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School of Architecture and Cities

University of Westminster
London, United Kingdom

Abstract—In ATM systems, the massive number of interacting
entities makes it difficult to predict the system-wide effects that
innovations might have. Here, we present the approach proposed
by the project Domino to assess such effects and identify the
impact that innovations might bring for the different stake-
holders, based on agent-based modelling and complex network
science. Domino will model scenarios mirroring different system
innovations which change the agents’ actions and behaviour.
Suitable network metrics are needed to evaluate the effect of
innovations on the network functioning. We review existing
centrality and causality metrics and show their limitations in
characterising the network by applying them to a dataset of
US flights. We finally suggest improvements that should be
introduced to obtain new metrics answering to Domino’s needs.

I. INTRODUCTION

The introduction of changes in the ATM system is often
difficult due to the tight interdependencies that exists across the
different systems, subsystems and institutional frameworks.
The full implications of changes on parts of the system are
difficult to predict at system level.

This vision of how the system’s elements are connected
and of their criticality to propagate delay and cost might be
different from the perspective of different stakeholders [1], [2].

At a time of increased traffic, the ATM system can improve
its performance by being better tuned for flexibility to exploit
the margins laying in operations to the best for stakeholders.
For example, understanding the coupling between flights helps
understand the margins embedded into the flight schedules
designed by the airlines and can lead to better understanding
of the coupling between stakeholders and processes.

This papers describes the approach taken in Domino (Sec-
tion II), giving an overview of the three pillars of the project:
the methodology, the platform, and the network analysis
toolbox. Section III presents some work already performed
on the toolbox,, consisting in an analysis of the limitations of
current metrics to capture centrality and causality by analysing
data from the Department of Transportation’s (DOT) Bureau of
Transportation Statistics from the US and in the identifications
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of directions of improvement of these metrics. In Section IV
we draw some conclusions.

II. DOMINO’S APPROACH

The three main objectives of Domino can be summarised
as: (i) provide a methodology to analyse the impact of changes
in the system at network level; (ii) create a platform in the
form of a detailed agent-based model where technological
innovations and behavioural functions can be incorporated;
(iii) create a toolbox based on complexity science techniques
to analyse at network level the coupling of the ATM elements
from a flight and passengers perspective.

A. Methodology

The delivered methodology will consist of a ‘how-to’ guide-
line to analyse the system at a network level. Recommenda-
tions on how to implement changes in the platform to study
other test cases and on metrics to analyse the results will be
laid out once enough knowledge is drawn from the analysis
of the model’s results.

Domino’s methodology, summarised in Figure 1, will be
developed and tested in different steps:

1) Definition of mechanisms that will be assessed by
Domino and identification of investigative case studies.

2) Identification of changes in the ATM system needed to
implement the mechanisms of each case study. Changes
might concern the technical system, the stakeholder
behaviour or the communication and information ex-
change.

3) If needed, modification of the elements in the model to
adapt to 2.

4) Execution of Domino’s model to generate realisations of
the system under different scenarios.

5) Analyse the outcome of the model executions with the
complexity science network analysis toolbox to charac-
terize the system in each case study.

6) With the help of experts/stakeholders, modify the mech-
anism defined in 1 to create the adaptive case studies
which are considered to mitigate any negative network
effect identified in 5. Iterate the steps until an under-
standing of the implications of the changes introduced
is achieved.



Fig. 1. Workpackage structure and flow of activities

B. Platform

The platform developed by Domino, which is under devel-
opment, will consist in a detailed agent-based model (ABM)
able to execute pre-tactical and tactical phases ECAC-wide
down to the passenger level. ABM are able to capture highly
non-linear feedback by simulating massively interacting enti-
ties.

The model acts as a detailed numerical experiment where
the modeller is in control of all the parameters and has access
to all the intermediate states of all the agents. The interactions
between entities drive the system and allow to capture high-
level emergent phenomena.

