
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Potentiating paired corticospinal-motoneuronal plasticity after 

spinalcord injury

Bunday, K.L., Urbin, M.A. and Perez, M.A.

 

NOTICE: this is the authors’ version of a work that was accepted for publication in Brain 

Stimulation. Changes resulting from the publishing process, such as peer review, 

editing, corrections, structural formatting, and other quality control mechanisms may not 

be reflected in this document. Changes may have been made to this work since it was 

submitted for publication. A definitive version was subsequently published in Brain 

Stimulation, 11, pp. 1083-1092, 2018.

The final definitive version in Brain Stimulation is available online at:

https://dx.doi.org/10.1016/j.brs.2018.05.006

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161937675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1016/j.brs.2018.05.006
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


1 
 
 

Potentiating Paired Corticospinal-Motoneuronal Plasticity after Spinal Cord Injury 

 

Karen L. Bundaya,c* , M.A. Urbinb, and Monica A. Pereza,b* 

 

aDepartment of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, 

University of Pittsburgh, USA; bDepartment of Neurological Surgery, The Miami Project to Cure 

Paralysis, University of Miami, Miami, FL; Bruce W. Carter Department of Veterans Affairs 

Medical Center, Miami, FL; cSobell Department of Motor Neuroscience and Movement 

Disorders, Institute of Neurology, University College London, UK 

 

 
c*Present address: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 33 Queen Square, 

London, WC1N 3BG  

b* Present address: Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL; Bruce W. Carter Department of 

Veterans Affairs Medical Center 1201 NW 16th Street, Miami, FL 33125, USA 

 

 

 

 

 

 

 

 

 
 

 

 

 

Correspondence to: 

Monica A. Perez, PhD.      

Department of Neurological Surgery    

The Miami Project to Cure Paralysis     

University of Miami        

Bruce W. Carter Department of Veterans Affairs Medical Center 

Phone: (305) 243–7119       

perezmo@miami.edu 

 

 

 

mailto:perezmo@miami.edu


2 
 
 

Abstract 

Background: Paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal 

transmission in humans with chronic incomplete spinal cord injury (SCI).  

Objective/Hypothesis: Here, we examine whether increases in the excitability of spinal 

motoneurons, by performing voluntary activity, could potentiate PCMS effects on corticospinal 

transmission.  

Methods: During PCMS, we used 100 pairs of stimuli where corticospinal volleys evoked by 

transcranial magnetic stimulation (TMS) over the hand representation of the primary motor 

cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal 

interosseous (FDI) muscle ~1-2 ms before antidromic potentials were elicited in motoneurons by 

electrical stimulation of the ulnar nerve. PCMS was applied at rest (PCMSrest) and during a small 

level of isometric index finger abduction (PCMSactive) on separate days. Motor evoked potentials 

(MEPs) elicited by TMS and electrical stimulation were measured in the FDI muscle before and 

after each protocol in humans with and without (controls) chronic cervical SCI.  

Results: We found in control participants that MEPs elicited by TMS and electrical stimulation 

increased to a similar extent after both PCMS protocols for ~30 min. Whereas, in humans with 

SCI, MEPs elicited by TMS and electrical stimulation increased to a larger extent after 

PCMSactive compared with PCMSrest. Importantly, SCI participants who did not respond to 

PCMSrest responded after PCMSactive and those who responded to both protocols showed larger 

increments in corticospinal transmission after PCMSactive.  

Conclusions: Our findings suggest that muscle contraction during PCMS potentiates 

corticospinal transmission. PCMS applied during voluntary activity may represent a strategy to 

boost spinal plasticity after SCI.   
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Introduction 

Human spinal cord injury (SCI) is mostly anatomically incomplete leaving a residual 

corticospinal pathway. Corticospinal responses elicited by noninvasive brain stimulation have 

delayed latencies and higher thresholds in humans with SCI compared with control participants 

(1-3). Anatomical studies suggest that this is related, at least in part, to surviving corticospinal 

axons undergoing demyelination and progressive atrophy (4-6). These factors might all 

contribute to the difficulty of improving voluntary motor output after SCI, either via clinical 

rehabilitation or stimulation interventions. We recently showed that pairing noninvasive 

stimulation of the primary motor cortex and a peripheral nerve, a protocol referred to as paired 

corticospinal-motoneuronal stimulation (PCMS), enhance corticospinal transmission in humans 

with chronic SCI (3, 7). The goal of our study was to determine whether we could potentiate 

PCMS effects on corticospinal transmission.  

