments
are then carried out using the testing method built for ant for-
aging behaviour. The experimental results are analysed and
fault removal approach is applied to the task partitioning al-
gorithm. The performance of the improved task partitioning
algorithm is discussed at the end of this chapter.

Chapter 7 - Evaluation and Conclusion

This chapter evaluates the research hypothesis proposed in sec-
tion 1.4 and summarises the contributions and limitations of
this thesis. Potential future research directions are also sug-
gested.



Chapter 2

Background and Related Work

A brief introduction to fundamentals and current state of swarm robotics
is provided at the beginning of this chapter. Then the design problem of
the swarm robotics and the methodologies used to solve it are respectively
discussed. The second section of this chapter introduces the concepts of
dependability in the context of computer systems. Following this, a dis-
cussion of the dependability of swarm robotic system is presented. Fault
detection technique used to ensure dependability in swarm robotic sys-
tems will be discussed at the end of second section. In the third section, the
processes of analysis and testing of the design problem for swarm robotics
are discussed. Finally, the background and related work of the swarm be-
haviours which are tested in this thesis are introduced.

2.1 Swarm Robotics

2.1.1 What is Swarm Robotics?

Erol Sahin (Sahin, 2004) states that:

“Swarm robotics is the study of how a large number of relatively
simple physically embodied agents can be designed such that a desired
collective behaviour emerges from the local interactions among the
agents and between the agents and the environment.”

Swarm robotics research is inspired by the emergent behaviour observed
in nature, such as colonies of ants (Bonabeau, Dorigo, and Theraulaz,
1999; Labella, Dorigo, and Deneubourg, 2006), mound-building of ter-
mites (Bonabeau, Dorigo, and Theraulaz, 1999; Kube and Zhang, 1993),
and information exchange in bacteria (Sahin, 2004; Pugh and Martinoli,
2008). Natural swarms are well known for their ability to coordinate their
behaviour in order to achieve tasks that are beyond the capabilities of a
single individual, and such collective behaviours have aroused a great
deal of attention and interest of biologists (Pasteels and Deneubourg, 1987;
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Brian, 2012) in 1980s. Later studies (Bonabeau et al., 1997) have shown that
there are no centralized coordination mechanisms involved within natu-
ral swarms. Hence, unlike the traditional multi-robotic systems which use
centralised coordination mechanisms for controlling the behaviour of the
systems, swarm robotics adopts a decentralised coordination mechanism
in order to generate desired collective behaviour for the system (Sahin and
Winfield, 2008). The desired swarm robotic system should be able to work
together by collaborating to achieve goals that an individual might not be
able to reach on its own.

In addition to the definition of swarm robotics provided above (taken
from (Sahin, 2004)), Erol Sahin proposed a set of criteria for distinguish-
ing swarm robotic research from traditional multi-robot research (Sahin,
2004):

e Autonomous Robots - The individuals involved in the swarm robotic
system should physically interact with the environment and be au-

tonomous.

e Large Number of Robots - Not only large number of robots should be
involved in a swarm robotic system (greater than 10 is acceptable),
but the swarm robotics should also aim for scalability.

e Few Homogenous Groups of Robots - The swarm robotic system
should consist of relatively few homogenous groups of individuals.
The individuals in each group should not be assigned different roles.

e Relatively Incapable or Inefficient Robots - The robots involved should
be relatively incapable of or inefficient in performing the task on
their own. “Incapable” means that the individuals are unable to
carry out the task by themselves and the cooperation of a swarm is
required in order to achieve the goal. “Inefficient” means that the de-
ployment of multi-robots should improve the performance/robustness
of handling the task.

e Robots with local sensing and communication capabilities: The robots
involved should use local communications only and have limited
sensing abilities. Global information is prohibited to ensure that the
coordination between the robots is distributed.

In complement to the fourth criterion above is that Erol Sahin in (Sharkey,
2007) proposes a simple separation of swarm robotics into two sub-areas,
Scalable Swarm Robotics and Minimalist Swarm Robotics. Both Scalable
Swarm Robotics and Minimalist Swarm Robotics enforce constraints on



2.1. Swarm Robotics 11

local communication and decentralised control, but Minimalist Swarm
Robotics emphasizes the use of simple robots while Scalable Swarm Robotics
does not concern about the simplicity of individuals.

2.1.2 Motivations for Swarm Robotics Research

Even though there are no centralised coordination mechanisms involved
within natural swarms, these swarms are shown to be flexible, scalable
and robust (Camazine, 2003). These three qualities are desirable for swarm

robotic systems and so form motivations for the swarm robotics approach
(Sahin, 2004):

e Robustness - The swarm robotic system should support a high level
of robustness towards failure of individuals and disturbances in the

environment.

o Flexibility - The swarm robotic system should possess the ability of

adapting to the changing requirements of the environment.

e Scalability - The coordination mechanisms of the swarm robotic sys-
tem should be able to operate properly under a wide range of group

sizes.

2.1.3 Examples of Inspiration to Swarm Intelligence

Swarm robotics research resulted from the application of swarm intelli-
gence concepts and so a good way of understanding swarm robotics is to
take a close look at its root, that is, Swarm Intelligence. The term swarm
intelligence, first introduced by Beni (Beni and Wang, 1993) in 1989, “is
the collective behaviour of decentralized, self-organized systems, natural
or artificial.” The following are some examples of swarm intelligence al-
gorithms inspired by varying biological systems.

2.1.3.1 Boids (Flocks, Herds, and Schools)

Flocks of birds, herds of land animals, and schools of fish are classic ex-
amples of emergent collective behaviour in nature. Reynolds (Reynolds,
1987) presented an approach (Boids) to simulate flocks of birds. The agents
in the simulation follow a set of rules such as separation, alignment, cohe-
sion, obstacle avoidance and goal seeking. This approach assumes that the
form of a flock is the result of the interaction between the behaviours of the
individual birds, so in order to simulate a flock, the behaviour of each bird

is simulated. The birds are independent of each other in the simulation
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with each bird acting according to its local perception of the environment
and the rules of flocking. Even though Reynold’s approach is proposed
for producing aggregate motion in computer animation (Reynolds, 1987),
it has also been used as a swarm intelligence algorithm.

2.1.3.2 Insect Colonies

The colonies of insect are also sources of inspiration for swarm intelligence
algorithm. To solve hard combinatorial optimisation problems, e.g. the
traveling salesman problem (Dorigo and Gambardella, 1997), Ant Colony
Optimization (ACO) (Dorigo, Di Caro, and Gambardella, 1999) is intro-
duced. ACO (Dorigo, Birattari, and Stutzle, 2006) takes inspiration from
the foraging behaviour of some ant species. These ants use pheromones
as a communication medium. In fact, they lay down pheromones on the
ground in order to lead other members in the colony to the resource. Con-
sequently, each simulated ‘ant” records its position and the quality of its
solution so that better solutions can be selected by comparing the qualities
of all the solutions. Another well-known example of taking inspiration
from social insects is the Artificial Bee Colony algorithm (ABC). ABC is an
optimization algorithm motivated by the intelligence foraging behaviour
of honey bees (Karaboga, 2005) and it can be used for clustering analy-
sis which identifies homogeneous groups of objects according to the val-
ues of their attributes. Moreover, the Bees Algorithm (Pham and Castel-
lani, 2009) is another optimization algorithm motivated by the foraging
behaviour of honey bees, and a combination of global explorative search

and local exploitative search is used in the algorithm.

2.1.3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Eberhart and Kennedy, 1995) is a
population based optimisation methodology which is inspired by social
behaviour of bird flocking. PSO searches for the optimum solution of a
problem by repeatedly updating its candidate solutions according to their
fitness values. PSO shares a few similarities with genetic algorithm, such
as, randomly generated initial population, using fitness function for cal-
culating fitness values for each solution, and reproducing the population
with regard to fitness values. Even PSO does not have genetic operators
such as crossover and mutation, each candidate has its own internal ve-
locity and stores the best fitness value it has achieved thus far. These
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features allow PSO to have faster convergence to the best solution com-
pared with genetic algorithm. The Darwinian Particle Swarm Optimiza-
tion (DPSO) (Couceiro et al., 2012a), which uses natural selection to im-
prove the ability of escaping from local-optimal solution, is proposed as
an extension of PSO. Robotic Darwinian PSO (RDPSO) (Couceiro et al.,
2012b) extends the DPSO to multi-robot applications to allow dynamic
partitioning for the whole population of robots. The experimental results
in (Couceiro et al., 2013b) show that RDPSO has the ability to improve
the scalability of applications by decreasing the amount of required in-
formation exchange among robots. Study (Couceiro et al., 2013a) carries
out experiments to benchmark five state-of-the-art algorithms for cooper-
ative exploration tasks. Both simulated and physical experimental results
show that the RDPSO algorithm converges to the optimal solution faster
and more accurately than other algorithms without significantly increas-
ing the computational demand, memory and communication complex-
ity. A swarm exploration strategy, named Darwinian Robotics Strategy,
is proposed in (Sanchez, Vargas, and Couceiro, 2018) based on RDPSO.
Darwinian Robotics Strategy is applied to simulated 3D underwater en-
vironments. The experimental results show that the Darwinian Robotics
Strategy has the ability to increase the exploration speeds and improve
the robustness of the swarm when compared to single remotely operated

vehicles, which are controlled by a human operator.

2.1.4 Potential Applications

A long-term goal is to use swarm robotics to solve real-world problems.
There follows a number of potential application areas where swarm robotics

would be applicable:

e Nuclear, biological, and chemical (NBC) attack detection and recon-
naissance (Akyildiz et al., 2002; Gu et al., 2006) - In chemical and
biological warfare, swarm robotic system can be deployed in the
friendly area and used as a chemical or biological warning system.
The swarm robotic system can also be used for detailed reconnais-

sance once an NBC (mass destruction) attack is detected.

e Battlefield surveillance (Vincent and Rubin, 2004) — The battlefield
can be rapidly covered using a swarm robotic system, e.g. UAVs
(unmanned aerial vehicles) in order to watch for the activities of the

opposing forces.

e Space exploration (Hinchey, Sterritt, and Rouff, 2007) — Swarm robotic
system can be used for exploring regions that human beings or larger
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robotic systems cannot reach. The swarm robotic system can also

provide backups and ensure survival in outer space.

e Pollution detection (Cortes, Martinez, and Bullo, 2005; Cortés and
Bullo, 2005) — Swarm robotic system can be used for detecting and
identifying pollution.

e Search and rescue (Martinez, Cortes, and Bullo, 2007; Penders et al.,
2011) — Swarm robotic system can be used in search and rescue of
injured human beings in a disaster.

2.1.5 The Design Problem of Swarm Robotics

Swarm robotics can be defined as “a novel approach to the coordination of
large numbers of robots” (Sahin, 2004). In order to design a swarm robotic
system, it is essential to define the method of designing individual level
behaviours which leads to the desired collective behaviour. In Camazine’s
book (Camazine, 2003), swarm robotic systems are shown to be complex
systems. In Trianni’s book (Trianni, 2008), Trianni refers to the problem
of designing individual level behaviour as the design problem. As the
dynamics of complex system are difficult to predict (Abbott, 2006), the de-
sign problem is non-trivial. As swarm robotics research is still at a very
early stage, there are still no standard ways of solving the design problem.
Due to the lack of analysis and testing methods, Brambilla declared that:
“The intuition of the human designer is still the main ingredient in the develop-
ment of swarm robotics systems.” (Brambilla et al., 2013) Design methods are
used for solving the design problem, and in swarm robotics the existing
behaviour design methods can be categorized into two categories (Bram-
billa et al., 2013): behaviour-based design and automatic design. These
two kinds of design methods will be discussed respectively in the next
two sections.

2.1.5.1 Behaviour-based design methods

In behaviour-based design method, the behaviour of each individual robot
is designed iteratively until the desired collective behaviour is obtained.
The behaviour of each individual robot is a combination of the behaviour
provided by its control algorithm and the disturbance in the environment.
Because of the uncertainty existing in the environment, the behaviour of
an individual robot is difficult to predict which makes it more difficult to
provide a group of individual behaviours in order to predict the collective
behaviour of the whole swarm system. Consequently, designing a swarm
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robotic system using behaviour-based design method is a trial-and-error
process (Brambilla et al., 2013).

Even though the swarm robotic system designed by behaviour-based
design methods is restricted by many constraints and is time-consuming,
there are still many successful examples. Several examples of swarm robotic
system designed using behaviour-based design methods are presented
next:

e Soysal et al. (Soysal and Sahin, 2005) presented a systematic analy-
sis of the probabilistic aggregation strategy design method in swarm
robotic system. An aggregation behaviour in swarm robotic system
is a combination of four basic behaviours: obstacle avoidance, ap-
proach, repel, and wait. The author uses a three-state finite state
machine with two probabilistic transitions to combine the approach,
repel and wait behaviours.

e Nouyan et al. (Nouyan and Dorigo, 2006) presented a swarm in-
telligence control mechanism for distributed robot path formation.
The mechanism is able to form a path between two distant locations
situated at a distance beyond the sensing ability of any single robot
using chain-based robot path formation.

e Brambilla et al. (Brambilla et al., 2012) proposed a top-down design
method for designing swarm robotic systems. This method is called
property-driven design and uses a set of properties to define a de-
sired system. When designing a swarm robotic system, a model of
the system which meets all the desired properties is first produced,
then the whole system is developed by following all the require-
ments defined for the desired system. By following this approach,
the property-driven design assures that the final swarm robotic sys-

tem satisfies all the required properties.

In conclusion, most behaviour-based design is a bottom-up process (Crespi,
Galstyan, and Lerman, 2008) except the recently proposed property-driven
design method (Brambilla et al., 2012). Developers design, test and mod-
ify the behaviours of the individuals until the desired collective behaviour
is obtained. This makes behaviour-based design time-consuming, and the
quality of the swarm robotic system depends on the expertise of the de-

velopers.
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2.1.5.2 Automatic design methods

Automatic design methods can be used to generate desired collective be-
haviour automatically without the explicit intervention of the developer,
and the use of automatic design methods may also reduce the effort of the
development (Brambilla et al., 2013) and improve the quality of the swarm
robotic systems (Brambilla et al., 2013; Brambilla et al., 2012). Brambilla in
(Brambilla et al., 2013) divided existing automatic design methods into

two categories: reinforcement learning and evolutionary robotics.

Reinforcement learning In reinforcement learning, the agent receives
feedback for its actions, and learns its behaviour through trial-and-error
interaction with the environment (Kaelbling, Littman, and Moore, 1996).
There are some studies (Matari¢, 1997; Panait and Luke, 2005) about rein-
forcement learning in multi-robot system, but all the design methods in-
troduced have limited scope, such as non-dynamic environment. In case
of a single robot, the agent normally receives reward at individual level.
However, in the case of multi-robot systems, the challenging problem is
how to separate the global reward into individual rewards. Another chal-
lenging problem is that each individual robot is not only disturbed by the
changes in the environment but also by the actions performed by other
robots.

Maja (Matari¢, 1997) presented a formulation of reinforcement learn-
ing which enables a group of four mobile robots to learn a foraging task
in a noisy and dynamic environment, but as the size of the swarm grows
(larger than 4), the method fails. There are no other methods which per-
form better in reinforcement learning for swarm robotic systems than Maja’s.

In conclusion, it might not be suitable to treat swarm robotics prob-
lem as a reinforcement learning problem. Indeed, there are no evidences
showing that reinforcement learning design methods can be suitable to be
applied to swarm robotic systems. There are also no evidences showing
that reinforcement learning is suitable for testing swarm robotic systems.
Moreover, due to the enormous size of the searching space when testing
swarm robotic systems, reinforcement learning might also not be suitable

to generate test cases for swarm robotic systems.

Evolutionary robotics Evolutionary robotics was first introduced by Cliff
et al. (Cliff, Husbands, and Harvey, 1993) in 1993. It is an automatic
design method which applies evolutionary computation techniques for
developing autonomous robotic systems. The evolutionary computation
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technique (Nolfi et al., 2016) was inspired by the evolution by natural se-
lection in biology and is typically used to search for near-optimal solutions
because of their abilities to “escape from local optimum and due to previous suc-
cesses when applied to similar problems” (Nolfi et al., 2016). The procedure of
Evolutionary robotics design method (Nolfi et al., 2016) can be described
as follows:

¢ 1. Generate initial population - A population of individual behaviours

is generated randomly following certain specific rules;

e 2. Execution - Each individual behaviour is executed a number of
times. For each execution, the performance of each behaviour is in-
dividually recorded;

e 3. Calculate fitness value - The fitness value for each individual be-
haviour is measured according to the performance of the individual.
Fitness values are calculated using fitness function, which uses a sin-
gle figure of merit to summarise the goodness of the individual. If
no improvements are observed after a number of generations, the

procedure stops;

e 4. Reproduction - Genetic operators, such as crossover and muta-
tion, are applied to a selection of individual behaviours with highest
fitness value.

Nolfi et al. (Nolfi et al., 2016) showed that the evolution occurs on both real
robots and simulated robots. Even though the evolutionary process is fea-
sible on real robots (Meyer, Husbands, and Harvey, 1998), the time needed
for evaluating real robots is much longer than that for simulated robots.
One way to avoid the time problem is to evolve robots in the simulation
and then implement the robots with highest fitness value on real robots.
However, there is a “reality gap” (Jakobi, Husbands, and Harvey, 1995) for
evolutionary robotics between the simulation and real world. This reality
gap might cause problems when implementing simulated robots on phys-
ical robots. Varela et al. (Varela and Bourgine, 1992) claimed the following
problems occur:

o “Without regular validation on real robots there is a great danger that much
effort will go into solving problems that simply do not come up in the real
world with physical robots;”

o “There is a real danger that programs which work well on simulated robots
will completely fail on real robots because of the differences in real world
sensing and actuation - it is very hard to simulate the actual dynamics of
the real worlds.”
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Nolfi et al. (Nolfi et al., 2016) described two techniques which can be
used to reduce the “reality gap”. One is called Methods for Accurately
Modelling Robot-Environment Interactions, which attempts to model the
interactions between the robots and the environment as accurately as pos-
sible, while the second is called Minimal simulations, which attempts to
model only the characteristics that are relevant for forming the required
behaviour. Jakobi (Jakobi, Husbands, and Harvey, 1995) concluded that
it is impossible to develop an exact copy of the robot and its environ-
ment in simulation, which denies the feasibility of Methods for accurately
modelling robot-environment interactions. Jakobi (Jakobi, 1997) also con-
cluded that it is possible to transfer evolved simulations to reality by using
minimal simulations. This allows the reality gap to be reduced without the
need for an exact copy of the robot and its environment.

Evolutionary swarm robotics Trianni in (Trianni, 2008) argues that
“Evolutionary robotics represents an effective solution to the design problem be-
cause it eliminates the arbitrary decompositions at both the level of finding the
mechanisms that lead to the emergent global behaviour, and the level of imple-
menting those mechanisms into a controller for the robots.” Therefore, Trianni
proposed the Evolutionary Swarm Robotics approach, which applies Evo-
lutionary Robotics techniques into swarm robotics to solve the design prob-
lem.

Unlike the behaviour-based design method in which the system is eval-
uated at the individual level, the evolutionary swarm robotic system is
evaluated at the global level. The initial population of evolution consists of
different individual behaviours. Each behaviour is assigned a fitness value
based on its ability of producing the desired collective behaviour. During
the evolution, well-performed individual behaviours are kept in the popu-
lation and used to reproduce offspring while badly performed individual
behaviours are discarded. Hence, in evolutionary swarm robotics, “no ar-
bitrary choice is performed by the designer, but the process is left free to choose
and test any possible solution that can produce the desired global behaviour.”
(Trianni, 2008)

Dorigo et al. in (Dorigo et al., 2004) obtained self-organising behaviour
for a swarm robotic system in different environmental situations by syn-
thesizing the individual behaviours using artificial evolution in the simu-
lation. Analysis also showed that the evolved swarm robotic system scales
well with different sizes of systems. Moreover, Dorigo et al. (Dorigo et
al., 2006) showed that the different collective behaviours, such as coordi-

nated motion and self-assembly, of evolved swarm robotic system can still
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be observed when transferred from the simulation to the physical swarm
robotic systems.

A coherent theoretical and methodological approach is represented in
(Vargas et al., 2014) to achieve the synthesis of self-organizing behaviours
for a swarm robotic system. In (Vargas et al., 2014), a series of experiments
are performed for different types of swarm robotic control algorithms. All
swarm controllers are evolved in the simulation. When the desired re-
sults have been obtained in the simulation, the evolved controllers are
then implemented on physical robots to test the viability of the obtained
controllers. The experiment results in (Vargas et al., 2014) show that the
evolved swarm robotic system has the potential to perform as good in the
real world as it does in the simulation.

Embodied evolutionary robotics In order to reduce the influence of
the reality gap in evolutionary robotics, Watson et al. (Watson, Ficici, and
Pollack, 2002) introduced Embodied Evolution as a new methodology for
evolutionary robotics. In Embodied Evolution, a fully distributed evolu-
tionary algorithm is embodied into a population of physical robots and
these robots are able to perform the reproduction while doing a task in the
physical environment. As an upgraded version of evolutionary robotics,
one major advantage of embodied evolutionary robotics is that the de-
velopers do not need to be concerned about transferring the evolved re-
sults from simulated robots to real robots. Because the whole evolution
takes place in the physical world, the developers do not need to simulate
the model of the physical environment. Watson (Watson, Ficici, and Pol-
lack, 2002) also mentioned that Embodied Evolution reduces the evalua-
tion time for the evolution as the evolutionary algorithm is entirely decen-
tralized across the swarm. Watson et al. (Watson, Ficici, and Pollack, 2002)
suggested several circumstances that are suitable for Embodied Evolution:

o Where a simulator for the task domain is impossible, unavailable, or insuf-
ficiently accurate.

o Where a centralized, globally coordinated adaptive algorithm is not imple-
mentable or is unavailable, or where coordination of parallelized embodied
trials is difficult.

o Where we are interested in evolving interactive or collective behaviours.

o Where the interaction between task behaviours and reproductive behaviours
is of interest.

o Where the agents must learn “in the field”.
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Watson et al. (Watson, Ficici, and Pollack, 2002) showed that a swarm of
physical robots is able to produce the desired beacon taxis behaviour by
using Embodied Evolution. In swarm robotics, the behaviour of a swarm
flocking together towards a light source is called beacon taxis. However,
the robots in the swarm do not cooperate with each other to find the light
source but rather only depend on themselves. Therefore, the beacon taxis
behaviour in the experiment is not a collective behaviour.

O’Dowd et al. (O'Dowd, Winfield, and Studley, 2010) presented a
methodology named Accelerated Distributed Evolutionary Algorithm (ADEA),
which provides life time behavioural adaptability to each of the robots in
the swarm rapidly and continuously. The approach taken in Accelerated
Distributed Evolution is similar to Watson’s Embodied Evolution (Watson,
Ficici, and Pollack, 2002) except that the evolutionary evaluation in ADEA
is executed using an on-board embedded simulator in each robot, which
allows each robot to simulate the interaction between the other robots and
itself. Hence, ADEA can be treated as a combination of a distributed em-
bodied evolutionary algorithm and an embedded simulation.

By applying ADEA to the swarm robotic system, O’Dowd et al. (O’'Dowd,
Winfield, and Studley, 2010) managed to evolve distributed obstacle avoid-
ance behaviour on varying sizes of swarms. However, ADEA is of limited
use as the evolved behaviour in the experiment is very simple. Further-
more, another weakness of ADEA is that there is no feedback from the
robots to the embedded simulator which causes inconsistency between
the actual performance of the robots in the real world and the simulated
performance.

O’Dowd et al. in (O’'Dowd, Winfield, and Studley, 2011) categorize the
“reality gap” into three correspondences between simulation model and
reality:

e Robot to Robot: “robot-robot correspondence refers to physical robotic
aspects, such as differences in morphology.”

e Robot to Environment: “robot-environment correspondence refers to dif-
ferences in the dynamic interactions between a robot and the environment,
both sensory and through actuation.”

e Environment to Environment: “environment-environment correspon-

dence relates the representation of salient features of the environment.”

O’Dowd et al. (O’'Dowd, Winfield, and Studley, 2011) also present a dis-
tributed co-evolutionary method in order to fill up the vacancy of the feed-
back from the robots to the embedded simulator in ADEA. However, this
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upgraded methodology only validates the environment to environment
correspondences of the embedded simulator. In (O’Dowd, Winfield, and
Studley, 2011), O'Dowd et al. managed to emerge the foraging behaviour
by evolving the swarm controllers in the experiment, but the chosen be-
haviour is not self-organising as there are no interdependencies between
operating robots.

Experiments on embodied evolutionary swarm robotic system show
that the swarm is able to evolve its behaviour online using embodied evo-
lution. However, there is no cooperation between the robots in the swarm,
none of the evolved behaviour belongs to self-organising behaviour. Due
to the “reality gap” between the simulation and the real world, there are
very few successful experiments showing that the evolutionary swarm
robotic system can perform as well in the real world as they do in the sim-
ulation. Fortunately, the work in (Vargas et al., 2014) shows the viability of
implemented the swarm controllers evolved in the simulation on physical
robots. So in conclusion, even current evolutionary swarm robotics is not a
formal and precise method to solve the design problem of swarm robotics,
it still has the potential to solve the design problem of swarm robotics in
the future.

2.1.6 Summary

This section first reviewed fundamentals and current state of swarm robotics.
The methodologies used to solve the design problems of swarm robotic
systems are discussed. The existing methodologies are categorized into
two categories: behaviour-based design and automatic design. Current
literature in behaviour-based design method showed that these kinds of
methods use trial-and-error approaches and are never shown to be effec-
tive to solve the design problem. Automatic designed methods are shown
to be less dependent on the expertise of the developers than behaviour-
based design methods. Even there exists “reality gap” between the sim-
ulation and the real world, experimental results in (Vargas et al., 2014)
showing that automatic design method has the potential to be as effective
in the real world as it is in the simulation.