C. Toolbox

The outcome of this model will be analysed by a complexity
science toolbox including classical metrics but also network
level indicators. This will allow modellers to identify potential
bottlenecks and provide solutions to them, gaining understand-
ing on how changes in elements of the system have system-
wide implications. The toolbox is first validated on historical
data and then applied to the outcome of the model, as shown in
section III. This toolbox will identify, test, and validate metrics
based on complexity science. The approach will be tested by
developing relevant case studies.

III. NETWORK ANALYSIS TOOLBOX

To capture the effects of the considered mechanisms on
the functioning of the ATM system, Domino needs to use a
holistic approach not only in the system modelling but also
in the interpretation of its results, moving from a microscopic
view concerning the single flight to a macroscopic perspective
considering the whole system. To this aim, Domino will
establish a toolbox of complex network metrics able to char-
acterise the ATM system and tell apart the consequences of
the different innovations studied in Domino from the point
of view of regulators, airlines and passengers. Regulators are
mostly concerned by the system robustness and resilience, i.e.,
the capability of the system to remain close to optimal state
or to return quickly to it in the presence of perturbations like
massive delays. Airlines, instead, measure delays especially
in terms of cost. Finally, from the passengers’ point of view,

delays affect the network connectivity, i.e., their possibilities
to move through the network. Domino network metrics aim to
capture all these different aspects.

The agent-based model will produce as an output the set of
realised flights for the analysed day. This output can be seen
as a directed network where the airports are the nodes and the
flights are the links. The most general representation of such
network is dynamic in time, as links appear and disappear
according to the schedule. Moreover, it has a multi-layer (or
multiplex) structure, where each layer contains the network
of flights and airports of a different company, and inter-layer
links connect nodes corresponding to the same airport. In the
following analysis, we will neglect the temporal and multiplex
structure, showing the limits of the associated metrics.

The network obtained as an output of the model will differ
from the network of the scheduled flights due to delays and
to cancellations. Delays and cancellations might change the
network connectivity, the cost of delay paid by airline, and
the probability of congestion with respect to the scheduled
network. To assess the impact of the innovations introduced
in the different scenarios on the realised flight network, we
need a set of network metrics able to identify and quantify
such changes.

Here, we review existing metrics and apply them to the
dataset of US flights of 2015, with the aim of pinpointing their
limits. In particular, we focus on two categories of metrics:
centrality metrics and causality metrics.

Centrality is a measure of the importance of a node in
a network. While several different definitions of centrality
exist, all centrality metrics are based on some concept of
connectivity of a node in terms of links, paths or walks
joining it to the other nodes of the network. When airports
are ranked according to an appropriate centrality measure,
the airports with the highest ranks are the ones providing
to the passengers the highest potential of moving through
the network. The loss of centrality of an airport, between
the scheduled and the realised network, signals a diminished
potential of moving through the network passing through
that node, which means, from the passenger’s point of view,
a diminished performance of the network. In the light of
Domino’s scope, this loss of centrality should reflect both
the missing links due to cancellations and the disrupted paths
due to delays. Provided a centrality metrics satisfying these
requirements, comparing the loss of centrality or the rank
change between the realised and the scheduled flight network
among case studies implementing different mechanisms would
allow to assess the impact of innovations on the network
performance. In particular, an innovation minimising the
centrality losses and globally preserving the ranks between
the scheduled and realised network represents an improvement
from the passengers’ point of view. In section III-B1 we
review some of the most commonly used centrality metrics
and in section III-B2 we show their limitations in describing
the loss of connectivity of the network due to delays. Finally,
in section III-B3 we suggest what improvements could be



introduced to make the existing metrics suited to Domino’s
purposes.