Different strategies have been used in humans to potentiate aftereffects of induced-

plasticity by noninvasive neuromodulatory approaches. For example, paired associative 

stimulation over the primary motor cortex combined with transcranial direct current stimulation 

was shown to enhance synaptic plasticity (8). Combining transcutaneous electrical stimulation of 

the spinal cord with exercise (9) or pharmacological agents with repeated stimulation protocols 

(10, 11) was found to prolong and/or potentiate the efficacy of induced-plasticity protocols. A 

key question in our study is which strategy might be appropriate to boost PCMS aftereffect on 

corticospinal transmission. PCMS elicits spike-timing dependent changes at spinal synapses of 
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somatic motoneurons in control (12, 13) and SCI (3, 7) participants. Spike-timing dependent 

plasticity (STDP) is a process by which synaptic strength can be potentiated by repeated pairs of 

presynaptic action potentials arriving prior to post-synaptic depolarizing action potentials (14, 

15). In animals, STDP-like plasticity is thought to engage long-term potentiation (LTP)-like 

mechanisms that depend on N-methyl-D-aspartate (NMDA) (14, 15). In humans, STDP-like 

plasticity (elicited by PCMS) can be blocked by the NMDA antagonist dextromethorphan (16). 

NMDA receptors in the spinal cord can affect on the output of motoneurons (17) and small levels 

of tonic voluntary activity facilitate NMDA-mediated plasticity in the human primary motor 

cortex (18). In addition, voluntary muscle contraction increases the recruitment of descending 

volleys in corticospinal neurons (19) and decreases the threshold of spinal motoneurons, which 

are both altered in humans with SCI (20, 21). Thus, voluntary contraction can represent a method 

for increasing descending volleys and decreasing the threshold of spinal motoneurons. We 

hypothesized that voluntary muscle contraction increases the efficacy of PCMS by enhancing 

transmission in the corticospinal pathway at the spinal level.  

To examine our hypothesis, we used PCMS, where pairs of transcranial magnetic 

stimulation (TMS) were precisely timed to reach the cortico-motoneuronal synapses of the first 

dorsal interosseous (FDI) muscle ~1-2 ms before antidromic potentials elicited in motoneurons 

by electrical stimulation of the ulnar nerve at rest (PCMSrest) or during small levels of isometric 

index finger abduction (PCMSactive) on separate days in a randomized order.  
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Materials and Methods 

Participants. Seventeen individuals with SCI (mean age 47.5±12.3 years, 4 female; Table 1) and 

14 age-matched controls (mean age 40.9±16.9 years, p=0.22, 6 female) participated in the study. 

All participants gave informed consent to experimental procedures, which were approved by the 

local ethics committee at the University of Pittsburgh and the University of Miami. Participants 

with SCI had a chronic (≥1 year), cervical injury (C3–C8), an intact (score=2) or impaired 

(score=1), but not absent, innervation in dermatome C6 during light touch and pin prick stimulus 

using the American Spinal Cord Injury Association (ASIA) sensory scores and residual hand 

motor function. Two individuals with SCI were categorized as ASIA A (complete injury) due to 

the lack of sacral sparing (22) despite being able to elicit voluntary force with hand muscle and 

the other 14 individuals were classified as incomplete ASIA C and D. Participants were able to 

exert maximal voluntary contraction (MVC, measured as the highest mean rectified EMG 

activity found in 1 s during the MVC burst) isometric contractions into index finger abduction 

[controls=0.5±.3 mV, SCI=0.2±0.1 mV, p<0.001]. Note that one participant with SCI and one 

control was excluded from the analysis since they did not complete all TMS testing procedures 

and another control and SCI participant completed only the testing involving electrical 

stimulation (ES). Therefore, we report results for MEPs elicited by TMS in 15 SCI participants 

and 12 control subjects.  

 

Electromyographic (EMG) recordings. EMG was recorded from the FDI muscle of the right side 

in controls and from the less affected hand in individuals with SCI through surface electrodes 

secured to the skin over the belly of each muscle (Ag-AgCl, 10 mm diameter). The signals were 
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amplified, filtered (20–1000 Hz), and sampled at 2 kHz for offline analysis (CED 1401 with 

Signal software, Cambridge Electronic Design). Force was sampled at 200 Hz. 

 

Experimental setup. During testing, all participants were seated in an armchair with both arms 

relaxed and flexed at the elbow by 90° with the forearm pronated and the wrist and forearm 

restrained by straps. Participants participated in two PMCS protocols (i.e. PCMSrest and 

PCMSactive; Fig. 1A) in a randomized order separated by at least 2-3 days. For PCMSrest, 

participants remained at rest for all electrophysiological measurements and during the 

stimulation protocol. For PCMSactive, measurements were taken at rest but PCMS was applied 

during 10% of MVC into index finger abduction in both groups (controls=12.1±2.9% of MVC, 

SCI=10.7±3.8% of MVC, p=0.15). The index finger was attached to a custom two-axis load cell 

(Honeywell), which measures finger abduction force. At the start of this experiment, participants 

performed 3 brief MVCs (3–5 s) with the index finger that were separated by 30 s. Maximal 

forces were used to set the targets for submaximal contractions during PCMSactive. Here, 

participants were instructed to remain at rest until they heard an auditory cue (given 2 s prior to 

the paired pulses), at which point they were asked to perform 10% of MVC into index finger 

abduction. Participants were instructed to hold the contraction until receiving the paired-pulses, 

after which they were asked to relax. Therefore, for each paired-pulse stimuli participants 

contracted for approximately 3-4 s and were relaxed for 7-6 s between contractions. Custom 

software (LabVIEW) was written to acquire signals from the load cell and to display visual 

feedback corresponding to rest and 10% of MVC in real time. Familiarization trials (without 

stimulation) were completed before both PCMS protocols to ensure that participants were able to 

complete the task. Participants were tested on the following electrophysiological measurements: 
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MEPs elicited by TMS, MEPs elicited by electrical stimulation of the primary motor cortex 

and/or the cervicomedullary junction, resting motor threshold (RMT), and maximal motor 

response (M-max). Measurements were tested before (baseline), immediately after (0 minutes) 

and 30 minutes after PCMSrest and PCMSactive.  