In conclusion, there are still no formal methods to solve the design
problem in swarm robotics. Winfield et al. in (Winfield, Harper, and Nem-
brini, 2006) introduced a notion named “dependable swarm” in which the
design problem might be solved with the assist of formal analysis and
testing method. The dependability and analysis and testing methods of
swarm robotics will be discussed in the following two sections respec-
tively.
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2.2 Dependability of Swarm Robotics

This section first introduces the concepts of dependability in the context
of computer systems. Following this, a discussion of the dependability
of swarm robotic system is presented. Finally, fault detection techniques

used in swarm robotic systems will be discussed at the end of this section.

2.21 Dependability Concepts

Even though many people have given a definition to the term Dependabil-
ity, Laprie’s definition of Dependability is currently the most used. Laprie
(Laprie, 1993) defined Dependability as “The trustworthiness of a computer
system such that reliance can justifiably be placed on the service it delivers.” The
term “service” in this definition means the actions performed by the sys-
tem which can be perceived by the environment. The environment con-
sists of both the physical environment which contains the system, and an-
other system (human or physical) which interacts with the system. Laprie
(Laprie, 1995) defined a set of notions which is relevant to dependability
and categorized them into three classes: the threats to dependability, the
attributes of dependability, and the means for dependability. The catego-
rization of notions for dependability are shown in Figure 2.1 and will be
respectively discussed in the next three sections.

— FAULTS
— ERRORS
— FAILURES

— THREATS

— AVAILABILITY

— RELIABILITY

— SAFETY

— CONFIDENTIALITY
— INTEGRITY

— MAINTAINABILITY

DEPENDABILITY —— ATTRIBUTES—

— FAULT PREVENTION
— FAULT TOLERANCE
— FAULT REMOVAL

— FAULT FORECASTING

— MEANS ———

FIGURE 2.1: Laprie’s dependability tree (Laprie, 1995)

2.2.1.1 Threats: faults, errors, and failures

Fault, error, and failure are always used to describe undesirable states
which appear in a computer system. However, different authors may use
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these words differently which might mislead other researchers or readers.
Consequently, in order to find uniformity for these words, Laprie (Laprie,
1985) made a distinction between fault, error, and failure:

o A system failure appears when the service delivered does not imple-
ment the desired system function, e.g. cash machine gives customers

extra money.

e An error is the potential cause of a system failure, e.g. a mistake
made during the development of a system.

o A fault is the potential cause of an error, e.g. a mistake in an algo-
rithm.

Laprie in (Laprie, 1985) used several examples to illustrate faults, such as,
a programmer’s mistake, a short-circuit occurring in an integrated circuit, an
electromagnetic perturbation of sufficient energy, and so on. Laprie separated
the fault classes in the examples offered in (Laprie, 1985) into two groups:

e Physical faults: adverse physical phenomena:

— Internal: threshold changes, short-circuits, open-circuits;
— External: environmental perturbations, such as temperature and vi-
bration;

¢ Human-made faults: imperfections which may be:

— Design faults: omissions either made a) during initial system design
or during subsequent modifications, or b) during the establishment of
operating or maintenance procedures;

— Interaction faults: inadvertent or deliberate violations of operating
or maintenance procedures.

An error can either be latent or effective. A latent error is an error that
is present but not detected, and an effective error is an error which has
been detected. Laprie (Laprie, 1985) also stated the properties that decide

errors:
o A latent error becomes effective once it is active;
o An error may cycle between its latent and effective states;

o An effective error may, and in general does, propagate from one component
to another; by propagating, an error creates other (new) errors.

Finally, the categorization for failure is straightforward:
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e Physical failure: system failure which is caused by physical fault;

e Human-made failure: system failure which is caused by human-
made fault.

2.2.1.2 The Attributes of Dependability

Laprie (Laprie, 1995) classified dependability of computer system into six
attributes, which are availability, reliability, safety, confidentiality, integrity
and maintainability. In later study (Avizienis, Laprie, and Randell, 2001),
Avizienis and Laprie introduced the attribute of security which can be
viewed as a combination of confidentiality and integrity. They also sug-
gested that secondary attributes can be defined for a computer system
such as robustness, accountability, authenticity, and non-reputability. Only
the five main attributes of dependability are discussed in this thesis, which
are, availability, reliability, safety, security (confidentially and integrity),
and maintainability.

Availability is defined as “readiness for correct service” (Laprie, 1995), which
can be described as the ability of a computer system to deliver the correct
service. In addition, Heddaya et al. (Heddaya and Helal, 1997) suggest
that the attribute of availability should not only consider the readiness
for correct service, but should also consider the accessibility of the system
for correct service. For example, if all of the network resource built for a
multi-service system is just sufficient for delivering one service to users,
all services will not be available at the same time. Consequently, availabil-
ity is the ability of a computer system to provide the correct service at a
given instant of time.

Reliability is defined as “continuity of correct service” (Laprie, 1995), which
is the ability of a computer system to deliver correct service continuously.
Unlike availability which is instantaneous, reliability focuses on continu-
ous operation over a period of time. In order for the system to operate
continuously, recovery techniques are used for detecting the failures and
restoring operation after failures occur.

Note that in Laprie’s early work (Laprie, 1985), the dependability of a
computer system has only two attributes: availability and reliability. This
is because these are the only two attributes which exist in all computer
systems. Therefore, the next three attributes may not appear in all systems.

Safety is defined as “absence of catastrophic consequences on the user(s) and
the environment” (Laprie, 1995), which is the ability of a computer system
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to deliver the services without causing immediate and direct harm to its
users and the environment. The attribute of safety always appears in a
safety critical system, which is “one whose failure could be sufficient to cause
us harm.” (Burns, McDermid, and Dobson, 1992)

Security is defined as “the absence of unauthorized access to, or handling of,
system state” (Laprie, 1995), which is the ability of a computer system to
deliver the services without unauthorized access. The attribute of secu-
rity always appears in a security critical system, which is “one whose failure
could not be sufficient to cause us harm, but could increase the number of possi-
bilities, or likelihood of existing possibilities, for others to intentionally cause us
harm.” (Burns, McDermid, and Dobson, 1992)

Maintainability is defined as “ability to undergo repairs and modification”,
which is the ability of a computer system to be restored to operation state
after a failure or modification. There are two kinds of maintenance tech-
niques: preventive maintenance which is used for postponing failures and
corrective maintenance which is used for correcting failures. Furthermore,
a system with high levels of maintainability will increase the availability,

reliability, safety, and security of the system.

2.2.1.3 The Means for Dependability

The dependability of a computing system is affected if faults exist in any
of the five attributes discussed in section 2.2.1.2. In order to achieve a de-
pendable computing system, various techniques are developed and have
been classified into four groups (Laprie, 1995):

e Fault prevention: how to prevent fault occurrence or introduction;

Fault tolerance: how to guarantee a service to maintain the system’s func-
tions in the presence of faults;

Fault removal: how to reduce the presence (number, seriousness) of faults;

Fault forecasting: how to estimate the number, the future incidence, and
the consequences of faults.

2.2.2 Dependability of Current Swarm Robotics

In section 1.2, the dependability of swarm robotic systems and its attributes,
which are liveness and safety, are introduced. Note that the attributes
of dependability named by Winfield (Winfield, Harper, and Nembrini,
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TABLE 2.1: INTERNAL HAZARDS FOR A SINGLE
ROBOT (Winfield and Nembrini, 2006)

Hazard Description

H, Motor failure

H» Communications failure
H, Avoidance sensor(s) failure
H, Beacon sensor failure

Hs Control systems failure

Hg All systems failure

2004) are not consistent with the nomenclature used by Laprie (see section
2.2.1.2), the attribute safety defined by Winfield is essentially a combina-
tion of reliability, safety, security and maintainability as defined by Laprie.

Swarm robotics literature frequently asserts that swarm robotic sys-
tems are dependable (Winfield and Nembrini, 2006). For example, as the
decisions made in swarms are only based on local sensing and communi-
cations, swarm robotic systems are often assumed to have high levels of
scalability. Swarm robotic systems are also assumed to be very robust due
to the tolerance to failures of individual robots. However, no empirical
evidence or theoretical analysis shows that dependability is automatically
a property of all swarm robotic systems (Winfield and Nembrini, 2006).

To prove that the dependability of swarm robotic system does not come
naturally, Winfield et al. (Winfield and Nembrini, 2006) explored fault tol-
erance of swarm robotic systems using Failure Mode and Effect analysis
(FMEA). Winfield et al. in (Winfield and Nembrini, 2006) identified all
possible internal hazards (faults of an individual robot), and then anal-
ysed the effect of these internal hazards on the overall behaviour of the
swarm robotic system. Table 2.1 shows the internal hazards for a single
robot, and Table 2.2 shows the effect of each internal hazards on overall
swarm behaviours. The fault effects in Table 2.2 are defined as following
(Winfield and Nembrini, 2006):

e Effect E1 (serious): Motor failure anchoring the swarm.
e Effect E2 (non-serious): Lost robot(s) in the environment.
o Effect E3 (non-serious): robot collisions with obstacles or target.

Table 2.2 shows that only hazard H1 and hazard H5 cause serious effect
on high level collective behaviours, e.g. beacon taxis behaviour which
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TABLE 2.2: SUMMARY OF FAILURE MODES AND EF-
FECTS (Winfield and Nembrini, 2006)

Swarm behaviour Htr H: H_: H.; Hs Hr:;
Aggregation - €2 — - €2 -
Ad hoc network — €5 - - € -
Beacon taxis E, €2 - - E, -
Obstacle avoidance E, €2 €3 - E, -
Encapsulation E, €5 €3 - E, -

is the behaviour that a swarm moving towards a light source in a flock.
When there is motor failure or control system failure in a robot, the faulty
robot will lose its movability but its communication system continues to
function. As the faulty robots remain within the ad hoc network of the
swarm and become stationary in the environment, it will have the effect of
anchoring the swarm at its location and thus compromise the formation of
high level collective swarm behaviour. As both hazard H1 and hazard H5
are partial failures of a robot, the experimental results show that the tested
swarm robotic system is not fault tolerant to partial failure of robots.

One interesting from the experimental results is that although haz-
ard H6 (total system failure) is the most serious failure that an individual
robot can have, results from Table 2.2 show that H6 has no effect on over-
all swarm behaviours at all. This is because a totally failed robot will be
treated as a static obstacle and be avoided by other robots in the swarm.
Hence, the experimental results show that the tested swarm robotic sys-
tem is fault-tolerant to complete failure of robots.

Note that the effect of each internal hazard listed in Table 2.2 does not
represent the importance of its associated mechanism. For example, haz-
ard H2 (communication failure) is listed as non-serious effect for all five
swarm behaviours. However, communication is one of the most impor-
tant mechanisms for swarm robotic systems and “in order to accomplish a
given task (e.g., finding an object), robots must share information (e.g., about
what they are sensing).” (Couceiro et al., 2013b).

Winfield et al. (Bjerknes and Winfield, 2013) presented an analysis
based on reliability modelling in order to explore how fault tolerance of
a swarm robotic system is related to the size of the swarm. In this paper,
the reliability of a swarm robotic system is modelled using k-out-of-N re-
liability modelling, in which N stands for the total number of robots in the
swarm and K stands for the minimum number of operational (no faults)
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FIGURE 2.2: Reliability for a swarm with partially failed
robots (Bjerknes and Winfield, 2013)

robots required for the overall swarm to operate correctly. The reliability is
defined as the probability which the swarm will operate without failure.
Figure 2.2 plots the reliability of a swarm robotic system against swarm
size N when hazard H1 (motor failure) is induced and the average time
before failure of an individual robot is set at 8 hours. It is obvious from
Figure 2.2 that the reliability of the tested swarm decreases sharply as its
size increases.

In conclusion, the work of Winfield et al. (Winfield and Nembrini,
2006) (Bjerknes and Winfield, 2013) showed that the current swarm robotics

is:
e fault-tolerant to complete failure of robots
e less tolerant to partial failure of robots
e less reliable when the number of robots increases in case of partial
failure of robots
2.2.3 Fault detection in swarm robotics

In order to improve the dependability of swarm robotic system, Winfield
et al. (Winfield and Nembrini, 2006) suggested developing designed-in
measures to neutralize the effect of partial failures. One way to counter the
effect of partial failures is to use fault detection mechanism to detect and
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respond to failures in the swarm. Winfield (Bjerknes and Winfield, 2013)
suggested a new robot behaviour from which the individuals should be
able to identify neighbours who have partial failure, then ‘isolate’ those
robots from the rest of the swarm. Christensen (Christensen, OGrady, and
Dorigo, 2009) derived an exogenous fault detection algorithm (the swarm
robotic systems require external equipment for fault detection) for swarm
robotics by taking inspirations from the synchronized flashing behaviour
observed in some species of fireflies. In his algorithm, the robots flash peri-
odically. When a robot detects failure inside itself, it stops flashing. When
a robot detects a failed robot, it will try to drag the failed robot into a safety
area so that the whole swarm will continue to operate correctly. Therefore,
the swarm can operate with relatively high failure rates. However, Chris-
tensen only considers the case of complete failure of robots. In case of
partial failure of robots, Christensen’s algorithm will not be able to detect
and isolate the failed individuals. In order to increase the dependability of
the swarm robotic system, a better exogenous fault detection mechanism
is needed for detecting partial failed robots.

Winfield (Winfield, Harper, and Nembrini, 2006) suggested that in or-
der to develop a dependable swarm, the system should meet the stan-
dards of analysis, design, and testing. Both Winfield (Winfield and Nem-
brini, 2006; Bjerknes and Winfield, 2013) and Christensen (Christensen,
OGrady, and Dorigo, 2009) list a few principles for analysis and design of
the swarm robotic system:

e the system should be able to operate efficiently under varying swarm
size.

o the system should be able to operate when encountering disturbances
from the environment.

o the system should be able to operate when losing individuals or be-
ing split apart.

2.24 Summary

This section has discussed the concepts of dependability in the context of
both computer systems and swarm robotic systems. The work of Win-
field et al. (Winfield and Nembrini, 2006) shows that the dependability of
the swarm robotic system does not come naturally. Even though current
swarm robotic systems are robust to complete failure of a single robot,
they are most vulnerable to “partial failure” such as motor failure of a

single robot. Fault detection methods such as the fireflies algorithm in
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(Christensen, OGrady, and Dorigo, 2009) have been proposed to achieve a
dependable swarm by means of fault tolerance (see section 2.2.1.3). How-
ever, these fault detection methods are still unable to detect and isolate
partial failed robots in a swarm.

Moreover, there are no attempts in the literature to achieve a depend-
able swarm by means of fault removal (see section 2.2.1.3). Fault removal
can be achieved by detecting faults using proper testing methods and then
removing the faults by improving the algorithm. Up to the time of writing,
there is no mention in the literature of principals for testing swarm robotic
systems. Testing can help designers to identify faults in the swarm algo-
rithm, and the algorithm might be improved by removing the faults iden-
tified. Consequently, it is worth developing a systematic swarm robotic
testing method. Moreover, the dependability of swarms can be doubly
assured by using a combination of testing and exogenous fault detection
mechanisms.

2.3 Analysis and Testing

Performance assessment test-beds and formal analysis techniques to ver-
ify and guarantee the properties of swarm robotic system are still lack-
ing. In order to guarantee the dependability of a swarm robotic system,
Winfield (Winfield, Harper, and Nembrini, 2004) suggested that a set of
disciplines should be applied during the processes of analysis, design and
testing of the system. The design problem has already been discussed in
section 2.1.5; the processes of analysis and testing for swarm robotic sys-
tems will be discussed in the following sections.

2.3.1 Analysis

Analysis is a fundamental phase in an engineering process (Pohl, 2010).
In the analysis phase, the swarm robotic system development focuses on
the analysis of whether a general property of the designed collective be-
haviour holds or not (Lerman, Martinoli, and Galstyan, 2004). In swarm
robotics, the analysis of properties of the collective behaviours is usually
carried out using models (Lerman, Martinoli, and Galstyan, 2004).
Lerman et al. (Lerman, Martinoli, and Galstyan, 2004) categorizes
models of swarm robotic system into two levels: the microscopic level,
which models the characteristics of the single robots, and the macroscopic
level, which models the characteristics of the entire swarm. Modelling
both the microscopic and the macroscopic level at the same time is ex-
tremely difficult due to the nature of self-organized systems (Abbott, 2006),
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so most modelling techniques only focus on one level at a time. Note that
microscopic models are usually used for test analysis while macroscopic

models are used for design analysis.

2.3.1.1 Microscopic level

At microscopic level, the models treat the robot as the fundamental unit
of the model (Lerman, Martinoli, and Galstyan, 2004). The model not only
describes the characteristics of the single individuals, it also describes the
interactions between the robots and between the robots and the environ-
ment (Lerman, Martinoli, and Galstyan, 2004).

In microscopic models, simulations are always used for analysing the
swarm robotic system. Friedmann (Friedmann, 2010) suggests that differ-
ent levels of abstraction can be used when simulating the characteristics
of a robot and the interaction between the robot and environment (includ-
ing other robots). For example, a robot can be treated as point-masses
in a 2D world in the simplest model while it can also be modelled using
dynamic physics in a complex model with details of each sensor and actu-
ator in a 3D world. As the behaviour of each individual robot is explicitly
modelled at microscopic level, the microscopic model with high level of
abstraction can also be used for design purposes in the behaviour-based
design method. As the number of robots of the swarm robotic system is
much larger than that of other mobile robotic systems, the simulators de-
veloped for other mobile robotic systems are not suitable for simulating
swarm robotic systems. As a result, particular simulators that are scalable
should be used when modelling swarm robotic systems at microscopic
level.

Microscopic model can also give researchers an understanding of the
global behaviour of the swarm robotic system. For example, Martinoli et
al. (Martinoli, Ijspeert, and Gambardella, 1999) use a microscopic model
to study the aggregation processes in a swarm of robots and to improve
the understanding of the influence of the robot control parameters on
collective aggregation by comparing the results between different collec-
tive aggregation mechanisms. However, due to the immaturity of swarm
robotic systems, there are few successful examples of microscopic model

for swarm robotic systems.

2.3.1.2 Macroscopic level

At macroscopic level, the models treat swarm robotic system as a whole
(Lerman, Martinoli, and Galstyan, 2004). The model directly describes the



32 Chapter 2. Background and Related Work

collective behaviour of the swarm despite the characteristics of the indi-
viduals. Some of the macroscopic model techniques are discussed below.

Differential equations Differential equations can be used to model col-
lective behaviour of a swarm at the macroscopic level. For example, Win-
field et al. (Winfield et al., 2008) propose a probabilistic finite state machine
(PFSM) which describes the collective behaviour of the swarm at macro-
scopic level. Winfield et al. (Winfield et al., 2008) managed to use PFSM
and a number of differential equations to model a swarm of robots which
is able to stay together while avoiding collisions. In a later study (Liu and
Winfield, 2010), Liu and Winfield managed to use differential equations to
model a collective foraging swarm.

As the first two steps of developing a macroscopic model for swarm
robotic systems involving modelling the behaviour of individual robots as
a finite state machine (FSM) (Lerman, Martinoli, and Galstyan, 2004) and
then transforming the FSM into a PFSM (Liu and Winfield, 2010), the dif-
ferential equation approach is able to transform microscopic models into
macroscopic models systematically. However, since the positions of the
robots in space are not explicitly modelled and the time is usually assumed
in the differential equation approach, the major limitation of the differen-
tial equation approach is the difficulty of modelling spatial and temporal
concepts.

Other modelling techniques Massink et al. (Massink et al., 2012) present
a methodology of analysing consensus achievement in swarm robotic sys-
tems based on Bio-PEPA. Bio-PEPA (Biological Performance Evaluation
Process Algebra) is a modelling and analysis framework developed for bi-
ological system. Its major advantage is that different types of analyses of a
swarm robotic system based on the same system specification can be car-
ried out (Massink et al., 2012). This will reduce the effort for developing
multiple models when carrying out different analyses and while preserv-
ing the mutual consistency of the results. The major limitation of using
Bio-PEPA is the difficulty of modelling and analysing spatial and temporal
concepts. Moreover, another limitation is the lack of a direct link between
a Bio-PEPA model and a physics-based simulations of the same system
(Brambilla et al., 2013). Note that due to the lack of well-defined metrics,
there are no modelling methods which are good enough to analyse swarm
robotic systems precisely. When modelling a swarm robotic system, the
developer has to choose the method that fits the system best on the basis

of his/her own experience.
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2.3.2 Testing

From section 2.1.5 and section 2.3.1, it is obvious that swarm robotics re-
searchers have paid great attention to the processes of design and analysis
of swarm robotic systems. However, there is very little literature focus-
ing on swarm robotics testing methods. One reason for this might be that
the current swarm robotic systems are still immature so that there is no
need for tough testing to make them fail. The goal of testing is not only to
find faults in a system, but also to support fault prevention. For example,
Beizer (Beizer, 2003) concluded that bugs can be detected and eliminated
at every stage in the software construction process by tests. Furthermore,
Beck (Beck, 2003) proposed a style of development called test-driven de-
velopment which provides the opportunities of improving the quality of a
system by tackling the faults detected by tests. Consequently, research into
testing methods of swarm robotic systems will not only be able to identify
the faults, but also provide developers with opportunity of improving the
dependability of the swarm (e.g. by applying an improved swarm control
algorithm). In spite of the lack of literature in testing methods for swarm
robotic systems, related fields will be reviewed in the following subsec-
tions in a general-to-specific order.

2.3.2.1 Software Testing

Software testing is a software development activity, which focuses on eval-
uating and improving the quality of a system by finding errors and prob-
lems (Abran et al., 2004). Testing is an important activity and should
be applied throughout the whole development and maintenance process
(Adrion, Branstad, and Cherniavsky, 1982). Inadequate testing will not
only affect the quality of the system, but may also bring negative conse-
quences to its users. For example, the failures occurred in the Therac-5
radiation therapy machine are known to give massive overdoses of radi-
ation to the patients resulting in deaths or serious injuries (Leveson and
Turner, 1993).

When carrying out a test for a system, testing can be applied to differ-
ent levels of targets. The targets are often classified as follows:

o Unit testing: “Testing of individual hardware or software units or groups
of related units.” (Radatz, Geraci, and Katki, 1990) Unit testing is used
for verifying that each individual unit of the source code (or a soft-
ware component which is composed of related units) behaves ex-
actly as expected. Each individual unit (or software component)
should be tested separately.
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o Integration testing: “Testing in which software components, hardware
components, or both are combined and tested to evaluate the interaction be-
tween them.” (Radatz, Geraci, and Katki, 1990) Integration testing is
used for verifying the interaction between individual units (or soft-

ware components).

o System testing: “Testing conducted on a complete, integrated system to
evaluate the compliance of the system with its specified requirements.” (Ra-
datz, Geraci, and Katki, 1990) System testing is used for verifying
whether the behaviour of the whole system is consistent with the
customer’s requirements specification.

The above classification of software testing is based on the scope of the
testing. Note that the testing method developed in this thesis is system
testing as the behaviour of the whole swarm is the test target. Pan (Pan,
1999) classified software testing into the following categories according to
the purpose of testing;:

o Correctness testing is used to test whether the system performs the
correct behaviour. The testing techniques in correctness testing can

be separated into two categories:

— Black-box testing: The internal structure of the tested compo-
nent or system is unknown and the test is only focus on the
functionality of the system.

— White-box testing: The test cases are derived from the internal
structure of the tested component or system.

e Performance testing is used to evaluate whether a system meets the
performance requirements. The evaluation of the performance of a
software system usually includes: resource usage, throughput, and
reaction time (Pan, 1999).

o Reliability testing is used to estimate the reliability of a system. The
aim of this testing is to discover and remove all detected failures of
the system before the system is released.

e Security testing is used to find out weaknesses of a system which
might cause major harm to the users or the system.

Software testing is expensive and time-consuming. In order to cut down
cost and time, one of the search-based testing techniques (Clarke et al.,
2003) called Evolutionary testing is proposed (Pargas, Harrold, and Peck,
1999). Evolutionary testing is inspired by the theory of evolution in biol-
ogy and can automatically generate test cases by using optimizing search
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techniques (Genetic Algorithm (Davis, 1991)). Evolutionary testing might
be able to find a near-optimal solution but due to the random nature of a

genetic algorithm, an optimal solution is never guaranteed.

2.3.2.2 Autonomous Agents Testing

Franklin et al. (Franklin and Graesser, 1996) defined an autonomous agent
as “a system situated within and a part of an environment that senses that envi-
ronment and acts on it, over time, in pursuit of its own agenda and so as to effect
what it senses in the future.” Even though an autonomous agent might com-
municate with other agents, current autonomous agents testing methods
only focus on testing the behaviour of a single agent. Swarm robotic test-
ing methods should focus on the overall behaviour of the whole swarm,
therefore autonomous testing method can not be applied to test swarm
robotic systems directly. Wooldridge et al. (Wooldridge and Jennings,
1994) pointed out the properties that an autonomous agent should have;
they are:

o Autonomy: agents are able to operate without the participation of humans
or other systems;

e Social ability: agents are able to communicate with other agents or hu-

mans;

o Reactivity: agents are able to perceive and respond to the changes in the
environment;

e Pro-activeness: agents are able to choose the actions on their own in order
to reach their goals.

Due to the peculiar nature of autonomous agents, testing autonomous
agents is challenging as autonomous agents make decisions for themselves.
Due to the autonomy of the agents, their behaviours are unpredictable.
Unlike non-autonomous agents which will often have the same output for
a given input, autonomous agents may behave in different ways. Conse-
quently, in order to apply thorough testing to autonomous agents, a wide
range of test cases is required. As traditional testing techniques for non-
autonomous agent system will not work for testing autonomous agents
(Rouff, 2002), the following testing methods are all able to generate test
cases autonomously.