In the ATM system, delays and congestion states propagate
through the system due to the entangled interactions between
the flights and the environment, e.g., the network manager,
the airports or the arrival coordinators. As innovations aim to
reduce the propagation of delays, the complex network toolbox
should include a metric able to detect the extent to which the
congested state of an airport causes congestion in other nodes
of the network. In Statistics, a (directional) causal relation
between two systems is detected when the information on the
state of one system helps in predicting the future state of the
other. The presence of a causal relation is assessed by means
of statistical tests whose most famous example is the Granger
causality metrics [3]. Indeed, it has been recently applied to
airport networks [4], [5].

Here, a data driven approach is adopted to describe the ex-
post dependence structure of delay propagation, identifying
the channels of the spreading process and establishing a
network of causal relations. This analysis is applied to the
network of airports, where the average flight delay measures
the state of congestion of an airport and a link between two
airports represents a channel of delay propagation. In view
of Domino’s goals, the study of causality networks, whose
topology may change depending on implemented scenarios,
relates the presence of innovations at the micro level to its
impact on delay dynamics and propagation at some macro
level of aggregation, such as airports or airline companies.
For example, a smaller number of causal links and less causal
feedbacks can be seen as an improvement of the system, as
they signal a diminished coupling of the systems’ elements.
In section III-C1 we review Granger causality metrics and its
recent application to ATM systems. Then, in section III-C2
we show some limitations in describing non-linear aspects of
delay propagation and possible spurious causal relations as
a consequence of the autocorrelation structure of the delay
states. Finally, in section III-C3 we suggest the improvements
that could be introduced to make the existing metrics suited
to Domino’s purposes.

A. Dataset

To show the limitations of existing metrics, in the following
we apply them to the network of flights operated in 2015
by 14 major US airlines. The dataset was obtained from
the U.S. Department of Transportation’s (DOT) Bureau of
Transportation Statistics. For each flight, the dataset reports
the date, the airline operating it, the departure and arrival
airport, the scheduled departure and arrival times and the
realised ones, the aircraft tail number, whether it was cancelled
or diverted. All schedules were converted from local time
to Eastern Standard Time (EST). For the centrality analysis,
performed on one day, the day was considered to start at 4AM
EST. This choice reflects the fact that, as shown already in
[6], very few flights depart between 0AM an 4AM local time,
therefore 4AM EST is a time of minimum activity across

all the country. Causality analysis was instead performed on
hourly time series ranging from one to three months.

B. Centrality metrics

1) State of the art: Commonly used centrality metrics
apply to single-layer static networks. Let us therefore start
by considering the network of flights and airports aggregated
across layers, i.e., across airlines, and across time frames, i.e.,
where all flights are present at the same time regardless of
their schedule. Let A be the weighted adjacency matrix of the
network, such that Aij = k if there are k flights going from i to
j. Here, we consider three among the most common and well
known centrality metrics: degree centrality, Katz centrality
and Page Rank. Since the network of flights and airports is
directed, a distinction should be made, in each case, between
incoming and outgoing centrality.
The incoming (outgoing) degree centrality of a node i is given
by the number of incoming (outgoing) edges (each flight is
considered as an edge),

dINi =
∑
j

Aji, (1)

dOUT
i =

∑
j

Aij , (2)

where the index j runs on all nodes. This centrality measure
with how many flights node i can be reached (respectively,
how many flights depart from node i). However, an important
feature of the flight network are connections, which make
use of two or more flights. A commonly used metric which
considers a node’s centrality to depend on the walks of
any length arriving to (or departing from) that node is Katz
centrality [7]. The incoming Katz centrality of node i is

kINi =
∑
j

(I− αA)−1ji =
∑
j

∞∑
n=0

αn(An)ji, (3)

that is, each walk of length n from any node j of the network
to i contributes αn to the centrality of i. Since α < 1, longer
walks contribute less and its value determines what is the
contribution of long walks to centrality. The weight α must
be smaller than the inverse of the largest eigenvalue of A for
the expression to converge [7]. Correspondingly, the outgoing
Katz centrality of node i is

kOUT
i =

∑
j

(I− αA)−1ij =
∑
j

∞∑
n=0

αn(An)ij . (4)

Page Rank is a generalisation of Katz centrality, developed
by Google, that introduces an additional weight to the paths,
depending on the in- (or out-) degree of the nodes they cross.
Specifically,

pINi =
∑
j

(I− αD−1A)−1ji , (5)

where Dij = δijd
OUT
j , so that a link from j to k is weighted

by the inverse of the out-degree of j, 1/dOUT
j .