 

PCMS. In each protocol, 100 pairs of stimuli were delivered every 10 s (~17 min, 0.1 Hz) where 

corticospinal volleys evoked by TMS over the hand representation of the primary motor cortex 

were timed to arrive at corticospinal-motoneuronal synapses of the FDI muscle ~1-2 ms before 

antidromic potentials evoked in motoneurons by peripheral nerve stimulation (PNS) of the ulnar 

nerve during PCMSrest and PCMSactive. Both PCMS protocols were intended to strengthen 

corticospinal transmission (3, 12).  

 

TMS. Transcranial magnetic stimuli were delivered from a Magstim 200 stimulator (Magstim 

Company) through a figure-of-eight coil (loop diameter, 7 cm; type number SP15560) with a 

monophasic current waveform. TMS was delivered to the optimal scalp position for activation of 

the left or right FDI muscle. To identify the optimal scalp position for the FDI, the coil was held 

tangential to the scalp with the handle pointing backwards and 45° away from the midline. With 

this coil position, the induced current in the brain flowed in a posterior-anterior direction and 

probably produced D and early I wave activation of corticospinal neurons (23). The TMS coil 

was held to the head of the subject with coil holder (Manfrotto, NJ, USA), while the head was 

firmly secured to a headrest by straps to limit head movements. TMS stimuli were delivered at 

an intensity of 100% of the maximum stimulator output (3, 7) in both groups during both 

protocols.  
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PNS. Supra-maximum electrical stimulation was delivered to the ulnar nerve at the wrist (200 μs 

pulse duration, model DS7AH, Digitimer, Welwyn Garden City, UK). The anode and cathode 

were 3 cm apart and 1 cm in diameter with the cathode positioned proximally. The stimuli were 

delivered at an intensity of 120% (controls=64.3±21.0 mA and SCI=39.6±14.7 mV, p=0.003) of 

the M-max (controls=22.9±4.1 mV and SCI=11.9±5.3 mV, p<0.001).  

 

TMS and PNS interstimulus interval (ISI). The ISI between TMS and PNS was set to allow 

descending volleys elicited by TMS to arrive at the presynaptic terminal of corticospinal 

neurons ~1-2 ms before antidromic PNS volleys in the motoneurons reached the dendrites 

during PCMSrest (controls=1.6±0.4 ms and SCI=1.7±0.5 ms, p=0.68) and PCMSactive 

(controls=1.5±0.1 ms and SCI=1.6±0.4 ms, p=0.31, Table 2; Fig. 1). The methods by which the 

TMS and PNS volleys were timed to arrive at the spinal cord have been described previously 

(3). Briefly, the ISI was customized using the relative onset latencies of EMG responses to 

stimulation at different levels of the corticospinal pathway in each subject. FDI MEPs were 

elicited by stimulation of the primary motor cortex during 10% of MVC. Cervical roots (C-

roots) were stimulated by TMS between the seventh cervical (C7) and first thoracic (T1) 

spinous processes (24, 25). The conduction time from the primary motor cortex to the synapse 

was calculated by adding to the latency from TMS of the cervical roots (C-root) to 1.5 ms 

[estimated time of synaptic transmission plus conduction to the nerve root at the vertebral 

foramina; 26, 27] and subtracting from the MEP latency [MEP – (C-root + 1.5)], as in our 

previous study (3). However, we want to note that F-wave latency may represent a more direct 

estimation of the conduction time from motoneurons to the muscle and needs to be considered 

for future studies. The conduction time from ulnar nerve stimulation to the spinal motoneurons 



9 
 
 

was calculated by subtracting the M-max latency from the C-root latency and adding 0.5 ms, 

the estimated time of antidromic conduction time from the vertebral foramina to the dendrites 

[(C-root – M-max)+ 0.5); 24]. The formula shown in Table 2 was used to calculate the ISI 

between TMS and PNS pulses, whereby PNS was given prior to TMS due to the increased PNS 

conduction time compared to central conduction time (CCT). MEP onset latencies during small 

levels of voluntary contraction (controls: p=0.12 and SCI: p=0.54), C-root (controls: p=0.32 and 

SCI: p=0.42), and M-max (controls: p=0.39 and SCI: p=0.33) were recorded at each session and 

remained similar across sessions in both groups.  

