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Abstract 

This dissertation presents new approaches to design and development of 

submillimeter, millimeter, and microwave frequency-selective surfaces (FSSs) 

having extensive applications in wireless communications and radar systems.  

The theory of the surfaces is introduced in Chapter 3 where a new approach to 

miniaturise the size of an FSS array element is presented by interconnecting array 

elements in one direction in a two-layer FSS structure. The top layer acts as an 

enhanced inductor while the bottom layer acts as a capacitor. The interconnection 

between adjacent array elements changes the equivalent circuit and produces a strong 

cross-layer capacitance, which lowers the resonant frequency significantly. The 

dimensions of the miniaturised FSS element are much smaller than the wavelength at 

the resonant frequency (periodicity << λ). Chapter 4 introduces a new methodology 

to design the FSS by maximizing the value of the capacitance between adjacent 

layers. The proposed structure offers three distinctive advantages: Firstly, the strong 

cross-layer capacitance makes the FSS element very compact. Secondly, for the 

proposed structure, the lower the profile, the stronger the cross-layer capacitance, 

and the lower the resonant frequency. This is unique to the proposed structure since 

the resonant frequency is usually higher for a lower profile than for traditional 

structures. Thirdly and most importantly, any external dielectric material attached to 

the FSS will not significantly affect the performance of the FSS due to this strong 

cross-layer capacitance. Chapter 5 introduces novel methodologies to design dual 

band spatial filters by using FSS periodic arrays composed of a bandpass and a 

bandstop element. The fabrication of the dual band filters is significantly simplified 

by using a single metal layer on a dielectric substrate. Chapter 6 introduces a new 

schematic to design a miniaturised high order bandpass FSSs (N ≥ 1), where N is the 

order of the FSS filter, with high performance with a flat in-band frequency response 

and fast roll-off is introduced. Two miniaturised resonant surfaces coupled by a non-

resonant inductive layer are used to build the proposed FSSs. An FSS operating at 

around 3.8 GHz is designed to verify the method. The element size is smaller than 

0.076λ×0.076λ for the proposed structure. This is significantly smaller than the 

element size of second-order FSSs designed using conventional approaches. The 

overall thickness is less than λ/24. The method could be particularly useful for the 
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design of FSSs at lower frequencies with longer wavelengths. Thus, a novel 

approach for designing extreme low profile high-order bandpass frequency selective 

surfaces is introduced in this chapter. The structure is built in such way to obtain 

bandpass response by the coupling between the third harmonic responses of the 

resonators instead of the fundamentals. By parametric study of the proposed 

structure, one can make the coupling between the third harmonics weak with a 

thinner substrate, and then a flat in-band response can be achieved. The overall 

thickness can be reduced to λ/75. Chapter 7 demonstrates FSSs with sharp transition 

edges and almost flat bandpass for submillimetre wave and terahertz applications. 

The proposed structure exhibits a low insertion loss in the desired band. The 

structure is realised by combining bandstop and bandpass FSS structures on the same 

plane. By cascading more than one layer of surfaces, separated by dielectric slabs, 

the response with the desired flat passband characteristics can be achieved. The 

structure is polarisation independent and exhibits low insertion loss at the passband 

around 170 GHz. Finally, Chapter 8 demonstrates an extremely small-size high 

impedance surface (HIS) array element. A trade-off between a miniaturised element 

size and a lowered thickness of the grounded substrate is made to design an 

extremely low profile HIS. Additionally, we propose a way to modify existing 

classical RFID tag designs to enable them to operate well when they are attached to 

dielectric materials. Compared with using an HIS, the antenna bandwidth after being 

loaded with the proposed FSS is increased by approximately 100%. 
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Chapter 1: Introduction 

1.1 Background 

A frequency selective surface (FSS) is formed by periodic arrays of usually 

metallic elements on a dielectric substrate. The geometry of the surface in one period 

(array element) determines the frequency response of an FSS. Various responses can 

be achieved by using different traditional FSS element shapes. The FSS often 

displays selectivity not only on the frequency, but also on the angle and polarisation 

of the incident wave. FSS can be constructed by using identical elements arranged in 

a one or two-dimensional infinite array. If an aperture type FSS is created from a 

patch type FSS in such a way that the metal portions of the former are replaced by 

aperture portions of the latter, then the two FSS are said to be duals of one another. 

The FSSs can be classified as the bandstop patch type and the bandpass mesh type. If 

the metal plates are not connected, it is called a capacitive surface, and it reflects 

high frequencies whilst transmitting low frequencies. On the other hand, its 

complementary structure is called an ‘inductive surface’, which reflects low 

frequencies whilst transmitting high frequencies. Babinet's principle can be applied 

to prove that the transmission coefficient for the complementary structure of one 

array is equal to the reflection coefficient for the array [1, 2]. The frequency response 

of the transmitted signal of the complementary FSS is not exactly the dual of the 

reflected signal of the FSS due to the loss in the dielectric substrate. A perfectly dual 

behaviour for the complementary screen of the proposed filter is expected if the loss 

of the dielectric substrate, as well as the effects of the metal thickness, are neglected 

[2]. Hence, Babinet’s principle can be employed to produce bandpass FSS from 

bandstop FSS, low pass FSS from high pass and vice versa. Different characteristics 

can also be obtained by cascading or combining individual filters. For instance, a 

bandstop filter could be formed by combining a number of bandpass filters.  

The equivalent circuits for a bandstop FSS or a bandpass FSS are the combination 

of LC in series or in parallel, respectively [1, 3]. Traditionally, many different shapes 

have been used to construct an FSS. However, the equivalent FSS circuit is directly 

related to the array element size, shape and the polarisation. Equivalent circuits and 

analysis of some of the traditional structures are provided in [3, 4]. 
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Fig. 1.1. Cassini high-gain antenna (HGA) with a four-frequency FSS [5]. 

 

Fig. 1.2. The high-gain dish has a Cassegrain reflector [6]. 

FSSs have been most commonly used in microwave and optical frequency regions 

of the electromagnetic spectrum and for applications such as antennas, radomes, 

radio frequency absorbers, wireless securities to electromagnetic (EM) shielding 

applications and metamaterials [3, 7-13]. Decreasing loss in antennas and improving 

the radiated power are successfully realised by using these structures [13, 14]. They 

are designed to reflect, transmit or absorb electromagnetic radiation at different 

frequencies [1, 15, 16]. The use of dual-reflector antennas in space missions such as 

Galileo, Cassini, Cassegrain and Voyager, sharing the main reflector among different  

https://en.wikipedia.org/wiki/Antenna_(radio)
https://en.wikipedia.org/wiki/Radome
https://en.wikipedia.org/wiki/Metamaterial
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Fig. 1.3. FSS in different military and civil applications [17]. 

 

Fig. 1.4. The Zumwalt, the largest destroyer ever built for the US Navy [18]. 

frequency bands, has been made possible by using an FSS, [19-22]. Fig. 1.1 shows 

Cassini high-gain antenna (HGA) with a four-frequency FSS [5]. Fig. 1.2 shows a 

Cassegrain reflector in the high-gain dish [6]. FSSs are used in modern military 

platforms such as aircraft, ships and missiles, as can be seen from Fig. 1.3 [17]. FSSs 

can be used in many applications in the civil sector as well, such as the isolation of 

unwanted and harmful radiation in L-band and S-band in hospitals, schools and 

domestic environments. FSSs are widely used for antennas and radar cross section 

(RCS) reduction or components in radar absorbing material (RAM) [23-25]. The 

concept of stealth and operating without the knowledge of the enemy has always 

been a key driver in the development of military technology. As example, Fig. 1.4 

shows the Zumwalt, the largest destroyer ever built for US Navy [18].  

https://www.slideshare.net/altairhtcus/cj-reddy-radomes-altairatc-final
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1.2 Motivations 

FSSs have been the subject of intense investigations on a large scale, as 

microwave and optical filters, for decades [3, 7-13]. The use of FSSs has contributed 

to the increase in the communication capabilities of satellite platforms [20-22, 26]. 

FSS suffers from practical design problems that can be categorised as the bandwidth, 

size of FSS element, sensitivity to the incident angle and sensitivity to the 

polarisation. The reflection and transmission coefficients of the FSS are mainly 

dependent on the shape and size of array elements. Thus, the bandwidth can be 

influenced by the gaps between element’s parts and the gap between adjacent 

elements. The close grating lobe is the main drawback of a passband FSS which 

characteristically damages the stopband behaviour [27, 28]. To position the grating 

lobe far from the passband, the inter-element spacing of single free standing FSS 

must be set less than λ/2, where λ is wavelength at the resonant frequency[1]. It is 

important that the shape, dimensions and spacing of the array elements are designed 

all together to reach the desired resonant frequency and bandwidth, as well as to 

avoid grating lobes. 

Recently, many approaches have been proposed to miniaturise FSS array element 

dimensions. For example, a parallel lumped inductor and a lumped capacitor can be 

used to reduce the size of the FSS array element [29, 30]. Adding meander-slots to 

the circular ring structure can produce FSS array element dimensions much smaller 

than the wavelength [31]. A study in [32] demonstrated a miniature FSS by printing 

micro wire on a dielectric. Printing four symmetrical spiral patterns of metallic 

meander lines can increase the electrical length of the array element and increase the 

value of the resonant components [33]. However, increasing the electrical length of 

an array element with the same physical dimensions has limitations, and could 

increase the complexity of the FSS structure. Thus, a parallel lumped inductor and 

lumped capacitor can be used to design a dually polarised FSS array element in [29]. 

Two metallic layers of an asymmetrical pattern are placed on the top and bottom side 

of a dielectric substrate to display a dually polarised frequency response in [34]. FSS 

structures are composed of arbitrary shapes comprised of metallic patches or 

apertures which are supported by a dielectric substrate. FSSs have been the subject of 

intense investigations in a great number of applications, such as spatial microwave 

and optical filters for decades [1, 7, 8, 35]. 
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Traditionally, the element of a FSS is rotationally symmetrical and the element 

arrays in a multi-layer FSS are aligned with each other. Different techniques have 

been used to achieve stable frequency responses in different polarisations for single 

and multi-layer FSSs under various angles of incident waves. Accomplishing a 

symmetrical FSS array element can contribute to achieving a stable resonance with 

respect to the polarisation and the angle of incidence [29-33, 36]. However, using 

symmetrical array element shapes to avoid polarisation sensitivity can restrict FSS 

design options.  

In most applications, an FSS needs to be attached to a wide variety of dielectric 

materials. In conventional FSSs, the performance of an FSS is greatly influenced by 

the dielectric material it is attached to.  

FSSs have been used in radar absorbing materials (RAM) [24, 25], but it is still a 

challenge to select a wideband FSS for this application. Classical RAM is composed 

of several layers of dielectric or magnetic media. For instance, the two most common 

absorbing screens are the Salisbury and the Dallenbach screens. The first consists of 

a thin resistive film deposited on a perfect metal-backed dielectric, while the second 

is a short-circuited lossy dielectric or magnetic layer. Those absorbing screens are 

described in [37]. An FSS can be deposited on the outer surface of the Dallenbach 

screen to modify and improve the absorption performance of Dallenbach screens. In 

the last few decades, many methods have been adopted to improve the FSS 

performance. The effects of dielectric loading on FSSs were studied in [38]. 

FSSs are also used to build up an artificial magnetic conductor (AMC) or high 

impedance surface (HIS) where the FSSs are placed above a perfect electric 

conductor (PEC) ground plane, with a dielectric material in between [39]. It does not 

support propagating surface waves. It displays a 0o reflection coefficient phase at a 

given frequency [13]. While using a conventional conductor as a ground plane for a 

planar antenna, the power transferred into the surface waves does not contribute to 

the main radiation of the antenna, but is scattered off the edges of the finite ground 

plane and leads to ripples in radiation patterns, increased back radiation, and lower 

polarisation purity. In a traditional HIS, the grounded substrate (the substrate 

between the periodic element and the ground plane) tends to be thick to achieve a 

small HIS array element size. 
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1.3 Shaping a periodic structure 

The choice of selecting the proper element may be of most importance when 

designing either a bandpass or band-stop FSS. Some elements are inherently more 

narrow-band or more broadband than others, while some can be varied considerably 

by design. Different FSS types can be chosen based on the application requirements. 

These requirements usually include a level of dependence on the polarisation and 

incidence angle of the incoming wave and bandwidth. However, it is worth 

mentioning that in general, at least for mechanical and miniaturisation reasons, all 

FSS must eventually be supported by a substantial assembly of dielectric slabs. This 

has a strong effect on the bandwidth variation with angle of incidence and the 

element size. 

 

(a) 

 

(b) 

 

 

(c) 

Fig. 1.5. (a) Loop elements, (b) centre connected elements, (c) patch elements [1]. 

In this chapter we present the most common element types available to FSS 

designers. The elements can be arranged into three groups, Chapter 2, Section 2.1 of 

[1], as shown in Fig. 1.5: The first group is the loop FSSs, such as the hexagonal 

rings, the circular ring, the square rings, the three and four-legged loaded elements. 
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The second group is the centre connected FSSs, such as the square spiral elements, 

the four-legged elements, the Jerusalem cross and the three-legged elements. The 

third one is patch FSSs, such as square, circular paths and hexagonal patches. The 

mechanism of operation in traditional FSSs is based on the resonant elements. The 

idea is that a plane-wave illuminates an array element. This will excite electric 

current on the element. The amplitude of the generated electric current depends on 

the strength of the coupling of energy between the element and the incident wave. At 

the fundamental frequency where the length of the element is λ/2, the coupling 

reaches its highest. As a result, the elements are formed so that they are resonant near 

the frequency of operation. The current itself can act as an electromagnetic source 

depending on its distribution. It produces a scattered field. The scattered field added 

to the incident field forms the total field in the space surrounding the FSS. The 

scattered field can be controlled through the design of the elements.  

The plane of incidence and polarisation of incidence are defined in Fig. 1.6. The 

FSS is excited by an electromagnetic wave with the propagation vector (k) towards 

the z axis, a magnetic field vector (H) towards the x axis and an electric field vector 

(E) towards the y axis direction. ɵ represents the incident angle, while ɸ represents 

the polarisation angle. 

 

Fig. 1.6. The plane of incident wave, ɵ is the angle of incidence, ɸ is the polarisation angle. 

1.4 Dielectric effect on FSS 

What happens if the periodic structure has been completely surrounded by an 

infinite dielectric material with relative dielectric constant εr? The answer to this 
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equation can be drawn from Maxwell’s equations that the resonant frequency would 

reduce by the factor √𝜀𝑟, Chapter 1, Section 1.6.3 of [1]. The second equation, what 

happens when the infinite dielectric material extent reduced to be finite thickness? To 

answer this question - we need to classify the FSS as the two types based on the 

equivalent circuit; the capacitive surface, or the patch type, and the inductive surface, 

or the mesh type. In this way, the study of the effects of dielectric materials on the 

FSS will be easier.  

1.4.1 FSS mesh type 

The dielectric slabs can have a profound effect on the reflection or transmission 

responses. With a finite thickness, the dielectric material’s effect on the FSS 

structures can be explained by using the equivalent circuit analysis and structure 

simulation. The square ring with a strip width (w), as shown in Fig. 1.7, is used here 

as an example for the inductive FSS. Fig. 1.8 shows the equivalent circuit of the 

inductive FSS with both sides attached to dielectric slabs. L represents the intrinsic 

inductance value of the inductive surface. The approximate value of the intrinsic 

inductance L at normal incident wave can be calculated from the strip inductance 

using equations, Chapter 5, Section 5.19 of [40],[41]: 

)]
2

cosec([ln
2 P

wP
L eo




     (1.1) 

where L is the strip inductance, which is determined by the strip length P, the strip 

width w, and the effective magnetic permeability μe of the structure and it is assumed 

to be 1. 

The dielectric slabs can be represented by two short pieces of transmission lines 

h1 and h2. The characteristic impedance of the transmission lines is 𝑍𝑑1 = 𝑍𝑜 √𝜀𝑟1⁄  

and 𝑍𝑑2 = 𝑍𝑜 √𝜀𝑟2⁄ , where Zo is the free space impedance. The transmission lines 

can be replaced with their equivalent circuit model composed of a series inductor and 

shunt capacitor, as shown in Fig. 1.8(b). Using the Telegrapher’s model for TEM 

transmission lines, the series inductance Lt1, Lt2 are simply equal to [42]: 

𝐿𝑡1 = 𝜇𝑜𝜇𝑟1ℎ1    (1.2) 

𝐿𝑡2 = 𝜇𝑜𝜇𝑟2ℎ1    (1.3) 
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Fig. 1.7. An inductive FSS with 3×3 elements, P = 6.8mm. 

 

(a) 

 

(b) 

Fig. 1.8. The equivalent circuit of the inductive FSS type surrounded with dielectric 

substrates. (a) With transmission lines. (b) Using shunt capacitor and series inductor instead of 

transmission lines.  

where 𝜇𝑜 is the permeability of free space, 𝜇𝑟 is the relative permeability of the 

dielectric substrate used and h is the length of the transmission line (equal to the 

thickness of the dielectric substrate). Using a procedure similar to the one used to 
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obtain the values of Ct1, and Ct2, the values of these shunt capacitances are equal to: 

𝐶𝑡1 = 𝜀𝑜𝜀𝑟1ℎ1 2⁄     (1.4) 

𝐶𝑡2 = 𝜀𝑜𝜀𝑟2ℎ2 2⁄     (1.5) 
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Fig. 1.9. Inductive FSS’s resonant frequency shift when attached directly to a variety of 

dielectric materials of arbitrary thicknesses.  

To find the shift in frequency response of the inductive structure due to the 

surrounding dielectric materials, the periodic inductive structure is firstly simulated 

with no dielectric materials nearby. Then the achieved frequency response is 

compared with ones that are achieved when the structure is attached to dielectric 

materials on both sides with varied dielectric constant and arbitrary thickness. Lower 

and higher dielectric constant materials (εr = 3 and 10) are used in these simulations. 

Fig. 1.9 shows the resonant frequency shifts of the inductive FSS structure due to the 

presence of dielectric materials with variable thicknesses. It can be observed that the 

resonant frequency shift is around 𝑓𝑜/√𝜀𝑟 when the low constant dielectric material 

is 3 mm thick and the high dielectric material is 4.2 mm thick.  

If the periodic inductive structure is loaded with single side dielectric materials of 

arbitrary thickness, the resonance shift is smaller than when attached to both sides. 

Fig. 1.10, shows the equivalent circuit of the inductive FSS which attached to one 

side. Fig. 1.11 shows the resonant frequency shifts of the structure when it is attached 

to low and high constant dielectric materials of arbitrary thickness on a side. It can be 

seen that the resonant frequency shift is about 𝑓𝑜/√(𝜀𝑟 + 1) 2⁄  at 3 mm and 5 mm 

thick for the low and high dielectric constant materials, respectively. However, the 
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calculated frequency shifts in case the structure attached to the low dielectric 

constant material shows a good agreement with the simulated ones, as shown in Fig. 

1.9 and 1.11.  

 

Fig. 1.10. The equivalent circuit of the inductive FSS type when one side attached to a 

dielectric slab. 
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Fig. 1.11. Inductive FSS’s resonant frequency shift when attached directly to a variety of 

dielectric materials of arbitrary thicknesses. 

1.4.2 FSS patch type 

If the periodic structure is capacitive, and has been completely surrounded by a 

finite dielectric material with relative dielectric constant εr and finite extent, the 

resonant frequency would reduce further compared to the periodic inductive 

structure. This is because the value of the intrinsic capacitor in the periodic structure  
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Fig.1.12. 3×3 of the capacitive FSS type, P = 5.8mm. 

 

Fig. 1.13. The equivalent circuit of the capacitive FSS type surrounded with dielectric 

materials. 

is increased. In the following paragraphs in this section, more details about the 

intrinsic capacitor will be described. 

A periodic patch is used to represent the capacitive FSS, as shown in Fig. 1.12. 

Fig. 1.13 shows the equivalent circuit of the capacitive FSS with dielectric slabs 

attached to both sides. C represents the intrinsic capacitance value of the capacitive 

surface. The approximate values of the intrinsic capacitance at a normal incident 

wave can be calculated from the path capacitance using equations, Chapter 5, Section 

5.18 of [40], [41]: 

)]
2

(cosec[ln
2

P

gP
C eo




     (1.6) 

where C is the intrinsic capacitance between the two adjacent patches in each layer, 

which is determined by the patch length P, the gap g between adjacent patches and 

the effective dielectric constant ɛe of the structure. Observe that ɛe is (1+ɛr)/2 if the 

dielectric attached to one side of the FSS, while it is ɛr when attached for both sides, 
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Appendix E of [1].  

The shift in resonant frequency of the periodic structure can be calculated by 

using the equivalent circuit shown in Fig. 1.13 with a procedure similar to the one 

used to obtain the values of C, Lt1, Lt2, Ct1 and Ct2. 

Thus, the periodic capacitive structure is firstly simulated with no dielectric 

materials nearby. Then the achieved frequency response is compared with ones that 

are achieved when the structure is attached to dielectric materials on both sides with 

varied dielectric constant and arbitrary thickness. Lower and higher dielectric 

constant materials (εr = 3 and 10) are used in these simulations. Fig. 1.14 shows the 

resonant frequency shifts of the patch FSS when attached directly to a variety of 

dielectric materials of different thicknesses, with g is 0.4 mm. 

It can be observed that the frequency is shifted to around 𝑓𝑜/√𝜀𝑟  when the 

dielectric slabs on both sides are 0.3 mm thick or thicker for the low dielectric 

constant material, and 0.1 mm for the high dielectric constant material.  
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Fig. 1.14. Patch FSS’s resonant frequency shift when attached directly to a variety of 

dielectric materials of arbitrary thicknesses. 

Fig. 1.15 shows the equivalent circuit of the capacitive FSS attached to dielectric 

materials on one side only. Fig. 1.16 shows the simulation and calculation results of 

the resonant frequency shift of the capacitive FSS. It can be seen that the resonant 

frequency is shifted to about 𝑓𝑜/√(𝜀𝑟 + 1) 2⁄  at 0.3 mm thick and 0.1 mm thick for 

the low and high dielectric constant materials, respectively.  
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Fig. 1.15. The equivalent circuit of the capacitive FSS type when one side is attached to a 

dielectric slab. 
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Fig. 1.16. Capacitive FSS’s resonant frequency shift when attached directly to a variety of 

dielectric materials of arbitrary thicknesses. 

 The shift of the resonant frequency of a capacitive structure is bigger than an 

inductive one when attached to dielectric materials. It can be clearly explained from 

(1.6), where the intrinsic capacitance depends on the effective dielectric constant ɛe. 

The surrounding dielectric directly changes the effective dielectric constant value and 

thus the capacitance. 

1.5 Experimental setup 

Transmission characteristics of FSS devices can be measured via several methods 

[43, 44]. The measurement setup for an FSS is shown in Fig. 1.17. Two horn 
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antennas and a vector network analyser are used. The experiment setup is composed 

of two antennas which are pointing toward each other. The FSS under test is placed 

between the antennas. The distance should be large enough to satisfy the far field 

condition (meeting > 2A2/ criteria) [45], where A is the antenna size and  is the 

free space wavelength at the resonant frequency. Thus, the wave arriving at the FSS 

can be considered as a plane wave.  

 

Fig. 1.17. Experiment setup to measure the transmission coefficient. 

To avoid spillover or diffraction at the edge of the FSS, RF absorbing materials 

are used around the edges. In order to ensure the measurement accuracy, a calibration 

can be carried out. Without the FSS, the transmission coefficient could first be 

measured as the reference for 100% transmission (S21 = 1 or 0 dB). When the FSS is 

under test, the measured transmission coefficient will be normalised to the reference. 

In order to measure the transmission at different incident angles, the FSS holder 

fixture can be rotated to the angle of interest. In this case, the measurement accuracy 

is not as good as the normal incident angle due to the limited size of the FSS. 

The line of sight between the two antennas passes through the centre of the FSS 

prototype. The antennas are aligned to ensure the formation of uniform plane wave 

impinging upon the FSS structure. The phase error can be calculated using the path 

length difference between the centre and the edge. The formula to calculate the phase 

difference across the aperture is the distance difference•2π/. Typically, it should be 

smaller than 90 degrees.  

Ideally the array size should be as large as possible. Since the measurement is a 

comparative one (compared with the response without the FSS), the array size of 

1.45 × 1.45 appears to be large enough to give reliable results.  
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To measure the reflection, the two antennas are used as the transmitter and 

receiver, respectively, at the same side of the FSS, as shown in Fig. 1.18. They are 

separated by an absorber screen to eliminate the direct coupling between them. A 

calibration can be carried out in order to ensure the measurement accuracy. The 

reflection coefficient will be first measured with a plane sheet of metal instead of the 

FSS as the reference for 100% reflection (S11 = 1 or 0 dB). When the FSS is under 

test, the measured reflection coefficient can be normalised to the reference. 

 

Fig. 1.18. Experiment setup to measure the reflection coefficient with oblique incidence 

orientation. 

1.6 Outline of the thesis 

In this article, Chapter 1 presents the background about the FSSs and an overview 

of technologies researched and developed with the aim of solving them. It also shows 

the dielectric effects on the periodic structures. 

Chapter 2 introduces the theory and background of FSS operation. A brief history 

of the development and research of FSS design is presented. It also presents typical 

different designs of FSS array elements.  

Chapter 3 introduces a new technique to miniaturise FSS array elements by 

interconnecting adjacent elements in one direction, and deals with the problem of the 

sensitivity of polarisation angles when using asymmetrical array elements. 

