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An Evaluation of Primary School Children coding using a text-based 
language (Java). 
Abstract 

All primary school children in England are required to write computer programs and learn about 

computational thinking. There are moves in other countries to this effect e.g. the US K-12 Computer 

Science framework for development. Debates on how to program and what constitutes 

computational thinking are on-going. Here we report on a study of programming by children aged 7 

– 11 using Java, and elements of computational thinking they experience. Our platform comprises a 

novel “Story-Writing-Coding” engine we have developed. We compare novice (children’s) processes 

of coding an animated story with that of experts (college students) and evaluate the differences 

using four measures based on the progressive coding of a complete program. We also analyse the 

use of novice (children’s) computational thinking in this coding process. This research is set against a 

backdrop of approaches to teaching programming and concepts of computational thinking in recent 

educational literature. 

Introduction 
Computer Science is now being taught in primary schools in England as a statutory requirement of 

the primary National Curriculum Department for Education (DfE, 2013a). The aims of this primary 

programme are “to use computational thinking and creativity to change the world” and to use 

children’s knowledge of computing to “create programs, systems and a range of content” (DfE, 

2013a, p.1). Currently children aged 5-11 (Kindergarten – 5th grade) in England are engaged in 

learning about programming and computational thinking (CT). In the US, early in 2016 President 

Obama launched the initiative ‘Computer Science for all’ with the aim of empowering US students, 

from Kindergarten through high school, to learn computer science and to be equipped with the 

computational thinking (CT) skills needed to be creators and not just consumers in the digital 

economy. Later that year, the Association for Computing Machinery with partners released the K-12 

Computer Science Framework intended to inform the development of both standards and 
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curriculum (K-12 CSF, 2016). Like the English primary programmes of study (DfE, 2013a), there is 

core reference to both computational thinking (CT) and programming. 

However, within computer science education research there is a vigorous discussion on how best to 

approach the teaching of programming and of the nature of CT itself. In terms of programming, 

there is gathering momentum to use non-textual, block-based tools such as Scratch (Morris, Uppal & 

Wells, 2017), as opposed to traditional text-based approaches taught at university and used 

professionally. In terms of CT, despite the appearance of this term in statutory requirements or 

guidance documents, there seems to be an ongoing discussion on what this means, and how to 

implement it in the curriculum. 

This paper reports on a study that forms part of a large research project where we are investigating 

how to teach primary school children to program in a text-based language (Java) typically taught to 

undergraduate/college students. The programming environment used is our novel Story-Writing-

Coding engine, where children code an animated story. Previous work [citation of authors 

suppressed] has focused on the creation of meaning using code. This paper focuses on a comparison 

of the code written by the novice children with that written by experts, where the expert 

comparison group is taken from our undergraduate students. The rationale for doing this is detailed 

in the Methodology section. We have two research questions: (i) How can we measure the 

difference between children’s and experts’ processes of coding, and what do these differences 

reveal? (ii) Is there any evidence for CT in children’s programs? 

This paper is structured as follows: In the following section we review the literature on 

computational thinking and programming. The next section provides an overview of our animation 

engine, how it was designed to support both programming and CT. This is followed by an overview 

of our research methodology, that identifies participants and processes, then discusses instruments 

designed to measure program development and assessment of evidence of CT. The results section 

provides an analysis and comparison of 18 programs written by children with 13 written by experts 
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according to our instruments. In the closing discussion section we provide answers to our two 

research questions and attempt to tease out possible implications for teachers. 

Computational Thinking, and Programming 
Computational Thinking 

Computational Thinking (CT) proposed by Jeanette Wing in 2006, revised in 2008 (Wing, 2008) and 

more recently revised in 2011 (Wing, 2011) has entered the school curriculum both at secondary and 

primary level in England (DfE, 2013a; DfE, 2013b). It is included in the College Board Advanced 

Placement course (CBAP, 2016), and most recently is central to the US K-12 Computer Science 

Framework (K-12 CSF, 2016).  