Soe et al. (Seo, Araragi, and Kwon, 2004) presented a testing method
for checking the specification of an agent system by using Statecharts. A
state-based model for an agent system is first built using extended State-
charts, and then the tests are generated. However, this testing method can
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only be used to test if the system meets the stakeholder’s requirements and
is unable to detect any faults existing in the system. Another method pro-
posed by Zheng et al. (Zheng and Alagar, 2005) is also used to check the
stakeholder’s requirements. In order to detect faults in a system, Zhang et
al. (Zhang, Thangarajah, and Padgham, 2007) presented a testing method
for generating suitable test cases autonomously and detecting faults in a
system. One drawback of this testing method is that the test cases gener-
ated is only suitable for unit testing.
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FIGURE 2.3: Maximizing the minimum number of turns
for 100 generations (Ashlock, Manikas, and Ashenayi,
2006)

Ashlock et al. (Ashlock, Manikas, and Ashenayi, 2006) present an evo-
lutionary computation system that can generate varies collection of test
cases which can be used for testing path planning algorithms for autonomous
robots. They use cellular representation in which directions are used to
represent a group of objects and these in turn are used to construct ob-
structions in a test case. In study (Ashlock, Manikas, and Ashenayi, 2006),
the initial test cases are generated randomly following a set of rules, and
then an evolutionary algorithm is applied to generate evolved test cases.
The fitness value of each test case is calculated via the dynamic program-
ming algorithm stated in (Ashlock, Manikas, and Ashenayi, 2006) and it
is the minimum number of turns (either return right or left) required for a
mobile robot to reach the destination. Figure 2.3 shows the average num-

ber of the minimum number of turns (fitness value) required for a mobile
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robot to reach the destination for 100 generations of test cases in the evo-
lution. The results shown in the graph reveal that the minimum number
of turns of test cases has increased through the application of the evolu-
tionary algorithm. Therefore, in testing a single autonomous robot, the
evolutionary test case generator is able to generate large numbers of test
cases which is more effective than random test cases.

Nguyen et al. (Nguyen et al., 2012) proposed an evolutionary test-
ing method for evaluating the dependability of an autonomous agent. In
this evolutionary testing method, the function used for evaluating the fit-
ness value of each test case depends on the soft-goal of interest of the
stake-holder and the problem domain. The initial test cases can be gen-
erated randomly or created by testers. A monitoring mechanism is used
for observing and recording the behaviours of the mobile robots during
the evolution. The data collected by the monitoring mechanism is used to
compute the fitness values of choosing test cases. In the experiments, the
robot has two built-in faults F1 and F2. The experimental results reported
in the paper show that the evolutionary testing method is effective as the
evolutionary technique detects both faults F1 and F2 while the random
technique can only detect the easy fault, that is, F2.

2.3.2.3 Multi-agent System Testing

Multi-agent systems (MAS) are computational systems composed of mul-
tiple autonomous agents within an environment (Ferber, 1999). Study
(Siciliano and Khatib, 2016) treats swarm robotics as an subset of multi-
robotics which is a subset of multi-agent system, therefore the testing method
for multi-agent system might be adapted when developing swarm robotic
testing method. When testing a MAS, not only the agents inside the MAS
should be tested, but also the interactions between the agents. Conse-
quently, the test targets can be classified into the following classes based
on the scope of the testing (Nguyen, 2009):

e Unit: the units that make up an agent are tested to ensure that each
unit works as designed;

e Agent: the single autonomous agent is tested;

o Integration: the interactions between agents and the interactions be-
tween the agents and the environment are tested;

e System: the MAS system is tested as a whole in the target operat-
ing environment. The tests aims to find out whether the expected
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emergent properties hold and whether the expected qualities are
achieved;

o Acceptance: the MAS system is tested in the customer’s execution
environment in order to find out whether it meets the goals of the
stakeholders.

When carrying out unit testing and agent testing in MAS, the testing meth-
ods that have been developed for testing single autonomous agent can be
used. So only those testing methods testing MAS as a whole are discussed
in this section.

Houhamdi et al. (Houhamdi and Athamena, 2011) introduced an ap-
proach for generating test suites for system testing of MAS. In this ap-
proach, a goal-oriented requirements analysis artefact is treated as the
core element for test case derivation (Houhamdi and Athamena, 2011).
Nguyen (Nguyen, Perini, and Tonella, 2009) proposed a comprehensive
testing methodology which is able to generate test cases for all target test-
ing levels, from unit to acceptance. This method derives test suites by
complementing and exploiting goal-oriented analysis and design. How-
ever, for both of the above approaches, no realistic case studies are carried
out to verify their usability on testing MAS.

In conclusion, the testing methods for MAS are still immature at sys-
tem/acceptance level. Nguyen (Nguyen, 2009) pointed out some further
research that can be carried out in order to improve the current testing
methodology:

o Testing MAS at system and acceptance level: how do developers build and
end-users have confidence in autonomous agents?

o Test inputs definition and generation to deal with the open and dynamic
nature of software agents and MAS.

o Test oracles: how to judge autonomous behaviour? How to evaluate agents

that have their own goals from the subjective perspectives of a human tester?

o Testing emergent properties at macroscopic system level: how to judge
whether or not an emergent property is correct? How to check the mutual

relationship between macroscopic and agent behaviours?

o Deriving metrics such as safety, efficiency, and openness to assess the qual-
ities of the MIAS in test conditions.

o Reducing/removing side effects in test execution and monitoring because in
many approaches introducing new entities in the system, e.g. mock agents,
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tester agents, and monitoring agents can influence the behaviour of the
agents during tests and so the performance of the system as a whole.

2.3.2.4 Test Beds for Multi-robot Systems

A multi-robot system is system which consists of multiple robots that co-
ordinate with each other to achieve a goal (Ferber, 1999). In order to ver-
ify the quality of a multi-robot system, experimental validation is usually
carried out. Several test beds which are developed for multi-robot ex-
perimental validation are discussed in this section. Due to the similarity
between multi-robot system and swarm robotic system, the test beds for
multi-robot system can be treated as candidates for testing swarm-robotic
system.

Pinciroli et al. (Pinciroli et al., 2012) presented a multi-robot simulator
named ARGoS, which is developed to simulate large number of robots
of various types. The experimental results in study (Pinciroli et al., 2012)
showed that the simulation run-time increases linearly with the number
of robots and the simulator is able to simulate 10,000 3D-dynamic e-puck
robots is in real time. ARGOS is also be able to add new features to the
experiment. As a result, the author declared that “ARGoS is the first multi-
robot simulator that is at the same time both efficient (fast performance with many
robots) and flexible (highly customizable for specific experiments)” (Pinciroli et
al., 2012).

However, the work of Pinciroli et al. (Pinciroli et al., 2012) can only test
a robotic system in the simulation. Therefore, how the robotic system per-
forms in the physical world is unknown. In order to test robotic systems in
the physical environment, Azamasab et al. (Azarnasab and Hu, 2007) pre-
sented the development of an integrated multi-robot test bed; they used
the incremental simulation-based design methodology which includes the
following phases:

e Conventional simulation: all of the robots are simulated in the sim-
ulator.

¢ Robot-in-the-loop simulation: some of the robots in the simulator
are replaced with real robots which use a combination of virtual and
real sensors/actuators so that they can sense other simulated robots
and communicate with them.

¢ Real robot testing: all of the robots are real robots and they are tested
under the real physical environment.
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By using robot-in-loop simulation, the simulation-based study becomes
one-step closer to reality (Azarnasab and Hu, 2007). As real robots are
involved in the simulation, the confidence of the designers in final real
system working increases. And finally, robot-in-loop simulation makes it
possible to carry out system-wide tests and measurements without wait-
ing for all of the real robots to be available for the large-scale robotic sys-
tem (Azarnasab and Hu, 2007). However, only four real robots are used
in the real robot testing in study (Azarnasab and Hu, 2007). In conclusion,
the scalability of this incremental simulation-based test bed is still unclear

and so is its usability.

2.3.3 Summary

Analysis techniques used in swarm robotics were reviewed in the first part
of this section and they are divided into two levels: the microscopic level
and macroscopic level. Due to the immaturity of swarm robotic systems,
there are few successful examples of analysis techniques for swarm robotic
systems. Due to the lack of studies in testing methods in swarm robotics,
the second part of this section reviewed the testing methods in other fields
which are relevant to swarm robotics. Testing methods for autonomous
agents and multi-agent system were reviewed and methods proposed in
studies (Ashlock, Manikas, and Ashenayi, 2006; Nguyen et al., 2012) might
be adapted in order to develop a swarm robotic testing method. Test beds
for multi-robot systems are the potential candidates for executing swarm
robotic systems.

2.4 Swarm Behaviours

In this section, three swarm behaviours, which are flocking behaviour, for-
aging behaviour, and task partitioning behaviour, tested in our case stud-
ies (Chapter 4, 5, and 6) and the related work of these behaviours are in-
troduced.

2.4.1 Flocking Behaviour

It is familiar to us that a group of birds fly together in the sky. There is
also an old proverb saying that "Birds of a feather flock together". The
reason that birds tend to fly together is not only because it can help them
to stay safe from their predators, but also because it helps them to con-
serve energy by reducing wind resistance. For example, it is easier for a
predator to attack one bird than attacking a group of birds. When a flock
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of birds is facing attack, more of them can stay out of the predator’s sight
and it is more convenient to spread the attacking information through the
whole flock. Under these circumstances, a flock of birds can be treated as
a natural swarm. The birds in a flock use only local communication and
have limited environmental information. Hence, flocking is a collective
behaviour of a group of interacting agents, e.g. birds in nature, working
together to achieve a common goal without any centralized coordination.

2.4.1.1 Flocking Rules and Scenario

The first flocking simulation on a computer, named Boids, was accom-
plished by Craig Reynolds in 1987 (Reynolds, 1987). The agents in Boids
use three simple rules to achieve the basic model (agents flock in a bor-
derless environment without any obstacles) of flocking behaviour in the
simulator, and described as follows (Reynolds, 1987):

e Separation: steer to avoid crowding local flockmates;
e Alignment: steer towards the average heading of local flockmates;

e Cohesion: steer to move toward the average position of local flock-
mates.

A

(a) Separation (b) Alignment (c) Cohesion
FIGURE 2.4: Steering rules of Boids (Reynolds, 1987).

Figure 2.4 shows these three basic steering rules of Boids. The blue agents
within the grey circle are the local flockmates of the green agent. As the
agents in the flock only use local communication, any agents that are out-
side the grey circle will be ignored. In order to make the flocking be-
haviour more complete (realistic), the following two rules can be added
so that the agents in the flock can stay together to chase a target or reach
a destination while avoiding collisions with static obstacles (Wei, Timmis,
and Alexander, 2017):

e Obstacle avoidance: steer to avoid obstacles in the environment;

e Goal seeking: steer towards the direction of the goal.
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There is no single definition of a standard flocking scenario in swarm
robotic research. The following shows two commonly used flocking sce-
narios currently used in either multi-robotic research or swarm robotic re-

search:

e (1) The agents of a flock move together in random directions in an
empty environment;

¢ (2) The agents of a flock move towards a global target together or
follow informed robots into which the moving directions are com-
manded or pre-defined.

Scenario 1 was commonly used at the beginning of flocking behaviour re-
search in swarm robotics. In study (Moeslinger, Schmickl, and Crailsheim,
2011), flocking has been achieved in scenario 1 without sharing global in-
formation among the swarm. From then on, scenario 2 was widely used
as it is more challenging. At the current level of swarm robotic research,
certain global information, such as the heading direction of each robot, is
still needed in order to achieve the task in scenario 2. Due to the challeng-
ing and extensive use of scenario 2, it will be used for carrying out the
experiments in this case study. Figure 2.5 shows an example of scenario 2
with 4 informed robots in the swarm (Celikkanat and Sahin, 2010).

FIGURE 2.5: Snapshots of steered flocking with 7 robots.

At the time of the second snapshot, 4 of the robots are

commanded to turn 90 degrees to the right of their cur-

rent direction. White lines indicate the heading directions
of the robots (Celikkanat and Sahin, 2010).

2.4.1.2 Related Work of Flocking Behaviour

Since Boids was implemented in simulation, several approaches for ap-
plying flocking behaviour to robotic swarms have been proposed. Even
though there are lots of successful examples of applying flocking behaviour
to swarm robotic systems, most of them (e.g. (Ferrante et al., 2012; Kelly
and Keating, 1996)) violate one basic rule of swarm robotic systems, which
is that only local communication and limited environmental information
can be provided to the agents.
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For the three basic steering rules of Boids, separation and cohesion are
easy to implement, but alignment control is very difficult without shar-
ing heading directions of each robot to other robots. In order to achieve
alignment control, each agent needs to know its own heading direction
and the heading directions of all its flockmates. In swarm robotics, there
are usually two ways of implementing flocking behaviour. The first is to
ignore the alignment rule but induce alignment control by using other ap-
proaches, such as following a light source in (Spears et al., 2004). However,
in this category, none of the experimental results in the literature shows
that the implemented swarm is robust. The second method is to imple-
ment alignment control by using global information (Stranieri et al., 2011;
Holland et al., 2005; Ferrante et al., 2012). These flocking behaviours are
more robust but they are not truly swarm systems according to the criteria
established by Erol Sahin (Sahin, 2004). There are some controversies in
this category as some researchers believe that sharing alignment informa-
tion between the robots is not accessing global information.

2.4.2 Ant Foraging Behaviour

The ant is one of the most cited examples of a creature that can cooperate in
large groups (Dorigo, Birattari, and Stutzle, 2006; Lambrinos et al., 2000).
Ants can do many things, which are beyond the ability of any single ant,
collectively: retrieve big prey, find the shortest path to the food, defend the
colony, and so on. Even though there is a queen for each ant colony, the
queen does not give instructions on how the ants should cooperate. The
focus in this thesis is on ant-like foraging (search and return) behaviour. In
such foraging behaviour, the individual agents should be able to explore
the environment collectively to find the targets (food source) and progres-
sively bring those targets to their nest.

2.4.2.1 Basic Foraging Algorithm

In ant foraging behaviour studies, a basic foraging algorithm (Matari¢,
1995) is often used as a basis for extension to more complex foraging algo-
rithms (Winfield, 2009). It is also used as a baseline to show the efficiency
of a new proposed foraging algorithm. A new proposed foraging algo-
rithm is efficient if it performs better than the basic foraging algorithm in
the same testing environment. Finite state machine are often used to con-
trol the behaviour of an individual robot in ant foraging behaviour. Figure
2.6 shows the finite state machine of the basic foraging algorithm and the
four states are defined as follows:
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Wandering: this state provides the robots with the ability to move
around in the environment while avoiding collisions with obstacles
and each other. If there is a food source within the detectable range

of the robot, the robot changes its state from wandering to gathering.

Gathering: the robot in this state gathers food item from the food
resource. Once the robot is carrying the food item, it changes its

state to homing.

Homing: the robot in this state moves towards the location of the
nest. When the robot reaches the nest, it changes its state to drop-

ping.

Dropping: the robot in this state drops the food item at the nest and
then changes its state to wandering.

Food
Wandering Gathering
Dropped Carrying
. Nest )
Dropping Homing

FIGURE 2.6: The finite state machine of the basic foraging
algorithm

2.4.2.2 Path Finding using Pheromones

Even though there are no individual ants knowing the location of the nest,

the location of the food, or even the location of itself in the environment,

they can still find the shortest path from the nest to the food (Dorigo, Birat-

tari, and Stutzle, 2006). This is because ants use pheromones to mark trails

in the environment. When ants are looking for food, they wander around

their nest randomly. Once they find the location of the food, they start to

return to their nest while laying down pheromones trails. If other wander-

ing ants meet the trails, they start to follow the trail instead of wandering

randomly. If these ants eventually find the food by following the trail, they

will lay down more pheromones to reinforce this trail while bringing the
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food to their nest. However, the pheromones evaporate as time elapses.
The more time it takes for an ant to travel from the food to the nest, the
larger the amount of pheromones evaporate. Over the course of time, the
density of the pheromones will be higher on a shorter trail than a longer
one. Eventually, the shortest path appears.

In terms of ant foraging behaviour in swarm robotics, if the robots are
not equipped with a good path planning algorithm which allows them to
reach the nest when carrying a food item, pheromone can be used to find
the shortest path to the nest. By finding the shortest path in the environ-
ment, the efficiency of the system can be improved. In this situation, one
of the major difficulties of this algorithm is to create pheromones in the
environment. The most common way is to use sensors of the robot, e.g.
chemical sensor, or use communication, e.g. a wireless network, to build
the pheromone system. The following approaches are some representative
examples of solving the pheromones problem:

e Physical Mark - Evaporating Chemicals: The agents in (Sharpe and
Webb, 1998) find the shortest path with the help of alcohol (evaporat-
ing chemicals). Alcohol was laid down on the floor, and the chemical
sensors on the robot are able to detect alcohol vapours, which lead
the robot towards the greater concentration of vapour.

e Visual Mark - Fluorescence Chemicals: The agents in (Svennebring
and Koenig, 2004) are able to create a trail by dropping drops of flu-
orescence chemicals. As the dropped chemicals emit light, visually
marked trails are formed. The sensors on the robot detect the in-
tensity of the light so that the robot can head towards the brighter
trail.

e Virtual Mark - Virtual Pheromones: Payton et al. (Payton et al,,
2001) proposed a virtual mark called virtual pheromone. Virtual
Pheromones are implemented using infrared-based communication
and can be transmitted from one robots to another. Virtual Pheromones
are not fixed locations in the environment but are symbolic messages
embedded in the robots.

Each of the above approaches has its own shortcomings. Physical marks,
such as temporary marks, are difficult to implement physically. Visual
marks which leaves permanent physical marks in the environment are
usually not acceptable in most situations. Although virtual marks do no
harm to the environment while it is relatively easy to implement, spare
robots are needed because these robots are used as pheromones them-
selves. Fortunately, there is another approach called Deployable Beacons
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(Barth, 2003) which uses robots to deploy beacons, which can be used as
pheromones, in the environment. This would not be a problem in the sim-
ulation even though this approach has its shortcomings, for example, the
robots need to be able to carry a large number of beacons and should also
have the ability to retrieve beacons which have previously been deployed
in the environment.

2.4.3 Task Partitioning Behaviour

In (Ratnieks and Anderson, 1999), Ratnieks et al. describe task partition-
ing as "the phenomenon in which a piece of work is divided among two or more
workers”. Task partitioning is observed in many species of social animals.
One example of task partitioning, observed in nature, is leaf harvesting
of leaf-cutting ants (Hart, Anderson, and Ratnieks, 2002). In leaf-cutting
ants’ foraging, some individuals cut and drop leaves from the tree to the
ground while other individuals collect and transport the dropped leaves
to the nest. During the whole task, each individual can choose whether
to cut the leaves, or transport the leaves, or even both. The advantage of
partitioning the tasks is that, once some individuals have climbed the tree,
the energy consumed by climbing up and down the tree can be saved for
other individuals. The disadvantage is that energy has to be used to search
for the leaves on the ground. Nonetheless, some studies (Hart, Ander-
son, and Ratnieks, 2002; Hart and Ratnieks, 2001, FOWLER and Robinson,
1979) suggest that the gain from using task partitioning often outweighs
its costs.

Swarm robotic systems face similar situations as leaf-cutting ants. In
this case, it is more convenient and efficient to partition one complex task
into multiple simpler subtasks. These subtasks are sequentially interdepen-
dent (Brutschy et al., 2014): subtasks have to be achieved in sequence so
that the overall task can be accomplished. For example, in leaf-cutting
ants’ foraging, the leaves can only be transported to the nest after they are
cut from the tree. Task partitioning is usually not fixed, these subtasks can
either be tackled by different individuals at the same time, or by the same
individuals at different times.

2.4.3.1 Related Work of Task Partitioning Behaviour

Task partitioning and task allocation are always a source of confusion in
swarm robotics. Task partitioning is about deconstructing one complex
task into multiple simpler subtasks, while task allocation focuses on the
organization of the workforce. Task allocation has received a considerable
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amount of attention in both biology and swarm robotics. However, task
partitioning is not as extensively studied in the context of swarm robotics
as it is in the field of biology (Pini et al., 2014). In this section, the work
on robotic (both multi-robotic and swarm robotic) task partitioning is re-
viewed.

In ants foraging behaviour, studies (Hart and Ratnieks, 2001, FOWLER
and Robinson, 1979) show that, as the number of robots increases, the
throughput of the system does not always increase, due to interference
among the robots. When the size of a robotic system is small, its perfor-
mance will benefit by adding robots to the system. However, experimental
results in (Shell and Mataric, 2006) have demonstrated that, after the sys-
tem reaches a certain size, adding more robots will no longer be of benefit
but will harm its performance. This is because the robots will spend more
time on non-task-relevant behaviours, such as obstacle avoidance, com-
petition to access a shared resource, and object manipulation, when the
density of the robots increases. In order to neutralize such interference, a
particular strategy can be used to force the robots to either stay in differ-
ent areas all the time (Schneider-Fontdn and Mataric, 1996) or only use the

same area at different times.

2.4.3.2 Task Partitioning in Multi-Robotic System

In study (Drogoul and Ferber, 1993), task partitioning was first introduced
in multi-robotic system to reduce physical interference among the robots
near the food resource and the nest. The robots form a chain between
the food resource and the nest so that the food items can be passed along
the chain until they reach the nest. The experimental results showed that
chain formation can reduce physical interference between the robots and
increase the efficiency of the system.

In study (Ostergaard, Sukhatme, and Matari, 2001), a method named
bucket-brigade (another form of chain formation) is proposed to reduce
interference among the robots in a multi-robotic system. Bucket-brigade
forces the robots to stay in their own territory. When a robot is carrying
an object, it passes this object to the following robot once it has crossed
the boundaries of its territory. The object will then be passed to the next
robot, and so on, until it reaches the destination. The experimental re-
sults showed that bucket-brigade displayed better performance than reg-
ular foraging in a maze-like environment.

Study (Shell and Mataric, 2006) studied bucket-brigade by varying the
size of working area of each robot and showed that, when the number

of robots increases, the performance of the system can be increased by
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reducing the working area of each robot. Study (Vaughan, 2008) improved
the bucket-brigade algorithm by allowing the robots to adapt the size of
their territory based on interference. This improved algorithm was shown
to perform better in multi-robotic systems with a large population (up to
500 robots).

2.4.3.3 Task Partitioning in Swarm Robotic System

In swarm robotic research, task partitioning was first studied in (Pini et
al., 2011b) to reduce sources of interference for swarm robotic system. The
entire environment is split into two parts, harvest area and transport area.
The robots in the harvest area search for food resources and deliver the
food items they found to the boundary between the harvest and transport
areas. The robots in the transport area then transport the food items to
the nest. In follow-up study (Pini et al., 2011a), a task partitioning strat-
egy is proposed for the robots to decide whether to partition a given task
or not. In another follow-up work (Pini et al., 2014), an algorithm called
the static partitioning strategy is proposed so that the robots can partition
the environment themselves. In the static partitioning strategy, the robots
transport the food item for a limited distance (called partition length) so
that there is no need to demarcate the environment any more. The robots
also transfer the food item directly to other robots in order to improve
the performance of the task partitioning behaviour. One disadvantage of
the static partitioning strategy is that the size of the environment must
be known in advance in order to define a proper partition length for the
swarm before the experiments. Later on, another study (Buchanan, Pom-
fret, and Timmis, 2016) proposed an algorithm named the dynamic par-
titioning strategy in which the robots have the ability to determine the
partition length themselves. The results show that the dynamic partition-
ing strategy is able to converge to the partition length provided in (Pini et
al., 2014).

2.5 Chapter Summary

Despite the great deal of attention received in recent years, current swarm
robotic systems are still at a very early stage. Current swarm robotic sys-
tems are not as robust as were first thought and most of the potential real-
world applications only work in the simulator. Winfield et al. (Winfield,
Harper, and Nembrini, 2006) suggested a combination of analysis, design,
and testing methods can be used to achieve a dependable swarm. The
design method and analysis techniques of swarm robotics were reviewed
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and both of them are still open problems. Due to the lack of testing meth-
ods in the field of swarm robotics, testing techniques in related fields were
reviewed. The successful examples of testing single autonomous robot in
studies such as (Nguyen et al., 2012) motivated the author’s desire to meet

the need for a swarm robotic testing method.
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Chapter 3

Evolutionary Testing Method
for Swarm Robotic System

Following on from the literature reviewed in previous chapter, it is clear
that swarm robotics research has received a great deal of attention in re-
cent years. Swarm robotics has great potential to solve real-world prob-
lems (Sahin, 2004). However, due to the limitations of current hardware
technology and behavioural control algorithms, most of the potential real-
world applications only work in principle (in the simulator). There are
also other open problems in the current state of development of swarm
robotic research which prevent the system from being flexible, scalable,
and robust. This chapter specifies one of the current open problems in
swarm robotics research and propose a solution for this open problem.
This chapter also introduces the simulators used for carrying out experi-
ments in this thesis.

3.1 Problem Analysis

System development life cycle shows the process for developing a com-
plex system, which can either be hardware only, software only, or both.
During a system development life cycle, the whole system development
process is split into different sub-processes. Figure 3.1 shows an exam-
ple model of system development life cycle. The work in (Siciliano and
Khatib, 2016) shows that system development life cycle can also be applied
to the development of either a single physical robot or a multi-robotic sys-
tem. There are various models of system development life cycle such as
waterfall model, spiral model, v-model, prototyping (iterative-incremental)
model, and so on. Each model has its own combination of sub-processes
and its own workflow (the order of how the sub-processes are carried
out). No matter how the models change, there are four basic sub-processes
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which always exist in every model of system development life cycle which

are the following:

Requirement Analysis: analyse the requirements of the system in
order to find out the expectations of the system.