In Chapter 4, a novel multi-layer structure is proposed to construct an FSS. The 

performance of the proposed structure is very stable when it is attached directly to a 

wide variety of dielectric materials of varied thicknesses.  

Chapter 5 presents design examples of FSS array elements with multiple bands for 
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millimeter and microwave applications. 

In Chapter 6, design methods of high order bandpass FSSs with desired features, 

such as lower-profile, compact size and sharp transition edges, are proposed and 

verified.  

Chapter 7 focuses on THz FSSs and proposes new approaches to design FSSs 

with low loss and sharp edges. The structure is also easy to fabricate.  

 Chapter 8 focuses on the application of FSS, such as an extreme small size 

artificial magnetic conductor (AMC) array element, and the use of an FSS for robust 

antenna mounted on a plurality of dielectric surfaces. 

Chapter 9 concludes with the summary and outlines potential future work 

resultant from the dissertation. 
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Chapter 2: Basics and Literature Review 

2.1 Introduction 

This chapter provides a summary of the relevant theoretical basics for FSS 

designs. It also provides a revision of the research areas of this work and aims to: 

summarise all the basic required knowledge for the design of FSSs; review the 

subject to understand the current challenges and the contributions of this work and 

build a solid base for the analysis in the following chapters. 

2.2 A brief FSSs history 

The defining feature of an FSS is its ability to act as a surface with bandpass or 

bandstop filtering properties to incident waves. This is accomplished through a 

periodic array of conductive elements that capacitively and inductively couple when 

excited by incident electromagnetic waves (e.g., a plane wave). A parabolic reflector 

grid using an array of resonant dipoles was one of the earliest forms of an FSS which 

was designed and patented by Marconi and Franklin in 1919 [1]. Much of the 

research into what are now referred to as FSSs did not gain momentum until the 

1960s and 1970s. During this time, the Air Force Avionics Laboratory was involved 

in FSS development for radar and stealth applications [1], [2]. This research included 

new FSS element designs such as crossed dipoles which had greater versatility than 

the single resonant dipoles investigated previously. They provided better 

performance, including insensitivity to angle of incidence (the angle between the 

direction normal to the plane of the FSS and a plane wave’s direction of 

propagation), which also made FSSs useful for certain applications such as stealth 

radomes and multi-band Cassegrain reflector dishes in antenna systems, [1], [3]. A 

few decades ago, a new trend for related research began. It focused on new methods 

of FSS design and development for general use. More recently, improvements in 

computing technology led to the use of numerical solvers, leading to many different 

FSS designs and applications including active FSSs [4], fractal element [5], and 

three-dimensional (3D) FSS structures [6]. 
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2.3 Practical design problems 

In addition to the shape, the response of an FSS is affected by other factors, such 

as the incident angle of an impinging plane wave which can cause the resonant 

frequency to draft or be dampened. Curvature of the FSS can greatly alter the 

frequency response. The inter-element spacing of the FSS must be set less than λ/2 to 

avoid grating lobes. Thus, the frequency response of an FSS is influenced by the 

presence of the dielectric material (see Chapter 1, Section 1.4). As, a result, the 

practical issues of the FSS structure must be evaluated to understand how an FSS 

will behave in a real system. 

2.3.1 Wave incident angle  

An FSS will be excited by normal incident waves. The resonant frequency and the 

bandwidth of an FSS will be affected by the incident angle. These effects are mainly 

due to the fact that the values of the inductance and capacitance of an FSS depend 

not only on the polarisation angle but also on the angle of incidence and on whether 

the polarisation is TE or TM. The resonant frequency of an FSS changes mainly 

because values of reactances (capacitance and inductance) are changed as the angle of 

incidence (Ɵ) changes and also on whether the polarisation is TE or TM. More details 

will be provided in Section 2.4.  

The variations in the bandwidth of the structure as the angle of incidence varies 

can be attributed to the change of wave impedance, which will change the loaded 

quality factor of a resonator in an FSS structure. For the TE mode, the wave 

impedance changes to Zo/cos (Ɵ) [7], where Ɵ is the incident angle. Therefore, in the 

case of a large incident angle, the wave impedance increases, and the bandwidth 

decreases for parallel resonators because the loaded equality factor QL increases, 

while the bandwidth increases for a series resonator. For TM mode, the wave 

impedance changes to Zo cos (Ɵ) [7], as the incident angle changes. For this reason, 

QL decreases for large incident angles, and consequently the bandwidth increases for 

the parallel resonator, while it decreases for the series resonator. 

However, in a practical demonstration, an FSS may need to be designed to operate 

under different angles of incidence. For most cases, the effects of incident angle on 

the frequency response of an FSS can be mitigated by three design techniques. 

Firstly, the effects can be reduced when the FSS is embedded in dielectric materials 
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[3, 8]. Secondly, miniaturisation of the FSS element size can enable the FSS to have 

sufficient number of elements, which can contribute to reduce the effects of the 

changes in the incident angle [9].  

The third method, is to be reducing the inter-element spacing [1]. By doing this, 

whilst the space between elements is minimised, the effect of phase difference 

between elements caused by incident angle can be also reduced. 

2.3.2 Curved FSS 

Another practical issue for the implantation of an FSS structure is that the FSS 

structure may need to be a curved. Examples of applications for a curved FSS are 

stealth radome structure and sub-reflector antenna [10]. When an FSS is curved, 

changes in the frequency response of the FSS can occur depending on the nature of 

the curvature. It is worth considering two particular types of curvature [11]; the 

single curved FSS and the doubly curved FSS. The single curved FSS conforms to 

the shape of a cylinder, whilst the double curved FSS conforms to a conically 

rounded or spherical shape. In fact, the effect of the single curvature FSS on 

frequency response is less severe than that of the double curvature. Compared to an 

equivalent planar FSS, a curved FSS will have altered resonant response. This is 

mainly because curvature can cause changes in coupling between FSS elements. 

Thus, the curvature causes a different incident angle amongst FSS elements, causing 

differences in both magnitude and phase for each element in FSS structure [11, 12]. 

In addition for that, the curvature can cause a variation in phase difference over the 

FSS[12], and coupling between non-adjacent elements [11]. 

2.3.3 Grating lobe 

The grating lobe can be explained by using a plane wave incident upon a one-

dimensional periodic structure with inter-element space Dx, Chapter 1, Section 1.9 of 

[1], as shown in Fig. 2.1. It can observed from Fig. 2.1(a) that each element will have 

phase delay ( β Dx sin η) with respect to its neighbour to the left, where η is the 

incident angle. The same element will be ahead in phase for both the forward and the 

specular directions, and plane waves can always propagate in these directions.  
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(a) 

 

(b) 

Fig. 2.1. Plane wave incident upon a periodic structure [1]. 

However, the incident wave can propagate in other directions as can be seen in 

Fig. 2.1(b), where, ηg is a possible grating lobe direction. It can be observed from 

Fig. 2.1(b) that the total phase delay of an element is β Dx (sin η + sin ηg). 

Propagation is possible only if the delay equals a multiple of 2π, or 

β Dx (sin η + sin ηg) = 2πn    (2.1) 

where β =2π/λg, n is integer number, Dx is the interelement spacing along x axis, 

and λg is the wavelength at grating lobe frequency. 



Chapter 2: Basics and Literature Review   P a g e  | 26 

 

2.4 Strip equivalent circuit 

Transmission and reflection coefficients of periodic arrays of conducting strips are 

frequency dependent and also dependent upon the orientation of the incident electric 

field relative to the strips [3]. The reactance of the strips is inductive when the 

tangential of the incident electric field is parallel to the strips, as shown in Fig. 2.2, 

causing high reflection (or very little transmission) at low frequencies. The 

transmission declines further, as a consequence of decreasing the inductance when 

the periodicity P decreases, or when their width w increases. The values of reactances 

depends not only on P and w but also on the incident angle (Ɵ) and also on whether 

the incidence is TE or TM. The approximation value of inductance, Chapter 5 of [13] 

is: 
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where L is the strip inductance, which is determined by the strip length P, the strip 

width w, and the permeability μ of the structure. 

When the E field is perpendicular to the strips, the approximation value of the 

capacitance, Chapter 5 of [13] is: 
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where C is the intrinsic capacitance between the two adjacent patches, which is 

determined by the strip length P, the gap g between adjacent strips and the dielectric 

permittivity (ɛ). 

Based on the equivalent circuit, a different response can be achieved. Designing 

an FSS by using conducting strip can be performed in three simple steps. The first 

step is to obtain the appropriate element values for an equivalent circuit model for a 

desired response. This can be accomplished using circuit simulation software such as 

the Agilent Advanced Design System (ADS). In the second step, the FSS element can 

be formed to have structures to realise the components in the equivalent circuit which 

were obtained in the first step. The final step of the design procedure is to map the 

desired capacitors and inductors values obtained from above formula to geometrical 

parameters of the periodic structures.  
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Numerical analysis is performed on the complete array element of the proposed 

FSS consisting of the metallic structures and the dielectric substrates by using CST 

Microwave Studio. Unit cell boundary condition is applied to provide periodicity 

along the x and y axes. The FSS is excited by an electromagnetic wave with the 

propagation vector (k) parallel to the z axis, magnetic field vector (H) parallel to the 

x axis and electric field vector parallel to the y axis direction (see Fig. 1.6). Based on 

the results achieved from the full-wave simulation, the dimensions of the wires are 

fine-tuned to obtain the desired frequency response.  

 

Fig. 2.2. Parallel wires used as the inductor or capacitor based on the electric field direction. 

A bandpass, a bandstop and a dual-stopband FSS will be designed as examples of 

the proposed procedure. In all cases, the array element dimensions are 6×6 mm2, the 

wire width is 0.2 mm and the thickness of the FR4 substrate is 1.6 mm. FR4 is a 

dielectric materials (glass epoxy), with 4.4 dielectric constant and 0.025 tangent loss 

at 10 GHz. 

 2.4.1 Wide bandpass FSS 

As mentioned in the design procedure, the first step to design an FSS is by 

obtaining the equivalent circuit of a frequency response. As an example, Fig. 2.3 

shows the response of the FSS; such a response can be obtained by using the 

equivalent circuit, as shown in Fig. 2.4. It is designed by combining L with series LC 

in parallel, where Zo is the free space impedance and is equal to 377 Ω. The 

equivalent circuit exhibiting the wideband response, is shown in Fig. 2.5, with the 

components of: C1= 0.3 pF, L1= 2.73 nH, Ls = 2.36 nH. In the next step, the initial 
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dimensions of these LC components can be approximated using (1.1) and (1.6).  
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Fig. 2.3. Transmission coefficient of the bandpass response. 

 

Fig. 2.4. The equivalent circuit of the desired bandpass response. 

 

 

Fig. 2.5. The equivalent circuit of the proposed FSS structure (bandpass FSS), and the 

equivalent surface shape. 

Finally, based on the results obtained from full-wave simulation (CST Microwave 

Studio) on the array element of the proposed FSS, the dimensions of the inductive 
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and resonant surfaces of the structure are tuned to achieve the desired frequency 

response. The theoretical values for the final geometry dimensions are: C1= 0.195 

pF, L1= 3.05 nH, Ls = 2.64 nH.  

 

(a)                                                              (b) 

Fig. 2.6. (a) Geometry dimensions of the proposed bandpass FSS, (b) 3×3 array elements of the 

proposed FSS structure. 

Fig. 2.6(a) shows the geometry dimensions of the array element of the proposed 

bandpass FSS. Fig. 2.6(b) shows the 3×3 array element of the FSS. Fig. 2.7 shows 

the simulated transmission coefficient. The resonant frequency is about 3.8 GHz. The 

insertion loss is 0.13 dB at the resonant frequency. The size of the array element is 

0.08λ × 0.08λ. 
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Fig. 2.7. Simulation result of the transmission coefficient of the designed bandpass FSS. 
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2.4.2 Wide bandstop FSS 

 

Fig. 2.8. The equivalent circuit of the desired response (wide stopband), and the equivalent 

surface shape. 

In this section, the proposed design procedure will be used for designing an FSS 

with a wideband bandstop response. The response can be obtained by using a series 

LC, as shown in Fig. 2.8. The geometry dimensions of the array element of the 

bandstop FSS are shown in Fig. 2.9(a). Fig. 2.9(b) shows the 3×3 array elements of 

the structure. 

The simulated result of the transmission coefficient is shown in Fig. 2.10. The 

structure exhibits bandstop response at 5.1 GHz, with the array element size of 

0.102λ. It also has a wideband bandstop bandwidth. The fractional bandwidth 

(BW/fo) is 120%, where BW is 3 dB bandwidth and fo is the resonant frequency. 

 

(a)                                                           (b) 

Fig. 2.9. (a) Geometry dimensions of the proposed wide stopband FSS, (b) 3×3 array 

elements of the proposed wide stopband FSS structure. 
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Fig. 2.10. Simulation result of the transmission coefficient of the designed bandpass. 

 2.4.3 Dual-band bandstop FSS 

Fig. 2.11 shows an equivalent circuit model which is proposed to characterise a 

dual-stopband FSS. The equivalent circuit of the proposed dual-band bandstop is 

based on connecting a parallel LC with a series LC in series. The resonant 

frequencies of the parallel LC circuit and the series LC circuits are very close to each 

other. Such equivalent circuit can be formed by using the wires in the shape shown in 

Fig. 2.11. The geometry dimensions of the array element of the dual-band bandstop 

FSS are shown in Fig. 2.12(a), while the 3×3 array elements of the proposed 

structure are shown in Fig. 2.12(b). 

 

 Fig. 2.11. The equivalent circuit of the desired response (dual stopband), and the 

equivalent surface shape. 
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                    (a)                                                                         (b)   

Fig. 2.12. Geometry dimensions of the proposed dual-band bandstop FSS, (b) 3×3 

array elements of the proposed FSS structure. 
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Fig. 2.13. Simulation result of the transmission coefficient of the designed dual 

stopband. 

2.5 Shape and size of FSS array elements 

The shape and size of the array element contributes to the response of an FSS for 

waves with various incident angles. Designing an FSS with array elements that have 

a specific response and compact size is difficult because it requires very good 

analytical skills to achieve a desired response. Many approaches have been proposed 

to miniaturise FSS array element dimensions. The miniaturisation is mainly achieved 
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by increasing the equivalent lumped-element values of resonant structures and it 

requires increasing the electrical length of an array element, where the electrical 

length is the length of an element in terms of the wavelength. The increasing of 

electrical length can be obtained by using lumped components (capacitor and 

inductor) in an array element. Additionally, it can be achieved by using a complex 

and sophisticated structure. Thus, the electrical length of an array element can be 

increased by increasing the effective dielectric constant or embedding the entire FSS 

in a material that has a higher dielectric constant than air. Unfortunately, high 

dielectric constant materials tend to have high loss tangents.  

The most significant work that was conducted in the subject areas of the thesis is 

reviewed in the following sections. 

2.5.1 Miniaturised FSS 

Different approaches have been used to design miniaturised FSS and to obtain 

stable frequency responses in different polarisations under various angles of incident 

waves for single and multi-layer FSSs [9, 14-18]. 

 Metallic patches and wire meshes are separated by a dielectric substrate which 

were used to miniaturise the array elements in [9, 14]. An FSS element miniaturised 

by using lumped components has been presented in [19]. Another approach was 

adopted in [20] by cascading interdigitated capacitors on a thin substrate layer. By 

cascading a square-loop slot with a periodic array of metallic patches, a compact FSS 

is implemented on an ultra-thin dielectric layer in [21].  

In [9], the cascading of traditional structures, patch and grid, are separated by a 

dielectric layer which together act a bandpass FSS. The structure is shown in Fig. 

2.14. The corresponding equivalent circuit of this resonator is a parallel LC, where L 

acts the grid layer, while C acts the patch layer. The structure shows a relatively 

stable resonant frequency for a range of incident wave angles. The dimensions of the 

array element of this structure are 0.2λ×0.2λ, where λ is the wavelength at resonant 

frequency. This structure is large, especially for lower band applications. 
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Fig. 2.14. bandpass by printing patches and grids on both sides as proposed in [9]. 

In [22], a bandpass FSS is constructed by using patch and inductive layers. This 

structure is built by using four symmetrical metallic patches and patterned-wires as 

shown in Fig. 2.15, separated by dielectric slab. The inductive layer is constructed by 

using meander lines to increase the inductance. Fig. 2.16(a) and (b) shows the 

structure frequency response with respect to different incident angles for TE and TM 

modes, respectively. It can be observed from Fig. 2.16 that the structure demonstrates 

a relatively stable resonant frequency with respect to different polarisations and 

incidence angles. The structure has a compact element, moreover the element 

dimensions are 0.104λ×0.104λ. 

 

Fig. 2.15. The bandpass by printing patches and grids on both sides of a dielectric slab as 

proposed in [22]. 
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                        (a)                                                                                   (b) 

Fig. 2.16. Transmission coefficients under various incident angles [22], (a) TE mode, (b) TM 

mode. 

In [15], adding meander-slots to the circular ring structure can make FSS array 

element dimensions much smaller. Fig. 2.17 shows two unit elements of this 

structure. This structure is a single-layer (metal-dielectric). By adding meander-slots 

to the circular ring element, the values of capacitor and inductor can be increased. 

The dimensions of the array element can be reduced to 0.088λ×0.088λ. 

 

Fig. 2.17. Two elements of the proposed structure in [15]. 

In [16], a miniature low-profile FSS by printing wire (200 μm width) on both 

sides of a thin dielectric slab has been demonstrated. This structure, as shown in Fig. 

2.18, exhibits a bandstop response at 3.33 GHz, with stable resonant frequency until 

88o for TE and TM modes, as can be observed from Fig. 2.19. The dimensions of the 

element are 0.067λ×0.067λ, with a 0.127 mm thick Rogers RT/duroid 5880 substrate 

with a dielectric constant of 2.2.  
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Fig. 2.18. The proposed FSS in[16], (a) 2×2 array elements , (b) equivalent circuit model for the 

element. 

 

 
 (a)       (b) 

Fig. 2.19. The frequency response of the proposed structure in [16], under a wide range of 

incident angles, (a) for TE mode (b) for TM mode. 

 

In [17], using four symmetrical spiral patterns of metallic meander lines can 

increase the electrical length of the array element and increase the value of the 

resonant components. The array element of this structure is miniaturised based on 

increasing the inductance value by using the spiral shape, as shown in Fig. 2.20. 

While, by decreasing the space between the spiral turns, the capacitor value will be 

increased. The array element size for this structure is 0.061λ×0.061λ. The structure 

shows a stable resonant frequency under different incident angles, especially for TE 

mode.  
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Fig. 2.20. The four symmetrical spiral element proposed in [17]. 

One way to make a compact element is by using vias. They are employed in the 

2.5-Dimensional (2.5-D) FSS to increase the capacitive coupling between proximal 

elements and for connecting the various substrate layers within the element to 

increase its inductance [23, 24]. 

 In [25], two pairs of split rectangle rings (one pair on the top and the other pair on 

the bottom of the substrate) are connected in series by vias to miniaturise the 

element. The proposed FSS element has a longer perimeter due to the connection 

between the top and bottom layers by using vias, as shown in Fig. 2.21. The 

dimensions of the element for this structure are 0.048λ × 0.048λ, and provides 

favourable resonant stability at various polarisations and incident angles. 

 

Fig. 2.21. The two pairs of split rectangle rings proposed in [25]. 
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However, all references mentioned in the literature review are sensitive to the 

nearby dielectric materials. This is because the intrinsic capacitor in an FSS is 

sensitive to dielectric materials. Thus, the corresponding equivalent circuit of an 

element will be changed when the element is attached to dielectric materials, as 

mentioned in Chapter 1. 

2.5.2 High order FSS 

Although theoretically similar to a classical microwave filter, a spatial filter is 

more complicated. A classical filter has a pair of terminals (input and output). The 

response is recorded at the output when a signal is fed to the input terminal. A spatial 

filter has a wave arriving at variable incident angles as well as polarisations. This fact 

has major impact on the transmission responses. Moreover, FSSs have finite 

dimensions. The desired frequency selective response can only be observed when the 

finite surface includes a sufficient number of constituting elements and is illuminated 

by a planar phase front, Chapter 1, Section 1.1 [1]. For some applications, such as 

low-frequency antenna radomes, FSSs with array elements of relatively small 

electrical dimensions are highly desirable because they are less sensitive to the angle 

of incidence and can operate for non-planar phase fronts [26]. A bandpass FSS can be 

built by cascading two or more surfaces isolated by dielectric slabs. The thickness of 

the dielectric slabs is usually around a quarter of wavelength in order to obtain flat 

frequency response and fast roll-off, Chapter 1, Section 7.1 [1]. As a result, the 

structure will be bulky, and sensitive to the wave incident angle, especially for low 

frequency applications.  

Many different techniques have been used to design miniaturised and low profile 

high order FSSs.  

In [27], using non-resonant traditional patch and grid to design a low profile 

second-order bandpass FSS was given. Fig. 2.22 shows the array element of the 

second-order FSS. The simulated transmission coefficient for this structure is shown 

in Fig. 2.23. For the TE mode, the bandwidth decreases and the bandpass ripple level 

increases when the angle of incidence increases, as can be observed from Fig. 

2.23(a). Fig. 2.23(b) shows the simulated frequency response of the same structure 

under various angles of incidence for TM mode. There are also variations in 

bandwidth as can be observed from Fig. 2.23(b).  
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Fig. 2.22. The low profile, second-order bandpass FSS presented in [27]. 

 

 

  (a)      (b) 

Fig. 2.23. The simulation result of the prosed structure in [27]) TE mode, (b) TM mode. 

 

Fig. 2.24. The miniaturised second-order bandpass FSS utilising interdigital capacitors, as 

proposed in [27]. 
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The variations observed in the bandwidth of the structure as the angle of incidence 

changes, can be attributed to the change of wave impedance, which in turn will 

change the loaded quality factor of the resonators of the coupled resonator FSS (see 

Chapter 2, Section 2.3.1). 

The size of the array element of this structure is miniaturised further by increasing 

the capacitor value. This is done by using interdigital capacitive patches for the first 

and third layers, as shown in Fig. 2.24. The element size of this structure when using 

patches is 0.19λ×0.19λ, while it is to 0.15λ×0.15λ after using the interdigital 

capacitive patches, with λ/30 overall thickness.  

 In [28], a high order bandpass FSS with narrowband responses by using 

inductively coupled miniaturized element is reported. In these structures, two 

resonators or more are coupled together using impedance inverters to obtain the 

desired frequency response. The resonators in this FSS filter are formed by using 

dielectric spacers (substrate), and they are coupled by using shunt inductors, as shown 

in Fig. 2.25.  

 

Fig. 2.25. Equivalent circuit of the high order FSS proposed in [28], (a) the transmission-line 

resonators (dielectric spacers), (b) circuit model of the admittance inverters used to couple the 

resonators, (c) equivalent circuit of the high order FSS when the resonators and the admittance 

inverters of (a) and (b) are put together in a ladder network.  

The resonators in this structure are half-wavelength spacers. The spacers are 

modelled with transmission lines with characteristics impedance 𝑍𝑗 = 𝑍𝑜 √𝜀𝑟,𝑗⁄ , 

where Zo is the free space impedance (377Ω). Fig. 2.26 shows a second-order 
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bandpass is designed based on using inductively coupled element. The two inductive 

wire grids placed in the centre are separated from one another by a thin prepreg layer. 

These two inductive layers constitute a single hybrid inductive layer, in order to 

maintain the symmetry of the structure.  

The structures exhibit a narrow bandpass with element size is 0.21λ×0.21λ, and the 

overall thickness is λ/3.7. 

 

Fig. 2.26. Element of the second-order bandpass proposed in [28].  

 FSSs capable of providing transparency windows at two or more frequency bands 

are highly desired. Multilayer structures composed of a combination of resonant and 

non-resonant elements have been used to obtain dual-band operations with closely 

spaced [29] or arbitrary bands of operation [30]. A composite element consisting of 

four compact U-shaped slot resonators rotated by 90° was used to achieve a closely 

spaced dual-band operation [31].  

In [32], a miniaturised dual-band FSS high order bandpass response at each 

operation band is designed by cascading a two-dimensional periodic array of grids, 

and capacitive patches separated by dielectric slabs. This structure, as shown in Fig. 

2.27, is built based on combining inductively coupled resonators with using the 

capacitively loaded dielectric spacers as main resonators. As an example, for the 

second-order bandpass FSS, the array element size at first band is 0.1λ×0.1λ with the 

overall thickness being λ/4.5.  
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Fig. 2.27. The dual-band Nth-order bandpass FSS. The structure has N sets of composite 

resonators. Each composite resonator is composed of two dielectric substrates with thicknesses of 

h j,1 and h j,2, having a capacitive patch layer in between [32]. 

 

 

Fig. 2.28. Topology of the third-order bandpass FSS presented in [26]. 

In [26], a third order bandpass FSS by using a combination of resonant and non-

resonant elements is presented. This structure is built up using two arrays of sub-

wavelength patches which separated from a periodic array of miniaturised slot 

antennas by two very thin dielectric slabs, as shown in Fig. 2.28. The dimensions of 

the array element are 0.16λ×0.16λ, with an overall thickness of λ/24. 
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The high order FSSs discussed in the literature would be unsuitable for lower 

band application due to the relatively large element size. Thus, most of the structures 

which presented in these references have thick substrates (around λ/4). 

2.6 Examples for designing FSS 

Designing an FSS with different response characteristics and compact size will be 

described in this section. The use of stepped-impedance structures to design a stable 

FSS structure for various angles of incident wave will be introduced in Section 2.6.1. 

In Section 2.6.2, the design of a miniaturised FSS by using vias will be explained. 