Wing’s 2006 proposal made several significant points, first that “Computational thinking builds on 

the power and limits of computing processes, whether they are executed by a human or by a 

machine” (Wing, 2006, p.33). She goes on to say that “It represents a universal attitude and skill set 

everyone, not just computer scientists, would be eager to learn and use” (Wing, 2006, p.33), and 

that it “involves solving problems, designing systems and understanding human behaviour, by 

drawing on the concepts fundamental to computer science” (Wing, 2006, p.33). The clear suggestion 

here is that the existence of computers has provided humans with a novel mode of thinking, a new 

epistemology to be applied to many disciplines, and therefore cross-curriculum. Later she crystallises 

her initial ideas, “The essence of computational thinking is abstraction” (Wing, 2008, p.3717) and 

asserts that this will have benefit to education in general; “Computational thinking is not just or all 

about computer science. The educational benefits of being able to think computationally – starting 

with the use of abstraction – enhance and reinforce intellectual skills, and thus can be transferred to 

any domain” (Wing, 2011, p.4). Grover and Pea (2013) provide a comprehensive overview of CT, and 

how it resonated with educators, educational researchers and policy makers. They highlight the 

struggle to agree on a definition of CT and point to the Royal Society (2012) as offering a useful 

definition: “Computational thinking is the process of recognising aspects of computation in the world 
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that surrounds us, and applying tools and techniques from Computer Science to understand and 

reason about natural and artificial systems and processes” (Royal Society, 2012, p.29).  

However, there are some warnings. Peter Denning warns that “the computational thinking 

movement reinforces a narrow view of the field [computer science]” (Denning, 2009, p.28). He 

advocates that it would be unwise to propose that CT is a defining element of computer science, 

since it ignores the history of thinking in computer science as well as in all the sciences.  Denning 

reminds us that “Computation is more fundamental than computational thinking. For this reason 

alone, computational thinking seems like an inadequate characterisation of computer science” 

(Denning, 2009, p.30). The most recent attempt to define CT is found in Yadav, Stephenson and 

Hong, (2017) who propose “… computational thinking is a set of problem-solving thought processes 

derived from computer science but applicable in any domain” (Yadav et al., 2017, p. 56).  

Let us now turn to the response to CT by educationalists and policy-makers. Today’s K-12 education 

is a complex and politicised system, where subject content, ideologies and pedagogies seem to be in 

competition. At the same time the classroom is subject to high levels of formal expectations and 

scrutiny. Against this backdrop there appears to be some divergent “philosophies” of CT. First, there 

appears to be a clear aim to separate computational thinking from programming, both within 

interpretations of the English National Curriculum (Computing At School, 2015; Selby, Dorling, & 

Woollard, 2014) as well as in the ‘computer science Unplugged’ effort that introduces computing 

concepts without the use of a computer. These unplugged approaches may serve to apply 

computational thinking beyond computer science to a variety of other disciplines (Bundy, 2007). 

However, it is suggested that these, “while providing valuable introductory activities for exposing 

children to the nature of computer science, may be keeping learners from the crucial computational 

experience involved in CT’s common practice” (Grover & Pea, 2013, p.40). This warning reminds us 

not to forget the origins of CT in programming.  

The definition of CT in the K-12 Computer Science Framework (2016) is interesting, in both the 

debugging and creating components; there is explicit mention of creating computational artefacts 
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unlike in the interpretations of the English National Curriculum. This emphasises that CT is at the 

heart of computer science, “The most effective context and approach for developing computational 

thinking is learning computer science, they are intrinsically connected” (K-12 CSF, 2016, p69). Also, 

this framework includes core practices that extend CT; communicating about computing, 

collaborating around computing and fostering an inclusive computing culture (K12 CSF, 2016). These 

align with Barr and Stephenson’s (2011) suggestions of negotiation and consensus building; indeed 

they highlight the need for teamwork, and include both abstraction and decomposition under this 

heading. Substantial work to establish a comprehensive strategy for getting CT into schools has been 

made by the Scalable Game Design Initiative (SGDI) (Repenning, Webb & Ioannidou, 2010) based on 

the establishment of CT patterns (Ioannidou, 2011), and proposing an instrument for the automatic 

recognition of CT using these patterns (Koh, Basawapatna, Bennet & Repenning, 2010).  

The literature reviewed suggests a ranking of CT factors: abstraction is the favourite, in agreement 

with Wing (2008) and Grover and Pea (2013); followed by algorithmic thinking, decomposition, 

generalisation, testing, and debugging in equal second place; followed by logical thinking. 

Programming 

The literature uses varied vocabulary to distinguish between text-based and block-based 

approaches. The latter are often referred to as “visual” or “graphical” programming environments, 

which is confusing since many text-based approaches (such as ours) deliver visual/graphical output. 