Design and Implementation: design the components of the system
based on the requirement. Then develop the system by realising the
design.

Testing (Verification and Validation): make sure that the system is
built according to the design specifications and meets the system re-
quirement.

Maintenance: maintain the system according to the problems found
during the operation of the system and modify the system according
to requirement changes to ensure that the system does not become
obsolete.

Maintenance

FIGURE 3.1: model of system development life cycle

Due to the lack of real-world swarm robotic applications, there is little

literature which directly studies requirement analysis, testing, and main-

tenance. According to the literature reviewed in Chapter 2, most of the

literature focuses on the design method (see section 2.1.5) and a tiny por-

tion of the literature focuses on the analysis techniques (see section 2.3.1)

of swarm robotic systems. Some of the literature mentions testing in pass-

ing but none of these present a testing method. As previously reviewed in

Chapter 2, behaviour-based design method depends on the experience of

the designer too much. Even though automated design methods are able
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to reduce the amount of work for the designers, these methods are still im-
mature so that the best collective behaviour obtained by automation de-
sign can also be obtained by behaviour-based design method. Despite the
large amount of literature which focuses on the design method, there are
still no methods which are able to design the desired collective behaviour
precisely. As a result, from a system development perspective, swarm
robotic systems are still at an early stage, and all four basic sub-processes
of the system development life cycle are open problems.

Up to the time of writing, most of the swarm literature develops a

swarm robotic system as follows:

e Requirement analysis: as there are few successful examples of anal-
ysis techniques for swarm robotic system (see section 2.3.1). The re-
quirement of a particular swarm behaviour is usually obtained by

reviewing relevant literature or observing a related natural swarm.

e Design and Implementation: Propose and implement a coordinated
(swarm control) algorithm (either behaviour-based or automated de-

sign).

o Testing: Test the developed swarm robotic system in a manual de-

veloped environment.
e Maintenance: maintenance is rarely mentioned.

As collective behaviour is emerged according to the design of a swarm
control algorithm, most swarm robotics research is oriented to design and
implementation. Even though the outcome of requirement analysis or
testing is not as obvious as that of design implementation, having good
methods in these two processes might provide swarm robotic researchers
with a better understanding of their systems and help these researchers
to figure out weaknesses of their systems. Another reason for the lack of
requirement analysis methods is that most collective behaviours studied,
such as aggregation, foraging, and so on, have already been heavily stud-
ied in other fields. Consequently, the demand for requirement analysis is
relatively low at the time of writing.

Due to the immaturity of current swarm robotic systems, relatively
simple test environments is able to make collective behaviour, i.e. flocking,
fail. Most of the current swarm robotics research is carried out (tested)
in empty environment (no obstacles). Even when obstacles are involved,
study (Pini et al., 2011b) uses only one test environment for all experiments
and study (Hoff et al., 2010) uses three test environments. For this case, the

system developed is only guaranteed to work in the tested environments.
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A real-world swarm robotic system should be able to deal with various
challenges in different environments. Hence, systematic testing methods
are required in order to build real-world applications of swarm robotic
systems.

A maintenance method maintains a system in operation. As real-world
applications of swarm robotic system are lacking, there is no need to de-
velop any maintenance methods at the time of writing. All the same,
alongside the development of the swarm robotic systems, the need for
maintenance methods will increase in the future.

According to the problem analysis above, a testing method is the most
needed system development process apart from design and implementa-
tion at the time of writing. To develop a testing method for swarm robotic
systems, either an existing testing method from other fields can be adapted
or otherwise a new one can be developed.

3.2 Proposed solution - Evolutionary Testing Method

An evolutionary testing method for swarm robotic system is proposed in
this section. Testing process usually contains two sub-processes, which
are, verification and validation (Roache, 1998). Verification guarantees
that the system is built according to the system design, while validation
guarantees that the system works correctly in the intended environment.
During verification, the correctness of requirements, design and imple-
mentation, and any other processes carried out before testing are checked.
The main objective of verification is to find out whether the developers
built the product correctly. During validation, the newly developed sys-
tem is tested in the intended environment (or similar environment). In this
thesis, the term “testing method” only refers to the validation part of test-
ing process in system development life cycle. Note that in some studies,
such as (Blanchard, Fabrycky, and Fabrycky, 1990; Jacobson et al., 1999),
testing is equivalent to validation.

As mentioned earlier, most current swarm robotic research executes
the system in manually developed test environments. However, due to the
autonomy of the individual robots, the quantity, diversity, and challenge
required by test environment for swarm robotic systems are enormous.
As manual test environment generation is costly and time consuming, it
is not appropriate for testing along the path to real-world swarm robotic
applications.

In the field of automated testing, there are various of testing methods
such as random testing, testing using simulated annealing (Eglese, 1990),
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testing using tabu search (Glover, 1990), and testing using genetic algo-
rithm (GA) (Ammann and Offutt, 2008). Random testing generates test
cases/data using random search (Bird and Munoz, 1983). Experimental
results in study (Forrester and Miller, 2000) show that random testing can
be effective at finding bugs in software testing. However, the test cover-
age of random testing is very low and it is ineffective if the overall solution
space is large (Godefroid, Klarlund, and Sen, 2005).

Simulated annealing uses a fitness function to guide the process of ran-
dom search (Eglese, 1990). It moves from one solution to a fitter solution
until the stopping criterion has been satisfied. Simulate annealing is well-
known as a local search method because it only considers one solution at a
time and it only searches the neighbour areas of that solution. As a result,
testing using simulated annealing is not suitable for swarm robotic system
due to the quantity and diversity required by the test cases. Tabu search
uses a tabu list (the moves that are forbidden) to prevent the search being
stuck at a local minimum (Glover, 1990) but the diversity of the solutions
is not guaranteed.

GA provides an intelligent exploitation of a random search, and is
widely used to solve optimisation problems (Mitchell, 1998). GA is widely
used not only because of its global optimization capabilities but also be-
cause it is able to search various optimal solutions at the same time. GA
have been applied to automated software testing in conventional soft-
ware applications (Srivastava and Kim, 2009) and in evolving control al-
gorithms in swarm robotic systems (Dorigo et al., 2004) but not to the time
of writing in testing swarm robotic systems.

A GA evolves solutions by selecting, reproducing, and mutating a pop-
ulation over many generations (Holland, 1992). A good chromosome (the
representation of each individual in the population), an appropriate fit-
ness function, and appropriate GA parameters are needed to be defined
before the use of a GA (Wei, Timmis, and Alexander, 2017).

3.2.1 Chromosome

The term chromosome in a GA refers to a candidate solution to a problem
(Mitchell, 1998). Each test case is treated as a chromosome in this thesis.
Various test cases contain obstacles with different layout. An obstacle can
be treated as a gene in the chromosome.

A cellular representation represents an object by using its position and
orientation (Gruau, 1994), see figure 3.2. It is used to represent the chro-
mosomes in this thesis (Wei, Timmis, and Alexander, 2017) in order to

keep the representation of the chromosome simple. Each chromosome is
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W=025m

L=15m

(0, 0, 150, 25, /4)

FIGURE 3.2: A bird’s-eye view of a chromosome contain-
ing only one gene (obstacle). In the simulator, the height
of each obstacle is set to be 1 meter.

composed of multiple genes (named single descriptor in cellular represen-
tation). Each descriptor has five parameters (x, y, [, w, o) which specify its
central position (z,y) in the environment, the length [, the width w, and
the orientation of the descriptor o. Note that the height of each obstacle is
1 meter. There is no need to concern much about the height of obstacles
because no flying or climbing robots are used in the simulator in this the-
sis. Figure 3.2 shows an bird’s eye view of a chromosome in which there
is only one gene (obstacle). The descriptor for this obstacle is shown in the
figure as (0,0, 150,25, 7/4). A random test case with NV obstacles can be
generated according to the following rules (Wei, Timmis, and Alexander,
2017):

e Randomly generate N single descriptors (obstacles).

e Process single descriptors in the order they are generated, and place
a corresponding obstacle in the environment.

o If part of the obstacle is outside the edge of the environment, split
this part from the obstacle, but leave the descriptor for this unchanged.

¢ If an obstacle is totally inside another obstacle, its descriptor will be

regenerated.

e If adding the obstacle means that there are no paths between the
starting point of the swarm and the destination for flocking behaviour
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or no paths between the nest and the food sources for foraging and
tasks partitioning behaviour, its descriptor will be regenerated.

3.2.2 Fitness Function

Fitness function is also called objective function (Haupt and Haupt, 2004).
In swarm robotics research, different collective behaviours require differ-
ent metrics to measure the performance of the swarm. Fitness function
uses one or more metrics as inputs to calculate the fitness value, which
represents the performance of the swarm in this simulation with a given
chromosome. Therefore, when developing a testing method for a partic-
ular collective behaviour, metrics should first be defined either using ex-
isting metrics or by developing a new one. Note that the objective of the
testing method is to reveal failures in a swarm control algorithm. This
means that the worse a swarm performs in a test case the better the test
case is.

When building a fitness function, either single-objective optimization
or multi-objective optimization can be used. Singe objective function at-
tempts to optimize one aspect of a problem while multi-objective function
optimizes more than one aspect of the problem. For real-world swarm
robotic applications, the overall performance of a system contains vari-
ous aspects, such as efficiency of the system, dependability of the system,
energy consumption, and so on. In these circumstances, the optimal solu-
tion for one aspect might not be the best one for another. Consequently,
single-objective function is used to optimize only one aspect of the system,
and multi-objective function will be the best candidate if a set of optimal

solutions of multiple aspects is desired.

3.2.2.1 Fitness Landscape

In evolutionary research, fitness landscape is used to visualize the rela-
tionship between the chromosomes and reproductive success in the pro-
cess of evolution (Mitchell, 1998). In evolutionary optimization problems,
each chromosome represents a solution. All candidate solutions (chromo-
somes) of a particular evolutionary optimization problem form the land
(searching space) of fitness landscape in which each solution is a single
point. The chromosomes that are similar are close to each other in the
fitness landscape, while those are different are far away from each other.
The height of each chromosome is directly proportional to the fitness value
(calculated by the fitness function) of the chromosome. As some chromo-
somes have higher fitness values than their surrounding chromosomes,
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mountains are formed in the landscape. “The task of finding the best solution
to the problem is equivalent to finding the highest mountain in the fitness land-
scape.” (Langdon and Poli, 2013) The highest mountain is called the global
optimum, and those mountains whose fitness values are less than that of
the highest mountain are called local optimum (neutral landscape). In or-
der to converge the solutions to the global optimum, mutation operators
described in 3.2.3.6 are often used to help escaping the neutral landscape.

3.2.3 Genetic Algorithm Parameters

The general framework of GA is to use a population, manipulated by se-
lection, reproduction, and mutation operators, toward optimal solutions.
So designing a GA is the process of finding good values for these param-
eters. The parameters in GA in this thesis are chromosome length, pop-
ulation size, parent selection method, crossover type, crossover probabil-
ity, mutation probability, and number of generations in evolution. The
following sections describe each parameter and the respective potential
candidates.

3.2.3.1 Chromosome Length

Chromosome length is the number of genes in a chromosome. In this the-
sis, each gene of a chromosome represents a single obstacle in a test case.
Consequently, the number of genes is the number of obstacles in an envi-
ronment. In section 3.2.1, cellular representation is selected to represent
the chromosome, but the length of each chromosome remains undecided.
As in nature, a chromosome contains many genes (from hundreds to thou-
sands), so the number of obstacles in an environment can vary from one

to as many as required.

3.2.3.2 Population Size

Population size represents the number of chromosomes in a population.
Many studies in the literature examine population size for GA (Goldberg,
Deb, and Clark, 1991; De Jong, 1975; Grefenstette, 1986; Schaffer et al.,
1989). Even though different papers have different optimal population
size for GA, the range of 10 to 50 is always a subset of their optimal so-
lutions. So the potential candidates for the population size in this thesis
range from 10 to 50.
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3.2.3.3 Parent Selection Method

Parent selection method is about how to select the chromosomes from a
population for later reproduction. It is a crucial process in GA as good
parents might reproduce better off-spring which can lead to optimal solu-
tions. The following are three commonly used parent selection methods
for GA and are treated as the potential candidates in this thesis (Whitley,
1994):

o AllParent-BestHalf: All the individuals in the population become
parents and are used to mate and recombine to reproduce the same
amount of off-spring as themselves. The new generated off-spring
are merged with their parents to form a new population. Half of the
individuals with lower fitness value in the new population are then
abandoned, and the other half are kept in the population for later
breeding.

o 2BestParents-2WorseAway: In this method, only the two fittest in-
dividuals are selected as the parents and they produce two children.
The new created children are placed in the population to form a new
population. The two individuals with the lowest fitness value are
thrown away, and the rest are preserved for later breeding.

e 2RandomParents-2WorseAway: Two individuals are randomly cho-
sen as the parents and then reproduce two children. The new repro-
duced children are merged with the original population to form a
new population. The two individuals with the lowest fitness value
are put away, and the rest are kept for later breeding.

3.2.3.4 Crossover Type

Crossover is a genetic operator which use the chromosomes selected by
parent selection for reproduction. It is the process of reproducing later
generations by using genes from selected parents. At the time of writing,
the following are three kinds of crossover techniques which are often used
in GA (Whitley, 1994):

e Single Point Crossover: Both chromosomes of parents are cut at a
randomly chosen point and the sections after the cuts swap to form
two new children.

e Double Point Crossover: Both chromosomes of parents are cut at
two randomly chosen points and the sections between the cuts swap
to form two new children.
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e Uniform Crossover: Each gene of a child is randomly chosen from
one or the other parent sequentially.

Experiments are used to choose to move between crossover types accord-
ing to the method described in section 3.2.4. From the experimental re-
sults, whether the crossover operator is needed or not can be decided. In
all three cases studies in this thesis, the experimental results show that the
crossover operator is needed in order to converge to optimal solutions.

3.2.3.5 Crossover Probability

Crossover probability means how often crossover is likely to be performed
(Whitley, 1994). If no crossovers occur, next generated off-spring are exact
copies of their parents. If a crossover occurs, off-spring are reproduced
using the chromosome of their parents. The probability of crossover can
vary from 0% to 100%. If crossover probability is 100%, all the individ-
uals in new population are reproduced from previous generation (no old

individuals are left). If the probability is 0%, no crossovers are performed.

3.2.3.6 Mutation Probability

Mutation alters one or more gene values in a chromosome from its initial
state (Mitchell, 1998). Mutation probability means how often genes are
likely to be mutated. The benefit of mutation is to prevent the GA being
trapped in a local optimum (Mitchell, 1998). Mutation probability also
varies from 0% to 100%. If the probability is 100%, all of the genes in a
chromosome are altered. If the probability is 0%, nothing is changed.

3.2.3.7 Number of Generation

The number of generations before the evolution terminates which can vary
from 1 to a particular number. In this thesis, the number of generations is
set to a constant number according to the parameter analysis (section 3.2.4)
executed before the experiments.

3.2.4 Parameter Analysis

Designing a GA is the process of finding good values for GA parameters.
A parameter robustness technique from Spartan (Alden et al., 2013; Alden
et al., 2014) is employed in this thesis which assesses the sensitivity of pa-
rameters in the simulation. This technique investigates the sensitivity of
each parameter by changing the values of this parameter while keeping
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the value of all other parameters the same. If its sensitivity is high, ex-
perimental results for different values of each parameter are compared to
determine at which value of the parameter the GA performs best. Oth-
erwise, changing this parameter does not lead to a statistically significant
behavioural alteration of the GA.

The robustness technique is performed during parameter analysis by
perturbing parameters individually using a ‘one at a time” approach (Alden
et al.,, 2013). When evaluating the different values of one parameter, all
of the other parameters remain unchanged. Twenty evolutions are exe-
cuted for each candidate value of each parameter. The number of 20 is
chosen by using the Consistency Analysis technique provided by Spartan
(Alden et al., 2013). The Consistency Analysis technique is designed for
determining the number of repetitions of the experiments that is needed
to be carried out in order to reduce the uncertainties of the experimental
results in the simulation. In order to analyse one parameter of a testing
method with 10 test cases as its initial population, there are 10,000 eval-
uations in order to carry out 20 evolutions if each evolution contains 50
generations. For parameters such as population size and number of gen-
erations, it is infeasible to evaluate all potential candidates. Accordingly,
only a few candidates (the increment is 10) are selected and evaluated for
population size and number of generations. The final results for all po-
tential candidates are compared using the Vargha-Delaney A-Test (Vargha
and Delaney, 2000) to determine if a statistically significant behavioural al-
teration has occurred, and if yes, then the candidate which performs best
is selected.

Different swarm robotic control algorithms behave diversely, there-
fore, the values of parameters of different swarm control algorithms vary.
For each of the following case studies in Chapter 4, 5, and 6, the values of
each parameter will be analysed according to the fitness function defined

for each swarm behaviour.

3.2.5 Evolutionary Process of Test Cases

The following procedure shows how to generate a test case using the ge-
netic algorithm (Wei, Timmis, and Alexander, 2017):

e Step 1: Initialize population: randomly generate an initial popula-
tion using the rules stated in section 3.2.1 for generating test cases;

o Step 2: Compute fitness: evaluate the fitness value of each test case;

o Step 3: Select parents: follow the parent selection method to choose

parent test cases;
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e Step 4: Crossover: Use a crossover procedure to produce offspring.
If the offspring produced do not contain a clear path from the start-
ing point to the destination, redo Step 4;

e Step 5: Mutate: Allow the offspring to mutate with mutation proba-
bility p,. If the offspring produced do not contain a clear path from
the starting point to the destination for flocking behaviour or from
the nest to food sources for foraging and task partitioning behaviour,
redo Step 5;

e Step 6: Check for termination: Terminate the algorithm if /V gener-
ations have been run (/V is determined by applying parameter anal-
ysis). Otherwise, go to Step 2.

3.3 Experimental Infrastructure

The ideal situation for testing swarm robotic system is to implement the
whole testing system on real robots in the physical environment. How-
ever, there are some constraints which make the ideal situation impossible
at the state-of-the-art at the time of writing this thesis. The most signifi-
cant constraint is that running experiments with real assets is expensive.
In order to test a physical swarm, money not only needs to be spent on
the robots and the tracking systems like regular swarm robotics research;
more also needs to be spent on building the physical environment. One
key aspect of the testing method presented in this thesis is the various
shapes of obstacles. For example, if the maximum length and width of an
obstacle is 2 meters and 0.5 meters respectively, there will be 20 different
lengths and 5 different widths for a 10 cm increment. As a results, one
hundred obstacles of different shapes are required. Moreover, if there are
5 obstacles in each test case, a total number of 500 obstacles are required in
case of certain test cases contain 5 obstacles of the same shape. This might
be acceptable for some large and well-funded projects, but it is too costly
for this project.

There are several advantages derived from using simulator in the study
of swarm robotics. Firstly, data collection is easier and faster in simula-
tions as a monitoring mechanism is easier to build in the simulator and
experiments can be simulated faster than in real-time. In addition, robots
which are currently impossible to build in the physical world due to the
cost or current technique can be developed in simulators. Lastly, test cases
in the simulator are easier to build and there are no risks of damaging the
hardware platform (both robots and the environments) while carrying out
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the experiments. Consequently, all the experimental work in this thesis,
is carried out in simulation in order to show that the evolutionary testing
method works in principle.

Future work which is beyond the scope of this thesis can be carried out
to find out whether the evolutionary testing method proposed in this the-
sis is suitable for physical robots. The work in (Vargas et al., 2014) shows
that the swarm robotics research carried out in the simulation has the po-
tential to perform as good as it does in the simulator. The incremental
design process proposed in (Vargas et al., 2014) is said to be “surprisingly
robust, and hence more likely to be robust enough to cross the reality gap” (Vargas
etal., 2014).

3.3.1 ARGoS Simulator

Pincicroli et al. (Pinciroli et al., 2011) presented a multi-robot simulator
named ARGo0S. ARGOS is open-source and is developed using C++. It is
specifically designed to simulate large swarms of robots and is still be-
ing maintained by its creators at the time of writing. The testing method
presented in this thesis is implemented in ARGoS.

There were two other candidates for the simulator at the beginning
of this project, which are, Player/Stage (Gerkey, Vaughan, and Howard,
2003) and V-Rep (Rohmer, Singh, and Freese, 2013). Due to the follow-
ing advantages, ARGoS was chosen as the simulator for conducting the

experiments in this thesis:

¢ Easy to install: The process of the installation of ARGOS is relatively
simpler and less time-consuming than Player/Stage. ARGoS can be
easily installed by following the instructions on the official website
of ARGOS in less than one day. However, for Player/Stage, more
than 20 dependencies (software which is the required by Player/Stage)
are required to be installed before carrying out the installation of
Player/Stage. Even all the dependencies are installed in the cor-
rect version, there is still a high probability that the installation of
Player/Stage may fail. The installation of Player/Stage is a process of
trial-and-error. The duration for installing Player/Stage may varies

between a few days to a few weeks.

e Easy to maintain: ARGOS is easier to maintain than Player/Stage.
As long as the version of ARGoS is unchanged, updating its depen-
dencies or the operating system does not affect the execution of AR-
GoS. However, any changes of the dependencies or the operating
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system may affect the execution of Player/Stage. If this happens,
Player/Stage has to be reinstalled in order to execute correctly.

e Support large-scale swarm: The benchmark results in (Pinciroli et
al., 2011) show that ARGoS can perform physics-accurate simulation
involving thousands of robots in a fraction of real time. However,
the performance of V-Rep degrades fast when the number of robots
increases. Benchmark experiments were carried out in this thesis on
both ARGoS and V-Rep on the same computer under same condition
(same operating system, same CPU, same RAM, and same Graphics
card). When the number of robots reaches 5 in a 6mx6m square
area, the simulation in ARGO0S runs 1.5 times faster than real time
while that in V-Rep is around 2 times slower than real time (the time
required for simulating 1 second in V-Rep is equal to 2 seconds in
the real world). When the number of robots reaches 10 in a 6m x6m
square area, the simulation in ARGoS runs 1.3 times faster than real

time while that in V-Rep is around 9 times slower than real time.

There are also a few disadvantages when using ARGoS (version 3.0.0 -
beta29). First of all, global information in not available in ARGoS. The
author of ARGoS (Pinciroli et al., 2011) states that the reason for denying
global information is to prevent users cheating, i.e. to achieve emergent
behaviour in ARGoS by sharing global information in the swarm. Sec-
ondly, there are no monitoring mechanisms or statistical tools for observ-
ing and analysing the performance of the behaviours of the swarm. Two
external assistance tools are developed (see section 3.3.3) to address those
disadvantages.

Note that version 3.0.0 - beta29 of ARGoS is used in this thesis. The
next version 3.0.0 - beta 30 was released 5 months later after the release of
beta29. After upgrading ARGoS to version-beta30, the external assistance
tools developed in this thesis (see section 3.3.3) did not function correctly.
As the external assistance tools are not fixed in beta30 for a few weeks,
beta29 was used again. Later on, it turned out that version-beta30 was
faulty. Five more versions of ARGoS (from beta31 to beta35) were released
in 12 days attempting to fix the fault (about 2 months after the release of
beta30). However, due to the undesirable experience with beta30, beta29
is used throughout this thesis. Up to the time of writing, the external as-
sistance tools have never been upgraded on any versions of ARGoS later
than beta30.
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3.3.2 Foot-bot robot model

Two different robots, foot-bot and eye-bot, were modelled in version 3.0.0
- beta29 of ARGoS(Pinciroli et al., 2012) (More robots, such as hand-bot,
and e-puck were modelled later). Here foot-bot is used to meet the re-
quirement of this thesis. There is a large range of sensors and actuators
which can be used on foot-bot to achieve various tasks in ARGoS. The
sensors or actuators which are used in this project are now listed (Pinciroli
et al., 2012):

e Beacon - A LED which is positioned at the top of the robot body;
e Distance Scanner - detects objects around the foot-bot (long range);
e Proximity sensor - detects objects around the foot-bot (short range);

e Light Sensor - allows foot-bot to detect light sources in the environ-

ment;
e Omnidirectional Camera - allows foot-bot to detect light bulbs (LEDs);

¢ Range-and-bearing system - allows foot-bot to perform localized
communication. If an obstacle or another robot is between two robots,
the robots can not communicate;

e Ground Sensor - reads the colour of the floor;
e Gripper - allows foot-bot to grip other objects, such as food resource;

e Wheels - for each foot-bot, there are two sets of wheels and tracks
which are called treels. These wheels allow the foot-bot to move

around in the environment.

In later chapters, different combinations of these sensors and actuators are
used to achieve various swarm behaviours required in each cases study.
The testing method identifies weaknesses in swarm control algorithms
listed in section 2.4 by reveal failures during the execution of swarm robotic
systems. In swarm robotics, the cause of a failure varies. Not only weak-
nesses in the swarm control algorithm can cause failures; issues, such as
noises in sensors or actuators, and partial or total failures of the individ-
uals can also trigger failures. The major disadvantage for ignoring indi-
vidual failures and noises in the simulation is that the “reality gap” might
be increased between the simulation and the real world. However, ig-
noring individual failures and noises helps the testing method focus on
identifying weaknesses in swarm control algorithms. Therefore, individ-
ual failures and noises of sensors and actuators are ignored in this project.
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3.3.3 External Assistance Tools

Two disadvantages of using ARGoS were mentioned in section 3.3.1. In
order to address those disadvantages, two external assistance tools have
been developed in this thesis. The first tool is named Observer and it mon-
itors and records the behaviour of the entire swarm. The second tool is
named Headquarters and it makes global information available to all the
robots in the swarm. Note that in section 3.2.4, an analysis tool called
Spartan is described that can analyse the performance of the swarm be-

haviours.