2.6.1 Using stepped-impedance element 

In this section, a novel approach to design a miniaturised FSS is proposed. The 

miniaturisation is achieved by enhancing the inductance of the proposed stepped-

impedance array element. This enhancement is done by using a wire and controlling 

the path of the current which passes through the metallic surface of the element. As a 

result, the dimensions of the miniaturised element are much smaller than the 

wavelength at the resonant frequency. The periodicity is 0.09λ. The structure consists 

of single metal layer array elements with a simple configuration shape. It can be 

presented for the both single and dual polarisations. For dual polarisation, through an 

example with a pass-band at 3GHz, it exhibits insensitive frequency responses of 

different angles of incident wave. It is demonstrated that a stable resonant frequency 

under various angles of incidence (up to 88o) can be achieved, which is the most 

attractive feature of this design. The miniaturised element is much smaller than the 

wavelength (up to 0.09 λ).  

2.6.1.1 Circuit design 

The proposed approach is based on modifying the current path of a square patch 

FSS array element to enhance the inductance. Increasing the length of the current 

path can be an alternative technique to increase the inductance while keeping the 

shape of array element simple.  

The frequency response of the resonator elements can be determined by 

evaluating the capacitance and inductance of the array element. An approximate 

value of the inductance of an FSS element can be given by (1.1). The value of the 
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inductance L is  

 

      (a)                                                  (b) 

 

(c) 

Fig. 2.29. Array element of the proposed FSS structures, (a) the single polarised element 

with the slot toward x axis, (b) the single polarised element with the slot toward y axis, (c) 

the dual polarised array element. 

 

Fig. 2.30. The equivalent circuit of the proposed FSS structure. 

 

determined by the strip length P, the width of strip w and permeability of the 

substrate µ. Fig. 2.29 shows three cases of array element configuration. Fig. 2.29(a) 

shows the structure with a slot parallel to the x axis, while Fig. 2.29(b) illustrates the 

structure with a slot parallel to the y axis. The wire has an inductive effect and the 



Chapter 2: Basics and Literature Review   P a g e  | 45 

 

slot has a capacitive effect. However, these two structures (Fig. 2.29 (a) and (b)) are 

single polarised structures. A modification of the structure in Fig. 2.29 (b) by adding 

a slot and micro-wires parallel to the x axis is shown in Fig. 2.29(c). This makes the 

structure dual polarised. The equivalent circuit is a parallel LC circuit, as shown in 

Fig. 2.30. 

 

Fig. 2.31. 3×3 array elements of the proposed FSS structure. 
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Fig. 2.32. The transmission coefficients of the single polarised proposed FSSs. 

 

The resonator is designed on a 1.5 mm thick FR4 substrate with a relative 

dielectric constant of 4.3. The length of the square patch l is 6 mm. The slot width 

and wire width w are 0.2 mm. The periodic constant P of the array is 9 mm. Fig. 2.31 

shows the 3×3 array elements of the proposed structure. The simulated transmission 
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coefficient of the single polarised FSS structure is shown in Fig 2.32. When the slot 

is parallel to the x axis, the resonant frequency is 2.14 GHz with up to 24% fractional 

bandwidth, while the resonant frequency is 1.85 GHz with up to 27% fractional 

bandwidth when the slot is parallel to the y axis. The difference of the resonant 

frequencies and bandwidths of the single polarised structures are expected because 

the structures have different values of resonant elements.  
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Fig. 2.33. The transmission coefficient of the proposed FSS as a function of incident angles. 

Table 2.1: Comparison of the element with other references 

FSS structure Substrate Thickness 

(mm) 

ɛr Element size 

[9] 1.6 4.3 0.22λ 

[22] 1.6 4.3 0.104λ 

[15] 0.5 3.55 0.088λ 

[16] 0.127 2.2 0.067λ 

[17] 1.6 5 0.061λ 

The proposed dual 

polarised FSS 

1.6 4.3 0.09λ 

The proposed single 

polarised FSS 

1.6 4.3 0.055λ 

 

In the same way, it is shown that the resonant frequency of the proposed dual 
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polarised FSS structure, as shown in Fig. 2.29(c), is 3 GHz with up to 41% fractional 

bandwidth. The resonant frequency of the proposed structure is insensitive to the 

angle of incidence (θ) and valid up to 88o, although the bandwidth is decreased, as 

shown in Fig 2.33.  

A comparison of the FSS array element between the proposed structure and other 

reported miniaturised FSS elements is illustrated in Table 2.1. It can be observed that 

the stepped-impedance FSS is the smallest compared with the listed references. In 

addition, it can exhibit very stable resonant frequency for non-zero incident angles.  

2.6.2 Using vias  

In this section, vias are used to miniaturise the element of a bandstop FSS by 

connecting a spiral layer (inductive) in series with a patch layer (capacitive). 

Compared with previous FSSs, the proposed structure has promising miniaturisation 

features. Stable performance against oblique incidence angles can be realised by the 

miniaturized unit structure and using vias between top and bottom surfaces. The 

dimensions of the proposed array element are only 0.035λ×0.035λ. The top layer is 

constructed by four spiral-shaped structures; the bottom is made of four square-

shaped patches. They are connected in series by vias. In so doing, the values of the 

resonant component values are increased, thus the resonant frequency is shifted 

downwards. The frequency response is insensitive to the oblique incidence angle. 

Also, the proposed design is symmetric around the z axis and can be applied for 

circular polarisation applications. 

 2.6.2.1 Circuit design 

A miniaturised FSS is proposed based on connecting two different layers using 

vias to increase the electrical length. In the FSS array element, four spiral lines are 

connected to the centre point as a unit on the top layer. Four square patch surfaces are 

printed on the bottom of the dielectric substrate. The four spiral lines are connected 

with the four patches by four metal vias. Compared with the traditional FSS element, 

the proposed FSS element has a much lower resonant frequency due to its longer 

electrical length (the length of an element in terms of the wavelength). The 

performance of the FSS using the proposed structure is polarisation independent 

because the structure symmetrical around z axis. The resonant frequency is also 

stable at various polarisations and incident angles. The main design variables and the 
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layout of the proposed element are shown in Fig. 2.34. The proposed FSS with 2×2 

array elements is shown in Fig. 2.35. To verify the proposed structure, numerical 

analysis of the proposed element was performed by using CST Microwave Studio, 

using array element boundary conditions to provide periodicity along the x and y 

axes. The FSS is excited by an EM wave with the propagation vector (K) in the 

direction of the z-axis, magnetic field vector (H) in the direction of the x–axis and 

electric field vector (E) in the direction of the y-axis direction. 

 

Fig. 2.34. An array element of the proposed FSS. 

 

Fig. 2.35. An FSS using 2×2 array element of the proposed structure. 

 

The resonator is designed on a 1.6 mm thick FR4 substrate with a relative 

dielectric constant of 4.3. The periodic constant of the array is 6 mm. The area of the 

square patch is 2.8 × 2.8 mm2. The slot width between patches, S, is 0.2 mm. The 

spiral strip widths are: w1 = 0.3 mm, w2 = 0.5 mm and w3 = 0.2 mm. The space 

between these strips, g, is 0.2 mm. Vias with a radius of 0.2 mm were used to connect 
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the spiral lines and patches between the two layers. Fig. 2.36 shows the simulated 

transmission characteristics of the FSS for the TE and TM modes, with variable 

incident angles of 0o, 15o, 30o, 45o, and 60°. The resonant frequency is 1.746 GHz 

with an up to 45 % fractional bandwidth. The size of the proposed element was 

substantially reduced to 0.035λ × 0.035λ, where λ is the wavelength in free space at 

the resonant frequency. The resonant frequency remains stable for both polarisations, 

even though the incident angle is up to 60o. 
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Fig. 2.36. The transmission coefficient of the proposed FSS as a function of incident angles 

(a) for the TE Mode, (b) for the TM mode. 
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2.7 Conclusion 

In this chapter, FSS history, theory and operation were presented. A number of 

issues for practical implementation of FSS were considered, such as the effects of 

incident angle(s), FSS curvature, and the grating lobe. Examples to design FSS with 

different characterstics and to highlight the geometrical dependence of the FSS’s 

resonant filtering behaviour are descibed. Strips and their eqiuvalent models have 

been discussed. Additionally, different FSS structures and responses were discussed, 

including first and high order FSS. However, they are all sensitive to the dielectric 

materials nearby. The majority of the dimensions of array elements are relatively 

large and supported by thick dielectric substrates, especially for high order FSSs. 

In summary, for any given FSS, an incident wave is either reflected or transmitted 

over certain frequencies because of capacitances and inductances generated. The 

transmission and reflection coefficients of an FSS are affected not only by the 

geometry of the conductors of the FSS, but also by the incident angle, the polarisation 

and the nature of the structure in which the FSS is embedded.  
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Chapter 3: Asymmetrical Array Elements 

3.1 Introduction 

Recently, many approaches have been proposed to miniaturise FSS array element 

dimensions. For example, a lumped inductor and a lumped capacitor in parallel can 

be used to reduce the size of FSS array elements [1, 2]. Adding meander-slots to the 

circular ring structures can produce FSS array elements with dimensions much 

smaller than the wavelength [3]. A study in [4] demonstrated a miniature FSS by 

printing micro wire on a dielectric. Printing four symmetrical spiral patterns of 

metallic meander lines can increase the electrical length of the array element [5]. 

However, increasing the electrical length of an array element with the same physical 

dimensions is limited, and could increase the complexity of the FSS structure. Thus, 

different techniques have been used to achieve stable frequency responses in 

different polarisations for single and multi-layer FSSs under various angles of 

incident waves. Accomplishing a symmetrical FSS array element can contribute to 

achieving a stable resonance with respect to the polarisation and the angle of 

incidence [1-6]. However, using symmetrical array element shapes to avoid 

polarisation sensitivity can restrict FSS design options.  

In this chapter, new approaches are proposed to miniaturise FSS elements and to 

overcome the polarisation sensitivity of unsymmetrical FSS elements. Section 3.2 

describes a new approach to design FSS structure which exhibits stable resonant 

frequency in both vertical and horizontal polarisation, although this element is not 

90o symmetrical in the xy-plane.  

In Section 3.3, the proposed miniaturised FSS is further develop. The same metal 

shape is fabricated on the top and bottom of the substrate. The two layers are 

orthogonal to each other. The elements are interconnected in one direction only. By 

doing so, a cross-coupling capacitor (Ccc) will be generated. This capacitor will 

greatly lower the resonant frequency. Traditionally, in single and multi-layer 

structures, the lower the profile, the higher the resonant frequency, due to the fact 

that the effective dielectric constant is gradually increased when the substrate 

thickness is increased. In contrast, in the proposed structure, the lower the profile, the 

lower the resonant frequency. The frequency response of the miniaturised FSS is 
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demonstrated for various incident angles and it is shown that the performance is very 

stable. Another significant advantage of having two layers orthogonally is that the 

resonator structure in either layer does not have to be rotationally symmetrical by 

90o. An analytical model is derived to evaluate the resonant frequency of the 

proposed miniaturised FSS.  

3.2 Single-layer element 

This section proposes the design of a dual polarised FSS. The FSS can have a 

similar transmission coefficient for different polarisations, although the structure is 

not rotationally symmetrical by 90˚ in the xy-plane. A theoretical equivalent circuit 

model is proposed to characterise the structure, based on the analysis of the FSS 

structure geometry configuration and the distribution of the electromagnetic field on 

it. The FSS structure is built up by using a single-layer for easy fabrication. To 

demonstrate the validity of the proposed structure, the array elements are fabricated 

and tested in free space. 

The proposed FSS resonator is realised by printing a piece of metal on one side of 

a dielectric substrate. It is a ring with two splits. Inside the ring, there are a pair of T-

shaped strips with a gap in the centre, as shown in Fig. 3.1. At vertical polarisation, 

the electric field is in the direction of the y-axis. A mutual capacitance is induced 

between two adjacent cells, shown as (a) in Fig. 3.1. Half of the circumference acts 

as an inductor, as shown as (b) in Fig. 3.1. The two T-shaped strips with a gap 

between them can be represented by a capacitor in series with an inductor, shown as 

(c) in Fig. 3.1. The corresponding equivalent circuit of the resonator, when the 

incident wave is vertically polarised, is shown in Fig. 3.2. It consists of three series 

LC circuits in parallel. L1 and L3 are the inductance of the circumference shown as (b) 

in Fig. 3.1. C1 and C3 represent the mutual capacitances between the adjacent halves 

of the circumference, shown as (a) in Fig. 3.1. L2 and C2 are the inductance and 

capacitance of the T-shaped strips and the gap of the strips respectively, shown as (c) 

in Fig. 3.1. Similarly, for horizontal polarisation mode, the equivalent circuit of the 

resonator can also be described by Fig. 3.2. In this case, L1 and L3 are the inductance 

of the circumference shown as (e) in Fig. 3.1. C1 and C3 represent the mutual 

capacitances between the adjacent halves of the circumference, shown as (d) in Fig. 

3.1. L2 and C2 are the inductance and capacitance of the parts shown as (f) in Fig. 3.1. 



Chapter 3: Asymmetrical Array Elements  P a g e  | 56 

 

The designed FSS can achieve a high-value transmission coefficient, a wide 

operational band, an excellent band edge transition and dual polarisation 

performance. The resonant frequency of the proposed bandpass FSS is 5.26 GHz. 

The fractional bandwidth is 40% at vertical polarisation, while it is about 26% at the 

horizontal polarisation. 

 

Fig. 3.1. Array elements of the proposed FSS filter. 

 

Fig. 3.2. The equivalent circuit of the proposed FSS element. 

3.2.1 Experimental results 

A prototype of this proposed FSS has been fabricated on a 1.5 mm thick FR4. The 

fabricated FSS is shown in Fig.3.7. The size of the FSS prototype is 140 mm × 140 

mm and it consists of 7 × 7 elements. The simulated and measured transmission 

coefficients of the proposed bandpass FSS filter in vertical and horizontal 
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polarisation modes are in a relatively good agreement, as shown in Fig.3.4. The 

centre frequency is 5.26 GHz. The FSS has achieved excellent performance, 

characterised by high transmission of the wave, a good band-edge transition and a 

wide bandwidth. The 3 dB fractional bandwidth for the vertical polarisation mode is 

37%, while it is 23% for 

 

Fig. 3.3. A photograph of the fabricated FSS. 
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Fig. 3.4. Simulated and Measured transmission coefficients of the proposed FSS in vertical and 

horizontal polarisation modes. 

the horizontal polarisation mode. The discrepancy between the simulation and 

practical measurement results is attributed to the numerical errors in simulations, 

tolerances and general inaccuracies involved in the fabrication process. 
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3.3 Interconnected adjacent elements on orthogonal layers 

Traditionally, the elements of an FSS are rotationally symmetrical and the element 

arrays in a multi-layer FSS are aligned with each other. In this section, a new 

approach to miniaturise the size of the FSS array element with extreme low profile is 

proposed. The interconnected elements are placed orthogonally in the xy-plane to the 

elements on the other layer. By doing so, firstly a cross-coupling capacitance (Ccc) 

can be enhanced between the two adjacent layers. This capacitance can lower the 

resonant frequency of the FSS and reduce the FSS profile. This is because a smaller 

substrate thickness means a higher cross-coupling capacitance. Secondly, unlike 

traditional elements, the array element in the proposed structure does not have to be 

rotationally symmetrical by 90o. This offers great flexibility in the design of array 

elements. The proposed resonator has a resonant frequency of 5.5 GHz on an FR4 

substrate with a thickness of 0.8 mm. By interconnecting adjacent resonators in one 

direction and having two orthogonal layers, the resonant frequency of the array is 

reduced to 2.32 GHz. When the substrate thickness decreases from 0.8 mm to 0.127 

mm, the resonant frequency is lowered further, from 2.32 GHz to 1.35 GHz. The 

frequency response of the miniaturised FSS is not sensitive to the incident angle. An 

analytic model is derived to validate the new approach. A theoretical equivalent 

circuit model is proposed to characterise the structure, based on analysis of the 

geometrical configuration of the FSS structure and the electric field distribution on it. 

The theory was verified by experimental results.  

3.3.1 Miniaturisation approaches 

3.3.1.1 Array element design 

The miniaturisation of FSS elements is desired to enable an FSS with sufficient 

array elements to act as an infinite array because a practical FSS is usually fabricated 

in finite dimensions. It is important that the spacing of the array elements must be set 

less than λ/2 to avoid grating lobes, where λ is wavelength at resonant frequency. 

Many approaches have been used to miniaturise the FSS element. These approaches 

mainly depend on increasing the electrical length of array elements with the same 

physical area. However, this could result in a more complex FSS structure. 

In this section, new approaches will be introduced to miniaturise an FSS element. 

Firstly, the inductance can be enhanced by connecting adjacent elements in one 
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direction. Secondly, an extra capacitor is introduced by having two metallic layers 

orthogonal to each other. This capacitance enables the FSS to have a much lower 

profile. The proposed array element is designed in such a way that the connection 

between adjacent elements is easily achievable. At the same time, the array element 

in the FSS is not necessarily symmetrical at 90o rotation.  

The proposed resonator is a ring with two splits. Each split is ended by two 

parallel strips. Inside the ring, there is a pair of T-shaped strips with a gap in the 

centre, as shown in Fig. 3.5. However, the structure still works if an l-shaped strip is 

used in the middle of the unit cell. It was found by parametric study that the whole 

structure is slightly smaller when using two T-shaped strips instead of the l-shaped 

strip and it provides flexibility to control the stopband frequency. The resonant 

frequency of the proposed resonator can be easily lowered by interconnecting the 

elements, to be discussed in detail in the following sections. 

3.3.1.2 Enhanced inductance array elements  

Fig. 3.5 shows the proposed structure. At the vertical polarisation, the electrical 

field is in the direction of the y-axis. The gaps between the two T-shaped strips can 

be represented by a capacitor, shown as (a) in Fig. 3.5. Half of the circumference 

with the parallel strips acts as an inductor, shown as (b). The gap between adjacent 

elements can be represented by a capacitor, shown as (c). The corresponding 

equivalent circuit of the resonator, when the incident wave is vertically polarised, 

consists of a C in series with parallel LC as shown in Fig 3.6. C2 represents the 

capacitance shown as (a) in Fig. 3.5. L1 represents the inductance shown as (b). C1 

represents the capacitance shown as (c).  

Similarly, for the horizontal polarisation, the equivalent circuit of the resonator 

can also be described by Fig. 3.5. The corresponding equivalent circuit of the 

resonator, when the incident wave is horizontally polarised, is also a C in series with 

parallel LC. The equivalent circuit can also be represented by Fig. 3.6, although the 

values of the components are different. In this case, C1 represents the mutual 

capacitance between the adjacent elements, shown as (d) in Fig. 3.5. L1 is the 

inductance of the two T-shaped strips shown as (e). C2 is the capacitance of the 

parallel strips, shown as (f).  
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Fig. 3.5. The proposed structure with unconnected elements. 

 

Fig. 3.6. The equivalent circuit of the proposed FSS unit. 

To verify the proposed structure, numerical analysis of the proposed element was 

performed by CST Microwave Studio, using unit cell boundary conditions to provide 

periodicity along the x and y axes. The FSS is excited by an electromagnetic wave 

with the propagation vector (K) towards the z-axis direction, magnetic field vector 

(H) towards the x–axis direction and electric field vector (E) towards the y-axis 

direction, (see Chapter 1, Fig. 1.6). The frequency response of the array elements can 

be determined by evaluating the capacitance and inductance of the element. The 

approximate value of the inductance of a strip can be calculated by (1.1), whilst the 

approximate value of the capacitance between strips can be calculated by (1.6). The 

effective dielectric constant increases when the substrate thickness is increased. The 

capacitance between adjacent strips increases if the thickness of the substrate 

becomes thicker [7], although the increment will be smaller if the thickness of the 

substrate is much greater than the gap width. On the other hand, the inductance is 
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determined by the length and width of the metallic strip.  
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(b) 

Fig. 3.7. The transmission and reflection coefficients of the structure shown in Fig. 3.5, 

obtained by the curve fitting and simulating the structure, (a) at the vertical polarisation, (b) at 

the horizontal polarisation. 

An FSS was designed on a 0.127 mm thick FR4 substrate with a dielectric 

constant of 4.3. The strip width w is 0.3 mm, s = 0.4 mm, g = 0.25 mm, l = 3.7 mm 

and B = 0.6 mm, as shown in Fig. 3.5. The inner and outer ring radius is 4.4 mm and 

4.7 mm, respectively. The periodic element P is 10 mm. The simulated performance 

of the structure of Fig. 3.5 is shown in Fig. 3.7. At the vertical polarisation, the 
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structure exhibits bandstop performance, and has a resonant frequency of 6.25 GHz, 

as shown in Fig. 3.7(a). The resonant components of the equivalent circuit, as shown 

in Fig. 3.6, can be calculated by using (1.1) and (1.6), where C1 = 0.77 pF, C2 = 0.21 

pF and L1 = 0.65 nH. To achieve a good agreement with the simulated one, as shown 

in Fig. 3.7 (a), a curve fitting was carried out. It was found that by taking C1 = 0.82 

pF, C2 = 0.209 and L1 = 0.66 nH, the calculated response will be in excellent 

agreement with the simulated one as shown in Fig. 3.7. These component values are 

very close to those obtained by calculation using (1.1) and (1.6).  

At the horizontal polarisation, the structure’s predicted performance is a stopband 

at 3.10 GHz and a passband at 3.49 GHz, as can be observed from Fig. 3.7 (b). The 

component values in the equivalent circuit are C1 = 1.1 pF, C2 = 2.6 pF and L1 = 0.64 

nH as calculated using (1.1) and (1.6). By curve- fitting, C2 is tuned to 2.7 pf to 

achieve good agreement with the simulated structure, as shown in Fig. 3.7 (b). 

 

Fig. 3.8. The proposed structure with the elements interconnected in one direction. 

To miniaturise the resonator, the adjacent elements of the proposed structure can 

be connected in one direction through two parallel strip wires, as shown in Fig. 3.8. 

This can enhance the inductance of the proposed structure compared to the case 

where the elements are not interconnected as shown in Fig. 3.5. However, the 

equivalent circuit of the strips in the interconnected array elements is an inductor, as 

shown in Fig. 3.8. While as shown in Fig. 3.5, the strips in the not-interconnected 

array element have series capacitance associated with the gap between adjacent 

elements, resulting in the equivalent circuit of a series LC circuit. The simulation for 
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the enhanced-inductance  
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(b) 

Fig. 3.9. The transmission and reflection coefficients of the structure shown in Fig. 3.8, obtained 

by the curve fitting and simulating the structure, (a) for the vertical polarisation, (b) for the 

horizontal polarisation. 

(interconnected) elements, with the circuit dimensions provided above, was carried 

out. The E-field is assumed to be vertical as shown in Fig. 3.8. The FSS has a high 

pass response, as shown in Fig. 3.9(a), because the equivalent circuit is mainly an 

inductor as described above.  

For the horizontal polarisation, the parallel strips in the interconnected circuit can 

be represented by a capacitor, as shown in Fig. 3.8. The simulated response of the 
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structure has a bandstop response with a resonant frequency of 2.9 GHz, as shown in 

Fig. 3.9(b). The equivalent circuit is a C in series with a parallel LC, as shown in Fig. 

3.6. C1 represents the mutual capacitance between the adjacent elements, L1 is the 

inductance of the two T-shaped strips, and C2 is the capacitance of the parallel strips, 

as shown in Fig. 3.8. The equivalent circuit component values are C1 = 1.1 pF, L1 = 

0.64 nH. To achieve good agreement with the simulated performance, C2 is tuned 

from 2.8 pF to 2.9 pF by curve-fitting. In fact, the interconnection between the 

proposed FSS array elements will not only increase the inductance, but also change 

the equivalent circuit.  

3.3.1.3 FSS with orthogonal layers in the xy-plane 

Recently, many approaches have been proposed [1-6] to miniaturise array 

elements by increasing the capacitance or inductance or both. These approaches 

include increasing the substrate thickness or the complexity of the structures. The 

proposed miniaturised FSS utilises a metal-dielectric-metal structure to design a 

passband filter by having two layers of the same shape but arranged orthogonally. In 

the proposed structure, the top layer of the substrate, as shown in Fig. 3.8, acts as an 

inductor for vertical polarisation. Meanwhile, the capacitance is achieved by the 

bottom layer which is the same as the top layer but with 90o rotation. That is, the 

interconnection contributes to making the top layer act as only an inductor (the 

inductance is dominant) and the bottom layer as a capacitor, as discussed in the next 

section. More importantly, the structure will exhibit the same transmission 

performance in the x and y directions.  

 

(a)                                                 (b) 

Fig. 3.10. The current and charge distribution on the top layer of the proposed structure (a) 

the current distribution, (b) the charge distribution.  
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(a)                                                 (b) 

Fig. 3.11. The current and charge distribution on the top layer of the proposed structure (a) 

the current distribution, (b) the charge distribution. 

In this way, the proposed array element is insensitive to the polarisation angle.  

That is, in the vertical polarisation, the metal layer at the top acts as an inductor 

because the inductance is dominant. At the same time, the bottom metal  

layer presents a capacitance because the capacitance is dominant. In the horizontal 

polarisation, the top metals layer acts as a capacitor and the bottom metal layer acts 

as an inductor. 