 

MEPs elicited by TMS. RMT was defined as the minimal stimulus intensity required to induce 

MEPs greater than 50 μV peak-to-peak amplitude in at least 5/10 consecutive trials in the relaxed 

muscle [28; controls=48.8±7.1% of maximum stimulator output and SCI=64.3±17.2% of 

maximum stimulator output, p=0.003]. TMS intensity was set at 120% of RMT 

(controls=123.3±5.6% of RMT and SCI=119.4±7.3%, p=0.12). The same intensity was used 

after the paired stimulation. TMS pulses were delivered at 4 s intervals (0.25 Hz). Thirty MEPs 

were averaged for each time point before and after each protocol and peak-to-peak MEP 

amplitude was measured (controls, n=12; SCI, n=15). 

 

MEPs elicited by Electrical Stimulation (ES). MEPs were elicited by using ES at the 

cervicomedullary junction and the primary motor cortex to make inferences about subcortical 

contributions to MEP size (29, 30). These two procedures were used because some participants 

preferred one or the other type of stimulation due to different comfort levels. In one group, MEPs 

were elicited by stimulating the corticospinal tract at the cervicomedullary junction by using 

high-voltage electrical current (100 µs duration, Digitimer DS7AH) passed between adhesive 
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Ag-AgCl electrodes fixed to the skin behind the mastoid process (controls, n=5 and SCI, n=3). 

The stimulation intensity was set to elicit an MEP of ~3% of the M-max at rest in the FDI 

muscle (controls: PCMSrest=2.39±2.3, PCMSactive=2.8±1.5 % of the M-max; p=0.57; SCI: 

PCMSrest=4.3±0.8%, PCMSactive=4.3±0.4% of the M-max; p=0.5). We monitored the stimulation 

to ensure that it was below the intensity required to activate the peripheral nerve directly by 

increasing the intensity and observing a decrease in latency. A decrease in latency of ~2 ms 

indicates that the response reflects a mixture of pre and post-synaptically activated motoneurons 

(29). The latency of cervicomedullary MEPs was shorter than the MEPs elicited by TMS in both 

groups (controls: MEPs elicited by TMS=23.3±0.4 ms, MEPs elicited by ES=18.6±1.6 ms; 

p=0.002; SCI: MEPs elicited by TMS=25.1±1.0 ms, MEPs elicited by ES=20.0±2.8 ms). MEPs 

were also elicited by ES at the level of the primary motor cortex using a high-voltage current 

(200 µs duration, Digitimer DS7AH) passed between brass electrodes (9 mm) fixed to the scalp 

with electrode conductive gel (SCI, n=5). Here, the cathode was located at the vertex and the 

anode 7 cm laterally. The stimulation intensity used before the paired stimulation was set to elicit 

an MEP of ~3% of the M-max at rest in the FDI muscle (PCMSrest=2.3±1.1% of the M-max; 

PCMSactive=3.0±1.7% of the M-max; p=0.2, p=0.8, respectively). The latency of MEPs elicited 

by ES of the primary motor cortex were shorter than the MEPs elicited by TMS (MEPs elicited 

by TMS =26.5±1.5 ms, MEPs elicited by ES=24.3±1.5 ms; p=0.01). Since MEPs elicited by ES 

at both levels increased after both PCMS protocols, we grouped the data under MEPs elicited by 

ES using for statistical analysis a total of 5 control subjects and 8 SCI participants. Ten to 20 

MEPs elicited by ES were averaged before and at each time point after PCMS at 4 s intervals. 

The same intensity was used after the paired stimulation. 



11 
 
 

Data analysis. Normal distribution was tested by the Shapiro-Wilk's test and homogeneity of 

variances by the Mauchly’s test of sphericity. When sphericity could not be assumed, the 

Greenhouse- Geisser correction statistic was used. Repeated-measures analysis of variance 

(ANOVA) was performed to determine the effect of the GROUP (controls and SCI), PCMS 

(PCMSrest and PCMSactive), TIME (Baseline, 0, 30 min) on the size of MEPs elicited by TMS and 

ES, and mean rectified background EMG. Bonferroni post hoc tests were used to test for 

significant comparisons. Independent t-tests were used to compare central and peripheral 

conduction times, ISIs, age, M-max, force MVC, RMT, test stimulation intensities (TMS and 

electrical stimulation). T-test corrected values were used when equal variances were not 

assumed. Paired t-tests (two-tailed) were used to compare the size of MEPs elicited by electrical 

stimulation across PCMS protocols and MEP latencies. Significance was set at p<0.05. Group 

data are presented as the means±SD in the text. Pearson correlation analysis was used as needed. 

 
 

Results 

Responses elicited during PCMSrest and PCMSactive 

Figures 2A-B shows responses elicited during the paired-stimulation from representative 

participants. Due to the similarity in latency between the F-wave and the FDI MEP, this response 

could represent the summation of MEPs elicited by TMS and F-waves elicited by PNS (black 

traces). For comparison, we also show F-waves elicited by PNS (grey traces). Note the larger 

size of responses during PCMSactive compared with PCMSrest in both participants (SCI=1.2±0.8 

mV, controls=5.0±2.6 mV; SCI=0.5±0.3 mV, controls=1.2±0.5 mV, respectively). Also, note 

that responses were larger in the control compared with the SCI participant (note scale 
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difference). Responses obtained during each of the 100 pairs of pulses were combined in 10 

blocks of 10 pairs each for analysis. 