To avoid confusion we shall refer to these contrasting approaches as “block syntax” or “text syntax” 

following Stead and Blackwell (2014). There are many languages available for teaching primary 

school children to code, most use block syntax. Extensively used outside the classroom, they are now 

being used within the English computing curriculum. An excellent overview is found in Morris et al., 

(2017) with suggestions of suitable languages and approaches for all stages of primary education and 

also at the transition into lower-secondary schools. 

The K-12 CSF explicitly refers to programming, “Computers also require people to express their 

thinking in a formal structure such as a programming language” (K-12 CSF, 2016, p.69). By “formal 
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structure” we think of flow diagrams and pseudo-code. Yet programming is more than designing 

algorithms a computer can execute, “Creating a program allows people to externalise their thoughts 

in a form that can be manipulated and scrutinized. Programming allows students to think about their 

thinking” (K-12 CSF, 2016, p.69). Again this strengthens the link between teaching CT and 

programming. 

The English National Curriculum for computing, in addition to aspects of CT, aims that all pupils 

should “have repeated practical experience of writing computer programs …” and specifies the 

subject content for Key Stage 1 (Kindergarten and 1st Grade) and Key Stage 2 (2nd to 5th Grade) (DfE, 

2013a, p.1). Comparing these with the K-12 CSF programming concepts, we find the former are 

rather abstract, specifying “what” while the latter are more concrete, often specifying “how”. For 

example, the former specifies “Create and debug simple programs” (DfE, 2013a, p.2), while the 

latter in reference to programs states “Sprites can be moved and turned”, “… drawing a shape or 

moving a character across a screen” (K-12 CSF, 2016, p.96). 

However, commenting on the National Curriculum programming requirement, some UK computer 

science educationalists note that “It is deliberately not mandated that this learning should take place 

on an actual computer” (Brown, Sentence, Crick & Humphreys, 2013, p.9) and they go on to suggest 

the computer science unplugged “… can cover the requirements of the curriculum without 

programming a physical computer”. More recently Yadav et al. (2017) seem to agree, that while CT is 

“deeply connected to the activity of programming, it is not essential to teach programming as part of 

a pre-service computational thinking approach” (Yadav et al., 2017, p.58). However, other 

researchers are quite explicit about the value of coding, “an introduction to programming is not 

necessarily a precursor to teaching algorithmic thinking, but rather provides the very means to teach 

algorithmic thinking”, (Hromkovic, Kohn, Komm & Serafini, 2017, p.1); here programming refers to 

Logo and Python.  

Block syntax environments for young learners are widely endorsed by the Computers At Schools 

movement (CAS, 2015). This is justified by research into the detailed links between block syntax 
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(Scratch) and CT focusing on both concepts and practices of CT (Brennan & Resnick, 2012). Other 

educators suggest that starting with block syntax then progressing to text syntax may be appropriate 

for primary children (Morris et al., 2017) and cite Logo as an appropriate tool. It has been suggested 

that Scratch is a good first language to learn and Scratch will help transitioning to a text syntax 

language later on (Dorling & White, 2015). While this seems a reasonable assertion, there is little 

evidence to support it. A more rigorous study suggests the opposite; some 120 students aged 15-16 

(10th Grade) participated, a group of 44 had prior experience of Scratch and a group of 76 did not. 

The results showed no significant differences between the groups for the concept of variables and 

conditional execution, yet significant differences in using repetition in favour of those with prior 

experience of Scratch, (Armoni, Meerbaum-Salant & Ben-Ari, 2015). 

There is also evidence that block syntax can induce “bad habits”, (Meerbaum-Salant, Armoni & Ben-

Ari, 2011). This research looked at 14-15 year olds (9th grade) learning Scratch without instructional 

materials. It reported “bad habits” acquired, those which did not encourage designing algorithms or 

using programming constructs (selection, iteration) and showed how these were a consequence of 

the drag-and-drop nature of Scratch. Children first collected all blocks they thought appropriate and 

then combined them into several scripts without any planning or thought. One sophistication of 