The most important advantage is that, by having two layers orthogonally, it can 

induce a strong capacitance between them. This capacitor is induced because the 

charge distribution is different between the top and the bottom layers of the FSS. For 

instance, when an external electrical field, E, is applied in the y-axis (vertical) 

direction, the dominant current will be on the ring circumference toward the y (or -y) 

axis direction, as shown in Fig. 3.10(a). The current is the strongest at the edge of the 

resonator. This can induce positive charges on the top half of the proposed element 

and negative charges on the bottom half as shown in Fig. 3.10(b). On the other hand, 

for the 90o rotated element on the other layer, the direction of the current is similar to 

the top layer, but the strongest current is in the center of the resonator, as shown in 

Fig. 3.11(a). As a result, the top half of the array element will have negative charges, 

while the bottom will have positive charges as shown in Fig. 3.11(b). This induces a 

strong cross-layer capacitance, Ccc, between the parallel layers of the proposed array 

element, as shown in Fig. 3.12. The equivalent circuit of the unit of the two 

orthogonal elements is a combination of the equivalent circuit of the top layer 

(enhanced inductor) and the bottom layer (C in series with a parallel LC), as 
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illustrated in Fig. 3.13, where LT is the inductance of the two T-shaped strips, Ce is 

the capacitance of the parallel strips, and Le is the enhanced inductor (the 

interconnected parallel strips). Cs is the sum of the mutual capacitance, Cm, between 

the adjacent elements, and the cross-layer capacitance between the top and bottom 

layers, Ccc, where the cross-layer capacitance can be estimated by: 

d

A
C or

cc


     (3.1) 

where A is the area of the proposed element surface. The parallel surfaces are 

separated by a distance d which is the thickness of the substrate. The dielectric 

constant of the substrate is ɛr. 

 

Fig. 3.12. The array elements are placed orthogonally to each other on adjacent layers. A 

strong cross-layer capacitance exists between the two layers. 

 

Fig. 3.13. The equivalent circuit of the proposed miniaturised FSS unit, Cs is the sum of the 

mutual capacitance between adjacent elements (Cm) and the cross-layer capacitance (Ccc). 
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3.3.2 Circuit design 

The simulated magnitudes of S11 and S21 of the proposed structure at 0.127 mm 

substrate thickness are shown in Fig. 3.14. The responses in the vertical and 

horizontal polarisations for the TE mode are almost the same as each other. It is 

shown in Fig. 3.15 that the phases of S21 are the same as each other as well. Table 3.1 

shows the simulated resonant frequency, the fractional bandwidth and the array 

element size as a function of the thickness of the substrate.  

It is obvious that decreasing the substrate thickness from 0.8 mm to 0.127 mm can 

shift the resonant frequency downward from 2.32 GHz to 1.35 GHz. The array 

element size is miniaturised by 58% (from 0.0773λ to 0.045λ), although the 

bandwidth is reduced. 

It should be noted that the low profile can be achieved only if Ccc is dominant 

compared to the adjacent strips’ capacitance Cm and Ce. The values of the equivalent 

circuit components for a 0.127 mm thick substrate are Cm = 1.1 pF, Ce = 2.9 pF, and 

LT = 0.64 nH, while Ccc is 6.2 pF as calculated from (3.1). The value of Ccc is much 

bigger than the adjacent strips’ capacitances.  

To obtain good agreement with the simulated structure, as shown in Fig. 3.14, a 

curve fitting was carried out. While other component values are very close to the 

calculated ones, the value of Ccc is found to be 7.3 pF after curve fitting. This 

deviation is mainly due to the fringing effect of the field between the edges of two 

parallel plates. This deviation increases with the thickness of the substrate, especially 

when w << d. There are several approaches to quantify the fringing effect [8, 9]. The 

total capacitance including the fringing effect of a circular parallel-plate capacitor 

can be estimated by [10]: 

)]1
16

ln([
2


d

r
r

d

r
C orcc


     (3.2) 

where, r is the radius of the circular disk. As a comparison, the calculated 

capacitance of a circular disk with r= 4.7 mm and d= 0.127 mm would have been 7% 

higher by considering the fringing effect. For the proposed structure, the value of the 

capacitance is 17% higher compared to the value obtained by curve fitting as 

mentioned in Section 3.3.1.2. The deviation in the ring structure is slightly higher 

because the fringing effect takes place on both the inner and the outer edges of the 
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ring structure. The deviation would also be greater if the substrate is thicker. 

Table 3.1: Resonant frequencies and element sizes with different substrate thicknesses 

Thick

ness  

( mm) 

fr 

(G

Hz) 

Fractional 

bandwidth 

Element 

size 

0.8 2.

32 

11% 0.077λ 

0.6 2.

18 

9.3% 0.073λ 

0.3 1.

82 

8.7% 0.060 λ 

0.127 1.

35 

7.5% 0.045λ 
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Fig. 3.14. The simulated and calculated responses of the miniaturised FSS structure. Due to the 

orthogonal nature of the structure, the performance is the same for both the vertical and the 

horizontal polarisations. 

The structure was simulated under various incident angles and for different 

modes. The substrate thickness used in the simulation is 0.6 mm. The results show 

that the resonant frequency is very stable as shown in Fig. 3.16. The insertion loss is 
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0.33 dB at the normal incident angle and 0.69 dB at the 60˚ incident angle for the TE 

mode, whilst the insertion loss is 0.32 dB at the normal incident angle and 0.18 dB at 

60˚ incident angle for the TM mode. As a comparison, the simulated insertion loss at 

a normal incident angle is 0.35 dB for the TE mode and 0.4 dB for the TM mode, 

while at 60˚ incident angle, it is 0.5 dB for the TE mode and 0.3 dB for the TM mode 

in [2]. The values at the normal incident angle are 0.2 dB for the TE mode and 0 dB 

for the TM mode; 0.3 dB for the TE mode and 0 dB for the TM mode at 60˚ incident 

angle in [3], or 1.4 dB for the TE mode and 1.2 dB for the TM mode at the normal 

incident angle and 1.6 dB for the TE mode and 0.8 dB for the TM mode at 60˚ in [5]. 

The insertion loss of the proposed structure is comparable to the results in other 

references.  
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Fig. 3.15. The simulated phases of the transmission coefficients of the miniaturised FSS 

structure for both the vertical and the horizontal polarisations. 

The cross-layer capacitance contrasts with the adjacent capacitors (Cm and Ce). Ccc 

would increase if the thickness of the substrate was reduced, while Cm and Ce would 

decrease. Compared with the normal incidence case, the deviations of the resonant 

frequency of the miniaturised FSS structure at different incident angles, for both TE 

and TM modes, are shown in the Table 3.2 and 3.3, respectively. The resonant 

frequency is shifted from 2.18 GHz to 2.25 GHz (3.2%) at the 60o incident angle for 

the TE mode and 0.37% for the TM mode. As a comparison, the resonant frequency 

deviation is 6.6% for the TE mode at 60˚ incident angle in [1], 2% for both the TE 

and the TM modes in [2], 0% for the TE mode and 1.3% for the TM mode in [3], and 



Chapter 3: Asymmetrical Array Elements  P a g e  | 70 

 

0% fort the TE mode and 5% for the TM mode in [5]. 

 

 

    (a) 

 

(b) 

Fig. 3.16. The simulated reflection and transmission coefficients of the miniaturised FSS 

structure as a function of the incident angle, (a) TE mode, (b) TM mode. 

The simulated result of the transmission and reflection coefficients of the 

miniaturised FSS structure under 45˚ incident angle and various polarisation angles is 

shown in Fig. 3.17. It can be seen that the transmission coefficient is hardly changed  
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Table 3.2: The deviation of the resonant frequency for different incident angles for the TE 

mode 

Incident angle  

(degree) 

fr 

(GHz) 

Deviation 

15 2.19 0.4% 

30 2.20 0.9% 

45 2.22 1.8% 

60 2.25 3.2% 

75 2.26 3.6% 

 

Table 3.3 shows the deviation in the resonant frequency for a wide range of 

incident angles for TE and TM modes. 

Table 3.3: The deviation of the resonant frequency for different incident angles 

for the TM mode 

Incident angle  

(degree) 

fr 

(GHz) 

Deviation 

15 2.156 1.10% 

30 2.184 0.18% 

45 2.188 0.36% 

60 2.188 0.36% 

75 2.192 0.55% 

 

with the polarisation angle, although the array element is not rotationally 

symmetrical by 90˚ as for most traditional elements. This advantage offers great 

flexibility for the array element design. This methodology can be applied to the 

design of multi-layer FSSs. For example, a three-layer FSS can be designed by 

having each layer at an angle of 120˚ to the next layer.  
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Fig. 3.17. The simulated reflection and transmission coefficients of the miniaturised FSS 

structure under incident angle of 45o and various polarisation angles for TE mode. 

Table 3.4: Comparison of element size with other references 

FSS structure Substrate thickness (mm) ɛr Element size 

[1] 1.6 4.3 0.22λ 

[2] 1.6 4.3 0.104λ 

[3] 0.5 3.55 0.088λ 

[4] 0.127 2.2 0.067λ 

[5] 1.6 5 0.061λ 

[6] 1 3 0.058λ 

[11] 0.021 1.12 0.266λ 

The proposed  

array element 

0.127 4.3 0.043λ 

 

Cross-polarisation levels between TE and TM waves are also examined with 

regard to normal incident angle and varied polarisation angles (0o to 45o). The 

direction of polarisation is rotated from 0◦ to 45◦ to examine the cross-polarisation 

levels at different incident angles. The proposed orthogonal layers present a very low 

polarisation conversion which is generally below -25 dB The transmission 
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coefficients in cross polarisation at the resonant frequency is better than -45 dB at the 

0o polarisation angle, -40 dB at 15o, -30 dB 30o and -27 at 45o. This confirms that 

when TE wave propagates through the proposed orthogonal layers, the transmitted 

wave is still with TE polarisation. The performance is similar for the TM case. 

A comparison of the FSS array element size between the proposed design and 

other miniaturised FSS elements described in previous works is illustrated in Table 

3.4. It can be seen that the proposed structure has the smallest size.  

Moreover, the effect of the misalignment between the orthogonal layers is 

simulated. The simulation was carried out by shifting one layer with different 

distances, as show in Table 3.5. The proposed structure exhibits a stable frequency 

response to the misalignment. As an example, the resonant frequency was shifted 

from 2.018 GHz to 2.0204 GHz at 0.5 mm misalignment between the surface layers, 

as shown in the table. 

Table 3.5: The deviation of the resonant frequency caused by the misalignment between the 

top and bottom layers 

Misalignment  

(wavelength λ) 

Misalignment 

(mm) 

Deviation 

0.00145  0.2 0.11% 

0.00218  0.3 0.48% 

0.0036 0.5 1.1% 

Table 3.6: Fractional bandwidths and element sizes with different strip widths at 0.6 mm 

substrate thickness 

W 

(mm) 

fr  

(GHz) 

Fractional 

bandwidth 

Element size 

0.3 2.18 9.3% 0.077λ 

0.1 2.39 14% 0.079λ 

0.05 2.44 17.5% 0.081λ 

0.02 2.47 19% 0.082 λ 
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The bandwidth of the proposed design is relatively narrow. In some applications, a 

wider wideband performance might be desired. The proposed techniques can be 

adopted to design a wideband FSS as well. This can be done by changing the 

dimensions of the circuit to tune the LC values. As the equivalent circuit is L-C in 

parallel, decreasing the total capacitance value will increase the bandwidth, while 

decreasing the inductance will decrease the bandwidth. For the proposed structure, 

one easy way to achieve a wider passband is to decrease the strip width to tune the 

LC values. For example, for the proposed structure with 0.6 mm thickness, the 

bandwidth is doubled by decreasing the strip width (w) from 0.3 mm to 0.02mm, as 

shown in Table 3.6. If it is difficult to fabricate such narrow strips, the FSS element 

can be revised to achieve a wider bandwidth, which can be the topic of a future 

publication.  

3.3.3 Experimental results 

The proposed FSS was fabricated as shown in Fig. 3.18. Transmission 

characteristics of FSS devices can be measured through a few select methods [12, 

13]. The measurement setup for the proposed FSS is shown in Fig. 3.19. Two horn 

antennas and a vector network analyser were used. The experiment setup is 

composed of two broadband SATIMO horn antennas which are pointing to each 

other. The FSS under test is placed between the antennas. The distance is large 

enough to be considered as in the far field region of the horn (meeting > 2D2/ 

condition), where D is the antenna size and  is the free space wavelength at the 

resonant frequency. Thus, the wave arriving at the FSS can be considered as a plane 

wave. To avoid spillover at the edge of the FSS, RF absorbing materials are used 

around the edges. In order to ensure the measurement accuracy, a calibration was 

carried out. Without the FSS, the transmission coefficient was first measured as the 

reference for 100% transmission (S21 = 1 or 0 dB). When the FSS is under test, the 

measured transmission coefficient was normalised to the reference. In order to 

measure the transmission at different incident angles, the FSS holder fixture can be 

rotated to the angle of interest. In this case the measurement accuracy is not as good 

as the normal incident angle due to the limited size of the FSS. The array size of 200 

mm × 200 mm (1.45 × 1.45) consisting of 20 × 20 elements appeared to be large 

enough to give reliable results. Measurement of the fabricated FSS is performed in 
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two steps. Firstly, the transmission response of the system without the FSS is 

measured. This measurement result is used to calibrate the FSS response. Secondly, 

the transmission coefficient S21 was measured at various angles of incidence and 

polarisation. 

 

Fig. 3.18. A photograph of the fabricated FSS with the proposed miniaturized array 

elements. 

 

Fig. 3.19. The experimental setup to measure the transmission coefficient of the FSS. 

The measured results of the miniaturised FSS are shown in Fig. 3.20 and Fig. 

3.21. They show a relatively good agreement with the simulated ones. The 

discrepancy between the simulation and measurement results is mainly attributed to 

tolerances involved in the fabrication process, inaccuracies in the exact values of the 

parameters of the dielectric substrates used, and the small deviation due to the 

scattering from the stand used to hold the FSS.  
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The frequency response of the proposed FSS is insensitive to the angle of 

incidence, as shown in Fig. 3.20. It demonstrates a measured insertion loss of about 

0.72 dB at its resonant frequency for normal incidence, which is mainly attributed to 

the dielectric and the metallic losses of the structure. The measured result of the FSS  

 

Fig. 3.20. The simulated and measured transmission coefficients of the miniaturised FSS 

structure at different incident angles. 

 

Fig. 3.21. The simulated and measured transmission coefficients of the miniaturised FSS 

structure under the 45o incident angle and various polarisation angles for TE mode. 
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with 45˚ incident angle and various polarisation angles is shown in Fig. 3.21. The 

proposed miniaturised FSS exhibits almost the same response at different 

polarisation angles with a fractional bandwidth of 9%. The measured insertion loss is 

about 0.92 dB for normal incidence, and 0.98 dB at 60˚ incident angle at its resonant 

frequency. This is comparable to the measured insertion losses in the other studies. 

For example, the measured insertion loss is about 0.7 dB at the normal incident angle 

in [15], 0.47 dB in [16], and 1.2 dB in [18]. 

3.4 Conclusion 

Dual polarised single and two-layer FSS structures are proposed in this chapter. 

The single-layer is relatively easy to fabricate due to its simple structure consisting of 

a single metal layer on a dielectric layer. The FSS displays a high transmission, wide 

operational frequency band, and excellent band edge transitions. It is shown that the 

dual polarisation response can be achieved, although the element is not rotationally 

symmetrical by 90o in xy-plane. The proposed structure is fabricated and tested to 

verify the design. This dual polarised bandpass FSS with broadband response can be 

used in absorber applications.  

A few novel approaches have been combined in this chapter to miniaturise FSS 

elements and make the FSS insensitive to the angle of incident waves. The 

interconnection of the array elements in one direction can change the equivalent 

circuit of the FSS structure, and increase the values of the equivalent circuit 

component values.  

In the proposed design, patterns on the layers on two sides of a substrate are 

arranged orthogonal to each other in the xy-plane to build up the FSS. As a result, a 

very strong cross-layer capacitance will be generated between the two layers. The 

cross-layer capacitance can miniaturise the element much further. It can offer further 

significant advantages because the FSS with a low profile substrate would have a 

lower resonant frequency. An analytical circuit model has been presented to describe 

the miniaturised FSS. The proposed design has the smallest size compared to other 

miniaturised designs. 

Furthermore, using the proposed method, the array element in the FSS does not 

have to be rotationally symmetrical by 90o. The method can be easily adopted in a 
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multi-layer FSS design. The proposed structure has been fabricated and tested. It has 

been shown that, by interconnecting adjacent resonators in one direction and having 

two orthogonal layers, the resonant frequency of the array was reduced from 5.5 GHz 

to 2.32 GHz. When the substrate thickness is reduced from 0.8 mm to 0.127 mm, the 

resonant frequency is lowered further from 2.32 GHz to 1.35 GHz. One FSS was 

fabricated on a 0.6 mm thick FR4 to validate the theory. The FSS was tested under 

different incident wave angles. It was verified that the response is insensitive to the 

incident angle. It exhibits polarisation insensitivity for different incident angles. In 

future work, a wideband performance can be achieved by revising the element 

structure, if desired. The proposed method can also be used for multi-layer FSS 

design.  
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 Chapter 4: Multi-Layer FSS 

4.1 Introduction 

FSSs structures can be used for many applications, such as in radomes to reduce 

the radar cross section (RCS) of antennas. Most antennas act as efficient radiators at 

the frequency band in which they are designed to operate in and also somewhat 

outside their desired operating frequency range. In such applications, using a 

bandpass FSS can reduce the RCS of antennas because it is transparent within the 

antenna’s operating frequency and opaque at other frequencies. 

Recently, there has been an interest in the design of FSSs with array element 

dimensions that are much smaller than the wavelength. In traditional designs, the 

frequency selective properties result from mutual interactions of the array elements. 

Therefore, the miniaturisation of an element size is desired to enable an FSS with 

sufficient array elements because practical FSSs are usually fabricated in finite 

dimensions. The miniaturisation of an FSS is mainly achieved by enhancing the 

values of resonant components (capacitors and inductors). Adding meander-slots to a 

circular ring structure can make FSS array element dimensions much smaller than 

the wavelength [1]. The creation of a miniature FSS by printing wire on a dielectric 

has been demonstrated in [2]. Printing four symmetrical spiral patterns of metallic 

meander lines can increase the electrical length of the array element and increase the 

value of resonant components [3]. Two layers, metallic patches and wire meshes, 

separated by a dielectric substrate are used to miniaturise the array elements in [4, 5]. 

An FSS element miniaturised by using lumped components is presented in [6]. 

Another approach is adopted in [7], by cascading interdigital capacitors on a thin 

substrate layer.  

However, most FSSs reported in the literature suffer from practical design issues, 

namely sensitivity to polarisation or incident angle, the dimensions issue, or the 

sensitivity when attached to a wide variety of dielectric materials of varied thickness. 

These limitations can restrict the use of FSS in many applications. For example, the 

FSSs can be used in radio frequency-identification (RFID) tag applications. A tag is 

usually attached directly to an object that needs to be identified. Many common 

materials have a very strong effect on the performance of the tag antenna and can 
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shift the resonant frequency. In the worst case, the tag may be unreadable at normal 

ranges, which would cause tracking systems to miss objects [8, 9]. In some 

applications, the FSSs need to be attached to dielectric materials for mechanical 

reasons to make the structure stronger.  

This chapter describes both a single and a dual polarised FSS structure. Firstly, a 

two-metal-layer bandpass FSS element is designed by using a step-impedance 

structure with very high and very low characteristic impedance transmission lines in 

each layer (see Chapter 2). The mesh and patch are included in the proposed array 

element. The novel methodology is used to miniaturise the FSS element’s 

dimensions. The dimensions of the periodic array element are much smaller than the 

wavelength at the resonant frequency with a periodicity of 0.012λ×0.012λ. The 

overall profiles (thicknesses) of the multi-layer FSS element presented in this chapter 

are extremely small. For example, the thickness of the FSS structure consisting of 

two metallic layers and one dielectric layer is less than 0.14 mm. The proposed 

structure is designed to display a stable frequency response when it is attached to a 

wide variety of dielectric materials of varied thicknesses. These particular features of 

the proposed structure can make it an optimal solution for many applications. In this 

chapter, section 4.2 describes the design of a single polarised FSS array element and 

the approaches to miniaturise the element. Section 4.3 explains the design of a dual 

polarised FSS array element. Section 4.3.1 discusses the stability of the FSS array 

against surrounding dielectric materials. Section 4.3.2 describes the experiment setup 

and results to verify the theory. Conclusions are finally given in Section 4.4. 

 4.2 Single polarised FSS element  

Fig. 4.1 shows the structure of the proposed single polarised FSS element, 

consisting of two metallic layers separated by a substrate layer. Each metallic layer is 

printed on one side of the dielectric substrate consisting of an inductive loop with a 

width of w and two capacitive patches, each with an area of b×a. Numerical analysis 

of the proposed element was performed by using CST Microwave Studio, using unit 

cell boundary conditions to provide periodicity along the x and y axes. The FSS is 

excited by an electromagnetic wave with the propagation vector (k) towards the z 

axis, magnetic field vector (H) towards the x axis and electric field vector (E) 

towards the y axis direction. The top and bottom layers are the same, but flipped in 
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the xy plane. In this way, the currents enter and exit from the top layer patches in 

opposite directions to the bottom layer patches, as shown in Fig. 4.2. This causes the 

charges to be distributed in different polarisations between the top and the bottom 

layers of the FSS, which induces a strong cross-layer capacitor, Ccc. 

 

Fig. 4.1. Array element geometry of the proposed single polarized FSS. 

For instance, when an external electrical field, E, is applied in the y-axis direction, 

the current will flow into the left patch and out from the right patch towards the (-y) 

axis direction on the top layer, as shown in Fig. 4.2(a). This can induce positive 

charges on the left patch of the proposed element and negative charges on the right 

one. On the other hand, in the bottom layer, since the structure is flipped, the current 

will flow into the right patch and out from the left patch towards the (-y) axis 

direction, as shown in Fig. 4.2(b). This can induce charges opposite to the top layer. 

Thus, there is a strong cross-layer capacitance existing between the top and the 

bottom layer. This capacitance offers significant advantages to the FSS element by 

making the structure compact, low profile (the lower the profile, the stronger the 

capacitance) and insensitive to surrounding dielectric materials, as discussed in the 

following sections. The proposed structure is designed on an FR4 PCB. The two 

metallic layers are etched on the top and bottom copper layers of a 0.127 mm-thick 

FR4 substrate with a dielectric constant of 4.4 and a loss tangent of 0.025. The length 

of the rectangle patch (b) is 4.6 mm and the width (a) is 4.6 mm, the gap width g is 

0.2 mm and the width, w, of the short line connecting the patches is 0.2 mm and for 

the loop is 0.1 mm. The periodic constant P of the array is 6 mm. Fig. 4.3 shows the 

simulated transmission and reflection coefficients.  
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(a)                                                                (b) 

Fig. 4.2. Current distribution of the proposed element on (a) the top layer, and (b) the bottom 

layer. 

 

Fig. 4.3. Simulated frequency response of the proposed two-layer FSS under variable 

incident angles for the E//y polarisation. 

The resonant frequency is 1 GHz with a fractional bandwidth of 6.1%. The reflection 

coefficient is -19 dB and the insertion loss is 1.13 dB at the resonant frequency. The 

size of the array element is found to be 0.02λ × 0.02λ. The equivalent circuit model 

of the proposed array element for the E//y polarised incident waves is shown in Fig. 

4.4. It should be noted that the circuit model is only used to give a better qualitative 
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understanding of the proposed structure. The actual equivalent circuit is much more 

complicated than this circuit model. The circuit model consists of an L1C1 circuit for 

the top layer structure, an L2C2 for the bottom layer structure and a cross-layer 

capacitor Ccc between them. The substrate between the two metallic layers acts as a 

transmission line of length h (h is the substrate thickness) and a characteristic 

impedance of Z. The transmission line is used here as a short circuit because h is very 

small. For example, at the resonant frequency 1 GHz, h is λ/2362 or 0.127 mm. In the 

circuit model, L1 is equal to L2 and C1 is equal to C2 due to symmetry.  

 

(a) 

 

(b) 

Fig. 4.4. Equivalent circuit of a two-metallic-layer structure, where LT= (L1×L2) / (L1+ L2) and 

Cr1= C1 + C2 + Ccc. 

The cross-layer capacitance is much stronger than the intrinsic capacitance 

between the two adjacent patches of each layer. Any dielectric materials attached to 

the FSS will mainly affect the intrinsic capacitance, but not the cross-layer 

capacitance. Hence the performance of the proposed FSS is very insensitive to 

surrounding materials. This advantage will be further discussed in Section 4.3.1. 

In this case, the circuit model of the FSS element is composed of the parallel LC 

circuits of two metallic layers and the cross-layer capacitor. This means that 

increasing the number of metallic layers (n) will miniaturise the structure further, 

although this will be accompanied with bandwidth and insertion loss penalties. The 

approximate values of the intrinsic inductance and capacitance for TE incident waves 
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can be calculated from the strip inductance and path capacitance using equations in 

[10], 
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where L is the strip inductance, which is determined by the strip length P, the strip 

width w and the effective magnetic permeability μe of the structure, n is the number 

of metal layers. And 
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where C is the intrinsic capacitance between the two adjacent patches in each 

layer, which is determined by the patch length b, the gap g between adjacent patches 

and the effective dielectric constant ɛe of the structure, ɛe = (ɛr+1)/2, if the substrate 

thickness is much greater than the gap width. While the cross-layer capacitance Ccc is 

calculated by using the parallel plates’ capacitance equation: 

d
nC or

cc

A
)1(


      (4.3) 

The overlapping area of the conducting patch is A and equal to 2(a×b); the parallel 

conducting layers are separated by a distance d, which is the thickness of the 

substrate h in this case, and the dielectric constant of the substrate is ɛr. It is quite 

obvious that the cross-layer capacitance is much higher than the intrinsic capacitance 

of each layer. The approximate theoretical values for the resonator components are L1 

= L2 = 3.5 nH, C1 = C2 = 0.28 pF, while the value of Ccc = 6.2 pF. The value of Ccc is 

much greater as expected. The cross-coupling capacitance Ccc will significantly 

lower the resonant frequency of the FSS array element, which makes the element 

much more compact. 