A repeated measures ANOVA showed no effect of TIME (F(3.0, 78.9)=1.0, p=0.44), an 

effect of GROUP (F(1, 26)=20.2, p<0.001) but not in their interaction (F(3.0, 78.9)=0.9, p=0.43) on 

responses measured during PCMSrest (Fig. 2C-D). Similarly, a repeated measures ANOVA 

showed no effect of TIME (F3.2, 93.1)=1.7, p=0.17), an effect of GROUP (F(1, 26)=35.1, p<0.001) 

but not in their interaction (F(3.2, 93.1)=2.3, p=0.08) on responses measured during PCMSactive (Fig. 

2C-D). These results together indicate that the stimulation conditions were maintained constant 

across the 100 pairs of pulses in each protocol across groups. During PCMSactive, mean 

background EMG activity measured prior to the stimulation artefact was similar across groups 

(controls=12.1±2.9% of MVC, SCI=10.7±3.8% of MVC, p=0.15). 

 

MEPs elicited by TMS  

Figures 3A-B illustrates MEPs traces in a representative control and SCI participant 

before and after both protocols. Note that while the control participant shows a similar increase 

in MEP size immediately and 30 minutes after both PMC protocols, the SCI participant shows a 

greater increase in MEP size after PCMSactive compared with PCMSrest.  

A three-way repeated measures ANOVA showed an effect of TIME (F(1.6,39.0)=24.8, 

p<0.001) but not PCMS (F(1,25)=1.2, p=0.29) or GROUP (F(1,25)=1.6, p=0.23) on MEP size. The 

ANOVA also revealed a PCMS x GROUP interaction (F(1,25)=6.4, p=0.02). Post hoc tests 

showed a difference in the magnitude of MEP facilitation between controls and SCI participants 

after PCMSrest (p=0.01) but not after PCMSactive (p=0.52). Also, MEP facilitation after paired-

stimulation was different between PCMSrest and PCMSactive in SCI (p=0.01) but not in controls 
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(p=0.35) participants. We found a TIME x PCMS x GROUP interaction (F(2,50)=4.6, p=0.02), 

showing that the groups performed differently as a function of time and PCMS protocol. In 

controls, MEPs were larger compared with the baseline (PCMSrest: 1.7±0.6 mV; PCMSactive: 

1.6±0.9 mV) at both 0 (PCMSrest: 2.5±0.9 mV; PCMSactive: 2.2±1.2 mV, p=0.005; Fig. 3C) and 30 

(PCMSrest: 2.4±0.7 mV; PCMSactive: 2.2±1.0 mV, p=0.006; Fig. 3C) minutes after PCMSrest and 

PCMSactive. In SCI participants, MEPs were larger compared with the baseline (0.5±0.5 mV) 

after 30 (0.6±0.6 mV, p=0.01; Fig. 3D) but not at 0 (0.5±0.5 mV, p=0.2; Fig. 3D) minutes after 

PCMSrest. However, MEPs were larger compared with the baseline (0.5±0.4 mV) both at 0 

(0.7±0.8 mV, p=0.003; Fig. 3D) and 30 (0.7±0.8 mV, p=0.001; Fig. 3D) minutes after after 

PCMSactive. These results demonstrate that voluntary contraction during PCMS enhances the 

facilitatory effects of the PCMS protocol on corticospinal excitability in SCI participants, while 

no differences were found in control participants. 

 

MEPs elicited by ES  

In order to test the effect of PCMS at a subcortical level, we measured MEPs elicited by 

electrical stimulation at the cervicomedullary junction and over the primary motor cortex. Since 

both these methods stimulate corticospinal axons directly we pooled the data (see methods). 

Figures 4A-B shows MEPs in a representative control and SCI participant before and after both 

protocols. Note that the control participants show a similar increase in MEP size after PCMSactive 

and PCMSrest. However, the SCI participant shows a greater increase in MEP size after 

PCMSactive compared with PCMSrest.  

A three-way repeated measures ANOVA on ranks showed an effect of TIME 

(F(2,22)=28.4, p<0.001), but not PCMS (F(1,11)=2.3, p=0.2) or GROUP (F(1,11)=0.0, p=0.9) on MEP 
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size. Importantly, we found a PCMS x GROUP interaction (F(1,11)=6.5, p=0.03), where post hoc 

tests revealed this was due to a different between PCMSrest and PCMSactive in SCI (p=0.01; Fig. 

4D) but not in controls (p=0.5; Fig. 4C) participants. In controls, MEPs increased at 0 (PCMSrest: 

p=0.02; PCMSactive: p=0.04; Fig. 4C) and 30 (PCMSrest: p=0.02; PCMSactive: p=0.04; Fig. 4C) 

minutes after stimulation compared with baseline. Similarly, in SCI participants, MEPs increased 

at 0 (PCMSrest: p=0.01; PCMSactive: p=0.03; Fig. 4D) and 30 (PCMSrest: p=0.03; PCMSactive: 

p=0.04; Fig. 4D) minutes after stimulation compared with baseline. These findings indicate that 

PCMSactive increases the effects of the paired-stimulation at a subcortical level after SCI, yet 

increases in subcortical excitability remain similar in controls irrespective of the protocol used.  