Scratch is that it can run many scripts concurrently. Meerbaum-Salant et al., (2011) showed how this 

feature, together with the block-collection behaviour, led to incorrectly structured code (which 

nevertheless ran). Effectively, children were ‘misusing’ the power of Scratch’s concurrency. This 

approach to coding is called ‘bricolage’ (tinkering) where the coder assembles code by trial and error 

without planning. This is confirmed by more recent research (Rose, 2016). Advice to teachers in the 

publication “Quickstart Computing” (CAS, 2015) suggests that Scratch and Kodu can make it seem 

unnecessary to go through the planning stage of writing a program. It goes on to suggest that it is 

good practice for pupils to write down the algorithms for a program, in the form of rough jottings, 

storyboard, pseudocode or flow charts.  
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There has been one previous attempt to link storytelling and coding; “Storytelling Alice” uses block-

syntax to produce 3D animations. It was created for middle school girls, to address the under-

representation of women in computer science (Kelleher, 2006; Kelleher & Pausch, 2007). The 

“Greenfoot” environment provides a Java-based text syntax approach aimed at children aged 14 and 

above (Kolling, 2010), while Scratch aims at 8-16 year olds and Alice 12-19. Here, users drop objects 

into a world using block syntax then code the objects’ methods (in templates automatically 

provided) using the full Java language, including many of the characteristics of Object-oriented 

Programming. 

With the exception of Greenfoot, these approaches do not provide learners with experience of 

syntactic features of conventional languages which they ultimately must learn; text syntax is 

replaced by coloured jigsaw pieces. The “Drawbridge” approach presents a sophisticated 

combination of block and text syntax, and with an easier user interface (Stead, 2016; Stead & 

Blackwell, 2014). Block syntax can be viewed side-by side with text syntax (JavaScript) with 

simultaneous update. In this way children can move from block to text syntax. Robust trials with 

children aged 11-12 (6th grade) have shown that starting with blocks rather than text does improve 

understanding of text syntax, (Stead & Blackwell, 2014). 

Computer games form a useful platform to learn programming; games can balance challenge against 

expectations and achievement. “Lightbot” is such a game proposed for primary schools (see Morris 

et al., 2017) where the objective is to switch on all lights in a level using fixed commands. As the 

game levels progress, functions and selection statements are introduced. Research by Gouws, 

Bradshaw and Wentworth (2013), suggests that Lightbot is useful in developing CT; unlike the 

potential “bricolage” approach using Scratch, Lightbot enforces a sequential mode of program 

design. 

The principle of “low floor, high ceiling” to guide the development of programming environments is 

well known since the days of Logo (Flannery et al., 2013) and is capitalised in computer game 

programming, to a professional level. Here, the Scalable Game Design Initiative (Ioannidou, 2011; 
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Repenning et al., 2010),  suggests that all CT tools should have a “low threshold” and a “high ceiling”, 

so that novices can rapidly create a working game, but allow the creation of a game with 

sophisticated behaviour. Many programming tools suitable for K-12 education fit this requirement 

including Scratch, Alice, Kodu, and Greenfoot, (Morris et al., 2017). Perhaps of the environments 

mentioned above, Greenfoot has a relatively high floor while Drawbridge and Scratch have a low 

floor. In our experience Storytelling Alice, despite its block syntax, has a relatively high floor. 

Overview of the Animation Engine 
This section outlines various “affordances” we have built into the engine to support meaningful 

Story-Writing-Coding. Programming affordances are fundamental, we expect coders to engage with 

these to create meaningful programs. CT affordances are more abstract and are intended for 

instructors to select from when appropriate. 

Programming Affordances 
 
Our engine is based on the Java language where children code using Java syntax, for example the 

line of code grog.flyto(myrobin); which makes the character “grog” fly to the goal “my robin” uses 

the object-based syntax, where “grog” is the object, “flyto” is the method and “myrobin” is a 

parameter. This object-based approach is a simplification of the full object-oriented approach to 

programming that allows additional classes to be created, e.g., a new sort of object such as 

“background” with methods different from those of characters. This would require users to work 

with additional code entry boxes (and at a higher cognitive level) that was judged too difficult for 

children of this age.  

Coders are able to add scenery, props and characters to a canvas. Props and characters can move 

and characters can display emotions. Character methods are based upon Halliday’s “Systemic 

Functional Grammar”, that aims to teach how to get meaning into a written text (Halliday, 2004), in 

this case through code. Halliday (2004) proposes a classification of linguistic “processes” (verbs) into 

classes that encompass e.g., movement, speaking, thinking and feeling. The classes we have 
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implemented, together with the code methods, and examples of story vocabulary are shown in 

Table 1. 