Multi-layer structures are usually used for the design of multi-band or wideband 

bandpass filters. It can be seen from (4.3) that the multi-layer structure can also be 

used to miniaturise the array element because the value of the cross-layer capacitance 

will be increased with the increase of the number of metallic layers (n). It can be 

calculated from the equivalent circuit in Fig. 4.4 that a multi-layer structure is much 

less sensitive to surrounding materials. This will be further discussed below. 

The cross-layer capacitance is higher with a thinner substrate (lower profile). This 
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is contrary to the intrinsic capacitance. The intrinsic capacitance depends on the 

effective permittivity of the substrate. The effective permittivity is a function of the 

thickness of the substrate. If the thickness is comparable with the gap width, the 

effective permittivity is lower with a thinner substrate. The intrinsic capacitance is 

lower accordingly. If the substrate thickness is much greater than the gap width, the 

effective permittivity is almost constant. Therefore, the proposed FSS with a lower 

profile is actually more compact, which is different from traditional structures.  

Fig. 4.5 shows the structure with n metallic layers and (n-1) dielectric layers. The 

two transparent layers are only used to mechanically support assembling the multiple 

layers together if needed. There are alternative ways of doing this. For example, the 

layers can be thermally compressed together using a bonding film with a very thin 

thickness between them [11]. Fig. 4.6 shows the equivalent circuit of an n-layer FSS 

structure after neglecting the intrinsic capacitance of each metallic layer. 

 

Fig.4. 5. Array element of the proposed n-metallic-layers FSS with thin dielectric supporters. 

 

Fig. 4.6. Equivalent circuit of the proposed n-metallic-layer FSS.  

The simulated resonant frequency f, fractional bandwidth BW, lowest values of 

reflection coefficients S11 of a multi-layer FSS using the proposed design are 
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summarised in Table 4.1. The periodic dimension P is 6 mm, the same for all of these  

Table 4.1: Element size vs the number of metallic layers of single polarised FSSs 

n f 

(GHz) 

BW Insertion 

loss 

(dB) 

S11 

(dB) 

Thickness 

(mm) 

Element 

size 

2 1 6.23% 1.15 -19 0.147 0.02λ 

3 0.76 4.62% 1.3 -16.9 0.284 0.0152λ 

4 0.65 3.42% 1.9 -13 0.421 0.013λ 

5 0.60 2.44% 2.6 -9.7 0.558 0.012λ 

 

Fig. 4.7. Frequency response of the proposed three-layer FSS under variable incident angles 

for the E//y polarisation. 

multi-layer structures. It shows that the increase of the number of layers n shifts the 

resonant frequency downward. For example, for n = 3 with two FR4 dielectric layers 

with a thickness of 0.127 mm for each, the resonant frequency is shifted downward 

to 0.76 GHz from 1 GHz for n = 2. The reflection coefficient is -16.9 dB and the 

fractional bandwidth is 4.62%, as shown in Fig. 4.7. The FSS array element 

dimensions in this case are 0.0152λ by 0.0152λ. While using five metallic layers (n = 

5) and four dielectric layers, the resonant frequency is shifted to 0.6 GHz. The 
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fractional bandwidth is 2.44%, and the reflection coefficient S11 is -9 dB. For this 

case, the size of the element is 0.012λ by 0.012λ. To demonstrate the resonant 

stability performance of the proposed design, the structures of n = 2 and n = 3 are 

simulated with variable incident angles, respectively. The proposed structures are 

insensitive to the angle of incidence (θ) up to 60o for the E//y polarisations as shown 

in Fig. 4.3 and Fig. 4.7, respectively. 

4.3 Dual polarised FSS element 

The FSS element proposed in last section is suitable for single polarised incident 

waves. The performance of the structure is different if the E-field of the incident 

wave is along the x-axis. To achieve dual-polarised performance, the proposed 

structure can be modified to the one shown in Fig. 4.8. This structure can be used for 

not only dual-polarisation but also a greater fractional bandwidth. Here, the metallic 

structure on each layer is 90˚ rotationally symmetrical in the xy plane, so that the 

structure will achieve the same performance if the E-field of the incident wave is 

either in the x-axis or the y-axis direction. In the same way as before, the top and 

bottom layers are the same but flipped in the xy plane. Similarly, the dominant 

capacitor is the cross-layer Ccc, compared with the intrinsic capacitor. This is because 

only two pairs of patches will have a strong capacitance and the other two patches 

have relatively weak capacitance depending on the polarization.  

For example, at the E//y polarisation, the two patches with strips along y-axis in 

each layer have a strong capacitance to the two patches on the other layer; while 

other two pairs of patches have weak capacitance. On the other hand, at the E//x 

polarisation, only the patches with strips along the x-axis have strong capacitance.  

The dual polarised structure has a wider bandwidth and a higher transmission 

coefficient compared to the single polarized structure. This can be explained by using 

the quality factor (Q-factor) equation of the parallel RLC circuit which is given by: 

RC
B

Q 

     (4.4) 

where ω is the resonant frequency (ω = 2πf), and R is the half of free space 

impedance (Zo). B is the bandwidth and equal to the difference between the two half 

power frequencies: 
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At ω1 and ω2 the power on the resistor becomes half of the maximum. The quality 

factor increases with the increase of C and the bandwidth decreases consequently.  

 

Fig. 4.8. Structure of the multi-layer bandpass FSS for dual polarisations. 

The dimensions of the dual layer structure are: the gap g between adjacent patches 

is 0.2 mm; the width, w, of the short line connecting the patches is 0.2 mm and the 

loop is 0.1 mm. The periodic constant P of the array is 6 mm, but the dimension of b 

is halved, which means the value of the capacitance is also about halved. The patch 

area is a2 since b = 2a.  

As mentioned, increasing the number of layers will shift the resonant frequency 

downward. The equivalent circuit of this structure is very similar to the single 

polarised one, taking into consideration that the value of the Ccc is halved. Table 4.2 

shows the variation in the resonant frequency when increasing the number of layers, 

n. As can be seen from the table, the resonant frequency of the two-layer (n = 2) 

structure is 1.98 GHz, as shown in Fig. 4.9. The same dielectric material of FR4 with 

0.127 mm thickness is used in the design. The size of the array element is 0.0396λ × 

0.0396λ. The resonant frequency of the structure with three metallic layers (n = 3) 

and two dielectric layers is 1.50 GHz, as shown in Fig. 4.10. The array element size 

is 0.03λ × 0.03λ. 
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Table 4.2: Element size vs number of metallic layers, for TE mode 

n f  

(GHz) 

BW Insertion 

loss (dB) 

S11 

(dB) 

Overall thickness 

(mm) 

Element size 

2 1.96 10.32% 0.56 -22.5 0.147 0.038λ 

3 1.50 8.42% 1.23 -22.0 0.284 0.030λ 

4 1.32 6.37% 1.62 -19.2 0.421 0.026λ 

5 1.21 4.45% 1.86 -16.8 0.558 0.024λ 

 

Fig. 4.9. Simulated frequency responses of the two-metallic-layer FSS (n = 2) under different 

incident angles for TE mode. 

To demonstrate the resonance stability performance for the proposed FSSs with 

two and three metallic layers, the performance of the FSSs as a function of varied 

incident angles is shown in Fig. 4.9 and Fig. 4.10, respectively. The structure exhibits 

a polarisation independent response because it symmetrical around z axis. The 

proposed structures are insensitive to the angle of incidence (θ) up to 75o as shown. 
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Fig. 4.10. Simulated frequency responses of the three-metallic-layer FSS (n = 3) under 

different incident angles for TE mode. 

The structures were also simulated under various incident angles for the TM 

mode. The results show that the structures exhibit very stable performance at oblique 

incident angles as well. For the two-layer structure, the insertion losses are almost the 

same at 0.396 dB at the normal and 15˚ incident angles. The insertion losses are 

0.383 dB at 30˚, 0.347 dB at 45˚, 0.287 dB at 60˚ and 0.117 dB at 75˚, respectively. 

The resonant frequency is always the same at 1.96 GHz. For the three-layer structure, 

the insertion loss is 0.645 dB at the normal incident angle. The losses are 0.582 dB at 

15˚, 0.515 dB at 30˚, 0.486 dB at 45˚, 0.415 dB at 60˚ and 0.212 dB at 75˚ incident 

angles. The resonant frequency is the same at 1.5 GHz for all angles. 

4.3.1 Surrounding dielectric materials  

The performance of a conventional FSS is affected by dielectric materials attached 

to it. For a wide range of applications, it is desirable to design FSS structures that can 

achieve stable responses when the FSS is attached to dielectric materials. The 

proposed structures here are very stable even though they are attached to dielectric 

materials of varied thickness on both sides. To understand why the structure is stable 

when compared with traditional structures, it is necessary to understand the effect of 

the surrounding dielectric material on conventional FSS structures. The main reason 

is that the resonant components are affected by the surrounding dielectric material, 
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especially the intrinsic capacitance. It can be clearly concluded from (4.2) that the 

equivalent intrinsic capacitance of the FSS element depends on the effective 

dielectric constant ɛe of the structure. The surrounding dielectric directly changes the 

effective dielectric constant value and thus the capacitance. This can be proven by 

using a non-resonant FSS structure such as an inductive FSS (highpass) using planar 

conductor or a capacitive FSS (lowpass or bandstop) using patches. When an 

inductive FSS structure (planar conductor structure) is attached to a dielectric 

material, the frequency response is very stable, while the frequency response of the 

patch type FSS is shifted significantly when the structure is attached to dielectric 

materials. In traditional FSS structures where both wires and patches are used, the 

resonant frequency is very sensitive to surrounding dielectric materials.  

In the proposed structure, the cross-layer capacitance is introduced and is very 

strong in the FSS element. This capacitor is not influenced by the surrounding 

dielectric material, as can be seen from (4.3). Especially for a low profile dielectric 

substrate, the cross-layer capacitor is dominant and diminishes the impact of 

surrounding materials to the intrinsic capacitance. This makes the resonant frequency 

very stable against surrounding dielectric materials.  

The resonant frequency of the proposed structure, by ignoring the intrinsic 

capacitor, can be obtained by:  

LC
f

2

1
     (4.6) 

The values of L and C can be obtained from (4.1) and (4.3). The resonant 

frequency can be obtained by:  
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where A is equal to 2(a×b) in the single polarised case and 2a2 for the dual 

polarised structure, c is the velocity of light, and n is the number of metallic layers.  

To demonstrate this feature of the proposed design, the structure with dielectric 

materials attached is simulated using CST. Fig. 4.11 shows the comparison of 

frequency responses of the proposed structure shown in Fig. 4.8 with n = 2 in three  
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Fig. 4.11. Simulated frequency responses of the two-metallic-layer FSS (n=2) with or without 

surrounding dielectric materials attached to the FSS. 

 

Fig. 4.12. Simulated frequency responses of the three-metallic-layer FSS (n = 3) with or 

without surrounding dielectric materials attached to the FSS. 

cases: without any attaching dielectric material; with a dielectric material attached to 

one side; and with a dielectric material attached to both sides of the structure. The 

dielectric material is a 1.6 mm thick FR4. It can be seen that the resonant frequency 

is only shifted by 3.7% when the dielectric material is attached to one side, and 
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shifted by 6.7% when the dielectric material is attached to both sides. Fig. 4.12 

shows the comparison of this structure in the case of n = 3. In this case, the resonant 

frequency is only shifted by 1.5% when the dielectric material is attached to one side, 

and shifted by 3.4% when the dielectric material is attached to both sides. It should 

be noted that the advantages of the proposed design were achieved mainly because 

the proposed structure on any layer is not symmetrical by itself along either the x-

axis or the y-axis. The metallic layout in one layer is the flipped, or anti-parallel, 

version of the layout in the adjacent layer. This arrangement dramatically strengthens 

the cross-layer capacitance. The cross-layer capacitance makes the structure not only 

small, but also insensitive to surrounding dielectric materials. In contrast, in 

traditional FSSs, the structures in each layer are parallel to each other. The current 

and charge distributions on each side are the same. There is no strong capacitance 

between adjacent layers. To prove this, a patch-mesh FSS structure, as shown in Fig. 

4.13(a), is used as an example to show the effect of surrounding dielectric materials 

on traditional FSSs. 

 

                                 (a)                                                                          (b) 

Fig. 4.13. Traditional FSS structures as examples to demonstrate the effect of surrounding 

dielectric materials on the FSS’s response, (a) patch-mesh structure, (b) proposed structure with 

identical metallic structures on adjacent layers but not flipped. 

In Fig. 4.13(b), the proposed structure without flipping the shape of the bottom 

layer is used as another example to prove the advantage of the proposed design. To 

make comparison more logical, the dimensions are tuned to achieve similar resonant 

frequencies to the proposed structure. The substrate between metallic layers in these 
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examples is an FR4 with a thickness of 0.127 mm.  

First of all, the array element dimensions of these two examples are much bigger 

than the proposed one. The periodic dimension of the patch-mesh structure is 0.22λ, 

and it is 0.13λ for the example in Fig. 4.13 (b). The periodic dimension of the 

proposed FSS element is only 0.012λ, as shown in Table 4.1. The dimension of the 

proposed FSS element is more than 18 times smaller than the traditional patch-mesh 

structure and the area is 330 times smaller.  

Table 4.3 compares the performance of the proposed dualpolarised structure with 

the two traditional FSS structures shown in Fig. 4.13.  

Table 4.3: The normalised resonant frequency deviation when the structures are attached to an 

FR4 dielectric substrate (εr=4.4) with different thicknesses. t is the thickness of surrounding 

dielectric materials. The results are obtained by simulation. 

The structures Attached to one side Attached to both sides 

Dev 

(t=1.6mm) 

Dev 

(t=3mm) 

Dev 

(t=1.6mm) 

Dev 

(t=3mm) 

The patch-mesh structure 

(Fig. 4.13(a)) 

0.21 0.26 0.26 0.33 

The proposed structure 

without Ccc (Fig.4.13(b)) 

0.28 0.31 0.36 0.43 

The proposed structure 

(n=2) 

0.037 0.045 0.065 0.080 

The proposed structure 

(n=3) 

0.015 0.021 0.034 0.062 

The proposed structure 

(n=4) 

0.011 0.015 0.024 0.03 

 

The normalised deviation (Dev) is defined as the difference between the resonant 

frequency of each structure before being attached to the dielectric material (f) and the 

resonant frequency after being attached to the dielectric (fd) divided by f. That is, Dev 

= ( f- fd)/ f. It can be seen that the insensitivity of the proposed structure is about six 
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times better than traditional structures. The cases where they are attached to a higher 

dielectric constant material (ɛr = 8) is compared in Table 4.4. 

Table 4.4: The normalised resonant frequency deviation obtained by simulation when the 

structures are attached to a higher dielectric constant material, ɛr = 8. 

The structures Attached to one side Attached to both sides 

Dev  

(t = 1.6mm) 

Dev 

(t = 3mm) 

Dev 

(t = 1.6mm) 

Dev 

(t = 3mm) 

The patch-mesh structure (Fig. 

4.13(a)) 

0.27 0.33 0.36 0.41 

The proposed structure 

without Ccc (Fig. 4.13(b)) 

0.37 0.44 0.51 0.56 

The proposed structure (n=2) 0.065 0.077 0.122 0.148 

The proposed structure (n=3) 0.039 0.047 0.073 0.089 

The proposed structure (n=4) 0.024 0.038 0.051 0.063 

 

It should be noted that in [21] the circuit element was also miniaturised by a cross-

layer capacitance. However, the structure is still relatively sensitive to surrounding 

materials compared to the proposed structure. It was found by simulation that the 

proposed structure is two to three times less sensitive than the one in [21]. The main 

reason is that the proposed structure has a much lower intrinsic capacitance and a 

stronger cross-layer capacitance due to the charge distribution as analysed in Fig. 4.2.  

It is clearly shown that the proposed structure exhibits a very stable performance 

compared to traditional FSSs. Increasing the number of metallic layers contributes to 

making the resonant frequency of the proposed structure even more stable, as shown 

in these tables. The resonant frequency of a four-layer structure is about 2.5 times 

more stable than a two-layer one. This is mainly due to the occurance that much 

stronger cross-layer capacitance will be induced in multi-layer (n > 2) structures, 

while the intrinsic capacitance is affected in the same way as the two-layer structure. 

4.3.2 Experimental results 

 A prototype of the proposed FSS as shown in Fig. 4.8 has been fabricated and 
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measured to validate the design. The fabricated FSS is shown in Fig. 4.14. The size 

of the FSS prototype is 180 mm × 180 mm and it consists of 30 × 30 elements.  

Two horn antennas and a vector network analyser were used for the measurement. 

The measurement setup is shown in Fig. 4.15. The line of sight between the two 

antennas passes through the centre of the FSS prototype and the antennas are located 

about 70 cm away from the fixture to ensure the formation of uniform plane wave 

impinging upon the FSS structure. When carrying out the measurement at 60˚, the 

absorbers at the side were adjusted so as not to block the incident wave. 

Measurement of the fabricated FSS is performed in two steps. Firstly, the 

transmission response of the system without the FSS is measured. This measurement 

result is used to calibrate the FSS response. Secondly, the frequency response with 

the presence of the FSS structure is measured. In the example of the FSS with two 

metallic layers (n = 2), the fabrication is performed by patterning the proposed shape 

on two sides of a 0.127 mm thick FR4 substrate. The measured performances with 

incident angles of 0o and 60o for this prototype are shown in Fig. 4.16.  

 

Fig. 4.14. Photograph of the prototype of the proposed FSS with n = 2. 

The measured insertion loss is 0.73 dB at the resonant frequency for normal 

incidence, which is mainly attributed to the dielectric and the metallic losses of the 

structure. The measured performance is compared with the simulated one. It can be 

seen that very good agreement has been achieved. The transmission with other 

incident angles up to 75 o was also measured. The measured performance is also in a 

very good agreement with the simulated one. Such results are not shown in this 

figure to avoid having too many curves in the figure.  
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Fig. 4.15. Measurement setup to measure the transmission coefficient of the FSS. 

 

Fig. 4.16. Measured and simulated frequency responses of the two-metallic-layer (n = 2) FSS 

under different incident angles. 

To measure reflection, the two horn antennas are used as the transmitter and 

receiver, respectively, at the same side of the FSS. They are separated by an absorber 

screen to eliminate the direct coupling between them. The measured reflection of the 

prototype of the proposed FSS is shown in Fig. 4.17. The measured result is in a 

relatively good agreement with the simulated performance. 
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Fig. 4.17. Measured and simulated reflection coefficients of the two-metallic-layer (n = 2) 

FSS. 

 

Fig. 4.18. Measured and simulated frequency responses of the two metallic layers FSS (n = 2) 

with or without surrounding dielectric materials. 

A 1.6 mm thick FR4 dielectric material is attached to the prototype of the 

structure with n = 2. The dielectric material is firstly attached to one side of the 
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structure and then attached to both sides. The transmission coefficients were 

measured and shown in Fig. 4.18, to prove the stability of the proposed structure 

when it is attached directly to dielectric materials. It can be seen that the resonant 

frequency is shifted 4.0% when the dielectric material is attached to one side, and 

6.9% when attached to both sides. The measured results are in good agreement with 

the simulated ones as summarised in Table 4.3. 

4.4 Conclusion 

An unconventional approach has been proposed to design miniaturised multi-layer 

FSS structures in this chapter. The proposed bandpass FSS exhibits a very stable 

frequency response when it is attached to dielectric materials of arbitrary thicknesses, 

about six times better than conventional FSS structures.  

The overall thicknesses of the multi-layer FSSs presented are extremely small. As 

an example, the thickness of the FSS structure consisting of three metallic layers and 

two dielectric layers is less than 0.5 mm. Unlike traditional structures, the size of the 

proposed FSS element is smaller when the profile is lower.  

The dimensions of the miniaturised element are much smaller than the wavelength 

at the resonant frequency, as small as 0.012λ × 0.012λ which is one of the smallest 

reported so far. For a two-metallic-layer structure, the size of the proposed dual 

polarised FSS element is 330 times smaller than the traditional patch-mesh structure.  

The proposed approach to design miniaturised FSSs was experimentally verified 

by a prototype. The simulation and measurement results verify the stable frequency 

response of the proposed design. These advantages of the proposed structure can be 

useful for many applications where circuit compactness, having a low profile and 

insensitivity to surrounding materials are desired.  
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Chapter 5: Multi-Band FSS 

5.1 Introduction 

The use of FSSs has contributed to improvement of the communication 

capabilities of satellite platforms [1-4]. The use of dual-reflector antennas in space 

missions such as Galileo, Cassini and Voyager, sharing the main reflector among 

different frequency bands has been made possible by using an FSS [8-11]. A dual 

passband FSS for WLAN applications at the frequencies of 2.4 and 5.2 GHz by using 

the complementary structure has been proposed in [12], and to shield the GSM 1800 

MHz band [13]. Several types of design have been proposed to design dual band 

filters. Gosper prefractals based on a hexagonal geometry display a dual bandstop 

frequency response [14]. A dual band FSS is built by cascading a metal loop shaped 

layer and its complementary structure in [15]. Cascading two layers of conducting 

patches with slots to design dual bandstop FSS is used in [16]. Left-handed structures 

and capacitive grids are used to design dual band FSSs in [17].  

FSSs have been used as frequency diplexers in satellite reflector antenna systems 

with feeds placed on either side of an FSS [4-6]. Multichannel space-borne sounders 

were employed for spectroscopic characterisation of the Earth’s atmosphere [7]. 

These devices carry out molecular emission spectroscopy at millimeter and sub 

millimeter-waves in narrow frequency channels. To meet the satellite restrictive 

payload on cost, mass and energy consumption, passive remote sensing radiometers 

traditionally employ a single mechanically scanned reflector antenna to collect 

radiation over a wide frequency range. FSSs can play an essential role as an enabling 

technology for these advanced instruments. They can be used in quasi-optical 

receivers to spectrally separate the signals that are collected by the scanning antenna 

[7].  

The FSS can exhibit very low insertion loss and simultaneously meet the 

inconsistent requirements for high isolation between adjacent frequency channels. 

This should be accompanied by minimising the overall noise performance of the 

instrument and then achieve high receiver sensitivity which is necessary to detect 

weak molecular emissions at millimeters waves. 
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Recently, satellite systems tend to operate in the Circular Polarisations (CP) mode, 

which is advantageous in communication and sensing systems as it can provide 

resilience to effects such as Faraday rotation [8]. It can also remove the requirement 

for alignment in polarisation between the transmitter and receiver. The design of 

polarization independent FSSs has attracted a lot of interest. These surfaces have 

near identical transmission and reflection coefficient magnitudes for TE and TM 

polarised waves. Several FSS geometries with such properties have been presented 

for millimeter- and sub-millimeter waves including crossed dipoles [9], Jerusalem 

crosses [10], rings [2], two layers of the semi-circle surfaces [11], double square loop 

arrays and gridded double square loop arrays [12] 

The objective of this Chapter is to use novel methodology to design dual band 

spatial filters by using FSS periodic arrays composed of a bandpass and a bandstop 

element. The fabrication of the dual band filters is significantly simplified by using a 

single metal layer on a dielectric substrate.  

In Section 5.2, a novel technique is proposed to design a dual-band bandstop FSS 

by combining a bandpass structure with its complementary structure in series. It 

displays flexibility to control the stopband frequencies, which is the most attractive 

feature of this design. The proposed FSS filter is also very easy to fabricate, 

consisting of a single metal layer on a dielectric layer. A theoretical equivalent circuit 

model is proposed to characterise the structure. In section 5.3, a new method to 

implement FSS with sharp band edge transitions suitable for millimeter wave 

applications is introduced. A high selectivity bandpass FSS can be realised by 

combining two bandstop FSS structures on the same plane. By choosing appropriate 

dimensions of the structures, the passband and stopbands of the FSS can be 

controlled to obtain desired characteristics. With this method, multiple passbands and 

stopbands of an FSS can be achieved simultaneously. A prototype FSS is designed at 

the Ka band. The FSS is fabricated and tested in free space to verify the proposed 

design. The structure is polarisation independent and exhibit low insertion loss at 

around 40 GHz. 

5.2 Dual-band bandstop FSS  

Arrays of rings are of interest as FSSs for dichroic reflector antennas [13]. The 
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equivalent circuit of the ring is an inductor Ls in series with the mutual capacitance 

with adjacent cells Cm. It works as a bandstop filter as shown in Fig. 5.1a [13]. The  

 

       (a) 

 

(b) 

Fig. 5.1. Grid and equivalent circuit of the element (E is the electric field), (a) Ring shape 

(bandstop filter), (b) Complementary structure (bandpass filter). 

first step to design a desired dual bandstop FSS using the proposed architecture is 

to design the constituting resonator. The ring is designed on a 1.5 mm thick FR4 

substrate with a dielectric constant of 4.3. The radius of the ring r1, as shown in Fig. 
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5.1(a), is 10 mm, the width of the circumference of the ring w is 0.5 mm; the periodic 

constant P is 22 mm. At the same band approximately, the complementary of the ring 

structure works as a bandpass. The equivalent circuit of the complementary of the 

ring is an inductor Lp in parallel with a capacitor Cp as shown in Fig. 5.1(b), where S 

is the aperture and r2 is the radius of the circular patch. The structure of the proposed 

filter is built up by using half of the ring and half of the slot, the complementary of 

the ring, as shown in Fig 5.2(a). The equivalent circuit of the proposed filter is based 

on series connecting of a parallel LC with a series LC as shown in Fig. 5.2(b). 