Based on our previous results (3), we divided individuals with SCI into those who 

responded (MEP facilitation >110%; 9/15 participants; 3) and did not respond (MEP facilitation 

<110%; 6/15 participants) after PCMSrest. Figure 5 shows the proportion of responders vs. non-

responders after PCMSrest and PCMSactive and the average MEP size (across 0 and 30 minutes) 

after PCMSrest  and PCMSactive in each subgroup. We found that non-responders showed that 

MEPs increased only after PCMSactive (121.4±24.7% of baseline MEP; p=0.05 Fig. 5B) and this 

MEP change was significantly larger compared to PCMSrest (93.6±10.0% of baseline MEP; 

p=0.02; Fig. 5B). SCI responders increased MEP size after both PCMSrest (126.2±18.5% of 

baseline MEP; p=0.003; Fig. 5A) and PCMSactive (179.0±64.3% of baseline MEP; p=0.006; Fig. 

5D), indeed increases in MEP size were larger after PCMSactive compared with PCMSrest (p=0.04; 

Fig. 5D). These results suggest that while voluntary contraction can improve the aftereffects of 

PCMS on corticospinal excitability after SCI, this might be more critical for SCI patients that do 

not respond to PCMS at rest. 
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Discussion 

Our findings demonstrate that the effects of PCMS on spinal synaptic plasticity can be 

potentiated by applying PCMS during voluntary activity in humans with SCI. We found, in 

control participants, that the size of MEPs elicited by TMS and electrical stimulation increased 

when PCMS was applied at rest or during voluntary activity for ~17 min. Whereas, in humans 

with SCI, MEPs elicited by TMS and electrical stimulation increased to a larger extent when 

PCMS was applied during voluntary activity compared with rest. Note that SCI participants who 

did not respond to PCMS at rest responded to voluntary activity and those participants who 

responded to both protocols showed larger increments in corticospinal transmission when PCMS 

was applied during voluntary activity. Therefore, we propose that PCMS applied during a small 

level of voluntary activity may represent a strategy to boost spinal plasticity after SCI.   

 

Differential effects of PCMS applied at rest and during voluntary activity after SCI 

Our results agree with previous findings showing that PCMS applied at rest increases 

corticospinal transmission in upper-limb muscles in control (12, 13) and SCI (3) participants. 

Here, for the first time, we applied PCMS during small levels of tonic voluntary activity and 

found that PCMS was more effective in enhancing corticospinal transmission when applied 

during voluntary activity compared with rest in humans with chronic cervical incomplete SCI. 

This is consistent with previous results showing that NMDA-like plasticity in the human primary 

motor cortex can be enhanced by performing voluntary activity (18). PCMS is thought to engage 

long-term potentiation (LTP)-like mechanisms that depend on NMDA receptor activity (14, 15). 

In humans, PCMS effects on corticospinal transmission can be blocked by the NMDA antagonist 

dextromethorphan (16). NMDA receptors in the spinal cord can affect the output of motoneurons 
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(17) and activation of NMDA receptors can facilitate neurons that contribute to the generation of 

muscle activity after SCI (31, 32). The recruitment of descending volleys (i.e. D-waves and I-

waves) tested by TMS is decreased in humans with SCI at rest (20) and during voluntary activity 

(21) compared with control participants. In addition, spinal motoneurons of individuals with 

chronic SCI are activated by prolonged depolarization compared with control participants (33). 

Thus, performing PCMS during tonic voluntary activity might enhance the number of 

descending volleys (compared with rest; 19) and decrease the threshold of spinal motoneurons 

contributing to a better stage for this plasticity. This is consistent with what we observed during 

the paired stimulation. Here, the response following the M-max during PCMS could be due to a 

summation of an MEP and an F-wave, since the latency of these responses is similar (~25 ms).  

Interestingly, the size of the response at rest was approximately 1 mV in controls, which is 

substantially less than MEP-max (~6 mV), suggesting that the MEP is less likely to be the only 

factor contributing to this response. Collision between the antidromic potentials and the MEP 

and refractoriness could also contribute to the size of the response following the M-max during 

PCMS. This is particularly relevant for PCMSactive, where a collision between voluntary 

orthodromic and antidromic impulses may allow some motor axons to transmit an H-reflex to the 

muscle. Although the size of the response following the M-max during paired stimulation is 

larger in controls and SCI subjects during PCMSactive compared with PCMSrest, selective effects 

were observed only in SCI participants. We previously suggested that the measured response 

reflects in part the contribution from an F-wave (3) since TMS facilitates spinal motoneuron 

excitability when applied at a similar inter-stimulus interval before PNS (34, 35). Thus, our 

results support the idea that a decrease in the threshold of spinal motoneurons results in a larger 

activation by descending input (19).  
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We also found that the size of MEPs elicited by ES at the cervicomedullary junction and 

the primary motor cortex increased after PCMS applied at rest and during voluntary activity. 