-- Table 1 about here – 

The second designed affordance allows coding either synchronous or asynchronous character 

behaviour. This is not trivial since users write all code as a sequence of statements in a single code-

text input box. This is achieved by programming using “tuples” of statements, e.g. the code for two 

characters should be arranged in pairs as shown in the code snippet in Table 2, 

-- Table 2 about here – 

On the left, pip and grog jump at the same time, while on the right pip jumps first followed by grog 

jumping. We also provide polymorphic forms of most methods with decreasing abstraction. For 

example this jump(); is called without parameters using a built-in jump height, while jump(50); is 

less abstract, allowing the jump height to be specified. A further reduction in abstraction jump(50,4); 

allows the time taken for the jump (4 seconds) to be included. 

The user interface is shown in Figure 1. On the left is the code entry box where the coder can add 

one, many or no lines of code; pressing the “run” button compiles the code and displays the 

associated animation on the canvas to the right. This provides immediate feedback of the effect of 

the code written; the user can continue to code, modify existing code or correct errors. This rapid 

feedback is important and motivates the learner to maintain momentum. Pressing “run” also logs a 

rich data file containing the code, and details of any compilation errors at that point. We are 

therefore able to track changes in the code. This is crucial since it provides more information about 

code development and CT than can be gleaned from the final program, as noted by Brennan and 

Resnick (2012).  

-- Figure 1 about here – 

Computational Thinking Affordances 
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The engine has been designed to teach programming, and its support for CT must be viewed in this 

light. We suggest a hierarchy of coding activities and we align the CT factors against this hierarchy. 

We view this hierarchy as guidance for practitioners to teach elements of CT grounded in 

programming activities. 

At the top is the most abstract of all coding, composing the story itself. Here we expect to see 

decomposition where children organise their code into blocks that could represent the various 

phases in an unfolding story (setting the scene, some conflict, resolution and ending). We also 

expect to see abstraction here, since there will be clauses that cannot be coded (e.g. expressions of 

cause or purpose). In addition, there is another dimension of thinking related to writing stories in 

general; these are story-patterns referred to as “narrative schemas” (Bruner, 1991). Moving down a 

level we expect to see patterns made from tuples. These could be viewed as decomposition into 

tuples or equally well abstractions focussing on pattern behaviour rather than the underlying tuples. 

Below patterns we find code tuples that form the realisation of the abstract concepts of concurrency 

and sequentiality. Towards the base of the pyramid we find abstraction again in the use of 

polymorphic method forms, and algorithmic thinking in the use of selection and iteration constructs. 

Finally, we expect to see logical thinking in the changes made to code (indicated by the “purposeful 

coding effort” measure, see below) to obtain the author’s desired effect. Moving down this 

hierarchy, the CT skills become less abstract. One important level for our engine, in this hierarchy, is 

patterns. The idea of using patterns to reflect CT was proposed by Ioannidou (2011) who, in the 

context of computer games produced by middle-school children, classified the observed behaviour 

of game objects into patterns such as “collision”, “absorption”, “generation”, “diffusion”. Our basic 

patterns comprise organised movement of characters in space-time realised through sequences of 

“tuples” producing behaviour such as characters meeting up, chasing, conversing, observing.  

Research Methodology 
Participants and Procedures 
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This study used an “exploratory data analysis” design where no initial hypotheses were stated; data 

was collected from two groups where we sought to analyse the difference in coding between the 

groups. Group 1 comprised 18 primary school children Yrs 3 to 6 (Grades 2- 5) from a rural and an 

inner-city school and group 2, the “comparison” group comprised 13 “expert programmers”, final 

year Computing students at the University [name suppressed]. The use of undergraduate/college 

students as a comparison group may appear unusual, yet we propose they provided an ideal 

comparison group since we are comparing novice and expert programmers. None of the children 

had prior experience of text-based programming, 6 of them indicated having used Scratch. All 

undergraduate students had experience of coding using at least three text-based languages 

including Java, but they had not met the engine before. We therefore expected them to have stable 

and robust mental models of coding, including knowledge of programming constructs, program 

composition and error correction strategies. Both groups were given the same task, to code an 

animated story, using the same instructional materials; therefore, our comparison would reveal 

differences in coding processes using this particular engine; a focused and objective comparison of 

the two groups. 

The study comprised two phases; during the first instructional phase participants were introduced to 

the engine affordances. They were shown how to add an item of scenery, a character and to make 

the character move, see the code snippet in Table 3. 

-- Table 3 about here -- 

Then they were asked to experiment with the character methods shown in Table 1. Following that, 

programming constructs and the use of tuples were taught directly. This phase lasted two hours and 

was followed by the second phase where participants were asked to independently code a story, 

either a known or made-up story or else letting the story emerge from coding, with help being 

available. The second phase followed one week later and lasted one hour.  