         

(a) 

 

(b)                              

Fig. 5.2. (a) The proposed structure of the dual bandstop filter (b) Equivalent circuit model 

of the proposed dual bandstop filter. 

As shown in Fig. 5.2, L1 and C1 are the equivalent circuit components of half of 

the slot. L2 and C2 are the equivalent circuit components of half of the ring. 
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It is found in the simulation that the resonant frequency of the ring is 3.15 GHz; 

the resonant frequency of half of the ring is 3.28 GHz as shown in Fig. 5.3; while the 

resonant frequencies of the slot and half of the slot are 3 GHz and 2.96 GHz, 

respectively, as shown in Fig. 5.3. 

 

Fig. 5.3. Transmission coefficient (S21) of the whole and half structure of the bandstop 

resonator (ring shaped) and the bandpass filter resonator (C. is complementary). 

The impedance of the parallel connection of LC at frequency f (ω=2πf) is: 
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It is infinite (open-circuit condition) when ω=ω0=1/ 11CL  
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The impedance of the dual-band bandstop FSS resonator is: 
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The first stopband frequency f1, and second stopband frequency f2 of the proposed 

dual-band bandstop can be computed from solving (5.3): 
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At around f0 (the resonant frequency of the bandpass structure), the magnitude of 

the impedance of the parallel LC is infinity or open circuit, so all energy is 

transmitted, where fo can be calculated from (5.5). 

𝑓𝑜 =
1

2𝜋√𝐿1𝐶1
           (5.5) 

 In this design, the resonant frequencies of the parallel LC circuit and the series 

LC circuit are very close to each other. At f < f0, the impedance of parallel LC circuit 

in (5.1) is inductive. This effective inductance, being in series connection with the 

series LC circuit, will lower the resonant frequency of the series circuit. It can be 

calculated from (5.4) that the impedance of the equivalent circuit is zero at the lower 

stopband frequency f1 (< f0). f1 is found to be 2.36 GHz by simulation. Similarly, at 

f>f0, the impedance of parallel LC circuit in (5.1) is capacitive. This effective 

capacitance will increase the resonant frequency of the series LC circuit. It can be 

calculated from (5.4) that the impedance of the equivalent circuit is zero at the upper 

stopband frequency f2 (> f0). f2 is found to be 3.36 GHz by simulation. The structure 

exhibits flexibility to control the stopband as well as the passband frequencies by 

changing the dimensions of either the rings or the slots or both. In Table 5.1, three 

cases are given to demonstrate how to control the frequency response of the dual-

band bandstop filter as illustrated in Fig. 5.4. Case A can be regarded as a reference 

to other cases. The stopband frequencies f1 and f2 can be changed without changing 

the bandpass frequency f0 by changing the ring dimensions (r1 and w), as shown in 

case B. The changes in f1 and f2 are because of the changes in the values of the L2 C2, 

as can be observed from (5.4), which will change with r1 and w (ring dimensions). fo 

does not change as long as the (L1 C1) have fixed values, as can be seen from (5.5). 

Changing the dimensions of the complementary structure (r2, S) will shift the 

stopband frequencies f1 and f2 and the passband frequency f0 as illustrated in case C. 

This is because the values of L1 C1 are changed, as can be observed form (5.4) and 

(5.5).  

 The maximum attenuations at f1 and f2 are more than 50 dB in all cases. The 10 

dB attenuation bandwidth for f1 is 28% and for f2 is 24%. The resonant frequency of 

bandpass (fo) is 2.87 GHz with 0.19 dB insertion loss. 
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Table 5.1: Dimensions of the proposed filter in three cases (Unit: mm) 

                Ring parameters (mm)              C. ring parameters 
(mm) 

Case                 r1                 W                     r2                       S 

 A                     9.5              1                      9.5                   1 

 B                     9                 1.5                   9.5                   1  

 C                     9.5              1.5                   9                      1 

 

Fig. 5.4: Simulated transmission coefficients of the proposed dual-band bandstop filter in 

three cases. 

The unit cell size of the proposed FSS is 0.17λ × 0.17 λ, where λ is the wavelength 

at the passband frequency. The transmission coefficients of the dual-band bandstop 

FSS with case A parameters were tested under various angle of incidence. It is 

observed in simulation that the resonant frequencies of the filter are not strongly 

sensitive to the angle of incidence (θ). This is especially valid for -45 ≤ θ ≤ 45. 

5.2.1 Experimental results 

A prototype of the proposed case A FSS has been fabricated and measured to 

validate the design. The size of the FSS prototype is 176×176 mm2 and the whole 

structure consists of 8×8 elements. Two horn antennas and a vector network analyser 
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were used for the measurement. The transmission coefficient S21 was measured at 

various angles of incidence. The frequency response of the proposed structure 

exhibits a relatively stable frequency response for various angles of incidence. The 

measured frequency response of the proposed FSS shows a good agreement with the 

simulated result as shown in Fig. 5.5. The maximum attenuations at f1 and f2 are 

around 35 dB and 45 dB, respectively. The insertion loss at f0 is 0.6 dB. The minor 

discrepancies between the simulated and measured results can be attributed to errors 

which occurred during the fabrication and measurement environment. 

 

Fig. 5.5. Measured transmission coefficients of the proposed dual-band bandstop FSS with 

different angles of incidence (θ). 

5.3 High selectivity FSS  

An FSS is essentially a spatial filter [14]. Compared to a connectorised filter with 

fixed ports, an FSS has two distinctive features. One feature is that signals can be 

separated by both transmission and reflection as shown in Fig. 5.6. If connectorised 

filters were used, the signals would have to be split by a wideband divider and 

filtered individually. A three-way power divider has an intrinsic insertion loss of 3 dB, 

while the maximum measured insertion loss is 0.65 dB for an FSS in the 

transmission band of 320 GHz in [15]. The other distinctive feature is that two FSSs 

can co-exist on the same structure without significantly affecting each other. 

Therefore, a bandstop filter can be realised by combining two bandpass filters. A 

bandpass filter can be implemented by combing two bandstop filters, and so on. 
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Fig. 5.6. An FSS is essentially a spatial filter. Signals can be separated by both transmission 

and reflection 

 

          (a)             (b) 

Fig. 5.7. Top view and dimensions of the array element of the proposed FSS. The host structure 

is shown on the left-hand side and the secondary structure is shown on the right-hand side. 

A bandpass FSS is realised by combining two bandstop ones. The proposed FSS 

can be designed with a simple three-step procedure described in this section. The first 

step in this approach is to obtain the appropriate bandstop structure based on the 

desired frequency response. The structure should be chosen with a shape to be 

appropriate to host of a secondary structure. Fig. 5.7(a) shows the host structure. 

More details on the design of this structure can be found in [16]. The second step is 

to design an appropriate secondary structure with suitable characteristics, such as the 

frequency response, the array element size and the shape. The four-leg structure 

shown in Fig. 5.7(b) is used as the secondary structure in this design. The final step is 

to combine the host and the secondary structure, as shown in Fig. 5.8, and tune the 
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performance. 

 

Fig. 5.8. 3×3 array elements of the proposed dual-stopband FSS. 

For example, to obtain a narrow bandpass FSS with a centre frequency of 40 GHz 

and a fractional bandwidth of 5%, the dimensions of the structures shown in Fig. 5.7 

can be used. The substrate is a 0.81 mm thick Rogers RO4003 with a dielectric 

constant of 3.38. The structures are simulated separately. The shape of the FSS 

transfer functions can be optimised using simple circuit based simulations. To verify 

the responses of these structures, the proposed structure was simulated with CST 

Microwave Studio, using unit cell boundary conditions to provide periodicity along 

the x and y axes. The structure is excited by an electromagnetic wave with the 

propagation vector (K) towards the z-axis direction, magnetic field vector (H) 

towards the x–axis direction and electric field vector (E) towards the y-axis direction 

as shown in Fig. 5.7.  

Fig. 5.9 shows the simulated response of the host structure. The resonant 

frequency is at 43 GHz. The transmission coefficient of the four-leg secondary 

structure is shown in Fig. 5.10. The structure exhibits performance with a stopband at 

35 GHz. Fig. 5.11 shows response of the combined structures. It can be observed that 

a dual-stopband performance is achieved. Put it in another way, a bandpass 

performance is achieved at 20 GHz and 40 GHz. The bandpass FSS has a very sharp 

selectivity due to the two stopbands introduced by the host and the secondary 
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structures, respectively. 
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Fig. 5.9. Simulated transmission response of the host structure. 
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Fig. 5.10. Simulated transmission coefficients of the secondary structure. 

In fact, both the lower and the higher stopband can be shifted downwards or 

upwards independently by changing of the geometric dimensions of structures. Also, 

as discussed in Fig. 5.6, both reflection and transmission of FSSs are useful for signal 

separation. The proposed is effectively a dual-bandpass filter as well if the reflected 

signals are received. 
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Fig. 5.11. Simulated transmission coefficients of the proposed FSS. 

5.3.1 Experimental results 

 A prototype of the proposed structure has been fabricated and tested to validate 

the design. The fabricated FSS is shown in Fig. 5.12. The elements are enlarged and 

shown in the inset. The array element dimensions of the prototype are measured by 

using a microscope and is shown to be in good agreement with the simulated 

structure. The size of the FSS prototype is 102.6 mm × 102.6 mm. It consists of 30 × 

30 elements. Two horn antennas and a vector network analyser were used for the 

measurement. To ensure the accuracy of the experiment, the transmission coefficient 

between the two horn antennas was measured without the FSS. The transmission 

coefficient was then measured again with the FSS prototype. Then the measured 

transmission with the FSS is normalised with respect to the measured data without 

the FSS. The FSS was measured between 26.5 GHz and 40 GHz due to the 

bandwidth of the antennas. The measured response after smoothing is shown in Fig. 

5.13. As can be seen in Fig. 5.13, the response has two stopbands at 35 GHz and 45 

GHz and a narrow bandpass at 40 GHz. The insertion loss at the passband is 0.7 dB. 

The FSS was also tested under various polarisation angles. The performance is 

almost independent from polarisation angles due to the symmetrical nature of the 

proposed element.  
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Fig. 5.12. A photograph of the fabricated FSS with the proposed miniaturised array 

elements. 
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Fig. 5.13. The simulated and measured transmission coefficients of the proposed FSS 

structure. 

5.4 Conclusion 

A novel methodology to design dual-band bandstop FSS structure is proposed in 

this chapter. The proposed filter is relatively easy to fabricate due to its simple 

structure consisting of a single metal layer on a dielectric layer. It is shown that the 
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dual-band bandstop filter can be built up by combining the structure of half a ring 

and its complementary. The proposed structure is tested under different incident 

wave angles to verify that the response is insensitive to the incident angle. It is also 

shown that the proposed structure is very flexible in changing the stopband and 

passband frequencies.  

In this chapter, a novel schematic is used to design FSS with desired 

characteristics. This FSS is built by using a simple configuration of single surface 

layers. The structure exhibits low insertion loss at the millimeter waves. The 

frequency response of this test sample was measured both for normal incidence and 

for oblique angles of incidence. The measurement result for the protype demonstrates 

a restively good agreement with simulation one. The discrepancy between the 

simulation and measurement results is attributed to the tolerances involved in the 

fabrication process and numerical errors in simulations. The proposed approach with 

these features is very attractive for a wide range of applications.  
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  Chapter 6: High Order FSS 

6.1 Introduction 

FSSs with bandpass responses have gained more and more attention. Many design 

methods and structures are adopted to achieve bandpass characteristics. They can be 

designed by using slot elements since they are transparent at the resonant frequency 

and opaque below and somewhat above the resonance, Chapter 1, Section 1.1 [1]. 

They can also be built by multiple layers in parallel, separated by dielectric slabs. 

The thickness of the dielectric slabs should be around a quarter of the wavelength to 

obtain a fast roll-off and flat in-band frequency response. Recently, a number of high 

order FSSs have been developed to achieve flat response and fast roll-off [2-8]. 

These structures have thick substrate and relatively large element dimensions, as 

discussed in Chapter 2. 

This chapter illustrates high order bandpass FSSs (N ≥ 2) with low profiles and 

miniaturised dimensions. It is achieved by using two different techniques as 

described in Section 6.2 and 6.3 respectively.  

6.2 Miniaturised second order FSS 

High order bandpass FSSs (N ≥ 1) can achieve high performance with a flat in-

band frequency response and fast roll-off. One particular practical issue of designing 

bandpass FSSs using resonant surfaces is that the thickness of the substrate would be 

around a quarter of the wavelength. On the other hand, the size of a non-resonant 

FSS array element is usually large. 

 A new miniaturised FSS capable of exhibiting a second order bandpass response 

is proposed in this section. Two miniaturised resonant surfaces coupled by a non-

resonant inductive layer are used to build the proposed FSSs. An FSS operating at 

around 3.8 GHz is designed to verify the method. The element size is smaller than 

0.076λ×0.076λ for the proposed structure. This is significantly smaller than the 

element size of second-order FSSs designed using conventional approaches. The 

overall thickness is less than λ/24. The method could be particularly useful for the 

design of FSSs at lower frequencies with longer wavelengths.  
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6.2.1 Circuit design 

Fig. 6.1 shows the proposed structure with three surface layers. Two dielectric 

slabs are used to separate them. The first and third surface layers, as introduced in 

[9], are identical. They are formed by four stepped-impedance transmission lines 

connected to a square ring. The middle layer is built using grids to present 

inductance. Two dielectric slabs of FR4 with a thickness of 1.6 mm and a dielectric 

constant 𝜀𝑟 of 4.4 were used to separate the three metallic layers. 

For normal incident waves, the equivalent circuit as shown in Fig. 6.2 can be used 

to explain the operation principles of the proposed structure. The dielectric slabs, 

separating the surfaces layers, can be represented by two short pieces of transmission 

lines h1 and h2. The characteristic impedance of the transmission lines is  𝑍𝑑 =

𝑍𝑜 √𝜀𝑟⁄ , where Zo is the free space impedance. In Fig. 6.2(a), C1 and C3 represent the 

mutual capacitance between adjacent elements in the first and third layers, 

respectively. C2 and C4 represent the capacitance between the patches of an element 

in the first and third layers, respectively. L1 represents the inductance of strips on the 

first layer which are parallel to the E-field, and L3 represents the inductance of strips 

on the third layer. L2 represents the inductance of the inductive layer (the middle 

layer). The short transmission line sections, h1 and h2 in Fig. 6.2(a), can be replaced 

with their equivalent circuit model [10] which consists of a shunt capacitor and a 

series inductor. The revised equivalent circuit is shown in Fig. 6.2(b). The three 

inductors, Lt1, L2 and Lt2 in Fig. 6.2(b) can be transformed into the T-configuration as 

shown in Fig. 2(c) by using the well-known star-delta transformation [11]. It is 

assumed that each resonant circuit is coupled only with the circuit adjacent to it.  

As can be observed, the circuit shown in Fig. 6.2(c) is composed of two 

resonators coupled to one another with a single inductor. This circuit presents a 

second-order coupled-resonator bandpass filter, as described in [11]. The resonant 

frequency can be calculated as [8].  

𝑓 ≈
1

2𝜋√𝐶1(𝐶2+𝜀𝑟𝜀𝑜ℎ 2⁄ )(2𝐿1+2𝐿2+2𝜇𝑟𝜇𝑜ℎ) (𝐶1+𝐶2)⁄
                       (6.1) 

where εr and μr are the relative permittivity and permeability of the substrate, 

respectively. It is obvious from (6.1) that L1 the inductance of the resonant structure 

layer contributes significantly to the miniaturisation of the proposed structure. This 

inductance (L1) is designed to be relatively big, much stronger than the inductance of 
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the inductive layer to lower the resonant frequency or miniaturise the element size.  

 

Fig. 6.1. Topology of the proposed second-order bandpass FSS. 

 

(a) 

 

(b) 
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(c) 

Fig. 6.2. Equivalent circuit model of the proposed second-order bandpass FSS. (a) With 

transmission lines. (b) Using shunt capacitors and series inductors instead of transmission lines. 

(c) After star-delta transformation. 
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Fig. 6.3. Comparison between the calculated and simulated transmission and reflection 

coefficients of the proposed second-order bandpass FSS. 

The values of the inductors Lr1, Lr2, and L1 are related to Lt1, Lt2, and Lc by: Lr1= 

Lt1+ L2 (1+ Lt1/Lt2) and Lr2= Lt2+ L2 (1+ Lt2/Lt1). The coupling inductor Lc = Lt1+Lt2+ 

(Lt1Lt2)/L2, while Cr1=C2+Ct1 and Cr2= C4+Ct2. The values of lumped-element 

components in Fig. 6.2 (a), to achieve the desired response, can be determined. By 

taking C1= C3=0.30 pF, C2 =C4= 0.25 pF, L1=L3 = 2.34 nH and L2 =0.27 nH, the 

calculated reflection and transmission coefficients of the equivalent circuit are shown 

in Fig. 6.3. 

To design the proposed miniaturised FSS with the desired response, one can first 
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determine the values of the elements used in the equivalent circuit model of Fig. 6.2, 

then the initial dimensions of these LC components can be approximated using the 

formulas in [12].  

Finally, based on the results obtained from full-wave simulation on the array 

element of the proposed FSS, the dimensions of the inductive and resonant structures 

can be tuned to achieve the desired frequency response.  

Fig. 6.4 shows the dimensions of each layer of the proposed FSS after tuning. Dx 

and Dy are the dimensions of the array element on the inductive layer toward the x 

and y axis, respectively. Dx-s and Dy-s are the dimensions of the elements on the first 

and the third layers; s represents the separation between two adjacent elements on the 

same layer. Wp is the width of the square patch. 

 

Fig. 6.4. Top view of the array element of the second-order bandpass FSS. The resonant layer 

is shown on the right-hand side and the inductive (grid) layer is shown on the left-hand side. 

Table 6.1: Physical parameters of an element of the proposed second order bandpass FSS 

Parameter Dx Dy h1  h2 

Value 6 mm 6 mm 1.6 mm 1.6 mm 

Parameter Ws Wi Wp Wl 

Value 0.2 mm 2.4 mm 2.3 mm 0.2 mm 

Parameter εr S g  

Value 4.3 0.1 mm 0.2 mm  

 



Chapter 6: High Order FSS  P a g e  | 122 

 

Wi is the width of the wire grid. A 1.6 mm thick FR4 substrate with a dielectric 

constant of 4.4 and a loss tangent of 0.027 at 10 GHz is used in the design. The final 

design parameters of the structure and its unit cell are listed in Table 6.1. 

Fig. 6.3 shows the comparison between the calculated transmission and reflection 

coefficients and the simulated ones. The discrepancy in results between the 

simulation and the calculation is mainly attributed to use of the approximation 

equations (1.1) and (1.6). Fig. 6.5 and Fig. 6.6 show the simulated frequency 

responses of the proposed FSS for the TE and TM modes, respectively. The resonant 

frequency is 3.8 GHz, and the fractional bandwidth is about 10% at normal incidence 

angle. The insertion loss is 0.10 dB (assuming a lossless FR4). Whereas, using a 

lossy FR4 with a loss tangent of 0.027, the simulated insertion loss in the passband is 

about 1.05 dB.  
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Fig. 6.5. Simulated transmission coefficients of the proposed second-order FSS with variable 

incident angles for the TE mode. 

The simulation results show that the response of the proposed FSS is not very 

sensitive against incident angles. The frequency shift of the FSS at the TE mode with 

different incident angles is shown in Fig. 6.5. It can be seen that the centre frequency 

is shifted only by 2.6% from 0˚ to 60˚. The response is stable at the TM mode as 

well, as shown in Fig. 6.6. The comparison with works that have been used to design 

miniaturised second order bandpass FSS are shown in Table 6.2. It can be observed 

that the proposed structure is very stable, especially when the incident angle is high 



Chapter 6: High Order FSS  P a g e  | 123 

 

as 60˚. This is expected because FSSs with miniaturised array elements usually 

exhibit stable responses for non-zero incident angles [13]. Due to symmetry, the 

frequency response of the proposed structure is independent from the polarisation 

angle. These features offer great flexibility for the proposed structure to be used for 

many applications. 
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Fig. 6.6. Simulated transmission coefficients of the proposed second-order FSS with variable 

incident angles for the TM mode. 

Table 6.2: Comparison with other work regarding the center frequency deviations with 

incident angles 

FSS fo (GHz) Incident 

angle (degree) 

TE 

Tuning 

TM 

Tuning 

[3] 10 60 7% 10% 

[2] 21 40 2.5% 2.3% 

[14] 10 60 18% 16% 

This 

work 

3.8 40 2% 1.8% 

This 

work 

3.8 60 2.6% 2.6% 

  

A comparison of the proposed FSS filter with other reported ones is illustrated in 

Table 6.3. It can be seen that the proposed structure has the smallest size. The overall 
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thickness is one of the lowest as well. The thickness is only slightly thicker than that 

in [3] and [8]. However, the fractional bandwidth is about half. Had the FSS been 

designed with the same fractional bandwidth, the thickness would have been thinner 

than them. 

Table 6.3: Comparison with other work regarding the size, thickness and factional 

bandwidth (BW) of array elements 

FSS Order fo 

(GHz) 

Element size Overall thickness BW% 

[3] 2 10 0.15λ 0.033λ 20 

[4] 2 16.5 0.104 λ 0.22λ 10 

[2] 2 21 0.21 λ 0.273λ 5 

[14] 2 10 0.1λ 0.067λ 21 

[8] 2 24 0.16 λ 0.033λ 19 

[15] 3 8.5 0.2λ 0.257λ 15 

This 

work 

2 3.8 0.076 λ 0.038 λ 10 

 

Because of their relatively large size, most traditional high order bandpass FSSs 

are designed at the X, Ku, K and Ka band, rather than at lower frequencies, as can be 

observed from Table 6.3. The size of the proposed element is very compact and the 

overall thickness is small, which make the proposed design very suitable for low 

frequency applications.  

6.2.2 Experimental results 

A prototype of the proposed FSS filter has been fabricated and tested to validate 

the design method. The fabricated FSS is shown in Fig. 6.7. The size of the FSS 

prototype is 198 mm × 198 mm. It consists of 33 × 33 elements. The dimensions of 

the array element of the prototype are measured to ensure that they are in good 

agreement with the simulated elements. A vector network analyser and two horn 

antennas were used for the measurement. The measurement was done in two steps. 

First, the transmission coefficient between the two horn antennas was measured 

without the FSS. Second, the transmission coefficient was measured with the FSS 
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prototype between the antennas. Then the measured transmission with the FSS is 

normalised with respect to the measured data without the FSS. The transmission 

coefficient S21 was measured at  

          

Fig. 6.7. Photograph of the fabricated prototype of the proposed second-order bandpass FSS. 

  

Fig. 6.8. Simulated and measured responses of the proposed second-order bandpass FSS. 

various angles of incidence. The measured results are shown in Fig. 6.8 for the 

incident angles of 0˚ and 30˚. They show very good agreement with the simulated 

ones. As can be observed, the structure exhibits a bandpass response. The centre 
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frequency of the passband is 3.8 GHz with a fractional bandwidth of 10%. The 

frequency response of the proposed FSS is insensitive to the wave incident angle. 

The FSS was also tested under various polarisation angles. The performance is 

almost independent from polarisation angles due to the symmetrical nature of the 

proposed element.  

6.3 Low profile second order FSS 

In high-order FSSs, the surfaces should be cascaded vertically and separated by a 

dielectric substrate to achieve the desired responses. For that, the dielectric substrate 

thickness will matter in designing such structures. We present a novel approach for 

designing extremely low profile high-order bandpass FSSs. The structure is built in 

such a way to obtain bandpass response by using the coupling of the third harmonic 

of the resonators instead of the fundamentals. By parameter study of the proposed 

structure, it is found that a flat response can be achieved at a very thin substrate 

because the coupling between the third harmonics is very weak. The overall 

thickness of a second-order FSS can be reduced to λ/75. A prototype of the proposed 

second order bandpass FSS is designed, fabricated, and experimentally characterised. 

The measurement results of this device show a stable frequency response with 

respect to the angle of incidence up to ±45°.  

6.3.1 Circuit design 

The thickness of dielectric substrate layers, which are used to separate the metallic 

surfaces of an FSS, is reduced by using the third harmonics of the resonant surfaces 

as the main operation mode. In the proposed structure, two quarter-wavelength 

resonators are coupled by an inductive surface. Conventional quarter-wavelength 

resonators with uniform impedance resonate at an odd number times of the 

fundamental frequency (fo), i.e., (2n + 1)fo with n = 1,2,3 … where fo is the 

fundamental resonating frequency. In this study, it will be demonstrated how to 

enhance the third harmonic of a resonator and how to design extreme low profile 

high order FSS with such resonators. 

The proposed second-order FSS is designed by using three surface layers and two 

dielectric slabs to separate them, as shown in Fig. 6.9. The first and third surface 

layers, as introduced in [9], are identical and present mutual capacitance in parallel 
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with series LC. The mutual capacitance is induced when the electric field of the 

illuminated wave is normal to the gap between adjacent elements. Regarding the 

series LC, the inductance is induced due to the magnetic field normal to the square 

loop strip, while C presents the capacitance between the adjusted patches. Each 

resonator is formed by using a square loop with four stepped-impedance transmission 

lines. The middle surface is built by using grid to provide inductance. Two dielectric 

slabs with a relative dielectric constant of 4.4 (FR-4) are used to separate the two 

resonating surfaces and the non-resonant (inductive) surface. 