Electrical stimulation of the primary motor cortex likely activates axons of pyramidal tract 

neurons in the subcortical white matter at the axon initial segment at low intensity while at high 

intensities, as used in our study, I-waves are also observed (30). However, MEPs elicited by 

stimulation of the corticospinal tract at the cervicomedullary junction likely reflect changes 

occurring at corticospinal-motoneuronal synapses (29, 36). Since we used both types of 

stimulation, a possible interpretation of our results is that changes in MEPs elicited by electrical 

stimulation after PCMS have a subcortical origin, which is consistent with previous studies (3, 7, 

12).  

An interesting finding in SCI participants was that both PCMS applied at rest and during 

voluntary activity increased MEP size, but the changes were more pronounced when PCMS was 

applied during voluntary activity. Since we observed in SCI participants that MEPs elicited by 

electrical stimulation were larger after PCMS was applied during voluntary activity compared 

with rest, we propose that this change also has a subcortical origin. Multiple descending volleys 

are evoked during TMS and voluntary contraction. PCMS protocols have targeted the initial 

descending volleys arriving at motoneurons because estimations are based on the latency of 

MEPs elicited during a small level of voluntary contraction (3, 12), but the timing of both early 

and later volleys might be important to potentiate and depress some corticospinal synapses. 

Thus, changes in the number and size of descending volleys elicited by voluntary contraction 

(19) might also contribute to the larger increases in MEPs elicited by electrical stimulation when 

PMCS was applied during contraction. It is possible that in control participants this plasticity 

was saturated (i.e., ceiling effects). For example, during 100 pairs of stimuli, the TMS intensity 
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was set at 100% of maximum stimulator output, which matched an effective intensity previously 

used in SCI participants (3). This agrees with evidence showing that high-intensity TMS 

increases the number and amplitude of descending volleys (including direct (D) waves and I-

waves; 19). However, Taylor and Martin (2009) showed that in controls much lower intensities 

and few pulses were required to produce the similar PCMS effects in corticospinal transmission 

to those found in our study (approximately 68% of maximum stimulator output, 50 pairs of 

pulses). Thus, another possibility is that if we had used lower TMS intensities, which 

preferentially produce smaller descending volleys, we may have seen PCMS potentiation with 

the addition of muscle contraction. Indeed, a weak voluntary contraction during 50 pairs of time-

dependent stimuli that targeted the sensorimotor cortex showed significantly increased 

corticospinal output compared to when the same protocol was applied at rest (18).  

In the current study, control participants revealed an increase in FDI MEPs of 

approximately 40% after PCMS at rest, which is comparable to changes previously reported in 

the same (3) and in a more proximal muscle (12). We found here that 60% of individuals with 

SCI showed increases in MEP size 30 min after PCMS was applied at rest. This is consistent 

with our previous results where we found that 89% of individuals with SCI showed increases in 

MEP size (3). The lower number of responders in the present study compared with our previous 

results might be related to the population of SCI participants tested in our study. SCI participants 

tested in the present study had reduced MEP-max, a reduced M-max and weaker finger MVCs 

compared with participants tested before (3). Despite these factors, MEPs elicited by TMS and 

electrical stimulation did increase up to 20% for 30 minutes in this particular group of 

individuals with SCI. Thus, in this more impaired group of SCI participants, PCMS at rest can 

evoke corticospinal plasticity. 
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Functional considerations 

Our results support previous findings that after SCI corticospinal drive is impaired, as 

evidenced by delayed MEP latencies, high stimulation thresholds, decreased maximum MEPs 

amplitudes, and impaired corticospinal recruitment (1, 2). Specifically, delayed MEP latency and 

increased thresholds suggest that there is a slowing of corticospinal neurons, likely due to 

demyelination and progressive axon atrophy (4-6). All of these factors are affected by SCI and 

might contribute to the efficacy of stimulation strategies after SCI including PCMS. Several 

neuromodulatory stimulation strategies have been used to improve the control of upper-limb 

muscles following SCI. For example, epidural electrical stimulation of the cervical spinal cord 

(38), pairs of TMS pulses targeting late I-waves (39), and high-frequency repetitive TMS over 

the hand primary motor cortex (40) with and without exercise. We and others have shown that 

the spinal cord is a critical site for the restoration of function after SCI (3, 7, 41, 42). We expand 

these results by showing that these effects can be potentiated by performing this protocol in 

conjunction with a voluntary contraction. Here, voluntary contraction could represent a method 

for increasing the size and number of descending volleys and decreasing the threshold of spinal 

motoneurons. Our new data suggests that it might be particularly important for SCI participants 

who have significantly reduced corticospinal drive. 
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Figure legends 

Figure 1. PCMS stimulation protocols. Illustration of the PCMS protocol tested at rest 