Programming Measurements 
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Primary data comprised extensive records of the participants’ coding activities, automatically 

recorded by the engine, that contained time-shots of code (when the “run” button was pressed) 

including errors reported by the compiler. All records were subject to manual post-hoc analysis. For 

each participant we extracted the number of lines of code written, the time taken, the number of 

corrected errors and the number of tuples used. We introduced a new measure, the purposeful 

coding effort (PCE) that aims to capture the purpose behind changing code. This number was 

obtained manually for each record by incrementing its value for the following changes between each 

run: adding or deleting a line of code, rearranging lines of code, changing the method for a 

character, changing a character, changing a parameter. Error correction was not included. A value 

PCE = 1 is the baseline and corresponds to simply adding lines of code. Values greater than 1 indicate 

the number of changes made to existing code, therefore this measure indicates the amount of 

“purpose” in interacting with the developing program. 

All measures were normalised relative to the total lines in the finished program, yielding PCE/line, 

tuples/line, errors-corrected/line and lines-written/minute; these were then subjected to non-

parametric statistical tests. We first ran an exploratory analysis including the Shapiro-Wilk test that 

indicated that all test data were not-normally distributed (e.g. W = 0.88, p = .03). We then ran the 

two-sample Mann-Whitney Wilcoxon Test for independent variables on each measure, and the 

significance of any differences in the median, and also the effect size between the two groups on 

each measure were calculated. Since this involved running multiple tests on the same data set the 

familywise error would increase beyond the 0.05 significance level. To mitigate against this we 

applied Holm’s variant of the Bonferroni correction (Holm, 1979), where the p-values for each test 

are first ranked in increasing order, and then an adjusted alpha value for each test is calculated as 

0.05/rank. To report the effect size we calculate Pearson’s r according to the expression 𝑟𝑟 = 𝑧𝑧 √𝑁𝑁⁄  

where z is the z-score and N the total number of observations (Rosenthal, 1991, p.19). The resulting 

effect sizes lie between 0 and 1, where as a rule of thumb r = 0.10 is a small effect, r = 0.30 is a 
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medium effect and r = 0.50 is a large effect (Cohen, 1992). All calculations were done using packages 

in the “R”-language. 

Computational Thinking Measurements 
 
To answer our second research question, we restricted measuring CT to the children. Working down 

the hierarchy presented above, we first asked the children to demonstrate their coded story and to 

recount their story. From this we judged whether a meaningful story had been constructed. We then 

reviewed their code looking for use of decomposition. The animation was reviewed and we looked 

for evidence of patterns in the animation and traced any pattern back to the program where we 

looked for evidence of patterns having been made from tuples (abstraction, patterns). Evidence of 

abstraction shown by polymorphic method calls was sought and for records with PCE > 1 we looked 

for evidence of logical reasoning. Finally we looked for examples of algorithmic thinking through the 

use of programming constructs. 

Results of Analysis 
Programming 
 
Results of the Mann-Whitney Wilcoxon Tests are presented in Table 4. 

-- Table 4 about here – 

First the lines/min measure for the children (Mdn = 0.53) differed significantly from students (Mdn = 

1.13), W = 38.5, p = .003, r = 0.55; children are writing code at a lower rate than students, with a 

large effect size. This is expected and reveals the differences in mechanical (keyboard) skills between 

the groups as well as general cognitive development.  Second, the PCE/line measure for the children 

(Mdn = 1.07) differed significantly from students (Mdn = 1.57), W = 31, p = .0009, r = 0.61 with a very 

large effect size. We find that 8/18 children have PCE/line = 1; they are coding a story by simply 

building a sequence of statements. Those with PCE/line > 1 are either, changing parameters, 

changing methods on characters, deleting or moving lines of code. For example child 9 (PCE = 1.61) 

made a series of parameter changes on scenery to adjust the cohesion of the scene. Child 18 (PCE = 
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1.54) changed the target location for a character’s movement and changed a method to control a 

character’s size. Child 5 (PCE = 1.41) changed character method parameters to change their 

appearance, see Table 5. 