 

Fig. 6.9. Topology of the proposed second-order bandpass FSS. 

For normal incident waves, the equivalent circuit as shown in Fig. 6.10 can be 

used to explain the operation principles of the proposed structure. The dielectric slabs 

are represented by two short pieces of transmission lines h1 and h2. The characteristic 

impedance of the dielectric slab is  𝑍𝑑 = 𝑍𝑜 √𝜀𝑟⁄ , where Zo is the free space 

impedance. C1 and C3 represent the mutual capacitance between adjacent elements in 

the first and third layers, respectively. C2 and C4 represent the capacitors between the 

patches of an element in the first and third layers, respectively. L1 represents the 

inductance of the strip wire in an element of the first layer, and L3 represents the 

inductance of the third layer. L2 represents the inductance of the grid in the middle 

layer (inductive layer). It has been explained in detail that the inductance L2 will 

significantly weaken the coupling between the first and the third layer. 

This circuit is a second-order coupled resonator bandpass filter. Fig. 6.11 shows the 
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geometry dimensions of different layers of the proposed FSS, where Dx and Dy are 

the dimensions of the array element toward the x and y axis, respectively. Dx-s and 

Dy-s are dimensions of the square ring (first and third layer). wp is the width of the 

square patches inside the square ring; ws is the width of the strips inside the square 

ring; wl is the width of the square ring perimeter.  

 

Fig. 6.10. Equivalent circuit model of the proposed second-order bandpass FSS. 

Assuming that the structure has the same period in x and y directions, the inductive 

layer will be in the form of two metallic strips cross to each other with a length of Dx 

= Dy
 = D, and width of wi.  

 

     (a)                                                                     (b) 

Fig. 6.11. Top view of the array elements of the second-order bandpass FSS: (a) The 

capacitive patch, (b) The inductive (grid) surface layer. 

Dimensions of the FSS structures are optimised by full-wave simulation to 

achieve the desired frequency response. The final design parameters of the structure 



Chapter 6: High Order FSS  P a g e  | 129 

 

and its unit cell are listed in Table 6.4.  

Table 6.4: Physical parameter of the element of the proposed second order bandpass FSS 

(Unit: mm) 

Parameter Dx Dy Wp Wl h1 

Value 18  18 2  0.4 0.8 

Parameter Ws Wi S g h2 

Value 0.2  4  0.2  0.8 0.8 

 

Fig. 6.12 shows the FSS frequency response for the normal incident wave obtained 

using a full-wave simulation tool (CST Microwave Studio). It can be observed that a 

flat bandpass response is achieved at around the third harmonic frequency, while two 

peaks can be observed at around the fundamental frequency. This is because with a 

thin substrate, the coupling between the first and the third layer is very strong at the 

fundamental frequency. Thus, although the coupling through the effective 

transmission line (h1+h2) is weakened by the shunt inductance L2 of the middle layer, 

the direct coupling between the first and third layers will introduce two peaks at the 

fundamental frequency. It will be explained below that at the third harmonic, the 

coupling between the two layers at the third harmonic frequency is much weaker. 

This can be observed from the current distributions on the FSS surfaces as shown in 

Fig. 6.13. It can be seen that at the fundamental frequency, the current is mainly 

distributed in the parameter of the square rings on the first and third layers, as can be 

seen in Fig. 6.13(a). The coupling between these two layers is very strong. At the 

third harmonic, the current is mainly distributed at the centre of the rings on both 

sides and on two of the four step-impedance transmission lines inside the square ring, 

as shown in Fig. 6.13(b). The couplings between the first and third layers at these 

four places should have been very strong. However, due to the design, there are 

metallic strips on the middle layer. The middle layer will significantly weaken the 

coupling. Thus, a flat bandpass response can be achieved with a very thin substrate. 

The centre of the third-harmonic passband is at 3.86 GHz; the fractional bandwidth is 

4.5%. On the contrary, at the fundamental frequency, the coupling is too strong.  
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Fig. 6.12. Simulated magnitudes of transmission and reflection coefficients at thinner 

substrate. 

 

 (a)     (b) 

Fig. 6.13. Current distribution of the proposed structure: (a) At the fundamental resonant 

(1.35 GHz), (b) At the third harmonics response (3.9 GHz).  

It is worth mentioning that the structure still exhibits a very good second-order 

response even with a further reduced substrate thickness. The structure is simulated 

with different substrate thicknesses while other parameters are provided in Table 6.4. 

Fig. 6.14 shows the simulated results of the structure with three different substrate 

thicknesses (h1 and h2). It can be observed that the structure still exhibits a second-

order bandpass response with a substrate thickness equal to λ/75, h1 = h2 = 0.5 mm.  
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Fig. 6.14. Simulated transmission coefficients of the third harmonic of the proposed second-

order FSS with different substrate thicknesses. 
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Fig. 6.15. Simulated transmission coefficients of the proposed second-order FSS with varied 

incident angle for TE mode response. 

The thickness could be further decreased by optimizing the structure on the 

middle layer. The proposed FSS element was designed to be symmetrical in the xy-

plane. For this reason, it is independent from the polarisation angle. The structure 

was also simulated under various incident angles.  
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Fig. 6.16. Simulated transmission coefficients of the proposed second-order FSS with varied 

incident angle for TM mode response. 

The results indicate that the response is very stable as shown in Fig. 6.15 and Fig. 

6.16. Fig. 6.15 shows the result for the TE mode under 0o, 15o 30o and 45o incident 

angles. The insertion loss at the centre frequency response is 0.0115 dB at the normal 

incident angle. Fig. 6.16 shows the result for TM mode under 0o, 15o 30o and 45o, as 

well. These advantages offer great flexibility for the proposed structure to be suitable 

for many applications.  

6.3.2 Experimental results 

A fabricated sample of the proposed structure has been tested to validate the 

design.  

The fabricated FSS is shown in Fig. 6.17. The dimensions of the FSS prototype are 

216 mm × 216 mm. It consists of 12 × 12 elements. A vector network analyser and 

two horn antennas were used for the test. Two steps were used in the measurement 

procedure. First, in the free space case, the transmission coefficient between the two 

horn antennas was measured without the FSS. Second, the transmission coefficient 

was measured with the FSS prototype between the antennas. Then the measured 

transmission coefficient with the FSS is normalised with respect to the measured data 

without the FSS. 

 



Chapter 6: High Order FSS  P a g e  | 133 

 

 

Fig. 6.17. Photograph of the prototype of the proposed FSS. 

 

Fig. 6.18. Measured and simulated transmission coefficient of the third harmonic of the 

second order bandpass FSS. 

The transmission coefficient S21 was measured at various angles of incidence. The 

measured results are shown in Fig. 6.18 for the incident angles of 0˚ and 30˚. They 

show very good agreement with the simulated results. As can be seen, the structure 

exhibits a bandpass response at the third harmonic. The centre frequency of the 

passband is 3.86 GHz with a fractional bandwidth of 4.4%. The proposed FSS 

exhibits insensitive frequency response to the wave incident angle up to ±45o. 
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Fig. 6.19. Measured and simulated reflection coefficients of the third harmonic of the second 

order bandpass FSS. 

The FSS was also tested under various polarisation angles. It was shown that the 

performance is almost independent from polarisation angles. This is expected 

because of the symmetrical shape of the proposed element. The two horn antennas 

are used as the transmitter and receiver, respectively, at the same side of the FSS to 

measure the reflection coefficient. An absorber screen is used between the two horn 

antennas to eliminate the direct coupling between them. The measured reflection of 

the prototype of the proposed FSS is shown in Fig. 6.19. The measured result is in 

relatively good agreement with the simulated performance. The discrepancy between 

the measurement and simulation results is mainly due to inaccuracies in the exact 

values of the dielectric substrates used (±1.5% as specified by the manufacturer), the 

finite size of the prototype, tolerances and general inaccuracies involved in the 

fabrication process, inaccuracies involved in the measurement, and the numerical 

errors in the simulation.  

6.4 Conclusion 

In this chapter, a new approach to design a miniaturised second-order bandpass 

filter has been proposed. The miniaturised FSS has been built by using a 

configuration of three surfaces layers. The overall thickness of the proposed structure 

is 0.038λ, and the element dimensions are 0.076λ × 0.076λ for the prototype, which 
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is one of the smallest reported so far. The miniaturisation was realised by using 

resonant structures on the first and third layers. The proposed technique is 

particularly useful for low frequency applications. The structure exhibits very good 

features as an FSS, such as insensitivity to the incident angle and independence from 

the polarisations. The proposed design method with these features is very attractive 

for a wide range of applications.  

A new approach to design high order bandpass FSSs with extremely thin dielectric 

substrates has been introduced. The proposed approach is built based on the coupling 

between the third harmonics of the quarter wavelength resonators. The overall 

thickness of the proposed structure is λ/75, which is the lowest profile has been 

reported so far. As a result, the structure can be classified as a very low profile multi-

layered structure. The proposed method can also be useful for millimeter wave and 

terahertz application, where the substrate comprises the most significant loss to such 

structures. It has been shown that the transmission and reflection coefficients are 

almost independent from polarisations and insensitive to the incident angles Such an 

FSS can be very attractive for a wide range of applications.  
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Chapter 7: THz FSS 

7.1 Introduction 

Terahertz (THz) is the band of frequencies between microwave and infrared in the 

range from 0.3 to 3 THz. The wavelength of radiated signal at 1 THz is 300 µm in 

free space. Medical imaging, THz spectroscopy, security scanning, high speed and 

wireless communication are typical applications of THz systems [1-3].  

Recently, filter components have been proposed for some of these applications [1-

7]. Similar to microwave FSSs, THz FSSs can be realised by printing metal on one or 

both sides of a dielectric slab. Metal mesh and related structures have been shown to 

be suitable for the construction of THz filters. Several types of design have been 

proposed to achieve a desired THz filter. Dielectric-metal-dielectric has been used to 

achieve a dual band and low loss bandpass filter with a transmission coefficient of up 

to 90%[8].  

The bandpass filter based on meta-material could exhibit very narrow bandwidths 

[9-11]. The 3 dB fractional bandwidth of the passband by using two layers of the 

cross-slot structure and four layers of the wire-plate structure is less than 25% in 

each case. The amplitude of transmission is over 80% [12]. In the past, the 

researchers were focused on the analysis and design of single resonance THz FSS. 

The extension of FSS technology for multiband and tunable capabilities is of great 

interest. One interesting approach is to use fractal FSSs which are achieved by using 

a genetic algorithm [13]. Although they exhibit good performance, there is no 

obvious direct relationship between the performance and the geometry. It relies 

decisively on time-consuming computational trials.  

Conventionally, millimeter-wave and THz bandpass FSSs with an almost flat top 

and a fast roll-off frequency response can be implemented by using two or more 

cascaded surfaces (the same procedure which is used at microwave frequencies) [14]. 

The surfaces would be resonant or non-resonant, separated by dielectric layers. The 

thickness of the dielectric slab is usually around a quarter wavelength to obtain a flat 

frequency response and fast roll-off [15]. Generally, the thinner substrates are better 

to minimising radiation loss [16]. Also, satellite systems tend to operate in the 
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Circular Polarisations (CP) mode, which can provide flexibility to effects such as 

Faraday rotation [17]. It can make the alignment in polarisation between the 

transmitter and receiver easier. Polarisation independent FSSs have attracted a lot of 

interests. Several FSS geometries with such characteristics have been proposed at 

millimeter and sub-millimeter waves including crossed dipoles [18], Jerusalem 

crosses [19], rings [20], two layers of semi-circle surfaces [21], double square loop 

arrays and gridded double square loop arrays [22].  

In this chapter, a new approach to design FSSs with sharp transition edges will be 

described in Section 7.2. In Section 7.3, a low loss bandpass FSS with symmetrical 

shape in the xy-plane will be discussed. 

7.2 Sharp transition edge FSS 

In this section, a bandpass FSS is realised by combining a bandstop and a 

bandpass structures. The FSS can be applied to separate signals in THz frequencies. 

For example, it will be used to separate signals at 166 GHz and 183 GHz. Circular 

ring and circular slots are used here. The two structures can co-exist on the same 

layer without significantly affecting each other. It is demonstrated that using the 

proposed technique, second-order FSSs with an overall thickness of less than λ/7 can 

be designed. The proposed method focuses on designing a second order bandpass 

FSS with desired features, such as: low insertion loss, flat passband and sharp 

transition edges.  

7.2.1 Circuit design 

The proposed single-layer FSS is shown in Fig. 7.1. The element of the proposed 

FSS consists of two circular rings and their complementary structures on the same 

plane. Dx and Dy are the dimensions of the array element toward the x and y axes, 

respectively. Dx and Dy are 560 μm. The two rings and two slots are arranged to be 

rotationally symmetrical around the xy-plane shown in Fig. 7.1. By using this 

arrangement, the performance is insensitive to the polarisation of the normal incident 

waves. 
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Fig. 7.1. Geometric parameters of the proposed surface, unit: μm. 

The proposed structure can be designed in three steps. The first step is to achieve 

the appropriate bandpass structure based on the desired frequency response. A 

circular slot, as shown in Fig. 7.2, is used as the bandpass structure. By cascading 

two such structures in two layers, the desired frequency response with a flat top can 

be achieved. 

The second step is to design an appropriate structure with suitable bandstop 

characteristics, such as the frequency response, the array element size and the shape. 

The circular slot structure shown in Fig. 7.3 is used as the secondary structure in this 

design.  

The final step is to combine the two structures, the circular slot and the ring. It is 

worth mentioning here that the frequency response of the combined structure will be 

different from two individual circuits combined. This is mainly because of the 

coupling between the two structures. For that reason, tuning is needed to achieve the 

desired response. To verify the response of the combined structures, simulation was 

carried out on both the bandpass and stopband structures. It was done with a CST 

Microwave Studio, using unit cell boundary conditions to provide periodicity along 

the x and y axes.  
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Fig. 7.2. Top view of the passband FSS element (metal is shown in yellow and the slot is 

shown in cyan). 

 

Fig. 7.3. Top view of the stopband FSS element. 
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Fig. 7.4. Simulated transmission and reflection coefficients of the slot structure (bandpass). 
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Fig. 7.5. Simulated transmission and reflection coefficients of the ring structure (bandstop). 

   

Fig. 7.6. Schematic view of the two-layer FSS with 3×3 array elements. 

The structure is excited by an electromagnetic wave with the propagation vector 

(K) towards the z-axis direction, magnetic field vector (H) towards the x–axis 

direction and electric field vector (E) towards the y-axis direction. The bandpass 

response was achieved by cascading two layers of circular slots, which were 

separated by a Polyethylene Naphthalate (PEN) substrate with a 2.9 dielectric 

constant [23], 250 μm thick. The filter has a fraction bandwidth of 40% (150 GHz - 

225 GHz), as can be observed from the simulated results of the transmission and 

reflection coefficients shown in Fig. 7.4. The simulated results of the cascaded rings, 
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which are separated by the same PEN substrate, are shown in Fig. 7.5. The structure 

exhibits performance with a stopband from 150 GHz to 266 GHz. Fig. 7.6 shows the 

proposed two-layer combined structure with 3×3 array elements. Each element 

consists of two rings and two circular slots on two layers. It should be noted here that 

the dimensions of the circular slots and the rings are slightly different.  
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Fig. 7.7. Simulated transmission response of the two-layer FSS structure for TE and TM 

polarisations. 

The transmission characteristics of the FSS are predicted and obtained by 

simulation. The simulated response is shown in Fig. 7.7. It can be seen that the 

response has a flat passband from 162 to 177 GHz, with very high selectivity and 

low insertion loss. The insertion loss is less than 0.2 dB, the first rejection band is at 

around 152 GHz with an attenuation of 17 dB. The second rejection band is at 

around 183.5 GHz as specified with a high attenuation of better than - 40 dB. The 

structure exhibits the same response for TE and TM polarisations at normal 

incidence.  

Standard photolithography and lift-off processes were used to pattern the single-

layer FSS on a PEN. For the metallic layer, a bilayer of approximately 25 nm thick Ti 

and 100 nm of Au was deposited by e-beam evaporation. The array element 

dimensions are 1120 μm ×1120 μm. A prototype of the size of 3 cm × 3 cm has been 

fabricated. A two-layer FSS is also being fabricated. The measurement will be carried 
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out as future work. 

7.3 Low loses high order bandpass FSS 

One of the most popular FSS grid geometry and element is a cross-dipole as 

shown in Fig. 7.8(a). The geometry is defined by periodicity P, cross-member length 

d, and cross-member width W. A 3×3 cross-dipole array element is shown in Fig. 

7.8(b). The cross-dipole dimensions determine the frequency response of the filter. 

Linearly scaling the dimensions P, d and W can shift the filter profile, provided that P 

is much smaller than the wavelength[24, 25]. This structure exhibits bandstop 

response. 

   

                                          (a)                                                          (b) 

Fig. 7.8. Cross shaped filter. 

   

Fig. 7.9. (a) Schematic view of the single-layer FSS array element, (b) Schematic view of the 

single-layer FSS with 3×3 array elements 



Chapter 7: THz FSS  P a g e  | 144 

 

Fig. 7.9 (a) shows a single-layer FSS array element, which is the complementary 

of the cross-dipole. The schematic view of the single-layer complementary structure 

with 3×3 elements is shown in Fig. 7.9(b). The dimension of a single element is 

0.662 × 0.662 mm2. Each cross is rotated by 45o in the xy-plane. The slot width is 

W = 0.15 mm, and the slot length is d = 0.662 mm. With this arrangement, the 

performance of the FSS is insensitive to polarisation of incident waves. 

7.3.1 Fabrication and measurements 

Our single-layer FSS structure consists of 3 × 3 elements which have been 

fabricated. Standard photolithography and lift-off processes were used to pattern the 

single-layer FSS array on a 0.75-mm-thick Polyimide substrate, as shown in Fig. 

7.10. For the metallic layer, a bilayer of approximately 25 nm Ti coated with 100 nm 

of Au was deposited by e-beam evaporation. The measurement setup is shown in Fig. 

7.11. Interferograms were acquired at a range of emitter frequencies by adjusting the 

THz beam path length between the emitting and receiving antennas and recording the 

amplitude of the THz field over an 80-ps delay length, with 0.83-ps step size.  

 

Fig. 7.10. The fabricated THz FSS on a 7.5 μm thick Polyimide substrate. 

The transmission spectrum was obtained by comparing the interferogram 

amplitudes, both with and without the FSS present, at each frequency. The measured 

transmission response of the fabricated single-layer FSS array is shown in Fig. 7.12. 

The red line shows high-resolution scans over a narrow range of frequencies, while 
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the black line shows low-resolution scans over a wide range of frequencies. The 

passband can be clearly observed at 166 GHz as expected. The loss is relatively high 

at around 5 dB. To improve the performance, a new method is proposed to design a 

low-loss second-order FSS bandpass filter. The two layers of the array element are 

separated from each other by an air gap, as shown in Fig. 7.13(a). The schematic 

view of the two-layer FSS with 3×3 array elements is shown in Fig. 7.13(b). The 

simulated response is shown in Fig. 7.14. It can be seen that the response has a flat 

passband, much better selectivity and lower loss. This design will be fabricated and 

tested in the near future. 

 

Fig. 7.11. Measurement setup of an FSS at millimetre-wave and THz. 

 

Fig. 7.12. The measured result of the transmission response of the single-layer FSS array, the 

red lines show high-resolution scans over a narrow range of frequencies, while the black lines 

show low-resolution scans over a wide range of frequencies. 
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Fig. 7.13. (a) Schematic view of the two-layer FSS array structure with an air gap, (b) 

Schematic view of the two-layer FSS with 3×3 array elements. 
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 Fig. 7.14. Simulated transmission response of the two-layer FSS array structure. 

7.4 Conclusion 

In this chapter, a new approach to design bandpass FSSs with high selectivity for 

submillimeter wave applications has been proposed. The proposed approach is built 

by using a simple configuration of two different structures on the same layer. One 

structure has a bandpass response and the other has a bandstop response. It is shown 

that the transmission coefficient is independent from polarisation angles. The 

proposed FSS exhibits excellent characteristics such as low insertion loss, sharp roll-

off and flat passband.  
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Another method is proposed to design a low-loss high order bandpass FSS. The 

proposed structure is constructed by cascading two of the same surfaces separated 

from each other by an air gap. The device will be fabricated and measured in the 

future work. 
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Chapter 8: FSS for HIS and Antenna 

Applications 

8.1 Introduction 

This chapter focuses on applications of FSSs. Periodic structures are often used to 

improve antennas’ performance. A U-slot patch antenna was integrated to a modified 

Jerusalem cross FSS in [1] to improve the antenna gain, bandwidth and return loss at 

2.45 and 5.8 GHz for Bluetooth and WLAN applications. A split ring-shaped slot 

based frequency selective surface (FSS) is applied to increase the bandwidth and 

gain of an antenna [2].  

In Section 8.2, a high impedance surface (HIS) is implemented by using two 

layers which are symmetrical in the xy plane, but flipped by 180o in the yz plane (see 

Chapter 4). As a result of doing this, the HIS has miniaturised element size with a 

low profile. The dimensions of the miniaturised element are as small as 

0.0592λ×0.0592λ and the overall thickness is 0.006λ. The proposed structure is 

polarisation independent. These features of the proposed HIS structure can make it 

desirable for many applications. 

In Section 8.3, a design approach of FSS is presented for passive radio frequency 

identifier (RFID) tag antennas to function efficiently when mounted on a wide 

variety of dielectric materials of varied thickness. It is well known that the presence 

of materials can detune an antenna by shifting its operational frequency. 

8.2 A low profile miniaturised HIS  

HIS or artificial magnetic conductor (AMC) consists of an FSS placed above a 

perfect electric conductor (PEC) ground plane, with a dielectric material in between 

[3]. It exhibits selectivity in supporting surface wave currents, which is different 

from traditional metallic conductors. It displays a 0o reflection coefficient phase at a 

given frequency [4]. While using a conventional conductor as the ground plane of a 

planar antenna, the power transferred into the surface waves does not contribute to 

the main radiation of the antenna, it is scattered off the edges of the finite ground 
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plane and leads to ripples in radiation patterns, increased back radiation, and lower 

polarisation purity. This is because the electromagnetic energy trapped between the 

conductor-dielectric interfaces is formed into surface waves. Secondly, when the 

electromagnetic waves radiated into the substrate reaching the dielectric-air interface, 

any wave at angles greater than [𝑠𝑖𝑛 (√ɛ𝑟)] −1 will be reflected [5]. The bandwidth 

of a HIS structure is considered as the frequency band where the reflection phase 

shift varies from -90 to +90. Traditionally, at microwave frequencies, the HIS 

structure has an array element size of about half to a quarter of a wavelength, making 

the overall HIS prohibitively large if it is used a backing plane for antennas [6]. 

Designing HIS structures operating at low frequencies is relatively challenging 

because the array element is physically large and because the wavelength is long. 

Modern communication systems require small microwave components, so 

miniaturisation has become increasingly important for applications of AMCs where 

physical space is constrained [7].  

Recently, many approaches have been proposed to overcome on the size 

limitation. For example, a miniaturised AMC by using lumped capacitors is 

introduced [8]. Interdigitated-capacitor and spiral-inductor lumped elements are used 

to reduce the array element’s dimensions in [9].  

8.2.1 The structure 

The proposed FSS structure, formed by two metallic layers separated by a single 

substrate layer, was described in Chapter 4.  

The HIS surface can be built by cascading the FSS structure with ground 

separated by a dielectric substrate. In this case the surface does not have via pins 

connected to the ground plane. The FSS was designed on a 0.127 mm thick FR4 

substrate with a dielectric constant of 4.3. The grounded substrate is RO3003 with a 

dielectric constant of 3.0 and a thickness of 0.5mm. The strip width w is 0.1 mm, g = 

0.2 mm, a = 2 mm and D = 6 mm, as shown in Fig. 8.1. The equivalent circuit of the 

HIS is shown in Fig. 8.2. The FSS impedance (ZFSS) is in parallel with the input 

impedance of the grounded dielectric slab [10], where the impedance of the thin 

grounded dielectric slab behaves as an inductor (Zs = Ls = jμd, d is the dielectric slab 

thickness, μ is the permeability). 
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Fig. 8.1. Array element of the proposed HIS. 

 

Fig. 8.2. Equivalent circuit model the proposed HIS array element. 
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Fig. 8.3. The simulated reflection coefficient of the miniaturised HIS for vertical and 

horizontal polarisation angles. 
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Fig. 8.4. The simulated reflection phase of the miniaturised HIS for vertical and horizontal 

polarisation angles. 

 

Fig. 8.5. Side view of the topology of the two-layer HIS formed by periodically repeating 

element. 

Thus, decreasing the thickness of the substrate will shift the resonant frequency 

upwards because the value of Ls will decrease, and then the size of the HIS array 

element will be bigger to achieve the desired resonant frequency. It is a trade-off to 

have a very small HIS element and a low profile of the HIS structure.  

Fig. 8.3 shows the magnitude of the reflection coefficient of the proposed HIS for 

normal incident waves of vertical or horizontal polarisations. The resonant frequency 
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is 2.96 GHz. The power loss at the resonant frequency is mainly because of the 

substrate losses and the scattering in the incident wave between the cascaded layers 

(top and bottom). Fig. 8.4 shows the phase of the reflection coefficient for the normal 

incident wave. The ± 90o phase bandwidth is 33.5 MHz. The dimension of the array 

element is 0.0592λ×0.0592λ.  
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Fig. 8.6. The simulated reflection phase of the miniaturised HIS at different angles of the 

incident wave and for vertical and polarisation angles. 