2) Application of the existing metrics to the US flights
dataset: To apply centrality metrics, we selected two days of
the dataset differing in the amount of delay realised on the
network. We considered 4 global parameters characterising
delay: the fraction of delayed flights, the total delay, the
average delay and the average delay of delayed flights. On
first selected day, April 3rd 2015, all these parameters are
below or close to the average (computed on all days), while
on the second considered day, April 9th 2015, all parameters
are above average. Additionally, April 3rd had 87 cancelled
flights while April 9th had 246. In the following, we refer to
these two days respectively as “day 1” and “day 2”. For each
day, we computed the airports’ ranking according to each of
the three centrality metrics reviewed in section III-B, incoming
and outgoing, for the scheduled and the realised network.
The obtained ranking are compared using the Kendall rank
correlation coefficient τ , which measures the similarity of two
ranked sequences of data. The coefficient takes values in [-1,1],
with the value 1 corresponding to two identical sequences and
the value -1 to two sequences that are one the inverse of the
other.
For Katz centrality, we chose α = 0.003, assuring convergence
of the metric for both chosen days. Note that this small value
of α penalises strongly long walks, therefore we do not expect
the ranking to differ much from the degree ranking. For Page
Rank centrality, instead, larger αs still allow convergence,
therefore we chose α = exp(−1/2), so that walks of length
n ≤ 2 are given a non negligible weight.
The rankings according to incoming and outgoing centralities
result are very similar according to all three metrics, display-
ing, for day 1, respectively τ =0.97, 0.97 and 0.93 on the
scheduled network and τ = 0.97, 0.97 and 0.93 for the realised
one. Also the rankings according to the centrality computed on
the scheduled network and on the realised one are quite similar
for both days. For day 1, the rankings display correlations,
respectively for the three metrics, τ =0.996, 0.995 and 0.995
in the incoming case and τ =0.996, 0.991 and 0.991 in the
outgoing case. For day 2, we have τ =0.990, 0.985 and
0.995 in the incoming case and τ =0.980, 0.976 and 0.992
in the outgoing case. The slightly smaller rank correlations
coefficients for day 2 are due to the larger number of cancelled
flights with respect to day 1. However, none of the considered
centrality measures is able to reflect the fact that, on day 2,
the much larger and abundant delays certainly caused more
disruption of the network connectivity.
While the rankings according to degree and Katz centrality are
similar (for the scheduled network, incoming case, τ =0.90
for day 1 and τ = 0.88 for day 2), Page Rank introduces
stronger ranking differences with respect to Katz (for the
scheduled network, incoming case, τ =0.77 for day 1 and
τ = 0.68 for day 2)1. Figure 2 shows a comparison of
the two rankings, highlighting that most of the difference is
due to a group of airports having a low ranking according
to Katz centrality and getting a strong ranking boost with

1This difference is not due to the different values of α in the two cases.
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Fig. 2. Comparison of airport ranks according to incoming Katz centrality
and incoming Page Rank centrality for the scheduled network on day 1. The
red line is the 1:1 line. Points above the red line represent airports having
gained importance with Page Rank.