(PCMSrest; A) and during 10% of isometric maximal voluntary contraction (MVC) into index 

finger abduction (PCMSactive; B). In both PCMS protocols, corticospinal neurons were activated 

at the cortical level using transcranial magnetic stimulation (TMS) delivered over the hand 

representation of the primary motor cortex and spinal motoneurons were activated antidromically 

by peripheral nerve stimulation (PNS) delivered to the ulnar nerve at the wrist. The inter-

stimulus interval (ISI) between the paired-pulses was designed to allow descending volleys to 

arrive at the presynaptic terminals of corticospinal neurons (1st, red arrow) 1-2 ms before 

antidromic volleys in the motoneurons reached the dendrites (2nd, black arrow). During 

PCMSrest participants remain at rest shown by the quiet background electromyographic (EMG) 

activity (A). During PCMSactive participants performed 10% of MVC into index finger abduction 

in response to an auditory cue given 2 s prior to the pairs of stimuli (B). Here, participants were 

instructed to hold the contraction until receiving the paired-pulses, after which they were asked 

to relax. For each paired-pulse stimuli, participants contracted for approximately 3-4 s and were 

relaxed for 7-6 s between contractions.  

 

Figure 2. Responses during PCMSrest and PCMSactive. EMG recordings from the first dorsal 

interosseous (FDI) muscle showing a representative average of the maximal motor response (M-

max) and a subsequent response during each paired-pulse stimulation protocol (black traces) and 
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during isolated PNS stimulation (grey traces) in a control (A) and an SCI (B) participant. Due to 

the similarity in latency between the F-wave and the FDI motor evoked potential (MEP), this 

response could be due to the summation of MEPs elicited by TMS and F-waves elicited by PNS. 

The graphs show the group data in controls (C, n=14, open and closed triangles) and SCI (D, 

n=17, open and closed circles) participants. The ordinate shows the size of the response in 

millivolts and the abscissa shows the paired-pulses tested (a total of 100 paired pulses). At each 

point, the average of ten responses is shown. Note the difference in the amplitude scale in traces 

and graphs. Error bars indicate the SE. *p<0.05. 

 

Figure 3. MEPs elicited by TMS. Raw MEP traces from the FDI muscle elicited by TMS in a 

representative control (A) and SCI (B) participant before and after PCMSrest and PCMSactive. 

Traces show the average of 30 MEPs. The grey horizontal bar shows the paired stimulation 

(paired-pulse stimuli; 100 paired pulses at 0.1 Hz for ~17 min). Graphs show the group data (C 

& D). The abscissa shows the time of measurements (0 and 30 min) and the ordinate shows the 

peak-to-peak amplitude of FDI MEPs as a % of the baseline MEP in controls (C; black bars, 

PCMSrest; grey bars, PCMSactive; n=13) and in SCI participants (D; black bars, PCMSrest; grey 

bars, PCMSactive; n=15). Averaged MEP size for each individual subject at each time point is also 

shown in each graph (open circles). Note that MEP size increased at all times after both PCMS 

protocols in control participants, but MEPs were larger after PCMSactive compared with PCMSrest 

in SCI participants. Error bars indicate the SE *p<0.05. 

 

Figure 4. MEPs elicited by electrical stimulation (ES).  Raw MEP traces from the FDI muscle 

elicited by electrical stimulation in a representative control (A) and SCI (B) participant before 
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and after both PCMS protocols. The grey horizontal bar shows the paired stimulation (paired-

pulse stimuli; 100 paired pulses at 0.1 Hz for ~17 min). Graphs show the group data (C & D). 

The abscissa shows the time of measurements (0 and 30 min) and the ordinate shows the peak-

to-peak amplitude of FDI MEPs, elicited by electrical stimulation, as a % of the baseline MEP in 

controls (C; black bars, PCMSrest and grey bars, PCMSactive; n=5) and SCI (D; black bars, 

PCMSrest and grey bars, PCMSactive; n=8) participants. Averaged MEP size for each individual 

subject at each time point is also shown (open circles: MEPs elicited by ES over the 

cervicomedullary junction; open squares: MEPs elicited by ES over the primary motor cortex). 

Note that MEP size increased at all times after both PCMS protocols in controls, but MEPs were 

larger after PCMSactive compared with PCMSrest in SCI participants. Error bars indicate the SE 

*p<0.05. 

 

Figure 5. MEPs in responders and non-responders. SCI participants were grouped into 

responders and non-responders based on the amount of TMS MEP facilitation after PCMSrest.  

A-B. Pie charts show the proportion of responders (n=9) and non-responders (n=6). C-D. Graphs 

show the subgroup data. The abscissa shows the paired-pulse protocol and the ordinate shows the 

average (across 0 and 30 minutes) FDI MEP size in responders (A; open bar: PCMSrest; closed 

bar: PCMSactive) and in non-responders (B; open bar: PCMSrest; closed bar: PCMSactive) as a % of 

baseline MEP. Note that in responders, the size of MEPs increased after PCMSrest and further 

increased after PCMSactive whereas in non-responders MEP size increased only after PCMSactive. 

Error bars indicate the SE *p<0.05. 

 

 



31 
 
 

Figure 1 

 

.  

 



32 
 
 

Figure 2

 



33 
 
 

Figure 3

 

 

 

 

 



34 
 
 

Figure 4 

 

 

 

 

 

 

 



35 
 
 

Figure 5 

 