Table 8.1: Comparison with other miniaturised HISs 

HIS structure Substrate 

Thickness (mm) 

ɛr Element 

size 

[8] 22.4 4.4 0.0137λ 

[9] 1.524 4.5 0.0938λ 

[11] 1.51 3 0.13λ 

[12] 1.27 10 0.0588 λ 

[13] 1.58 10.7 & 3.4 0.051λ 

The proposed 

structure 

0.627 4.5 0.0572λ 

 

For non-normal incident waves, the incident angles (θ) and polarisation angle (ϕ) 
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are defined as shown in Fig. 8.5. Fig. 8.6 shows the resonant frequencies of the 

structure under variable incident angles for the proposed HIS. It can be seen that the 

performance is very stable under different incident angles up to 75˚.  

The dimensions and the overall thickness of the proposed structure is compared 

with other approaches that have been used to design miniaturised HISs, as shown in 

Table 8.1. 

8.3 FSS for antennas  

It is well known that the presence of unknown materials can detune the 

performance of an antenna, thereby degrading its performance. For example, passive 

UHF RFID tag antennas are extensively used for inventory tracking and sensing in a 

variety of applications and environments. In general, an RFID tag antenna is 

designed for a given type of material, to optimise its gain, impedance, and efficiency. 

Examples include tags designed for near body applications [14], metallic surfaces 

[15, 16], bottled water [17], paper-based applications [18], and tags for specific 

products [19]. A tag antenna designed for a certain material (specific application) 

may not be applicable to another. This is mainly because the antenna frequency 

response is detuned when embedded or attached to materials with different dielectric 

properties. The thickness of the material also detunes RFID tag antennas.  

The target of this study is to suggest an extreme low profile FSS design for antennas 

to avoid the detuning due to surrounding materials. The antenna should have a wide 

bandwidth and a radiation pattern uniform around the broadside direction. Section 

8.3.1 discusses the effect of dielectric materials on periodic structures. Section 8.3.2 

describes the procedure to design FSS for RFID tag antennas. Section 8.3.3 focuses 

on the performance of the antenna when loaded with the proposed FSS. The 

measurement setup and experimental results to verify the theory are described in 

Section 8.3.4.  

 8.3.1 Dielectric effect on patch-mesh FSS 

In this subsection, the effect of dielectric materials on a multi-layer (patch-mesh) 

FSS, as shown in Fig. 8.7, will be investigated. The inductive surface is constructed 

by square rings with a strip width of 0.3 mm. Square patches with a gap of 0.4 mm 

are used as the capacitive surface. The array element size is 6 mm.  
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Fig. 8.7. 3×3 array element of the inductive FSS type. 
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Fig. 8.8. The reflection coefficient of the Patch-mesh FSS when placed on the surface of a 

material with εr = 6 and 2mm thick. 

A dielectric substrate with εr = 4 is uesed to separate the two surfaces. The 

structure is simulated under three cases. Firstly, when it is not attached to any other 

material; secondly when the inductive surface side is attached to a dielectric material 

(εr = 6); thirdly, when the patch surface side is attached to the dielctric material.  

The simulation result is shown in Fig. 8.8. It can be observed that the frequency 

response of the structure is very stable when it is attached to the dielectric slab from 

the inductive side, while the frequency response shifted significantly when the 
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dielctric slab is attached to the capacitive side. The stable resonant frequency 

response of the patch-mesh structure when a dielectric slab is attached to the 

inductive side occurs for two reasons. Firstly, the intrinsic inductance of the FSS is 

not influenced by the dielectric material as mentioned in Chapter 1, Section 1.4.1. 

Secondly, the equivalent inductance and capacitance values of the transmission line 

(dielectric slab) are very small compared to the intrinsic inductance and capacitance. 

The resonant frequency is shifted significantly in the case where the dielectric slab is 

attached to the capacitive side. This is because the effective dielectric constant of the 

FSS structure is changed and then the intrinsic capacitance is also changed.  

8.3.2 Circuit design 

The choice of the proper element may be of most importance when designing 

either a bandpass or band-stop FSS. Some elements are inherently more narrow-band 

or more broadband than others, while some can be varied considerably by design. 

Different FSS types can be chosen based on the application requirements. These 

requirements usually include a level of dependence on the polarisation and incidence 

angle of the incoming wave, and bandwidth.  

In this section, a new approach to implement an FSS structure which can exhibit 

an insensitive response to nearby dielectric materials of arbitrary thickness can be 

shown. Under the assumption that the dielectric materials will be attached to a one 

side only, let it be the bottom side of the proposed FSS. 

The structure is designed by using a resonator surface (the top side) and an 

inductive surface (the bottom side). They are separated by a dielectric substrate. The 

inductive surface will minimise the effect on the whole structure from any changes in 

the frequency response.  

To design the proposed FSS with the desired response, the values of the elements 

used in the equivalent circuit model of Fig. 8.9 should be determined. The initial 

values of these LC components can be approximated using those formulas in (1.1) 

and (1.6). The values of lumped-element components in Fig. 8.9, to achieve the 

desired response, can be obtained as C1= C3=0.30 pF, C2 =C4= 0.25 pF, L1=L3 = 

2.34 nH and L2 = 0.27 nH. The calculated reflection and transmission coefficients of 

the equivalent circuit are shown in Fig. 8.10. 



Chapter 8: FSS for HIS and Antenna Applications  P a g e  | 158 

 

  

Fig. 8.9. Equivalent circuit model of the proposed FSS. 
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Fig. 8.10. The calculated and simulated S parameters of the proposed structure. 

The response of the FSS is the result of combining the top resonator layer and the 

bottom inductive layer. The resonator surface exhibits a bandstop characteristic at 4.5 

GHz, as can be observed from the simulation result shown in Fig. 8.11. It is worth 

mentioning that cascading the resonant bandstop layer with the non-resonant 

inductive layer (L2) through the substrate will not only achieve an insensitive 

frequency response to nearby materials, but will also miniaturise the array element. 

The value of the inductance surface (L1) plays an essential role in shifting the 

bandpass frequency downwards. The proposed structure is designed to obtain a big 

value of L1 by using thin wires on the bottom layer. 

Based on the results obtained from the full-wave simulation on the array element 

of the proposed FSS, the dimensions of the inductive and resonator surfaces are 
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tuned to achieve the desired frequency response. 

The resonator surface as introduced in [20, 21], consisting of an inductive mesh 

and four capacitive patches as shown in Fig. 8.12 (a), are used for the design. Thin 

wires (grid) as shown in Fig. 8 12(b) are used as the inductive surface. The mutual 

capacitance between adjacent surfaces presents C1; the square wire inductor presents 

L1; and the capacitance between adjacent patches in one element presents C2. 
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Fig. 8.11. The calculated transmission coefficient of the resonator surface. 

 

(a)                                                         (b) 

Fig. 8.12. (a) The resonator surface, (b) the inductive surface. 

The structure was designed on a 1.6 mm thick FR4 substrate with a dielectric 
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constant of 4.3. The geometry parameters are shown in Table 8.2. 3×3 array elements 

of the proposed structure are shown in Fig. 8.13. The simulation result of the 

proposed structure is shown in Fig. 8.14. It can be seen that the proposed structure 

exhibits a bandpass response at 3.73 GHz. 

Table 8.2. Geometry parameters of the proposed resonator surface (unit:mm) 

Parameter Dx Dy h1  h2 

Value 6  6  1.6  1.6  

Parameter Ws Wi Wp Wl 

Value 0.2  0.2  2.3  0.5  

Parameter εr s g  

Value 4.4 0.1  0.2   

Performance of the proposed structure as a function of incident wave angles has 

been simulated. It exhibits a very stable response for incident angles (θ) up to 60o for 

both vertical and horizontal polarizations.  

 

Fig. 8.13. 3×3 Array element of the proposed FSS. 

As mentioned, the bottom layer (inductive surface) is not influenced by the 

surrounding dielectric material. To demonstrate this feature of the proposed structure, 

the structure is simulated when: Not attached to dielectric material, and the inductive 

(mesh) side placed on a 2 mm dielectric slab with various dielectric constants, ɛr = 3 

and 8.  
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Fig. 8.14. The simulated transmission coefficient of the proposed structure when placed on a  

2mm dielectric slab with varying dielectric constants. 
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Fig. 8.15. Simulated transmission coefficient of the proposed FSS for different inductive strip 

width. 

It can be seen from Fig. 8.14 that the resonant frequency is only shifted by 0.3% 

when the proposed structure is attached to the low dielectric constant material, and 

shifted by 1.7% at the high dielectric constant material case. 

Decreasing the strip width (Wi) of the inductive layer, or increasing the inductance 

(L2) at the equivalent circuit, will increase the bandwidth and decrease the surface 
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impedance. Fig. 8. 15 shows the simulated performance of the proposed structure 

with three different strip widths (Wi = 0.2, 0.4 and 1 mm). It is obvious that the 

transmission is higher with thinner wires. Thus, at the lower values of L2, the bottom 

layer will be closer to a ground plane than an inductive surface. The proposed 

structure will work as an HIS when the bottom side is attached to a metal plane.  

8.3.3 A dipole antenna loaded with the proposed FSS 

In this section, the proposed FSS is presented to antennas to function efficiently 

when the whole structure is mounted on a wide variety of dielectric materials of 

arbitrary thickness. A simple planar dipole antenna is used in this work. Fig. 8.16 

shows the physical arrangement of the dipole antenna loaded with the proposed FSS 

structure. As can be seen, the top layer is the dipole antenna on a 0.81 mm thick 

Roger 3004C substrate. The dielectric constant is 3.38. The resonator surface on an 

FR-4 substrate is located in the middle of the combination.  

 

Fig. 8.16. The dipole antenna loaded on 10×10 array element of the proposed structure. 

The dipole length is about λ/2 (42 mm). The simulated reflection coefficient of the 

dipole antenna when supported by the proposed FSS is shown in Fig. 8.17. As 

expected, the resonant frequency of the proposed structure will be shifted 

downwards. It is mainly because the antenna substrate is attached to the top layer of 

the FSS structure. The top layer is sensitive to dielectric materials as mentioned 

above. It is also because the equivalent circuit of the FSS as shown in Fig. 8.9 will be 
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changed by adding a series LC (the equivalent circuit of the dipole antenna). The 

resonant frequency of the FSS will shifts from 3.36 GHz to 2.72 GHz, as can be seen 

in Fig. 8.17. The stability of the combined structure when attached directly to a 

variety of dielectric materials of arbitrary thicknesses is demonstrated as shown in 

Fig. 8.17 and Fig. 8.18. Fig. 8.17 shows the simulation result of the combined 

structure with three cases: Not attached to dielectric materials; attached to a 4-mm 

thick low dielectric constant material (εr = 3.38) and; attached to a 4 mm thick high 

dielectric constant material (εr = 8). It can be observed from Fig. 8.17 that the 

frequency response of the combination is very stable in all three cases.  
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Fig. 8.17. The simulated return losses of the dipole antenna loaded with the proposed FSS when 

placed on a 4 mm thick dielectric slab with a variety of dielectric materials. 

Fig. 8.18 shows the simulation result of the combined structure when attached to 

the high dielectric constant material (εr = 8) with variable thickness (4 and 8 mm). 

Simulation was then carried out to obtain the return losses of the combined structure 

when the attached to metal through thin dielectric slabs (0.1 mm and 0.3 mm). The 

simulated results are shown in Fig. 8.19. It is very obvious that the bandwidth is 

decreased and the array element size becomes bigger. Table 8.3 shows the resonant 

frequency (fo), the fractional bandwidth (BW) and the array element size of the 

antenna when loaded with the proposed FSS for variable strip width of the inductive 

surface. 
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Fig. 8.18. The simulated return losses of the dipole antenna loaded with the proposed FSS, when 

the bottom layer is attached directly to the high dielectric constant material of varied 

thicknesses. 
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Fig. 8.19. The simulated return losses of the dipole antenna loaded with the proposed FSS when 

the bottom layer is attached to metal through thin dielectric slabs. 

It can be seen that the 10 dB fraction bandwidth (BW) in the case using the 

inductive surface with thinner wires (Wi = 0.1 mm) is twice as wide as that when 

using the ground plane. The radiation pattern is uniform in the broadside direction, as 

can be seen from Fig. 8.20. The total radiation efficiency is more than 90% at the 

resonant frequency. It should be mentioned that the centre of the antenna is aligned 

with the centre of the 10 × 10 proposed FSS elements. The effect of the misalignment 
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between the antenna and the FSS elements is simulated. The simulation was carried 

out by shifting the antenna from the centre of the FSS.  

Table 8.3. The frequency response and the element size for variable strip width of the 

inductive surface 

Wi (mm) fo (GHz) BW% Element size Overall thickness 

0.1 2.64 6.65 0.052λ 0.0211λ 

0.4 2.72 5.67 0.054λ 0.0217λ 

1 2.83 4.03 0.057λ 0.0226λ 

Ground plane 2.9 3.01 0.067λ 0.0232λ 

 

 

Fig. 8.20. Radiation pattern of the dipole antenna loaded with proposed FSS in free space. 

The proposed structure exhibits a stable frequency response to the misalignment. For 

example, the deviation in resonant frequency was 0.5% when the misalignment 

between the antenna and the centre of the FSS is 2 mm (0.018λ), or 3% at 4 mm 

(0.036λ), toward either the x or the y axis. 

8.3.4 Experimental results 

Firstly, an FSS consisting of 30 × 30 elements is etched on a 180 mm × 180 mm 

FR-4 substrate. The parameters are given in Table I. The fabricated circuit is shown 

in Fig. 8.21. The resonator surface (top side) is shown in Fig. 8.21 (a), while Fig. 

8.21 (b) shows the inductive surface (bottomed side). A vector network analyser and  



Chapter 8: FSS for HIS and Antenna Applications  P a g e  | 166 

 

 

(a) 

 

 (b) 

Fig. 8.21. A photograph of the fabricated prototype of the proposed second-order bandpass FSS 

(a) the resonant surface, (b) the inductive surface. 

two horn antennas were used for the measurement. The transmission coefficient 

between the two horn antennas was measured without the FSS, and then the 

transmission coefficient was measured with the FSS prototype between the antennas. 

Thereby, the measured transmission with the FSS is normalised with respect to the 

measured data without the FSS. The prototype FSS was measured when it was 

attached to 2 mm thick Glass with dielectric constant 5.75 at 10 GHz and 1.6 mm 

thick Rogers (RO4003C), respectively. It can be seen from Fig. 8.22 that the resonant 

frequency of the proposed FSS is very stable when it is placed on different dielectric 

materials. The structure exhibits a bandpass response. The centre frequency of the 

passband is 3.8 GHz. The FSS was also tested under various polarisation angles. The 

performance is almost independent from polarisation angles due to the symmetrical 

nature of the proposed element. Secondly, another prototype of proposed FSS, with a 

smaller element number, was fabricated.  
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Fig. 8.22. Simulated and measured transmission coefficient of the proposed FSS when placed on 

a 2 mm thick dielectric slab with various dielectric constants. 

         

(a)                                                            (b) 

 

(c) 

Fig. 8.23. Photographs of the fabricated antenna loaded the FSS prototype: (a) The top 

(resonator surface) layer of the FSS, (b) the bottom (inductive surface) layer of the FSS, and (c) 

the planar dipole antenna. 
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Fig. 8.24. The simulated and measured return losses of the dipole antenna loaded with the 

proposed FSS in different cases: No materials nearby; placed on glass of surface of variable 

thicknesses; and placed on metal. 

This prototype was coupled with an antenna. The size of this FSS prototype is 60 

mm × 60 mm, consisting of 10 × 10 elements. The prototype antenna was fabricated 

using the parameters as given in first paragraph in Section 8.3.3. Fig. 8.23 shows 

photographs of the prototype of the antenna loaded with the FSS. The dipole antenna 

was designed on a 0.81 mm thick Roger (RO4003C) substrate as shown in Fig. 8.23 

(c). The antenna and the FSS (the two PCBs) are then compressed together by using 

screws on their corners. The overall size of the combined structure (the dipole 

antenna loaded with the proposed FSS) was 60 mm× 60 mm × 2.4 mm. Fig. 8.24 

depicts the measured and simulated S11 of the dipole antenna loaded with the 

proposed FSS in three cases: No material nearby; placed on the 2 mm glass; placed 

on metal surface. It can be observed that the antenna shows robustness to challenging 

dielectric materials. Thus, the measurement of the antenna loaded with the FSS when 

placed on metal is in a very good agreement with the simulated one. Thus, the 

structure exhibits an insensitive response when attached directly to varied dielectric 

materials of arbitrary thickness. The centre frequency of the passband is 2.73 GHz 

with a fractional bandwidth of 5.6%. 
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8.4 Conclusion 

A new low profile and miniaturised HIS is presented in this chapter. The novel 

compact HIS consists of two metallic layers and two thin dielectric substrates. The 

overall thicknesses of the proposed HISs are extremely small, at just 0.627 mm. The 

dimensions of the miniaturised element are much smaller than the wavelength at the 

resonant frequency, as low as 0.059λ.  

A comparison with similar work has been carried out to demonstrate that the 

proposed AMC is low profile and of compact size. It is also shown that the proposed 

AMC is polarisation independent and has a very stable performance against incident 

waves from variable angles. Also in this chapter, the effect of dielectric materials on 

periodic structures is discussed. A theoretical model is introduced to analyse the 

structure based on the transmission line theory. A dipole antenna is mounted on the 

proposed FSS. The antenna can achieve a much wider bandwidth with a smaller size 

compared to the structure using an HIS. The dimensions of the antenna loaded with 

the proposed FSS are 60× 60 × 2.4 mm3 at 2.73 GHz. The theoretical and 

experimental results show that the proposed antenna loaded with the proposed FSS 

was more robust against surrounding materials than a conventional antenna. The 

proposed method can be very useful for a wide range of applications, for example, to 

design antennas for RFID tags.  
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 Chapter 9: Summary and Future Works 

9.1 Summary 

New techniques to design periodic structures for communications applications 

have been the main interest of this research. The new approaches have been well 

developed and applied to a number of problems concerning FSSs. As a result of these 

developments, the scanning and filtering performance can be significantly improved 

with FSSs of smaller size and lower profile. A summary of the developments in this 

area of research can be described as follows: 

 In Chapter 3, a new approach to miniaturise the size of the FSS array element has 

been proposed by interconnecting array elements in one direction in a two-layer FSS 

structure. The top layer acts as an enhanced inductor while the bottom layer acts as a 

capacitor. The interconnection between adjacent array elements changes the 

equivalent circuit and lowers the resonant frequency. The dimensions of the 

miniaturised FSS element are much smaller than the wavelength at the resonant 

frequency (periodicity << λ).  

In Chapter 4, a novel multi-layer structure has been proposed to construct an FSS. 

The performance of the proposed structure is very stable when it is attached directly 

to a wide variety of dielectric materials of arbitrary thickness. Both single and dual 

polarised structures are displayed. The shape of the FSS element is designed by using 

stepped-impedance transmission lines. Novel methodology has been proposed to 

design the FSS by maximising the value of the capacitance between adjacent layers. 

Due to this strong capacitance, the proposed structure offers three distinctive 

advantages. Firstly, this strong cross-layer capacitance makes the FSS element very 

compact. The dimensions of the miniaturised element are as small as 0.012λ×0.012λ. 

Secondly, for the proposed structure, the lower the profile, the stronger the cross-

layer capacitance, and the lower the resonant frequency. This is unique to the 

proposed structure since the resonant frequency is usually higher for a lower profile 

for traditional structures. Thirdly and most importantly, any external dielectric 

material attached to the FSS will not significantly affect the performance of the FSS 

due to this strong cross-layer capacitance. Through examples with a single polarised 

bandpass FSS at 1 GHz and a dual polarised bandpass FSS at 1.96 GHz, it is 
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demonstrated that a stable resonant frequency under various incident angles up to 75o 

can be achieved. Measurement results confirm the stability of the performance of the 

proposed FSS structure.  

 New approaches to design multiband and high selectivity FSSs have been 

presented in Chapter 5. In these approaches, the stopband and passband frequencies 

can be easily controlled, as explained in the chapter. The structure is implemented 

and measured in microwave and millimeter wave.  

In Chapter 6, miniaturised high order bandpass FSSs (N ≥ 1) that can achieve high 

performance have been proposed. The FSS element is implemented by two 

miniaturised resonant surfaces coupled by a non-resonant inductive layer. The 

element size is 0.076λ×0.076λ for the proposed structure. This is significantly 

smaller than the element size of second-order FSSs designed using conventional 

approaches. The method could be particularly useful at lower frequencies with longer 

wavelengths. Thus, a further approach to design extreme low profile bandpass FSS 

has been introduced by using higher modes of the resonator. Unlike traditional ones, 

this structure has been built based on the third harmonics to achieve the desired 

response at a very thin dielectric substrate. The overall thickness of the proposed FSS 

was less than λ/75. FSSs operating at 3.8 GHz have been designed to verify the 

designs. The proposed structures are polarisation independent and suitable for both 

linear and circular polarization applications. The structure is also insensitive to 

incident angles. 

In Chapter 7, new approaches to implement FSSs for THz band have been 

proposed. The structures exhibit a low insertion loss and high selectivity in the 

desired band. The high selectivity structure has been realised by combining bandstop 

and bandpass FSS structures on the same plane. By cascading more than one layer of 

surfaces separated by dielectric slabs, the response with the desired flat passband 

characteristics can be achieved. The structure is polarisation independent and 

exhibits high selectivity on the band (162.5-177.5 GHz). Another low loss FSS has 

been implemented by cascading two resonator surfaces separated by an air gap. The 

structure is also polarisation independent and exhibits low insertion loss at the 

passband around 166 GHz. 

Chapter 8 focuses on the development of FSS for some applications such as HIS 
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and RFID. It proposes an extremely small size and low profile HIS array element. A 

trade-off between the miniaturised dimensions of the HIS element and the thickness 

of the grounded substrate is used to achieve an extremely low profile HIS. The 

structure is miniaturised based on a cross-layer capacitor. The overall thickness of the 

proposed HIS is extremely small, 0.627 mm, and the dimensions of the miniaturised 

element are much smaller than the wavelength at the resonant frequency. The two 

layers used in the proposed HIS are symmetrical to make it is applicable to circular 

polarisation applications. It demonstrates a stable resonant frequency under various 

incident angles (up to 75o). In this chapter, a new FSS schematic has been developed 

for antenna applications to function efficiently when mounted on a wide variety of 

dielectric materials of arbitrary thicknesses. The new FSS structure exhibits a very 

stable frequency response when attached to different dielectric materials. An antenna 

can be loaded with the proposed FSS structure to avoid detuning due to nearby 

materials. In comparison with a high impedance surface (HIS), the proposed FSS 

exhibits a wider bandwidth with a smaller element size and lower profile. The 

proposed FSS array element size at the resonant frequency of the antenna, after 

coupling with the proposed FSS, is 0.0546λ × 0.0546λ with a thickness of 0.01456λ. 

The FSS structure and a planar dipole antenna were fabricated and tested. The 

experiment result proves that an antenna loaded with the proposed FSS will make the 

frequency response very stable against nearby dielectric media with medium to high 

permittivity and of varying thicknesses. 

9.2 Future work  

FSSs are well known in the literature for their filtering characteristics at 

microwave millimetre and submillimetre waves. Based on the summary above and 

considering the limitations of existing work, future research could be carried out in 

the following areas: 

 9.2.1 Lower frequency band 

Chapter 2 proposed a design approach for an FSS structure for antennas to avoid 

detuning due to surrounding materials. This structure is applicable for antenna 

applications in frequency bands higher than 2 GHz. In the lower band (0.3-2 GHz), 

the size of the periodic structures is still an issue. More investigation to design a 
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compact structure to be applicable for lower frequency bands is required. In Chapter 

2, a low profile HIS with a narrow band response has been introduced. Generally 

speaking, the bandwidth for an HIS is narrow and this can be an obstacle for using 

the HIS for a variety of applications. Designing one with a wider bandwidth will be 

very attractive for many applications. 

 9.2.2 A mobile phone 

Wireless systems for the future 5G cellular system are increasingly proposing the 

utilisation of the mm-wave spectrum due to the growing requirement for wider 

bandwidths [1]. 

Moving to the mm-wave frequencies for 5G mobile terminals requires new 

techniques in the design of antennas for mobile-station (MS) and base-station (BS) 

systems. In order to achieve an efficient beam-steerable phased array antenna, which 

is one of the most important blocks for 5G cellular systems, smaller antennas 

arranged as an array can be employed [2, 3]. However, mutual coupling between the 

phased array antenna elements is relatively high and could be an obstacle to this 

technique. One way to resolve such an issue is to use FSS structures. These 

structures can improve the isolation between the adjacent array antenna elements. 

The FSS array element should be ultra-miniaturised to be applicable for such 

applications because of the limited dimensions of a mobile phone. 

 9.2.3 THz frequency band 

Future work will aim to develop the fabrication process in order to investigate 

experimentally the FSS operation in the THz regime. A THz FSS that consists of a 

single metal-dielectric layer, which is relatively easy to fabricate, will be studied. A 

wideband THz FSS filter with low insertion-loss will be investigated. The THz filter 

will be proposed by using sub-wavelength elements to produce excellent filtering 

characteristics with an ability to improve frequency selectivity.  
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