-- Table 5 about here -- 

Third, the error corrected/line measure for the children (Mdn = 0.11) did not differ significantly from 

students (Mdn = 0.14), W = 66, p = .29, r = 0.19, and the effect size is small. This is an interesting 

result; there seems to be little difference between the rate of introduction of errors between 

groups. Inspection of the most frequent errors made by both groups show some similarities and 

differences. Both groups miss-spell key words and forget the “;” statement terminator. Children 

often use incorrect method syntax, and students often use an incorrect object. Finally the tuples/line 

measure for the children (Mdn = 0.07) differed significantly from students (Mdn = 0.0), W = 171.5, p 

= .023, r = 0.44, showing a large effect size. Children have learned synchronisation using tuples and 

deploy this to good effect, see Child 10 in Table 5. Inspection of students’ code revealed they had 

developed a heuristic approach to synchronisation, e.g., having discovered that adding an object 

synchronises code up to that point.  

In summary, we have found that students outperform children in both the speed of writing code and 

in changing code with a purpose in mind. Children outperform students in the use of tuples, and 

there is little difference in correcting errors. 

Computational Thinking 
 
We found most children clearly organised their code into “blocks”, e.g. to set up the scene, to have 

character interaction, and to bring the story to its end (decomposition). Three children went beyond 

this and created their own methods to separate out parts of their stories. We found evidence for 

patterns (abstraction) where children combined tuples to great effect. Most children used patterns 

as expected, characters would meet up, they would have conversations, but some children coded 

more complex patterns. One child created a dance routine pattern, where two characters executed 
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synchronous code to obtain a movement pattern that had mirror-symmetry in the horizontal 

direction through judicious selection of parameters; this is clear evidence of logical thinking, see 

Table 6 

-- Table 6 about here -- 

Children made the correct use of polymorphic forms, e.g. using either grog.flyto(40,20); or 

grog.flyto(pip); depending on the current layout of the scene, and they chose suitable method 

parameters, though boys would occasionally exaggerate their values to obtain strange effects such 

as high rates of spinning. Here is evidence of abstraction. There is also evidence of what we suggest 

is “higher-order” abstraction. Consider this line of story-text. “Grog flies to see Pip because they are 

friends”. The second clause (of reason) cannot be coded, the child who wrote this has abstracted out 

that story-text which cannot be coded, but which they feel important for their story. Concerning 

algorithmic thinking, even those children who did not use tuples were able to correctly sequence 

lines of code to produce their desired animation. Only two children transferred their learning of 

programming constructs; one child used iteration to assemble a forest of trees, a second child used 

iteration to generate a sequence of actions to create an excited character. While this is a little 

disappointing, it may be that it exceeds their cognitive capacity, given the range of engine 

affordances available, or simply they did not need to use these constructs. We found no evidence of 

‘bricolage’, looking at children with PCE > 1 we found they were continually making purposeful 

choices, adding and changing code. They were clearly drawing down their experience of story-

writing from literacy classes and from their reading experiences. In summary there is evidence of 

types of thinking going on, and much of this can be described as computational thinking. 

Discussion 
In answer to our first research question “How can we measure the difference between children’s 

and experts’ processes of coding, and what do these differences reveal?”, the four measures we 

have devised report different aspects of children’s coding process and how this differs from experts. 

While experts code faster and are more adept at modifying code for a purpose, the children make 



Primary Children Coding using Java 
 

17 
 

better use of tuples to make the abstract concept of synchronisation concrete and straightforward. 

Unexpectedly we found there was no difference in the rates of error correction. The purposeful 

coding effort (PCE) measure revealed useful information about how children compose their 

programs. A future study will investigate the use of this measure over groups of children of different 

ages in K-12 to explore age-related differences. In answer to our second research question “Is there 

any evidence for CT in children’s programs?” we have found clear evidence of children using the 

concepts of abstraction, decomposition, logical thinking and patterns.   We are tempted to speculate 

that the use of patterns is related to the Story-Writing-Coding context.  

There are of course limitations to this study. The sample size was small, however this is mitigated by 

the use of the appropriate statistical tests. The lack of use of selection and iteration (algorithmic 

thinking) is a concern and may point to a limitation of Story-Writing-Coding, or at least of the engine 

in its current form. While we are confident about our analysis of CT as presented here, we have 

some reservations about the CT factors identified in the literature. Future research will focus on 

abstraction, logical thinking and patterns that pick up various elements discussed in this paper. 