3.3.3.1 Observer

Observer is an external assistance tool written in C++ to monitor and
record the movements of each robot in the swarm. In ARGoS, the robots
have no access to any global information. They can only explore the en-
vironment using the sensors provided and have no idea about their own
exact positions in the environment. This would not be a problem if the
objective of using ARGoS were to design and implement a swarm control
algorithm, but this makes it difficult for the testing method in this thesis to
analyse the overall behaviour of the swarm. The Observer records the po-
sition, facing direction, and moving speed of each robot throughout each

experiment, data which is then used for analysis later.

3.3.3.2 Headquarters

Headquarters is an external assistance tool written in C++ in order to share
global information among the robots of the swarm. In swarm robotics re-
search about control algorithms, sharing global information among the
robots is usually prohibited. One of the most important features of swarm
robotic system is that the robots involved should only have local and lim-
ited sensing and communication abilities. Sharing global information makes
the coordination between the robots centralized, and therefore the robotic
system is no longer a swarm.

After deploying Headquarters in the simulator, the whole simulator
operates as a LAN (Local area network). The role of Headquarters is the
same as the role of the server in client-server computer system. In AR-
GoS, the range-and-bearing system enables localized communication for
the robots. The robots can only send and receive data in a limited range
while there are no objects (either obstacles or other robots) between the
sender and receiver. In this project, the range-and-bearing system is mod-
ified so that it is able to receive data from the Headquarters. Headquarters
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FIGURE 3.3: A model of how Headquarters and Observer
operate.

first receives information of the entire swarm from the Observer and then
broadcasts related information to each swarm members according to its re-
quirement. Figure 3.3 shows a model of how Headquarters and Observer
operate.

At the early stage of this thesis, Headquarters is used to create a swarm-
like behaviour in ARGoS which is used as a baseline behaviour for detect-
ing failures. All the swarm control algorithms used in this thesis do not
share global information and do not have global communication abilities.
For example, in Chapter 4, Headquarters only broadcasts the global infor-
mation to the “prey” robot (see section 4.1).

3.3.4 Test Case Generator

The test case generator is the core program of the testing method pre-
sented in this thesis which is used to generate test cases. It contains two
parts, the first named Streamer and the second Operator. Streamer reads
and writes environment files of ARGOS (file extension is .argos) and is
developed in Java. Streamer was written in C++ in the early stage of
this project. During the optimization phase of this project, different li-
braries in both C++ and Java were used to develop Streamer. After sev-
eral comparisons, the one developed in Java was found to be the most
efficient and stable one and it is used throughout the rest of the thesis.
Operator is developed in C++ and is used to generate test cases. Oper-
ator can either generate test cases randomly or take a set of test cases as
input and then apply the genetic algorithm to the input in order to cre-
ate a set of test cases as output. The github link for test case generator
is https:/ / github.com /hw967 /EvolutionaryTestingMethod and the setup
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instructions are introduced in “README" file. Figure 3.4 shows a model
of the working procedure of the test case generator. The procedure of how
the test case generator works is described as follows:

e Step 1: Operator randomly generates a set of test cases as the initial

population;

e Step 2: Streamer creates the environment files (.argos file) according
to the test cases and imports those files into ARGoS;

e Step 3: The swarm is executed in test cases (environment files) in
ARGOS and the experimental data are recorded by Observer;

e Step 4: The ARGOS sends environment files with the corresponding

experimental results to Streamer;

e Step 5: Streamer transfers the environment files to test cases and
then sends them to Operator;

e Step 6: The Operator applies step2 to step 5 of evolutionary process
of test cases in section 3.2.5 to the test cases in order to generate the

offspring;

e Step 7: Terminate the algorithm if N generations have been run. (N
is determined during parameter analysis phase) Otherwise, go to
Step 2.

3.3.5 Cluster Computing

As many of the experiments in this thesis can be carried out in parallel,
the use of cluster computing considerably increases the efficiency of the
testing method. In this thesis, the York Advanced Research Computing
Cluster (YARCC) is used to carry out the cluster computing.

The most time-consuming step in test case generator (see section 3.3.4)
is step 3, that is, testing the swarm in each test cases in ARGoS. The whole
execution time of each generation can be reduced by executing the experi-
ments in parallel in cluster computing. For example, if the population size
is 20, 20 independent experiments need to be executed in order to record
the performance of the swarm in all 20 test cases. These experiments can
be executed in the same time as independent programs in cluster comput-
ing. As a result, the overall execution time of test case generator will be

shorter by a large margin.
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FIGURE 3.4: A model of the working procedure of the test
case generator. GA step2 to step 5 is listed in section 3.2.5.

3.4 Chapter Summary

This chapter proposes a solution to the testing problem in current swarm
robotics research. The testing method proposed generates swarm test en-
vironments by using GA. The chromosome, fitness function, and parame-
ters of the testing method are defined. A robustness technique from Spar-
tan (Alden et al., 2013; Alden et al., 2014) is adapted to conduct parameter
analysis for the testing method. The experimental infrastructure such as
the simulator, external assistance tools, and test case generator are intro-
duced at the end of this chapter. Moreover, cluster computing can be used
to increase the efficiency of the testing method.
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Chapter 4

Testing Method for Flocking
Behaviour

In this chapter, the method for testing flocking behaviour is presented.
This chapter shows the procedure by which the testing method was de-
veloped step by step and therefore can be used as a guideline for applying
this testing method to test other swarm behaviours. This chapter begins
with the representation of the experimental scenario for testing flocking
behaviour. The metrics for measuring the performance of flocking be-
haviour in swarm robotic systems are proposed in the next section. It then
moves on to talk about the control algorithm used to achieve flocking be-
haviour in the simulation. Failure classification will be discussed to show
how the failures discovered by evolved test cases can be sorted into differ-
ent categories. Following this is a discussion of how the genetic algorithm
can be used for generating test cases for the swarm. Parameter analysis
and experimental results for testing flocking behaviour are presented. Fi-
nally, an example of swarm control algorithm improvement is shown at
the end of this chapter.

4.1 Experimental Scenario for Testing Flocking

Behaviour

In the first case study, the evolutionary testing method is used to identify
weaknesses of the flocking control algorithm in swarm robotics. In section
2.4.1, the basic rules of flocking behaviour are introduced. In this section,
the experimental scenario for testing flocking behaviour is represented.
The experimental scenario is designed based on the second flocking
scenario discussed at the end of section 2.4.1.1. For each experiment, two
types of robots are involved. One type is called the “prey” and the other
type is called the “bird”. The experimental scenario can be treated as the
situation which a flock of birds are preying on one prey, such as insect
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pest. At the beginning of each experiment, one prey and a certain number
of birds are deployed in one corner of the environment. When the experi-
ment begins, the prey moves towards the opposite corner while avoiding
obstacles. The task for the birds is to flock together and follow the prey un-
til the prey reaches the destination (the opposite corner). Due to the rule
of no global information should be shared for swarm robotics, the birds
are unable to see the prey if the prey is beyond the range of the sensors of
the birds. In such circumstances, the birds should follow other birds.

4.1.1 Total Failures

One of the criteria for distinguishing swarm robotics research is that the
system should have a large number of robots. However, there are no
formal definitions for the minimum number of robots in order to form a
swarm and it is difficult to justify the lower bound for the number of robots
in a swarm robotic system. In study (Sahin, 2004), Erol Sahin declares that
most researchers would accept that the lower bound for the group size of
a swarm should be 10 to 20. There are many studies in swarm robotics
that use a swarm with a size smaller than 10; for example, only 7 robots
are treated as a swarm in study (Celikkanat and Sahin, 2010), and only 6
robots are used in study (Pini et al., 2014).

In this case study, it is assumed that the minimum number of robots in
order to form a swarm is N and N can be assigned any value from 2 to as
many as the total number of robots in the environment. If there are fewer
than N robots in the cluster, this cluster should not be treated as a swarm.
When the prey reaches the destination, if the number of the robots which
are following it is less than N, a total failure occurs.

4.2 Metrics for flocking behaviour

There are various studies around flocking behaviour, but most of them
only develop algorithms that produce a flocking behaviour and then test
the behaviour through visual observation of the swarm (Kwong and Ja-
cob, 2003; Lindhé, Ogren, and Johansson, 2005; Olfati-Saber, 2006). A few
studies (Turgut et al., 2008; Antonelli, Arrichiello, and Chiaverini, 2008;
Gu and Hu, 2008) define metrics for measuring the performance (quality)
of flocking behaviours, but there are no formally defined metrics for mea-
suring the performance of the system. Moreover, there are no formal defi-
nitions of what is a good flocking behaviour. Based on several papers, for
example (Moeslinger, Schmickl, and Crailsheim, 2011; Olfati-Saber, 2006;
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Xiong et al., 2010), a good flocking behaviour is concluded to have at least
some of the following properties (Wei, Timmis, and Alexander, 2017):

e 1) The agents of the swarm should always face in approximately the

same direction;

e 2) The agents or flocks that meet (within the detectable range) should
stay together;

e 3) The swarm should neither lose agents nor separate into different

swarms;
e 4) The agents should not collide with each other or with obstacles;

e 5) The agents should be able to follow or move towards a target (op-
tional).

In order to develop metrics for assessing the performance of a flocking
swarm, the collective behaviour at the swarm level needs to be evaluated.
Asnoindividual levels are evaluated, failures of single agents, such as mo-
tor failures, communication failures, control system failures and so on, are
ignored when carrying out experiments in the simulation. Agents in the
swarm are programmed (in the simulator) not to be damaged by colliding
with other agents or the obstacles, and therefore property 4 is ignored in
this study. In the simulation, there are collisions among the agents and the
obstacles and both agents and obstacles can block the way of an agents.
On such an occasion, only the damage caused by collision is ignored but
not the collisions occurred during the experiments.

In this case study, three metrics are used: angular order to take into
account property 1, the proportion of the robots remaining in the swarm
to take into account properties 2-3, and total failures occurred to take into
account property 5. One of the keys to success when developing a testing
method is a good selection of metrics. If there are no formal metrics for a
swarm robotic system, developing metrics is a trial-and-error process. Dif-
ferent combinations of various metrics are attempted by carrying out ex-
periments until an effective combination occurs. During the development
of metrics in this case study, the following metrics were also attempted:

e social entropy proposed in study (Shannon, 2001)
e cohesion radius proposed in study (Gu and Hu, 2008)

e the deviation energy proposed in study (Antonelli, Arrichiello, and
Chiaverini, 2008)
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e the average speed of the swarm
e the maximum speed of the swarm

o the time needed to reach the goal

Note that the combination of angular order, the proportion of the swarm
left and total failure is not the only effective one, but it is more effective
than the other combinations that have been attempted. In study (Wei, Tim-
mis, and Alexander, 2017), a combination of angular order, social entropy,
and the time needed to reach the goal was used to measure the perfor-
mance of the flocking behaviour. By comparing the experimental results
of these two combinations, the one used in this thesis represents the per-
formance of the flocking behaviour more accurately than the one used in
study (Wei, Timmis, and Alexander, 2017).

4.21 Angular Order

The equation which is used for calculating the angular order of a flock-
ing swarm is proposed in this section. The angular order of a swarm can
be used to indicate whether the agents are moving in the same direction
(Ferrante et al., 2012). In nature, birds in the same flock always face in ap-
proximately the same direction. The flock is more likely to be in a steady
state if all its agents are moving in a similar direction. Hence, one im-
portant metric for evaluating flocking behaviour is whether the agents are
moving in the same direction. In (Mogilner and Edelstein-Keshet, 1996),
a mathematical model is proposed for the measurement of the angular or-
der of self-aligned objects. By combining it with the model proposed in
(Vicsek et al., 1995), an equation for calculating the angular order () of
a group of objects can be derived - see equation 4.1 (Wei, Timmis, and
Alexander, 2017):

N

§ : eién

n
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~ (4.1)

where N is the total number of objects in the group, 6, is the facing direc-
tion of the n' object in the group, where 6 € [, 7], and i is the imaginary
unit (complex number, in which i> = —1). In a two-dimensional case, the
angle describing the facing direction of an object is § and 6 € [—, 7.

The value of the angular order can vary between 0 and 1. In Figure 4.1
(a), all the agents are moving parallel and facing the same direction. This
indicates that the group is perfectly aligned and is in a completely ordered
state, therefore the angular order for this situation is 1. In Figure 4.1 (b),
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FIGURE 4.1: Angular Order

the agents are facing totally different directions. This indicates that the
group is in a completely disordered state, and therefore the angular order
for this situation is 0. If the angular order is low for a swarm, it is very
likely that the swarm might lose some of its agents within a short time.

4.2.2 The Proportion of the Swarm Left

The proportion of the swarm left indicates the ratio (remains/total) of
agents remaining in the swarm when the prey robot reaches the goal. In
swarm robotic research, the major goal of most flocking studies (all of the
flocking citations above) is to make the agents move in one cluster from
the beginning of the experiment to the end. The swarm should lose no
agents during a flocking and any agents met should be able to flock to-
gether afterwards. In this case study, the proportion of the swarm left is
used to measure the cohesion and goal-seeking abilities of the flocking
control algorithm.

4.3 Flocking Control Algorithm

The control algorithm used to achieve flocking behaviour in ARGOS is
discussed in this section. At the early stage of this thesis, flocking be-
haviour was achieved in ARGOS by using both methods mentioned in
section 2.4.1.2. However, a group of robots with global information is not
treated as a swarm robotic system in this thesis, therefore the flocking al-
gorithm used should not share global information.

In current swarm robotics research, there are no flocking control algo-
rithms that are able to follow an informed robot while avoiding obstacles
in the environment without any failures. In this case study, the flocking al-
gorithm is developed based on the one proposed in (Moeslinger, Schmickl,
and Crailsheim, 2011). The agents have no access to global information in
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this algorithm. As this algorithm only functions correctly in an empty en-
vironment and is unable to move towards a goal, obstacle-avoidance and
goal-seeking mechanisms are added to this algorithm in this case study.

The foot-bots in ARGOS are able to emit light of different colours us-
ing the LEDs on the top of the robot. The omni-directional camera on
foot-bot can locate the position of a light source with respect to the cen-
tre of it. In order to distinguish between the robots and the obstacles, all
foot-bots emit light using the LEDS so any objects without a light source
will be treated as an obstacles. The robots avoid the obstacles by moving
away from the obstacles while moving towards the average position of
their flockmates. In order to avoid accessing global information, the range
of the omni-directional camera is limited so that each robot can only detect
the position of its flockmates which are within its detectable range. Note
that at the end of section 2.1.1, Scalable Swarm Robotic and Minimalist
Swarm Robotics were discussed. Scalable Swarm Robotics in this thesis is
used as an omni-directional camera is added to each robot.
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FIGURE 4.2: A comparison between the path found by A*
algorithm (red) and the path found by modified version of
A* algorithm (blue).

4.3.1 The Control Algorithm for The Prey

This section represents the control algorithm for the prey (the robot which
is being preyed) discussed in section 4.1. Before each experiment starts,
modified version of A* algorithm is used to calculate a clear path from
the starting point to the destination for the prey. Figure 4.2 shows two
paths found by A*algorithm and the modified version of A* algorithm.
The path found by modified version of A* algorithm is more realistic as
the prey keeps moving towards the destination unless encountering an



4.4. Failure Classification 77

obstacle. The prey will follow the clear path to move towards the desti-
nation when the experiment starts. The LEDs on top of the prey emit a
different colour from the robots. If the prey is in the detectable range, the
birds move towards the position of the prey. If not, the birds move to-
wards the average position of their flockmates. If there are no other robots
in the detectable range, the robots wander around in the environment. By
testing the swarm using the improved flocking algorithm in empty envi-
ronment, the experimental results show that the swarm is able to reach the
goal without losing any individuals.

4.4 Failure Classification

The objective of the testing method presented in this thesis is to reveal
failures during the execution of a swarm. A criterion of identifying the di-
versity of the failures found is required. Winfield (Winfield and Nembrini,
2006) addressed the failure modes of a single robot in swarm robotics, but
few papers discuss classifications of failures for overall swarm behaviour.

_____________

(@) (b)

FIGURE 4.3: An example of how a swarm is split into two
clusters.

A failure classification is proposed according to the various causes of fail-
ures. In this case study, the main reason for a swarm splitting up is the
obstacles. The velocity (both speed and moving direction) of a robot is af-
fected once encountering obstacles. The robot might lose track of the rest
of the swarm while it attempts to avoid obstacles. The failure classifica-
tion is therefore in terms of how robot speeds and directions vary when a
swarm fails by splitting into clusters.

When a swarm is split into two clusters, the speeds and moving direc-
tions of those two clusters are compared. The split is classified in terms of
relative speeds and relative angles. In this case study, two speed categories
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(whether or not the slower cluster is moving at more than half of the faster
cluster’s speed) and ten angle categories (in 10-degree increments until 90
degrees, and then 90 degrees plus) are used. At a result, there are 20 dif-
ferent categories of failures. Figure 4.3 shows an example of how a swarm
is split into two clusters. In Figure 4.3 (a), five agents are moving together
as a flock. The dashed circle around these five agents indicates that these
agents are in the same cluster. The dashed arrow indicates the velocity
(the average speed and moving direction of all the agents) of the current
cluster. Figure 4.3 (b) shows the moment when one cluster is split into
two clusters. The relative angle and relative speeds can be determined by
comparing the velocities of those two new clusters. Note that only the last
cluster which is split from the swarm is taken into account.

4.5 Evolutionary Testing method

This section shows the procedure of developing a testing method for flock-
ing behaviour. Following the framework proposed in section 3.2, chromo-
some and fitness function are first designed. Then the parameters of the
GA are analysed according to the new designed chromosome and fitness
function by following the procedure proposed in section 3.2.4.

4.5.1 Chromosomes

A chromosome is a test case in which the swarm is tested. According to
scenario 2 listed in section 2.4.1.1, the agents are deployed near the upper-
left corner of the environment when the experiment starts. The prey robot
moves towards the goal following the clear path (see section 4.3.1). The
rest of the swarm attempts to follow the prey robot until the prey robot
reaches the goal. In this scenario, the only variable is the shape and layout
of each obstacle. Cellular representation is used to represent the chromo-
some and a random test case with N obstacles can be created using the
rules listed in section 3.2.1.

4.5.2 Fitness Function

The fitness function (described in section 3.2.2) uses a combination of the
metrics defined in section 4.2 to measure the performance of a flocking
control algorithm. Note that the objective of the testing method is to iden-
tify faults in a swarm control algorithm, therefore, the worse a swarm per-
forms in a test case, the better the test case is.



4.5. Evolutionary Testing method 79

For each experiments, the swarm attempts to reach the destination by
following the prey without losing any individuals. In section 4.2, two met-
rics for measuring the performance of a flocking control algorithm are
defined. The fitness function is defined by using those three metrics as

follows:

2T (4.2)

(1+¥)R N>
YV — for R—N>0
0 for R—N<O0

where 9 is the angular order of the swarm, R is the number of agents re-
maining in the swarm, 7' is the total number of agents in the environment,

and N is the minimum number of agents in order to form a swarm.
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FIGURE 4.4: Fitness values for four different orientations
of a swarm. The white dot with grey boundary represents
a robot. The grey line in the robot shows the facing direc-
tion of the robot. The total number of robots in the envi-
ronment, T, is 10. There are 10 robots in (a), (b), and (c),
and there are 9 robots in (d). The red circle highlights the
robot that varies compared to the swarm on the left.

Figure 4.4 shows the fitness values for four different orientations of a swarm.
The fitness value ranges from 0 to 1. When the fitness value is equal to 1,
all the robots are facing the same direction and no robots get lost (see Fig-
ure 4.4 (a)). When a total failure occurs, the fitness value is 0. The red
circle in Figure 4.4 highlights the robot that varies compared to the swarm
on its left. For example, the robot with red circle in Figure 4.4 (b) is facing
left while it is facing direction in Figure 4.4 (a) is right. As this single robot
turned 180 degree in the swarm, the fitness value drops from 1 to 0.9. Fig-
ures 4.4 (b) and 4.4 (c) shows the reflection on the fitness value when one
robot only turns 30 degrees. Figure 4.4 (c) and figure 4.4 (d) show how
the fitness value changes when one robot gets lost. By carrying out exper-
iments on the fitness value, the experimental results show that it is very
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TABLE 4.1: PARAMETER VALUES OF GENETIC ALGO-
RITHM (Wei, Timmis, and Alexander, 2017)

Name of Parameter Analyzed Candidates Best Candidates
Number of genes [4,6,8,10] 8
Population size [10, 20, 30, 40, 50] 20

AllParent-BestHalf
Parent selection method 2BestParent-2WorseAway 2BestParent-2WorseAway
2RandomParents-2WorseAway
Single-point-crossover

Crossover type Double-point-crossover single-point-crossover
Uniform-crossover
Crossover probability [0.1,0.2,0.4] 0.1
Mutation probability [0,0.05,0.1,0.2] 0.05
Number of generation [10, 30, 50, 100] 50

sensitive (the fitness value changes even when a robot turns only 1 degree)
and is able to reflect the actual performance of the swarm (the higher the
fitness value, the better the swarm performed).

4.5.3 Parameter Analysis

Parameter analysis can be applied once the chromosome and fitness func-
tion are defined. The robustness technique in Spartan (Alden et al., 2013)
is adopted to decide the value of each parameter. In section 3.2.4, Pa-
rameter Analysis, 7 parameters are discussed and they are analysed one
by one. While analysing one parameter, all other parameters remain un-
changed. Due to the huge number of evaluations required, cluster com-
puting (YARCC in this thesis) is recommended for executing parameter
analysis. Table 4.1 shows the parameter values determined according to
the analysis from Spartan (Wei, Timmis, and Alexander, 2017). All the pa-
rameter values in table 4.1 are only optimized for a 6m x6m environment
with a swarm of 10 foot-bots. Figure 4.2 can also be considered as an ex-
ample of a test case for testing flocking behaviour.

4.6 Experimental Results

In this section, the performance of the evolutionary testing method is mea-
sured and compared with that of the random testing method. A better set
of test cases should not only find more failures occurring (or more severe
failures), but also find more types of failure. Consequently, the perfor-
mances of the testing methods are compared in terms of the following two
aspects: the severity of the failures found and their diversity. Some parts
of this section was shown in study (Wei, Timmis, and Alexander, 2017).
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The fitness function used in this chapter is different from the one used in
(Wei, Timmis, and Alexander, 2017) (see section 4.5.2).

In this section, the total number of the birds in each experiment is 10
(see section 4.5.3) and the number of the prey is 1 (see section 4.1). In
the early stage of this case study, a small number (100) of experiments are
carried out for N (defined in section 4.1.1) with the range of 2 to 10. The
experiments for N is set to 1 are not carried out because 1 robot can never
be treated as a swarm. From the experimental results, if the number of
N is too high, a total failure occurs too easily. If the number of NV is too
low, it is too hard to trigger a total failure. Due to the time limitation, large
numbers (more than 10,000 for each V) of experiments are carried out only
when N is set to 3, 5, and 7 (first quartile, the median, and third quartile).
In order to avoid repetition when showing the experimental results and as
5 is the median for N, the results shown in the figures and tables in this
section are measured when N is set to 5.

4.6.1 The Selection of Statistical Tests

In statistics, statistical hypothesis testing is the most common way to make
statistical decisions when comparing two sets of experimental data (Box,
Hunter, and Hunter, 2005). In this case study, two different testing meth-
ods, which are the evolutionary testing method and the random testing
method, are compared. By applying statistical hypothesis testing, these
two testing methods can be compared by comparing the data (results) col-
lected from the experiments of these two testing methods. Hence, statis-
tical hypothesis testing is used for carrying out statistical analysis for this
case study.

The formal process for applying statistical hypothesis testing usually
contains the following four steps (Marusteri and Bacarea, 2010):

e 1. Stating the null hypothesis and alternative hypothesis. In statis-
tics, the null hypothesis Hj describes certain statistical behaviour of
data and it is treated as true unless the actual behaviour of the data
contradicts the hypothesis. The alternative hypothesis H; is the hy-
pothesis which is contrasted against the null hypothesis.

e 2. Choosing the significant level. The significant level can be defined
as the probability of rejecting the null hypothesis when the null hy-
pothesis is actually true. Popular levels of significance are 5%, 1%,
and 0.1%, empirically corresponding to a “confidence level” of 95%,
99%, and 99.9%.
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3. Obtaining the “P value”. The P-value is calculated using the ex-
perimental data (or sample data). If it is less than the significance
level, the null hypothesis can be rejected.

4. Deciding to either reject the null hypothesis in favor of the alter-
native hypothesis or “fail to reject” it.

The experimental data in this case study has the following properties:

e Two samples: One sample is collected for the evolutionary testing
method, and the other sample is collected for the random testing
method.

¢ Independent samples: The experiments carried out for both testing
method are independent of each other.

e Distribution-free: The samples are not drawn from a normal distri-
bution.

e Large sample size: The size for each sample is at least 100.

e One-tailed test: The prediction for the experiments is that the evo-
lutionary testing method has a better performance than the random
testing method.
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FIGURE 4.5: The selection process for the right statistical
test (Marusteri and Bacarea, 2010).

According to the data properties listed above and the selection process dis-

played in figure 4.5, one-tailed Mann-Whitney U-test is the best choice for

applying statistical analysis to our experimental data. One disadvantage
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TABLE 4.2: DETAILS OF THE EXPERIMENTS OF FAIL-
URE SEVERITY

No. generated No. compared No. of evaluation
Evolved 100 100 5000
Random 5000 100 5000

of using statistical hypothesis test is the lack of visualization for the exper-
imental results. Box-and-whisker plot graph is often used in explanatory
data analysis (Box, Hunter, and Hunter, 2005), and it is used as a comple-
ment to statistical hypothesis test in this thesis.