Page Rank (in the upper left part of the figure). These are
mostly small airports in Alaska having direct flights to the
airport of Anchorage. As Anchorage has itself a strong rank
increase due to having several directed flights from airports
with low out-degree, all the airports connected to it by a
direct flight also increase their ranking. This outcome, with
a set of peripheral airports climbing the ranking, questions
the suitability of Page Rank centrality to characterise node
importance in ATM networks. In genreal, these differences
between different centrality metrics highlight the fact that each
metric describes a different aspect of the network structure,
and care should be taken in their comparison. For example,
degree considers only direct links, therefore it is appropriate if
we are interested in assessing the potentiality of an airport to
provide direct connections to other airports of the network, but
it is not able to evaluate the role of flight connections. Katz
centrality and Page Rank, instead, take into account also walks
of any length on the network. While walks on the aggregated,
static network considered here do not correspond to real
itineraries that can be followed, accounting for longer walks
means attributing centrality to an airport if it is connected to
other central airports. Therefore, these two metrics are more
appropriate when we want to assess the the potentiality of an
airport to provide connections to other airports of the network
with walks of any length. As a consequence of the different
way of weighting walks in the two metrics, Katz centrality
favours airports linked to large airports (with many link), as
they will have many walks departing or arriving, while Page
Rank rather tends to favour airports with more links to smaller
sized airport.

3) Limitations of existing metrics and suggested improve-
ments: To evaluate the effect of the innovations addressed
by Domino on the network performance, a centrality metric
should be able to tell apart a situation where delays disrupt
connections to one where they do not. Specifically, an airport’s
centrality should reflect its participation to walks that can
actually be travelled, i.e., respecting the schedule, so that
disrupted connections imply a centrality drop. We showed in



section III-B2 that this is not the case for existing centrality
metrics. In fact, all three metrics presented here do not account
for the temporal structure of the network. Katz and Page Rank
centrality, in particular, count walks on the network which are
not time ordered and therefore have no relation with the tra-
jectories that passengers could travel. As a consequence, these
metrics cannot reflect the effect of delays on the network’s
connectivity. Additionally, the weight assigned to each walk
does not consider which airline each flight composing the walk
belongs to, therefore a walk using only flights of one airline
has the same weight of a walk of the same length using several
airlines. However, a more realistic assumption would be that
the latter contributes less to centrality, as it is travelled with
a smaller probability. Accounting for this requires considering
the multiplex structure of the network.
Generalisations of the existing metrics should therefore be
devised to overcome these limitations. A version of Katz
centrality for temporal network has been proposed in [8]. It
considers adjacency matrices A[t] containing only the links
present in a time frame around time t and counts walks
which are ordered in time, However, it does not account for
the links’ schedule. A solution to account for schedule by
introducing secondary nodes is introduced in [9]. Therefore,
Katz centrality and Page Rank centrality could be generalised
by joining the approaches of references [8] and [9]. Fur-
thermore, to differentiate between within-airline and across-
airlines walks, the multiplex nature of the network should be
considered. Centrality measures for multiplexes are reviewed
in [10], however they either consist in computing the centrality
of an airport separately on each layer and then aggregating
the single-layer centralities to obtain a global centrality (e.g.,
by summing or averaging the single-layer centralities) or in
computing the centrality on an aggregated network, which
adjacency matrix is the sum of the adjacency matrices of all
layers. The first approach only counts within-airline walks, ne-
glecting inter-layer ones. The second one, which corresponds
to what we have presented in section III-B1, counts instead
both intra- and inter-layer walks without distinction in weights.
An intermediate approach should weight with a parameter
ε ∈ [0, 1] each change of layer, so that walks using links on
several layers are included in the centrality computation but
contribute less than an intra-layer walk of the same length.
Such a solution could be implemented, for Katz and Page
Rank centrality, by considering one copy of each airport on
each layer and having all copies connected at all times by a
link of weight ε. Centrality could therefore be computed for
each copy of an airport and then suitably aggregated.