This research leads us to formulate suggestions for the practitioner. First we encourage primary 

teachers to consider using a text-based language in their teaching, especially platforms that produce 

graphical output. Second we encourage them to monitor the development of children’s programs 

over time, using a measure such as our PCE. Third we encourage them to critically evaluate concepts 

within CT, and to teach these linked closely to programming. Fourth we encourage teachers to adopt 

our Story-Writing-Coding approach, since it taps into the inherent desire and ability of children to 

tell stories. Finally we invite researchers to consider using students as a comparison group to 

evaluate children’s progress. The authors are willing to share the engine and a range of teaching 

resources suitable for K-12 educators, and we will also be pleased to receive requests for 

collaboration, please contact the corresponding author. 
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Table 1. A selection of programming methods derived from Systemic Functional Grammar. 

 
 
Movement At 
 

 
Movement To 

 
Appearance 

 
Possession 

 
Talking and  
Thinking 
 

 
Emotions 

 
pip.jump(); 
pip.jump(50); 
pip.spin(); 
pip.flip(); 

 
pip.flyto(10,10); 
pip.flyto(grog); 
pip.leapto(10,10); 
pip.leapto(grog); 
pip.walkto(50); 
pip.runto(50); 
 

 
pip.hide(); 
pip.show(); 
pip.grow(1.5); 
pip.shrink(0.5); 

 
pip.pickup(grog); 
pip.putdown(grog); 

 
pip.says(“Hi”); 
pip.thinks(“No”); 

 
pip.feels(happy); 
pip.is(sad); 
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Table 2. Tuples (here pairs) of code statements used to achieve synchronisation of actions. 

 

 
Both pip and grog jump together 
 

 
Pip jumps then grog departs 

 
pip.jump(); 
grog.jump(); 

 
pip.jump(); 
grog.rest(); 
pip.rest(); 
grog.flyto(100,10); 
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Table 3. Lines of code explained to participants before they experimented with other statements. 

 

 
add(bigtree,70,10); 
add(grog,20,15); 
grog.jump(30); 
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Table 4. Results of statistical analysis for children (child) and students (stud). 

 
 

Measure 
 

Median 
(child) 

 

 
Mean 
(child) 

 
Median 
(stud) 

 
Mean 
(stud) 

 
W 

 
p 

 
rank 

 
𝛼𝛼′ 

(0.05/rank) 

 
r (effect 
size) 

PCE/line 1.07 1.14 1.57 1.54 31 0.0009 4 0.0125 0.61 
Lines/min 0.53 0.49 1.13 1.28 38.5 0.003 3 0.017 0.55 
Tuples/line 0.07 0.11 0.0 0.02 171.5 0.023 2 0.025 0.44 
Error Correction 
/line 

0.11 0.12 0.14 0.16 90.5 0.29 1 0.05 0.19 
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Table 5. Examples of children’s changes to code during development. 

 
 Child 18 Child 9 Child 5 Child 10 
 Changing Methods Changing parameters Changing parameters Using tuples 
Initial 
code 

myant.grow(1.5); add(bigtree,10,50); 
add(bigtree,20,30); 

myant.grow(1.5); 
myant.rest(); 
myant.shrink(0.5); 

pip.flyto(myshell); 
grog.rest(); 
 
 

First 
change 

myant.shrink(0.5); add(bigtree,50,10); 
add(bigtree,20,40); 

myant.grow(4.5); 
myant.rest(); 
myant.shrink(0.1); 

pip.flyto(myshell); 
grog.rest(); 
pip.pickup(myshell); 
grog.rest(); 
 
 
 

Second 
change 

 add(bigtree,50,10); 
add(bigtree,30,30); 

myant.grow(4.5); 
myant.rest(); 
myant.shrink(0.01); 

pip.flyto(myshell); 
grog.rest(); 
pip.pickup(myshell); 
grog.rest(); 
pip.rest(); 
grog.flyto(mystar); 
 
 

Third 
Change 

 add(bigtree,50,10); 
add(bigtree,40,30); 
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Table 6. Code expressing logical thinking, obtaining symmetrical movements. 

 
 
Code for grog 

 
grog.jump(10); 
grog.spin(5); 
grog.rest(); 
grog.walkto(30); 
grog.runto(40); 
grog.hopto(5); 
 

 
Code for pip 

 
pip.jump(10); 
pip.spin(5); 
pip.rest(); 
pip.walkto(50); 
pip.runto(40); 
pip.hopto(80); 
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Figure 1. The user interface showing the code entry box on the left and the canvas on the right. The 

user sees a single canvas; this is repeated here to show the effect of the code execution. 
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