4.6.2 Comparison of Severity of Failures

In this section, the performance of the swarm control algorithm, which is
mentioned in section 4.3, is compared by testing in both the evolutionary
testing method and the random testing method. The means of comparison
is the fitness value. A high fitness value means that fewer failures occurred
during the execution of the swarm, and therefore stands for a good perfor-
mance of the swarm. The worse the swarm performs, the tougher (better)
the test cases are. From the above, the lower the fitness value, the better
the test cases are. A null hypothesis is proposed here:

Hy: the use of evolved test cases makes no difference to the ability to
identify the severity of failures when compared to the random testing

Sfmfegy/ i-e-/ fevolved = frandom-

The alternative hypothesis is :

Hy: the use of evolved test cases has a positive effect on the ability to
identify the severity of failures when compared to the random testing

Stmtegy, ie., fevolved <fmndom'

where feyolved and frandom represent the fitness values of the evolved test
case and the random test case, respectively. Note than, the lower the fit-
ness value, the better the test cases are.

Table 4.2 shows the details of the experiments carried out for the com-
parison of severity of failures. When testing the flocking behaviour using
the random testing method, 5000 random test cases are generated. The
flocking swarm is tested in all 5000 random test cases and the experimen-
tal results are recorded. In order to make the competition between the
random testing method and the evolutionary testing method equitable,

the number of fitness evaluations for both methods should be the same.
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TABLE 4.3: DETAILED RESULTS OF MANN-WHITNEY
U-TEST

Test Case avg std  SoR MoR  U-value
Evolved 0215 0.218 58285 5828  9221.5
Random 0.654 0.220 142715 142.72 7785

For random testing method, 5000 evaluations are carried out. For each
evolution of which the population size is 20 and the number of genera-
tions is 50, 1000 evaluations are carried out. In order to keep the fitness
evaluations the same, five independent evolutions are needed, and there-
fore, 100 evolved test cases are generated. The swarm is then tested in
100 evolved test cases and the experimental results are recorded. When
comparing the results, 100 random test cases are randomly chosen.

Table 4.3 shows the detailed results of applying the one-tailed Mann-
Whithey U-Test to the experimental results when N is 5. The level of sig-
nificant chosen for one-tailed Mann-Whithey U-Test is 1%, corresponding
to a value of 0.01. The p-value of the test is 0.00001, which is less than the
value (0.01) of significant level. In this case, the null hypothesis Hj is re-
jected in the favor of the alternative hypothesis H; with a confident level
of 99%. Hence, the experimental results show that the use of evolved test
cases has a positive effect on the ability to identify the severity of failures
when comparing to the random testing strategy.

The same statistical hypothesis testing is also applied to the experi-
mental results collected when N is 3 and 7. Both sets of experimental
results shows that the use of evolved test cases has a positive effect on the
ability to identify the severity of failures when comparing to the random
testing strategy.

In this section, the box-and-whisker plot is used for the visual inspec-
tion of the experimental results collected. Figure 4.6 shows the distribu-
tion of the fitness value of the test cases generated by the evolutionary
testing method and the random testing method. From the graph, there are
no overlaps in spreads (75% of the experiments in random test cases per-
form better than 75% of the experiments in evolved test cases), therefore
both the mean and median of the fitness value of the evolved test cases are
lower than those of the random test cases.
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FIGURE 4.6: The fitness value of evolved test cases com-
pared with that of random test cases.

4.6.3 Comparison of Diversity of Failure Type

The purpose of the evolutionary testing method is not only to discover
as many instances of undesired behaviours as possible, but also to dis-
cover as many distinct types of undesired behaviours as possible. In or-
der to measure the diversity of failures found by the evolutionary testing
method, 10 independent evolutions are carried out. For each evolution,
there are 20 initial chromosomes in the population and the evolution con-
tinues for 80 generations. Figure 4.7 shows that the number of failure types
does not keep increasing as the number of generations increases. The
number of failure types will reach a peak after a certain numbers (around
30) of generations. Hence, to keep the computing costs to a minimum, the
evolutions in this section run for 30 generations.

In this section, 400 evolved test cases are produced. The population
size for each evolution is 20, therefore 20 independent evolutions are car-
ried out. To keep the fitness evaluations between the two testing methods
the same, 12,000 random test cases are generated. When comparing the
results, all types of failures found in all 12,000 random test cases are com-
pared with all types of failures found in the final 400 evolved test cases.

For failure classification, failures are categorized into 20 categories,

formed by combining two speed categories with 10 angle categories. The



86 Chapter 4. Testing Method for Flocking Behaviour

a

Average no. of failure types
» Q@

0 ' 1‘0 | 2‘0 i 3‘0 ' 4'0 ' 5’0 ' 6‘0 | 7‘0 i 8‘0
No. of generations
FIGURE 4.7: A line graph shows the average number of

failure types of 10 independent evolutions in 80 genera-
tions.

TABLE 4.4: DETAILS OF THE EXPERIMENTS OF FAIL-
URE TYPE

No. generated No. compared No. of evaluation
Evolved 400 400 12000
Random 12000 12000 12000

two speed categories are "<50% of average robot speed" and ">=50% of av-
erage robot speed". Angles are measured with respect to the mean head-
ings of the swarm members. The angle categories range between 10 and 90
degrees at increments of 10 degrees, along with a tenth "90 degrees plus"
category.

Figure 4.8 shows the total failure types found for both evolved and ran-
dom test cases. In this graph, it is assumed that the executions of 20 dif-
ferent evolutions are independent and parallel. As previously discussed
in section 4.4, there are 20 different types of failures in total. Figure 4.8
shows that evolved test cases discover 17 different types of failures, while
random test cases discover only 8. Table 4.5 shows the specific failure
types discovered by both evolved and random test cases. From the table,
it is clear that the set of failure types discovered by random test cases is a
subset of the set of failure types discovered by evolved test cases.

Recall that all experiments above in this section were carried out when
N is set to 5 for a swarm which contains 10 robots. Experiments were also
carried out when NV is set to 3 and 7. From the experimental results, even
though the number of failure types for both evolved and random test cases
changes, the set of failure types discovered by random test cases is always
a subset of those discovered by evolved test cases.
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FIGURE 4.8: A line graph shows the total number of failure
types discovered during 12000 fitness evaluations.

TABLE 4.5: FAILURE TYPES DISCOVERED.
Grey stands for failure type discovered by the random
testing method and Cyan stands for failure type discov-
ered by the evolutionary testing method.

10° 20° 30° 40° 50° 60° 70° 80° 90° 90°+
Speed=50%
Speed<50%

Hence, the experimental results from all three sets of experiments show

that, after a certain number of fitness evaluations and under the criteria
developed for failure classification, the evolved test cases not only cover
all the failure types which random test cases identify, but also identify
more types of failures.

4.6.4 Discussion

According to experimental results from the two sections above, the evolved
test cases lead to worse swarm performance and cover more failure types
than the random test cases, suggesting that they are better tests when test-
ing the flocking algorithm mentioned in section 4.3.

4.7 Improving Control Algorithm by Fault Removal

The goal of testing is to find faults and prevent them. In swarm robotic sys-
tems, increasing the dependability of the system can help to prevent faults.
The dependability of a swarm robotic system is dependent on the quality
of its control algorithm. As previously discussed in Chapter 2, there are
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TABLE 4.6: NUMBER OF TOTAL FAILURES DISCOV-
ERED BY EVOLVED TEST CASES FOR EACH FAILURE

TYPE.
10° 20° 30° 40° 50° 60° 70° 80° 90° 90°+
Speed250% 0 0 0 2 4 5 9 7 9 29
Speed<50% 3 2 10 5 4 15 6 12 15 56

two major methods for designing the control algorithms of swarm robotic
systems: the behaviour-based design method and the automatic design
method. In this section, the control algorithms which have been designed
using the behaviour-based design method is improved. The control algo-
rithm used in section 4.3 was developed using the behaviour-based design
method. In this section,fault removal method is used to improve the con-
trol algorithm in section 4.3 by tackling the failure types discovered in
section 4.6.3.

In the behaviour-based design method, the behaviour of each individ-
ual robot is designed iteratively until the desired collective behaviour is
obtained. Hence, the quality of the swarm control algorithm depends on
the expertise of the developers. Analysing the failure types occurring dur-
ing the execution of the swarm might give designers some clues about the
faults in their control algorithm.

4.7.1 Total Failure Analysis

In study (Moeslinger, Schmickl, and Crailsheim, 2011), there are three dis-
crete reactions for agents in movement: move straight, turn left by a cer-
tain angle or turn right by a certain angle. Table 4.6 shows the number of
total failures discovered by evolved test cases for each failure type. From
the experimental results, there are more total failures occurring when the
relative angle is large and the relative speed is less than 50%. This means
that the swarms are more robust when the split angle is small, and the
agents are more likely to be split from the swarm if their speeds are rela-
tively low.

By reviewing the procedures of the experiments in which total failure
occurred, the following is discovered: when the prey robot turns through a
certain angle to avoid an obstacle, if the obstacles are within the detectable
range of a robot, the turning angle and moving speed of this robot will be
affected. This is the major reason for a robot to get split from a swarm.
From the above analysis, the weakness of the flocking control algorithm is

that the swarm is not robust enough when encountering obstacles.
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4.7.2 Algorithm Improvement

A swarm control algorithm might be improved by replacing the weak
strategy with a better one. Note that if there are no existing strategies that
are better than the current one and the developers are unable to develop a
better one, the swarm control algorithm can not be improved.

According to the weakness that the swarms are less robust when the
splitting angle is large, the easiest way of overcoming this is to increase
the turning speed (turn through a larger angle in the same time period) of
the agents when the angle between an agent and its flockmates is large.
However, as mentioned in section 2.4.1.2, it is hard to obtain the heading
directions of the agents without cheating, therefore the easiest way will
not work. In order to improve the control algorithm, the following can be
implemented: Adding one more threshold for the agents: If the distance
between the agents in front and itself is larger than the new threshold, in-
crease both the turning speed and moving speed of the agent. The value
of this new threshold is determined by a trial-and-error strategy in exper-
iments.

4.7.3 Experimental Results of the Improved Flocking Control Al-
gorithm

Experiments that are carried out to measure the performance of the im-
proved flocking control algorithm are described in this section. This im-
proved algorithm will be tested in both test cases evolved based on the
original flocking control algorithm and test cases evolved based on the im-
proved algorithm. 100 test cased was evolved based on original flocking
control algorithm in section 4.6.2. 100 test cases will be generated based on
improved flocking control algorithm. A new null hypothesis is proposed
here:

Hy: equipping the swarm with the improved flocking control algo-
rithm has no effect on the performance of the swarm, i.e., fimproved =

foriginal .
The alternative hypothesis is:

Hy: equipping the swarm with the improved flocking control algo-
rithm has a positive effect on the performance of the swarm, i.e.,

fimproved < foriginul .
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where fimproved and foriginal Tepresent the fitness values of the test cases
when testing the improved algorithm and when testing the original algo-
rithm, respectively. The lower the fitness value, the better the test cases
are.

TABLE 4.7: THREE PAIRS OF RESULT DETAILS FOR
THE MANN-WHITNEY U-TEST

Test Case avg  std SoR  MoR  U-Value

F/F 0215 0.218 7834 7834 7216
I/F 0398 0.22 12266 122.66 2784
F/F 0.125 0.218 8723 87.23 6327
I/1 0.331 0.216 11377 113.77 3673
F/I1 0.193 0.194 8172 8172 6878
I/1 0331 0.216 11928 119.28 3122

Table 4.7 shows the details of applying the one-tailed Mann-Whitney U-
Test to three pairs of experimental results at a significance level of 1%. For
all three pairs of experimental results, the p-value of the U-Test is less than
0.00001, which is less than the value (0.01) of significant level. This means
the null hypothesis H is rejected in the favor of the alternative hypothesis
H, with a confident level of 99%. Hence, the performance of the swarm
can be improved by replacing the weak mechanism with a better one.
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FIGURE 4.9: A line graph showing the total number of fail-
ure types discovered during 12000 fitness evaluations.
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Figure 4.9 shows the distribution of the fitness values for four sets of
experiments. F/F shows the box-plot of testing the original algorithm on
test cases evolved based on itself (in section 4.6.2). I/F stands for testing
the improved algorithm on test cases evolved based on the original al-
gorithm. Both the original and improved algorithm are also tested on test
cases evolved based on the improved algorithm (F/I and I/Iin Figure 4.9).
Note that there are no fitness values in the range between 0 (exclusive) and
0.3 (exclusive) due to the total failure rule. If the number of the robots in a
swarm is less than 5, a total failure occurs and the fitness value is 0.

From the experimental results in Figure 4.9, the fitness values of the im-
proved algorithm are higher than those of the original algorithm in both
sets of test cases. The swarm equipped with the improved flocking con-
trol algorithm has better performance than the swarm equipped with the
original flocking control algorithm.

4.8 Chapter Summary

The work presented in this chapter shows the usefulness of the evolution-
ary testing method presented in Chapter 3. The experimental results pre-
sented in section 4.6 show that the testing method is able to reveal failures
in flocking algorithm. The testing method can lead to worse swarm per-
formance and it covers more failure types than the random testing method
despite the minimum size of a swarm. The work presented in section 4.7
shows the procedure of fault removal for the flocking control algorithm
presented in section 4.3. The experimental results presented in subsec-
tion 4.7.3 show that the flocking control algorithm performs better after
improvement. Thus the dependability of the swarm robotic system devel-
oped for this case study improves. It also shows the evolutionary testing

method can help to solve the swarm robotic design problem.
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Chapter 5

Testing Method for Foraging
Behaviour

One more case study for the testing method proposed in Chapter 3 is car-
ried out in this chapter. The experimental results from previous chapter
have shown that the evolutionary testing method is effectively finds fail-
ures in the flocking algorithm in section 4.3. The purpose of this chapter is
to find out whether the testing method is adaptable to other swarm con-
trol algorithms or is only suitable for flocking algorithm. Accordingly, the
testing method is modified so that it can be used to test ant foraging be-
haviour in swarm robotics.

The metrics for measuring performance of ant foraging behaviour and
also the foraging algorithm that is tested against are proposed at the be-
ginning of this chapter. These metrics are used with the testing method
and then parameters of the testing method are defined. Experiments are
carried out and experimental results for both the random testing method
and the evolutionary testing method presented in this thesis are compared
and analysed to gauge the ability of the evolutionary testing method to
identify failures of ants foraging algorithm. At the end of the chapter, an
algorithm improvement is applied to the original ant foraging behaviour

and the experimental results are discussed.

5.1 Metrics for Ant Foraging Behaviour

Foraging behaviour is a well studied control algorithm in swarm robotics
because of its strong biological basis (Liu and Winfield, 2010; Campo and
Dorigo, 2007; Hoff et al., 2010) and its potential real-world applications
such as instance cleaning, harvesting, search and rescue, land-mine clear-

ance, or planetary exploration (Winfield, 2009). Due to the popularity of
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foraging behaviour, there are various studies providing metrics for forag-
ing behaviour. Consequently, there is no need to develop a metric in this
case study.

One large difference between foraging behaviour and flocking behaviour
is that the agents of foraging behaviour in the environment do not have to
stay in one cluster (There are some exceptions, for example, in some stud-
ies (Werger and Mataric, 1996; Goss and Deneubourg, 1992) the agents
are designed to stay close to each other so that a chain can be established
between the nest and the target).

The experimental results from (Matari¢, 1995) show that the interac-
tions between the agents in a bounded environment have a negative effect
on the performance of the group. The study in (Lerman and Galstyan,
2002) proved that the performance of the agents improves as the number
of agents grows at first, but declines when the number of agents reaches
a certain threshold because of the interference between the agents. There-
fore, as long as the number of agents in each test case remains fixed, there
is no need to worry about the interactions between the agents.

Due to the the reasons given above, the metric for the performance of
a foraging behaviour is quite straightforward and widely used in studies
about ant foraging (Hoff et al., 2010; Winfield, 2009; Labella, Dorigo, and
Deneubourg, 2006) and is: the total amount of food that has been returned
to the nest by the entire swarm during a certain amount of time.

This metric is modified in some studies according to the energy con-
sumption (the cost of movement and communication action) of the agents.
The main function of the testing method presented in this thesis is to mea-
sure the performance of a given control algorithm, and energy consump-
tion is not concerned in this thesis so there is no need to use those modified

metrics.

5.1.1 Total Failure in Ant Foraging Algorithm

Section 2.4.2.2 introduced the idea that certain ant foraging algorithms are
able to find the shortest path between the nest and the food sources by
creating trails in the environment. A concept named total failure for flock-
ing behaviour was introduced in Chapter 4. A total failure in ant foraging

behaviour occurs in either of the following two conditions:

o (1) the swarm was not able to find any path between the nest and the
food resource; (The experiments conducted in this thesis revealed
that it takes too long for the swarm system to find the shortest path.
In order to reduce computing time, the algorithm is considered to be
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a success if it found at least one path between the nest and the food
sources.)

e (2) there are no food items in the nest when the experiment termi-
nates.

Note that condition 2 is severer than condition 1 as condition 2 includes
condition 1. In study (Hoff et al., 2010), a path is said to be found if and
only if the swarm has established a robot chain between the nest and the
food resource. When only condition 1 occurs, there might be some food
items which were brought back to the nest by the robots (a robot can wan-
der back to the nest without a robot chain (a path)). If condition 2 occurs,
this not only means that no food items were transported to the nest, but
also no paths (robot chain) between the food source and the nest were
found during the experiment. When condition 2 occurs, there is a large
probability that all of the robots in the swarm are trapped.

5.2 Control algorithm for Ant Foraging Behaviour

Apart from the difference mentioned in section 5.1, the constraints for the
agents in flocking algorithm, which are local information and only com-
munication without central control, still hold for foraging algorithm. Due
to the lack of global information, the agent has no idea about the exact
location of the target in the environment when it finds the target. Due to
the lack of global communication, the agent is also unable to notify other
agents which are beyond its local communication range.

In swarm robotics research, ant foraging behaviour is usually tested
in environments without any obstacles. Study (Hoff et al., 2010) is an
exception as it tested their systems in obstacle-filled environments. Fig-
ure 5.1 shows the test environments which are used in study (Hoff et al.,
2010). Study (Hoff et al., 2010) described two foraging algorithms which
are virtual pheromone (VP) algorithm and cardinality algorithm. In the
case study presented in this chapter, VP algorithm is used to form ant for-
aging behaviours in the simulation.

5.2.1 Virtual Pheromone Algorithm

Simple local direct communication between robots is used in (Hoff et al.,
2010) to transmit a virtual pheromone value. Each robot in VP algorithm

can either be a foraging robot or a pheromone robot (beacon as previously
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FIGURE 5.1: Four test environments used in study (Hoff et
al., 2010). In each test environment, the white circle repre-
sents the nest, the grey square represent the food resource,
and the rectangles (or squares) with slashes represents ob-
stacles. The large grey rectangle in the middle of (C) means
that the grey area is completely occupied by obstacles.

mentioned in 2.4.2.2). A foraging robot follows the basic foraging algo-
rithm (2.4.2.1) to move in the environment. When a robot becomes a bea-
con, it stops moving and can be used for storing virtual pheromone. The
virtual pheromone is a numerical number whose original value is 0. For-
aging robot can lay virtual pheromone at a beacon by sending data to the
beacon, and can also read the pheromone level by receiving data from the
beacon. When there is a network of beacons in the environment, the forag-
ing robots use the distribution of virtual pheromone to decide their next
move. Figure 5.2 shows a finite state machine for VP algorithm and the

descriptions of the seven states are now given:

e Wandering: this state provides the robots with the ability to move
around in the environment in order to find the food resource. If there
were food resource within the detectable range of the robot, the robot
changes its state from wandering to gathering. If there is beacon
network nearby, the robot changes its state to Following. If there are
fewer than two beacons in its detectable range, it changes its state to

wandering.
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FIGURE 5.2: Finite state machine of virtual pheromone al-
gorithm

e Following: the robot follows the beacon network to the food re-
source. Once the food resource is within detectable range, the robot
changes its state to Gathering. If the beacon network is disconnected,
the robot changes its state to wandering.

e Gathering: the robot gathers a food item from the food resource.
Once the robot is carrying the food item, it changes its state to hom-

ing.
e Homing: the robot moves towards the location of the nest. When

the robot reaches the nest, it changes its state to dropping. If there is
a beacon network nearby, the robot changes its state to f-homing.

e F-Homing: the robot follows the beacon network to the nest. When
the robot reaches the nest, it changes its state to dropping. If the bea-

con network is disconnected, the robots changes its state to homing.

e Dropping: the robot drops the food item at the nest and then changes
its state to wandering.
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e Beacon: the robot stops moving and works as a beacon; If there are
more than two beacons in its detectable range, it changes its state to
wandering with probability P.

The original flocking algorithm was improved in Chapter 4 by adding an
obstacle avoidance mechanism to make the algorithm working in the test
cases. As the original VP algorithm is able to function correctly in envi-
ronments with and without obstacles, there is no need to modify it. The
VP algorithm in this case study is implemented by using exactly the same
parameters used in study (Hoff et al., 2010). The individuals in VP algo-
rithm avoid obstacles as follows: “When a robot encounters an obstacle, it
attempts to avoid it, usually by simply turning left and moving forward” (Hoff
et al., 2010).

5.3 Evolutionary Testing Method

The evolutionary testing method proposed in section 3.2 is a framework of
how to test swarm behaviour. Different types of swarm behaviours follow
different rules so different sets of parameters need to be defined when
testing different swarm behaviours. In this section, the chromosome of
GA is defined first, then its fitness function, followed by its parameters of
GA. Finally, parameter analysis is carried out at the end of the section.

5.3.1 Chromosome

As in the preceding chapter, a chromosome is the test environment in
which the swarm is executed. In ant foraging behaviour, the agents are
clustered around their nest at the beginning. When the mission begins,
they start to wander around the world to look for food. Once a robot is
close enough to a food resource, it will grab a piece of food and start to
head towards its nest. After the robot drops the food at the nest, it will
continue to look for food in the environment. In this situation, there is one
more object compared to the previous chapter in the environment of ant
foraging behaviour than that of flocking behaviour, that is, the nest. In or-
der to remain impartial, the linear distance between the food and the nest
will always be the same in each test case.

Cellular representation is still used to represent the chromosome in this
case study. If there are N obstacles in each test case, a random test case for
foraging behaviour can be generated by observing the following the rules
listed in section 3.2.1.
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TABLE 5.1: PARAMETER VALUES OF GENETIC ALGO-

RITHM
Name of Parameter Analyzed Candidates Best Candidates
Number of genes [4,6,8,10] 8
Population size [10, 20, 30, 40, 50] 20

AllParent-BestHalf
Parent selection method 2BestParent-2WorseAway AllParent-BestHalf
2RandomParents-2WorseAway
Single-point-crossover

Crossover type Double-point-crossover Double-point-crossover
Uniform-crossover
Crossover probability [0.1,0.2,0.4] 0.2
Mutation probability [0,0.05,0.1,0.2] 0.05
Number of generation [10, 30, 50, 100] 30

5.3.2 Fitness Function

The ultimate goal of the swarm in ant foraging behaviour is to search the
environment and return to their nest with food items. Most papers judge
the performance of an ant foraging control algorithm by counting the total
amount of food that returned to the nest by the entire swarm during a
given time. Consequently, the total amount of food returned is used as the
fitness value (FV) in this chapter so the fitness function can be represented
as follows:

FV =TF (6.1)

where TF is Total Food returned to the nest by the entire swarm. In this
study, the time limit for the swarm to collect the food is set to 800s (the
reason for this is discussed in section 5.4.1).

5.3.3 Parameters Analysis of GA

The parameter robustness technique (Alden et al., 2013) described in sub-
section 3.2.4 is also used for parameter analysis in this case study. This
parameter robustness technique tunes each parameter of the GA individ-
ually while keeping all of the other parameters unchanged. The sensitiv-
ity of this parameter can be determined by comparing all of the results,
which are, the different values for each parameter. If the experimental re-
sults change significantly when the value of the parameter changes, this
parameter is sensitive in this GA and the value (among the candidate) of
this parameter at which the GA performs best can be found. If not, this pa-
rameter is insensitive, and therefore altering this parameter will not make
a significant difference in the performance of the GA. Table 5.1 shows the
parameter values determined according to the analysis using Spartan.
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5.4 Experiments

The performance of the evolutionary testing method and the random test-
ing method is measured and analysed in this section. There are two parts
in this section. In the first part of this section, the experimental setup,
such as the size of the environment, the size of the swarm, and so on, is
discussed. The second part of this section compares the experimental re-
sults from both testing methods. A test case created by the testing method
presented in this thesis is called an evolved test case, and a randomly pro-
duced test cases is presented as a random test case. The GA procedure is

the same as the procedure listed in section 3.2.5.

5.4.1 Experimental Setup

A few parameters of the testing environment should be decided before the
experiments can be carried out in the simulator. Note that the values of pa-
rameters of the GA in this case study was chosen according to the exper-
imental setup decided in this section. For different experimental setups,
different sets of GA parameters need to be chosen by using the parameter
robustness technique proposed in (Alden et al., 2013). The experimental
setup is showing below:

o Size of the Environment: The testing environment is a 2-dimensional
rectangular space with or without obstacles. The length and width
of the testing environment can be arbitrarily large. As a matter of
convenience, a square space with sides 6 meters long was selected as
the testing environment. This does not mean that a 6mx6m square
is the best candidate for the testing environment. Figure 5.3 shows
an example of a test case for ant foraging behaviour.

e Size of the Swarm: One property of swarm robotic system is that
the swarm should contain a large number of robots. However, there
are no limits for the minimum number of robots in a swarm. Due to
the scalability of the swarm robotic system, the number of robots in
a swarm should not be a problem to worry about. Twenty is used as

the size of a swarm in this case study.

e Position of the Nest and Food: In order to be objective, the distance
between the nest and the food should always be the same in all test-
ing environments. For convenience, the nest will be placed at the
bottom of the environment while the food will be placed at the top.
There is only one food resource in the environment, which never
runs out of food.
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e Execution time: The running time for each experiment is 800 sec-
onds. In the simulator, the speed for each robot is 5 cm/s and the
distance between the nest and the food resource is 4 meters. The run-
ning time of 800 seconds allows a single robot to travel between the
nest and food resource 10 times. The experiments terminate when
the time has expired.