C. Causality metrics

1) State of the art: A method to test whether there is a
causal relation between two time series was first proposed by
Granger [3] and is based on the idea that, if the knowledge
of past observations of one time series allows us to estimate
future observations of the other time series better than without
considering them, then there exists a directional causal rela-
tion. Here, we review the application of the Granger causality

metrics to the ATM network system. We quantify an airport’s
congestion by a stochastic variable X whose realisation xt at
time t is given by the average delay of flights taking off from
that airport in the time interval centred in [t, t + ∆t]. Flight
delay is defined as the difference between the take-off time
and the scheduled departing time. We considered ∆t =1 hour
and when no departing flights are present in the interval we
set xt = 0.

a) Granger causality in mean [3]: Y ≡ {yt}t=1,...,T is
said to Granger-cause X ≡ {xt}t=1,...,T if we reject the null
hypothesis that the past values of Y do not provide statistically
significant information about future values of X by assuming
VAR(p) as the predictive model [11]. Let us consider X and
Y described by{

xt = φ10 +
∑p

j=1 φ
11
j xt−j +

∑p
i=1 φ

12
i yt−i + ε1t

yt = φ12 +
∑p

j=1 φ
21
j xt−j +

∑p
i=1 φ

22
i yt−i + ε2t

(6)

where ε1t , ε
2
t are taken to be two uncorrelated white-noise

series. The goal of the test [3] is to assess the statistical
significance of {φ12i }i=1,...,p by considering as null hypothesis
that they are zero, i.e., H0 : {φ12i = 0}i=1,...,p. The null
hypothesis H0 is equivalent to considering that {xt} evolves
according to a AR(p) process. After estimating both VAR(p)
and AR(p) models, an F-test [11] is applied in order to
test if VAR(p) outperforms statistically AR(p) in fitting the
observations {xt}. If it does, H0 is rejected, meaning that Y
‘Granger-causes’ X .

b) Granger causality network: Having established how
to detect a causal relation, we can consider the network of
airports where a link i→ j is present if i ‘Granger causes’ j.
This approach has already been considered in some recent
works in Econometrics [12], [13] and in a recent analysis
of the Chinese air transportation network [5]. Given N time
series, representing the state of delay of the N airports in the
network, Granger causality test is performed on all the possible
M = N(N − 1) pairs. When performing multiple hypothesis
testing, a correction to the significance level of each single
test should be applied to obtain the desired overall level γ,
i.e., if we test M hypotheses simultaneously with a desired
γ, then a significance level γ′ < γ should be applied to each
single test to correct for the increased chance of rare events,
and therefore, the increased probability of false rejections
[14]. This has typically not been considered in the literature.
However, it can have a huge impact on the number of detected
causal links, as we show in the following. Here, we apply the
Bonferroni correction which compensates for this effect in the
most conservative way by setting γ′ = γ/M . Standard topo-
logical network metrics can then be extracted from the network
of causal relations, e.g., link density, clustering, assortativity,
efficiency, diameter, centrality rankings of nodes. Each of these
metrics describes some specific structural characteristic of the
Granger causality network. For example, link density is a
measure of the coupling of airports, since a larger number of
links means more delay propagation, while measures of node



centrality indicate which airports are participating more often
to delay propagation.

2) Application of Granger causality metrics to the US
flights dataset: Time series of the state of delay for each
airport are built for the period from January 1st 2015 to March
31st 2015. As suggested in [5], a Z-Score standardization
procedure is applied to reduce the non-stationarity of the time
series caused by daily seasonality, which may result in a biased
evaluation of the Granger causality metric. The standardized
time series of airport i is calculated as x̃i,t = (xi,t − x̄ti)/σt

i

where x̄ti and σt
i are the mean and the standard deviation of

the delay states of airport i recorded at hour t across all
available days. Hence, pairwise Granger causality tests are
applied to the new standardized time series according to Eq. 6
for different p, ranging from 1 to 6 hours. The maximum lag is
chosen equal to 6 because the empirical partial autocorrelation
function becomes statistically zero after the sixth lag for the
time series of any airport. In case of rejection of H0, the best
p is selected according to the Bayesian Information Criterion.
Best p values are distributed around 1 and 2 hours, meaning
that delay propagation happens on short timescales. Finally,
we set γ = 5% and, as a consequence, the significance level
of each test is γ′ = 0.05

N(N−1) where N = 315.
The obtained Granger causality network has L = 4401

Granger causal links. Note that the link density for the
Bonferroni corrected network is ∼ 0.04, whereas without
the correction we obtain ∼ 0.45, much larger. Therefore,
neglecting to introduce a correction means considering a large
number of non-significant causal links. We find a positive
linear correlation (0.62) between airport size, measured as the
average number of flights per hour, and node (in- or out-)
degree in the Granger network. The diameter of the Granger
network, i.e., the longest path connecting two nodes, is equal
to 8 while for an Erdos-Renyi network with the same number
of links (on average) is 4, thus suggesting the presence of
outlying nodes less connected with the central core. This is
confirmed also by the average path length, equal to 3.05 in
the Granger network and to 2.4 in the corresponding Erdos-
Renyi. The clustering coefficient of a graph is a measure of
the likelihood that nodes cluster together, specifically it is
the number of closed triangles, i.e. subgraphs of three nodes
connected each other by links having any direction, divided by
the number of any open and closed triangle. It is 0.28 in the
Granger network. This number is much larger than the one
of the corresponding Erdos-Renyi network (0.08 ± 0.01), a
difference explained by the different degree of nodes. In fact,
the fitness model [15], which preserves on average the degree
sequence, has a global clustering coefficient of 0.29±0.01, in
line with the Granger network. However, when we consider
only feedback triangles, i.e. triangles with all links directed
clockwise (or anti-clockwise), among all possible triplets, we
count 14856 such triangles, a number much larger than the
corresponding random cases, 908 ± 46 for the Erdos-Renyi
network and 7656±352 for the fitness model, suggesting that
these feedback loops are over-expressed in the ATM system.
In fact, a feedback triangle represents a positive feedback

Fig. 3. Outgoing PageRank node centrality for the Granger causality in mean
network (blue dots) and the Granger causality in tail network (red dots).
Increasing dot size and brighter colour represent a rank increase.

Fig. 4. Link density (red dots) of the Granger causality in mean network
for different 30-days periods (indicated by the last day) and compared with
traffic (green dots) measured as the total number of flights (rescaled by a factor
8 × 106) and with density of active air routes in the aggregated network of
airports and flights (blue dots).

subsystem which tends to amplify delay propagation, thus
making the system more unstable. Hence, in the case of ATM
systems, an interesting clustering measure is the one which
considers feedback loops and any innovation which aims to
increase the resilience of the system, should tend to reduce it.

Moving to node-specific topological metrics allows us to
better characterize the US ATM system. In particular, PageR-
ank centrality reveals a bipartite structure corresponding to the
two macro geographical regions of US, i.e., East and West.
Figure 3 shows the ranking of nodes according to PageRank
centrality for the Granger causality network. The geographical
disequilibrium is related to the fact that flights depart earlier
(in the EST reference frame) in the East with respect to the
West, thus it is more likely that a delay starts propagating in
the system from the East, making the eastern airports more
central.

Finally, we repeat the pairwise causality analysis for a time
window of one month, starting from January, and rolling the
window week-by-week, up to the end of March, see Figure 4.
The result suggests that link density, i.e., a measure of how
much the system is interconnected, does not depend trivially
from both total traffic and active air routes connecting airports,
that are quite constant in the considered time windows. For
example, we observe the largest number of links (January)
when traffic is smaller than its maximum (March), thus sug-
gesting a complex dynamics of delay propagation. This result



highlights the need of further studies and improvements of
network causality metrics.