- Food
] Obstacle

Nest

FIGURE 5.3: An example of a test case for ant foraging
behaviour. This is a bounded 6m x6m square environment
with one obstacle.

5.4.2 Experimental Results of VP Algorithm

Three kinds of test cases are used in this case study. They are empty test
case (no obstacles), random test case, and evolved test case. Firstly, the
performance of the swarm in no-obstacle test cases is measured in order
to set up a baseline for the rest of the experiments. The performance of the
simulated swarm, which is equipped with the VP algorithm mentioned
in section 5.2, in all three types of test cases is compared during later ex-
periments. The means of comparison is the fitness score which is equal
to the amount of food returned to the nest by the swarm. Therefore, the
lower the fitness score, the tougher the test case (the worse the swarm
performed). As the performance of the swarm in no-obstacle test cases is
used as a baseline, only evolved and random test cases are compared. The
experimental data collected in this case study shares the same properties
listed in section 4.6.1. Hence, one-tailed Mann-Whitney U-test is used for
applying statistical analysis in this case study. A null hypothesis is pro-
posed as follows:

Hy: the use of evolved test cases makes no difference to the ability
to search-and-transport the food to the nest in the ant foraging algo-
rithm compared to the random testing strategy, i.e., fevolved = frandom-
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TABLE 5.2: DETAILS OF THE EXPERIMENTS OF VP AL-
GORITHM

No. generated No. compared No. of evaluation
Evolved 100 100 3000
Random 3000 100 3000

TABLE 5.3: DETAILED RESULTS OF MANN-WHITNEY
U-TEST OF VP ALGORITHM

Test Case avg std SoR  MoR  U-value
Evolved 1.13 1.01 5255 5255 9795
Random 496 1.37 14845 14845 205

The alternative hypothesis is:

Hy: the use of evolved test cases has a positive effect on the ability
to search-and-transport the food to the nest in the ant foraging algo-
rithm compared to the random testing strategy. i.e., foporved < frandom-

where feyolved and frandom represent the fitness values of the evolved test
case and the random test case, respectively. The lower the fitness value,
the better the test cases are.

The performance of the swarm in empty test cases needs to be mea-
sured in order to set a baseline for later experiments. The swarm is exe-
cuted in empty test cases 100 times. The layout of each empty test case
is identical. The only difference between each experiment is the starting
positions of the robots in the swarm. The distribution of the fitness score
for empty test cases is shown in Figure 5.4.

Table 5.2 shows the details of the experiments carried out for testing
VP algorithm. When testing the VP algorithm using the random testing
method, 3000 random test cases are produced and the swarm is executed
in all 3000 of these random test cases with all of the experimental results
are being recorded. Consequently, 3000 evaluation are carried out. For
each evolution of which the population size is 20 and the number of gen-
erations is 30, 600 evaluations are carried out. In order to keep the fitness
evaluations between random testing method and the evolutionary testing
method the same (at 3000), five independent evolutions are needed. As a
result, 100 evolved test cases are generated. The swarm is then executed
in all 100 evolved test cases, and the performance in each test case is mea-
sured and recorded. In order to compare the results, 100 random test cases
need to be chosen at random.

Table 5.3 shows the detailed results of applying one-tailed Mann-Whitney
U-Test to the experimental results at a significance level of 1%. The p-value
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of the test is 0.00001, which is less than the value (0.01) of the significant
level. In this situation, the null hypothesis Hj is rejected in the favor of
the alternative hypothesis H; with a confident level of 99%. Hence, the
use of evolved test cases has a positive effect on the ability to search-and-
transport the food to the nest in the ant foraging algorithm compared the
random test cases.

Figure 5.4 presents a box-and-whisker plot which shows the distribu-
tion of the fitness values of the test cases generated by the evolutionary
testing method and the random testing method. From the graph, both
mean and median of the fitness value of random test cases is higher than
those of evolved test cases. Because the lower the fitness value of a test
case is, the tougher the test case, the evolved test cases made the swarm
harder to search-and-return the food to the nest.

15
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Number of Food Collected

o - o
T T T
Empty Random Evolved

Type of Test Case

FIGURE 5.4: The fitness value of evolved test cases com-
pared to the random test cases.

5.4.3 Discussion

According to the experimental results shown above, the swarm system
applied using the VP algorithm transported much more food items to the
nest in the random test cases than in the evolved test cases. This means
that it is harder for the swarm to search-and-transport the food to the nest
in evolved test cases than in random test cases. Therefore, evolved test
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TABLE 5.4: TOTAL FAILURES OF VP ALGORITHM
FOUND DURING THE EXPERIMENTS

Total Failure Random Testing Evolved Testing
Condition 1 24 91
Condition 2 2 35

cases are better tests when testing ant’s foraging algorithm mentioned in

section 5.2.

5.5 Improving Control Algorithm by Fault Removal

Total failures in ant foraging behaviour were introduced in section 5.1.1.
Table 5.4 shows the total failures found during the experiments in section
5.4.2. The total number of experiments for each testing method is 100. The
VP algorithm is able to establish at least one path between the food re-
source and the nest in 76% of the random test cases and 9% of the evolved

test cases.

5.5.1 Total Failure Analysis

It was mentioned in Chapter 3 that involving a testing process in system
development helps the developers to find the faults in their coordination
algorithm. The developers have to review the experiments in which total
failure occurs in order to identify the faults. The rest of this section shows
a representative example of identifying faults in the VP algorithm.

Figure 5.5 shows the trajectory of a robot which is trapped by certain
obstacles after gathering one food item from a food source. In robotic ex-
ploration task, a situation where a robot is blocked by obstacles or another
robots and can not achieve its task is called a deadlock (Jager and Nebel,
2001). In order not to get confused by the trajectories of all of the robots,
only the trapped robot is shown in the testing environment. The black
arrow on the robot shows the direction of the robot is facing. The robot
reaches point (a) first by following virtual pheromone. It detects the food
resource and then moves towards the food resource. After grabbing a food
item, the robot starts to move back to the beacon so that it can follow vir-
tual pheromone to return to the nest. However, there is an obstacle be-
tween the beacon and the robot. The robot avoids the obstacle by turning
left and the beacon is now beyond the detectable range of the robot. As
the robot is carrying a food item, it can not become a beacon and has to
move on its own until it finds a beacon or the nest. After the robot reaches
point (b), it always follows the trajectory which is the loop showing at the
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top of the figure. In this evolved test case, the maximum number of robots
trapped by this trap at the same time is 6. The only way for a trapped
robot to escape from the deadlock situation is to be obstructed by another
robot so that the moving direction in which it is moving can be changed.

@ Beacon

<€) Robot

- - - Trajectory
B rood

[ obstacle

Nest

FIGURE 5.5: The trajectory of a trapped robot in an
evolved test case for VP algorithm.

It is obvious that only three obstacles are involved to trigger a deadlock
situation (the boundaries of this test case are also involved). However,
study (Hoff et al., 2010) states that “the VP algorithm functions correctly in
worlds with and without obstacles”. By reviewing the VP algorithm and the
deadlock, one fault of the VP algorithm was found to be its obstacle avoid-
ance strategy. When an individual robot meets an obstacle, it always turns
left to avoid collision with this obstacle. This obstacle avoidance strategy
worked correctly in the test cases listed in Figure 5.1, but it breaks the

swarm system in certain situations.

5.5.2 Algorithm Improvement

A coordination algorithm might be improved by replacing the weak mech-
anism/strategy which causes the failure. Either an existing strategy which
performs better for the coordination algorithm can be adapted or a new
one developed. In order to find out whether the algorithm has been im-
proved, the performances of the new algorithm and the original algorithm
are compared. If there were no better strategies (a better one could not be
developed) to remove the fault, this means that this coordination algo-
rithm can not be improved for the time being.
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In the previous section, it was found that the weak strategy in VP algo-
rithm is obstacle avoidance. To improve the VP algorithm, a better obsta-
cle avoidance strategy needs to be deployed. At the beginning, the obsta-
cle avoidance strategy was changed to: when an individual robot meets
an obstacle, it randomly turns right or left to avoid collision with this ob-
stacle. This strategy helps the robot to escape from a trap in Figure 5.5.
However, after testing the new algorithm using the evolutionary testing
method (generate new evolved test cases based on the new algorithm),
there is not much difference between the performance of the new algo-
rithm and that of the old one. In this case, it cannot be said that the VP
algorithm has been improved.

5.5.2.1 Reactive Behaviour and Non-Reactive Behaviour

In robotics research, there are two types of behaviours, which are reac-
tive behaviour and non-reactive behaviour. Reactive behaviours are be-
haviours of robot which acts purely on what the sensors detect. Non-
reactive behaviour are behaviour of robot which acts not only on what
the sensors detect, but also depends on its past experiences or its internal
states. For example, the internal states of a self-driving car contains prede-
fined representations, such as traffic lights, traffic signs, markings on the
road, and so on, of the world. Note that, even most of current evolution-
ary robots and reinforcement learning robots can develop their controllers
based on past experiences, the behaviours of these robots are still reactive
because they do not have internal memories to evolve the controller or
learn new behaviours after the deployment.

The behaviour of all the robots used in this thesis are reactive. Due
to the lack of concepts of the past, reactive robot acts on what it detects.
For example, in Figure 5.5, the robot is trapped in a deadlock situation be-
cause its behaviour is depending on the obstacles in the environment. In
this situation, non-reactive robots will be able to escape from the deadlock
by learning from the past, however, developing non-reactive robots is be-
yond the scope of this thesis. Hence, the following section improves the
coordination algorithm in the field of reactive robotic systems.

5.5.2.2 Path Planning - Potential Field Method

The local path planning method enables a robot to reach a goal in an un-
known environment while avoiding the obstacles. Potential field method
(Khatib, 1986) is a well-known local path planning method with obstacle
avoidance. Figure 5.6 is a demonstration of how potential field method
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works. It assumes that the robot acts as a particle moving under the in-
fluence of two virtual forces produced by the goal and the obstacles. The
virtual force produced by the goal attracts the robot towards the goal. The
other virtual force produced by the obstacles repels the robot away from
the obstacles. The moving direction of the robot is determined by the re-
sultant of the attractive virtual force and the repulsive virtual force.

Obstacle

attractive force

N\

moving direction

repulsive force

FIGURE 5.6: A demonstration of how potential field
method works.

In order to improve the performance of the VP algorithm, its original ob-
stacle avoidance was replaced by the potential field method. The new

obstacle avoidance works according to the following rules:

e If any beacons are within detectable range, the robot avoids the ob-
stacle using potential field method by treating the beacon as the goal.

o If beacons are out of range, the robot turns right or left randomly to

avoid the obstacle.

5.5.3 Experimental Results using the Improved VP Algorithm

To measure the performance of the IVP (Improved VP) algorithm, the
swarm equipped with IVP is tested in both the evolved test cases gener-
ated for VP and the evolved test cases generated for IVP. 100 test cases are
generated based on IVP. In fact, 100 test cases were generated based on VP
in section 5.4.2. VP will also be tested in the evolved test cases generated
for IVP. In this section, a new null hypothesis is proposed:
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TABLE 5.5: THREE PAIRS OF DETAILED RESULTS OF
MANN-WHITNEY U-TEST

Test Case avg std SoR MoR  U-Value
VP/VP 113 1.01 5350 53.5 9700

I/VP 416 128 14750 147.5 300

VP/VP 113 1.01 75855 7586  7464.5
I/1 216 1.04 125145 125.14 2535.5
VP/I 0.67 0.77 64725 64.72 8577.5
I/1 216 1.04 136275 136.28 1422.5

Hy: equipping the swarm with IVP has no effect on the ability of
searching-and-transporting the food to the nest for the swarm, i.e.,

fimproved = foriginal
The alternative hypothesis is:

H: equipping the swarm with IVP has a positive effect on the ability
of searching-and-transporting the food to the nest for the swarm, i.e.,

fimproved <foriginal'

where fimproved and foriginal represent the fitness values of the test cases
when testing the improved algorithm and when testing the original algo-
rithm, respectively. The lower the fitness value, the better the test cases
are.

Table 5.5 shows three pairs of detailed results of applying one-tailed
Mann-Whitney U-Test to the experimental results at a significant level of
1%. For all three pairs of experimental results, the p-value is less than
0.00001, which is less the the value (0.01) of significant level. In such case,
the null hypothesis Hj is rejected in the favor of the alternative hypothesis
H, with a confident level of 99%. Hence, equipping the swarm with IVP
has a positive effect on the ability of searching-and-transporting the food
to the nest for the swarm.

Figure 5.7 shows the distribution of the amount of food collected for
four groups of experiments. VP/VP stands for testing VP on test cases
evolved on the basis of VP. The experiments have already been carried out
in subsection 5.4.2. VP/VP will be used as a baseline to find out whether
or not there is an improvement in the performance of the swarm after
applying IVP.

During the experiments, IVP was first tested on test cases evolved on
the basis of VP (I/VP in figure 5.7). Both IVP and VP were then tested on
test cases evolved on the basis of IVP (I/I and VP /I in figure 5.7).

Figure 5.7 shows that I/ VP performs best of all of four sets of experiments.
Even though 1/I does not perform as well as I/VP, it still outperforms
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Number of Food Collected

VP/VP VP I VP/I

Foraging Algorithm/Type of Test Case

FIGURE 5.7: The distribution of number of collected food

for testing VP on test cases evolved based on VP, testing

IVP on test cases evolved based on VP, testing IVP on test

cases evolved based on IVP, and testing VP on test cases
evolved based on IVP

VP/VP and VP/I. The swarm equipped with IVP is better at search-and-
transport the food to the nest than the swarm equipped with VP.

5.6 Chapter Summary

The work presented in this chapter shows that the testing method pro-
posed in Chapter 3 is able to reveal failures in more than one type of
swarm behaviour. The experimental results presented in section 5.4.2 show
that it is more difficult for the swarm to search-and-transport the food to
the nest in evolved test cases than it is in random test cases. The work
presented in section 5.5 shows that the performance of the ant foraging
behaviour presented in study (Hoff et al., 2010) can be improved by re-
moving the fault identified by the evolutionary testing method.
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Chapter 6

Testing Method for Task
Partitioning Behaviour

Another case study for the testing method proposed in Chapter 3 is pre-
sented in this chapter. The control algorithm of task partition behaviour
described in 2.4.3 is tested. This chapter starts with the selection of metrics
and GA parameters for task partition behaviour. Following this, the task
partitioning algorithm is presented. Experiments are carried out and ex-
perimental results for both the random testing method and the evolution-
ary testing method are compared and analysed to determine the ability of
the evolutionary testing method to reveal failures in the task partitioning
algorithm. Finally, a algorithm improvement is applied to task partition

behaviour and the experimental results are discussed.

6.1 Metrics for Task Partitioning Behaviour

So far in this study, the work presented in previous chapters has shown
not only that the evolutionary testing method produces better quality of
tests than random tests do for certain swarm behaviours, but also that this
method can be used for testing different swarm behaviours. As previously
mentioned, reusability is one of the defining characteristics of successful
test automation. Once the parameters are established, most of the proce-
dures of the evolutionary testing method are automated, which saves a
great deal of time and reduces computing costs compared to manual tests.
However, the parameter analysis still requires a great deal of human effort.
Although it is not possible to reduce human effort on parameter analysis
for all swarm behaviours, there is a chance that those effort can be reduced
for similar swarm behaviours.

There are many examples of task partitioning observed in the actions
of social insects, such as foraging task partitioning in ants. In ants” for-
aging, they normally search and then transport the food resource to their
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nest directly. Task partitioning can happen here as one individual col-
lects one part of the food resource and then passes it to another individ-
ual which can transport the food resource back to the nest. Under such
circumstances, task partitioning can be treated as an extension of forag-
ing behaviour. In many studies (Ratnieks and Anderson, 1999; Pini et al.,
2011b), task partitioning is treated as an improved version of ants’ forag-
ing behaviour as it is able to reduce the interference between the individu-
als and increase the efficiency of the swarm. In this situation, task partition
and foraging behaviour are considered to be similar swarm behaviours.
This chapter uses task partitioning as the studied swarm behaviour to il-
lustrate the procedure of testing a swarm behaviour by using parameters
which are chosen based on a similar behaviour (foraging).

As previously detailed in section 5.1, one reason for choosing the total
amount food as the only metric for ants foraging behaviour is that there
are no interactions among the foraging robots except avoiding each other.
Note that there are communications between the foraging robots and bea-
con robots when leaving pheromones. This is not the case for task par-
titioning behaviour as the robots need to interact with other robots and
transfer food items from one to another in order to complete the task. If
this interaction has an effect on the performance of the swarm, another
complementary metric might be required in order to measure the perfor-
mance of task partition behaviour accurately. Note that, when developing
a testing method for a similar swarm behaviour, metrics should always be
reviewed to check whether they are suitable for the new swarm behaviour.
If not, they need to be modified or replaced with a set of new metrics ac-
cording to the requirements of the new swarm behaviour.

When food items are required to be transferred among different sub-
tasks, there are usually two kinds of transportation: indirect transfer us-
ing temporary storage, or direct transfer between the robots. If the items
are transferred indirectly, certain locations in the environment are used as
temporary storage. The robots drop the items in the temporary storage
area so that the following robot can pick the item up. In this situation,
there are actually no interactions between the robots. This is the same as
the situation in ants foraging behaviour: the robots only interact with the
food items. In this situation, no more metrics for indirect transportation
are required.

In direct transportation, food items are transferred directly from one
robot to another. In current task partitioning research, the major benefit of
direct transportation is the increase in the overall rate of items delivered
to the nest. This is because the usage of temporary storage is relatively
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inefficient in indirect transportation, it is time-consuming when the tem-
porary storage is empty and the robots have to wait. The only interaction
between the robots is to transfer the item and the robots do not have to
achieve some tasks cooperatively. Under such circumstances, even though
there exist interactions in direct transportation, there is no need for another
metric as the benefit of using transportation is reflected in the number of
food items delivered to the nest.

Hence, for current task partitioning research, the metrics used for mea-
suring the performance will be the same as those for ants foraging be-
haviour: the total amount of food that has been transported to the nest
by the entire swarm during a certain length of time. In future studies, if
the robots have to cooperate to achieve certain tasks, such as transporting
a large object which is beyond the capability of each individual robot, in
task partitioning, complementary metrics will be needed.

6.1.1 Total Failure in Task Partitioning Behaviour

As the swarm has the ability of finding the shortest path between the nest
and the food resource, two types of total failures are defined in VP algo-
rithm in section 5.1.1. For the static partitioning strategy, the swarm has
no other abilities than search-and-transport the food to the nest. Hence,
there is only type of total failure, which is defined as follows: if there were
no food items in the nest at the end of an experiment, a total failure occurs

for this experiment.

6.2 Control Algorithm for Task Partitioning

In this section, the task partitioning algorithm which is applied to foot-
bots in order to achieve task partitioning behaviour in ARGoS is discussed.
According to the reviews in section 2.4.3.1, there are only two candidates
here: static partitioning strategy, and dynamic partitioning strategy.

In section 2.4.3.1, a task partitioning algorithm named bucket-brigade
is reviewed. However, bucket-brigade is designed for foraging in a multi-
robotic system. The territories of the robots need to be predefined, and
environmental information is required for the system to function properly.
Accordingly, it is not suitable for developing swarm robotic systems.

The advantage of the dynamic partitioning strategy over the static par-
titioning strategy is that the information about the distance between the
nest and food resource is not required before the experiments. However,
the experimental results in (Buchanan, Pomfret, and Timmis, 2016) show
that the dynamic partitioning strategy takes at least 5 hours in ARGoS to
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converge to the travel distance needed for the robots, while the travel dis-
tance is predefined in the static partitioning strategy. At the current stage
of the testing method presented in this thesis, the size of test cases and
the distance between the nest and food resource are always fixed. Con-
sequently, using the static partitioning strategy saves lots of computing
time. Moreover, once the travel distance has been decided in the dynamic
partitioning strategy, the throughput and overall behaviour are the same
as those under the static partitioning strategy.
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FIGURE 6.1: Finite state machine diagram for static parti-
tioning strategy(Pini et al., 2014)

The static partitioning strategy uses a finite state machine to control the
behaviour of each robot. Figure 6.1 shows the finite state machine which
represents the behaviour of the robots in the static partitioning strategy.
When the robots are first deployed in the environment, they have no idea
about the location of the food source. The robots explore the environment
to find the source and grab it (the robot is now in Go to Nest state). Then
the robot follows the following states to form a task partitioning behaviour
(Pini et al., 2014):
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e Go to Nest: the robot enters this state once it is carrying a food item
( having either found the food item itself or obtained it from another
robot). It will mark this position as the estimated source position. Then
the robot heads towards the nest while keeping track of its travel
distance. After the robot reaches the nest and stores the food item, it
enters Go to Source Position Estimate state. If the travel distance is
equal to partition length (a threshold which is used to determine the
longest distance that a robot can travel in its current states) before
the robot can reach the nest, the robot enters Wait for Transfer state.

e Wait for Transfer: in this state, the robot stays still and waits for
another robot so that it can transfer the food item to the next robot.
If the waiting time reaches a threshold, the robot stops waiting and
enters Go to Nest state. If another robot takes over the food item, it

enters Go to Source Position Estimate.

o Go to Source Position Estimate: in this state, the robot moves to-
wards the estimated source position, which is recorded in its memory.
If it finds the food resource, it enters Go to Nest state. If it can not
find the food resource at the estimated source position, it enters Neigh-
bourhood Exploration state.

e Neighbourhood Exploration: in this state, the robot searches around
the estimated source position for a food resource. If the robot finds a
food item, it enters Go to Nest state. If the robot can not find any
food resource within a certain time, it enters Explore state.

o Explore: in this state, the robot searches the whole environment with
the goal of finding a food resource. Once a food resource is located,
it enters Go to Nest state.

6.2.1 Path Planning Method

In study (Pini et al., 2014), light sources are added at the location of the
nest. The robots use their light sensors to detect the direction of the light
sources. The light sensors are long range sensors so that the light sources
are always in the detectable range of the robots. When a robot is carrying
a food item, it moves towards the light sources in order to reach the nest.
Recall that no light sources are required for path planning in the VP algo-
rithm in section 5.2. The robots in VP can turn themselves into beacons,
which have the same effect as light sources. The sensors of the robot in VP
are short range, the robot has to be around a beacon in order to detect it.
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The path planning method for the static partitioning method is de-
scribed as follows(Pini et al., 2014): the robots move towards the nest by
following the direction of the light sources. When a robot performs ob-
stacle avoidance, it uses infrared proximity sensors as bumpers to move
around the obstacle or the other robot. Even though the name of the path
planning method used in (Pini et al., 2014) was not mentioned, it follows
similar coordination rules as the potential field method (Khatib, 1986),
which was applied to VP in section 5.5.2.2. In static partitioning strategy,
the direction of the light sources is the direction of the attractive force in
the potential field method. The obstacle is in the opposite direction to the
repulsive force. The actual moving direction of the robot is the resultant
of the attractive and repulsive forces.

In section 5.5.3, the experimental results show that the potential field
method improves the robots” ability at obstacle avoidance under the VP
algorithm. In the static partitioning strategy, the potential field method
for obstacle avoidance will be used.

6.3 Evolutionary Testing Method

The parameters for testing task partitioning behaviour will be defined ac-
cording to the framework proposed in section 3.2. In this section, the chro-
mosome, fitness function, and parameters of GA will be defined. This sec-
tion can also be used as a guide for how to develop a testing method when

there exists a testing method for similar swarm behaviour.

6.3.1 Chromosome

When developing a chromosome according to another chromosome of
similar swarm behaviour, the differences between the running environ-
ments of those two swarm behaviours are needed to be analysed. The
difference or lack of differences will be determined by comparing each ele-
ment of the environments. Figure 6.2 shows the two testing environments
without any robots or obstacles. Figure 6.2 (a) is the testing environment
for ant foraging and figure 6.2 (b) shows the testing environment for task
partitioning. From the figure, it is clear that there is one more element,
which is the light source, for task partitioning. When generating a ran-
dom test case for task partitioning, the rules listed in section 5.3.1 can be
followed and one more rule can be added to the end: place a light source

at the centre of the nest.
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FIGURE 6.2: A comparison of testing environments be-
tween ant foraging and task partitioning.

6.3.2 Fitness Function and Parameter Analysis

Fitness function for a swarm behaviour uses the metrics defined for this
behaviour to measure the performance of the swarm in a given test case.
The differences between the metrics of two swarm behaviours are needed
to be compared in order to build the fitness function. By comparing the
metrics defined in section 5.1 and section 6.1, it is clear that the metric of
task partitioning is the same as that of ant foraging. Hence, the fitness
function for task partitioning will be the same as equation 5.1 listed in
section 5.3.2.

6.3.3 Parameter Analysis of Genetic Algorithm

As previously mentioned at the beginning of this chapter, there is a chance
to reduce the human effort expended on parameter analysis when devel-
oping a testing method based on the testing method of a similar swarm
behaviour. In this case study, the parameter values selected for ants for-
aging behaviour (listed in Table 5.1) are used as as the parameter values
for the new testing method. If the new testing method were able to reveal
failures in task partitioning, the human efforts on parameter analysis can
be reduced for similar swarm behaviour. If not, parameter analysis has to

be carried out for each new testing method developed.

6.4 Experimental Results

This section presents the experiments and results of testing task partition-
ing behaviour. There are two independent parts: the first part shows the
procedure for carrying out experiments using the parameters established
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in the previous chapter (section 5.4). The experimental setup will be the
same as the setup used in section 5.4 except that the size of the swarm is
6. The reason for the change of the swarm size is that only 6 robots are
used in study (Pini et al., 2014). All the experiments in this part are car-
ried out in the steady state of static task partitioning, in which the rate of
transporting food items to the nest has converged to a stable rate. When
the experiments begin, three robots are deployed at the centre of the en-
vironment while the other three are located near the food resources. This
approach saves time in converging to the steady state when carrying out
experiments. This section compares and analyses the experimental results
of empty, random, and evolved test cases. The second part of this sec-
tion shows the effectiveness of both evolved and random test cases on the

convergence times of task partitioning.

6.4.1 Experimental Results for the Static Partitioning Strategy

In this section, the parameter values of the GA and the experimental setup
will be the same as those used in section 5.4. At the beginning of this
case study, the performance of the swarm in test cases with no obstacles is
tested. The experimental results of empty test cases will be compared with
those of later experiments to demonstrate the effect of the obstacles. Then
the swarm will be tested in both evolved and random test cases, and the
experimental results from all three kinds of test cases will be compared.
The means of comparison is still the fitness value, which is the number of
food items transported to the nest by the swarm, of the test cases. Hence,
the lower the fitness value, the tougher the test case (the worse the swarm
performed). Statistical hypothesis testing is applied in this case study ac-
cording to the analysis in section 4.6.1. The following null hypothesis is
postulated:

Hy: the use of evolved test cases makes no difference to the ability
to search-and-transport food to the nest of the task partitioning algo-
rithm when compared to the random testing strategy, i.e., fevolved =

frundom-
The alternative hypothesis is:

H: the use of evolved test cases has a positive effect on the ability
to search-and-transport food to the nest of the task partitioning algo-
rithm when compared to the random testing strategy, i.e., fepolved <

fmndom .
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TABLE 6.1: DETAILS OF THE EXPERIMENTS OF TASK
PARTITIONING

No. generated No. compared No. of evaluation
Evolved 100 100 3000
Random 3000 100 3000

TABLE 6.2: RESULT DETAILS OF THE MANN-
WHITNEY U-TEST

Test Case avg std SoR MoR  U-value
Evolved 021 048 52375 5238 98125
Random 4.29 1.58 14862.5 148.62 187.5

where feyolved and frandom represent the fitness values of the evolved test
case and the random test case, respectively. The lower the fitness value,
the better the test cases are.

Firstly, the swarm is tested in empty test cases 100 times. The layout
of the food resource and the nest for each experiment is identical, but the
starting positions of the robots might vary between each experiment. The
distribution of the fitness value for empty test cases is shown in Figure 6.3.

Table 6.1 shows the details of the experiments for testing task partition-
ing algorithm. For the random testing method, the swarm is tested in 3000
random test cases. To keep the fitness evaluations between the random
testing method and evolutionary testing method the same (at 3000), and
given that 30 generations for each evolution are executed, 100 evolved test
cases are produced. The swarm is tested in all newly generated evolved
test cases, and the performance in each test case is measured and recorded.
100 random test cases are randomly chosen for results comparison.

Table 6.2 shows the result details of applying one-tailed Mann-Whitney
U-Test to the experimental results at a significance level of 1%. The values
of the average (mean) fitness score of the solutions (avg), standard devia-
tion (std), sum of ranking (SoR), mean of ranking(MoR), and U-value are
listed in the table. The p-value of the test is 0.00001, which is less than the
value (0.01) of the significant level. In such case, the null hypothesis Hy
is rejected in the favor of the alternative hypothesis H; with a confident
level of 99%. Hence, the use of evolved test cases has a positive effect on
the ability to search-and-transport food to the nest of the task partitioning
algorithm when compared to the random testing strategy.

Figure 6.3 presents a box-and-whisker plot which shows the distri-
bution of the fitness values of empty test cases, random test cases, and
evolved test cases. From the graph, both the mean and median of the fit-
ness values of the random test cases are higher than those of the evolved
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FIGURE 6.3: The distribution of the number of collected
food items for empty test cases, random test cases, and
evolved test cases.

test cases. Moreover, the static partitioning strategy performed extremely
undesirable in evolved test cases as most of the fitness value are equal to 0.
From the experimental results, the swarm equipped with static task parti-
tioning has worse ability at search-and transporting the food to the nest in
evolved test cases than random test cases.

6.4.2 Convergence Time of Task Partitioning

As a matter of fact, it is more likely that the robots of the swarm are in the
nest at the beginning of the experiments (the experiments carried out in
section 5.4). The swarm needs to explore the environment first in order
to converge to a steady state for food transportation. In this section, the
effect of the evolutionary testing method is tested on the convergence time
of task partitioning.

For each experiment in this section, all the robots in the swarm are
deployed in the nest at the beginning. The swarm is tested in three kinds of
test cases: no-obstacle test cases, random test cases, and evolved test cases.
The execution time for each experiments increases from 200 seconds to 1
hour. Figure 6.4 shows the number of food items collected by the swarm
every 2 simulated minutes; that is, the count of food items collected is reset
to 0 after every 2 minutes.
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FIGURE 6.4: The number of food items collected by the
swarm every 2 simulated minutes in empty test cases, ran-
dom test cases, and evolved test cases. The 25%, 50%, and
75% percentiles are plotted in each graph (the 95% per-
centile is plotted for (c) only). Note that the scale of the
y-axis in (c) is different from that in (a) and (b).

For all three test cases, the swarm reaches a steady state. Figure 6.4(a)

represents the experimental results when executing the swarm in empty
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test cases. The swarm is tested in empty test cases 100 times. For each
experiment, the locations of the nest and the food resource remain the
same, while the starting positions of the robots change (always stay inside
the nest but might have different coordinates). From the graph, the swarm
takes approximately 16 to 18 minutes to reach the steady state. The median
rate of transporting food items to the nest is around 8 items for every 2
minutes.

Figure 6.4(b) shows the experimental results when testing the swarm
in random test cases. 3000 random test cases are generated for the random
testing method, and 100 of these are randomly selected for testing. From
the graph, the swarm takes around 36 to 42 minutes to reach the steady
state. Note that the 25% percentile line is always 0. This means that in
at least 25% of the experiments, the swarm was unable to bring any food
items back to the nest. The median rate of transporting food items to the
nest is about 3 items for every 2 minutes.

Figure 6.4(c) plots the experimental results for testing the swarm in
evolved test cases. In order to keep the fitness evaluations between the
random testing method and the evolutionary testing method the same (at
3000), and given that 30 generations for each evolution are executed, 100
evolved test cases are generated. In the graph, the lines of the 25%, 50%
(median), and 75% percentiles are all coincident with the x-axis. The line
for the 95% percentile is the only visible one on the graph. From the graph,
the swarm never reached the steady state in any of the experiments (du-
ration of each experiment is 60 minutes).

By analysing the experiments for no food items (both random and
evolved test cases), the reason for no food items is that most of the robots
are trapped by the obstacles and there are too few robots left to search-
and-transport the food items back to the nest. Moreover, there are a few
extreme cases in which the swarm was unable to locate the food resource.

From Figure 6.4, the convergence time of the task partitioning in evolved
test cases is the longest (the swarm never reaches the steady state within
60 minutes) among all three groups of experiments. From the above ex-
perimental results, it is reasonable to conclude that the evolved test cases
presented in this case study did make it longer and harder for the swarm
system to reach a steady state if the robots start in the nest.

6.5 Improvingthe Control Algorithm by Fault Removal

In section 6.1.1, the concept of total failure for task partitioning behaviour
is introduced. Table 6.3 shows the number of total failures found by 100
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TABLE 6.3: TOTAL FAILURES OF STATIC PARTITION-
ING STRATEGY FOUND DURING THE EXPERIMENTS

Random Testing Evolved Testing
Total Failures 3 82

random test cases and 100 evolved test cases during the experiments in
section 6.5.3. The static partitioning algorithm is able to bring at least 1
food item back to the nest in 97% of the random test cases and in 18% of

the evolved test cases.

6.5.1 Total Failure Analysis

In this section, a total failure analysis on the static partitioning strategy is
carried out. Figure 6.5 shows an representative example of the trajectory
of a robot which is trapped by certain obstacles during the experiment. In
order not to be complicated by the trajectories of all the robots, only the
trapped robot is shown in the testing environment. The black arrow on
the robot shows the facing direction of the robot.

<€) Robot

- - - Trajectory

‘ Light source

[[] Obstacle
. I Food
Nest

FIGURE 6.5: The trajectory of a trapped robot in an
evolved test case for the static partitioning strategy.

After the robot finds the food resource, it grabs one food item (at point (a))
and then moves towards the nest according to the direction of the light
source. When the robot encounters the obstacles, it arrives at point (b)
by following the resultant force of the potential field method. When the
obstacles are not in the detectable range of the obstacle-avoidance sensor,
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the repulsive force created by the obstacles disappears. The resultant force
is now equal to the attractive force created by the light source at point (c),
and the robot moves towards the light source again. After the robot meets
the obstacles, it will reach point (b) again. From then on, the robot will
move from point (b) to (c) then (b) continuously. This situation is named a
local minimum in the potential field method. In the current situation, the
robot can only get out of the trap if another robot accidentally pushes it
out of this local minimum.

In the potential field method, a random walk (wandering around in
the environment) might be the simplest way (but not efficient) to escape
a local minimum (Barraquand, Langlois, and Latombe, 1992). In section
5.5.2.2, the robot can escape from a local minimum by a random walk if the
beacons are out of its detectable range. If the beacons are always within
the detectable range, the robot will be trapped until pushed out by other
robots. However, for the static partitioning strategy, the light source is
always within the detectable range of the robot. The strategy used for
improving the VP algorithm does not work here.

6.5.2 Algorithm Improvement

In the potential field method, in order to perform an escaping method,
e.g. a random walk, a method is required to detect whether the robot is
trapped in a local minimum or not. However, in current potential field
method research (Baxter et al., 2007; Koren and Borenstein, 1991; Hassan
et al., 2017), certain global information is always required in order to de-
tect a local minimum. There are many studies (Baxter et al., 2007; Hassan
et al., 2017) showing that the potential field method is an efficient path
planning method for multi-robotic system. As global information is for-
bidden in swarm robotics, a replacement for the path planning strategy in
static partitioning method is required. Note that the control algorithm is

improved in the field of reactive robotic systems (see section 5.5.2.1).

6.5.2.1 Path Planning - Bug Algorithm

The bug algorithm is a real-time obstacle avoidance method for mobile
robots that was first introduced in (Lumelsky and Stepanov, 1986). In
study (Lumelsky and Stepanov, 1986), two bug algorithms, Bugl and Bug2,
are proposed together. In Bugl (Figure 6.6 (a)), when there is an obstacle
between the robot and the goal, the robot circumnavigates (fully circles)
the obstacle then leaves it at the point at which the distance to the goal
is the shortest. In Bug2 (Figure 6.6 (b)), the robot follows the boundary
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FIGURE 6.6: Illustrations of Bugl algorithm (a) and Bug?2
algorithm (b).

of the obstacle then leaves it when it is on the m-line, which connects the
starting point and the goal. Bug2 seems to be more efficient than Bugl, but
Bug? is less effective in some cases, such as local loops. There are around
20 different types of Bug algorithm in robotics research. However, like
the potential field method, all variants of the Bug algorithm require some

amount of global information.

Goal ’

.

‘Starting Point

FIGURE 6.7: Illustration of BugS algorithm.

The bug algorithm has one advantage over the potential field method,
which is that it has the ability to escape from certain local minima without
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access to global information. In this study, the Bug?2 algorithm is modi-
fied in order to improve the path planning ability of the static partitioning
strategy. The improved Bug? is named as BugS (Bug for Swarm). In BugS
(figure 6.7), the robot follows the boundary of the obstacle, and if there
are no obstacles in the detectable range between the robot and the light
source, the robot leaves the obstacle.

6.5.3 Experimental Results for the Improved Static Partitioning
Strategy

In this section, three sets of experiments are carried out in order to deter-
mine whether the improved static partitioning strategy has a better per-
formance than the original one. Note that, all the experiments in this sec-
tion are carried out as follows: at the beginning of the experiments, three
robots are deployed at the centre of the environment while the other three
are located near the food resource. A new null hypothesis is proposed as
follows:

Hy: the use of BugS algorithm makes no difference to the ability
to search-and-transport food to the nest of the static partitioning
strategy when compared to the potential field method, i.e., finproved

= foriginal .
The alternative hypothesis is:

Hy: the use of BugS algorithm has a positive effect on the ability
to search-and-transport food to the nest of the static partitioning
strategy when compared to the potential field method, i.e., finproved

< foriginal .

where fimproved and foriginal represent the fitness values of the test cases
when testing the improved algorithm and when testing the original algo-
rithm, respectively. The lower the fitness value, the better the test cases
are.

Table 6.4 shows the result details (three pairs) of applying one-tailed
Mann-Whitney U-Test to the experimental results at a significance level
of 1%. For all three pairs of experimental results, the p-value of the test
is less than 0.00001, which is less than the value (0.01) of the significant
level. This means that the null hypothesis Hj is rejected in the favor of the
alternative hypothesis H; with a confident level of 99%. Hence, the use of
BugS algorithm has a positive effect on the ability to search-and-transport
food to the nest of the static partitioning strategy when compared to the
potential field method.
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TABLE 6.4: THREE PAIRS OF RESULT DETAILS OF THE
MANN-WHITNEY U-TEST

Test Case avg std SoR MoR  U-Value
S/S 021 048 148625 148.62 1875
1/S 3.85 1.16 52375 5238 98125
S/S 0.21 0.48 14052.5 140.52 9975
I/1 1.81 1.01 60475 60.48 9002.5
S/1 0.11 031 142685 142.68 781.5
I/1 1.81 1.01 58315 5832 92185

Number of Food Collected
3
|

1/S

I

Task Partitioning/Type of Test Case

S/

FIGURE 6.8: The distribution of the number of collected
food items for testing the static partitioning strategy on
test cases evolved based on the static partitioning strat-
egy, testing the improved static partitioning strategy on
test cases evolved based on the static partitioning strat-
egy, testing improved the static partitioning strategy on
test cases evolved based on the improved static partition-
ing strategy, and testing the static partitioning strategy on
test cases evolved based on the improved static partition-
ing strategy.

Figure 6.8 shows the distribution of the number of food items collected

for four sets of experiments. The S/S is the same as “Evolved” in Figure

6.3: both represent the distribution of the number of food items collected
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by static partitioning strategy in test cases evolved based on the static par-
titioning strategy. Recall that 100 evolved test cases were generated in
section .

The 1I/S in Figure 6.8 shows the distribution of the number of food
items collected by the improved static partitioning strategy in all 100 test
cases evolved based on the static partitioning strategy. Following this set
of experiments, 100 test cases are evolved based on the improved static
partitioning strategy. Both improved the static partitioning strategy and
the original static partitioning strategy are tested on these 100 newly gen-
erated test cases evolved based on the improved static partitioning strat-
egy, and the distribution of the experimental results are shown on Figure
6.8 as I/I and S/I respectively.

From Figure 6.8, it can be seen that the improved static partitioning
strategy not only performs better than the original one on test cases evolved
based on the original strategy, but also performs better on its own test
cases than on the static partitioning strategy on both sets of test cases.
From the experimental results, the static partitioning strategy using the
BugS algorithm has a better ability to search-and transport the food to the
nest than that using the potential field method.

6.5.3.1 Convergence Time of the Improved Static Partitioning Strategy

In this section, experiments for testing the convergence ability of the im-
proved static partitioning strategy are carried out. However, the perfor-
mance of the convergence ability in this section is as disappointing as that
in section 6.4.2. The swarm is still unable to converge to a steady state. By
analysing the experiments, the major reason for no steady states is that the
swarm has a very poor ability to locate the food resource in an environ-
ment with obstacles.

At the beginning of each experiment, the robots start from the nest
and wander around in the environment with the goal of finding the food
sources. Note that, even though the food resource is always in the same
place for all experiments, the location of the food sources is always treated
as unknown. If a robot meets an obstacle, it will be bounced back in a
random direction. This makes it really hard for the robot to be able to find
the location of the food resource.

To the best of the author’s knowledge, no path planning algorithms are
able to navigate to a goal effectively if the direction of the goal is unknown.
This is also the reason why light source is always placed at the location of
the nest in study (Pini et al., 2014). One solution to this is to place a light
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source at the centre of the food resource. However, this has nothing to do
with improving the swarm control algorithm.

In conclusion, applying the BugS algorithm to the static partitioning
strategy has no effect on improving the convergence ability of this strategy.

6.6 Chapter Summary

This chapter shows the feasibility of using the testing method developed
on specific swarm behaviour to reveal failures in similar swarm behaviour.
The experimental results presented in section 6.5.3 show that the evolved
test cases can lead to worse swarm performance of task partitioning be-
haviour than the random test cases. The experimental results presented in
section 6.4.2 show that the evolved test cases make it longer and harder for
the task partitioning behaviour to reach a steady state if the robots starts
in the nest. Section 6.5 shows the performance of the task partitioning be-
haviour proposed in study (Pini et al., 2014) can be improved by removing
the fault identified by the evolutionary testing method.
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Chapter 7

Evaluation and Conclusions

This chapter begins with the evaluation of the research hypothesis pro-
posed in section 1.4. The contributions of the work presented in this thesis
are summarized and its limitations are discussed. Potential future research
directions are also suggested. Finally, the overall conclusion is discussed

in the closing section of this chapter.

7.1 Evaluation of Research Hypothesis

The objective of the research in this thesis is to develop a testing method
which is able to reveal failures in the control algorithm of a swarm robotic
system. The research hypothesis postulated in section 1.4, which guided
the entire thesis, is as follows:

It is possible to improve the dependability of a swarm robotic sys-
tem by involving testing process during its development. The testing
method presented in this thesis is more effective in revealing failures
during the testing process than the random testing method.

An evolutionary testing method is proposed in Chapter 3 as a solution to
the testing problem in swarm robotics. Following this, three case studies
of this testing method are presented. These case studies not only show the
feasibility of the testing method presented in this thesis but also show that
this testing method is able to reveal failures in three swarm behaviours.
The experimental results in all three case studies show that this testing
method can lead to worse swarm performance and reveal more total fail-
ures than the random testing method with the same number of computing
evaluations. Moreover, the case study of flocking behaviour also shows
that this testing method covers more failure types than the random testing
method. As a result, the testing method presented in this thesis is able to
reveal failures during the testing process and it is more effective than the

random testing method.
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In these case studies, the faults in each control algorithm are identified
by analysing the total failures found during the experiments. The exper-
imental results show that the swarm performs better after replacing the
weak mechanism with a better one. Consequently, the dependability of
the swarm robotic systems used in these case studies has been improved

by means of fault removal.

7.2 Thesis Contributions

The main contributions of each chapter in this thesis are the following:

Chapter 3 - Evolutionary Testing Method for Swarm Robotic Systems

The testing method proposed in this chapter is the first known
testing method for swarm robotic systems. Evolutionary test-
ing methods in computer systems and autonomous agents are
adapted to identify faults in swarm control algorithm. This
testing method can be used as the basis of a testing method
for specific swarm behaviour, which is the work published in
(Wei, Timmis, and Alexander, 2017). The experimental infras-
tructure introduced in this chapter can be used as an assistance
tool in developing a swarm robotic system.

Chapter 4 - Testing Method for Flocking Behaviour

The work presented in this chapter shows the feasibility of the
testing method presented in this thesis and can be used as a
guideline for the development of testing methods for other swarm
behaviour. Both metrics and failure classification are newly de-
fined for flocking behaviour. The experimental results show
that the testing method presented in this thesis can lead to
worse swarm performance and it covers more failure types than
the random testing method. The algorithm improvement sec-
tion shows that the performance of the flocking control algo-
rithm is improved by removing the faults identified. Conse-
quently, this testing method can be used as a test-driven devel-
opment tool during the development of a swarm robotic sys-

tem.
Chapter 5 - Testing Method for Foraging Behaviour

The work presented in this chapter shows that the testing method
presented in this thesis is able to test more than one type of
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swarm behaviour. The experimental results show that this test-
ing method can lead to worse swarm performance of ant for-
aging behaviour than the random testing method. Finally, the
performance of the ant foraging algorithm is improved in the
algorithm improvement section by removing the faults identi-
fied.

Chapter 6 - Testing Method for Task Partitioning Behaviour

The work presented in this chapter shows the feasibility of us-
ing an established testing method to test similar swarm be-
haviour. The experimental results show that the testing method
established can lead to worse swarm performance of task par-
titioning behaviour than the random testing method. The algo-
rithm improvement section shows that the performance of task
partitioning algorithm can be improved by removing the faults
identified.

7.3 Limitations

The work presented in this thesis is limited by the fact that all of the ex-
periments are carried out in simulation and they have never been imple-
mented in the real world. However, the limitations in this thesis are differ-
ent from the limitations of general robotic research, such as control algo-
rithm research, and design method research, which is carried out in sim-
ulation. The largest problem found in conducting experiments in simula-
tion in general robotic research is the “reality gap” between the simulation
and the real world. Due to the “reality gap”, it is frequently assumed that a
robotic system which functions correctly in a simulator might function in-
correctly in the real world (Varela and Bourgine, 1992; Jakobi, Husbands,
and Harvey, 1995). If a swarm control algorithm fails in simulation, the
chance that it will fail in the real world is very high. As a result, there is
a strong possibility that the testing method presented in this thesis is able
to reveal failures during the execution of swarm robotic systems. How-
ever, as the testing method presented in this thesis is to test the overall
behaviour of the swarm, both failures (both total failure and partial fail-
ure) of individual robots and noises of sensors and actuators are ignored
in this thesis. The cause of failure in a swarm in this thesis is a fault in the
control algorithm. After implementing this testing method on real robots,
there is a possibility that a swarm fails due to the failures of individual
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robots or noises of sensors and actuators before the fault in the control
algorithm can be identified.

Another limitation of the research in this thesis is the evolutionary pro-
cess of the test cases in physical world. Section 3.3.4 shows the working
procedure of the test case generator. Test cases are generated on the basis
of the control algorithm provided. For each generation, the control algo-
rithm is tested on the offspring of the previous generation. If the testing
method is implemented on real robots, human effort is required to move
the obstacles in the environment, or even worse, the obstacle has to be re-
placed with a new one when the descriptor of the obstacles has changed
(various shapes of obstacles need to be built). Consequently, implement-
ing the testing method presented in this thesis is particularly expensive
and time-consuming, and require a great deal of human effort.

7.4 Future Work

Opportunities for future research based on this thesis are suggested as

follows:

Testing physical robots using test cases generated in simulation

Further research can be carried out to determine the usefulness
of testing physical swarm robotic systems using the test cases
generated in the simulator. The control algorithm of the physi-
cal swarm can be applied to the swarm in the simulator. Then
the test case generator described in section 3.3.4 can be used to
generate test cases according to the control algorithm used in
the physical swarm. The physical swarm can then be tested in
real test cases to determine the ability of the test cases gener-
ated in simulation to reveal failures in the physical swarm. In
this situation, only the evolved test cases need to be built in the
real world.

Implementing virtual obstacles using robot-in-the-loop design method-

ology

As previously mentioned in section 2.3.2.4, a robot-in-the-loop
design methodology is presented in study (Azarnasab and Hu,
2007). Further research which uses a combination of physical
robots and virtual obstacles can be carried out. The robots in
the simulator in this thesis can be replaced with real robots.
The real robots can use a combination of virtual and real sen-

sors where the virtual sensors are used to detect the existence
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of the virtual obstacles while the real sensors are used to detect
other robots or the food items. No physical test cases are re-
quired in this situation. However, the “reality gap” still exists

as simulation is involved.
Carrying out more case studies on other swarm behaviours

More swarm behaviours, such as aggregation, pattern forma-
tion, collective exploration, collective transportation, and so
on, can be studied to determine whether or not the testing method
presented in this thesis is only suitable for the three swarm be-

haviours studied in this thesis.

Adding various elements to the testing method for future swarm robotic

systems

At the early stage of this thesis, global information was shared
using Headquarters to achieve flocking behaviour in the sim-
ulator. The swarm sharing global information functions “per-
fectly”, i.e. no agents get lost, in the evolved test cases gener-
ated by the testing method presented in this thesis. In order to
make this swarm fail, the following two elements need to be
added to the test cases:

— Moving Obstacle: is able to move around in the environ-

ment at a slow speed

— Anchoring Obstacle: one or more light sources are on top
of it.

The robots distinguish its flockmates from the obstacles by sens-
ing the light source on its flockmates. If a robot senses a light
source with the same colour as its own, it treats the object with
the light source as its flockmates. When the anchoring obsta-
cles emit light with the same colour as the robots, the robots
treat the obstacles as their flockmates and the robots anchor
around the obstacle. A possible solution to this could be the al-
gorithm proposed in study (Christensen, OGrady, and Dorigo,
2009). The robots can flash their LEDs at the same frequency
in order to resist the disturbance caused by other light sources.
As the swarm robotics becomes more mature, further research
could be carried out into various elements that can be added
to the testing method in order to identify faults in the swarm

robotic systems.
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7.5 Conclusion

The objective of the research in this thesis has been to develop a testing
method which is able to reveal failures during the testing process when de-
veloping a swarm robotic system. The dependability of the system might
potentially be improved by removing the faults identified. The case stud-
ies carried out in this thesis have shown the feasibility, adaptability, and
reusability of the testing method. Moreover, the dependability of all three
swarm robotic systems developed in the thesis is improved by means of
fault removal.

In conclusion, the objectives of this thesis have been met and the test-
ing method presented in this thesis can be used to help the developers
of swarm robotic systems to design and calibrate their control algorithm

thereby assuring the dependability of swarm robotic systems.
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