3) Limitations of existing metrics and suggested improve-
ments: The results presented in the previous section are based
on linear models. However, the complex nature of the delay
propagation dynamics might not be fully captured by linear
models. For example, departing delays which are small with
respect to flight time are probably not relevant for delay
propagation, as they are easily absorbed during the flight or
by buffers. These small delays are nevertheless considered
by the Granger causality test and might produce spurious
causality relationships. For this reason, we propose to use
an extension of the Granger causality test, namely Granger
causality in tail [16], which considers only extreme events,
defined as states of delay falling in the right tail of the
distribution, i.e., large delays. With the same spirit of [3],
Granger causality in tail aims to evaluate whether extreme
events in an airport cause extreme events in another airport.
Airports are now described by a binary variable X̃ , the state
of congestion, which is 1 if its (detrended) state of delay is
extreme and zero otherwise. The Granger causality in tail test
works as follows. Assume to know at each step the probability
density function of X̃ conditional on past values2 and let us
define Vt ≡ V (x̃1, ..., x̃t−1, β) as the (1 − β)-quantile of the
conditional probability distribution of the time series X̃ , i.e.,
P(X̃ > Vt|x̃1, ..., x̃t−1) = 1−β almost surely with β ∈ (0, 1)
defines Vt implicitly. The null hypothesis Htail

0 of [16] is:

P(X̃ > Vt|{x̃s}t−1s=1) = P(X̃ > Vt|{x̃s}t−1s=1, {ỹs}
t−1
s=1) a.s.

(7)
meaning that predicting an extreme event for X̃ with or
without the past information on Ỹ is statistically equivalent. A
rejection of the null hypothesis Htail

0 means that Y ‘Granger
causes in tail’ X at level β. For further information on how
to make testable the definition in Eq. 7, see [16]. Preliminary
result were obtained with this method using the autoregressive
conditional density model [17] and by assuming an AR(p)
model for X̃ with i.i.d. Gaussian innovations and β = 0.05.
Figure 3 shows PageRank centralities of nodes of the Granger
causality in tail network. As before the structure is bipartite,
but the most central airports are now different from the ones
selected by Granger causality in mean and, more specifically,
PageRank centralities obtained with the two metrics have
low correlation (Kendall correlation coefficient 0.21). Further
investigations are required to better understand the cause of
this different outcome and therefore if Granger causality in
tail captures relevant information about the ATM system.

One of the goals of Domino is to characterise the coupling
of different subsystems in the different scenarios. In this
direction, causality metrics could be applied to the multiplex
of airlines to detect causalities among layers, measuring how
delays propagates to one airline to another.

Finally, to assess the system’s performance from the point
of view of airlines and passengers, the same analyses can be

2Conditional density for a time series can be estimated, e.g., by historical
simulation methods or autoregressive conditional density model [17].

performed considering as a variable the cost of delay instead
of the delay itself, which determines the importance of a delay
for these stakeholders.

IV. CONCLUSIONS AND FURTHER WORK

In this paper we presented the approach of the Domino
project to evaluate the effects of technical and behavioural
innovations introduced in the ATM system. The approach
is based on an agent-based model describing the complex
interaction taking place among a large number of entities
in different innovation scenarios and on a complex network
toolbox to analyse the modelling results. The toolbox should
include metrics to apply to the network of airports and
flights able to evaluate the improvement (or worsening) of the
network functioning in the different scenarios form the point
of view of different stakeholders. In particular, centrality and
causality metrics have been considered, owing to their capacity
to measure the network connectivity and the propagation of
delays and congestion in the network. However, we have
shown here that existing centrality and causality metrics are
not sufficient for the scopes of Domino. Specifically, existing
centrality metrics are not able to tell apart a situation where
delays disrupt important connections to one where they do
not and do not account in a satisfactory way for the multiplex
nature of the network. On the other hand, commonly used
causality metrics assume linearity in the delay propagation,
which might not be realistic. We therefore suggested directions
in which these metrics should be improved to serve Domino’s
purposes and, possibly, to analyse other types of transportation
networks as well. Further work is now required to implement
the new metrics suggested here and prove their success in
characterising the system under study.
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